WO2023124912A1 - 碳酸盐岩沉积相类型的预测方法及装置 - Google Patents

碳酸盐岩沉积相类型的预测方法及装置 Download PDF

Info

Publication number
WO2023124912A1
WO2023124912A1 PCT/CN2022/138065 CN2022138065W WO2023124912A1 WO 2023124912 A1 WO2023124912 A1 WO 2023124912A1 CN 2022138065 W CN2022138065 W CN 2022138065W WO 2023124912 A1 WO2023124912 A1 WO 2023124912A1
Authority
WO
WIPO (PCT)
Prior art keywords
target layer
phase
seismic data
sedimentary facies
carbonate
Prior art date
Application number
PCT/CN2022/138065
Other languages
English (en)
French (fr)
Inventor
徐兆辉
王铜山
王露
刘伟
李洪辉
胡再元
马德波
李伯华
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2023124912A1 publication Critical patent/WO2023124912A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to the field of oil and gas exploration, in particular to a method for predicting the type of sedimentary facies of carbonate rock and a device for predicting the type of sedimentary facies of carbonate rock.
  • Carbonate rock is one of the main reservoir lithologies of oil and gas resources, containing more than 60% of global oil and gas resources. Among them, the proportion of natural gas reserves contained in deep carbonate rocks has increased from 20% in the previous period to 35%. Deepening the research on carbonate rock sedimentary reservoirs, improving the success rate of oil and gas exploration, and promoting the rapid and large-scale increase of natural gas reserves and production will help realize the The goal of "carbon neutrality and carbon peak" plays a pivotal role.
  • seismic data and drilling and logging data are mainly used.
  • Common techniques include seismic attribute extraction and fitting and wave impedance inversion based on geological models.
  • the extraction and fitting of seismic attributes to predict sedimentary facies and reservoirs requires a sufficient amount of drilling and logging data to ensure the reliability of the fitting, but the fitting effect is not ideal due to the linear correlation between each seismic attribute.
  • stochastic fitting techniques have emerged in recent years, linear correlations between multiple attributes still exist, leading to interference.
  • the method of predicting sedimentary reservoirs based on the wave impedance inversion of the geological model is highly dependent on the initial geological model. If the initial model is unreasonable or inaccurate, the prediction effect will be greatly reduced. Therefore, there is a certain degree of inadequacy in the current similar technologies related to the present invention, which leads to ambiguity in predicting carbonate sedimentary facies and reservoirs.
  • the purpose of the embodiments of the present invention is to provide a method for predicting carbonate sedimentary facies and a device for predicting carbonate sedimentary facies, so as to at least solve the above-mentioned reliability of determination results of carbonate sedimentary characteristics Not a high question.
  • the first aspect of the present invention provides a method for predicting the type of carbonate sedimentary facies, said method comprising:
  • the frequency-division data body corresponding to the target layer is converted into the relative geological time domain isochrone in the Wheeler domain; the relative geological time domain isochrone in the Wheeler domain is color-fused, and the construction produces the wheeler domain fusion body; and The wheeler domain fusion is sliced from bottom to top to generate a fusion plan;
  • An analogy analysis is carried out between the fusion plan and the high-definition image of the surface carbonate rock to determine the sedimentary facies type of the target layer.
  • the 3D seismic data after the phase rotation is determined through the following steps:
  • the three-dimensional seismic data after negative 90° rotation of the phase of the zero-phase three-dimensional seismic data is used as the phase-rotated three-dimensional seismic data.
  • the tuning frequency corresponding to the underground target layer is calculated according to the thickness of the target layer.
  • the target layer is determined through the following steps:
  • the target layer is determined based on the seismic reflection interface corresponding to the target layer.
  • the present invention also provides a kind of prediction device of carbonate sedimentary facies type, and described device comprises:
  • the acquisition unit is used to acquire high-definition images of surface carbonate rocks, phase-rotated 3D seismic data and tuning frequencies corresponding to underground target layers;
  • the data conversion unit is used to divide the phase-rotated 3D seismic data with the tuning frequency corresponding to the underground target layer by using the wavelet transform algorithm to obtain the frequency-divided data volume corresponding to the target layer;
  • the frequency-division data body is converted into the relative geological time domain isochrone body in the Wheeler domain;
  • the relative geological time domain isochrone body in the Wheeler domain is color-fused to construct and produce the wheeler domain fusion body;
  • the wheeler domain fusion body is Slicing from bottom to top to generate a fusion plan;
  • a determination unit is used to carry out an analogy analysis between the fusion plan and the high-definition image of the surface carbonate rock to determine the sedimentary facies type of the target layer.
  • the device also includes:
  • the seismic data phase conversion unit is used to obtain zero-phase three-dimensional seismic data
  • the three-dimensional seismic data after negative 90° rotation of the phase of the zero-phase three-dimensional seismic data is used as the phase-rotated three-dimensional seismic data.
  • the tuning frequency corresponding to the underground target layer is calculated according to the thickness of the target layer.
  • the device also includes:
