WO2023124879A1 - 一种信息反馈方法及相关装置 - Google Patents

一种信息反馈方法及相关装置 Download PDF

Info

Publication number
WO2023124879A1
WO2023124879A1 PCT/CN2022/137577 CN2022137577W WO2023124879A1 WO 2023124879 A1 WO2023124879 A1 WO 2023124879A1 CN 2022137577 W CN2022137577 W CN 2022137577W WO 2023124879 A1 WO2023124879 A1 WO 2023124879A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
csi
frame
security
feedback
Prior art date
Application number
PCT/CN2022/137577
Other languages
English (en)
French (fr)
Inventor
杜瑞
文清
刘辰辰
韩霄
龙彦
何蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124879A1 publication Critical patent/WO2023124879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • H04W74/06Scheduled access using polling

Definitions

  • the present application relates to the field of communication technologies, and in particular to an information feedback method and a related device.
  • Wireless local area network sensing technology refers to inferring and sensing the surrounding environment by analyzing wireless signals "modulated" by various obstacles, such as channel status information (CSI).
  • the sensing session in wireless sensing technology includes several stages of discovery, negotiation, measurement, feedback, and termination.
  • the CSI information is mainly transmitted in the measurement and feedback phase of the sensing session, that is, the CSI is obtained in the measurement phase, and the CSI is fed back in the feedback phase. If criminals obtain the CSI in the sensing session, they can analyze the surrounding environment based on the CSI information and make judgments such as whether there are people in the house. Therefore, to avoid eavesdropping by criminals, the measurement and feedback stages of the sensing session should be protected to avoid privacy leaks.
  • the responder feeds back a CSI feedback frame
  • the CSI feedback frame is an unprotected action frame, which is easily detected by criminals to judge the sensing result. Therefore, protecting the feedback phase of a sensing session is still an urgent research issue.
  • the embodiment of the present application provides an information feedback method and a related device, which can ensure the security of the feedback information in the feedback stage.
  • the embodiment of the present application provides an information feedback method.
  • the first device sends to the second device a first frame carrying a first field for performing channel estimation, and the first device receives a first feedback frame from the second device.
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device through channel estimation according to the received first field and the second field
  • the second field is not first field.
  • the first field is a safe long training LTF field.
  • the first field is a security training TRN field.
  • the first device may also send a request frame to the second device, and the request frame is used for Requests channel estimation based on a field other than the Secure LTF field or the Secure TRN field.
  • the first device can also receive a response frame from the second device, the response frame being used to respond to the request frame.
  • the request frame and the response frame may also be used to negotiate that the second device performs channel estimation according to fields with different security LTF or security TRN fields, so as to facilitate the feedback of the second device based on A field different from the security LTF or security TRN field performs CSI for channel estimation, thereby ensuring information security in the feedback phase.
  • the request frame is also used to request not to exchange the security parameter of the first field
  • the response frame is also used to respond to the request frame.
  • the second field is a preset LTF field or a preset TRN field.
  • the first device and the second device can negotiate not to exchange the security parameters of the first field, so that the CSI fed back by the second device is obtained by channel estimation based on the received first field and the preset LTF field or preset TRN field
  • the CSI can ensure the information security in the feedback stage.
  • the manner in which the first device and the second device do not exchange the security parameters of the first field can also save resources and reduce complexity.
  • the request frame when the second device is a station STA capable of generating the first field, or an access point AP, the request frame further includes the security parameter of the second field, and the security parameter of the second field It is used to generate the second field, and the response frame is also used to respond to the request frame.
  • the first device can send the security parameters of the second field to the second device through a request frame, and the second device can Respond to the request frame. Therefore, it is beneficial for the second device to feed back the CSI obtained by performing channel estimation on the second field generated according to the received first field and the security parameters of the second field, and can also ensure information security in the feedback stage.
  • the request frame is also used to request the second device that does not have the ability to generate the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field, and the response frame is also used to respond to Frames should be requested.
  • the first device and the second device can also negotiate to allow the second device that does not have the ability to generate the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field through the request frame and the response frame. Then, the second device that does not have the ability to generate the first field can also feed back to the first device the CSI obtained by performing channel estimation based on the received first field and the preset LTF field or preset TRN field, that is, does not have the ability to generate the first field.
  • the second device with field capabilities can also participate in the measurement and sensing process of the first device, thereby improving system compatibility and providing more resources for measurement sensing.
  • the above-mentioned security parameter of the second field is one of the security parameters of the first field previously sent by the first device, so that the second device feeds back to the first device not based on the received first field , and the CSI obtained by channel estimation based on the field generated by the current security parameters of the first field, but the CSI obtained by channel estimation based on the received first field and the second field generated by the historical security parameters of the first field, so that Ensure the security of the feedback information during the feedback phase.
  • the above-mentioned security parameter in the second field is a parameter that has not been sent by the first device to the second device, and is different from the security parameter in the first field. Then, the CSI fed back by the second device is not the CSI obtained by performing channel estimation on the first field generated according to the received first field and the security parameters of the first field, so that the security in the feedback stage can also be guaranteed.
  • the first device when the first device sends the security parameter of the second field to the second device, the first device may also receive the second frame carrying the second field from the second device, and according to the received Channel estimation is performed on the second field generated by the second field and the security parameters of the second field to obtain the second CSI. That is to say, the first device can also obtain the CSI from the second device to the first device, so that the first device can also perform perception according to the CSI from the second device to the first device.
  • the first device may also analyze the CSI according to the second field and the first field to obtain the first CSI. That is to say, the first device may also analyze the CSI fed back by the second device to obtain the CSI from the first device to the second device. Thus, the first device performs perception according to the CSI from the first device to the second device.
  • the present application also provides an information feedback method.
  • the first device sends a first frame carrying a first field for performing channel estimation to the second device.
  • the first device receives a first feedback frame from the second device, and receives a second feedback frame from the second device.
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device through channel estimation according to the received first field and the second field
  • the second field is not the first a field.
  • the second feedback frame includes encrypted third CSI
  • the third CSI is CSI from the third device to the second device.
  • the second device feeds back the CSI from the first device to the second device and the CSI from the third device to the second device to the first device, so that it is beneficial for the first device to perform update based on multiple CSIs. for precise perception.
  • the first feedback frame fed back by the second device is the CSI obtained by the second device performing channel estimation according to the received first field and the second field, so that information security in the feedback phase can be guaranteed.
  • the second device feeds back the CSI from the third device to the second device, it feeds back encrypted CSI, so that an eavesdropper cannot eavesdrop on the CSI from the third device to the second device, and the security of the information in the feedback stage can also be guaranteed.
  • the encrypted third CSI is obtained by the second device using the second field generated by the security parameter of the second field to encrypt the third CSI.
  • the security parameters in the second field are sent by the first device to the second device, so that the first device can analyze the second feedback frame according to the second field generated by the security parameters in the second field, and obtain the information from the third device to the second CSI of the device.
  • the first device may also send a request frame to the second device, and the request frame is used for The second device is requested to measure third channel state information CSI from the third device to the second device, and to encrypt and feed back the third CSI to the first device.
  • the first device may also receive a response frame from the second device, the response frame being used to respond to the request frame.
  • the first device and the second device can also negotiate with the second device to measure the third channel state information CSI from the third device to the second device through the request frame and the response frame, and encrypt and feed back the third CSI
  • the first device is provided to facilitate the first device to obtain the CSI from the third device to the third device.
  • the first device may further receive the second frame carrying the second field.
  • the first device performs channel estimation according to the second field to obtain the second CSI.
  • the first device receives the third feedback frame from the second device, and the third feedback frame includes the second field received by the third device, and a preset long training LTF field or a preset training TRN field, for the second device to the third
  • the CSI obtained by performing channel estimation on the channel between devices.
  • the first device analyzes the CSI in the third feedback frame according to the second field and the preset LTF field or the preset TRN field to obtain the fourth CSI.
  • the first device may also perform channel estimation according to the received second field, and obtain CSI from the second device to the first device.
  • the first device may also receive the CSI obtained by performing channel estimation by the third device fed back by the second device according to the received second field and the preset LTF field or preset TRN field. Therefore, the first device also obtains the CSI from the second device to the first device, and the CSI from the second device to the third device, which is beneficial for the first device to perform more accurate perception.
  • the first device may further receive the second frame carrying the second field.
  • the first device performs channel estimation according to the received second field and the second field to obtain the second CSI.
  • the first device receives the third feedback frame from the second device, the third feedback frame includes encrypted fourth CSI, and the encrypted fourth CSI is obtained by the second device using the security parameter of the second field to encrypt the fourth CSI , the fourth CSI is obtained by the second device by parsing the fourth feedback frame fed back by the third device, the fourth feedback frame includes the second field received by the third device and parameters different from the security parameters of the second field
  • the generated field is the CSI information obtained by performing channel estimation.
  • the first device parses the third feedback frame according to the security parameter in the second field to obtain the fourth CSI.
  • the first device may also obtain the CSI from the first device to the second device according to the received second field.
  • the first device may also receive the encrypted CSI of the second device to the third device. Therefore, it is beneficial for the first device to realize more accurate perception according to the CSI of multiple channels.
  • the present application also provides an information feedback method.
  • the information feedback method in this aspect corresponds to the information feedback method described in the first aspect, and the information feedback method in this aspect is explained from the side of the second device.
  • the second device receives a first frame carrying a first field for performing channel estimation.
  • the second device sends a first feedback frame to the first device.
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device through channel estimation according to the received first field and the second field, the second field Not the first field.
  • the CSI fed back to the first device is not the CSI obtained by performing channel estimation based on the received first field and the known first field, but according to the received The first field and the CSI obtained by channel estimation using the second field different from the first field, even if the CSI is intercepted by an eavesdropper, the eavesdropper cannot obtain the CSI from the first device to the second device. Furthermore, the feedback method can guarantee the information security in the feedback stage.
  • the first field is a safe long training LTF field.
  • the first field is a security training TRN field.
  • the second device may also receive a request frame from the first device, and the request frame is used to request The security LTF field or the security TRN field is not the same as the channel estimation. Therefore, the second device can also send a response frame to the first device, and the response frame is used to respond to the request frame.
  • the request frame and the response frame can also be used to negotiate that the second device performs channel estimation according to fields with different security LTF or security TRN fields, so that the second device feedbacks the channel estimation according to the received
  • the first field and the field different from the security LTF or the security TRN field perform CSI for channel estimation, so as to ensure information security in the feedback phase.
  • the request frame is also used to request not to exchange the security parameter of the first field
  • the response frame is also used to respond to the request frame
  • the first device and the second device can negotiate not to exchange the security parameters of the first field, so that the CSI fed back by the second device is not the CSI obtained by channel estimation based on the received first field and the known first field, thereby ensuring Information security during the feedback phase.
  • the manner in which the first device and the second device do not exchange the security parameters of the first field can also save resources and reduce complexity.
  • the request frame when the second device is a station STA capable of generating the first field, or an access point AP, the request frame further includes the security parameter of the second field, and the security parameter of the second field Used to generate the second field, the response frame is also used to respond to the request frame.
  • the first device can send the security parameters of the second field to the second device through a request frame, and the second device confirms through a response frame Estimation is performed on the second field generated according to the security parameters of the second field. Therefore, the second device feeds back the CSI obtained by performing channel estimation on the second field generated according to the received first field and the security parameters of the second field, which can also ensure information security in the feedback stage.
  • the request frame is also used to request the second device that does not have the ability to generate the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field, and the response frame is also used to respond to Frames should be requested.
  • the first device and the second device can also negotiate to allow the second device that does not have the ability to generate the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field through the request frame and the response frame. Then, the second device that does not have the ability to generate the first field can also feed back to the first device the CSI obtained by performing channel estimation based on the received first field and the preset LTF field or preset TRN field, that is, does not have the ability to generate the first field.
  • the second device with field capabilities can also participate in the measurement and sensing process of the first device, thereby improving system compatibility and providing more resources for measurement sensing.
  • the above-mentioned security parameter of the second field is one of the security parameters of the first field previously sent by the first device, so that the second device feeds back to the first device not based on the received first field , and the CSI obtained by channel estimation based on the field generated by the current security parameters of the first field, but the CSI obtained by estimating the second field generated by the received first field and the historical security parameters of the second field, which can guarantee feedback stage security.
  • the security parameter in the second field is a parameter not sent by the first device to the second device, and is different from the security parameter in the first field. Then, the CSI fed back by the second device is not the CSI obtained by performing channel estimation on the first field generated according to the received first field and the current security parameters of the first field, so that the security in the feedback stage can also be guaranteed.
  • the second device may also send a second frame carrying the second field to the first device, so that the first device The channel estimation is performed according to the received second field, and the CSI from the second device to the first device is obtained, which is beneficial for the first device to realize more accurate perception.
  • the present application also provides an information feedback method.
  • the information feedback method in this aspect corresponds to the information feedback method in the second aspect, and the information feedback method in this aspect is explained from the side of the second device.
  • the second device receives a first frame carrying a first field for performing channel estimation.
  • the second device sends the first feedback frame to the first device, and sends the second feedback frame to the first device.
  • the first feedback frame includes channel state information CSI, the CSI is the CSI from the first device to the second device, the CSI is obtained by the second device through channel estimation according to the received first field and the second field, and the second field is not the first a field.
  • the second feedback frame includes encrypted third CSI, and the third CSI is CSI from the third device to the second device.
  • the second device After the second device receives the first field for channel estimation from the first device, it feeds back the CSI for performing channel estimation according to the received first field and the second field to the first device, and feeds back the CSI for the channel estimation of the first device.
  • the CSI fed back by the first device from the first device to the second device is the CSI obtained by channel estimation based on the received first field and the second field, which can ensure the security of the feedback information;
  • the CSI of the second device is an encrypted CSI, so the security of the feedback information can also be guaranteed.
  • the first device sends the security parameter of the second field to the second device, so that the encrypted third CSI is the second field generated by the second device using the security parameter of the second field.
  • the CSI is obtained through encryption processing, which further facilitates the first device to analyze the encrypted third CSI according to the sequence generated by the security parameter of the second field, and obtain the CSI from the third device to the first device, that is, the third CSI.
  • the second device may also receive a request frame from the first device, and the request frame is used to request the second
  • the device measures third channel state information CSI from the third device to the second device, and encrypts and feeds back the third CSI to the first device.
  • the second device sends a response frame to the first device, and the response frame is used to respond to the request frame.
  • the first device and the second device can also negotiate with the second device to measure the third channel state information CSI from the third device to the second device through the request frame and the response frame, and encrypt and feed back the third CSI
  • the first device it is beneficial for the first device to obtain the CSI from the third device to the first device.
  • the second device may further send the second frame carrying the second field to the first device and the third device.
  • the second device receives a third feedback frame from the third device.
  • the second device sends a third feedback frame to the first device.
  • the third feedback frame includes the CSI obtained by the third device performing channel estimation on the channel between the second device and the third device according to the received second field and the preset long training LTF field or preset training TRN field.
  • the second device may send the second frame carrying the second field to the first device, so as to facilitate the first device to perform channel estimation according to the received second field and obtain CSI from the second device to the first device.
  • the second device can also send the second frame carrying the second field to the third device, and the third device can feedback to the second device to perform channel estimation according to the received second field and the preset long training LTF field or preset training TRN field.
  • the obtained CSI so that the second device feeds back the CSI to the first device, so that the first device parses the CSI according to the second field, and the preset long training LTF field or the preset training TRN field, and obtains the second device to the CSI of the third device.
  • the second device may further send the second frame carrying the second field to the first device and the third device.
  • the second device receives the fourth feedback frame from the third device, and the fourth feedback frame includes a field generated by the third device according to the received second field and a parameter different from the security parameter of the second field, and is obtained by performing channel estimation CSI information.
  • the second device analyzes the fourth feedback frame according to the field generated by a parameter different from the security parameter of the second field and the sent second field to obtain the fourth CSI.
  • the second device encrypts the fourth CSI by using the security parameter in the second field to obtain the third feedback frame.
  • the second device sends a third feedback frame to the first device.
  • the second device may also send the second frame carrying the second field to the first device, so as to facilitate the first device to perform channel estimation according to the second field and obtain CSI from the second device to the first device.
  • the second device sends the second frame carrying the second field to the third device, so that the second device can obtain the CSI from the second device to the third device, encrypt it, and feed it back to the first device, so that the first device CSIs of the second device to the third device are obtained.
  • the present application further provides a communication device.
  • the communication device has part or all of the functions of the first device described in the above first aspect, or part or all of the functions of the first device described in the above second aspect, or has the function of realizing the above third aspect.
  • the function of the communication device may have the functions of some or all embodiments of the first device described in the first aspect of the present application, or may have the function of independently implementing any one of the embodiments of the present application.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may further include a storage unit, which is used to be coupled with the processing unit and the transceiver unit, and stores necessary program instructions and data of the communication device.
  • the communication device includes: a processing unit and a communication unit, and the processing unit is used to control the communication unit to perform data/signaling transceiving;
  • a communication unit configured to send a first frame carrying a first field for performing channel estimation to a second device
  • a communication unit further configured to receive a first feedback frame from the second device
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device according to the received first field and the second field
  • the second field is not the first field.
  • the communication device includes: a processing unit and a communication unit, and the processing unit is used to control the communication unit to perform data/signaling transceiving;
  • a communication unit configured to send a first frame carrying a first field for performing channel estimation to a second device
  • the communication unit is further configured to receive a first feedback frame from the second device, and receive a second feedback frame from the second device;
  • the first feedback frame includes channel state information CSI, and the CSI is the CSI from the first device to the second device, the CSI is obtained by the second device through channel estimation according to the received first field and the second field, and the second field is not the first field;
  • the second feedback frame includes encrypted third CSI, the third CSI is the CSI from the third device to the second device.
  • the communication device includes: a processing unit and a communication unit, and the processing unit is used to control the communication unit to perform data/signaling transceiving;
  • a communication unit configured to receive a first frame carrying a first field for channel estimation
  • a communication unit further configured to send a first feedback frame to the first device
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device according to the received first field and the second field
  • the second field is not the first field.
  • the communication device includes: a processing unit and a communication unit, and the processing unit is used to control the communication unit to perform data/signaling transceiving;
  • a communication unit configured to receive a first frame carrying a first field for channel estimation
  • the communication unit is further configured to send a first feedback frame to the first device, and send a second feedback frame to the first device;
  • the first feedback frame includes channel state information CSI, the CSI is the CSI from the first device to the second device, and the CSI is performed by the second device according to the received first field and the second field obtained by channel estimation, the second field is not the first field; the second feedback frame includes encrypted third CSI, and the third CSI is CSI from the third device to the second device.
  • the transceiver unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the communication device includes: a processor and a transceiver, and the processor is used to control the transceiver to perform data/signaling transceiving;
  • a transceiver configured to send a first frame carrying a first field for channel estimation to a second device
  • a transceiver further configured to receive a first feedback frame from said second device
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device according to the received first field and the second field
  • the second field is not the first field.
  • the communication device includes: a processor and a transceiver, and the processor is used to control the transceiver to perform data/signaling transceiving;
  • a transceiver configured to send a first frame carrying a first field for channel estimation to a second device
  • a transceiver further configured to receive a first feedback frame from said second device, and receive a second feedback frame from said second device;
  • the first feedback frame includes channel state information CSI, the CSI is the CSI from the first device to the second device, and the CSI is performed by the second device according to the received first field and the second field obtained by channel estimation, the second field is not the first field; the second feedback frame includes encrypted third CSI, and the third CSI is CSI from the third device to the second device.
  • the communication device includes: a processor and a transceiver, and the processor is used to control the transceiver to perform data/signaling transceiving;
  • a transceiver configured to receive a first frame carrying a first field for channel estimation
  • a transceiver further configured to send a first feedback frame to the first device
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device according to the received first field and the second field
  • the second field is not the first field.
  • the communication device includes: a processor and a transceiver, and the processor is used to control the transceiver to perform data/signaling transceiving;
  • a transceiver configured to receive a first frame carrying a first field for channel estimation
  • a transceiver further configured to send a first feedback frame to a first device, and to send a second feedback frame to said first device;
  • the first feedback frame includes channel state information CSI, the CSI is the CSI from the first device to the second device, and the CSI is performed by the second device according to the received first field and the second field obtained by channel estimation, the second field is not the first field; the second feedback frame includes encrypted third CSI, and the third CSI is CSI from the third device to the second device.
  • the communication device is a chip or a chip system.
  • the processing unit may also be embodied as a processing circuit or a logic circuit; the transceiver unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip.
  • a digital baseband processor can be integrated with various application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • SoC system on a chip
  • the embodiments of the present application do not limit the implementation forms of the foregoing devices.
  • the present application further provides a processor configured to execute the above various methods.
  • the process of sending the above information and receiving the above information in the above method can be understood as the process of outputting the above information by the processor and the process of receiving the input of the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, other processing may be required before reaching the transceiver.
  • the processor receives the above-mentioned input information
  • the transceiver receives the above-mentioned information and inputs it to the processor. Furthermore, after the transceiver receives the above information, the above information may need to be processed before being input to the processor.
  • the sending of the first frame carrying the first field used for channel estimation mentioned in the foregoing method may be understood as the processor outputting the first frame carrying the first field used for channel estimation.
  • the above-mentioned processor may be a processor dedicated to performing these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the arrangement of the memory and the processor.
  • the present application further provides a communication system, where the system includes at least one first device and at least one second device according to the above aspect.
  • the system may further include other devices that interact with the first device and the second device in the solution provided by the present application.
  • the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed by a communication device, any one of the above-mentioned first aspect, second aspect, third aspect, and fourth aspect can be realized. method described in the item.
  • the present application also provides a computer program product including instructions, which, when running on the communication device, causes the communication device to execute any one of the above-mentioned first aspect, second aspect, third aspect, and fourth aspect the method described.
  • the present application provides a chip system
  • the chip system includes a processor and an interface, the interface is used to obtain a program or instruction, and the processor is used to call the program or instruction to implement or support the first device Realize the functions involved in the first aspect, or be used to call the program or instruction to realize or support the first device to realize the function involved in the second aspect, or be used to call the program or instruction to realize or support the second device Realize the functions involved in the third aspect, or be used to call the program or instruction to realize or support the second device to realize the functions involved in the fourth aspect.
  • the chip system further includes a memory, and the memory is configured to store necessary program instructions and data of the terminal.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a wireless sensing scene provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a frame structure of an NDP frame carrying a secure LTF field provided by an embodiment of the present application;
  • FIG. 4(a) is a schematic flow chart of a TB ranging mode provided by an embodiment of the present application.
  • FIG. 4(b) is a schematic flowchart of another TB ranging mode provided by the embodiment of the present application.
  • FIG. 5(a) is a schematic flow chart of an NTB ranging mode provided by an embodiment of the present application.
  • FIG. 5(b) is a schematic flow chart of another NTB ranging mode provided by the embodiment of the present application.
  • FIG. 6 is an interactive schematic diagram of an information feedback method provided by an embodiment of the present application.
  • FIG. 7(a) is a schematic structural diagram of a request frame provided by an embodiment of the present application.
  • FIG. 7(b) is a schematic structural diagram of a response frame provided by an embodiment of the present application.
  • FIG. 8(a) is a schematic structural diagram of another request frame provided by the embodiment of the present application.
  • FIG. 8(b) is a schematic structural diagram of another response frame provided by the embodiment of the present application.
  • FIG. 9(a) is a schematic diagram of an interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(b) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(c) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(d) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(e) is another schematic diagram of an interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(f) is another schematic diagram of an interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(g) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 9(h) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • Fig. 10 is an interactive schematic diagram of another information feedback method provided by the embodiment of the present application.
  • FIG. 11(a) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application;
  • FIG. 11(b) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 11(c) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 11(d) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 11(e) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 12(a) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application;
  • FIG. 12(b) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • Fig. 13 (a) is a schematic structural diagram of a CSI feedback frame provided by the embodiment of the present application.
  • Fig. 13(b) is a schematic structural diagram of another CSI feedback frame provided by the embodiment of the present application.
  • Fig. 13(c) is a schematic structural diagram of a secure LTF feedback frame provided by the embodiment of the present application.
  • Fig. 14(a) is a schematic structural diagram of a trigger frame provided by the embodiment of the present application.
  • FIG. 14(b) is a schematic structural diagram of an NDPA frame provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a feedback trigger frame provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • Fig. 17(a) is a schematic structural diagram of another CSI feedback frame provided by the embodiment of the present application.
  • FIG. 17(b) is a schematic structural diagram of another feedback frame provided by the embodiment of the present application.
  • FIG. 17(c) is a schematic structural diagram of another feedback frame provided by the embodiment of the present application.
  • Fig. 17(d) is a schematic structural diagram of another feedback frame provided by the embodiment of the present application.
  • FIG. 18(a) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 18(b) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 18(c) is another schematic diagram of an interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 18(d) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 18(e) is a schematic diagram of another interaction process between an AP and an STA provided in an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but not limited to one access point (access point, AP) and two stations (station, STA).
  • the number and form of devices shown in FIG. 1 are for example, and do not constitute a limitation to the embodiment of the present application. In practical applications, two or more APs and three or more STAs may be included.
  • the communication system shown in FIG. 1 is described by taking AP101, STA1021, and STA1022, and the AP101 can provide wireless services for STA1021 and STA1022 as an example.
  • AP101 in FIG. 1 is taken as an example of a base station
  • STA1021 and STA1022 are taken as an example of a mobile phone.
  • FIG. 2 is a schematic diagram of a wireless sensing scene provided by an embodiment of the present application.
  • the communication scenario includes a first device, a second device, and eavesdroppers other than the first device and the second device.
  • the first device sends a null data packet (null data packet, NDP) frame carrying a secure long training field (secure long training field, secure LTF) for channel estimation to the second device, or sends a frame carrying a secure long training field (secure LTF) for channel estimation
  • NDP null data packet
  • secure LTF secure long training field
  • secure LTF secure long training field
  • secure TRN secure TRN
  • the second device After receiving the NDP frame/measurement frame, the second device performs channel estimation, and needs to feed back channel state information (channel state information, CSI) obtained through channel estimation to the first device.
  • channel state information channel state information, CSI
  • the second device feeds back the CSI to the first device, the CSI may be eavesdropped by an eavesdropper, so the information in the feedback stage needs to be protected.
  • the above-mentioned communication system may be a wireless local area network (wireless local area network, WLAN) or a cellular network, or other wireless communication systems that support multiple links for parallel transmission.
  • WLAN wireless local area network
  • the embodiment of the present application mainly takes the deployment of IEEE 802.11 network as an example for illustration, and various aspects involved in the present application can be extended to other networks using various standards or protocols, for example, bluetooth (bluetooth), high performance wireless LAN (high performance radio LAN, HIPERLAN) (a wireless standard similar to the IEEE 802.11 standard, used primarily in Europe), and wide area networks (WANs), personal area networks (PANs), or other networks now known or later developed.
  • bluetooth blue-Fi
  • LAN high performance radio LAN
  • HIPERLAN a wireless standard similar to the IEEE 802.11 standard, used primarily in Europe
  • WANs wide area networks
  • PANs personal area networks
  • the various aspects presented herein can be applied to any suitable wireless network, regardless of the coverage area and wireless access protocol used.
  • the STA has a wireless transceiver function, can support 802.11 series protocols, and communicate with an AP or other STAs.
  • the STA can be any user communication device that allows the user to communicate with the AP and then communicate with the WLAN, such as including but not limited to, tablet computers, desktops, laptops, notebook computers, ultra-mobile personal computers (ultra-mobile personal computers, UMPC), handheld computers, netbooks, personal digital assistants (personal digital assistant, PDA), mobile phones and other user equipment that can be connected to the Internet, or IoT nodes in the Internet of Things, or vehicle communication devices in the Internet of Vehicles, etc.
  • the STA may also be the chips and processing systems in the aforementioned terminals.
  • the AP is a device that provides services for STAs, and can support 802.11 series protocols.
  • an AP can be a communication entity such as a communication server, a router, a switch, or a network bridge, or an AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • an AP can also be a chip in these various forms of equipment and a processing system, thereby realizing the methods and functions of the embodiments of the present application.
  • Embodiments disclosed in the application will present various aspects, embodiments or features of the application around a system including a plurality of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. Additionally, combinations of these schemes can also be used.
  • Wireless local area network sensing wireless local area network sensing
  • Wireless local area network sensing technology refers to inferring and sensing the surrounding environment by analyzing wireless signals (such as CSI) "modulated" by various obstacles.
  • the sensing session in wireless sensing technology includes several stages of discovery, negotiation, measurement, feedback, and termination.
  • the CSI information is mainly transmitted in the measurement and feedback phase of the sensing session, that is, the CSI is obtained in the measurement phase, and the CSI is fed back in the feedback phase.
  • the high efficient secure long training field (HE-LTF field) in the NDP frame of the empty data packet provides the receiver with multiple inputs between the estimated constellation mapper output set and the receiver.
  • the 802.11ax protocol specifies sequences for HE-LTF under different bandwidths.
  • an NDP frame is a frame with only a physical header, so the encrypted NDP frame is easily eavesdropped by an eavesdropper to obtain CSI. Therefore, in order to ensure that the measurement process in the wireless LAN sensing technology is not obtained by the eavesdropper, a secure long training (secure LTF) field is designed in the 802.11az protocol to protect the measurement process.
  • the 802.11bf protocol can also use the secure LTF field to encrypt the NDP frame, but the embodiment of the present application does not limit the way of encrypting the NDP frame in the 802.11bf protocol.
  • the frame structure of the NDP frame carrying the secure LTF field is shown in Figure 3.
  • the NDP frame carrying the secure LTF field includes traditional short training fields, traditional long training fields, ..., secure long training fields (secure LTF) and other fields.
  • the secure LTF field refers to generating a set of random LET sequences. Only STAs that know the original random LTF sequence can correctly parse the NDP frame carrying the secure LTF field to obtain CSI, and other STAs can only obtain wrong CSI.
  • the generation process of secure LTF is as follows:
  • the receiving end and the sending end conduct secret key negotiation through a four-way handshake to obtain pairwise transient key security association (PTKSA) information.
  • the PTKSA information includes a pairwise transient key (PTK).
  • the trigger based (TB) ranging mode and the non trigger based (Non TB) ranging mode share the same negotiation process.
  • the sender sets the secure LTF support subfield to 1 in the initial fine timing measurement frame (IFTMR) to request enabling the secure ranging mode, and the receiver also sets the secure LTF support subfield to 1 in the IFTM frame to perform response.
  • the sender and the receiver use the KDK intercepted from the PTK to generate the same secure long training field key seed (secure-LTF-key-seed) through the Hash algorithm.
  • the receiving end carries parameters such as secure LTF counter and secure LTF sequence authentication code (sequence authentication code, SAC) in the IFTM frame for indication.
  • the sender and receiver use secure-LTF-key-seed and secure LTF counter to generate ista-ltf-key and rsta-ltf-key through algorithms. Then use secure-LTF-counter and ista/rsta-ltf-key to generate their respective random sequences to obtain the secure LTF field.
  • the transmitting end When the transmitting end and the receiving end perform measurement and sensing in the high-frequency band, the transmitting end sends the secure TRN field for channel estimation to the receiving end, so that the receiving end can perform channel estimation according to the secure TRN field, and obtain the CSI from the transmitting end to the receiving end .
  • non-trigger based non trigger based, NTB
  • TB ranging mode the flow diagram of the current TB ranging mode is shown in Fig. 4(a) and Fig. 4(b).
  • the AP and STA obtain PTKSA through four handshakes, the AP that has the ability to generate secure LTF fields and has security ranging requirements sets the secure LTF required field to 1 in the IFTMR frame to request enabling secure ranging mode.
  • the STA responds by setting the secure LTF support field (secure LTF support field) to 1 in the fine timing measurement frame (FTMR), and provides the counter (counter 1) and SAC 1 parameters required for this round of measurement in the negotiation frame .
  • the AP sends a poll to the STA by sending a ranging poll frame (TF sensing poll) to the STA.
  • the STA confirms whether it can participate in the session by returning CTS-to-self to the AP.
  • the AP can send a ranging sounding frame (TF ranging sounding) to the STA to trigger the STA to send an NDP frame carrying a security LTF field.
  • TF ranging sounding ranging sounding
  • the STA sends an NDP frame to the AP.
  • STA and AP use the same counter to generate the same secure LTF field.
  • the AP sends a null data packet announcement frame (NDPA) to the STA to announce to the STA that it will send an NDP frame carrying the secure LTF field, and the AP sends the NDP frame carrying the secure LTF field to the STA.
  • NDPA null data packet announcement frame
  • the AP indicates the counter 2 and SAC 2 parameters to be used in the next round of measurement in the location measurement report (LMR) frame.
  • NTB ranging mode the flow diagram of the current NTB ranging mode is shown in Fig. 5(a) and Fig. 5(b).
  • the STA and the AP After the STA and the AP obtain the PTKSA through the same four-way handshake process, during the negotiation phase of the FTM session, the STA and the AP confirm that the secure ranging (secure Ranging) mode is enabled, and the AP provides the counter 1 and SAC 1 values required for this round of measurement. STAs compete for access by sending NDP frames. The STA indicates in the NDPA the SAC corresponding to the counter value of the secure LTF generated this time, and the AP and the STA generate the same secure LTF. The AP indicates the counter 2 and SAC 2 used in the next round of measurement in the LMR frame.
  • secure ranging secure Ranging
  • Implicit feedback When the receiving end is the end that needs to obtain measurement information, the sending end sends the secure LTF field or secure TRN field used for measurement and channel estimation to the receiving end, and the receiving end uses the secure LTF field/secure TRN field to perform channel estimation, and then the CSI from the receiving end to the sending end can be obtained. Therefore, the receiving end does not need to feed back the CSI, and this method is implicit feedback.
  • the sending end When the sending end is the end that needs to obtain measurement information, the sending end sends the measurement to the receiving end and carries the secure LTF field or secure TRN field for channel estimation, and the receiving end performs channel estimation to obtain the information from the sending end to the receiving end After the CSI, the CSI needs to be fed back to the sender, so that the sender can obtain the CSI.
  • the feedback method is explicit feedback.
  • the second device after the second device performs channel estimation, it feeds back the obtained CSI to the first device, so that the first device obtains the CSI.
  • the CSI fed back by the second device is an unprotected frame, so during the feedback process of the second device, an eavesdropper can eavesdrop on the CSI to judge the perception result, which will cause privacy leakage. Therefore, the feedback phase of the sensing session needs to be secured.
  • the embodiments of the present application can be applied in the scenario of explicit feedback of the wireless sensor technology.
  • the second device when the first device is an STA, the second device is an AP.
  • the first device when the first device is an AP, the second device is an STA.
  • FIG. 6 is an interaction diagram of the information feedback method 100 .
  • the information feedback method 100 is described from the perspective of interaction between the first device and the second device.
  • the information feedback method 100 includes but not limited to the following steps:
  • the first device sends to the second device a first frame carrying a first field for performing channel estimation.
  • the second device receives a first frame carrying a first field for channel estimation.
  • the first field is a safe long training LTF field.
  • the first device sends the NDP frame carrying the secure LTF field to the second device.
  • the first field is a security training TRN field.
  • the first device sends the first frame carrying the secure TRN field to the second device.
  • the first device may also send a request frame to the second device, and the request frame is used for Requests channel estimation based on a field other than the Secure LTF field or the Secure TRN field.
  • the second device receives the request frame and sends a response frame to the first device.
  • the response frame is used to respond to the request frame.
  • the response frame is used to respond to whether to agree to perform channel estimation according to a field different from the security LTF field or the security TRN field.
  • the response frame sent by the second device to the first device is used to respond to agreeing to perform channel estimation according to a field different from the security LTF field or the security TRN field, the first device may send to the second device the second device carrying the channel estimation The first frame of a field.
  • the response frame is used to perform channel estimation using the received first field and a second field different from the first field when the second device receives the first field from the first device, and send The first device sends CSI obtained through channel estimation.
  • the second field when the first field is a security LTF field, the second field may be one of an HE LTF field and an enhanced high throughput (enhanced high throughput, EHT) LTF field.
  • EHT enhanced high throughput
  • the second field when the first field is a security LTF field, the second field may be a security LTF field different from the security LTF field.
  • the first field is security LTF field #1
  • the second field is security LTF field #2
  • the security LTF field #2 is generated by the second device based on the security parameter sent by the first device to the second device.
  • the second field can be a directional multi-gigabit/directional multi-gigabit (directional multi-gigabit, DMG) TRN field, or an enhanced directional multi-gigabit/enhanced directional multi-gigabit (enhanced directional multi-gigabit, EDMG) TRN field.
  • the first field is a security TRN field
  • the second field is a security TRN field different from the security TRN field.
  • the first field is a security TRN field #3
  • the second field is a security TRN field #4.
  • the security TRN field #4 is generated by the second device according to the security parameter sent by the first device to the second device.
  • the first field can also be a randomly generated field, and the sequence length of the randomly generated field conforms to the characteristics of HE LTF, or conforms to the characteristics of EHT LTF, or conforms to the characteristics of DMG TRN, or conforms to the characteristics of EDMG TRN.
  • the second field can be one of HE-LTF, EHT-LTF, DMG-TRN, and EDMG-TRN, or any field different from the first field.
  • the first field can also be a randomly generated field
  • the sequence length of the randomly generated field conforms to the characteristics of L-LTF
  • the second field can be L-LTF may also be a field different from the first field.
  • the first device requests the second device to perform channel estimation according to a field different from the security LTF field or the security TRN field through a request frame, and the second device responds with a response frame Whether to agree to perform channel estimation based on a field different from the security LTF field or the security TRN field.
  • the second device When the second device agrees to perform channel estimation according to a field different from the security LTF field or the security TRN field through the response frame response, the second device can subsequently perform channel estimation according to a field different from the security LTF field or the security TRN field, so that The second device can feed back to the first device the CSI obtained by channel estimation based on the received first field and a field different from the security LTF field or the security TRN field, which can ensure the security of the CSI from the first device to the second device .
  • the request frame is also used to request to send/receive a measurement frame carrying a security LTF field, or to request to send/receive a measurement frame carrying a security TRN field.
  • the response frame is also used to respond to whether to agree to send/receive the NDP frame carrying the security LTF field, or to respond to whether to agree to send/receive the measurement frame carrying the security TRN field.
  • the first device and the second device can also negotiate whether security measurement can be performed through the request frame and the response frame. If the first device and the second device can perform security measurements through the negotiation of the request frame and the response frame, the first device may send an NDP frame carrying a security LTF field to the second device, and the second device may receive the security LTF field according to the received security LTF field, and Perform channel estimation on a field different from the security LTF field; or the first device may send a measurement frame carrying a security TRN field to the second device, and the second device may use the received security TRN field and a field different from the security TRN field Do channel estimation.
  • the request frame is further used to request not to exchange the security parameter of the first field
  • the response frame is used to respond to the request frame
  • the security parameter of the first field is a parameter used to generate the first field.
  • the response frame is used to respond to agree not to exchange the security parameter of the first field;
  • the response frame is used for the second device to, after receiving the first frame carrying the first field, according to the received first field, and the preset LTF field or the preset TRN field to perform channel estimation, and feed back the CSI obtained by the channel estimation to the first device. That is, the first device and the second device may also negotiate not to exchange the security parameters of the first field through the request frame and the response frame.
  • the second device performs channel estimation according to the received first field and the preset LTF field or preset TRN field by default, and feeds back the CSI obtained by channel estimation.
  • the second device performs channel estimation according to the received first field and the preset LTF field or preset TRN field to obtain the CSI, which can also ensure the security of the CSI from the first device to the second device.
  • the preset LTF field is a non-secure LTF field in the current protocol
  • the default TRN field is a non-secure TRN field in the current protocol.
  • the non-secure LTF field can be HE LTF field or EHT LTF field.
  • the non-secure TRN field can be a DMG TRN field or an EDMG TRN field.
  • the security parameters include parameters such as counter (counter) and SAC.
  • the security parameters of the first field refer to parameters such as the counter that generate the first field.
  • the security parameters include parameters corresponding to the encryption method, and may include parameters other than counter and SAC.
  • the first device can request not to exchange the security parameters of the first field through a request frame, So that after receiving the first frame carrying the first field, the second device performs channel estimation according to the received first field and the preset LTF field or the preset TRN field.