  • the target layer determination unit is used to obtain the formation sequence revealed by the drilling and logging of the formation
  • the target layer is determined based on the seismic reflection interface corresponding to the target layer.
  • the present invention also provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to make a machine execute the above method for predicting the sedimentary facies of carbonate rocks.
  • the present invention also provides a terminal device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a terminal device including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the above-mentioned carbonate rock Steps in the method for prediction of sedimentary facies types.
  • the present invention can dig deep into the potential information of seismic data, organically integrate technical means such as phase rotation, frequency decomposition, wheeler domain conversion, and color fusion to form a set of targeted technical sequences, combined with high-definition images such as Google Earth high-definition satellite images
  • the deterministic modern sedimentary model reflected can accurately predict the sedimentary facies types of underground carbonate rocks, which is further conducive to the accurate prediction of the subsequent planar distribution of reservoirs.
  • Fig. 1 is the method flowchart of the method for predicting the carbonate sedimentary facies type provided by an embodiment of the present invention
  • Fig. 2 is a partially enlarged high-definition image of a modern example of a carbonate rock tidal channel reformed grain shoal in a method for predicting carbonate sedimentary facies types provided by an embodiment of the present invention
  • Fig. 3 is the stratigraphic interface corresponding to the event corresponding to the zero-phase seismic data in a method for predicting carbonate sedimentary facies provided by an embodiment of the invention
  • Fig. 4 shows the stratigraphic interface corresponding to the three-dimensional seismic data after phase rotation in a method for predicting carbonate sedimentary facies provided by an embodiment of the invention.
  • this embodiment provides a method for predicting the type of carbonate sedimentary facies, the method comprising:
  • the frequency-division data body corresponding to the target layer is converted into the relative geological time domain isochrone in the Wheeler domain; the relative geological time domain isochrone in the Wheeler domain is color-fused, and the construction produces the wheeler domain fusion body; and The wheeler domain fusion is sliced from bottom to top to generate a fusion plan;
  • An analogy analysis is carried out between the fusion plan and the high-definition image of the surface carbonate rock to determine the sedimentary facies type of the target layer.
  • Google Earth is used to search for representative areas of modern carbonate grain beach depositional environments worldwide, and typical examples of grain beaches affected by tidal channels are selected from them. Then, two forms of true color and false color are used to obtain partially enlarged high-definition images of modern examples of carbonate tidal channel reformed grain banks (as shown in Figure 2). According to the Google Earth images, the planar sedimentary characteristics and development scale of the carbonate tidal channel reformed grain shoal were summarized, and the sedimentological model was obtained.
  • the 3D seismic data after the phase rotation is determined through the following steps:
  • the common 3D seismic data in the oil industry is zero phase, trace spacing 25 ⁇ 25m, and sampling interval 2ms.
  • the dominant frequency of earthquakes varies greatly, roughly between 15 and 30 Hz, and usually decreases with the increase of burial depth.
  • the dominant frequency of earthquakes is about 20 Hz, and the vertical resolution is less than 75 m.
  • This technology is based on the planar slice method, which can effectively make up for the problem of insufficient seismic vertical resolution, and has a wide range of applications.
  • the event of zero-phase seismic data corresponds to the stratigraphic boundary (as shown in Figure 3), while the event of negative 90° phase seismic data corresponds to the stratum itself, which is more suitable for sedimentary interpretation.
  • This method is aimed at finely characterizing the sedimentary facies of the strata, so the conventional post-stack zero-phase seismic data is phase-rotated to obtain negative 90° phase seismic data corresponding to the stratigraphic interface (as shown in Figure 4).
  • the white rectangular boxes in Figures 3 and 4 are used to highlight the specific location of the carbonate grain bank on the seismic section.
  • the tuning frequency corresponding to the underground target layer is calculated according to the thickness of the target layer.
  • the target layer is determined through the following steps: obtaining the stratum sequence revealed by drilling and logging of the stratum;
  • the seismic reflection interface corresponding to the research target layer was calibrated to find the target layer.
  • the coarse-to-fine method first build a sparse sequence stratigraphic framework, then gradually encrypt and interpret, and finally realize 1 ⁇ 1 interpretation to form a fine isochronous sequence stratigraphic framework.
  • This framework will be used in the follow-up study on the plane and section characteristics of the target layer, laying a solid foundation for the prediction of sedimentary facies.
  • Conventional 3D seismic data is a full-band data body. This method uses wavelet transform algorithm to decompose the data after the phase rotation in the previous step.
  • the corresponding low, medium and high tuning frequencies are calculated according to the thickness of the thick, medium and thin strata revealed by drilling in the study area.
  • Low (10-20hz), medium (20-30hz), and high (30-40hz) tuning frequencies are three frequencies defined in turn, which are consistent with thick (50-75m), medium (20-50m), thin (10-20m ) stratum thickness corresponds one by one, and the specific value is not limited.
  • the three frequencies and the corresponding thickness of the formation can produce a tuning effect, so it can best reflect the characteristics of the corresponding thickness, so these three tuning frequencies are determined as the main frequency used for frequency division.
  • the three-dimensional seismic data volume after phase rotation is converted into three frequency division data volumes.
  • the Wheeler domain is an isochronal conversion technique often used in sedimentology and sequence stratigraphy. This method utilizes this technical principle to generate relative geological age domain isochrones from the three frequency division volumes for the target layer. Once the isochrones are generated, subsequent stratigraphic slices are made simple and isochronously geologically meaningful.
  • This embodiment specifically uses the red-green-blue color fusion technology to fuse and reconstruct the three sets of wheeler domain isochrones generated in the previous step to generate a wheeler domain fusion body. Use the red-green-blue color fusion technology to fuse and reconstruct the three sets of wheeler domain isochrones generated in the previous step to form a geological age domain isochrone.
  • red represents the low-frequency crossover body
  • green represents the intermediate frequency crossover body
  • blue represents the high-frequency crossover body
  • the color saturation represents the strength of the amplitude.
  • Geological phenomena of different scales can be displayed on a slice map, which is useful for analyzing carbonates.
  • Rock sedimentary facies provide powerful technical means. After this step is completed, a combination of planes representing geological phenomena will be generated to obtain a fusion plane.
  • the Google Earth satellite image interpret the fusion plan generated in the previous step, and obtain the characteristics of the grain beach transformed by the tidal channel of the ancient deep carbonate rock.
  • the fusion plan and the high-definition image of the surface carbonate rock are analyzed by analogy, for example, the planar sedimentary features in the fusion plan view and the planar deposition features in the high-definition image of the surface carbonate rock are similarly analyzed.
  • the sedimentary facies type of the high-definition image of the surface carbonate rock is interpreted as the deposition of the fusion plane map phase type.
  • the set threshold may be 90%, for example, there are 9 similar planar deposition features among 10 planar deposition features.
  • the similar judgment is the expression of the expert experience database, which is generally determined based on the principles of sedimentology.
  • the present invention also provides a device for predicting carbonate sedimentary facies, said device comprising:
  • the acquisition unit is used to acquire high-definition images of surface carbonate rocks, phase-rotated 3D seismic data and tuning frequencies corresponding to underground target layers;
  • the data conversion unit is used to divide the phase-rotated 3D seismic data with the tuning frequency corresponding to the underground target layer by using the wavelet transform algorithm to obtain the frequency-divided data volume corresponding to the target layer;
  • the frequency-division data body is converted into the relative geological time domain isochrone body in the Wheeler domain;
  • the relative geological time domain isochrone body in the Wheeler domain is color-fused to construct and produce the wheeler domain fusion body;
  • the wheeler domain fusion body is Slicing from bottom to top to generate a fusion plan;
  • the determining unit is used to perform analogy analysis on the fusion plan and the high-definition image of the surface carbonate rock to determine the sedimentary facies type of the target layer.
  • the device also includes:
  • the seismic data phase conversion unit is used to obtain zero-phase three-dimensional seismic data
  • the three-dimensional seismic data after negative 90° rotation of the phase of the zero-phase three-dimensional seismic data is used as the phase-rotated three-dimensional seismic data.
  • the tuning frequency corresponding to the underground target layer is calculated according to the thickness of the target layer.
  • the device also includes:
  • the target layer determination unit is used to obtain the formation sequence revealed by the drilling and logging of the formation
  • the target layer is determined based on the seismic reflection interface corresponding to the target layer.
  • the present invention also provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to make a machine execute the above method for predicting the sedimentary facies of carbonate rocks.
  • the present invention also provides a terminal device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • a terminal device including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the above-mentioned carbonate rock Steps in the method for prediction of sedimentary facies types.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • any combination of various implementations of the present invention can also be made, as long as they do not violate the idea of the implementations of the present invention, they should also be regarded as the content disclosed in the implementations of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种碳酸盐岩沉积相类型的预测方法,属于油气勘探领域,包括:获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;运用小波变换算法将相位旋转后的三维地震数据以地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;将目的层对应的分频数据体转化为 Wheeler 域中的相对地质年代域等时体;将Wheeler 域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将wheeler域融合体自下而上切片,生成融合平面图;将融合平面图与地表碳酸盐岩的高清图像进行类比分析,确定目的层的沉积相类型。还提供一种碳酸盐岩沉积相类型的预测装置、机器可读存储介质和终端设备。