  • the manner in which the first device and the second device do not exchange the security parameters of the first field can also save resources and reduce complexity.
  • the first device if the second device is an STA not capable of generating the first field, then the first device does not need to exchange parameters of the first field with the second device by default. Therefore, the first device requests not to exchange the security parameter of the first field through the request frame, or the first device does not use the function of requesting whether to exchange the security parameter of the first field in the request frame.
  • the request frame further includes the security parameter of the second field
  • the response frame is also used to respond to the request frame.
  • the response frame is used to respond to agree to perform channel estimation according to the second field.
  • the response frame is used for the second device to perform channel estimation on the second field generated according to the received first field and the security parameter of the second field after receiving the first frame carrying the first field, and send The first device feeds back the CSI obtained through channel estimation.
  • the security parameters of the second field are used to generate the second field.
  • the second field is a security LTF field different from the first field, or a security TRN field different from the first field.
  • the response frame is used to agree as a second device that cannot generate and identify the first field, and is also used for the second device that does not have the ability to generate the first field to agree to receive the message that the second device cannot accurately identify and parse.
  • the first field and obtain wrong CSI according to the instruction of the first device, that is, perform channel estimation according to the received first field and the preset LTF field or preset TRN field to obtain the CSI.
  • the channel estimation performed by the second device not capable of generating the first field using a field different from the first field is jointly controlled by other protocols and the behavior of the request frame.
  • the security parameter in the second field is one of the security parameters in the first field previously sent by the first device.
  • the security parameter of the second field can be among the security parameters sent five times any time.
  • the security parameter in the second field is the security parameter in the first field sent by the first device to the second device for the third time. That is to say, the security parameter of the second field is not the security parameter of the first field when the first device and the second device perform current measurement perception, so the second device determines the security parameter according to the received first field and the security parameter of the second field. Whether the CSI obtained by performing channel estimation in the generated second field is the CSI from the first device to the second device.
  • the security parameter of the second field may also be the security parameter of the first field that has not been sent by the first device in history, and is not the security parameter of the first field when the first device and the second device perform current measurement perception, so that the second The CSI obtained by the second device for channel estimation based on the received first field and the second field generated by the security parameters of the second field is also wrong CSI.
  • the embodiment of the present application does not limit the implementation manner of the security parameter of the second field.
  • the first device can also send the security parameters of the second field to the second device, and the second device responds through a response frame whether to agree to perform channel estimation according to the second field.
  • the second device agrees to perform channel estimation according to the second field through the response frame
  • the second device generates the second field according to the security parameters of the second field after receiving the first frame carrying the first field, and generates the second field according to the received Channel estimation is performed on the first field and the second field, and then the CSI obtained by performing channel estimation according to the received first field and the second field is fed back to the first device.
  • the CSI obtained by the second device through channel estimation according to the received first field and the second field is not the CSI from the first device to the second device, so the way the second device feeds back the CSI can ensure information security in the feedback stage.
  • the request frame is also used to request the second device not capable of generating the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field.
  • the response frame is also used to respond to the request frame.
  • the response frame is used to respond to whether the second device that does not have the capability of generating the first field agrees to perform channel estimation according to a field different from the security LTF field or the security TRN field.
  • the response frame response agrees that the second device that does not have the ability to generate the first field performs channel estimation according to a field that is different from the security LTF field or the security TRN field, the second device that does not have the capability to generate the first field can participate in the first In the measurement perception of the device.
  • the response frame is used for the second device that does not have the ability to generate the first field, when receiving the first frame carrying the first field, according to the received first field, and the preset LTF field or preset TRN field to perform channel estimation, and feed back the CSI obtained by the channel estimation to the first device.
  • the first device and the second device can negotiate whether the second device that does not have the ability to generate the first field can participate in the measurement awareness of the first device through the request frame and the response frame in the negotiation phase.
  • This method allows the second device with weaker capabilities to also participate in the measurement perception of the first device, which can reduce the capability requirements of the second device, thereby improving the compatibility of the system, and can also provide more resources for measurement perception.
  • the An NDPA frame may be sent to the second device, and the NDPA frame is used to declare to the second device that an NDP frame carrying a security LTF field is about to be sent.
  • the NDPA frame includes a SAC usable by the second device.
  • the NDPA frame may also include parameters such as bandwidth and period used in the current round of measurement.
  • the An NDPA frame may be received from the second device announcing to the first device that the second device is about to send an NDP frame carrying a security LTF field.
  • the NDPA frame includes a SAC usable by the first device.
  • the above request frame and response frame can be the FTM_Request frame and the FTM frame in the 802.11az protocol, that is, the frame structure of the FTM_Request frame and the FTM frame in the 802.11az protocol, which is applicable to the request frame and the response frame that may be adopted in the 802.bf protocol in the future frame structure.
  • the request frame and the response frame may also be newly designed sensing request frames and sensing response frames.
  • the request frame may also be a measurement setup request frame (measurement setup request), and the response frame may be a measurement setup response frame (measurement setup response).
  • the request frame is a sensing setup request frame (sensing setup request), and the response frame is a sensing setup response frame (sensing setup response).
  • the frame structure is shown in Figure 7(a).
  • the request frame is to add a new sensing parameters field after the FTM_Request frame, and the sensing parameters field includes the secure sensing indication field.
  • the response frame is followed by an optional sensing parameters field on the FTM frame, and the sensing parameters field includes the secure sensing indication field.
  • the request frame and the response frame are the sensing request frame and the sensing response frame designed in the embodiment of the present application
  • its frame structure is as shown in Figure 8 (a) and Figure 8 (b)
  • the sensing request frame and the sensing response frame are respectively in the action A newly added frame in the reserved field of the frame
  • the sensing request frame and the sensing response frame both include the secure sensing indication field.
  • the sensing request frame and the sensing response frame are newly added frames in the legacy fields 46 and 47 of the action frame, respectively.
  • the frame structures of the request frame and the response frame are shown in the above-mentioned FIG. 7( a ), FIG. 7( b ), FIG. 8( a ), and FIG. 8( b ).
  • Both the request frame and the response frame include a secure sensing indication field, and the secure sensing indication field includes various subfields. The function of each subfield is described below in combination with the functions of the above request frame and response frame:
  • Request frames and response frames include a secure sensing enable field.
  • the secure sensing enable field in the request frame is used to request channel estimation based on a field different from the secure LTF field or the secure TRN field, that is, to request the second device to perform security feedback.
  • the secure sensing enable field in the response frame is used to respond to the request frame.
  • the response frame is used to respond to whether to agree to perform channel estimation according to a field different from the security LTF field or the security TRN field, that is, to respond to whether to agree to perform security feedback.
  • the response frame is used for the second device to perform channel estimation according to the received first field and second field when receiving the first frame carrying the first field, and to feed back the channel estimation obtained by the first device.
  • the secure sensing enable field can also be replaced by the secure sensing and feedback field, and the secure sensing and feedback field implements the same function as the secure sensing enable field.
  • the secure sensing enable field in the request frame when the secure sensing enable field in the request frame is set to 1, it is used to request the second device to perform channel estimation according to a field different from the secure LTF field or the secure TRN field.
  • the secure sensing enable field in the response frame When the secure sensing enable field in the response frame is set to 1, it is used to respond to agreeing to conduct channel estimation based on a field different from the secure LTF field or secure TRN field; when the secure sensing enable field in the response frame is set to 0, it is used to respond to disagreement Channel estimation is performed based on a field different from the secure LTF field or the secure TRN field.
  • the secure sensing enable field in the request frame can also be used to request to send/receive the NDP frame carrying the secure LTF field in the measurement setup, or to request to send/receive the measurement frame carrying the secure TRN field in the sensing session.
  • the secure sensing enable field in the response frame can also be used to respond to whether to agree to receive/send the NDP frame carrying the secure LTF field, or to respond to whether to agree to receive/send the measurement frame carrying the secure TRN field. That is to say, the secure sensing enable field in the request frame and the response frame can also be used to negotiate whether the first device and the second device perform security measurement.
  • the secure sensing enable field in the request frame is set to 1, it is used to request to send/receive an NDP frame carrying a secure LTF field in the sensing session, or to request to send/receive an NDP frame carrying a secure TRN field in the sensing session Measure frame.
  • the secure sensing enable field in the response frame is set to 1, it is used to respond to agree to receive/send the NDP frame carrying the secure LTF field in the sensing session, or to respond to agree to receive/send the measurement frame carrying the secure TRN field; in the response frame
  • the secure sensing enable field is set to 0, it is used to respond to not agreeing to receive/send the NDP frame carrying the secure LTF field in the sensing session, or to respond to not agreeing to receive/send the measurement frame carrying the secure TRN field.
  • the first device and the second device can use the secure sensing enable field to negotiate whether the second device performs security feedback, that is, to negotiate whether the second device sends feedback to the first device based on a field different from the security LTF field or the security TRN field.
  • the first device and the second device can negotiate the first device and the second device to perform security measurement and security feedback through the secure sensing enable field, that is, to negotiate whether the first device sends a message carrying a secure LTF field or a secure TRN field to the second device.
  • the second field is the CSI obtained by performing channel estimation.
  • the secure sensing parameters exchange field may also be included in the request frame and the response frame.
  • the secure sensing parameters exchange field in the request frame is used to request whether to exchange the security parameters of the first field
  • the secure sensing parameters exchange field in the response frame is used to respond to the request frame
  • the first field's Security parameters are used to generate the first field
  • the secure sensing parameters exchange field in the request frame is used to request to exchange the security parameters of the first field
  • the secure sensing parameters exchange field in the response frame is used to respond to whether to agree to exchange the security parameters of the first field; in the request frame
  • the secure sensing parameters exchange field is used to request not to exchange the security parameters of the first field
  • the secure sensing parameters exchange field in the response frame is used to respond whether to agree not to exchange the security parameters of the first field.
  • the secure sensing parameters exchange field in the response frame is used for the second device to receive the first frame carrying the first field
  • channel estimation is performed according to the received first field and the first field generated by the security parameters from the first device
  • the secure sensing parameters exchange field in the request frame is used to request not to exchange the security parameters of the first field
  • the response frame The secure sensing parameters exchange field in is used for the second device to perform channel estimation according to the received first field and the preset LTF field or preset TRN field when receiving the first frame carrying the first field, and send the information to the first The device feeds back the CSI obtained by the channel estimation.
  • the secure sensing parameters exchange field in the request frame is set to 0
  • it is used to request not to exchange the security parameters of the first field
  • the secure sensing parameters exchange field in the response frame is set to 1
  • it is used to respond to agree not to exchange the first field
  • the security parameters of the field when the secure sensing parameters exchange field in the response frame is set to 0, it is used to respond to disagreement not to exchange the security parameters of the first field.
  • the secure sensing parameters exchange field in the request frame is set to 1, it is used to request to exchange the security parameters of the first field, and when the secure sensing parameters exchange field in the response frame is set to 1, it is used to respond to agree to exchange the security parameters of the first field, and the response When the secure sensing parameters exchange field in the frame is set to 0, it is used to respond to disagreement to exchange the security parameters of the first field.
  • the secure sensing parameters exchange field in the request frame includes the security parameters in the second field.
  • the secure sensing parameters exchange field in the response frame is used to respond to the request frame.
  • the secure sensing parameters exchange field in the response frame is used to respond to whether to agree to perform channel estimation according to the second field.
  • the secure sensing parameters exchange field in the response frame is used for the second field generated by the second device according to the received first field and the security parameters of the second field when receiving the first frame carrying the first field Perform channel estimation, and feed back the CSI obtained by the channel estimation to the first device.
  • the secure sensing parameters exchange field in the response frame is set to 1, it is used to respond to agreeing to perform channel estimation according to the second field; field for channel estimation.
  • the secure sensing parameters exchange field in the request frame and the response frame can be used to negotiate whether to exchange the security parameters of the first field, or to negotiate whether the second device performs channel estimation according to the second field.
  • the secure sensing parameters exchange field in the request frame and the response frame can be used to negotiate and exchange the security parameters of the first field, so that the second device according to the second device
  • the first field generated by the security parameters of one field performs channel estimation to obtain CSI from the first device to the second device, and then the second device performs perception according to the CSI.
  • the secure sensing parameters exchange field in the request frame and the response frame can be used to negotiate and not exchange the security parameters of the first field, which is beneficial to the feedback of the second device
  • the CSI obtained by performing channel estimation according to the preset LTF field or the preset TRN field can guarantee the security of information in the feedback stage, and can save the parameter exchange process and save resources.
  • the additional secure LTF field is also included in the request frame and the response frame.
  • the additional secure LTF field in the request frame is used to request the second device that does not have the ability to generate the first field to join the measurement awareness process of the first device, that is, to request the second device that does not have the ability to generate the first field
  • the field which is different from the LTF field or the security TRN field performs channel estimation.
  • the additional secure LTF field in the response frame is used to respond to the request frame.
  • the additional secure LTF field in the response frame is used to respond to whether the second device that does not have the ability to generate the first field is agreed to participate in the measurement awareness of the first device.
  • the additional secure LTF field in the response frame is used when the second device that does not have the ability to generate the first field receives the first frame carrying the first field, according to the received first field, and preset the LTF field Or preset the TRN field to perform channel estimation, and feed back the CSI obtained by the channel estimation to the first device.
  • the additional secure LTF field in the request frame when the additional secure LTF field in the request frame is set to 1, it is used to request the second device that does not have the capability of generating the first field to join the measurement awareness process of the first device.
  • the additional secure LTF field in the response frame when the additional secure LTF field in the response frame is set to 1, it is used to respond to the second device that does not have the ability to generate the first field to join the measurement awareness process of the first device; when the additional secure LTF field in the response frame is set to 0, it is used to Responsively disagreeing with the second device not having the capability to generate the first field joins the first device's measurement awareness process.
  • the first device and the second device can also use the additional secure LTF field to negotiate whether to allow the second device that does not have the ability to generate the first field to join the measurement awareness of the first device, thereby improving the compatibility of the system, and can also provide Measurement awareness provides more resources.
  • the encrypted feedback field is also included in the request frame and the response frame.
  • the encrypted feedback field in the request frame is used to request the feedback of the encrypted feedback frame, that is, to request the second device to feed back the CSI obtained by channel estimation based on the second field different from the first field.
  • the encrypted feedback field in the response frame is used to respond to the request frame.
  • the encrypted feedback field in the response frame is used to respond to whether to agree to feed back the encrypted feedback frame, that is, to respond to whether the second device agrees to feed back the CSI obtained by channel estimation based on a second field different from the first field .
  • the encrypted feedback field in the response frame is used by the second device to perform channel estimation according to the received first field and second field when receiving the first frame carrying the first field, and to feed back to the first device The CSI obtained by the channel estimation.
  • the encrypted feedback field in the request frame when the encrypted feedback field in the request frame is set to 1, it is used to request to feed back an encrypted feedback frame.
  • the encrypted feedback field in the response frame When the encrypted feedback field in the response frame is set to 1, it is used to respond to feedback frames that feed back encryption; when the encrypted feedback field in the response frame is set to 0, it is used to respond to feedback frames that do not feed back encryption.
  • the first device and the second device can also negotiate whether the second device feeds back an encrypted feedback frame through the encrypted feedback field, that is, reconfirm whether the second device agrees to feedback through the encrypted feedback field according to the second field that is different from the first field
  • the CSI obtained by performing channel estimation.
  • the second device sends a first feedback frame to the first device, the first feedback frame includes channel state information CSI, the CSI is the CSI from the first device to the second device, and the CSI is received by the second device according to the first field It is obtained by performing channel estimation with the second field, and the second field is not the first field.
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is received by the second device according to the first field It is obtained by performing channel estimation with the second field, and the second field is not the first field.
  • the first field received by the second device is a field after the first field sent by the first device has passed through the wireless channel, that is, the first field received by the second device is a field after the first field carries channel state information.
  • the second field is as described in S102 above, and will not be repeated here.
  • the second device performs channel estimation according to the first field and the second field to obtain the CSI, which means that the second device uses a channel estimation method to compare and analyze the received first field and the second field to obtain the channel state information CSI. If the second device knows the first field, then the CSI obtained by the second device through channel estimation based on the received first field and the known first field is the CSI from the first device to the second device, and the CSI represents the real Channel state information from the first device to the second device.
  • the known first field may be stored locally by the second device, or may be sent by the first device to the second device.
  • the second device uses the received first field and the second field different from the first field to perform channel estimation, the CSI fed back by the second device to the first device is not the CSI from the first device to the second device, Therefore, even if the CSI fed back by the second device is intercepted by an eavesdropper, the eavesdropper cannot obtain the CSI from the first device to the second device because the eavesdropper cannot obtain the first field, thereby ensuring the security of the feedback information in the feedback stage.
  • the second device is an AP, or a STA capable of generating the first field, or a STA not capable of generating the first field, and the first device and the second device negotiate When the security parameters of the first field are not exchanged, after receiving the first frame carrying the first field, the second device performs channel estimation according to the received first field and the preset LTF field or preset TRN field, that is, the preset The LTF field or the preset TRN field is the second field. Therefore, what the second device feeds back to the first device is the CSI obtained by performing channel estimation according to the received first field and the preset LTF field or preset TRN field.
  • the CSI is not the CSI from the first device to the second device, so the feedback method can ensure the safety of information in the feedback stage.
  • the second device is an AP, or an STA capable of generating the first field, and when the first device sends the security parameters of the second field to the second device during the negotiation phase, the second After receiving the first frame carrying the first field, the device generates the second field according to the security parameters of the second field, and then performs channel estimation according to the received first field and the second field to obtain the CSI.
  • the second field may be an LTF field or a TRN field, or may be a security LTF field different from the first field, or a security TRN field different from the first field.
  • what the second device feeds back to the first device is the CSI obtained by performing channel estimation on the second field generated according to the received first field and the security parameters of the second field, that is, it is also based on the received first field and the first The CSI obtained by performing channel estimation on fields with different fields, so that the fed back CSI is not the CSI from the first device to the second device, thereby ensuring information security.
  • the first device receives the first feedback frame from the second device.
  • the first device negotiates with the second device not to exchange the security parameters of the first field during the negotiation phase, what the second device feeds back to the first device is based on the received first field and the preset Set the LTF field or the preset TRN field to perform channel estimation to obtain the CSI, so that the first device can also analyze the CSI according to the sent first field, the preset LTF field or the preset TRN field, and obtain the first device to the second CSI of the device.
  • the second device sends the first What the device feeds back is to perform channel estimation on the second field generated according to the security parameters of the received first field and the second field to obtain CSI, so that the first device can also analyze the CSI according to the sent first field and second field , to obtain the CSI from the first device to the second device.
  • the first device sends the first frame carrying the first field used for channel estimation to the second device
  • the second device receives the first field according to the received first field and the first field that is different from the first field.
  • the second field performs channel estimation, and feeds back the CSI obtained by channel estimation to the first device.
  • What the second device feeds back to the first device is the CSI obtained by channel estimation based on the received first field and the second field different from the first field. Even if the CSI fed back by the second device is intercepted by an eavesdropper, the eavesdropper still The CSI from the first device to the second device cannot be obtained. Therefore, the manner in which the second device feeds back the CSI can ensure the safety of information in the feedback stage.
  • the first device and the second device perform measurement perception in the low-frequency band as an example, and combined with TB ranging mode and NTB ranging mode, unilateral interaction and multilateral interaction, the first device is AP, and the second device is STA, or Various implementations of the information feedback method 100 are described in different communication scenarios when the first device is an STA and the second device is an AP.
  • unilateral interaction refers to a communication scenario in which there is only uplink or downlink between the first device and the second device
  • bilateral interaction refers to a scenario in which there is both uplink and downlink communication between the first device and the second device.
  • the first device is an STA
  • the second device is an AP
  • unilateral interaction is performed between the STA and the AP.
  • the first device is an STA
  • the second device is an AP
  • an interaction flow chart of unilateral interaction between the STA and the AP is shown in FIG. 9( a ).
  • the STA sets the secure sensing enable field in the request frame to 1 during the negotiation phase to request the AP to perform channel estimation based on a field different from the secure LTF field.
  • the AP sets the secure sensing enable field in the response frame to 1, in response to agreeing to perform channel estimation based on a field different from the secure LTF field.
  • the STA can set the secure sensing parameters exchange field in the request frame to 0 during the negotiation phase to request that the security parameters of the secure LTF field not be exchanged, and the AP sets the secure sensing parameters exchange field in the response frame to 1 during the negotiation oblique segment.
  • the CSI in the CSI feedback frame fed back by the AP to the STA is the CSI obtained by channel estimation based on the security LTF field and the preset LTF field.
  • the STA and the AP negotiate without exchanging the security parameters of the security LTF field, which can save the parameter interaction process, save resources and reduce complexity.
  • the STA initiates a competitive access to the AP, that is, the STA actively sends an NDPA frame to the AP to declare to the AP that it is about to send an NDP frame carrying a security LTF field (NDP with secure LTF). Then, the STA sends the NDP frame carrying the security LTF field to the AP.
  • NDP security LTF field
  • the STA and the AP negotiate not to exchange the security parameters of the security LTF field during the negotiation phase, after the AP receives the NDP frame, it directly performs channel estimation based on the received security LTF field and the preset LTF field, and passes the CSI obtained by the channel estimation through the CSI
  • the feedback frame is fed back to the STA.
  • the STA analyzes the received CSI according to the sent security LTF field and the preset LTF field, and obtains the CSI from the STA to the AP.
  • the first device is an AP
  • the second device is a STA
  • bilateral interaction is performed between the AP and the STA.
  • the first device is an AP
  • the second device is a STA
  • the interaction flow chart of the bilateral interaction between the STA and the AP is shown in FIG. 9( b ).
  • the AP negotiates to measure the CSI from the STA to the AP and measures the CSI from the AP to the STA during the negotiation phase.
  • the AP sets the secure sensing enable field in the request frame to 1 to request the STA to perform channel estimation based on a field different from the secure LTF field.
  • the STA sets the secure sensing enable field in the response frame to 1, in response to agreeing to perform channel estimation based on a field different from the secure LTF field.
  • Bilateral interaction between the AP and STA that is, the AP sends NDP frames to the STA, and the STA also sends NDP frames to the AP.
  • the AP can carry the security parameters of the second field in the secure sensing parameters exchange field in the request frame during the negotiation phase, and the STA will set the secure sensing parameters exchange field in the response frame to 1 in response to agreeing to conduct channeling according to the second field.
  • the second field is a security LTF field different from the security LTF field sent by the AP. Therefore, the STA can also generate the second field according to the security parameters of the second field, and send the NDP frame carrying the second field to the AP, that is, the STA can also send the NDP frame carrying the security LTF field different from the security LTF field sent by the AP to the AP. NDP frames.
  • the STA sends an NDPA frame to the AP to declare to the AP that it will send an NDP frame carrying the security LTF field, and the STA sends an NDP frame carrying the second field to the AP.
  • the AP performs channel estimation according to the second field generated by the security parameter of the second field sent to the STA and the received second field, and obtains the CSI from the STA to the AP.
  • the AP sends an NDP frame carrying a secure LTF field for channel estimation to the STA, and then sends a feedback trigger frame (feedback trigger) to the STA to trigger the STA to feed back the CSI obtained by channel estimation to the AP.
  • a feedback trigger frame feedback trigger
  • the STA After receiving the NDP frame carrying the security LTF field, the STA performs channel estimation according to the received security LTF field and the second field generated by the security parameters of the second field, and feeds back the CSI obtained by channel estimation to the AP.
  • the AP analyzes the received CSI according to the second field generated by the security parameters of the sent second field and the sent security LTF field, and obtains the CSI from the AP to the ST. Furthermore, the AP performs more accurate perception based on the CSI from the AP to the STA, and the CSI from the STA to the AP.
  • the first device is an STA
  • the second device is an AP
  • the STA and the AP perform bilateral interaction.
  • the first device is an STA
  • the second device is an AP
  • an interaction flow chart of bilateral interaction between the STA and the AP is shown in FIG. 9( c ).
  • the STA and the AP negotiate to measure the CSI from the STA to the AP and measure the CSI from the AP to the STA during the negotiation phase.
  • both the first device and the second device set the secure sensing enable field in the request frame and the response frame to 1, so as to negotiate that the AP performs channel estimation according to a field different from the secure LTF field. Since both the AP and the STA need to send NDP frames, the STA carries the security parameters of the second field in the secure sensing parameters exchange field, and the AP sets the secure sensing parameters exchange field to 1 in response to agreeing to perform channel estimation according to the second field. Therefore, the AP can generate the second field according to the security parameter of the second field, and send the NDP frame carrying the second field to the STA.
  • the STA sends an NDPA frame to the AP to declare to the AP that the STA is about to send an NDP frame carrying a security LTF field, and then the STA sends an NDP frame carrying a security LTF field to the AP.
  • the AP After receiving the NDP frame, the AP performs channel estimation according to the received security LTF field and the second field generated by the security parameters of the second field, and feeds back the CSI obtained by the channel estimation to the STA through the CSI feedback frame.
  • the STA generates the second field according to the security parameters of the second field, and then parses the CSI according to the second field and the sent security LTF field to obtain the CSI between the STA and the AP.
  • the AP sends the NDP frame carrying the second field to the STA, and the STA performs channel estimation according to the received second field and the second field generated by the security parameter of the second field, and obtains the CSI from the AP to the STA. Furthermore, the STA performs more accurate perception based on the CSI from the AP to the STA, and from the STA to the AP.
  • the first device is an AP
  • the second device is a STA that does not have the capability to generate a security LTF field, and unilateral interaction is performed between the STA and the AP.
  • the first device is an AP
  • the second device is an STA that does not have the ability to generate a security LTF field
  • the interaction flow chart of bilateral interaction between the STA and the AP is shown in FIG. 9( d ).
  • both the STA and the AP set the secure sensing enable field in the request frame and the response frame to 1 during the negotiation phase, so that the negotiation AP performs channel estimation based on a field different from the secure LTF field or the secure TRN field. Since the STA does not have the ability to generate a secure LTF field, the AP and the STA set the additional secure LTF field in the request frame and the response frame to 1 during the negotiation phase to allow STAs that do not have the ability to generate a secure LTF field to negotiate with the secure LTF. Fields with different fields perform channel estimation, that is, the AP allows STAs that do not have the ability to generate secure LTF fields to join the AP's measurement awareness.
  • This method is beneficial for STAs with limited capabilities to join the AP's measurement awareness.
  • the STA does not have the ability to generate the security LTF field, then the STA cannot generate the second field according to the security parameters of the second field, so the AP needs to negotiate with the STA during the negotiation phase not to exchange the security parameters of the security LTF field, that is, the AP will request Set the secure sensing parameters exchange field of the frame to 0 to request not to exchange the security parameters of the secure LTF field, and the STA needs to set the secure sensing parameters exchange field in the response frame to 1 to respond to agreeing not to exchange the security parameters of the secure LTF field.
  • the STA sends an NDPA frame to the AP to notify the AP to send an NDP frame carrying a security LTF field.
  • the AP sends the NDP frame carrying the security LTF field for channel estimation to the STA.
  • the STA uses the received security LTF field and the preset LTF field to perform channel estimation, and feeds back the CSI obtained through channel estimation to the AP.
  • the AP analyzes the received CSI according to the sent security LTF field and the preset LTF field, and obtains the CSI between the AP and the STA. Then the AP performs perception according to the CSI.
  • the first device is an STA
  • the second device is an AP
  • unilateral interaction is performed between the STA and the AP.
  • the first device is an STA
  • the second device is an AP
  • an interaction flow chart of unilateral interaction between the STA and the AP is shown in FIG. 9( e ).
  • both the STA and the AP set the secure sensing enable field in the request frame and the response frame to 1 during the negotiation phase, so that the negotiation AP performs channel estimation based on a field different from the secure LTF field.
  • the STA and the AP can negotiate not to exchange the security parameters of the security LTF field during the negotiation phase. That is, the STA sets the secure sensing parameters exchange field of the request frame to 0 to request not to exchange the security parameters of the secure LTF field.
  • the STA needs to set the secure sensing parameters exchange field in the response frame to 1 in response to agreeing not to exchange the security parameters of the secure LTF field.
  • the AP sends a poll to the STA by sending a TF sensing poll to the STA.
  • the STA returns CTS-to-self to the AP to confirm whether it can participate in the session.
  • the AP can send TF sensing sounding to the STA to trigger the STA to send an NDP frame carrying the security LTF field.
  • the AP receives the NDP frame carrying the security LTF field, because the security parameters of the first field are not exchanged during the negotiation phase, the AP performs channel estimation based on the received security LTF field and the preset LTF field, and feeds back the CSI obtained by the channel estimation to STA.
  • the STA analyzes the CSI according to the sent security LTF field and the preset LTF field, and obtains the CSI from the STA to the AP. Then the STA performs perception according to the CSI.
  • the first device is an AP
  • the second device is a STA
  • bilateral interaction is performed between the STA and the AP.
  • the first device is an AP
  • the second device is an STA
  • a schematic diagram of an interaction process when the STA and the AP perform bilateral interaction is shown in FIG. 9( f ).
  • both the STA and the AP set the secure sensing enable field in the request frame and the response frame to 1 during the negotiation phase, so that the negotiated STA performs channel estimation based on a field different from the secure LTF field. Since both the AP and the STA need to send NDP frames, the AP carries the security parameters of the second field in the secure sensing parameters exchange field, and the STA sets the secure sensing parameters exchange field to 1 in response to agreeing to perform channel estimation according to the second field. Therefore, the STA can generate the second field according to the security parameter of the second field, and send the NDP frame carrying the second field to the AP.
  • the AP sends a poll to the STA by sending a TF sensing poll to the STA.
  • the STA returns CTS-to-self to the AP to confirm whether it can participate in the session.
  • the AP may send TF sensing sounding to the STA to trigger the STA to send an NDP frame carrying the second field.
  • the AP performs channel estimation according to the received security LTF field and the second field generated by the security parameters of the second field, and can obtain the CSI from the STA to the AP.
  • the AP sends an NDPA frame to the STA to announce that the STA is about to send an NDP frame carrying the security LTF field.
  • the AP sends an NDP frame carrying a security LTF field for channel estimation to the STA, and then sends a feedback trigger frame to the STA to trigger the STA to feed back the CI obtained by channel estimation.
  • the STA After receiving the NDP frame from the AP, the STA generates the second field according to the security parameters of the second field received in the negotiation phase, then performs channel estimation according to the received security LTF field and the received second field, and uses the CSI obtained by channel estimation Feedback to AP.
  • the AP generates the second field according to the security parameters of the second field, and then analyzes the received CSI according to the second field and the sent first field to obtain the CSI from the AP to the STA.
  • the first device is an STA
  • the second device is an AP
  • bilateral interaction is performed between the STA and the AP.
  • the first device is an STA
  • the second device is an AP
  • an interaction flow chart of bilateral interaction between the STA and the AP is shown in FIG. 9( g ).
  • both the STA and the AP set the secure sensing enable field in the request frame and the response frame to 1 during the negotiation phase, so that the negotiation AP performs channel estimation based on a field different from the secure LTF field. Since both the AP and the STA need to send NDP frames, the STA carries the security parameters of the second field in the secure sensing parameters exchange field, and the AP sets the secure sensing parameters exchange field to 1 in response to agreeing to perform channel estimation based on the second field. Therefore, the AP can generate the second field according to the security parameter of the second field, and send the NDP frame carrying the second field to the STA.
  • this scenario is basically the same as the above-mentioned scenario 2.2.
  • the STA is the first device, so the AP does not need to send a feedback trigger frame to the STA, but needs to use the received security LTF field
  • Channel estimation is performed on the second field generated with the security parameters of the second field, and the CSI obtained by channel estimation is fed back to the STA through the CSI feedback frame.
  • the STA analyzes the CSI according to the second field generated by the security parameter of the second field and the sent security LTF field, and obtains the CSI from the STA to the AP.
  • the first device is an AP
  • the second device is a STA that does not have the capability to generate a secure LTF field, and unilateral interaction is performed between the STA and the AP.
  • the first device is an AP
  • the second device is a STA that does not have the ability to generate the first field
  • an interaction flow chart of unilateral interaction between the STA and the AP is shown in FIG. 9( h ).
  • both the STA and the AP set the secure sensing enable field in the request frame and the response frame to 1 during the negotiation phase, so that the negotiated STA performs channel estimation based on a field different from the secure LTF field.
  • the AP and the STA will set the additional secure LTF field in the request frame and the response frame to 1 during the negotiation phase to allow STAs that do not have the ability to generate a secure LTF field to participate in the measurement perception of the AP. , that is, the AP allows STAs that do not have the ability to generate the security LTF field to join the AP's measurement awareness.
  • the AP needs to negotiate with the STA during the negotiation phase not to exchange the security parameters of the security LTF field.
  • the secure sensing parameters exchange field of the request frame is set to 0 to request not to exchange the security parameters of the secure LTF field. save resources.
  • the AP sends a poll to the STA by sending a TF sensing poll to the STA.
  • the STA confirms whether it can participate in the session by returning CTS-to-self to the AP.
  • the AP sends TF sensing sounding to the STA to declare to the STA that an NDP frame carrying a security LTF field is about to be sent.
  • the AP sends an NDP frame carrying a security LTF field to the STA, and then sends a feedback trigger frame to the STA.
  • the STA After receiving the NDP frame, the STA performs channel estimation according to the received security LTF field and the preset LTF field, and feeds back the CSI obtained by channel estimation to the AP through the CSI feedback frame.
  • the AP analyzes the CSI according to the preset LTF field and the sent security LTF field, and obtains the CSI from the STA to the AP.
  • the AP can feedback to the STA to obtain CSI according to the received security LTF field and a field different from the security LTF field, or the STA can The CSI obtained by performing channel estimation according to the received security LTF field and a field different from the security LTF field is fed back to the AP, so that the security of the feedback information in the feedback stage can be guaranteed.
  • FIG. 10 is an interactive schematic diagram of the information feedback method 200 .
  • the information feedback method 200 is described from the perspective of interaction between the first device and the second device.
  • the first device is an STA
  • the second device is an AP.
  • the information feedback method 200 includes but not limited to the following steps:
  • the first device sends to the second device a first frame carrying a first field for performing channel estimation.
  • the second device receives the first frame carrying the first field used for channel estimation.
  • the first device may also send a request frame to the second device, and the request frame uses To request the second device to measure the third CSI from the third device to the second device, and to encrypt and feed back the third CSI to the first device.
  • the second device sends a response frame to the first device, and the response frame is used to respond to the request frame.
  • the response frame is used to respond to whether it is confirmed to measure the third CSI from the third device to the second device, and to encrypt and feed back the third CSI to the first device.
  • the response frame is used by the second device to perform channel estimation according to the received security LTF field and a field different from the security LTF field when receiving the second frame carrying the security LTF field from the third device, Obtain the CSI from the second device to the third device, encrypt the CSI by using the security parameter in the second field, and feed back the encrypted CSI to the first device.
  • the first device and the second device may negotiate with the second device to assist in measuring the third CSI from the second device to the third device through a request frame and a response frame, and the The measured third CSI is forwarded to the first device, so that the first device obtains CSI of multiple channels, and then performs more accurate perception.
  • the request frame may also include the security parameter of the second field, and the response frame may also be used to respond to the request frame.
  • the response frame is used to respond to whether to perform channel estimation according to the second field.
  • the response frame is used for the second device to perform channel estimation according to the received first field and second field when receiving the first frame carrying the first field from the first device, and obtain the channel estimation The CSI is fed back to the first device.
  • the second device sends the first feedback frame to the first device, and sends the second feedback frame to the first device.
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device through channel estimation according to the received first field and the second field
  • the second field is not the first a field.
  • the second feedback frame includes encrypted third CSI
  • the third CSI is CSI from the third device to the second device.
  • the first device receives the first feedback frame from the second device, and receives the second feedback frame from the second device.
  • the second device after receiving the first frame from the first device, the second device performs channel estimation according to the received first field and second field, and feeds back the CSI obtained by channel estimation to the second device in the form of a first feedback frame. a device. Therefore, after the first device receives the first feedback frame, it analyzes the CSI in the first feedback frame according to the sent first field and the second field, and obtains the CSI from the first device to the second device.
  • the first device and the second device negotiate in the negotiation phase, and the second device measures the CSI from the third device to the second device, and feeds back the CSI to the first device. Therefore, the second device will trigger the third device to send the third frame carrying the secure LTF or secure TRN field, and feed back the obtained third CSI from the third device to the second device to the first device in the form of encrypted CSI, so as to The first device is made to obtain the third CSI from the third device to the second device.
  • the second device When the second device negotiates with the third device, the second device will send the security parameter in the security LTF field or the security parameter in the security TRN field to the third device.
  • the second device generates the security LTF field according to the security parameter of the security LTF field, or generates the security TRN field according to the security parameter of the security TRN field, and then sends the first frame carrying the security LTF field or the security TRN field to the third device.
  • the second device may perform channel estimation according to the security LTF field or the security TRN field generated by the security parameter from the second device and the received field, and obtain the third CSI from the third device to the second device.
  • the second device then encrypts the third CSI in the second field generated according to the security parameters of the second field sent by the first device, and feeds back the encrypted third CSI to the first device in the form of a second feedback frame. Therefore, the first device parses the encrypted CSI in the second field generated according to the security parameters of the second field, and can obtain the CSI from the third device to the second device.
  • the second device encrypts the third CSI with the second field generated according to the security parameter of the second field sent by the first device, which may mean that the second device multiplies the security parameter of the second field by the third CSI to obtain the encrypted After the third CSI.
  • the second device performs other mathematical operations on the second field generated by the security parameters of the second field and the third CSI to obtain the encrypted third CSI.
  • This embodiment of the present application does not limit the encryption manner in which the second device encrypts the third CSI with the second field generated according to the security parameter of the second field.
  • the second device may further send the second frame carrying the second field to the first device and the third device.
  • the first device After receiving the second frame carrying the second field, the first device performs channel estimation according to the received second field and the second field generated by the security parameter of the second field, and obtains the CSI from the second device to the first device.
  • the third device When the second device and the third device negotiate not to exchange the security parameters of the second field during the negotiation phase, after the third device receives the second frame carrying the second field, it presets the LTF field or preset Set the TRN field to perform channel estimation, and feed back the CSI obtained through channel estimation to the second device in the form of a third feedback frame.
  • the second device forwards the third feedback frame to the first device.
  • the first device analyzes the CSI in the third feedback frame according to the second field and the preset LTF field or preset TRN field, and obtains the fourth CSI from the second device to the third device .
  • the second device When the second device sends a parameter different from the security parameter in the second field to the third device during the negotiation phase, after receiving the second frame carrying the second field, the third device Channel estimation is performed on fields generated by parameters whose security parameters are different, and the CSI obtained through channel estimation is fed back to the second device in the form of a fourth feedback frame. Therefore, the second device analyzes the CSI in the fourth feedback frame according to the sent second field and the field generated by a parameter different from the security parameter of the second field, and obtains the fourth CSI from the second device to the third device .
  • the second device encrypts the fourth CSI according to the security parameters of the second field, and sends the encrypted fourth CSI to the first device in the form of a third feedback frame, so that the first device encrypts the fourth CSI according to the second field
  • the security parameters of the third feedback frame are analyzed to obtain the fourth CSI from the second device to the third device.
  • the first device requests the second device to assist in measuring and feeds back the CSI from the third device to the second device, and the second device feeds back the CSI from the first device to the second device to the first device.
  • the CSI fed back by the second device is all encrypted CSI. Even if the eavesdropper eavesdrops on the feedback information during the feedback process of the second device, the eavesdropper cannot obtain the CS from the third device to the second device, and the CS from the first device to the second device. CSI, so this feedback method can guarantee the information security in the feedback stage.
  • the first device and the second device perform measurement perception in the low-frequency band as an example, and combined with TB ranging mode, unilateral interaction and multilateral interaction, when the first device is STA1, the second device is AP, and the third device is STA2 Various implementations of the information feedback method 200 are described in different communication scenarios.
  • FIG. 11(a) The schematic diagram of the interaction flow among STA1, STA2, and AP is shown in Fig. 11(a).
  • STA1 negotiates with the AP during the negotiation phase that the AP can perform channel estimation based on the LTF field that is different from the security LTF field.
  • STA1 sends the security parameters of the second field to the AP during the negotiation phase.
  • the second field is different from the security LTF field, and the AP sets the secure sensing parameters exchange field in the response frame to 1 in response to agreeing to perform channel estimation based on the second field.
  • STA2 negotiates with the AP during the negotiation phase that STA2 can perform channel estimation according to a field different from the second field.
  • the AP When STA2 negotiates with the AP, the AP sends the security parameters of the security LTF field to STA2, so that STA2 generates a security LTF field according to the security parameters of the security LTF field, and sends an NDP frame carrying the security LTF field to the AP.
  • the AP sends a poll to STA1 and STA2 by sending TF sensing Poll to STA1 and STA2.
  • STA1 and STA2 return CTS-to-self to the AP to confirm whether they can participate in the session.
  • the AP confirms that STA1 and STA2 participate in the session, it sends TF sensing sounding to STA1 and STA2 to trigger STA1 and STA2 to send NDP frames.
  • STA1 sends an NDP frame carrying a security LTF field to the AP, and the AP performs channel estimation based on the received security LTF field and the LTF field generated by the security parameters of the LTF field sent by STA1, and obtains the CSI from STA1 to the AP.
  • the AP then feeds back the CSI to STA1.
  • STA1 analyzes the CSI fed back by the AP according to the sent security LTF field and the LTF field generated by the security parameters of the LTF field, and obtains the CSI from STA1 to the AP.
  • the AP sends the security parameters of the security LTF field to STA2. Therefore, STA2 generates a security LTF field according to the security parameters of the security LTF field, and STA2 sends an NDP frame carrying the security LTF field to the AP.
  • the AP After receiving the NDP frame, the AP performs channel estimation based on the received security LTF field and the security LTF field generated by the security parameters of the security LTF field, and obtains the CSI from STA2 to the AP. Then, the AP encrypts the CSI according to the security parameter of the LTF field sent by STA1, and feeds back the encrypted CSI to STA1. Therefore, STA1 analyzes the encrypted CSI according to the security parameter of the LTF field, and can obtain the CSI from STA2 to the AP.
  • the AP feeds back the CSI from STA1 to the AP and the CSI from STA2 to the AP to STA1, and the AP feeds back the two CSIs encrypted, so that the security of the feedback stage when the AP feeds back can be guaranteed. Furthermore, the AP can perform perception according to the CSI from STA1 to the AP and the CSI from STA2 to the AP.
  • FIG. 11(b) A schematic diagram of the interaction process between the AP and STA1 and STA2 is shown in Figure 11(b).
  • the transmission between STA1 and the AP, the transmission between STA2 and the AP, and the feedback from the AP to STA1 are all the same as the above-mentioned interaction process in FIG. 11( a ).
  • the AP may also send NDPA frames to STA1 and STA2, so as to announce to STA1 and STA2 that the NDP frame carrying the second field is about to be sent.
  • the AP sends the NDP frame carrying the second field to STA1 and STA2, and the second field is generated by the AP based on the security parameter in the second field from STA1.
  • STA1 may perform channel estimation according to the received second field and the second field generated by the security parameters of the second field, and obtain the CSI from the AP to the STA.
  • the AP then sends a feedback trigger frame to STA2 to trigger STA2 to feed back the CSI obtained through channel estimation.
  • STA2 and the AP negotiate not to exchange the security parameters of the second field during the negotiation phase, after receiving the NDP frame from the AP, STA2 performs channel estimation according to the received security LTF field and the preset LTF field, and uses the CSI obtained by channel estimation Feedback to AP.
  • the AP forwards the CSI to STA1.
  • STA1 analyzes the CSI in the CSI feedback frame according to the second field generated by the security parameter of the second field and the preset LTF field, and obtains the CSI from the AP to STA2.
  • the AP sends a parameter different from the security parameter in the second field to STA2 during the negotiation phase, and STA2 agrees to perform channel estimation based on the field generated by the parameter different from the security parameter in the second field
  • STA2 receives the After the NDP frame, channel estimation is performed according to the received second field and the fields generated by the parameters with different security parameters in the second field, and the CSI obtained by channel estimation is fed back to the AP through the CSI feedback frame.
  • the AP analyzes the CSI according to the second field generated by the security parameter of the second field and the field generated by a parameter different from the security parameter of the second field, and obtains the CSI from STA2 to the AP.
  • the AP uses the second field generated by the security parameters of the second field to encrypt the CSI from STA2 to the AP, and feeds back the encrypted CSI to STA1. Therefore, STA1 analyzes the encrypted CSI according to the second field generated by the security parameter of the second field, and obtains the CSI from STA2 to the AP.
  • the AP not only feeds back the CSI from STA2 to the AP and the CSI from STA1 to the AP to STA1, but also feeds back the CSI from the AP to STA2 and the CSI from STA2 to the AP to STA2, so that STA1 can use multiple CSI for more precise perception.
  • Scenario 1.3 AP performs unilateral interaction with STA1, STA2, and STA3, and STA2 is the STA capable of generating the first field, and STA3 is the STA not capable of generating the first field.
  • FIG. 11(c) A schematic diagram of the interaction process between the AP and STA1, STA2, and STA3 is shown in Figure 11(c).
  • STA1 negotiates with the AP to receive or send NDP frames carrying security LTF fields during the negotiation phase.
  • the AP sends the security parameters of the security LTF field to STA1 during the negotiation phase, so that STA1 can perform channel estimation based on the security LTF field generated by the security parameters of the security LTF field, and obtain the CSI from the AP to STA1.
  • STA2 and the AP can perform channel estimation according to the LTF field different from the security LTF field through negotiation during the negotiation phase.
  • the AP can negotiate with STA2 through the secure sensing parameters exchange field without exchanging the security parameters of the secure LTF field, that is, the AP sets the secure sensing parameters exchange field to 0.
  • STA2 sets the secure sensing parameters exchange field to 1 in response to agreeing not to exchange security parameters in the secure LTF field.
  • the AP can send the security parameters of the second field to STA2 through the secure sensing parameters exchange field during the negotiation phase, and STA2 sets the secure sensing parameters exchange field to 1 in response to agreeing to conduct the LTF field based on the security parameters of the second field. channel estimation.
  • STA3 negotiates with the AP during the negotiation phase that STA3 can perform channel estimation according to the LTF field that is different from the security LTF field.
  • the AP and STA3 set the additional secure LTF field in the request frame and the response frame to 1 to negotiate and allow STAs that do not have the ability to generate secure LTF fields to participate in the AP's measurement awareness, that is, APs that do not have the ability to generate secure LTF fields are allowed STAs added to the measurement awareness of the AP.
  • STA3 is an STA that does not have the ability to generate a secure LTF field.
  • the AP negotiates with STA2 through the secure sensing parameters exchange field not to exchange the security parameters of the secure LTF field, that is, the AP sets the secure sensing parameters exchange field to 0.
  • the AP sends polls to STA1, STA2, and STA3 by sending TF sensing polls to STA1, STA2, and STA3.
  • STA1, STA2, and STA3 return CTS-to-self to the AP to confirm whether they can participate in the session.
  • the AP confirms that STA1, STA2, and STA3 participate in the session, it sends an NDPA frame to STA1, STA2, and STA3 to declare to STA1, STA2, and STA3 that an NDP frame carrying a security LTF field is about to be sent.
  • the AP sends NDP frames carrying security LTF fields to STA1, STA2, and STA3, and the AP sends feedback trigger frames to STA2 and STA3 to trigger STA2 and STA3 to feed back the CSI obtained by channel estimation to the AP.
  • STA1 performs channel estimation according to the received security LTF field and the security LTF field generated by the security parameters of the security LTF field, and obtains the CSI from the AP to STA1.
  • STA2 and the AP negotiate not to exchange security parameters of the security LTF field during the negotiation phase
  • STA2 After receiving the NDP frame from the AP, STA2 performs channel estimation according to the received security LTF field and the preset LTF field, and uses the CSI obtained by the channel estimation as The CSI feedback frame is fed back to the AP.
  • AP then sends the CSI feedback frame to STA1. Therefore, STA1 analyzes the CSI in the CSI feedback frame according to the preset LTF field and the security LTF field generated by the security parameters of the security LTF field, and obtains the CSI from the AP to STA2.
  • STA2 When the AP sends the security parameters of the second field to STA2 during the negotiation phase, after receiving the NDP frame from the AP, STA2 performs channel estimation according to the received second field and the second field generated by the security parameters of the second field, and The CSI obtained by channel estimation is fed back to the AP in the form of a CSI feedback frame.
  • the AP analyzes the CSI in the CSI feedback frame according to the sent security LTF field and the second field, and obtains the CSI from the AP to STA2.
  • the AP then encrypts the CSI from the AP to STA2 using the security parameters of the security LTF field, and sends the encrypted CSI to STA1.
  • STA1 parses the encrypted CSI according to the security LTF field, and can obtain the CSI from the AP to STA2.
  • STA3 negotiates with the AP not to exchange the security parameters of the security LTF field during the negotiation phase. After receiving the NDP frame from the AP, STA3 performs channel estimation according to the received security LTF field and the preset LTF field, and converts the CSI obtained by channel estimation into CSI Feedback to the AP in the form of a feedback frame. AP then sends the CSI feedback frame to STA1. Therefore, STA1 analyzes the CSI in the CSI feedback frame according to the preset LTF field and the security LTF field generated by the security parameters of the security LTF field, and obtains the CSI from the AP to STA3.
  • the AP negotiates with STA1 to exchange the security parameters of the security LTF field #1, and the AP also negotiates with the STA2 to exchange the security parameters of the security LTF field #2.
  • the AP receives the NDP frame from STA1, it performs channel estimation based on the received security LTF field and the security LTF field generated by the security parameter of security LTF field #1, and obtains the CSI from STA1 to the AP.
  • the AP receives the NDP frame from STA2, it performs channel estimation based on the received security LTF field and the security LTF field generated by the security parameter of security LTF field #2, and obtains the CSI from STA2 to the AP.
  • the AP uses the security parameters of the security LTF field #1 exchanged with STA1 to encrypt the CSI from STA1 to the AP and the CSI from STA2 to the AP, and sends the encrypted CSI to STA1 through the CSI feedback frame.
  • STA1 analyzes the encrypted CSI according to the security parameters of the security LTF field #1 exchanged with the AP, and obtains the CSI from STA1 to the AP and the CSI from STA2 to the AP.
  • the AP and STA1 negotiated and exchanged the security parameters of the security LTF field #1, and the AP also negotiated and exchanged the security parameters of the security LTF field #2 with STA2, as shown in Figure 11(d), the AP can combine the feedback to STA1
  • the CSI from STA1 to the AP and the CSI from STA2 to the AP can save signaling overhead.
  • the AP feeds back the encrypted CSI is fed back, so the security of the information in the feedback stage can also be guaranteed.
  • the AP may also feed back the CSI from STA1 to AP and the CSI from STA2 to AP to STA1 according to the combined feedback method shown in FIG. 11(d) above.
  • the merging feedback method can refer to the above merging method, and will not be repeated here.
  • the AP after receiving the feedback frame from STA1, the AP analyzes the CSI in the feedback frame according to the security LTF field and the preset LTF field, and obtains CSI from the AP to STA1.
  • the AP analyzes the CSI in the feedback frame according to the LTF field generated by the security LTF field and the security parameters of the LTF field exchanged with STA1, and obtains the CSI from the AP to STA1.
  • the AP analyzes the CSI in the feedback frame according to the received security LTF field and the preset LTF field, and obtains the CSI from the AP to STA2.
  • the AP encrypts the CSI from the AP to STA and the CSI from the AP to STA2 according to the security parameters of the security LTF field exchanged with STA1, obtains the encrypted CSI, and feeds back the encrypted CSI to STA1 After the CSI.
  • STA1 analyzes the CSI according to the security parameter of the security LTF field exchanged with the AP, and obtains the CSI from the AP to STA1 and the CSI from the AP to STA2. It can be seen that the AP can also combine and feed back the CSI from the AP to STA1 and the CSI from the AP to STA2 to STA1, thereby saving signaling overhead.
  • the first device when the first device is an AP, the second device is STA1, and the third device is STA2, and the AP performs bilateral interactions with STA1 and STA2, a schematic diagram of the interaction between the AP and STA1 and STA2 As shown in Figure 12(a).
  • the AP negotiates with STA1 that STA1 can perform channel estimation based on the LTF field that is different from the security LTF field, and the AP and STA2 negotiate that STA2 can perform channel estimation based on the LTF field that is different from the security LTF field.
  • the AP sends TF sensing poll to STA1 and STA2 to issue polls to STA1 and STA2.
  • STA1 and STA2 return CTS-to-self to the AP to confirm whether they can participate in the session.
  • the AP confirms that STA1 and STA2 participate in the session, it sends TF sensing sounding to STA1 and STA2 to trigger STA1 and STA2 to send NDP frames.
  • STA1 and STA2 send NDP frames carrying the security LTF field to the AP.
  • the AP performs channel estimation based on the received security LTF field and the security LTF field generated by the security parameters of the security LTF fields sent by STA1 and STA2, and obtains the CSI from STA1 to the AP and the CSI from STA2 to the AP.
  • the AP sends NDPA frames to STA1 and STA2 respectively, so as to announce to STA1 and STA2 that an NDP frame carrying a security LTF field is about to be sent.
  • the AP sends NDP frames carrying security LTF fields to STA1 and STA2 respectively.
  • STA1 After receiving the NDP frame from the AP, STA1 performs channel estimation according to the received security LTF field and the second field generated by the preset LTF or security parameters of the second field, and feeds back the CSI obtained by channel estimation to the AP.
  • the AP After the AP receives the feedback frame from STA1, it analyzes the CSI in the feedback frame according to the preset LTF field and the sent security LTF field, and obtains the CSI from the AP to STA1, or the second field generated according to the security parameters of the second field Analyze the CSI in the feedback frame with the sent security LTF field to obtain the CSI from the AP to STA1.
  • STA2 After receiving the NDP frame from the AP, STA2 performs channel estimation according to the received security LTF field and the second field generated by the preset LTF or security parameters of the second field, and feeds back the CSI obtained by channel estimation to the AP.
  • the AP receives the feedback frame from STA2, it analyzes the CSI in the feedback frame according to the preset LTF field and the sent security LTF field, and obtains the CSI from the AP to STA2, or the second field generated according to the security parameters of the second field Analyze the CSI in the feedback frame with the sent security LTF field to obtain the CSI from the AP to STA2.
  • the first device when the first device is an AP, the second device is STA1, and the third device is STA2 that does not have the ability to generate a security LTF field, and the AP performs unilateral interaction with STA1 and STA2, the AP
  • the schematic diagram of the interaction with STA1 and STA2 is shown in Figure 12(b).
  • the AP negotiates with STA1 that STA1 can perform channel estimation based on an LTF field different from the security LTF field, and the AP can negotiate with STA1 not to exchange the security parameters of the security LTF field, or the AP sends STA1 the security parameters of the second field.
  • STA2 is a STA that does not have the ability to generate a secure LTF field. Therefore, during the negotiation phase, the AP and STA2 negotiate to allow STAs that do not have the capability to generate a secure LTF field to join the AP's measurement perception, and the AP and STA2 negotiate not to exchange security parameters of the secure LTF field. .
  • the AP sends a poll to STA1 and STA2 by sending TF sensing poll to STA1 and STA2.
  • STA1 and STA2 return CTS-to-self to the AP to confirm whether they can participate in the session.
  • the AP confirms that STA1 and STA2 participate in the session, it sends NDPA frames to STA1 and STA2 respectively, so as to announce to STA1 and STA2 that an NDP frame carrying a security LTF field is about to be sent.
  • the AP sends NDP frames carrying security LTF fields to STA1 and STA2 respectively.
  • the AP then sends feedback trigger frames to STA1 and STA2 respectively, so as to trigger STA1 and STA2 to feed back the CSI obtained by channel estimation.
  • STA1 After receiving the NDP frame from the AP, STA1 performs channel estimation according to the received security LTF field and the second field generated by the preset LTF field or the security parameters of the second field, and feeds back the CSI obtained by channel estimation to the AP.
  • the AP analyzes the CSI according to the sent security LTF field and the second field generated by the preset LTF field or the security parameter of the second field, and obtains the CSI from the AP to STA1.
  • STA2 After receiving the NDP frame from the AP, STA2 performs channel estimation according to the received security LTF field and the preset LTF field, and feeds back the CSI obtained by channel estimation to the AP, and the AP performs CSI feedback according to the preset LTF field and the sent security LTF field
  • the CSI in the frame is analyzed to obtain the CSI from the AP to STA2.
  • the embodiment of the present application also provides an information feedback method 300 .
  • the first device sends to the second device a first frame carrying a first field for performing channel estimation.
  • the second apparatus receives a first frame carrying a first field for channel estimation.
  • the second device sends complex samples of the secure LTF field or the secure TRN field to the first device.
  • the first device receives complex samples of the secure LTF field or the secure TRN field from the second device.
  • the first device analyzes the complex samples of the secure LTF field according to the secure LTF field to obtain the CSI from the first device to the second device; or, the first device parses the complex samples of the secure TRN field according to the secure TRN field to obtain the first CSI from device to second device.
  • the second device feeds back to the first device is the complex sampling of the secure LTF field or the secure TRN field. Even if an eavesdropper eavesdrops on the complex sampling, the first The CSI from the device to the second device, so this feedback method can also ensure the information security in the feedback stage.
  • the information feedback method 300 is applicable to all above-mentioned communication scenarios where the AP and the STA do not exchange security parameters of the security LTF field or the security TRN field.
  • the first device and the second device may negotiate whether the second device feeds back the CSI or the complex sampling of the security LTF field during the negotiation phase. That is, the above request frame can also be used to request feedback of a CSI feedback frame, or feedback of complex samples of a secure LTF field/secure TRN field (secure LTF feedback frame/secure TRN feedback frame).
  • the response frame is used to respond to whether to agree to feedback the CSI;
  • the request frame is used to request the feedback of complex sampling of the safety LTF field/safety TRN field, the response frame is used to respond to whether the feedback of the safety LTF field is agreed / Complex sample of the secure TRN field.
  • the first device and the second device may negotiate whether to feed back the CSI or the complex sampling of the secure LTF field through the secure sensing feedback type field in the request frame and the response frame.
  • the secure sensing feedback type field in the request frame is set to 1, it is used to request feedback CSI, and when the secure sensing feedback type field in the response frame is set to 0, it is used to respond to disagreement to feedback CSI, and the secure sensing feedback in the response frame
  • the type field is set to 1, it is used to respond to agree to feed back CSI.
  • the secure sensing feedback type field in the request frame When the secure sensing feedback type field in the request frame is set to 0, it is used to request complex sampling of the secure LTF field/secure TRN field, and when the secure sensing feedback type field in the response frame is set to 0, it is used to respond to disagreement feedback Complex sampling of the secure LTF field/secure TRN field, when the secure sensing feedback type field in the response frame is set to 1, it is used to respond to the complex sampling of the secure LTF field/secure TRN field in the response consent.
  • the first device sends the first frame carrying the first field for channel estimation to the second device, and the second device does not perform channel estimation, but directly feeds back the security LTF field to the first device / Complex sample of the secure TRN field.
  • the second device receives the complex samples of the secure LTF field/secure TRN field, it can analyze the complex samples of the secure LTF field according to the secure LTF field, or analyze the complex samples of the secure TRN field according to the secure TRN field to obtain the first CSI from device to second device.
  • the feedback mode of the second device can also ensure the safety of information in the feedback stage.
  • this embodiment of the present application does not limit the implementation manner in which the second device feeds back the encrypted CSI.
  • the second device may also encrypt complex samples of the security LTF field or the security TRN field according to the random number, and then send the encrypted CSI to the first device Feedback the complex sampling of the encrypted secure LTF field or secure TRN field.
  • the second device when the above-mentioned second device feeds back the CSI obtained by performing channel estimation based on the preset LTF field, or feeds back the CSI obtained by performing channel estimation based on the second field generated by the security parameters of the second field, the second device passes The CSI feedback frame feeds back the CSI obtained by channel estimation to the first device, that is, the first feedback frame in the above information feedback method is the CSI feedback frame.
  • the CSI feedback frame is a new encrypted CSI report field (encryption CSI report field), the encryption CSI report field includes the encrypted CSI subfield (encryption of the CSI subfield) and the legacy subfield (reserved subfield).
  • the CSI feedback frame is shown in Figure 13(b), the CSI feedback is to reuse the CSI feedback frame in the current HT action frame, and the CSI feedback frame is the control in the CSI feedback frame
  • the reserved field of the field adds the encryption of the CSI subfield and the reserved subfield.
  • Fig. 13(b) is only a modified example based on the HT standard, and the feedback method in the embodiment of the present application can also be correspondingly used in the feedback of a CSI matrix with a larger bandwidth in the future 802.11bf protocol.
  • Fig. 13(b) only uses the CSI matrix as an example to describe the feedback frame, and the embodiment of the present application is also applicable to the feedback frame in the feedback calculation using noncompressed beamforming and compressed beamforming.
  • the encryption of the CSI subfield is used to indicate whether the CSI sent by the second device is correct CSI.
  • the encryption of the CSI field is set to 0, it is used to indicate that the CSI fed back by the second device is correct CSI; when the encryption of the CSI field is set to 1, it is used to indicate that the CSI fed back by the second device is wrong CSI.
  • the CSI fed back by the second device to the first device is the CSI obtained by performing channel estimation according to the received first field and the preset LTF field or preset TRN field, or according to the received first field, And the CSI obtained by performing channel estimation on the second bullet generated by the security parameters of the second field, where the second field is a field different from the security LTF field or the security TRN field. Therefore, the CSI fed back by the second device to the first device is all wrong CSI, so when the second device sends a CSI feedback frame to the first device, the encryption of the CSI field in the CSI feedback frame is set to 1.
  • the above-mentioned second device feeds back the complex samples of the secure LTF field or the secure TRN field to the first device, it feeds back the complex samples of the secure LTF field to the first device through the secure LTF feedback frame, that is, the above-mentioned information feedback method
  • the first feedback frame in is the secure LTF feedback frame.
  • the secure LTF feedback frame is shown in Figure 13(c), the secure LTF feedback frame is to add a secure LTF feedback field to the reserved field in the HT action frame, and the secure LTF feedback field includes a secure LTF report subfield.
  • the CSI LTF report subfield is used to indicate that the second device feeds back complex samples of the security LTF field.
  • the secure LTF feedback field includes the feedback content (such as secure LTF), the size (bits) occupied by the feedback content, and the meaning (meaning).
  • the trigger frame sent by the first device or the second device may be as shown in FIG. 14( a ).
  • the frame structure of the trigger frame refer to the frame structure of the trigger frame in 802.11az.
  • the frame structure of the trigger frame is that the secure sensing enable field is added to the reserved field in the trigger frame in 802.11az.
  • the NDPA frame sent by the first device or the second device may be as shown in FIG. 14( b ).
  • the frame structure of the NDPA frame refer to the frame structure of the NDPA frame in 802.11az.
  • the difference is that the secure sensing enable field is added to the reserved field in the 802.11az NDPA frame.
  • the secure sensing enable field is used to indicate the encrypted NDP frame to be sent, that is, to indicate to the peer that the NDP frame carrying the secure LTF field will be sent.
  • the first device and the second device exchange security parameters in the NDPA frame, the exchanged parameters are also wrong parameters. Therefore, what the second device feeds back should be an encrypted feedback frame, and the first device should be ready to receive and process it according to the negotiated content.
  • the secure sensing enable field can also be placed in the trigger frame and the NDPA frame.
  • the secure sensing enable field is placed in the trigger frame and NDPA frame, it is used to indicate the encrypted NDP frame to be sent and followed by an encrypted measurement feedback process.
  • the trigger frame and NDPA frame may also include the above One or more corresponding to the secure sensing parameters exchange field, additional secure LTF field, and encrypted feedback field.
  • the above request frame and response frame do not include one or more of the secure sensing parameters exchange field, additional secure LTF field, and encrypted feedback field
  • the trigger frame and NDPA frame may include One or more of the above secure sensing parameters exchange field, additional secure LTF field, and encrypted feedback field.
  • the frame structures of the trigger frame and the NDPA frame are not limited to the above frame structures of FIG. 14(a) and FIG. 14(b).
  • the frame structure of the NDPA frame and the trigger frame refers to the frame structure in the 802.11az protocol, but the embodiment of the present application does not limit the frame structure of the NDPA frame and the trigger frame.
  • the frame structure of the NDPA frame and the trigger frame can also adapt to the future new frame structure in the 802.11bf protocol, but the NDPA frame and the trigger frame still include the above-mentioned secure sensing enable field, or the NDPA frame and the trigger frame still include the secure sensing parameters exchange field, One or more of additional secure LTF field and encrypted feedback field.
  • the structure of the feedback trigger frame is shown in FIG. 15
  • the feedback trigger frame includes an encryption of feedback field, and the encryption of feedback field is used to indicate whether the feedback frame fed back by the second device is an encrypted feedback frame.
  • the encryption of feedback field is set to 0, it is used to indicate that the feedback frame fed back by the second device is not an encrypted feedback frame; when the encryption of feedback field is set to 1, it is used to indicate that the feedback frame fed back by the second device is an encrypted feedback frame .
  • the feedback trigger frame includes the above secure sensing enable field.
  • the encryption of feedback field can be placed in the user info to indicate to the STA separately.
  • the encryption of feedback field can also be placed in common info for unified indication.
  • the secure TRN field and the secure LTF field are encrypted in a similar way, and the first device can also extract the available CSI from the secure TRN field to do Sensing.
  • the secure sensing enable field in the request frame and the response frame is still set to 1, so as to negotiate that the second device can perform channel estimation according to a field different from the secure TRN field.
  • the process of the first device and the second device performing measurement sensing in the high-frequency band please refer to the beam training process in the 802.11ay protocol.
  • the secure sensing parameters exchange field of the request frame and the response frame can be set to 1 or 0 according to requirements.
  • the secure sensing feedback type in the request frame and response frame can also be set to 0 or 1 according to requirements.
  • the secure sensing feedback type field is set to 0
  • the second device feeds back the erroneous CSI obtained by performing channel estimation according to the preset TRN field; when the secure sensing feedback type field is set to 1, the second device feeds back received complex samples of the secure TRN field.
  • the first device sends a first frame carrying a security TRN field to the second device.
  • the second device feeds back to the first device the information obtained by performing channel estimation based on the received TRN field and the preset TRN field CSI, or when the first device sends the security parameter of the TRN field to the second device, the second device feeds back the TRN field generated according to the received TRN field and the security parameter of the TRN field to the first device for channel estimation to obtain CSI.
  • the first device parses the received CSI according to the preset TRN field and the sent secure TRN field, or parses the received CSI according to the TRN field generated by the security parameter of the TRN field and the sent secure TRN field, to obtain the first device to the CSI of the second device.
  • the first frame may be a beam refinement protocol (BRP) frame, that is, the first device may send a message carrying a security TRN field to the second device.
  • BRP frames may also be called a beam refining protocol frame, a beam refining protocol frame, and so on.
  • the first device and the second device sample during the negotiation phase.
  • the first device obtains the CSI from the first device to the second device according to the complex samples of the security TRN field and the security TRN field.
  • the first device is an AP
  • the second device includes STA1, STA2, and STA3.
  • the flow diagram of the interaction between the AP and STA1, STA2, and STA3 for measurement and perception in the high-frequency band is shown in FIG. 16 .
  • the AP sets the secure sensing enable field to 1 to negotiate that STA1, STA2, and STA3 can perform channel estimation based on a field different from the secure TRN field.
  • the AP can choose to set the secure sensing parameters exchange field to 1 or 0 according to requirements.
  • the AP sends the sensing measurement frame (sensing measurement frame) carrying the secure TRN to STA1, STA2, and STA3, STA1, STA2, and STA3 respectively follow the instructions negotiated with the AP during the negotiation phase, and feed back to the AP according to the received secure TRN field and preset
  • the TRN field is used to perform the CSI obtained by channel estimation, or the CSI obtained by performing channel estimation on the TRN field generated according to the received security TRN field and the security parameters from the TRN field of the AP is fed back to the AP.
  • the AP receives the feedback frames (CSI feedback frames) from STA1, STA2, and STA3 respectively, and analyzes the CSI in the feedback frame according to the preset TRN field and the sent security TRN field, or the CSI generated according to the security parameters of the TRN field
  • the TRN field and the transmission security TRN field analyze the CSI in the feedback frame, and respectively obtain the CSI from the AP to STA1, the CSI from the AP to STA2, and the CSI from the AP to STA3.
  • the CSI feedback frame fed back by the second device to the second device is based on the Digital Beamforming feedback element of 802.11ay for feedback.
  • the second device puts the obtained secure SCI into the 802.11ay Digital Beamforming Feedback information for feedback.
  • the feedback is performed through the secure TRN feedback frame.
  • the CSI feedback frame and the secure TRN feedback frame in the high-frequency band are newly designed feedback frames in 802.11bf, and a schematic diagram of the frame structure is shown in FIG. 17(b).
  • the secure sensing feedback field includes the secure TRN feedback subfield and the CSI feedback field.
  • the CSI feedback field is set to 1, it is used to indicate the feedback of CSI; when the secure TRN feedback field is set to 1, it is used to indicate the complex sampling of the feedback security TAN field.
  • Both the secure TRN feedback field and the CSI feedback field include the content of the feedback (such as secure TRN or secure CSI), the size (bits) occupied by the feedback content, and the meaning (meaning).
  • the second device uses the current FTM frame for feedback, as shown in FIG. 17(c), and adds a secure sensing feedback after the encrypyion of the CSI field of the FTM frame. Since the FTM frame is a protected frame, the second device uses the FTM frame for feedback, which can protect the security of the feedback information.
  • the structures of the secure TRN feedback field and the CSI feedback field are the same as those in Figure 17(b) above, and will not be repeated here.
  • the second device adds a new field in the BRP frame for feedback.
  • the structures of the secure TRN feedback field and the CSI feedback field are the same as those in Figure 17(b) above, and will not be repeated here.
  • the embodiment of the present application is also applicable to a communication scenario where the receiving end uses the L-LTF field in FIG. 3 to perform channel estimation, and the receiving end needs to feed back the CSI obtained by channel estimation to the sending end. If the transmitting end sends a secure L-LTF compatible with the L-LTF field, the receiving end uses a preset L-LTF field (or a secure L-LTF field different from the transmitting end) for channel estimation.
  • this embodiment of the present application can also be applied to a communication scenario where the receiving end uses the next-generation security LTF field in the protocol to perform channel estimation, and the receiving end needs to feed back the CSI obtained through channel estimation to the sending end.
  • the sender sends the EHT security LTF field based on the WIFI 7/EHT (or next-generation standard, such as WIFI8) protocol to the receiver, and the receiver uses the preset EHT-LTF field (or different from the EHT security LTF field of the sender)
  • the information feedback flow in the embodiment of the present application may be applicable to the manner in which the receiving end feeds back CSI.
  • the receiver feeds back to the transmitter the CSI obtained by channel estimation based on the received EHT security LTF field and fields different from the EHT security LTF field (preset EHT-LTF field or other EHT security LTF fields different from the transmitter).
  • some fields in the above request frame and negotiation frame are applicable to the implicit feedback scenario.
  • the following takes AP and STA's measurement perception in the low-frequency band as an example, and combines the TB ranging mode, NTB ranging mode, unilateral interaction, and multilateral interaction communication scenarios to illustrate the implementation of some fields in the request frame and negotiation frame.
  • Scenario 1.1 AP is the party that needs to obtain measurement information, and STA is the party that sends measurement frames.
  • the flow chart of the interaction between the AP and the STA is shown in Figure 18(a).
  • the AP and STA set the secure sensing enable field in the request frame and response frame to 1, so as to negotiate to send or receive the NDP frame carrying the secure LTF field.
  • the AP sets the secure sensing parameters exchange field to 1 during the negotiation phase to request the exchange of security parameters in the secure LTF field
  • the STA sets the secure sensing parameters exchange field to 1 during the negotiation phase in response to agreeing to exchange security parameters in the secure LTF field.
  • the STA sends an NDPA frame to the AP to announce to the AP that it will send an NDP frame carrying a security LTF field.
  • the STA sends an NDP frame carrying the security LTF field to the AP.
  • the AP After the AP receives the NDP frame carrying the security LTF field, it generates a security LTF field according to the security parameters of the security LTF field exchanged with the STA during the negotiation phase, and then performs channel estimation based on the security LTF field and the received security LTF field to obtain the STA-AP CSI.
  • the STA is the party that needs to obtain measurement information
  • the AP is the party that sends the measurement frame.
  • the STA sends an NDPA frame to the AP to declare to the AP that it needs to receive the NDP frame carrying the security LTF field.
  • the AP sends the NDP frame carrying the security LTF field to the STA.
  • the STA After receiving the NDP frame carrying the security LTF field, the STA generates a security LTF field according to the security parameters of the security LTF field exchanged with the AP during the negotiation phase, and then performs channel estimation based on the security LTF field and the received security LTF field, and obtains the information from the AP to the STA.
  • CSI channel estimation
  • Scenario 2.1 AP is the party that needs to obtain measurement information
  • STA is the party that sends measurement frames.
  • the AP sends a poll to the STA by sending a TF sensing poll to the STA.
  • the STA returns CTS-to-self to the AP to confirm whether it can participate in the session.
  • the AP confirms that the STA participates in the session, the AP sends TF sensing sounding to the STA to notify the STA that it needs to receive the NDP frame carrying the security LTF field.
  • the STA sends the NDP frame carrying the security LTF field to the AP.
  • the AP After the AP receives the NDP frame carrying the security LTF field, it generates a security LTF field according to the security parameters of the security LTF field exchanged with the STA during the negotiation phase, and then performs channel estimation based on the security LTF field and the received security LTF field to obtain the STA-AP CSI.
  • Scenario 2.2 AP is the party that needs to obtain measurement information, and STA is the party that sends measurement frames.
  • the AP sends a poll to the STA by sending a TF sensing poll to the STA.
  • the STA returns CTS-to-self to the AP to confirm whether it can participate in the session.
  • the AP confirms that the STA participates in the session, the AP sends an NDPA frame to the STA to declare to the STA that it will send an NDP frame carrying a security LTF field.
  • AP sends NDP frame to STA.
  • the STA After receiving the NDP frame carrying the security LTF field, the STA generates a security LTF field according to the security parameters of the security LTF field exchanged with the AP during the negotiation phase, and then performs channel estimation based on the security LTF field and the received security LTF field, and obtains the information from the AP to the STA.
  • CSI channel estimation
  • Scenario 2.3 AP is the party that needs to obtain measurement information, and STA1 and STA2 are the parties that send measurement frames.
  • the AP sends TF sensing polls to STA1 and STA2 respectively to send polls to STA1 and STA2.
  • STA1 and STA2 return CTS-to-self to the AP to confirm whether they can participate in the session.
  • the AP confirms that STA1 and STA2 participate in the session, it sends TF sensing sounding to STA1 and STA2 respectively to inform STA that it needs to receive the NDP frame carrying the security LTF field. Therefore, both STA1 and STA2 send the NDP frame carrying the security LTF field to the AP.
  • the AP performs channel estimation according to the security LTF field generated by the security parameters of the security LTF field exchanged with STA1 and STA2 during the negotiation phase and the received security LTF field, and obtains the CSI from STA1 to the AP and the CSI from STA2 to the AP.
  • the first device or the second device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • various functions Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application provides a communication device 1900 .
  • the communication device 1900 may be a component of the first device (eg, integrated circuit, chip, etc.), or a component of the second device (eg, integrated circuit, chip, etc.).
  • the communication device 1900 may also be another communication unit, configured to implement the method in the method embodiment of the present application.
  • the communication device 1900 may include: a communication unit 1901 and a processing unit 1902 .
  • a storage unit 1903 may also be included.
  • one or more units in Figure 19 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or by one or more processors, memories, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the communication device 1900 has the function of realizing the first device described in the embodiment of the present application, and optionally, the communication device 1900 has the function of realizing the second device described in the embodiment of the present application.
  • the communication device 1900 includes a first device that executes the modules or units or means (means) corresponding to the steps of the first device described in the embodiment of the present application, and the functions, units or means (means) can be implemented by software, Or it may be realized by hardware, it may also be realized by executing corresponding software by hardware, and it may also be realized by a combination of software and hardware.
  • the functions, units or means (means) can be implemented by software, Or it may be realized by hardware, it may also be realized by executing corresponding software by hardware, and it may also be realized by a combination of software and hardware.
  • the communication device 1900 includes: a processing unit 1902 and a communication unit 1901, and the processing unit 1902 is configured to control the communication unit 1901 to perform data/signaling transceiving;
  • a communication unit 1901 configured to send a first frame carrying a first field for performing channel estimation to a second device
  • a communication unit 1901 further configured to receive a first feedback frame from the second device
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device according to the received first field and the second field
  • the second field is not the first field.
  • the first field is a security long training LTF field, or the first field is a security training TRN field.
  • the communication unit 1901 before the communication unit 1901 sends the first frame carrying the first field used for channel estimation to the second device, the communication unit 1901 is further configured to: send a request frame to the second device, the The request frame is used to request channel estimation according to a field different from the safety LTF field or the safety TRN field; and a response frame from the second device is received, and the response frame is used to respond to the request frame.
  • the request frame is further used to request not to exchange the security parameters of the first field, and the second field is a preset LTF field or a preset TRN field; the response frame is also Used to respond to the request frame.
  • the request frame further includes a security parameter of the second field, and the security parameter of the second field is used to generate the second field; the response frame is also used to respond to Frames should be requested.
  • the request frame is further used to request the second device not capable of generating the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field;
  • the response frame is also used to respond to the request frame.
  • the communication unit 1901 is further configured to receive the second frame carrying the second field; the processing unit 1902 is further configured to perform channel estimation according to the received second field and the second field, and obtain Second CSI.
  • the security parameter in the second field is one of the security parameters in the first field previously sent by the first device.
  • the security parameter in the second field is a parameter that has not been sent by the first device to the second device, and is different from the security parameter in the first field.
  • the processing unit 1902 may also parse the CSI according to the second field and the first field to obtain the first CSI.
  • the communication device 1900 includes: a processing unit 1902 and a communication unit 1901, and the processing unit 1902 is configured to control the communication unit 1901 to perform data/signaling transceiving;
  • a communication unit 1901 configured to send a first frame carrying a first field for performing channel estimation to a second device
  • the communication unit 1901 is further configured to receive the first feedback frame from the second device, and receive the second feedback frame from the second device;
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device through channel estimation according to the received first field and the second field, and the second field is not the first a field.
  • the second feedback frame includes encrypted third CSI
  • the third CSI is CSI from the third device to the second device.
  • the encrypted third CSI is obtained by the second device using the second field generated by the security parameter of the second field to encrypt the third CSI.
  • the communication unit 1901 may also send a request frame to the second device, and the request frame It is used to request the second device to measure the third channel state information CSI from the third device to the second device, and to feed back the third CSI encrypted to the first device; the communication unit 1901 may also receive A response frame of the second device, the response frame is used to respond to the request frame.
  • the communication unit 1901 may also receive the second frame carrying the second field; the processing unit 1902 performs channel estimation according to the received second field and the second field, and obtains the second CSI; the communication unit 1901 Receive a third feedback frame from the second device, where the third feedback frame includes the second field received by the third device, and a preset long training LTF field or a preset training TRN field, for the The CSI obtained by performing channel estimation on the channel from the second device to the third device; the processing unit 1602 calculates the third feedback frame according to the sent second field and the preset LTF field or the preset TRN field The CSI in is analyzed to obtain the fourth CSI.
  • the communication unit 1901 may also receive the second frame carrying the second field; the processing unit 1902 performs channel estimation according to the received second field and the second field, and obtains the second CSI; the communication unit 1901 Receive a third feedback frame from the second device, where the third feedback frame includes encrypted fourth CSI, where the encrypted fourth CSI is a pair of security parameters of the second device using the second field.
  • the fourth CSI is obtained by performing encryption processing, the fourth CSI is obtained by the second device by parsing the fourth feedback frame fed back by the third device, and the fourth feedback frame includes the third device according to The received second field, and the field generated by a parameter different from the security parameter of the second field, and the CSI information obtained by channel estimation; the processing unit 1902 processes the third field according to the security parameter of the second field
  • the feedback frame is analyzed to obtain the fourth CSI.
  • the communication device 1900 includes: a processing unit 1902 and a communication unit 1901, and the processing unit 1902 is configured to control the communication unit 1901 to perform data/signaling transceiving;
  • a communication unit 1901 configured to receive a first frame carrying a first field for performing channel estimation
  • the communication unit 1901 is further configured to send a first feedback frame to the first device
  • the first feedback frame includes channel state information CSI
  • the CSI is the CSI from the first device to the second device
  • the CSI is obtained by the second device according to the received first field and the second field
  • the second field is not the first field.
  • the first field is a security long training LTF field, or the first field is a security training TRN field.
  • the communication unit 1901 may also receive a request frame from the first device, and the request frame is used to request Perform channel estimation according to a field different from the security LTF field or the security TRN field; the communication unit 1901 may also send a response frame to the first device, and the response frame is used to respond to the request frame.
  • the request frame is further used to request not to exchange the security parameters of the first field, and the second field is a preset LTF field or a preset TRN field;
  • the response frame is also used to respond to agree not to exchange the security parameters of the first field.
  • the request frame further includes a security parameter of the second field, and the security parameter of the second field is used to generate the second field; the response frame is also used to respond to Frames should be requested.
  • the request frame is further used to request the second device not capable of generating the first field to perform channel estimation according to a field different from the security LTF field or the security TRN field;
  • the response frame is also used to respond to the request frame.
  • the communication device 1900 includes: a processing unit 1902 and a communication unit 1901, and the processing unit 1902 is configured to control the communication unit 1901 to perform data/signaling transceiving;
  • a communication unit 1901 configured to receive a first frame carrying a first field for performing channel estimation
  • the communication unit 1901 is further configured to send a first feedback frame to the first device, and send a second feedback frame to the first device;
  • the first feedback frame includes channel state information CSI, the CSI is the CSI from the first device to the second device, and the CSI is performed by the second device according to the received first field and the second field Obtained by channel estimation, the second field is not the first field;
  • the second feedback frame includes encrypted third CSI, the third CSI is the CSI from the third device to the second device.
  • the encrypted third CSI is obtained by the second device using the second field generated by the security parameter of the second field to encrypt the third CSI.
  • the communication unit 1901 may also receive a request frame from the first device, and the request frame is used to request
  • the second device measures third channel state information (CSI) from the third device to the second device, and feeds back the third CSI to the first device in encrypted form; the communication unit 1901 may also send A response frame is sent, the response frame is used to respond to the request frame.
  • CSI channel state information
  • the communication unit 1901 may also send the second frame carrying the second field to the first device and the third device; the communication unit 1901 may also receive the second frame from the third device. Three feedback frames; the communication unit 1901 may also send the third feedback frame to the first device; the third feedback frame includes the second field received by the third device, and a preset long training LTF field or The training TRN field is preset, and the CSI is obtained by performing channel estimation on the channel between the second device and the third device.
  • the communication unit 1901 sends a second frame carrying a second field to the first device and the third device; the communication unit 1901 receives a fourth feedback frame from the third device;
  • the fourth feedback frame includes the CSI information obtained by performing channel estimation based on the field generated by the third device according to the received second field and a parameter different from the security parameter of the second field;
  • the processing unit 1902 according to the The security parameter of the second field is not the same as the field generated by the parameter and the second field, and the fourth feedback frame is analyzed to obtain the fourth CSI;
  • the processing unit 1902 uses the security parameter of the second field to analyze the fourth CSI
  • the four CSIs are encrypted to obtain a third feedback frame; the communication unit 1901 sends the third feedback frame to the first device.
  • FIG. 20 is a schematic structural diagram of the communication device 2000 .
  • the communication device 2000 may be a first device or a second device, or may be a chip, a chip system, or a processor that supports the first device to implement the above method, or may be a chip or a chip that supports the second device to implement the above method. system, or processor, etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the communication device 2000 may include one or more processors 2001 .
  • the processor 2001 may be a general purpose processor or a special purpose processor or the like. For example, it may be a baseband processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or a central processing unit (CPU).
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process communication devices (such as base stations, baseband chips, terminals, terminal chips, distributed units (DU) or centralized units (centralized units). unit, CU) etc.)) to control, execute the software program, and process the data of the software program.
  • DU distributed units
  • centralized units centralized units
  • the communication device 2000 may include one or more memories 2002, on which instructions 2004 may be stored, and the instructions may be executed on the processor 2001, so that the communication device 2000 executes the above method Methods described in the Examples.
  • data may also be stored in the memory 2002 .
  • the processor 2001 and the memory 2002 can be set separately or integrated together.
  • the memory 2002 may include but not limited to hard disk drive (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD) and other non-volatile memory, random access memory (random access memory, RAM), erasable and programmable Read-only memory (erasable programmable ROM, EPROM), read-only memory (read-only memory, ROM) or portable read-only memory (compact disc Read-Only memory, CD-ROM), etc.
  • hard disk drive hard disk drive, HDD
  • solid-state drive solid-state drive
  • SSD solid-state drive
  • RAM random access memory
  • erasable and programmable Read-only memory erasable programmable ROM, EPROM
  • read-only memory read-only memory
  • portable read-only memory compact disc Read-Only memory
  • the communication device 2000 may further include a transceiver 2005 and an antenna 2006 .
  • the transceiver 2005 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to realize a transceiver function.
  • the transceiver 2005 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 2000 is a first device: the transceiver 2005 is used to execute S101 and S104 in the above information feedback method 100 .
  • the transceiver 2005 is used to execute S201 in the above information feedback method 200
  • the communication device 2000 is a second device: the transceiver 2005 is used to execute S101 , S103 , and S104 in the information feedback method 100 .
  • the transceiver 2005 is used to execute S202 and S203 in the information feedback method 200 .
  • the processor 2001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 2001 may store instructions 2003, and the instructions 2003 run on the processor 2001, and may cause the communication device 2000 to execute the methods described in the foregoing method embodiments.
  • the instruction 2003 may be fixed in the processor 2001, in this case, the processor 2001 may be implemented by hardware.
  • the communication device 2000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and the transceiver described in the embodiment of the present application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the embodiment of the present application is based on the same idea as the method embodiments shown in the above-mentioned information feedback method 100 and information feedback method 200, and the technical effects it brings are also the same.
  • the description of the example is omitted.
  • the present application also provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a communication device, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which is used for storing computer software instructions, and when the instructions are executed by a communication device, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program, which, when running on a computer, can realize the functions of any one of the above method embodiments.
  • all or part may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the interactions or functions described in the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state drive (solid state drive, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state drive (solid state drive, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息反馈方法及相关装置。该方法中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧,第一装置接收来自第二装置的第一反馈帧。其中,第一反馈帧包括信道状态信息CSI,该CSI是第一装置到第二装置的CSI,CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。可见,第二装置向第一装置反馈的不是根据接收的第一字段和已知的第一字段进行信道估计获得的CSI,而是根据接收的第一字段和第二字段进行信道估计获得的CSI。那么,即使窃听者窃听了反馈阶段的信息,也无法获得第一装置到第二装置的CSI,从而可保障反馈阶段的信息安全。