Description

碳酸盐岩沉积相类型的预测方法及装置 技术领域
本发明涉及油气勘探领域,具体地涉及一种碳酸盐岩沉积相类型的预测方法和一种碳酸盐岩沉积相类型的预测装置。
背景技术
碳酸盐岩是油气资源的主要储集岩性之一,蕴含全球油气资源60%以上。其中深层碳酸盐岩中含有的天然气储量占比由前期的20%增加至35%,深化碳酸盐岩沉积储层研究,提高油气勘探成功率,推进天然气快速规模增储上产,对实现“碳中和、碳达峰”目标具有举足轻重的作用。
但是,碳酸盐岩地层普遍埋藏深、非均质性强,加上地表条件较差进一步增加地震采集难度。这些特点导致石油工业界常见的三维地震资料品质不高,具体表现在主频和信噪比低,垂向分辨率不足,给沉积相和储层刻画带来困难。
目前针对沉积相和储层预测,主要是利用地震资料和钻测井资料,常用技术包括地震属性提取拟合和基于地质模型的波阻抗反演两大类。其中,地震属性提取拟合预测沉积相和储层,需要足够数量的钻测井数据,以保证拟合的可靠性,但是由于各个地震属性之间存在线性相关,导致拟合效果不理想。虽然近年来出现了随机拟合技术,但 是多属性间的线性相关仍然存在,导致干扰。基于地质模型的波阻抗反演进行沉积储层预测的方法,对于初始地质模型的依赖性较大,如果初始模型不合理或者不准确,就会导致预测效果大打折扣。因此,目前与本发明相关的同类技术都存在一定程度的不足之处,导致预测碳酸盐岩沉积相和储层的多解性。
发明内容
本发明实施方式的目的是提供一种碳酸盐岩沉积相类型的预测方法和一种碳酸盐岩沉积相类型的预测装置,以至少解决上述的碳酸盐岩沉积特征的确定结果可靠性不高的问题。
为了实现上述目的,本发明第一方面提供一种碳酸盐岩沉积相类型的预测方法,所述方法包括:
获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;
运用小波变换算法将所述相位旋转后的三维地震数据以所述地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;
将所述目的层对应的分频数据体转化为Wheeler域中的相对地质年代域等时体;将Wheeler域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将所述wheeler域融合体自下而上切片,生成融合平面图;
将所述融合平面图与所述地表碳酸盐岩的高清图像进行类比分析,确定目的层的沉积相类型。
优选的,所述相位旋转后的三维地震数据通过以下步骤确定:
获取零相位的三维地震数据;
将所述零相位的三维地震数据的相位进行负90°旋转后的三维地震数据作为相位旋转后的三维地震数据。
优选的,所述地下目的层对应的调谐频率根据目的层的厚度计算得到。
优选的,所述目的层通过以下步骤确定:
获取地层的钻测井所揭示的地层序列;
根据所述地层的钻测井所揭示的地层序列在所述相位旋转后的三维地震数据中标定出目的层所对应的地震反射界面;
基于所述目的层所对应的地震反射界面确定目的层。
本发明还提供一种碳酸盐岩沉积相类型的预测装置,所述装置包括:
获取单元,用于获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;
数据转换单元,用于运用小波变换算法将所述相位旋转后的三维地震数据以所述地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;将所述目的层对应的分频数据体转化为Wheeler域中的相对地质年代域等时体;将Wheeler域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将所述wheeler域融合体自下而上切片,生成融合平面图;
确定单元,用于将所述融合平面图与所述地表碳酸盐岩的高清图 像进行类比分析,确定目的层的沉积相类型。
优选的,所述装置还包括:
地震数据相位转换单元,用于获取零相位的三维地震数据;
将所述零相位的三维地震数据的相位进行负90°旋转后的三维地震数据作为相位旋转后的三维地震数据。
优选的,所述地下目的层对应的调谐频率根据目的层的厚度计算得到。
优选的,所述装置还包括:
目的层确定单元,用于获取地层的钻测井所揭示的地层序列;
根据所述地层的钻测井所揭示的地层序列在所述相位旋转后的三维地震数据中标定出目的层所对应的地震反射界面;
基于所述目的层所对应的地震反射界面确定目的层。
本发明还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述的碳酸盐岩沉积相类型的预测方法。
本发明还提供一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述碳酸盐岩沉积相类型的预测方法的步骤。
通过上述技术方案,本发明能深入挖掘地震资料潜在信息,将相位旋转、频率分解、wheeler域转换、颜色融合等技术手段有机整合形成一套针对性技术序列,结合高清图像如Google Earth高清卫星图像所反映的确定性现代沉积模型,准确预测地下碳酸盐岩的沉积相类 型,进一步有利于后续储层的平面分布精确预测。