Description

一种信息反馈方法及相关装置
本申请要求于2021年12月31日提交中国国家知识产权局、申请号为202111677172.9、申请名称为“一种信息反馈方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息反馈方法及相关装置。
背景技术
无线局域网传感技术是指通过分析被各种障碍物“调制”过的无线信号,如信道状态信息(channel status information,CSI),来推断和感知周围环境。无线传感技术中的传感会话包括发现、协商、测量、反馈、终止几个阶段。其中,CSI信息主要在传感会话的测量和反馈阶段中传递,即测量阶段获取CSI,反馈阶段反馈CSI。若不法分子获取了传感会话中的CSI,便可根据CSI信息分析周围环境,作出如:屋内是否有人等判断。因此,为避免不法分子的监听,应对传感会话的测量和反馈阶段进行保护,以避免隐私泄露。
目前,针对传感会话的反馈阶段,反馈者反馈CSI feedback帧,而该CSI feedback帧是一个不受保护的动作帧,容易被不法分子探知而进行传感结果的判断。因此,对传感会话的反馈阶段进行保护仍为目前亟需研究的一个问题。
发明内容
本申请实施例提供了一种信息反馈方法及相关装置,可保障反馈阶段反馈信息的安全。
第一方面,本申请实施例提供一种信息反馈方法。该方法中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧,第一装置接收来自第二装置的第一反馈帧。其中,第一反馈帧包括信道状态信息CSI,该CSI是第一装置到第二装置的CSI,CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。
可见,第二装置向第一装置反馈的不是根据接收的第一字段和已知的第一字段进行信道估计获得的CSI,而是根据接收的第一字段和第二字段进行信道估计获得的CSI。那么,即使窃听者窃听了反馈阶段的信息,也无法获得第一装置到第二装置的CSI,从而可保障反馈阶段的信息安全。
一种可选的实施方式中,第一装置与第二装置在低频频段进行测量感知时,第一字段是安全长训练LTF字段。
另一种可选的实施方式中,第一装置与第二装置在高频频段进行测量感知时,第一字段是安全训练TRN字段。
一种可选的实施方式中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,第一装置还可向第二装置发送请求帧,请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。从而第一装置还可接收来自第二装置的响应帧,响应帧用于响应该请求帧。
可见,第一装置与第二装置进行测量感知之前,还可通过请求帧和响应帧,协商第二装置根据安全LTF或安全TRN字段不相同的字段进行信道估计,以有利于第二装置反馈根据与安全LTF或安全TRN字段不相同的字段进行信道估计的CSI,从而保障反馈阶段的信息安全。
一种可选的实施方式中,请求帧还用于请求不交换第一字段的安全参数,响应帧还用于响应该请求帧。此时第二字段是预设LTF字段或预设TRN字段。
可见,第一装置和第二装置可协商不交换第一字段的安全参数,从而使得第二装置反馈的CSI是根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI,进而可保障反馈阶段的信息安全。另外,第一装置和第二装置不交换第一字段的安全参数的方式还可节省资源,降低复杂度。
另一种可选的实施方式中,当第二装置是具有生成第一字段能力的站点STA,或是接入点AP时,请求帧还包括第二字段的安全参数,第二字段的安全参数用于生成第二字段,响应帧还用于响应该请求帧。
可见,当第二装置是具有生成安全LTF或安全TRN字段能力的STA,或AP时,第一装置可通过请求帧向第二装置发送第二字段的安全参数,且第二装置可通过响应帧响应该请求帧。从而有利于第二装置反馈根据接收的第一字段,以及第二字段的安全参数生成的第二字段进行信道估计获得的CSI,也可保障反馈阶段的信息安全。
又一种可选的实施方式中,请求帧还用于请求不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计,响应帧还用于响应该请求帧。
可见,第一装置和第二装置还可通过请求帧和响应帧,协商允许不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。那么,不具有生成第一字段能力的第二装置也可向第一装置反馈根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI,即不具有生成第一字段能力的第二装置也可参与到第一装置的测量和感知过程,从而提升系统的兼容能力,也能够为测量感知提供更多的资源。
一种可选的实施方式中,上述第二字段的安全参数是第一装置历史发送的第一字段的安全参数中的一个,从而第二装置向第一装置反馈的不是根据接收的第一字段,以及第一字段当前的安全参数生成的字段进行信道估计获得的CSI,而是根据接收的第一字段,以及第一字段的历史安全参数生成的第二字段进行信道估计获得的CSI,从而可保障反馈阶段反馈信息的安全。
可选的,上述第二字段的安全参数是第一装置未向第二装置发送过的参数,且与第一字段的安全参数不相同。那么第二装置反馈的CSI也不是根据接收的第一字段,以及第一字段的安全参数生成的第一字段进行信道估计获得的CSI,从而也可保障反馈阶段的安全性。
一种可选的实施方式中,第一装置向第二装置发送了第二字段的安全参数时,第一装置还可接收来自第二装置的携带第二字段的第二帧,并根据接收的第二字段和第二字段的安全参数所生成的第二字段进行信道估计,获得第二CSI。也就是说,第一装置还可获得第二装置到第一装置的CSI,从而第一装置还可根据第二装置到第一装置的CSI进行感知。
一种可选的实施方式中,第一装置还可根据第二字段和第一字段,对CSI进行解析,获得第一CSI。也就是说,第一装置还可对第二装置反馈的CSI进行解析,获得第一装置到第二装置的CSI。从而第一装置根据第一装置到第二装置的CSI进行感知。
第二方面,本申请还提供了一种信息反馈方法。该方法中,第一装置向第二装置发送携 带用于进行信道估计的第一字段的第一帧。第一装置接收来自第二装置的第一反馈帧,以及接收来自第二装置的第二反馈帧。其中,第一反馈帧包括信道状态信息CSI,CSI是第一装置到第二装置的CSI,CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。第二反馈帧包含加密的第三CSI,第三CSI是第三装置到第二装置的CSI。
可见,本申请实施例中,第二装置向第一装置反馈了第一装置到第二装置的CSI,以及第三装置到第二装置的CSI,从而有利于第一装置根据多个CSI进行更为精准的感知。另外,第二装置反馈的第一反馈帧是第二装置根据接收的第一字段和第二字段进行信道估计获得的CSI,从而可保障反馈阶段信息的安全。第二装置反馈第三装置到第二装置的CSI时,反馈的是加密后的CSI,从而窃听者也无法窃听到第三装置到第二装置的CSI,也可保障反馈阶段信息的安全。
一种可选的实施方式中,加密的第三CSI是第二装置采用第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。第二字段的安全参数是第一装置发送给第二装置的,从而第一装置可根据第二字段的安全参数所生成的第二字段对第二反馈帧进行解析,获得第三装置到第二装置的CSI。
一种可选的实施方式中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,第一装置还可向第二装置发送请求帧,请求帧用于请求第二装置测量第三装置到第二装置的第三信道状态信息CSI,并将第三CSI加密反馈给第一装置。从而,第一装置还可接收来自第二装置的响应帧,响应帧用于响应该请求帧。
可见,第一装置与第二装置进行测量感知之前,还可通过请求帧和响应帧,协商第二装置测量第三装置到第二装置的第三信道状态信息CSI,并将第三CSI加密反馈给第一装置,以有利于第一装置获得第三装置到第三装置的CSI。
一种可选的实施方式中,第一装置还可接收携带第二字段的第二帧。第一装置根据第二字段进行信道估计,获得第二CSI。第一装置接收来自第二装置的第三反馈帧,第三反馈帧包括第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对第二装置到第三装置之间的信道进行信道估计获得的CSI。第一装置根据第二字段,以及预设LTF字段或预设TRN字段,对第三反馈帧中的CSI进行解析,获得第四CSI。
可见,第一装置还可根据接收的第二字段进行信道估计,获得第二装置到第一装置的CSI。另外,第一装置还可接收第二装置反馈的第三装置根据接收的第二字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI。从而第一装置还获得了第二装置到第一装置的CSI,以及第二装置到第三装置的CSI,有利于第一装置进行更为精准的感知。
另一种可选的实施方式中,第一装置还可接收携带第二字段的第二帧。第一装置根据接收的第二字段和第二字段进行信道估计,获得第二CSI。第一装置接收来自第二装置的第三反馈帧,第三反馈帧包括加密的第四CSI,加密的第四CSI是第二装置采用第二字段的安全参数对第四CSI进行加密处理获得的,第四CSI是第二装置对第三装置反馈的第四反馈帧进行解析获得的,第四反馈帧包括第三装置根据接收的第二字段,以及与第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息。第一装置根据第二字段的安全参数,对第三反馈帧进行解析,获得第四CSI。
可见,第一装置还可根据接收的第二字段,获得第一装置到第二装置的CSI。第一装置还可接收加密的第二装置到第三装置的CSI。从而有利于第一装置根据多个信道的CSI,实现更为精准的感知。
第三方面,本申请还提供了一种信息反馈方法。该方面的信息反馈方法与第一方面所述的信息反馈方法相对应,该方面的信息反馈方法是从第二装置侧进行阐述的。该方法中,第二装置接收携带用于进行信道估计的第一字段的第一帧。第二装置向第一装置发送第一反馈帧。其中,第一反馈帧包括信道状态信息CSI,该CSI是第一装置到第二装置的CSI,该CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。
可见,第二装置接收用于进行信道估计的第一字段后,向第一装置反馈的CSI不是根据接收的第一字段和已知的第一字段进行信道估计获得的CSI,而是根据接收的第一字段,以及与第一字段不相同的第二字段进行信道估计获得的CSI,即使该CSI被窃听者窃听,窃听者也无法获得第一装置到第二装置的CSI。进而该反馈方式可保障反馈阶段的信息安全。
一种可选的实施方式中,第一装置与第二装置在低频频段进行测量感知时,第一字段是安全长训练LTF字段。
另一种可选的实施方式中,第一装置与第二装置在高频频段进行测量感知时,第一字段是安全训练TRN字段。
一种可选的实施方式中,第二装置接收携带用于进行信道估计的第一字段的第一帧之前,第二装置还可接收来自第一装置的请求帧,请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。从而第二装置还可向第一装置发送响应帧,响应帧用于响应该请求帧。
可见,第一装置与第二装置进行测量感知之前,还可通过请求帧和响应帧,协商第二装置根据安全LTF或安全TRN字段不相同的字段进行信道估计,从而第二装置反馈根据接收的第一字段,以及与安全LTF或安全TRN字段不相同的字段进行信道估计的CSI,以保障反馈阶段的信息安全。
一种可选的实施方式中,请求帧还用于请求不交换第一字段的安全参数,响应帧还用于响应该请求帧。
可见,第一装置和第二装置可协商不交换第一字段的安全参数,从而第二装置反馈的CSI不是根据接收的第一字段和已知的第一字段进行信道估计获得的CSI,进而保障反馈阶段的信息安全。另外,第一装置和第二装置不交换第一字段的安全参数的方式还可节省资源,降低复杂度。
另一种可选的实施方式中,当第二装置是具有生成第一字段能力的站点STA,或是接入点AP时,请求帧还包括第二字段的安全参数,第二字段的安全参数用于生成第二字段,响应帧也用于响应该请求帧。
可见,当第二装置是具有生成安全LTF或安全TRN字段能力的STA,或AP时,第一装置可通过请求帧向第二装置发送第二字段的安全参数,且第二装置通过响应帧确认根据该第二字段的安全参数生成的第二字段进行估计。从而使得第二装置反馈根据接收的第一字段,以及第二字段的安全参数生成的第二字段进行信道估计获得的CSI,也可保障反馈阶段的信息安全。
又一种可选的实施方式中,请求帧还用于请求不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计,响应帧还用于响应该请求帧。
可见,第一装置和第二装置还可通过请求帧和响应帧,协商允许不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。那么,不具有生成第一字段能力的第二装置也可向第一装置反馈根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI,即不具有生成第一字段能力的第二装置也可 参与到第一装置的测量和感知过程,从而提升系统的兼容能力,也能够为测量感知提供更多的资源。
一种可选的实施方式中,上述第二字段的安全参数是第一装置历史发送的第一字段的安全参数中的一个,从而第二装置向第一装置反馈的不是根据接收的第一字段,以及第一字段当前的安全参数生成的字段进行信道估计获得的CSI,而是根据接收的第一字段,以及第二字段的历史安全参数生成的第二字段进行估计获得的CSI,可保障反馈阶段的安全性。
可选的,上述第二字段的安全参数是第一装置未向第二装置发送的参数,且与第一字段的安全参数不相同。那么第二装置反馈的CSI也不是根据接收的第一字段,以及第一字段的当前安全参数生成的第一字段进行信道估计获得的CSI,从而也可保障反馈阶段的安全性。
一种可选的实施方式中,第一装置向第二装置发送了第二字段的安全参数时,第二装置还可向第一装置发送携带第二字段的第二帧,以使得第一装置根据接收的第二字段进行信道估计,获得第二装置到第一装置的CSI,有利于第一装置实现更为精准的感知。
第四方面,本申请还提供了一种信息反馈方法。该方面的信息反馈方法与第二方面所述的信息反馈方法相对应,该方面的信息反馈方法是从第二装置侧进行阐述的。该方法中,第二装置接收携带用于进行信道估计的第一字段的第一帧。第二装置向第一装置发送第一反馈帧,以及向第一装置发送第二反馈帧。第一反馈帧包括信道状态信息CSI,该CSI是第一装置到第二装置的CSI,该CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。第二反馈帧包含加密的第三CSI,第三CSI是第三装置到第二装置的CSI。
可见,第二装置接收到来自第一装置的用于进行信道估计的第一字段后,向第一装置反馈了根据接收的第一字段和第二字段进行信道估计的CSI,以及反馈了对第三装置到第二装置的CSI进行加密后的CSI。从而第一装置可获得第一装置到第二装置的CSI,以及第三装置到第二装置的CSI,有利于第一装置实现较为精准的感知。另外,第一装置反馈的第一装置到第二装置的CSI是根据接收的第一字段和第二字段进行信道估计获得的CSI,可保障反馈信息的安全;第一装置反馈的第三装置到第二装置的CSI是加密后的CSI,因此也可保障反馈信息的安全。
一种可选的实施方式中,第一装置向第二装置发送第二字段的安全参数,从而加密的第三CSI是第二装置采用第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的,进而有利于第一装置根据第二字段的安全参数生成的序列对加密的第三CSI进行解析,获得第三装置到第一装置的CSI,即第三CSI。
一种可选的实施方式中,第二装置接收携带用于进行信道估计的第一字段的第一帧之前,第二装置还可接收来自第一装置的请求帧,请求帧用于请求第二装置测量第三装置到第二装置的第三信道状态信息CSI,并将第三CSI加密反馈给第一装置。从而,第二装置向第一装置发送响应帧,响应帧用于响应该请求帧。
可见,第一装置与第二装置进行测量感知之前,还可通过请求帧与响应帧,协商第二装置测量第三装置到第二装置的第三信道状态信息CSI,并将第三CSI加密反馈给第一装置,以有利于第一装置获得第三装置到第一装置的CSI。
一种可选的实施方式中,第二装置还可向第一装置和第三装置发送携带第二字段的第二帧。第二装置接收来自第三装置的第三反馈帧。第二装置向第一装置发送第三反馈帧。第三反馈帧包括第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对第二装置到第三装置之间的信道进行信道估计获得的CSI。
可见,第二装置可向第一装置发送携带第二字段的第二帧,以有利于第一装置根据接收的第二字段进行信道估计,获得第二装置到第一装置的CSI。第二装置还可向第三装置发送携带第二字段的第二帧,第三装置向第二装置反馈根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段进行信道估计获得的CSI,从而第二装置将该CSI反馈给第一装置,以使得第一装置根据第二字段,以及预设长训练LTF字段或预设训练TRN字段对该CSI进行解析,获得第二装置到第三装置的CSI。
另一种可选的实施方式中,第二装置还可向第一装置和第三装置发送携带第二字段的第二帧。第二装置接收来自第三装置的第四反馈帧,第四反馈帧包括第三装置根据接收的第二字段,以及与第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息。第二装置根据与第二字段的安全参数不相同的参数生成的字段、发送的第二字段,对第四反馈帧进行解析获得第四CSI。第二装置采用第二字段的安全参数对第四CSI进行加密处理,获得第三反馈帧。第二装置向第一装置发送第三反馈帧。
可见,第二装置还可向第一装置发送携带第二字段的第二帧,以有利于第一装置根据第二字段进行信道估计,获得第二装置到第一装置的CSI。第二装置向第三装置发送携带第二字段的第二帧,从而第二装置可获得第二装置到第三装置的CSI,并对其进行加密后,反馈给第一装置,使得第一装置获得第二装置到第三装置的CSI。进而有利于第一装置根据多个CSI进行更为精准的感知。
第五方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的第一装置的部分或全部功能,或者具有实现上述第二方面所述的第一装置的部分或全部功能,或者具有实现上述第三方面所述的第二装置的部分或全部功能,或者具有实现上述第四方面所述的第二装置的部分或全部功能。比如,该通信装置的功能可具备本申请中第一方面所述的第一装置的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和收发单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发;
通信单元,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
通信单元,还用于接收来自所述第二装置的第一反馈帧;
其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发;
通信单元,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
通信单元,还用于接收来自所述第二装置的第一反馈帧,以及接收来自所述第二装置的 第二反馈帧;所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
又一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发;
通信单元,用于接收携带用于进行信道估计的第一字段的第一帧;
通信单元,还用于向第一装置发送第一反馈帧;
其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
另外,该方面中,通信装置其他可选的实施方式可参见上述第三方面的相关内容,此处不再详述。
又一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发;
通信单元,用于接收携带用于进行信道估计的第一字段的第一帧;
通信单元,还用于向第一装置发送第一反馈帧,以及向所述第一装置发送第二反馈帧;
所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
另外,该方面中,通信装置其他可选的实施方式可参见上述第四方面的相关内容,此处不再详述。
作为示例,收发单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。
一种实施方式中,所述通信装置包括:处理器和收发器,处理器用于控制收发器进行数据/信令收发;
收发器,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
收发器,还用于接收来自所述第二装置的第一反馈帧;
其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
另外,该方面中,上行通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理器和收发器,处理器用于控制收发器进行数据/信令收发;
收发器,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
收发器,还用于接收来自所述第二装置的第一反馈帧,以及接收来自所述第二装置的第二反馈帧;
所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
又一种实施方式中,所述通信装置包括:处理器和收发器,处理器用于控制收发器进行数据/信令收发;
收发器,用于接收携带用于进行信道估计的第一字段的第一帧;
收发器,还用于向第一装置发送第一反馈帧;
其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
另外,该方面中,通信装置其他可选的实施方式可参见上述第三方面的相关内容,此处不再详述。
又一种实施方式中,所述通信装置包括:处理器和收发器,处理器用于控制收发器进行数据/信令收发;
收发器,用于接收携带用于进行信道估计的第一字段的第一帧;
收发器,还用于向第一装置发送第一反馈帧,以及向所述第一装置发送第二反馈帧;
所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
另外,该方面中,通信装置其他可选的实施方式可参见上述第四方面的相关内容,此处不再详述。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述收发单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on a chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第六方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进 行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送携带用于进行信道估计的第一字段的第一帧可以理解为处理器输出携带用于进行信道估计的第一字段的第一帧。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个第一装置以及至少一个第二装置。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与第一装置、第二装置进行交互的其他设备。
第八方面,本申请提供了一种计算机可读存储介质,用于储存指令,当所述指令被通信装置执行时,实现上述第一方面、第二方面、第三方面、第四方面任一项所述的方法。
第九方面,本申请还提供了一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行上述第一方面、第二方面、第三方面、第四方面任一项所述的方法。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持第一装置实现第一方面所涉及的功能,或者用于调用所述程序或指令以实现或者支持第一装置实现第二方面所涉及的功能,或者用于调用所述程序或指令以实现或者支持第二装置实现第三方面所涉及的功能,或者用于调用所述程序或指令以实现或者支持第二装置实现第四方面所涉及的功能。例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种无线传感场景示意图;
图3是本申请实施例提供的一种携带secure LTF字段的NDP帧的帧结构示意图;
图4(a)是本申请实施例提供的一种TB测距模式的流程示意图;
图4(b)是本申请实施例提供的另一种TB测距模式的流程示意图;
图5(a)是本申请实施例提供的一种NTB测距模式流程示意图;
图5(b)是本申请实施例提供的另一种NTB测距模式流程示意图;
图6是本申请实施例提供的一种信息反馈方法的交互示意图;
图7(a)是本申请实施例提供的一种请求帧的结构示意图;
图7(b)是本申请实施例提供的一种响应帧的结构示意图;
图8(a)是本申请实施例提供的另一种请求帧的结构示意图;
图8(b)是本申请实施例提供的另一种响应帧的结构示意图;
图9(a)是本申请实施例提供的一种AP与STA的交互流程示意图;
图9(b)是本申请实施例提供的另一种AP与STA的交互流程示意图;
图9(c)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图9(d)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图9(e)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图9(f)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图9(g)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图9(h)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图10是本申请实施例提供的另一种信息反馈方法的交互示意图;
图11(a)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图11(b)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图11(c)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图11(d)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图11(e)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图12(a)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图12(b)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图13(a)是本申请实施例提供的一种CSI feedback帧的结构示意图;
图13(b)是本申请实施例提供的另一种CSI feedback帧的结构示意图;
图13(c)是本申请实施例提供的一种secure LTF feedback帧的结构示意图;
图14(a)是本申请实施例提供的一种trigger帧的结构示意图;
图14(b)是本申请实施例提供的一种NDPA帧的结构示意图;
图15是本申请实施例提供的一种feedback trigger帧的结构示意图;
图16是本申请实施例提供的又一种AP与STA的交互流程示意图;
图17(a)是本申请实施例提供的又一种CSI feedback帧的结构示意图;
图17(b)是本申请实施例提供的又一种feedback帧的结构示意图;
图17(c)是本申请实施例提供的又一种feedback帧的结构示意图;
图17(d)是本申请实施例提供的又一种feedback帧的结构示意图;
图18(a)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图18(b)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图18(c)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图18(d)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图18(e)是本申请实施例提供的又一种AP与STA的交互流程示意图;
图19是本申请实施例提供的一种通信装置的结构示意图;
图20是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整的描述。
首先,为了更好的理解本申请实施例公开的信息反馈方法,对本申请实施例适用的通信 系统进行描述。
一.通信系统。
请参见图1,图1为本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于一个接入点(access point,AP)、两个站点(station,STA)。图1所示的设备数量和形态用于举例,并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的AP,三个或三个以上的STA。图1所示的通信系统以AP101,STA1021,STA1022,且该AP101能够为STA1021和STA1022提供无线服务为例进行阐述。其中,图1中的AP101以基站为例,STA1021、STA1022以手机为例。
请参见图2,图2为本申请实施例提供的一种无线传感场景示意图。如图2所示,该通信场景中包括第一装置、第二装置,以及除第一装置、第二装置之外的窃听者。第一装置向第二装置发送携带用于进行信道估计的安全长训练字段(secure long training field,secure LTF)的空数据包(null data packet,NDP)帧,或者发送携带用于进行信道估计的安全训练序列(secure training field,secure TRN)的测量帧。第二装置接收到该NDP帧/测量帧后,进行信道估计,且需将信道估计获得的信道状态信息(channel state information,CSI)反馈给第一装置。第二装置向第一装置反馈CSI的过程中,该CSI可能会被窃听者窃听,因此需对反馈阶段的信息进行保护。
本申请实施例中,上述通信系统可以为无线局域网(wireless local area network,WLAN)或蜂窝网,或其他支持多条链路并行进行传输的无线通信系统。本申请实施例主要以部署IEEE 802.11的网络为例进行说明,而本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,蓝牙(bluetooth),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请实施例中,STA具有无线收发功能,可以支持802.11系列协议,与AP或其他STA进行通信。例如,STA可以是允许用户与AP通信进而与WLAN通信的任何用户通信设备,如包括但不限于,平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等。可选的,STA还可以为上述这些终端中的芯片和处理系统。
本申请实施例中,AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体,或,AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
为了便于理解本申请公开的实施例,作以下两点说明。
(1)本申请公开的实施例中场景以无线通信网络中Wi-Fi网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
二.本申请实施例涉及的相关概念。
1.无线局域网传感(wireless local area network sensing)技术。
无线局域网传感技术是指通过分析被各种障碍物“调制”过的无线信号(如CSI),来推断和感知周围环境。无线传感技术中的传感会话包括发现、协商、测量、反馈、终止几个阶段。其中,CSI信息主要在传感会话的测量和反馈阶段中传递,即测量阶段获取CSI,反馈阶段反馈CSI。
2.安全长训练(secure LTF)字段、安全训练(secure TRN)字段。
2.1 secure LTF字段。
802.11ax协议中,空数据包NDP帧中的高性能安全长训练字段(high efficient secure long training field,HE-LTF字段)为接收端提供了估计星座映射器输出集合和接收端之间的多输入多输出(multiple-in multiple-out,MIMO)信道的手段。802.11ax协议针对不同带宽下的HE-LTF规定了序列。然而,NDP帧是一个只有物理头的帧,因此没有修改加密的NDP帧很容易被窃听者(eavesdropper)窃听,获得CSI。从而,为保障无线局域网传感技术中的测量流程不被eavesdropper获取有效信息,802.11az协议中设计了安全长训练(secure LTF)字段来保护测量过程。802.11bf协议中也可采用secure LTF字段对NDP帧进行加密,但本申请实施例不限定802.11bf协议中对NDP帧进行加密的方式。
携带secure LTF字段的NDP帧的帧结构如图3所示,携带secure LTF字段的NDP帧包括传统短训练字段、传统长训练字段、…、安全长训练字段(secure LTF)等字段。secure LTF字段是指生成一组随机的LET序列。只有知道原始随机LTF序列的STA才能对携带secure LTF字段的NDP帧正确解析获得CSI,其余STA只能获得错误的CSI。secure LTF的生成过程如下:
2.11初始阶段。
接收端和发送端在关联过程的接入认证阶段,双方通过四路握手进行秘钥协商,获得成对瞬态密钥安全关联(pairwise transient key security association,PTKSA)信息。PTKSA信息包括成对瞬态秘钥(pairwise transient key,PTK)。
2.12协商阶段。
802.11az协议中,基于触发(trigger based,TB)测距模式和非基于触发(non trigger based,Non TB)测距模式共有相同的协商流程。发送端在初始精细测量帧(initial Fine timing measurement frame,IFTMR)中将secure LTF support子字段置1来请求启用安全测距模式,接收者同样在IFTM帧中将secure LTF support子字段置1来进行响应。发送端和接收端使用从PTK中截取的KDK通过哈希(Hash)算法生成相同的安全长训练字段秘钥种子(secure-LTF-key-seed)。接收端在IFTM帧中携带secure LTF counter、secure LTF序列验证码(sequence authentication code,SAC)等参数进行指示。
2.13加密阶段。
发送端和接收端利用secure-LTF-key-seed和secure LTF counter通过算法生成ista-ltf-key和rsta-ltf-key。再使用secure-LTF-counter和ista/rsta-ltf-key生成各自的随机序列,即获得安全LTF字段。
2.2 secure TRN字段。
发送端与接收端在高频频段进行测量和感知时,发送端向接收端发送用于进行信道估计的secure TRN字段,从而接收端可根据secure TRN字段进行信道估计,获得发送端到接收端的CSI。
3.基于触发(trigger based,TB)测距模式,非基于触发(non trigger based,NTB)测距模式。
TB测距模式:目前的TB测距模式流程示意图如图4(a)、图4(b)所示。AP和STA经过四握手获得PTKSA后,具有生成secure LTF字段能力且有安全测距需求的AP在IFTMR帧中将secure LTF required字段置1来请求启用secure ranging模式。STA在精细测量帧(fine timing measurement frame,FTMR)中将安全LTF支持字段(secure LTF support字段)置1来响应,并在协商帧中提供本轮测量需要的计数器(counter 1)和SAC 1参数。AP通过向STA发送测距轮询帧(TF sensing poll),以向STA发出轮询。STA通过向AP返回允许自我发送(CTS-to-self),以确认是否能够参与会话。AP确认STA参与会话时,AP向可向STA发送测距探测帧(TF ranging sounding),以触发STA发送携带安全LTF字段的NDP帧。从而STA向AP发送NDP帧。STA和AP采用相同的counter来生成相同的secure LTF字段。AP向STA发送空数据包声明帧(null data packet announcement,NDPA),以向STA声明将发送携带secure LTF字段的NDP帧,AP向STA发送携带secure LTF字段的NDP帧。另外,AP在位置测量反馈(location measurement report,LMR)帧中指示下一轮测量过程中需采用的counter 2和SAC 2参数。
NTB测距模式:目前的NTB测距模式流程示意图如图5(a)、图5(b)所示。
STA和AP经过同样的四握手流程获得PTKSA后,在FTM会话的协商阶段,STA和AP确认启用安全测距(secure Ranging)模式,AP提供本轮测量需要的counter 1和SAC 1值。STA通过发送NDP帧,竞争接入。STA在NDPA中指示本次生成secure LTF的counter值对应的SAC,AP和STA生成相同的secure LTF。AP在LMR帧中指示下一轮测量过程中使用的counter 2和SAC 2。
4.显式反馈,隐式反馈。
隐式反馈:当接收端是需要获得测量信息的一端时,发送端向接收端发送用于测量且携带用于进行信道估计的secure LTF字段或secure TRN字段,接收端根据secure LTF字段/secure TRN字段进行信道估计,即可获得接收端到发送端的CSI。因此接收端无需反馈CSI,该方式为隐式反馈。
显式反馈:当发送端是需要获得测量信息的一端时,发送端向接收端发送测量且携带用于进行信道估计的secure LTF字段或secure TRN字段,接收端进行信道估计获得发送端到接收端的CSI后,需将该CSI反馈给发送端,以使得发送端获得该CSI。该反馈方式为显式反馈。
三.本申请所要解决的技术问题。
如上述图2所示的通信场景中,第二装置进行信道估计后,将获得的CSI反馈给第一装置,以使得第一装置获得该CSI。目前,第二装置反馈的CSI是一个不受保护的帧,那么第二装置在反馈过程中,窃听者能够窃听到该CSI,从而进行感知结果的判断,会造成隐私的泄露。因此,需对传感会话的反馈阶段进行安全保护。
本申请实施例可应用于无线传感技术的显式反馈的场景中。
本申请实施例中,第一装置是STA时,第二装置是AP。第一装置是AP时,第二装置是STA。
四.信息反馈方法100。
本申请实施例提供一种信息反馈方法100。图6是该信息反馈方法100的交互示意图。 该信息反馈方法100从第一装置与第二装置之间交互的角度进行阐述。该信息反馈方法100包括但不限于以下步骤:
S101.第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧。
S102.第二装置接收携带用于进行信道估计的第一字段的第一帧。
一种可选的实施方式中,第一装置与第二装置在低频频段进行测量感知时,第一字段是安全长训练LTF字段。从而第一装置向第二装置发送携带secure LTF字段的NDP帧。
另一种可选的实施方式中,第一装置与第二装置在高频频段进行测量感知时,第一字段是安全训练TRN字段。从而第一装置向第二装置发送携带secure TRN字段的第一帧。
一种可选的实施方式中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,第一装置还可向第二装置发送请求帧,请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。从而第二装置接收该请求帧,并向第一装置发送响应帧。该响应帧用于响应该请求帧。
示例性地,该响应帧用于响应是否同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。第二装置向第一装置发送的响应帧用于响应同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计时,第一装置可向第二装置发送携带用于进行信道估计的第一字段的第一帧。
示例性地,该响应帧用于在第二装置在接收到来自第一装置的第一字段时,采用接收的第一字段,以及与第一字段不相同的第二字段进行信道估计,并向第一装置发送信道估计获得的CSI。
其中,第一字段是安全LTF字段时,第二字段可以是HE LTF字段、增强高吞吐量(enhanced high throughput,EHT)LTF字段中的一种。可选的,第一字段是安全LTF字段时,第二字段可以是与该安全LTF字段不相同的安全LTF字段。例如,第一字段是安全LTF字段#1,第二字段是安全LTF字段#2,该安全LTF字段#2是第二装置基于第一装置向第二装置发送的安全参数生成的。
第一字段是安全TRN字段时,第二字段可以是定向多千兆比特/定向多吉比特(directional multi-gigabit,DMG)TRN字段,也可以是增强定向多千兆比特/增强定向多吉比特(enhanced directional multi-gigabit,EDMG)TRN字段。可选的,第一字段是安全TRN字段时,第二字段是与该安全TRN字段不相同的安全TRN字段。例如,第一字段是安全TRN字段#3,第二字段是安全TRN字段#4,该安全TRN字段#4是第二装置根据第一装置向第二装置发送的安全参数生成的。
可选的,第一字段还可以是随机产生的字段,该随机产生的字段的序列长度符合HE LTF的特性,或者符合EHT LTF的特性,或者符合DMG TRN的特性,或者符合EDMG TRN特性,第二字段可以是HE-LTF,EHT-LTF,DMG-TRN,EDMG-TRN中的一种类,也可以是任意与第一字段不相同的字段。
可选的,考虑到基于传统设备(legacy device)实现的加密测量反馈,第一字段还可以是随机产生的字段,该随机产生的字段的序列长度符合L-LTF的特性,第二字段可以是L-LTF,也可以是与第一字段不相同的字段。
也就是说,第一装置与第二装置进行测量感知之前,第一装置通过请求帧请求第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计,第二装置通过响应帧响应是否同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。当第二装置通过响应帧响应同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计时, 第二装置后续可根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计,从而第二装置可向第一装置反馈根据接收的第一字段,以及与安全LTF字段或安全TRN字段不相同的字段进行信道估计获得的CSI,可保障第一装置到第二装置的CSI的安全性。
另一种可选的实施方式中,请求帧还用于请求发送/接收携带安全LTF字段,或者用于请求发送/接收携带安全TRN字段的测量帧。相应地,响应帧还用于响应是否同意发送/接收携带安全LTF字段的NDP帧,或者还用于相应是否同意发送/接收携带安全TRN字段的测量帧。
也就是说,第一装置和第二装置还可通过请求帧和响应帧协商是否可进行安全测量。若第一装置和第二装置通过请求帧和响应帧协商可进行安全测量,则第一装置可向第二装置发送携带安全LTF字段的NDP帧,第二装置可根据接收的安全LTF字段,以及与安全LTF字段不相同的字段进行信道估计;或者第一装置可向第二装置发送携带安全TRN字段的测量帧,第二装置可根据接收的安全TRN字段,以及与安全TRN字段不相同的字段进行信道估计。
另一种可选的实施方式中,请求帧还用于请求不交换第一字段的安全参数,响应帧用于响应该请求帧,第一字段的安全参数是用于生成第一字段的参数。示例性地,响应帧用于响应同意不交换第一字段的安全参数;示例性的,响应帧用于第二装置在接收到携带第一字段的第一帧后,根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计,并向第一装置反馈信道估计获得的CSI。即第一装置与第二装置还可通过请求帧和响应帧协商不交换第一字段的安全参数。那么第一装置发送携带第一字段的第一帧后,第二装置默认根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计,并反馈信道估计获得的CSI。第二装置根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得CSI,也可保证第一装置到第二装置的CSI的安全性。该预设LTF字段是目前协议中非安全的LTF字段,预设TRN字段是目前协议中非安全的TRN字段。非安全的LTF字段可以是HE LTF字段,也可以是EHT LTF字段。非安全的TRN字段可以是DMG TRN字段,也可以是EDMG TRN字段。
其中,安全参数包括计数器(counter)和SAC等参数。第一字段的安全参数是指生成第一字段的counter等参数。
当802.bf协议中采用其他加密方式对NDP帧进行加密时,该安全参数包括该加密方式对应的参数,可能包括的参数不是counter和SAC。
该方式中,不论第二装置是AP,还是具有生成第一字段能力的STA,还是不具有生成第一字段能力的STA,第一装置均可通过请求帧请求不交换第一字段的安全参数,以使得第二装置在接收到携带第一字段的第一帧后,根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计。第一装置和第二装置不交换第一字段的安全参数的方式还可节省资源,降低复杂度。
又一种可选的实施方式,第二装置是不具有生成第一字段能力的STA,那么第一装置默认与第二装置不需交换第一字段的参数。从而第一装置通过请求帧请求不交换第一字段的安全参数,或者第一装置不使用请求帧中请求是否交换第一字段的安全参数的功能。
又一种可选的实施方式中,当第一装置是AP,第二装置是具有生成第一字段能力的STA,或者第一装置是具有生成第一字段能力的STA,第二装置是AP时,请求帧还包括第二字段的安全参数,响应帧还用于响应该请求帧。示例性地,该响应帧用于响应同意根据第二字段进行信道估计。
示例性地,响应帧用于第二装置在接收到携带第一字段的第一帧后,根据接收的第一字 段,以及第二字段的安全参数所生成的第二字段进行信道估计,并向第一装置反馈该信道估计获得的CSI。第二字段的安全参数用于生成第二字段。该第二字段是不同于第一字段的安全LTF字段,或者不同于第一字段的安全TRN字段。
也就是说,响应帧用于同意的是作为一个不能生成和识别第一字段的第二装置,也用于不具有生成第一字段能力的第二装置同意接收该第二装置不能准确识别解析的第一字段,并按照第一装置的指示获取错误的CSI,即根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得CSI。不具有生成第一字段能力的第二装置用不同于第一字段的字段进行信道估计是由其它协议和请求帧的行为联合控制的。
一种可选的实施方式中,上述第二字段的安全参数是第一装置历史发送的第一字段的安全参数中的一个。例如,第一装置发送携带第一字段的第一帧之前,第一装置向第二装置发送了5次第一字段的安全参数,那么第二字段的安全参数可是这5次发送的安全参数中的任意一次。比如,第二字段的安全参数是第一装置第3次向第二装置发送的第一字段的安全参数。也就是说,第二字段的安全参数不是第一装置与第二装置进行当前测量感知时,第一字段的安全参数,从而第二装置根据接收的第一字段,以及第二字段的安全参数所生成的第二字段进行信道估计获得的CSI是不是第一装置到第二装置的CSI。
可选的,第二字段的安全参数也可以是第一装置历史未发送的第一字段的安全参数,且不是第一装置与第二装置进行当前测量感知时第一字段的安全参数,从而第二装置根据接收的第一字段,以及第二字段的安全参数所生成的第二字段进行信道估计获得的CSI也是错误的CSI。本申请实施例不限定第二字段的安全参数的实施方式。
可见,当第二装置具有生成第一字段的能力时,第一装置还可将第二字段的安全参数发送给第二装置,第二装置通过响应帧响应是否同意根据第二字段进行信道估计。当第二装置通过响应帧响应同意根据第二字段进行信道估计时,第二装置在接收到携带第一字段的第一帧后,根据第二字段的安全参数生成第二字段,并根据接收的第一字段和第二字段进行信道估计,再向第一装置反馈根据接收的第一字段和第二字段进行信道估计获得的CSI。第二装置根据接收的第一字段和第二字段进行信道估计获得的CSI,不是第一装置到第二装置的CSI,因此第二装置反馈该CSI的方式可保障反馈阶段的信息安全。
又一种可选的实施方式中,请求帧还用于请求不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。响应帧还用于响应该请求帧。示例性地,响应帧用于响应是否同意不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。当响应帧响应同意不具有生成第一字段能力的第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计时,不具有生成第一字段能力的第二装置可参与到第一装置的测量感知中。示例性地,响应帧用于不具有生成第一字段能力的第二装置在接收到携带第一字段的第一帧时,根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计,并将该信道估计获得的CSI反馈给第一装置。
可见,第一装置与第二装置可在协商阶段通过请求帧和响应帧,协商是否可让不具有生成第一字段能力的第二装置参与到第一装置的测量感知中。该方式可使得能力较弱的第二装置也参与到第一装置的测量感知中,可降低对第二装置的能力需求,从而提升系统的兼容能力,也能够为测量感知提供更多的资源。
另一种可选的实施方式中,第一装置与第二装置在低频频段进行测量感知时,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,还可向第二装置发送 NDPA帧,该NDPA帧用于向第二装置声明即将发送携带安全LTF字段的NDP帧。NDPA帧包括第二装置可使用的SAC。可选的,NDPA帧还可包括本轮测量所使用的带宽、周期等参数。
又一种可选的实施方式中,第一装置与第二装置在低频频段进行测量感知时,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,还可接收来自第二装置的NDPA帧,该NDPA帧用于向第一装置声明第二装置即将发送携带安全LTF字段的NDP帧。该NDPA帧包括第一装置可使用的SAC。
上述请求帧和响应帧可以是802.11az协议中FTM_Request帧、FTM帧,即802.11az协议中FTM_Request帧、FTM帧的帧结构,可适用于802.bf协议中未来可能采用的请求帧和响应帧的帧结构。可选的,请求帧和响应帧也可以是新设计的sensing request帧、sensing response帧。可选的,请求帧也可以是测量建立请求帧(measurement setup request),响应帧可以是测量建立响应帧(measurement setup response)。可选的,请求帧是感知建立请求帧(sensing setup request),响应帧是感知建立响应帧(sensing setup response)。
请求帧和响应为是FTM Request帧、FTM帧时,其帧结构如图7(a)所示,请求帧是在FTM_Request帧后增加一个新的sensing parameters字段,sensing parameters字段包括secure sensing indication字段。如图7(b)所示,响应帧是在FTM帧上后挂一个可选的sensing parameters字段,sensing parameters字段包括secure sensing indication字段。
请求帧和响应帧为本申请实施例设计的sensing request帧、rensing response帧时,其帧结构如图8(a)、图8(b)所示,sensing request帧、sensing response帧分别是在动作帧的reserved字段中新增的帧,且sensing request帧、sensing response帧均包括secure sensing indication字段。示例性地,sensing request帧、sensing response帧分别是在动作帧的遗留字段46和47中新增的帧。
一种可选的实施方式中,请求帧和响应帧的帧结构如上述图7(a)、图7(b)、图8(a)、图8(b)所示。请求帧和响应帧中均包括secure sensing indication字段,secure sensing indication字段包括各子字段。以下结合上述请求帧和响应帧的作用,阐述各子字段的功能:
1.secure sensing enable字段。
请求帧和响应帧包括secure sensing enable字段。请求帧中的secure sensing enable字段用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计,即请求第二装置进行安全反馈。响应帧中的secure sensing enable字段用于响应该请求帧。示例性地,该响应帧用于响应是否同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计,即响应是否同意进行安全反馈。示例性地,该响应帧用于第二装置在接收到携带第一字段的第一帧时,根据接收的第一字段和第二字段进行信道估计,并向第一装置反馈该信道估计获得的CSI。可选的,该secure sensing enable字段也可以被替换为secure sensing and feedback字段,该secure sensing and feedback字段实现的功能和secure sensing enable字段实现的功能相同。
示例性地,请求帧中的secure sensing enable字段置1时,用于请求第二装置根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。响应帧中的secure sensing enable字段置1时,用于响应同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;响应帧中的secure sensing enable字段置0时,用于响应不同意根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。
可选的,请求帧中的secure sensing enable字段还可用于请求在measurement setup中发送 /接收携带安全LTF字段的NDP帧,或者用于请求在sensing会话中发送/接收携带安全TRN字段的测量帧。相应地,响应帧中的secure sensing enable字段还可用于响应是否同意接收/发送携带安全LTF字段的NDP帧,或者用于响应是否同意接收/发送携带安全TRN字段的测量帧。也就是说,请求帧和响应帧中的secure sensing enable字段还可用于协商第一装置与第二装置是否进行安全测量。
示例性地,请求帧中的secure sensing enable字段置1时,用于请求在sensing会话中发送/接收携带安全LTF字段的NDP帧,或者用于请求在sensing会话中发送/接收携带安全TRN字段的测量帧。响应帧中的secure sensing enable字段置1时,用于响应同意在sensing会话中接收/发送携带安全LTF字段的NDP帧,或者用于响应同意接收/发送携带安全TRN字段的测量帧;响应帧中的secure sensing enable字段置0时,用于响应不同意在sensing会话中接收/发送携带安全LTF字段的NDP帧,或者用于响应不同意接收/发送携带安全TRN字段的测量帧。
也就是说,第一装置和第二装置可通过secure sensing enable字段协商第二装置是否进行安全反馈,即协商第二装置是否向第一装置反馈根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计获得的CSI。或者,第一装置和第二装置可通过secure sensing enable字段协商第一装置与第二装置进行安全测量和安全反馈,即协商第一装置是否向第二装置发送携带安全LTF字段或安全TRN字段的第一帧,第二装置是否接收来自第一装置的携带安全LTF字段或安全TRN字段的第一帧,第二装置是否向第一装置反馈根据接收的第一字段以及与第一字段不相同的第二字段进行信道估计获得的CSI。
2.secure sensing parameters exchange字段。
可选的,请求帧和响应帧中还可包括secure sensing parameters exchange字段。
一种可选的实施方式中,请求帧中的secure sensing parameters exchange字段用于请求是否交换第一字段的安全参数,响应帧中的secure sensing parameters exchange字段用于响应该请求帧,第一字段的安全参数用于生成第一字段。
示例性地,请求帧中的secure sensing parameters exchange字段用于请求交换第一字段的安全参数时,响应帧中的secure sensing parameters exchange字段用于响应是否同意交换第一字段的安全参数;请求帧中的secure sensing parameters exchange字段用于请求不交换第一字段的安全参数时,响应帧中的secure sensing parameters exchange字段用于响应是否同意不交换第一字段的安全参数。
示例性地,请求帧中的secure sensing parameters exchange字段用于请求交换第一字段的安全参数时,响应帧中的secure sensing parameters exchange字段用于第二装置在接收到携带第一字段的第一帧时,根据接收的第一字段,以及来自第一装置的安全参数生成的第一字段进行信道估计;请求帧中的secure sensing parameters exchange字段用于请求不交换第一字段的安全参数时,响应帧中的secure sensing parameters exchange字段用于第二装置在接收到携带第一字段的第一帧时,根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计,并向第一装置反馈该信道估计获得的CSI。
示例性地,请求帧中的secure sensing parameters exchange字段置0时,用于请求不交换第一字段的安全参数,响应帧中的secure sensing parameters exchange字段置1时,用于响应同意不交换第一字段的安全参数,响应帧中的secure sensing parameters exchange字段置0时,用于响应不同意不交换第一字段的安全参数。请求帧中的secure sensing parameters exchange字段置1时,用于请求交换第一字段的安全参数,响应帧中的secure sensing parameters  exchange字段置1时,用于响应同意交换第一字段的安全参数,响应帧中的secure sensing parameters exchange字段置0时,用于响应不同意交换第一字段的安全参数。
另一种可选的实施方式中,请求帧中的secure sensing parameters exchange字段包括第二字段的安全参数。响应帧中的secure sensing parameters exchange字段用于响应该请求帧。示例性地,响应帧中的secure sensing parameters exchange字段用于响应是否同意根据第二字段进行信道估计。示例性地,响应帧中的secure sensing parameters exchange字段用于第二装置在接收到携带第一字段的第一帧时,根据接收的第一字段,以及第二字段的安全参数生成的第二字段进行信道估计,并向第一装置反馈该信道估计获得的CSI。
示例性地,响应帧中的secure sensing parameters exchange字段置1时,用于响应同意根据第二字段进行信道估计;响应帧中的secure sensing parameters exchange字段置0时,用于响应不同意根据第二字段进行信道估计。
可见,请求帧和响应帧中的secure sensing parameters exchange字段可用于协商是否交换第一字段的安全参数,或者用于协商第二装置是否根据第二字段进行信道估计。
当第二装置也需要根据第一装置到第二装置的CSI进行感知时,请求帧和响应帧中的secure sensing parameters exchange字段可用于协商交换第一字段的安全参数,以使得第二装置根据第一字段的安全参数所生成的第一字段进行信道估计,获得第一装置到第二装置的CSI,进而第二装置根据该CSI进行感知。当第二装置无需根据第一装置到第二装置的CSI进行感知时,请求帧和响应帧中的secure sensing parameters exchange字段可用于协商不交换第一字段的安全参数,从而有利于第二装置反馈根据预设LTF字段或预设TRN字段进行信道估计获得的CSI,可保障反馈阶段信息的安全,且可省去参数交换过程,节省资源。
3.additional secure LTF字段。
可选的,请求帧和响应帧中还包括additional secure LTF字段。
请求帧中的additional secure LTF字段用于请求不具有生成第一字段能力的第二装置加入第一装置的测量感知过程中,即用于请求不具有生成第一字段能力的第二装置根据与全LTF字段或安全TRN字段不相同的字段进行信道估计。响应帧中的additional secure LTF字段用于响应该请求帧。
示例性地,该响应帧中的additional secure LTF字段用于响应是否同意不具有生成第一字段能力的第二装置加入第一装置的测量感知中。示例性地,该响应帧中的additional secure LTF字段用于不具有生成第一字段能力的第二装置接收到携带第一字段的第一帧时,根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计,并向第一装置反馈该信道估计获得的CSI。
示例性地,请求帧中的additional secure LTF字段置1时,用于请求不具有生成第一字段能力的第二装置根据加入第一装置的测量感知过程。响应帧中的additional secure LTF字段置1时,用于响应同意不具有生成第一字段能力的第二装置加入第一装置的测量感知过程;响应帧中的additional secure LTF字段置0时,用于响应不同意不具有生成第一字段能力的第二装置加入第一装置的测量感知过程。
可见,第一装置和第二装置还可通过additional secure LTF字段,协商是否允许不具有生成第一字段能力的第二装置加入第一装置的测量感知中,从而提升系统的兼容能力,也能够为测量感知提供更多的资源。
4.encrypted feedback字段。
可选的,请求帧和响应帧中还包括encrypted feedback字段。
请求帧中的encrypted feedback字段用于请求反馈加密的反馈帧,即用于请求第二装置反馈根据与第一字段不相同的第二字段进行信道估计获得的CSI。响应帧中的encrypted feedback字段用于响应该请求帧。示例性地,该响应帧中的encrypted feedback字段用于响应是否同意反馈加密的反馈帧,即用于响应第二装置是否同意反馈根据与第一字段不相同的第二字段进行信道估计获得的CSI。示例性地,该响应帧中的encrypted feedback字段用于第二装置在接收到携带第一字段的第一帧时,根据接收的第一字段和第二字段进行信道估计,并向第一装置反馈该信道估计获得的CSI。
示例性地,请求帧中的encrypted feedback字段置1时,用于请求反馈加密的反馈帧。响应帧中的encrypted feedback字段置1时,用于响应反馈加密的反馈帧;响应帧中的encrypted feedback字段置0时,用于响应不反馈加密的反馈帧。
可见,第一装置与第二装置还可通过encrypted feedback字段协商第二装置是否反馈加密的反馈帧,即通过encrypted feedback字段再次确认第二装置是否同意反馈根据与第一字段不相同的第二字段进行信道估计获得的CSI。
S103.第二装置向第一装置发送第一反馈帧,第一反馈帧包括信道状态信息CSI,该CSI是第一装置到第二装置的CSI,该CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。
可理解的,第二装置接收的第一字段是第一装置发送的第一字段经过无线信道后的字段,即第二装置接收的第一字段是第一字段承载信道状态信息后的字段。第二字段如上述S102中所述,不再赘述。
其中,第二装置根据第一字段和第二字段进行信道估计获得CSI,是指第二装置利用信道估计方法对接收的第一字段与第二字段进行对比分析,获得信道状态信息CSI。若第二装置知道第一字段,那么第二装置根据接收的第一字段和已知的第一字段进行信道估计获得的CSI,是第一装置到第二装置的CSI,该CSI表示了真实的第一装置到第二装置的信道状态信息。该已知的第一字段可以是第二装置本地存储的,也可以是第一装置向第二装置发送的。因此,若第二装置采用接收的第一字段,以及与第一字段不相同的第二字段进行信道估计,则第二装置向第一装置反馈的CSI不是第一装置到第二装置的CSI,从而即使第二装置反馈的CSI被窃听者窃听,窃听者由于无法获得第一字段,从而无法获得第一装置到第二装置的CSI,进而可保障反馈阶段反馈信息的安全。
一种可选的实施方式中,第二装置是AP,或是具有生成第一字段能力的STA,或是不具有生成第一字段能力的STA,且第一装置与第二装置在协商阶段协商不交换第一字段的安全参数时,第二装置接收到携带第一字段的第一帧后,根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计,即该预设LTF字段或预设TRN字段是第二字段。因此第二装置向第一装置反馈的是根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI。该CSI不是第一装置到第二装置的CSI,从而该反馈方式可保障该反馈阶段信息的安全。
另一种可选的实施方式中,第二装置是AP,或者是具有生成第一字段能力的STA,且第一装置在协商阶段向第二装置发送了第二字段的安全参数时,第二装置接收到携带第一字段的第一帧后,根据第二字段的安全参数生成第二字段,再根据接收的第一字段和该第二字段进行信道估计,获得CSI。该第二字段可以是LTF字段或TRN字段,也可以是与第一字段不相同的安全LTF字段,或者是与第一字段不相同的安全TRN字段。进而第二装置向第一装置反馈的是根据接收的第一字段和第二字段的安全参数所生成的第二字段进行信道估计获得 的CSI,即也是根据接收的第一字段,以及与第一字段不相同的字段进行信道估计获得的CSI,从而反馈的CSI不是第一装置到第二装置的CSI,进而可保障信息的安全。
S104.第一装置接收来自第二装置的第一反馈帧。
一种可选的实施方式中,若第一装置在协商阶段与第二装置协商不交换第一字段的安全参数,则第二装置向第一装置反馈的是根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI,从而第一装置还可根据发送的第一字段、预设LTF字段或预设TRN字段对该CSI进行解析,获得第一装置到第二装置的CSI。
另一种可选的实施方式中,若第一装置在协商阶段向第二装置发送了第二字段的安全参数,且第二装置同意根据第二字段进行信道估计,则第二装置向第一装置反馈的是根据接收的第一字段和第二字段的安全参数所生成的第二字段进行信道估计获得CSI,从而第一装置还可根据发送的第一字段和第二字段对该CSI进行解析,获得第一装置到第二装置的CSI。
可见,本申请实施例中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧,第二装置根据接收的第一字段,以及与第一字段不相同的第二字段进行信道估计,且将信道估计获得的CSI反馈给第一装置。第二装置向第一装置反馈的是根据接收的第一字段,以及与第一字段不相同的第二字段进行信道估计获得的CSI,即使第二装置反馈的CSI被窃听者窃听,窃听者仍无法获得第一装置到第二装置的CSI。从而第二装置反馈CSI的方式,可保证反馈阶段信息的安全。
以下以第一装置与第二装置在低频频段进行测量感知为例,且结合TB测距模式、NTB测距模式,单边交互、多边交互,第一装置为AP,第二装置为STA,或者第一装置为STA,第二装置为AP时的不同通信场景,阐述该信息反馈方法100的多种实施方式。其中,单边交互是指第一装置与第二装置之间只有上行或下行的通信场景,双边交互是指第一装置与第二装置之间既有上行又有下行的通信场景。
一.Non TB测距模式。
场景1.第一装置为STA,第二装置为AP,且STA与AP之间进行单边交互。
第一装置为STA,第二装置为AP,且STA与AP之间进行单边交互时的交互流程图如图9(a)所示。
该场景下,STA在协商阶段将请求帧中的secure sensing enable字段置1,以请求AP根据与安全LTF字段不相同的字段进行信道估计。AP在协商阶段将响应帧中的secure sensing enable字段置1,以响应同意根据与安全LTF字段不相同的字段进行信道估计。STA在协商阶段可将请求帧中的secure sensing parameters exchange字段置为0,以请求不交换安全LTF字段的安全参数,且AP在协商斜段将响应帧中的secure sensing parameters exchange字段置为1,以同意不交换安全LTF字段的安全参数,那么AP向STA反馈的CSI feedback帧中的CSI是根据安全LTF字段和预设LTF字段进行信道估计获得的CSI。STA与AP在协商阶段协商不交互安全LTF字段的安全参数的方式,可省去参数交互过程,节省资源和降低复杂度。
如图9(a)所示,STA与AP完成在协商阶段完成协商后,STA向AP发起竞争接入,即STA主动向AP发送NDPA帧,以向AP声明即将发送携带安全LTF字段的NDP帧(NDP with secure LTF)。然后,STA向AP发送携带有安全LTF字段的NDP帧。由于STA与AP在协商阶段协商不交换安全LTF字段的安全参数,那么AP收到NDP帧后,直接根据接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI通过CSI feedback帧反馈给STA。STA再根据发送的安全LTF字段和预设LTF字段对接收的CSI进行解析,获得 STA到AP的CSI。
场景2.第一装置为AP,第二装置为STA,且AP与STA之间进行双边交互。
第一装置为AP,第二装置为STA,且STA与AP之间进行双边交互时的交互流程图如图9(b)所示。
该场景下,AP在协商阶段协商测量STA到AP的CSI,以及测量AP到STA的CSI。另外,AP将请求帧中的secure sensing enable字段置1,以请求STA根据与安全LTF字段不相同的字段进行信道估计。STA在协商阶段将响应帧中的secure sensing enable字段置1,以响应同意根据与安全LTF字段不相同的字段进行信道估计。AP与STA之间进行双边交互,即AP向STA发送NDP帧,STA也会向AP发送NDP帧。从而AP可在协商阶段,将第二字段的安全参数携带在请求帧中的secure sensing parameters exchange字段中,STA将响应帧中的secure sensing parameters exchange字段置1,以响应同意根据第二字段进行信道估计,第二字段是与AP发送的安全LTF字段不相同的安全LTF字段。从而STA也可根据第二字段的安全参数生成第二字段,并向AP发送携带第二字段的NDP帧,即STA也可向AP发送携带与AP发送的安全LTF字段不相同的安全LTF字段的NDP帧。
如图9(b)所示,STA与AP完成协商后,STA向AP发送NDPA帧,以向AP声明即将发送携带安全LTF字段的NDP帧,STA向AP发送携带第二字段的NDP帧。AP根据向STA发送的第二字段的安全参数所生成的第二字段,以及接收的第二字段进行信道估计,获得STA到AP的CSI。AP向STA发送携带用于进行信道估计的安全LTF字段的NDP帧,再向STA发送反馈触发帧(feedback trigger),以触发STA向AP反馈信道估计获得的CSI。STA接收到携带安全LTF字段的NDP帧后,根据接收的安全LTF字段和第二字段的安全参数所生成的第二字段进行信道估计,并将信道估计获得的CSI通过CSI feedback帧的方式反馈给AP。AP再根据发送的第二字段的安全参数所生成第二字段,以及发送的安全LTF字段对接收的CSI进行解析,获得AP到ST的CSI。进而,AP根据AP到STA的CSI,以及STA到AP的CSI进行较为精准的感知。
场景3.第一装置为STA,第二装置为AP,且STA与AP之间进行双边交互。
第一装置为STA,第二装置为AP,且STA与AP之间进行双边交互时的交互流程图如图9(c)所示。
该场景下,STA和AP在协商阶段协商测量STA到AP的CSI,以及测量AP到STA的CSI。另外,第一装置与第二装置均将请求帧和响应帧中的secure sensing enable字段置1,以协商AP根据与安全LTF字段不相同的字段进行信道估计。由于AP与STA均需发送NDP帧,因此STA将第二字段的安全参数携带在secure sensing parameters exchange字段中,且AP将secure sensing parameters exchange字段置1,以响应同意根据第二字段进行信道估计。从而AP可根据第二字段的安全参数生成第二字段,并向STA发送携带第二字段的NDP帧。
如图9(c)所示,STA向AP发送NDPA帧,以向AP声明STA即将发送携带安全LTF字段的NDP帧,然后STA向AP发送携带安全LTF字段的NDP帧。AP接收到该NDP帧后,根据接收的安全LTF字段,以及第二字段的安全参数生成的第二字段进行信道估计,并将信道估计获得的CSI通过CSI feedback帧反馈给STA。STA根据第二字段的安全参数生成第二字段,再根据第二字段和发送的安全LTF字段对该CSI进行解析,获得STA到与AP的CSI。AP向STA发送携带第二字段的NDP帧,STA根据接收的第二字段和第二字段的安全参数所生成的第二字段进行信道估计,获得AP到STA的CSI。进而STA根据AP到STA的CSI,以及STA到AP的CSI进行较为精准的感知。
场景4.第一装置为AP,第二装置为不具有生成安全LTF字段能力的STA,且STA与AP之间进行单边交互。
第一装置为AP,第二装置为不具有生成安全LTF字段能力的STA,且STA与AP之间进行双边交互时的交互流程图如图9(d)所示。
该场景下,STA和AP在协商阶段均将请求帧和响应帧中的secure sensing enable字段置1,以协商AP根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计。由于STA不具有生成安全LTF字段的能力,那么AP与STA在协商阶段,将请求帧和响应帧中的additional secure LTF字段置1,以协商允许不具有生成安全LTF字段能力的STA根据与安全LTF字段不相同的字段进行信道估计,即AP允许不具有生成安全LTF字段能力的STA加入到AP的测量感知中,该方式有利于能力有限的STA加入到AP的测量感知中。另外,STA不具有生成安全LTF字段的能力,那么该STA不能根据第二字段的安全参数生成第二字段,因此AP在协商阶段需与STA协商不交互安全LTF字段的安全参数,即AP将请求帧secure sensing parameters exchange字段置0,以请求不交换安全LTF字段的安全参数,STA需将响应帧中的secure sensing parameters exchange字段置1,以响应同意不交换安全LTF字段的安全参数。
如图9(d)所示,STA向AP发送NDPA帧,以通知AP发送携带安全LTF字段的NDP帧。从而AP向STA发送携带用于进行信道估计的安全LTF字段的NDP帧。STA采用接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI反馈给AP。AP根据发送的安全LTF字段和预设LTF字段对接收的CSI进行解析,获得AP到与STA的CSI。进而AP根据该CSI进行感知。
二.TB模式。
场景2.1第一装置为STA,第二装置为AP,且STA与AP之间进行单边交互。
第一装置为STA,第二装置为AP,且STA与AP之间进行单边交互时的交互流程图如图9(e)所示。
该场景下,STA和AP在协商阶段均将请求帧和响应帧中的secure sensing enable字段置1,以协商AP根据与安全LTF字段不相同的字段进行信道估计。STA和AP可在协商阶段协商不交换安全LTF字段的安全参数。即STA将请求帧secure sensing parameters exchange字段置0,以请求不交换安全LTF字段的安全参数。STA需将响应帧中的secure sensing parameters exchange字段置1,以响应同意不交换安全LTF字段的安全参数。
如图9(e)所示,AP通过向STA发送TF sensing poll,以向STA发出轮询。STA通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA参与会话时,AP可向STA发送TF sensing sounding,以触发STA发送携带安全LTF字段的NDP帧。AP收到携带安全LTF字段的NDP帧后,由于协商阶段协商不交换第一字段的安全参数,从而AP根据接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI反馈给STA。STA根据发送的安全LTF字段和预设LTF字段对该CSI进行解析,获得STA到AP的CSI。进而STA根据该CSI进行感知。
场景2.2第一装置为AP,第二装置为STA,且STA与AP之间进行双边交互。
第一装置为AP,第二装置为STA,且STA与AP之间进行双边交互时的交互流程示意图如图9(f)所示。
该场景下,STA和AP在协商阶段均将请求帧和响应帧中的secure sensing enable字段置1,以协商STA根据与安全LTF字段不相同的字段进行信道估计。由于AP与STA均需发送 NDP帧,因此AP将第二字段的安全参数携带在secure sensing parameters exchange字段中,STA将secure sensing parameters exchange字段置1,以响应同意根据第二字段进行信道估计。从而STA可根据第二字段的安全参数生成第二字段,并向AP发送携带第二字段的NDP帧。
如图9(f)所示,AP通过向STA发送TF sensing poll,以向STA发出轮询。STA通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA参与会话时,AP可向STA发送TF sensing sounding,以触发STA发送携带第二字段的NDP帧。AP根据接收的安全LTF字段和第二字段的安全参数生成的第二字段进行信道估计,可获得STA到AP的CSI。AP向STA发送NDPA帧,以向声明STA即将发送携带安全LTF字段的NDP帧。然后AP向STA发送携带用于进行信道估计的安全LTF字段的NDP帧,再向STA发送feedback trigger帧,以触发STA反馈信道估计获得的CI。STA接收到来自AP的NDP帧后,根据协商阶段接收的第二字段的安全参数生成第二字段,再根据接收的安全LTF字段和接收的第二字段进行信道估计,并将信道估计获得的CSI反馈给AP。AP根据第二字段的安全参数生成第二字段,再根据第二字段和发送的第一字段,对接收的CSI进行解析,获得AP到STA的CSI。
场景2.3第一装置为STA,第二装置为AP,且STA与AP之间进行双边交互。
第一装置为STA,第二装置为AP,且STA与AP之间进行双边交互时的交互流程图如图9(g)所示。
该场景下,STA和AP在协商阶段均将请求帧和响应帧中的secure sensing enable字段置1,以协商AP根据与安全LTF字段不相同的字段进行信道估计。由于AP与STA均需发送NDP帧,因此STA将第二字段的安全参数携带在secure sensing parameters exchange字段中,AP将secure sensing parameters exchange字段置1,以响应同意根据第二字段进行信道估计。从而AP可根据第二字段的安全参数生成第二字段,并向STA发送携带第二字段的NDP帧。
如图9(g)所示,该场景和上述场景2.2的流程基本一致,仅在反馈阶段时,STA是第一装置,因此AP无需向STA发送feedback trigger帧,而需根据接收的安全LTF字段和第二字段的安全参数生成的第二字段进行信道估计,并通过CSI feedback帧向STA反馈信道估计获得的CSI。STA根据第二字段的安全参数生成的第二字段和发送的安全LTF字段,对该CSI进行解析,获得STA到AP的CSI。
场景2.4第一装置为AP,第二装置为不具有生成安全LTF字段能力的STA,且STA与AP之间进行单边交互。
第一装置为AP,第二装置为不具有生成第一字段能力的STA,且STA与AP之间进行单边交互时的交互流程图如图9(h)所示。
该场景下,STA和AP在协商阶段均将请求帧和响应帧中的secure sensing enable字段置1,以协商STA根据与安全LTF字段不相同的字段进行信道估计。STA不具有生成安全LTF字段的能力,那么AP与STA在协商阶段,将请求帧和响应帧中的additional secure LTF字段置1,以协商允许不具有生成安全LTF字段能力的STA参与AP的测量感知,即AP允许不具有生成安全LTF字段能力的STA加入到AP的测量感知中。另外,STA不具有生成安全LTF字段的能力,那么该STA不能根据第二字段的安全参数生成第二字段,因此AP在协商阶段需与STA协商不交互安全LTF字段的安全参数,即AP需将请求帧secure sensing parameters exchange字段置0,以请求不交换安全LTF字段的安全参数,STA需将响应帧中的secure sensing parameters exchange字段置1,以响应同意不交换安全LTF字段的安全参数,从而可节省资源。
如图9(h)所示,AP通过向STA发送TF sensing poll,以向STA发出轮询。STA通过 向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA参与会话时,AP向STA发送TF sensing sounding,以向STA声明即将发送携带安全LTF字段的NDP帧。AP向STA发送携带安全LTF字段的NDP帧,再向STA发送feedback trigger帧。STA接收到NDP帧后,根据接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI通过CSI feedback帧反馈给AP。AP根据预设LTF字段和发送的安全LTF字段,对该CSI进行解析,获得STA到AP的CSI。
可见,AP与STA在低频频段进行测量感知时,在不同场景下,AP均可向STA反馈根据接收的安全LTF字段,以及与安全LTF字段不相同的字段进行信道估计获得CSI,或者STA均可向AP反馈根据接收的安全LTF字段,以及与安全LTF字段不相同的字段进行信道估计获得的CSI,从而可保障反馈阶段反馈信息的安全。
五.信息反馈方法200。
本申请实施例还提供一种信息反馈方法200。图10是该信息反馈方法200的交互示意图。该信息反馈方法200从第一装置与第二装置之间交互的角度进行阐述。该信息反馈方法200中,第一装置为STA,第二装置为AP。该信息反馈方法200包括但不限于以下步骤:
S201.第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧。
S202.第二装置接收携带用于进行信道估计的第一字段的第一帧。
S201和S202的实施方式可参见上述S101和S102的实施方式,不再赘述。
一种可选的实施方式中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,第一装置还可向第二装置发送请求帧,该请求帧用于请求第二装置测量第三装置到第二装置的第三CSI,并将该第三CSI加密反馈给第一装置。从而第二装置向第一装置发送响应帧,该响应帧用于响应该请求帧。示例性地,该响应帧用于响应是否确认测量第三装置到第二装置的第三CSI,并将该第三CSI加密反馈给第一装置。示例性地,该响应帧用于第二装置在接收到来自第三装置的携带安全LTF字段的第二帧时,根据接收的安全LTF字段和与该安全LTF字段不相同的字段进行信道估计,获得第二装置到第三装置的CSI,并采用第二字段的安全参数对该CSI进行加密处理,再将加密处理后的CSI反馈给第一装置。
也就是说,第一装置与第二装置进行测量感知之前,第一装置和第二装置可通过请求帧和响应帧协商第二装置协助测量第二装置到第三装置的第三CSI,并该测量的第三CSI转发给第一装置,以使得第一装置获得多个信道的CSI,进而进行更为精准的感知。
本申请实施例中,请求帧还可包括第二字段的安全参数,响应帧还可用于响应该请求帧。示例性地,该响应帧用于响应是否根据第二字段进行信道估计。示例性地,该响应帧用于第二装置在接收到来自第一装置的携带第一字段的第一帧时,根据接收的第一字段和第二字段进行信道估计,并将该信道估计获得的CSI反馈给第一装置。
本申请实施例中,请求帧和响应帧的其他实施方式可参见上述信息反馈方法100中所述,不再赘述。
S203.第二装置向第一装置发送第一反馈帧,以及向第一装置发送第二反馈帧。第一反馈帧包括信道状态信息CSI,该CSI是第一装置到第二装置的CSI,该CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。第二反馈帧包含加密的第三CSI,第三CSI是第三装置到第二装置的CSI。
S204.第一装置接收来自第二装置的第一反馈帧,以及接收来自第二装置的第二反馈帧。
可理解的,第二装置接收到来自第一装置的第一帧后,根据接收的第一字段和第二字段 进行信道估计,并将信道估计获得的CSI以第一反馈帧的形式反馈给第一装置。从而第一装置接收到第一反馈帧后,根据发送的第一字段和第二字段对第一反馈帧中的CSI进行解析,获得第一装置到第二装置的CSI。
另外,第一装置和第二装置在协商阶段协商,协商第二装置测量第三装置到第二装置的CSI,并将该CSI反馈给第一装置。因此,第二装置会触发第三装置发送携带安全LTF或安全TRN字段的第三帧,并将获得的第三装置到第二装置的第三CSI以加密CSI的方式反馈给第一装置,以使得第一装置获得第三装置到第二装置的第三CSI。
第二装置与第三装置协商时,第二装置会将安全LTF字段的安全参数或安全TRN字段的安全参数发送给第三装置。第二装置根据安全LTF字段的安全参数生成安全LTF字段,或根据安全TRN字段的安全参数生成安全TRN字段,再将携带安全LTF字段或安全TRN字段的第一帧发送给第三装置。进而第二装置可根据来自第二装置的安全参数所生成的安全LTF字段或安全TRN字段,以及接收的字段进行信道估计,获得第三装置到第二装置的第三CSI。第二装置再根据第一装置发送的第二字段的安全参数所生成的第二字段对第三CSI进行加密,并将加密后的第三CSI以第二反馈帧的方式反馈给第一装置。从而第一装置根据第二字段的安全参数所生成的第二字段对加密的CSI进行解析,可获得第三装置到第二装置的CSI。
其中,第二装置根据第一装置发送的第二字段的安全参数所生成的第二字段对第三CSI进行加密,可指第二装置将第二字段的安全参数乘以第三CSI,获得加密后的第三CSI。或者,第二装置将第二字段的安全参数所生成的第二字段与第三CSI进行其他数学运算,获得加密后的第三CSI。本申请实施例不限定第二装置根据第二字段的安全参数所生成的第二字段对第三CSI进行加密的加密方式。
一种可选的实施方式中,第二装置还可向第一装置和第三装置发送携带第二字段的第二帧。第一装置接收到携带第二字段的第二帧后,根据接收的第二字段,以及第二字段的安全参数生成的第二字段进行信道估计,获得第二装置到第一装置的CSI。
第二装置与第三装置在协商阶段协商不交换第二字段的安全参数时,第三装置接收到携带第二字段的第二帧后,根据接收的第二字段,以及预设LTF字段或预设TRN字段进行信道估计,并将信道估计获得的CSI以第三反馈帧的形式反馈给第二装置。进行第二装置将该第三反馈帧转发给第一装置。第一装置接收到该第三反馈帧后,根据第二字段,以及预设LTF字段或预设TRN字段对第三反馈帧中的CSI进行解析,获得第二装置到第三装置的第四CSI。
第二装置在协商阶段向第三装置发送了与第二字段的安全参数不相同的参数时,第三装置接收到携带第二字段的第二帧后,根据接收的第二字段和与第二字段的安全参数不相同的参数生成的字段进行信道估计,并将信道估计获得的CSI以第四反馈帧的方式反馈给第二装置。从而第二装置根据发送的第二字段,以及与第二字段的安全参数不相同的参数生成的字段,对第四反馈帧中的CSI进行解析,获得第二装置到第三装置的第四CSI。然后,第二装置根据第二字段的安全参数对第四CSI进行加密处理,并将加密处理后的第四CSI以第三反馈帧的方式发送给第一装置,从而第一装置根据第二字段的安全参数对第三反馈帧进行解析,获得第二装置到第三装置的第四CSI。
可见,本申请实施例中,第一装置请求第二装置协助测量并反馈了第三装置到第二装置的CSI,且第二装置向第一装置反馈第一装置到第二装置的CSI。第二装置反馈的CSI均是加密后的CSI,即使窃听者在第二装置反馈过程中窃听反馈信息,窃听者也无法获得第三装置到第二装置的CS,以及第一装置到第二装置的CSI,从而该反馈方式可保障反馈阶段的信 息安全。
以下以第一装置与第二装置在低频频段进行测量感知为例,且结合TB测距模式,单边交互、多边交互,第一装置为STA1,第二装置为AP,第三装置为STA2时的不同通信场景,阐述该信息反馈方法200的多种实施方式。
一.TB测距模式。
场景1.1 AP与STA1、STA2之间进行单边交互。
STA1、STA2、AP之间的交互流程示意图如图11(a)所示。
该场景下,STA1与AP在协商阶段协商AP可根据与安全LTF字段不相同的LTF字段进行信道估计。另外,STA1在协商阶段向AP发送第二字段的安全参数,第二字段与安全LTF字段不相同,AP将响应帧中的secure sensing parameters exchange字段置1,以响应同意根据第二字段进行信道估计。STA2与AP在协商阶段协商STA2可根据与第二字段不相同的字段进行信道估计。STA2与AP协商时,AP向STA2发送安全LTF字段的安全参数,以使得STA2根据安全LTF字段的安全参数生成安全LTF字段,并向AP发送携带该安全LTF字段的NDP帧。
如图11(a)所示,AP通过向STA1和STA2发送TF sensing Poll,以向STA1和STA2发出轮询。STA1和STA2通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA1和STA2参与会话时,向STA1和STA2发送TF sensing sounding,以触发STA1和STA2发送NDP帧。STA1向AP发送携带安全LTF字段的NDP帧,AP根据接收的安全LTF字段,以及STA1发送的LTF字段的安全参数所生成的LTF字段进行信道估计,获得STA1到AP的CSI。AP再将该CSI反馈给STA1。STA1根据发送的安全LTF字段,以及LTF字段的安全参数所生成的LTF字段对AP反馈的CSI进行解析,获得STA1到AP的CSI。
AP在与STA2的协商阶段,向STA2发送了安全LTF字段的安全参数。从而STA2根据安全LTF字段的安全参数生成安全LTF字段,STA2向AP发送携带该安全LTF字段的NDP帧。AP接收到该NDP帧后,根据接收的安全LTF字段,以及安全LTF字段的安全参数生成的安全LTF字段进行信道估计,获得STA2到AP的CSI。然后,AP根据STA1发送的LTF字段的安全参数对该CSI进行加密处理,并将加密后的CSI反馈给STA1。从而STA1根据LTF字段的安全参数对加密后的CSI进行解析,可获得STA2到AP的CSI。
可见,AP向STA1反馈了STA1到AP的CSI,以及STA2到AP的CSI,且AP均是加密反馈该两个CSI的,从而可保障AP反馈时反馈阶段的安全性。进而,AP可根据STA1到AP的CSI,以及STA2到AP的CSI进行感知。
场景1.2 AP与STA1、STA2之间进行双边交互。
AP与STA1、STA2之间的交互流程示意图如图11(b)所示。
该场景下,STA1与AP之间的传输、STA2与AP之间的传输、以及AP对STA1的反馈均和上述图11(a)的交互流程是相同的。不同的是,AP还可向STA1和STA2发送NDPA帧,以向STA1和STA2声明即将发送携带第二字段的NDP帧。然后AP向STA1和STA2发送携带第二字段的NDP帧,该第二字段是AP基于来自STA1的第二字段的安全参数生成的。STA1接收到AP发送的NDP帧后,可根据接收的第二字段,以及第二字段的安全参数所生成的第二字段进行信道估计,获得AP到STA的CSI。
AP再向STA2发送feedback trigger帧,以触发STA2反馈信道估计获得的CSI。若STA2与AP在协商阶段协商不交换第二字段的安全参数,则STA2接收到来自AP的NDP帧后, 根据接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI反馈给AP。AP将该CSI转发给STA1。STA1再根据第二字段的安全参数所生成的第二字段和预设LTF字段对CSI feedback帧中的CSI进行解析,获得AP到STA2的CSI。
若AP在协商阶段向STA2发送了与第二字段的安全参数不相同的参数,且STA2同意根据与第二字段的安全参数不相同的参数所生成的字段进行信道估计,则STA2接收到来自AP的NDP帧后,根据接收的第二字段,以及第二字段的安全参数不相同的参数所生成的字段进行信道估计,并将信道估计获得的CSI通过CSI feedback帧反馈给AP。AP再根据第二字段的安全参数所生成的第二字段,以及与第二字段的安全参数不相同的参数所生成的字段,对该CSI进行解析,获得STA2到AP的CSI。AP再采用第二字段的安全参数所生成的第二字段对STA2到AP的CSI进行加密,并将加密后的CSI反馈给STA1。从而STA1根据第二字段的安全参数所生成的第二字段对加密后的CSI进行解析,获得STA2到AP的CSI。
可见,在该场景下,AP不仅向STA1反馈了STA2到AP的CSI,STA1到AP的CSI,还向STA2反馈了AP到STA2的CSI、STA2到AP的CSI,从而可使得STA1根据多个CSI进行更为精准的感知。