本发明实施方式的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施方式的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施方式,但并不构成对本发明实施方式的限制。在附图中:
图1是本发明一种实施方式提供的碳酸盐岩沉积相类型的预测方法的方法流程图;
图2是本发明一种实施方式提供的一种碳酸盐岩沉积相类型的预测方法中的碳酸盐岩受潮道改造颗粒滩现代实例的局部放大高清图像;
图3是发明一种实施方式提供的一种碳酸盐岩沉积相类型的预测方法中的零相位地震数据的对应的同相轴对应地层界面;
图4是发明一种实施方式提供的一种碳酸盐岩沉积相类型的预测方法中的相位旋转后的三维地震数据对应地层界面。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
如图1所示,本实施例提供一种碳酸盐岩沉积相类型的预测方法,所述方法包括:
获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;
运用小波变换算法将所述相位旋转后的三维地震数据以所述地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;
将所述目的层对应的分频数据体转化为Wheeler域中的相对地质年代域等时体;将Wheeler域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将所述wheeler域融合体自下而上切片,生成融合平面图;
将所述融合平面图与所述地表碳酸盐岩的高清图像进行类比分析,确定目的层的沉积相类型。
具体的,利用Google Earth在全球范围内搜索现代碳酸盐岩颗粒滩沉积环境的代表地区,从中选取受潮道影响的颗粒滩典型实例。然后采用真色彩和假色彩两种形式,获得碳酸盐岩潮道改造颗粒滩现代实例的局部放大高清图像(如图2所示)。根据Google Earth图像,总结碳酸盐岩潮道改造颗粒滩的平面沉积特征和发育规模,获得沉积学模型。
优选的,所述相位旋转后的三维地震数据通过以下步骤确定:
获取零相位的三维地震数据;将所述零相位的三维地震数据的相位进行负90°旋转后的三维地震数据作为相位旋转后的三维地震数据。
目前石油工业界常见的三维地震数据是零相位、道间距25×25m、采样间隔2ms。地震主频差异大,大致介于15至30Hz,通常随埋深增加而降低,埋深超过4500m的深层碳酸盐岩,地震主频约20Hz,垂向分辨率不足75m。本技术基于平面切片方法,可以有效弥补地震垂向分辨率不足难题,适用范围广。同时,零相位地震数据的同相轴对应地层界面(如图3所示),而负90°相位地震数据的同相轴对应地层本身,更适于沉积解释。本方法是针对地层进行沉积相精细刻画,因此将常规叠后零相位地震数据进行相位旋转,获得负90°相位地震数据对应地层界面(如图4所示)。图3和图4中的白色长方形框用于突出显示碳酸盐岩颗粒滩在地震剖面上的具体位置。
优选的,所述地下目的层对应的调谐频率根据目的层的厚度计算得到。所述目的层通过以下步骤确定:获取地层的钻测井所揭示的地层序列;
根据所述地层的钻测井所揭示的地层序列在所述相位旋转后的三维地震数据中标定出目的层所对应的地震反射界面;基于所述目的层所对应的地震反射界面确定目的层。
具体的,结合区域地层发育情况和钻测井所揭示的地层序列,在上步得到的负90°相位地震数据体上,标定出研究目的层所对应的地震反射界面,找准目的层。采用由粗到细的方式,首先搭建稀疏层序地层格架,然后逐渐加密解释,最终实现1×1解释,形成精细等时层序地层格架。该格架用于后续目的层平面和剖面特征研究,为沉积相预测奠定坚实基础。
上述的生成融合平面图的生成过程如下:
常规三维地震数据为全频段数据体,本方法利用小波变换算法,将上步相位旋转之后的数据进行频谱分解。地下目的层对应的调谐频率,根据研究区钻井揭示的厚、中、薄地层厚度情况,计算其所对应的低、中、高调谐频率。低(10-20hz)、中(20-30hz)、高(30-40hz)调谐频率为依次定义的三个频率,与厚(50-75m)、中(20-50m)、薄(10-20m)地层厚度一一对应,具体数值不做限定。因为这三个频率与相应厚度的地层可以产生调谐效应,因此最能反映对应厚度的特征,故而将这三个调谐频率确定为分频所用主频。将相位旋转之后的三维地震数据体,转化为3个分频数据体。