场景1.3 AP与STA1、STA2、STA3之间进行单边交互,且STA2是具有生成第一字段能力的STA,STA3是不具有生成第一字段能力的STA。
AP与STA1、STA2、STA3之间的交互流程示意图如图11(c)所示。
该场景下,STA1与AP在协商阶段协商可接收或发送携带安全LTF字段的NDP帧。另外,AP在协商阶段向STA1发送安全LTF字段的安全参数,从而STA1可根据安全LTF字段的安全参数所生成的安全LTF字段进行信道估计,获得AP到STA1的CSI。
STA2与AP在协商阶段通过协商STA2可根据与安全LTF字段不相同的LTF字段进行信道估计。AP可在协商阶段与STA2通过secure sensing parameters exchange字段协商不交换安全LTF字段的安全参数,即AP将secure sensing parameters exchange字段置为0。STA2将secure sensing parameters exchange字段置为1,以响应同意不交换安全LTF字段的安全参数。或者,AP可在协商阶段通过secure sensing parameters exchange字段向STA2发送第二字段的安全参数,STA2将secure sensing parameters exchange字段置为1,以响应同意根据第二字段的安全参数所生成的LTF字段进行信道估计。
STA3与AP在协商阶段协商STA3可根据与安全LTF字段不相同的LTF字段进行信道估计。AP与STA3在协商阶段,将请求帧和响应帧中的additional secure LTF字段置1,以协商允许不具有生成安全LTF字段能力的STA参与AP的测量感知,即AP允许不具有生成安全LTF字段能力的STA加入到AP的测量感知中。另外,STA3为不具有生成安全LTF字段能力的STA,因此AP在协商阶段与STA2通过secure sensing parameters exchange字段协商不交换安全LTF字段的安全参数,即AP将secure sensing parameters exchange字段置为0。将STA2secure sensing parameters exchange字段置为1,以响应同意不交换安全LTF字段的安全参数。
如图11(c)所示,AP通过向STA1、STA2、STA3发送TF sensing poll,以向STA1、STA2、STA3发出轮询。STA1、STA2、STA3通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA1、STA2、STA3参与会话时,向STA1、STA2、STA3发送NDPA帧,以向STA1、STA2、STA3声明即将发送携带安全LTF字段的NDP帧。AP向STA1、STA2、STA3发送携带安全LTF字段的NDP帧,AP再向STA2和STA3发送feedback trigger帧,以触发STA2和STA3向AP反馈信道估计获得的CSI。
STA1根据接收的安全LTF字段,以及安全LTF字段的安全参数所生成的安全LTF字段进行信道估计,获得AP到STA1的CSI。
STA2与AP在协商阶段协商不交换安全LTF字段的安全参数时,STA2接收到来自AP的NDP帧后,根据接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI以CSI feedback帧的形式反馈给AP。AP再将该CSI feedback帧发送给STA1。从而STA1根据预设LTF字段,以及安全LTF字段的安全参数所生成的安全LTF字段,对CSI feedback帧中的CSI进行解析,获得AP到STA2的CSI。
AP在协商阶段向STA2发送了第二字段的安全参数时,STA2接收到来自AP的NDP帧后,根据接收的第二字段和第二字段的安全参数所生成的第二字段进行信道估计,并将信道估计获得的CSI以CSI feedback帧的方式反馈给AP。AP根据发送的安全LTF字段和第二字段对CSI feedback帧中的CSI进行解析,获得AP到STA2的CSI。AP再采用安全LTF字段的安全参数对AP到STA2的CSI进行加密处理,并向STA1发送加密后的CSI。STA1根据安全LTF字段对加密后的CSI进行解析,可获得AP到STA2的CSI。
STA3与AP在协商阶段协商不交换安全LTF字段的安全参数,STA3接收到来自AP的NDP帧后,根据接收的安全LTF字段和预设LTF字段进行信道估计,并将信道估计获得的CSI以CSI feedback帧的形式反馈给AP。AP再将该CSI feedback帧发送给STA1。从而STA1根据预设LTF字段,以及安全LTF字段的安全参数所生成的安全LTF字段,对CSI feedback帧中的CSI进行解析,获得AP到STA3的CSI。
另一种可选的实施方式中,上述图11(a)所示中,AP与STA1协商交换安全LTF字段#1的安全参数,AP也与STA2协商交换安全LTF字段#2的安全参数。AP接收到来自STA1的NDP帧后,根据接收的安全LTF字段和安全LTF字段#1的安全参数所生成的安全LTF字段进行信道估计,获得STA1到AP的CSI。AP接收到来自STA2的NDP帧后,根据接收的安全LTF字段和安全LTF字段#2的安全参数所生成的安全LTF字段进行信道估计,获得STA2到AP的CSI。AP再采用与STA1交换的安全LTF字段#1的安全参数,对STA1到AP的CSI、STA2到AP的CSI进行加密处理,并通过CSI feedback帧向STA1发送加密处理后的CSI。STA1接收到加密处理后的CSI后,根据与AP交换的安全LTF字段#1的安全参数,对加密处理后的CSI进行解析,获得STA1到AP的CSI、STA2到AP的CSI。
可见,若AP与STA1协商交换了安全LTF字段#1的安全参数,AP也与STA2协商交换了安全LTF字段#2的安全参数,则如图11(d)所示,AP可向STA1合并反馈STA1到AP的CSI、STA2到AP的CSI,从而可节省信令开销。AP反馈时,反馈的是加密处理后的CSI,因此也可保障反馈阶段信息的安全。
又一种可选的实施方式中,上述图11(b)所示场景中,AP也可按照上述图11(d)所示的合并反馈方式向STA1反馈STA1到AP的CSI、STA2到AP的CSI,合并反馈方式可参见上述合并方式,不再赘述。
又一种可选的实施方式中,上述图11(c)所示的场景中,AP接收到STA1的反馈帧后,根据安全LTF字段和预设LTF字段对反馈帧中的CSI进行解析,获得AP到STA1的CSI。或者AP根据安全LTF字段和与STA1交换的LTF字段的安全参数所生成的LTF字段对反馈帧中的CSI进行解析,获得AP到STA1的CSI。AP接收到STA2的反馈帧后,根据接收的安全LTF字段和预设LTF字段对反馈帧中的CSI进行解析,获得AP到STA2的CSI。如图11(e)所示,AP根据与STA1交换的安全LTF字段的安全参数,对AP到STA的CSI和AP到STA2的CSI进行加密处理,获得加密后的CSI,并向STA1反馈该加密后的CSI。STA1 接收到该加密后的CSI后,根据与AP交换的安全LTF字段的安全参数对该CSI进行解析,获得AP到STA1的CSI,以及AP到STA2的CSI。可见,AP也可向STA1合并反馈AP到STA1的CSI,以及AP到STA2的CSI,从而可节省信令开销。
又一种可选的实施方式中,当第一装置是AP,第二装置是STA1,第三装置是STA2,且AP与STA1、STA2进行双边交互时,AP与STA1、STA2之间的交互示意图如图12(a)所示。AP与STA1在协商过程中协商STA1可根据与安全LTF字段不相同的LTF字段进行信道估计,AP与STA2在协商过程中协商STA2可根据与安全LTF字段不相同的LTF字段进行信道估计。
如图12(a)所示,AP向STA1和STA2发送TF sensing poll,以向STA1和STA2发出轮询。STA1和STA2通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA1和STA2参与会话时,向STA1和STA2发送TF sensing sounding,以触发STA1和STA2发送NDP帧。STA1和STA2向AP发送携带安全LTF字段的NDP帧。AP分别根据接收的安全LTF字段,以及STA1和STA2发送的安全LTF字段的安全参数所生成的安全LTF字段进行信道估计,获得STA1到AP的CSI,以及STA2到AP的CSI。AP向STA1和STA2分别发送NDPA帧,以向STA1和STA2声明,即将发送携带安全LTF字段的NDP帧。AP分别向STA1和STA2发送携带安全LTF字段的NDP帧。
STA1接收到来自AP的NDP帧后,根据接收的安全LTF字段,以及预设LTF或第二字段的安全参数生成的第二字段进行信道估计,并向AP反馈信道估计获得的CSI。AP接收到来自STA1的反馈帧后,根据预设LTF字段和发送的安全LTF字段对反馈帧中的CSI进行解析,获得AP到STA1的CSI,或者根据第二字段的安全参数生成的第二字段和发送的安全LTF字段对反馈帧中的CSI进行解析,获得AP到STA1的CSI。
STA2接收到来自AP的NDP帧后,根据接收的安全LTF字段,以及预设LTF或第二字段的安全参数生成的第二字段进行信道估计,并向AP反馈信道估计获得的CSI。AP接收到来自STA2的反馈帧后,根据预设LTF字段和发送的安全LTF字段对反馈帧中的CSI进行解析,获得AP到STA2的CSI,或者根据第二字段的安全参数生成的第二字段和发送的安全LTF字段对反馈帧中的CSI进行解析,获得AP到STA2的CSI。
又一种可选的实施方式中,当第一装置是AP,第二装置是STA1,第三装置是不具有生成安全LTF字段能力的STA2,且AP与STA1、STA2进行单边交互时,AP与STA1、STA2之间的交互示意图如图12(b)所示。
AP与STA1协商STA1可根据与安全LTF字段不相同的LTF字段进行信道估计,且AP可与STA1协商不交换安全LTF字段的安全参数,或者AP向STA1发送第二字段的安全参数。STA2是不具有生成安全LTF字段能力的STA,因此AP与STA2在协商阶段协商允许不具有生成安全LTF字段能力的STA加入AP的测量感知中,且AP与STA2协商不交换安全LTF字段的安全参数。
如图12(b)所示,AP通过向STA1和STA2发送TF sensing poll,以向STA1和STA2发出轮询。STA1和STA2通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA1和STA2参与会话时,分别向STA1和STA2发送NDPA帧,以向STA1和STA2声明即将发送携带安全LTF字段的NDP帧。AP分别向STA1和STA2发送携带安全LTF字段的NDP帧。AP再分别向STA1和STA2发送feedback trigger帧,以触发STA1和STA2反馈信道估计获得的CSI。STA1接收到来自AP的NDP帧后,根据接收的安全LTF字段,以及预设LTF字段或第二字段的安全参数所生成的第二字段进行信道估计,并向AP反馈信道估 计获得的CSI。AP根据发送的安全LTF字段,以及预设LTF字段或第二字段的安全参数所生成的第二字段对该CSI进行解析,获得AP到STA1的CSI。STA2接收到来自AP的NDP帧后,根据接收的安全LTF字段和预设LTF字段进行信道估计,并向AP反馈信道估计获得的CSI,AP根据预设LTF字段和发送的安全LTF字段对CSI feedback帧中的CSI进行解析,获得AP到STA2的CSI。
本申请实施例还提供一种信息反馈方法300。该信息反馈方法300中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧。第二装置接收携带用于进行信道估计的第一字段的第一帧。第二装置向第一装置发送安全LTF字段或安全TRN字段的复数采样。第一装置接收来自第二装置的安全LTF字段或安全TRN字段的复数采样。第一装置根据安全LTF字段对安全LTF字段的复数采样进行解析,获得第一装置到第二装置的CSI;或者,第一装置根据安全TRN字段对安全TRN字段的复数采样进行解析,获得第一装置到第二装置的CSI。
也就是说,第二装置向第一装置反馈的是安全LTF字段或安全TRN字段的复数采样,即使窃听者窃听到该复数采样,由于不知道安全LTF字段/安全TRN字段,仍无法获知第一装置到第二装置的CSI,因此该反馈方式也可保障反馈阶段的信息安全。
该信息反馈方法300适用于上述所有AP与STA未交换安全LTF字段或安全TRN字段的安全参数的通信场景中。
一种可选的实施方式中,第一装置和第二装置可在协商阶段协商第二装置反馈CSI还是反馈安全LTF字段的复数采样。即上述请求帧还可用于请求反馈CSI feedback帧,或者反馈安全LTF字段/安全TRN字段的复数采样(secure LTF feedback帧/secure TRN feedback帧)。当请求帧用于请求反馈CSI时,响应帧用于响应是否同意反馈CSI;当请求帧用于请求反馈安全LTF字段/安全TRN字段的复数采样时,响应帧用于响应是否同意反馈安全LTF字段/安全TRN字段的复数采样。
一种可选的实施方式中,第一装置和第二装置可通过请求帧和响应帧中的secure sensing feedback type字段协商反馈CSI还是反馈安全LTF字段的复数采样。当请求帧中的secure sensing feedback type字段置为1时,用于请求反馈CSI,响应帧中的secure sensing feedback type字段置为0时,用于响应不同意反馈CSI,响应帧中的secure sensing feedback type字段置为1时,用于响应同意反馈CSI。当请求帧中的secure sensing feedback type字段置为0时,用于请求反馈安全LTF字段/安全TRN字段的复数采样,响应帧中的secure sensing feedback type字段置为0时,用于响应不同意反馈安全LTF字段/安全TRN字段的复数采样,响应帧中的secure sensing feedback type字段置为1时,用于响应同意反馈安全LTF字段/安全TRN字段的复数采样。
可见,本申请实施例中,第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧,第二装置未进行信道估计,而是直接向第一装置反馈安全LTF字段/安全TRN字段的复数采样。第二装置接收到安全LTF字段/安全TRN字段的复数采样后,可根据安全LTF字段对安全LTF字段的复数采样进行解析,或者根据安全TRN字段对安全TRN字段的复数采样进行解析,获得第一装置到第二装置的CSI。第二装置的反馈方式也可保障反馈阶段信息的安全。
可选的,本申请实施例不限定第二装置反馈加密CSI的实施方式,例如,第二装置还可根据随机数对安全LTF字段或安全TRN字段的复数采样进行加密处理,再向第一装置反馈 加密处理后的安全LTF字段或安全TRN字段的复数采样。
本申请实施例中,上述第二装置反馈根据预设LTF字段进行信道估计获得的CSI,或者反馈根据第二字段的安全参数所生成的第二字段进行信道估计获得的CSI时,第二装置通过CSI feedback帧向第一装置反馈信道估计获得的CSI,即上述信息反馈方法中的第一反馈帧为CSI feedback帧。以下阐述第一装置与第二装置在低频频段进行测量感知时,CSI feedback帧的帧结构:
一种可选的实施方式中,如图13(a)所示,该CSI feedback帧是在高吞吐量(high throughput,HT)的action帧中的CSI反馈帧中新增加密CSI报告字段(encryption CSI report字段),该encryption CSI report字段包括加密的CSI子字段(encryption of the CSI子字段)和遗留子字段(reserved子字段)。
另一种可选的实施方式中,该CSI feedback帧如图13(b)所示,该CSI feedback是复用目前HT的action帧中的CSI反馈帧,CSI feedback帧是CSI反馈帧中的控制字段的reserved字段增加encryption of the CSI子字段和reserved子字段。
目前的HT标准中只支持20/40MHz的CSI矩阵反馈,后续的标准都不在支持CSI矩阵的反馈。802.11bf协议中,本申请实施例的反馈方法可拓展到更大带宽下的CSI矩阵反馈。需要声明的是,图13(b)只是基于HT标准的修改示例,本申请实施例中的反馈方法还可以对应的使用到未来802.11bf协议中更大带宽的CSI矩阵的反馈之中。另外,图13(b)仅以CSI矩阵为例进行了反馈帧的描述,本申请实施例同样适用采用noncompressed beamforming和compressed beamforming进行反馈计算中的反馈帧。
其中,encryption of the CSI子字段用于指示第二装置所发的CSI是否为正确的CSI。encryption of the CSI字段置0时,用于指示第二装置反馈的CSI是正确的CSI;encryption of the CSI字段置1时,用于指示第二装置反馈的CSI是错误的CSI。本申请实施例中,第二装置向第一装置反馈的CSI是根据接收的第一字段,以及预设LTF字段或预设TRN字段进行信道估计获得的CSI,或者是根据接收的第一字段,以及第二字段的安全参数所生成的第二子弹进行信道估计获得的CSI,第二字段是与安全LTF字段或安全TRN字段不相同的字段。因此第二装置向第一装置反馈的CSI均是错误的CSI,从而第二装置向第一装置发送CSI feedback帧时,该CSI feedback帧中的encryption of the CSI字段置为1。
本申请实施例中,上述第二装置向第一装置反馈安全LTF字段或安全TRN字段的复数采样时,是通过secure LTF feedback帧向第一装置反馈安全LTF字段的复数采样,即上述信息反馈方法中的第一反馈帧为secure LTF feedback帧。
一种可选的实施方式中,该secure LTF feedback帧如图13(c)所示,该secure LTF feedback帧是在HT action帧中的reserved字段增加secure LTF feedback字段,secure LTF feedback字段包括secure LTF report子字段。CSI LTF report子字段用于指示第二装置反馈安全LTF字段的复数采样。secure LTF feedback字段包括反馈的内容(比如为secure LTF),反馈内容所占用的大小(bits),以及代表的含义(meaning)。
本申请实施例中,第一装置与第二装置在低频频段进行测量感知时,第一装置或第二装置发送的trigger帧,可如图14(a)所示。该trigger帧的帧结构可参考802.11az中trigger帧的帧结构。不同之处在于,trigger帧的帧结构是在802.11az中的trigger帧中的reserved字段新增secure sensing enable字段。
本申请实施例中,第一装置与第二装置在低频频段进行测量感知时,第一装置或第二装置发送的NDPA帧,可如图14(b)所示。该NDPA帧的帧结构可参考802.11az中NDPA帧的帧结构。不同之处在于,在802.11az中的NDPA帧中的reserved字段新增secure sensing enable字段。
其中,secure sensing enable字段用于指示即将发送的加密后的NDP帧,即向对端指示将发送携带安全LTF字段的NDP帧。另外,若第一装置和第二装置在NDPA帧中交互了安全参数,则交换的参数也是错误的参数。从而第二装置反馈的应是加密后的反馈帧,第一装置应准备好接收并按照协商内容进行处理。
也就是说,secure sensing enable字段除了放在上述请求帧和响应帧中,该secure sensing enable字段还可放在trigger帧和NDPA帧中。secure sensing enable字段放在trigger帧和NDPA帧中时,用于指示即将发送的加密后的NDP帧且后续为一个加密测量反馈过程。
一种可选的实现方式中,上述请求帧和响应帧中包括secure sensing parameters exchange字段、additional secure LTF字段、encrypted feedback字段中的一种或多种时,trigger帧和NDPA帧也还可包括上述secure sensing parameters exchange字段、additional secure LTF字段、encrypted feedback字段中对应的一种或多种。
另一种可选的实施方式中,上述请求帧和响应帧中不包括secure sensing parameters exchange字段、additional secure LTF字段、encrypted feedback字段中的一种或多种,而trigger帧和NDPA帧中可包括上述secure sensing parameters exchange字段、additional secure LTF字段、encrypted feedback字段中的一种或多种。
可见,trigger帧和NDPA帧的帧结构不限定于上述图14(a)和图14(b)的帧结构。
本申请实施例中,NDPA帧和trigger帧的帧结构是参考802.11az协议中的帧结构,但本申请实施例不限定该NDPA帧和trigger帧的帧结构。NDPA帧和trigger帧的帧结构还可适应802.11bf协议中未来新的帧结构,但NDPA帧和trigger帧仍包括上述secure sensing enable字段,或者该NDPA帧和trigger帧仍包括secure sensing parameters exchange字段、additional secure LTF字段、encrypted feedback字段中的一种或多种。
本申请实施例中,feedback trigger帧结构如图15所示,feedback trigger帧包括encryption of feedback字段,该encryption of feedback字段用于指示第二装置反馈的反馈帧是否为加密后的反馈帧。encryption of feedback字段置0时,用于指示第二装置反馈的反馈帧不为加密后的反馈帧;encryption of feedback字段置1时,用于指示第二装置反馈的反馈帧为加密后的反馈帧。可选的,该feedback trigger帧包括上述secure sensing enable字段。
如图15所示,该encryption of feedback字段可以放在user info里单独向STA指示。可选的,该encryption of feedback字段也可以放在common info里统一指示。
本申请实施例中,第一装置与第二装置在高频频段进行测量感知时,secure TRN字段与secure LTF字段的加密方式类似,第一装置也可从secure TRN字段中可以提取可用的CSI做感知(sensing)。第一装置与第二装置协商过程中,仍然将请求帧和响应帧中的secure sensing enable字段置1,以协商第二装置可根据与安全TRN字段不相同的字段进行信道估计。第一装置与第二装置在高频频段进行测量感知的流程可参见802.11ay协议中的波束训练流程。
可选的,请求帧和响应帧secure sensing parameters exchange字段可以依据需求选择置1或置0。
可选的,请求帧和响应帧中的secure sensing feedback type也可以根据需求选择置0或置 1。secure sensing feedback type字段置0时,第二装置反馈根据预设TRN字段进行信道估计获得的错误CSI;secure sensing feedback type字段置1时,第二装置反馈接收的secure TRN字段的复数采样。
第一装置与第二装置的交互流程上,第一装置向第二装置发送携带安全TRN字段的第一帧。第一装置和第二装置在协商阶段协商反馈CSI feedback帧,且不交换安全TRN字段的安全参数时,第二装置向第一装置反馈根据接收的TRN字段和预设TRN字段进行信道估计获得的CSI,或者第一装置向第二装置发送了TRN字段的安全参数时,第二装置向第一装置反馈根据接收的TRN字段和TRN字段的安全参数所生成的TRN字段进行信道估计获得CSI。第一装置根据预设TRN字段和发送的安全TRN字段对接收的CSI进行解析,或者根据TRN字段的安全参数所生成的TRN字段和发送的安全TRN字段对接收的CSI进行解析,获得第一装置到第二装置的CSI。
其中,第一装置与第二装置在高频频段进行测量感知时,第一帧可以是波束优化协议(beam refinement protocol,BRP)帧,即第一装置可向第二装置发送携带安全TRN字段的BRP帧。可理解的,该BRP帧也可被称为波束精炼协议帧、波束细化协议帧等等。
可选的,第一装置和第二装置在协商阶段采样。第一装置根据安全TRN字段的复数采样和安全TRN字段,获得第一装置到第二装置的CSI。
示例性的,第一装置为AP,第二装置包括STA1、STA2、STA3,AP与STA1、STA2、STA3在高频频段进行测量感知的交互流程示意图如图16所示。AP在与STA1、STA2、STA3的协商阶段,将secure sensing enable字段置1,以协商STA1、STA2、STA3可根据与安全TRN字段不相同的字段进行信道估计。可选的,AP在与STA1、STA2、STA3的协商阶段,可以依据需求选择将secure sensing parameters exchange字段置1或置0。
AP向STA1、STA2、STA3分别发送携带有secure TRN的测量帧(sensing measurement frame)后,STA1、STA2、STA3分别按照与AP在协商阶段协商的指示,向AP反馈根据接收的安全TRN字段和预设TRN字段进行信道估计获得的CSI,或者向AP反馈根据接收的安全TRN字段和来自AP的TRN字段的安全参数所生成的TRN字段进行信道估计获得的CSI。从而AP分别接收来自STA1、STA2、STA3的反馈帧(CSI feedback帧),并根据预设TRN字段和发送的安全TRN字段对反馈帧中的CSI进行解析,或者根据TRN字段的安全参数所生成的TRN字段和发送安全TRN字段对反馈帧中的CSI进行解析,分别获得AP到STA1的CSI、AP到STA2的CSI、AP到STA3的CSI。
本申请实施例中,第一装置与第二装置在高频频段进行测量感知时,第二装置向第二装置反馈的CSI feedback帧是借鉴802.11ay的Digital Beamforming feedback element进行反馈。如图17(a)所示,第二装置将获得的secure SCI放入802.11ay的Digital Beamforming Feedback information中进行反馈。
本申请实施例中,第一装置与第二装置在高频频段进行测量感知,且第二装置向第二装置反馈secure TRN字段的复数采样时,是通过secure TRN feedback帧进行反馈的。
一种可选的实施方式中,高频频段下的CSI feedback帧和secure TRN feedback帧是在802.11bf中新设计的一种反馈帧,其帧结构示意图如图17(b)所示。可见,secure sensing feedback字段包括secure TRN feedback子字段和CSI feedback字段。CSI feedback字段置为1时,用于指示反馈CSI;secure TRN feedback字段置为1时,用于指示反馈安全TAN字段的复数采样。secure TRN feedback字段和CSI feedback字段均包括反馈的内容(比如为secure TRN还是secure CSI),反馈内容所占用的大小(bits),以及代表的含义(meaning)。
另一种可选的实施方式中,第二装置采用目前的FTM帧进行反馈,如图17(c)所示,在FTM帧的encrypyion of the CSI字段后增加一个secure sensing feedback。由于FTM帧为一个protected帧,因此第二装置采用FTM帧进行反馈,可保护反馈信息的安全。其secure TRN feedback字段和CSI feedback字段的结构和上述图17(b)的结构相同,不再赘述。
又一种可选的实施方式中,如图17(d)所示,第二装置在BRP帧中新增字段进行反馈。其secure TRN feedback字段和CSI feedback字段的结构和上述图17(b)的结构相同,不再赘述。
本申请实施例还可适用于接收端采用上述图3中的L-LTF字段进行信道估计,且接收端需向发送端反馈信道估计获得的CSI时的通信场景。如发送端发送一个兼容L-LTF字段的安全L-LTF,接收端使用预设的L-LTF字段(或者不同于发送端的安全L-LTF字段)进行信道估计。可选的,本申请实施例还可应用于接收端采用协议中下一代安全LTF字段进行信道估计,且接收端需向发送端反馈信道估计获得的CSI时的通信场景。例如,发送端向接收端发送基于WIFI 7/EHT(或再下一代标准,如WIFI8)协议的EHT安全LTF字段,接收端采用预设EHT-LTF字段(或不同于发送端的EHT安全LTF字段)进行信道估计时,本申请实施例的信息反馈流程可适用于接收端反馈CSI的方式。比如接收端向发送端反馈根据接收的EHT安全LTF字段,以及与EHT安全LTF字段不相同的字段(预设EHT-LTF字段或其他不同于发送端的EHT安全LTF字段)进行信道估计获得的CSI。
本申请实施例中,上述请求帧和协商帧中部分字段可适用于隐式反馈场景。以下以AP与STA在低频频段进行测量感知为例,且结合TB测距模式、NTB测距模式,单边交互、多边交互的通信场景,阐述请求帧和协商帧中部分字段的实施方式。
一.Non-TB测距模式。
场景1.1 AP为需要获得测量信息的一方,STA为发送测量帧的一方。
该场景下,AP与STA的交互流程图如图18(a)所示。AP与STA在协商阶段将请求帧和响应帧中的secure sensing enable字段置1,以协商可发送或接收携带安全LTF字段的NDP帧。另外,AP在协商阶段将secure sensing parameters exchange字段置1,以请求交换安全LTF字段的安全参数,STA在协商阶段将secure sensing parameters exchange字段置1,以响应同意交换安全LTF字段的安全参数。
如图18(a)所示,STA向AP发送NDPA帧,以向AP声明即将发送携带安全LTF字段的NDP帧。STA向AP发送携带安全LTF字段的NDP帧。AP接收到携带安全LTF字段的NDP帧后,根据协商阶段与STA交换的安全LTF字段的安全参数生成安全LTF字段,再根据该安全LTF字段和接收的安全LTF字段进行信道估计,获得STA到AP的CSI。
场景1.2 STA为需要获得测量信息的一方,AP为发送测量帧的一方。
该场景下,AP与STA的交互流程图如图18(b)所示。AP与STA在协商阶段的协商可和上述图18(a)中的协商方式相同,不再赘述。
如图18(b)所示,STA向AP发送NDPA帧,以向AP声明需接收携带安全LTF字段的NDP帧。从而AP向STA发送携带安全LTF字段的NDP帧。STA接收到携带安全LTF字段的NDP帧后,根据协商阶段与AP交换的安全LTF字段的安全参数生成安全LTF字段,再根据该安全LTF字段和接收的安全LTF字段进行信道估计,获得AP到STA的CSI。
二.TB测距模式。
场景2.1 AP为需要获得测量信息的一方,STA为发送测量帧的一方。
该场景下,AP与STA的交互流程图如图18(c)所示。AP与STA在协商阶段的协商可和上述图18(a)中的协商方式相同,不再赘述。
如图18(c)所示,AP通过向STA发送TF sensing poll,以向STA发出轮询。STA通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA参与会话时,AP向STA发送TF sensing sounding,以通知STA需接收携带安全LTF字段的NDP帧。从而STA向AP发送携带安全LTF字段的NDP帧。AP接收到携带安全LTF字段的NDP帧后,根据协商阶段与STA交换的安全LTF字段的安全参数生成安全LTF字段,再根据该安全LTF字段和接收的安全LTF字段进行信道估计,获得STA到AP的CSI。
场景2.2 AP为需要获得测量信息的一方,STA为发送测量帧的一方。
该场景下,AP与STA的交互流程图如图18(d)所示。AP与STA在协商阶段的协商可和上述图18(a)的协商方式相同,不再赘述。
如图18(d)所示,AP通过向STA发送TF sensing poll,以向STA发出轮询。STA通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA参与会话时,AP向STA发送NDPA帧,以向STA声明将发送携带安全LTF字段的NDP帧。AP向STA发送NDP帧。STA接收到携带安全LTF字段的NDP帧后,根据协商阶段与AP交换的安全LTF字段的安全参数生成安全LTF字段,再根据该安全LTF字段和接收的安全LTF字段进行信道估计,获得AP到STA的CSI。
场景2.3 AP为需要获得测量信息的一方,STA1和STA2为发送测量帧的一方。
该场景下,AP与STA1、STA2的交互流程图如图18(e)所示。AP与STA1、STA2在协商阶段的协商可和上述图18(a)中的协商方式相同,不再赘述。
如图18(e)所示,AP分别向STA1、STA2发送TF sensing poll,以向STA1、STA2发出轮询。STA1和STA2通过向AP返回CTS-to-self,以确认是否能够参与会话。当AP确认STA1和STA2参与会话时,分别向STA1和STA2发送TF sensing sounding,以通知STA需接收携带安全LTF字段的NDP帧。从而STA1和STA2均向AP发送携带安全LTF字段的NDP帧。进而AP分别根据与STA1和STA2在协商阶段交换的安全LTF字段的安全参数所生成的安全LTF字段和接收的安全LTF字段进行信道估计,分别获得STA1到AP的CSI,STA2到AP的CSI。
六.通信装置。
为了实现上述本申请实施例提供的方法中的各功能,第一装置或第二装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图19所示,本申请实施例提供了一种通信装置1900。该通信装置1900可以是第一装置的部件(例如,集成电路,芯片等等),也可以是第二装置的部件(例如,集成电路,芯片等等)。该通信装置1900也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置1900可以包括:通信单元1901和处理单元1902。可选的,还可以包括存储单元1903。
在一种可能的设计中,如图19中的一个或者多个单元可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述通信装置1900具备实现本申请实施例描述的第一装置的功能,可选的,通信装置1900具备实现本申请实施例描述的第二装置的功能。比如,所述通信装置1900包括第一装置执行本申请实施例描述的第一装置涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,所述通信装置1900包括:处理单元1902和通信单元1901,处理单元1902用于控制通信单元1901进行数据/信令收发;
通信单元1901,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
通信单元1901,还用于接收来自所述第二装置的第一反馈帧;
其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
一种可选的实施方式中,所述第一字段是安全长训练LTF字段,或者,所述第一字段是安全训练TRN字段。
一种可选的实现方式中,通信单元1901向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,通信单元1901还用于:向第二装置发送请求帧,所述请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;接收来自所述第二装置的响应帧,所述响应帧用于响应该请求帧。
另一种可选的实现方式中,所述请求帧还用于请求不交换所述第一字段的安全参数,所述第二字段是预设LTF字段或预设TRN字段;所述响应帧还用于响应该请求帧。
又一种可选的实现方式中,所述请求帧还包括所述第二字段的安全参数,所述第二字段的安全参数用于生成所述第二字段;所述响应帧还用于响应该请求帧。
又一种可选的实现方式中,所述请求帧还用于请求不具有生成所述第一字段能力的第二装置根据与安全LTF字段或所述安全TRN字段不相同的字段进行信道估计;所述响应帧还用于响应同意该请求帧。
一种可选的实现方式中,通信单元1901还用于接收携带所述第二字段的第二帧;处理单元1902还用于根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI。
一种可选的实施方式中,上述第二字段的安全参数是第一装置历史发送的第一字段的安全参数中的一个。
另一种可选的实施方式中,上述第二字段的安全参数是第一装置未向第二装置发送过的参数,且与第一字段的安全参数不相同。
一种可选的实现方式中,处理单元1902还可根据所述第二字段和所述第一字段,对所述CSI进行解析,获得第一CSI。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
在另一种可能的设计中,所述通信装置1900包括:处理单元1902和通信单元1901,处理单元1902用于控制通信单元1901进行数据/信令收发;
通信单元1901,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
通信单元1901,还用于接收来自第二装置的第一反馈帧,以及接收来自第二装置的第二反馈帧;
其中,第一反馈帧包括信道状态信息CSI,CSI是第一装置到第二装置的CSI,CSI是第二装置根据接收的第一字段和第二字段进行信道估计获得的,第二字段不是第一字段。第二反馈帧包含加密的第三CSI,第三CSI是第三装置到第二装置的CSI。
一种可选的实现方式中,所述加密的第三CSI是所述第二装置采用所述第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。
一种可选的实现方式中,通信单元1901向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,通信单元1901还可向第二装置发送请求帧,所述请求帧用于请求所述第二装置测量第三装置到所述第二装置的第三信道状态信息CSI,并将所述第三CSI加密反馈给所述第一装置;通信单元1901还可接收来自所述第二装置的响应帧,所述响应帧用于响应该请求帧。
一种可选的实现方式中,通信单元1901还可接收携带第二字段的第二帧;处理单元1902根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI;通信单元1901接收来自所述第二装置的第三反馈帧,所述第三反馈帧包括所述第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对所述第二装置到所述第三装置的信道进行信道估计获得的CSI;处理单元1602根据发送的第二字段,以及所述预设LTF字段或所述预设TRN字段,对所述第三反馈帧中的CSI进行解析,获得第四CSI。
一种可选的实现方式中,通信单元1901还可接收携带第二字段的第二帧;处理单元1902根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI;通信单元1901接收来自所述第二装置的第三反馈帧,所述第三反馈帧包括加密的第四CSI,所述加密的第四CSI是所述第二装置采用所述第二字段的安全参数对第四CSI进行加密处理获得的,所述第四CSI是所述第二装置对所述第三装置反馈的第四反馈帧进行解析获得的,所述第四反馈帧包括所述第三装置根据接收的第二字段,以及与所述第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息;处理单元1902根据所述第二字段的安全参数,对所述第三反馈帧进行解析,获得所述第四CSI。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
在又一种可能的设计中,所述通信装置1900包括:处理单元1902和通信单元1901,处理单元1902用于控制通信单元1901进行数据/信令收发;
通信单元1901,用于接收携带用于进行信道估计的第一字段的第一帧;
通信单元1901,还用于向第一装置发送第一反馈帧;
其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
一种可选的实现方式中,所述第一字段是安全长训练LTF字段,或者,所述第一字段是安全训练TRN字段。
一种可选的实现方式中,通信单元1901接收携带用于进行信道估计的第一字段的第一帧之前,通信单元1901还可接收来自第一装置的请求帧,所述请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;通信单元1901还可向所述第一装置发送响应帧,所述响应帧用于响应该请求帧。
一种可选的实现方式中,所述请求帧还用于请求不交换所述第一字段的安全参数,所述第二字段是预设LTF字段或预设TRN字段;
所述响应帧还用于响应同意不交换所述第一字段的安全参数。
另一种可选的实现方式中,所述请求帧还包括所述第二字段的安全参数,所述第二字段的安全参数用于生成所述第二字段;所述响应帧还用于响应该请求帧。
又一种可选的实现方式中,所述请求帧还用于请求不具有生成所述第一字段能力的第二装置根据与安全LTF字段或所述安全TRN字段不相同的字段进行信道估计;所述响应帧还用于响应该请求帧。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
在又一种可能的设计中,所述通信装置1900包括:处理单元1902和通信单元1901,处理单元1902用于控制通信单元1901进行数据/信令收发;
通信单元1901,用于接收携带用于进行信道估计的第一字段的第一帧;
通信单元1901,还用于向第一装置发送第一反馈帧,以及向所述第一装置发送第二反馈帧;
所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;
所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
一种可选的实现方式中,所述加密的第三CSI是所述第二装置采用所述第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。
一种可选的实现方式中,通信单元1901接收携带用于进行信道估计的第一字段的第一帧之前,通信单元1901还可接收来自第一装置的请求帧,所述请求帧用于请求所述第二装置测量第三装置到所述第二装置的第三信道状态信息CSI,并将所述第三CSI加密反馈给所述第一装置;通信单元1901还可向所述第一装置发送响应帧,所述响应帧用于响应该请求帧。
一种可选的实现方式中,通信单元1901还可向所述第一装置和所述第三装置发送携带第二字段的第二帧;通信单元1901还可接收来自所述第三装置的第三反馈帧;通信单元1901还可向所述第一装置发送所述第三反馈帧;所述第三反馈帧包括所述第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对所述第二装置到所述第三装置之间的信道进行信道估计获得的CSI。
一种可选的实现方式中,通信单元1901向所述第一装置和所述第三装置发送携带第二字段的第二帧;通信单元1901接收来自所述第三装置的第四反馈帧;所述第四反馈帧包括所述第三装置根据接收的第二字段,以及与所述第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息;处理单元1902根据与所述第二字段的安全参数不相同的参数生成的字段、所述第二字段,对所述第四反馈帧进行解析获得第四CSI;处理单元1902采用第二字段的安全参数对所述第四CSI进行加密处理,获得第三反馈帧;通信单元1901向所述第一装置发送所述第三反馈帧。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置2000,图20为通信装置2000的结构示意图。所述通信装置2000可以是第一装置或第二装置,也可以是支持第一装置实现上述方法的芯片、芯片系统、或处理器等,还可以是支持第二装置实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置2000可以包括一个或多个处理器2001。所述处理器2001可以是通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(central processing unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,分布单元(distributed unit,DU)或集中单元(centralized unit,CU)等))进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置2000中可以包括一个或多个存储器2002,其上可以存有指令2004,所述指令可在所述处理器2001上被运行,使得所述通信装置2000执行上述方法实施例中描述的方法。可选的,所述存储器2002中还可以存储有数据。所述处理器2001和存储器2002可以单独设置,也可以集成在一起。
存储器2002可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(random access memory,RAM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、只读存储器(read-only memory,ROM)或便携式只读存储器(compact disc Read-Only memory,CD-ROM)等等。
可选的,所述通信装置2000还可以包括收发器2005、天线2006。所述收发器2005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置2000为第一装置:收发器2005用于执行上述信息反馈方法100中的S101、S104。收发器2005用于执行上述信息反馈方法200中的S201
所述通信装置2000为第二装置:收发器2005用于执行信息反馈方法100中的S101、S103、S104。收发器2005用于执行信息反馈方法200中的S202、S203。
另一种可能的设计中,处理器2001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器2001可以存有指令2003,指令2003在处理器2001上运行,可使得所述通信装置2000执行上述方法实施例中描述的方法。指令2003可能固化在处理器2001中,该种情况下,处理器2001可能由硬件实现。
又一种可能的设计中,通信装置2000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请实施例和上述信息反馈方法100和信息反馈方法200所示方法实施例基于同一构 思,其带来的技术效果也相同,具体原理请参照上述信息反馈方法100和信息反馈方法200所示实施例的描述,不再赘述。
本申请还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的交互或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drive,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (51)