Wheeler域是沉积学和层序地层学中经常使用的等时转化技术,本方法利用该技术原理,针对目的层,将3个分频体分别生成相对地质年代域等时体。生成等时体之后,使后续地层切片变得简单且具有等时地质意义。本实施例具体使用红-绿-蓝颜色融合技术,融合重构上步生成的3套wheeler域等时体,产生wheeler域融合体。使用红-绿-蓝颜色融合技术,融合重构上一步中生成的3套wheeler域等时体,形成地质年代域等时体。具体操作过程中,红色代表低频分频体、绿色代表中频分频体、蓝色代表高频分频体,用颜色饱和度代表振幅强弱。利用地层切片技术,将wheeler域融合体自下而上切片,就生成了等时融合地层切片,等时融合地层切片也是用颜色饱和度代表振幅强弱。这种切片可以反映不同规模地质现象在平面的分布和纵向上的演化。而将不同地质现象的平面特征进行组合,即构成了沉积相分 析的基本要素,不同规模(即微观、中观和宏观)的地质现象,可以在一张切片图上展示,为分析碳酸盐岩沉积相提供有力技术手段。完成这一步之后,就会产生表现地质现象的平面组合,得到融合平面图。
然后参照Google Earth卫星图像,解释上步生成的融合平面图,得到古老深层碳酸盐岩受潮道改造颗粒滩特征。具体的,将所述融合平面图与所述地表碳酸盐岩的高清图像进行类比分析,例如将所述融合平面图中的平面沉积特征和地表碳酸盐岩的高清图像中的平面沉积特征进行相似度判定,在融合平面图与地表碳酸盐岩的高清图像中的平面沉积特征的相似度达到设定阈值时,将地表碳酸盐岩的高清图像的沉积相类型解释为所述融合平面图的沉积相类型。设定阈值可以是90%,如10个平面沉积特征中有9个相似的平面沉积特征。相似的判定是专家经验库的表达,一般是基于沉积学原理进行确定。当相似度达到时,地表碳酸盐岩的高清图像构建的沉积学模型,就用于解释与之相似的融合平面图,继而解释了地下目的层对应的沉积特征。“将今论古”是地质学甚至是所有自然科学都尊崇的一种有效研究手段,本方法充分利用Google Earth卫星图像,找到现代受潮道改造型碳酸盐岩颗粒滩(例如现代Florida Keys)。将这种高清卫星图像与上步生成的融合平面图进行类比分析,发现其中的众多相似之处,基于这些相似点,对深埋地下的古老深层碳酸盐岩受潮道改造颗粒滩的平面沉积特征进行分析,结果可靠、方法实用。
随着计算机运算能力的提高和地震资料采集处理精度的优化,本技术所涉及的技术系列组合必将发挥更大作用,充分挖掘地震数据中 的相关地质信息,将平面切片分辨率最大化,用来弥补垂向分辨率不足,建立高精度平面沉积相模式,同时分辨出不同规模的地质现象,结合Google Earth高清图像所展示的现代沉积特征,将会大大提高古老深层碳酸盐岩中沉积环境的厘定精度,提高储层预测准度,为该领域的油气勘探开发提供强有力支撑。
在一种可能的实施例中,本发明还提供一种碳酸盐岩沉积相类型的预测装置,所述装置包括:
获取单元,用于获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;
数据转换单元,用于运用小波变换算法将所述相位旋转后的三维地震数据以所述地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;将所述目的层对应的分频数据体转化为Wheeler域中的相对地质年代域等时体;将Wheeler域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将所述wheeler域融合体自下而上切片,生成融合平面图;
确定单元,用于将所述融合平面图与所述地表碳酸盐岩的高清图像进行类比分析,确定目的层的沉积相类型。
优选的,所述装置还包括:
地震数据相位转换单元,用于获取零相位的三维地震数据;
将所述零相位的三维地震数据的相位进行负90°旋转后的三维地震数据作为相位旋转后的三维地震数据。
优选的,所述地下目的层对应的调谐频率根据目的层的厚度计算 得到。
优选的,所述装置还包括:
目的层确定单元,用于获取地层的钻测井所揭示的地层序列;
根据所述地层的钻测井所揭示的地层序列在所述相位旋转后的三维地震数据中标定出目的层所对应的地震反射界面;
基于所述目的层所对应的地震反射界面确定目的层。
本发明还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述的碳酸盐岩沉积相类型的预测方法。
本发明还提供一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述碳酸盐岩沉积相类型的预测方法的步骤。
本领域技术人员可以理解实现上述实施方式的方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上结合附图详细描述了本发明的可选实施方式,但是,本发明实施方式并不限于上述实施方式中的具体细节,在本发明实施方式的技术构思范围内,可以对本发明实施方式的技术方案进行多种简单变 型,这些简单变型均属于本发明实施方式的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施方式对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施方式的思想,其同样应当视为本发明实施方式所公开的内容。

Claims (10)

  1. 一种碳酸盐岩沉积相类型的预测方法,其特征在于,所述方法包括:
    获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;
    运用小波变换算法将所述相位旋转后的三维地震数据以所述地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;
    将所述目的层对应的分频数据体转化为Wheeler域中的相对地质年代域等时体;将Wheeler域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将所述wheeler域融合体自下而上切片,生成融合平面图;
    将所述融合平面图与所述地表碳酸盐岩的高清图像进行类比分析,确定目的层的沉积相类型。
  2. 根据权利要求1所述的碳酸盐岩的沉积相类型的预测方法,其特征在于,所述相位旋转后的三维地震数据通过以下步骤确定:
    获取零相位的三维地震数据;
    将所述零相位的三维地震数据的相位进行负90°旋转后的三维地震数据作为相位旋转后的三维地震数据。
  3. 根据权利要求1所述的碳酸盐岩沉积相类型的预测方法,其 特征在于,所述地下目的层对应的调谐频率根据目的层的厚度计算得到。
  4. 根据权利要求1所述的碳酸盐岩的沉积相类型的预测方法,其特征在于,所述目的层通过以下步骤确定:
    获取地层的钻测井所揭示的地层序列;
    根据所述地层的钻测井所揭示的地层序列在所述相位旋转后的三维地震数据中标定出目的层所对应的地震反射界面;
    基于所述目的层所对应的地震反射界面确定目的层。
  5. 一种碳酸盐岩沉积相类型的预测装置,其特征在于,所述装置包括:
    获取单元,用于获取地表碳酸盐岩的高清图像、相位旋转后的三维地震数据和地下目的层对应的调谐频率;
    数据转换单元,用于运用小波变换算法将所述相位旋转后的三维地震数据以所述地下目的层对应的调谐频率进行分频,得到目的层对应的分频数据体;将所述目的层对应的分频数据体转化为Wheeler域中的相对地质年代域等时体;将Wheeler域中的相对地质年代域等时体进行颜色融合,构建产生wheeler域融合体;以及将所述wheeler域融合体自下而上切片,生成融合平面图;
    确定单元,用于将所述融合平面图与所述地表碳酸盐岩的高清图像进行类比分析,确定目的层的沉积相类型。
  6. 根据权利要求5所述的碳酸盐岩的沉积相类型的预测装置,其特征在于,所述装置还包括:地震数据相位转换单元,用于:
    获取零相位的三维地震数据;
    将所述零相位的三维地震数据的相位进行负90°旋转后的三维地震数据作为相位旋转后的三维地震数据。
  7. 根据权利要求5所述的碳酸盐岩的沉积相类型的预测装置,其特征在于,所述地下目的层对应的调谐频率根据目的层的厚度计算得到。
  8. 根据权利要求5所述的碳酸盐岩沉积相类型的预测装置,其特征在于,所述装置还包括:目的层确定单元,用于:
    获取地层的钻测井所揭示的地层序列;
    根据所述地层的钻测井所揭示的地层序列在所述相位旋转后的三维地震数据中标定出目的层所对应的地震反射界面;
    基于所述目的层所对应的地震反射界面确定目的层。
  9. 一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行权利要求1-4中任一项所述的碳酸盐岩沉积相类型的预测方法。
  10. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1~4中任一项所述方法的步骤。
PCT/CN2022/138065 2021-12-31 2022-12-09 碳酸盐岩沉积相类型的预测方法及装置 WO2023124912A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111665695.1A CN116413794A (zh) 2021-12-31 2021-12-31 碳酸盐岩的沉积相类型的预测方法及装置
CN202111665695.1 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124912A1 true WO2023124912A1 (zh) 2023-07-06

Family

ID=86997675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138065 WO2023124912A1 (zh) 2021-12-31 2022-12-09 碳酸盐岩沉积相类型的预测方法及装置

Country Status (2)

Country Link
CN (1) CN116413794A (zh)
WO (1) WO2023124912A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233843A (zh) * 2023-11-13 2023-12-15 福瑞升(成都)科技有限公司 一种多模式地层接触关系Wheeler变换方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217714A (zh) * 2013-03-26 2013-07-24 中国石油大学(华东) 基于频率-尺度匹配的地震沉积学解释方法
CN103454686A (zh) * 2013-08-12 2013-12-18 中国石油天然气股份有限公司 基于地层切片的小尺度沉积相进行储层预测的方法及系统
US20180003839A1 (en) * 2015-02-06 2018-01-04 Foster Findlay Associates Limited Method for determining sedimentary facies using 3d seismic data
CN110068859A (zh) * 2019-04-12 2019-07-30 中国石油大学(华东) 一种水平井区辫状河三角洲储层地震沉积学定量表征方法
CN113050157A (zh) * 2020-10-15 2021-06-29 中国石油天然气股份有限公司 一种基于露头资料的碳酸盐岩地震储层反演方法及系统
WO2021130512A1 (en) * 2019-12-23 2021-07-01 Total Se Device and method for predicting values of porosity lithofacies and permeability in a studied carbonate reservoir based on seismic data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717542B (zh) * 2016-04-11 2019-02-22 北京科胜伟达石油科技股份有限公司 基于三维地震的Wheeler域切片砂体雕刻方法
RU2690089C1 (ru) * 2018-07-24 2019-05-30 Общество с ограниченной ответственностью "Газпром геологоразведка" Способ выявления и картирования флюидонасыщенных анизотропных каверново-трещинных коллекторов в межсолевых карбонатных пластах осадочного чехла