  1. 一种信息反馈方法,其特征在于,所述方法包括:
    第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧;
    所述第一装置接收来自所述第二装置的第一反馈帧;
    其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
  2. 根据权利要求1所述的方法,其特征在于,所述第一字段是安全长训练LTF字段,或者,所述第一字段是安全训练TRN字段。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,所述方法还包括:
    第一装置向第二装置发送请求帧,所述请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;
    所述第一装置接收来自所述第二装置的响应帧,所述响应帧用于响应所述请求帧。
  4. 根据权利要求3所述的方法,其特征在于,
    所述请求帧还用于请求不交换所述第一字段的安全参数,所述第二字段是预设LTF字段或预设TRN字段;
    所述响应帧还用于响应所述请求帧。
  5. 根据权利要求3所述的方法,其特征在于,
    所述请求帧还包括所述第二字段的安全参数,所述第二字段的安全参数用于生成所述第二字段;
    所述响应帧还用于响应所述请求帧。
  6. 根据权利要求4所述的方法,其特征在于,
    所述请求帧还用于请求不具有生成所述第一字段能力的第二装置根据与所述安全LTF字段或所述安全TRN字段不相同的字段进行信道估计;
    所述响应帧还用于响应所述请求帧。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收携带所述第二字段的第二帧;
    所述第一装置根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一装置根据所述第二字段和所述第一字段,对所述CSI进行解析,获得第一CSI。
  9. 一种信息反馈方法,其特征在于,所述方法包括:
    第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧;
    所述第一装置接收来自所述第二装置的第一反馈帧,以及接收来自所述第二装置的第二反馈帧;
    所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;
    所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
  10. 根据权利要求9所述的方法,其特征在于,
    所述加密的第三CSI是所述第二装置采用所述第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一装置向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,所述方法还包括:
    第一装置向第二装置发送请求帧,所述请求帧用于请求所述第二装置测量第三装置到所述第二装置的第三信道状态信息CSI,并将所述第三CSI加密反馈给所述第一装置;
    所述第一装置接收来自所述第二装置的响应帧,所述响应帧用于响应所述请求帧。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收携带第二字段的第二帧;
    所述第一装置根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI;
    所述第一装置接收来自所述第二装置的第三反馈帧,所述第三反馈帧包括所述第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对所述第二装置到所述第三装置之间的信道进行信道估计获得的CSI;
    所述第一装置根据所述第二字段,以及所述预设LTF字段或所述预设TRN字段,对所述第三反馈帧中的CSI进行解析,获得第四CSI。
  13. 根据权利要求9至11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一装置接收携带第二字段的第二帧;
    所述第一装置根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI;
    所述第一装置接收来自所述第二装置的第三反馈帧,所述第三反馈帧包括加密的第四CSI,所述加密的第四CSI是所述第二装置采用所述第二字段的安全参数对第四CSI进行加密处理获得的,所述第四CSI是所述第二装置对所述第三装置反馈的第四反馈帧进行解析获得的,所述第四反馈帧包括所述第三装置根据接收的第二字段,以及与所述第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息;
    所述第一装置根据所述第二字段的安全参数,对所述第三反馈帧进行解析,获得所述第四CSI。
  14. 一种信息反馈方法,其特征在于,所述方法包括:
    第二装置接收携带用于进行信道估计的第一字段的第一帧;
    所述第二装置向第一装置发送第一反馈帧;
    其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
  15. 根据权利要求14所述的方法,其特征在于,所述第一字段是安全长训练LTF字段,或者,所述第一字段是安全训练TRN字段。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二装置接收携带用于进行信道估计的第一字段的第一帧之前,所述方法还包括:
    第二装置接收来自第一装置的请求帧,所述请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;
    所述第二装置向所述第一装置发送响应帧,所述响应帧用于响应所述请求帧。
  17. 根据权利要求16所述的方法,其特征在于,
    所述请求帧还用于请求不交换所述第一字段的安全参数,所述第二字段是预设LTF字段或预设TRN字段;
    所述响应帧还用于响应所述请求帧。
  18. 根据权利要求16所述的方法,其特征在于,
    所述请求帧还包括所述第二字段的安全参数,所述第二字段的安全参数用于生成所述第二字段;
    所述响应帧还用于响应所述请求帧。
  19. 根据权利要求15所述的方法,其特征在于,
    所述请求帧还用于请求不具有生成所述第一字段能力的第二装置根据与所述安全LTF字段或所述安全TRN字段不相同的字段进行信道估计;
    所述响应帧还用于响应所述请求帧。
  20. 一种信息反馈方法,其特征在于,所述方法包括:
    第二装置接收携带用于进行信道估计的第一字段的第一帧;
    所述第二装置向第一装置发送第一反馈帧,以及向所述第一装置发送第二反馈帧;
    所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;
    所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
  21. 根据权利要求20所述的方法,其特征在于,
    所述加密的第三CSI是所述第二装置采用所述第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第二装置接收携带用于进行信道估计的第一字段的第一帧之前,所述方法还包括:
    第二装置接收来自第一装置的请求帧,所述请求帧用于请求所述第二装置测量第三装置到所述第二装置之间的第三信道状态信息CSI,并将所述第三CSI加密反馈给所述第一装置;
    所述第二装置向所述第一装置发送响应帧,所述响应帧用于响应所述请求帧。
  23. 根据权利要求20至22任一项所述的方法,其特征在于,所述方法还包括:
    所述第二装置向所述第一装置和所述第三装置发送携带第二字段的第二帧;
    所述第二装置接收来自所述第三装置的第三反馈帧;
    所述第二装置向所述第一装置发送所述第三反馈帧;
    所述第三反馈帧包括所述第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对所述第二装置到所述第三装置之间的信道进行信道估计获得的CSI。
  24. 根据权利要求20至22任一项所述的方法,其特征在于,所述方法还包括:
    所述第二装置向所述第一装置和所述第三装置发送携带第二字段的第二帧;
    所述第二装置接收来自所述第三装置的第四反馈帧;所述第四反馈帧包括所述第三装置根据接收的第二字段,以及与所述第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息;
    所述第二装置根据与所述第二字段的安全参数不相同的参数生成的字段、所述第二字段,对所述第四反馈帧进行解析获得第四CSI;
    所述第二装置采用与所述第二字段的安全参数对所述第四CSI进行加密处理,获得第三反馈帧;
    所述第二装置向所述第一装置发送所述第三反馈帧。
  25. 一种通信装置,其特征在于,所述通信装置包括:
    通信单元,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
    所述通信单元,还用于接收来自所述第二装置的第一反馈帧;
    其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
  26. 根据权利要求25所述的装置,其特征在于,所述第一字段是安全长训练LTF字段,或者,所述第一字段是安全训练TRN字段。
  27. 根据权利要求25或26所述的装置,其特征在于,所述通信单元向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,所述通信单元还用于:
    向第二装置发送请求帧,所述请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;
    接收来自所述第二装置的响应帧,所述响应帧用于响应所述请求帧。
  28. 根据权利要求27所述的装置,其特征在于,
    所述请求帧还用于请求不交换所述第一字段的安全参数,所述第二字段是预设LTF字段或预设TRN字段;
    所述响应帧还用于响应所述请求帧。
  29. 根据权利要求27所述的装置,其特征在于,
    所述请求帧还包括所述第二字段的安全参数,所述第二字段的安全参数用于生成所述第二字段;
    所述响应帧还用于响应所述请求帧。
  30. 根据权利要求28所述的装置,其特征在于,
    所述请求帧还用于请求不具有生成所述第一字段能力的第二装置根据与所述安全LTF字段或所述安全TRN字段不相同的字段进行信道估计;
    所述响应帧还用于响应所述请求帧。
  31. 根据权利要求29所述的装置,其特征在于,所述装置还包括处理单元,所述处理单元,用于:
    接收携带所述第二字段的第二帧;
    根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI。
  32. 根据权利要求25至31任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据所述第二字段和所述第一字段,对所述CSI进行解析,获得第一CSI。
  33. 一种通信装置,其特征在于,所述通信装置包括:
    通信单元,用于向第二装置发送携带用于进行信道估计的第一字段的第一帧;
    所述通信单元,还用于接收来自所述第二装置的第一反馈帧,以及接收来自所述第二装置的第二反馈帧;
    所述第一反馈帧包括信道状态信息CSI,所述CSI是所述装置到所述第二装置的CSI,所述CSI是所述第二装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;
    所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述第二装置的CSI。
  34. 根据权利要求33所述的装置,其特征在于,
    所述加密的第三CSI是所述第二装置采用所述第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。
  35. 根据权利要求33或34所述的装置,其特征在于,所述通信单元向第二装置发送携带用于进行信道估计的第一字段的第一帧之前,所述通信单元还用于:
    向第二装置发送请求帧,所述请求帧用于请求所述第二装置测量第三装置到所述第二装置的第三信道状态信息CSI,并将所述第三CSI加密反馈给所述第一装置;
    接收来自所述第二装置的响应帧,所述响应帧用于响应所述请求帧。
  36. 根据权利要求33至35任一项所述的装置,其特征在于,所述装置还包括处理单元,所述处理单元用于:
    接收携带第二字段的第二帧;
    根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI;
    接收来自所述第二装置的第三反馈帧,所述第三反馈帧包括所述第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对所述第二装置到所述第三装置之间的信道进行信道估计获得的CSI;
    根据所述第二字段,以及所述预设LTF字段或所述预设TRN字段,对所述第三反馈帧中的CSI进行解析,获得第四CSI。
  37. 根据权利要求33至35任一项所述的装置,其特征在于,所述处理单元,还用于:
    接收携带第二字段的第二帧;
    根据接收的第二字段和所述第二字段进行信道估计,获得第二CSI;
    接收来自所述第二装置的第三反馈帧,所述第三反馈帧包括加密的第四CSI,所述加密的第四CSI是所述第二装置采用所述第二字段的安全参数对第四CSI进行加密处理获得的,所述第四CSI是所述第二装置对所述第三装置反馈的第四反馈帧进行解析获得的,所述第四反馈帧包括所述第三装置根据接收的第二字段,以及与所述第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息;
    根据所述第二字段的安全参数,对所述第三反馈帧进行解析,获得所述第四CSI。
  38. 一种通信装置,其特征在于,所述通信装置包括:
    通信单元,用于接收携带用于进行信道估计的第一字段的第一帧;
    通信单元,还用于向第一装置发送第一反馈帧;
    其中,所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述装置的CSI,所述CSI是所述装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段。
  39. 根据权利要求38所述的装置,其特征在于,所述第一字段是安全长训练LTF字段,或者,所述第一字段是安全训练TRN字段。
  40. 根据权利要求38或39所述的装置,其特征在于,所述通信单元接收携带用于进行信道估计的第一字段的第一帧之前,所述通信单元还用于:
    接收来自第一装置的请求帧,所述请求帧用于请求根据与安全LTF字段或安全TRN字段不相同的字段进行信道估计;
    向所述第一装置发送响应帧,所述响应帧用于响应所述请求帧。
  41. 根据权利要求40所述的装置,其特征在于,
    所述请求帧还用于请求不交换所述第一字段的安全参数,所述第二字段是预设LTF字段或预设TRN字段;
    所述响应帧还用于响应所述请求帧。
  42. 根据权利要求40所述的装置,其特征在于,
    所述请求帧还包括所述第二字段的安全参数,所述第二字段的安全参数用于生成所述第二字段;
    所述响应帧还用于响应所述请求帧。
  43. 根据权利要求39所述的装置,其特征在于,
    所述请求帧还用于请求不具有生成所述第一字段能力的第二装置根据与所述安全LTF字段或所述安全TRN字段不相同的字段进行信道估计;
    所述响应帧还用于响应所述请求帧。
  44. 一种通信装置,其特征在于,所述通信装置包括:
    通信单元,用于接收携带用于进行信道估计的第一字段的第一帧;
    通信单元,还用于向第一装置发送第一反馈帧,以及向所述第一装置发送第二反馈帧;
    所述第一反馈帧包括信道状态信息CSI,所述CSI是所述第一装置到所述装置的CSI,所述CSI是所述装置根据接收的第一字段和第二字段进行信道估计获得的,所述第二字段不是所述第一字段;
    所述第二反馈帧包含加密的第三CSI,所述第三CSI是第三装置到所述装置的CSI。
  45. 根据权利要求44所述的装置,其特征在于,
    所述加密的第三CSI是所述装置采用所述第二字段的安全参数所生成的第二字段对第三CSI进行加密处理获得的。
  46. 根据权利要求44或45所述的装置,其特征在于,所述通信单元接收携带用于进行信道估计的第一字段的第一帧之前,所述通信单元还用于:
    接收来自第一装置的请求帧,所述请求帧用于请求所述装置测量第三装置到所述装置之间的第三信道状态信息CSI,并将所述第三CSI加密反馈给所述第一装置;
    向所述第一装置发送响应帧,所述响应帧用于响应所述请求帧。
  47. 根据权利要求44至46任一项所述的装置,其特征在于,所述通信单元还用于:
    向所述第一装置和所述第三装置发送携带第二字段的第二帧;
    接收来自所述第三装置的第三反馈帧;
    向所述第一装置发送所述第三反馈帧;
    所述第三反馈帧包括所述第三装置根据接收的第二字段,以及预设长训练LTF字段或预设训练TRN字段,对所述装置到所述第三装置之间的信道进行信道估计获得的CSI。
  48. 根据权利要求44至46任一项所述的装置,其特征在于,所述装置还包括处理单元,所述处理单元,用于:
    向所述第一装置和所述第三装置发送携带第二字段的第二帧;
    接收来自所述第三装置的第四反馈帧;所述第四反馈帧包括所述第三装置根据接收的第二字段,以及与所述第二字段的安全参数不相同的参数生成的字段,进行信道估计获得的CSI信息;
    根据与所述第二字段的安全参数不相同的参数生成的字段、所述第二字段,对所述第四反馈帧进行解析获得第四CSI;
    采用与所述第二字段的安全参数对所述第四CSI进行加密处理,获得第三反馈帧;
    向所述第一装置发送所述第三反馈帧。
  49. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1至8任一项所述的方法,或者,以使得所述通信装置实现权利要求9至13任一项所述的方法,或者,以使得所述通信装置实现权利要求14至19任一项所述的方法,或者,以使得所述通信装置实现权利要求20至24任一项所述的方法。
  50. 一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当其在计算机上运行时,使得权利要求1至8任一项所述的方法被执行,或者权利要求9至13任一项所述的方法被执行,或者权利要求14至19任一项所述的方法被执行,或者权利要求20至24任一项所述的方法被执行。
  51. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得权利要求1至8任一项所述的方法被执行,或者权利要求9至13任一项所述的方法被执行,或者权利要求14至19任一项所述的方法被执行,或者权利要求20至24任一项所述的方法被执行。
PCT/CN2022/137577 2021-12-31 2022-12-08 一种信息反馈方法及相关装置 WO2023124879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111677172.9 2021-12-31
CN202111677172.9A CN116418460A (zh) 2021-12-31 2021-12-31 一种信息反馈方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023124879A1 true WO2023124879A1 (zh) 2023-07-06