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217714A (zh) * 2013-03-26 2013-07-24 中国石油大学(华东) 基于频率-尺度匹配的地震沉积学解释方法
CN103454686A (zh) * 2013-08-12 2013-12-18 中国石油天然气股份有限公司 基于地层切片的小尺度沉积相进行储层预测的方法及系统
US20180003839A1 (en) * 2015-02-06 2018-01-04 Foster Findlay Associates Limited Method for determining sedimentary facies using 3d seismic data
CN110068859A (zh) * 2019-04-12 2019-07-30 中国石油大学(华东) 一种水平井区辫状河三角洲储层地震沉积学定量表征方法
WO2021130512A1 (en) * 2019-12-23 2021-07-01 Total Se Device and method for predicting values of porosity lithofacies and permeability in a studied carbonate reservoir based on seismic data
CN113050157A (zh) * 2020-10-15 2021-06-29 中国石油天然气股份有限公司 一种基于露头资料的碳酸盐岩地震储层反演方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233843A (zh) * 2023-11-13 2023-12-15 福瑞升(成都)科技有限公司 一种多模式地层接触关系Wheeler变换方法、装置及存储介质
CN117233843B (zh) * 2023-11-13 2024-02-02 福瑞升(成都)科技有限公司 一种多模式地层接触关系Wheeler变换方法、装置及存储介质

Also Published As

Publication number Publication date
CN116413794A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN113759424B (zh) 基于频谱分解和机器学习的岩溶储层充填分析方法和系统
CN102736107B (zh) 一种能量约束非均质储层厚度识别系统
van Hoek et al. Geometric attributes for seismic stratigraphic interpretation
WO2017019388A1 (en) Seismic constrained discrete fracture network
CA2818790C (en) Seismic trace attribute
CN106855636A (zh) 基于碳酸盐岩储层露头的原型地质模型地震正演方法
CN106405637B (zh) 一种用于砂泥岩薄互层砂体厚度预测的方法及系统
CN114114459B (zh) 一种相控约束下的深层-超深层碳酸盐岩薄储层预测方法
CN110231652A (zh) 一种基于密度的含噪声应用空间聚类的地震相提取方法
WO2023124912A1 (zh) 碳酸盐岩沉积相类型的预测方法及装置
WO2021126814A1 (en) Mapping near-surface heterogeneities in a subterranean formation
CN111077578B (zh) 岩层分布预测方法和装置
Han et al. Seismic prediction of soil distribution for the Chang-Bin offshore wind farm in the Taiwan Strait
Zhang et al. Architecture characteristics and characterization methods of fault-controlled karst reservoirs: A case study of the Shunbei 5 fault zone in the Tarim Basin, China
Pacheco et al. Unlocking the properties of a presalt carbonate reservoir offshore Brazil with facies-constrained geostatistical inversion
RU2681250C1 (ru) Способ квазитрехмерного моделирования эффективных газо- и нефтенасыщенных толщин залежей углеводородов
Monier et al. Delineation of reservoir channels by different seismic attributes and geobody extractions for robust volumetric estimation, Saffron Field, offshore Nile Delta, Egypt
CN112180466B (zh) 一种河道砂体识别方法及装置
Soni et al. Leveraging First-Ever OBN in India for Reservoir Characterization and Near-Field Exploration in a Carbonate Field at Offshore Mumbai, India
US11852768B2 (en) Multimodal approach to target stratigraphic plays through seismic sequence stratigraphy, rock physics, seismic inversion and machine learning
US20240201405A1 (en) Seismic inversion downscaling and extrapolation for generation of seismic images
Carrillat et al. Integrated geological and geophysical analysis by hierarchical classification: combining seismic stratigraphic and AVO attributes
Khan et al. Unlocking Reservoir Potential: Machine Learning-Driven Prediction of Reservoir Properties and Sweet Spots Identification
Chinwuko et al. Integration of seismic attributes in delineation of channel features in Rence field of Niger Delta, Nigeria
Li et al. Integrated method for calculating source rock thickness using drilling and seismic reflection: A case study of the Lishui Sag, China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914167

Country of ref document: EP

Kind code of ref document: A1