Family

ID=86997648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137577 WO2023124879A1 (zh) 2021-12-31 2022-12-08 一种信息反馈方法及相关装置

Country Status (2)

Country Link
CN (1) CN116418460A (zh)
WO (1) WO2023124879A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103202085A (zh) * 2011-01-03 2013-07-10 Lg电子株式会社 无线局域网系统中的信道探测方法和支持该方法的装置
CN104350799A (zh) * 2012-04-15 2015-02-11 Lg电子株式会社 在无线lan系统中发送和接收反馈触发帧的方法和装置
CN107431567A (zh) * 2015-03-02 2017-12-01 高通股份有限公司 用于信道状态信息探通和反馈的方法和装置
CN113037400A (zh) * 2019-12-24 2021-06-25 华为技术有限公司 信道探测方法及装置
CN113747576A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 发送/接收空数据分组声明帧的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103202085A (zh) * 2011-01-03 2013-07-10 Lg电子株式会社 无线局域网系统中的信道探测方法和支持该方法的装置
CN104350799A (zh) * 2012-04-15 2015-02-11 Lg电子株式会社 在无线lan系统中发送和接收反馈触发帧的方法和装置
CN107431567A (zh) * 2015-03-02 2017-12-01 高通股份有限公司 用于信道状态信息探通和反馈的方法和装置
CN113037400A (zh) * 2019-12-24 2021-06-25 华为技术有限公司 信道探测方法及装置
CN113747576A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 发送/接收空数据分组声明帧的方法及装置

Also Published As

Publication number Publication date
CN116418460A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11012847B2 (en) Method, apparatus, and computer readable medium for switching between lower energy and higher energy wireless communication techniques
KR20230118849A (ko) 멀티 링크 피어 투 피어 통신을 위한 통신 장치 및 통신 방법
US9386440B2 (en) Method for improving communication performance using vehicle provided with antennas
US11405789B1 (en) Cloud-based secure wireless local area network (WLAN) group self-forming technologies
KR20160046801A (ko) Tof 포지셔닝을 위한 정밀 타이밍 측정
TW201740695A (zh) 在mmW無線區域網路系統中多解析度訓練
WO2018082663A1 (zh) 一种参考信号传输的方法及装置
US20220132307A1 (en) Procedures enabling v2x unicast communication over pc5 interface
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2023124879A1 (zh) 一种信息反馈方法及相关装置
WO2023036081A1 (zh) 一种通信方法及通信装置
US11784853B2 (en) Channel measurement method and communication apparatus
WO2018170061A1 (en) Apparatus, system and method of securing wireless communication
WO2021204253A1 (zh) 一种波束训练方法及装置
TWI820874B (zh) 一種應用於通道直接鏈路建立的傳輸方法及裝置
US20230319564A1 (en) Access Point Supporting Certificate-Based and Pre-Shared-Key-Based Authentication
WO2023131159A1 (zh) 数据传输的方法和通信装置
WO2024108368A1 (zh) 一种通信方法及相关设备
WO2023143153A1 (zh) 管理波束的方法和装置
WO2023231970A1 (zh) 一种通信方法及装置
WO2023078203A1 (zh) 感知方法、装置及系统
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2023160357A1 (zh) 上行传输方法与装置、终端设备和网络设备
WO2022206271A1 (zh) 一种确定资源的方法和装置
US20220086638A1 (en) Reset button for selective secure access to a network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914134

Country of ref document: EP

Kind code of ref document: A1