WO2023124733A1 - 电池的管理方法及管理装置及计算机可读存储介质 - Google Patents

电池的管理方法及管理装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2023124733A1
WO2023124733A1 PCT/CN2022/135668 CN2022135668W WO2023124733A1 WO 2023124733 A1 WO2023124733 A1 WO 2023124733A1 CN 2022135668 W CN2022135668 W CN 2022135668W WO 2023124733 A1 WO2023124733 A1 WO 2023124733A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
single battery
discharge
equivalent self
Prior art date
Application number
PCT/CN2022/135668
Other languages
English (en)
French (fr)
Inventor
邓林旺
李晓倩
冯天宇
洪菁菁
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP22913988.6A priority Critical patent/EP4404327A1/en
Priority to AU2022426154A priority patent/AU2022426154A1/en
Priority to KR1020247012204A priority patent/KR20240055854A/ko
Publication of WO2023124733A1 publication Critical patent/WO2023124733A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery management method, a management device, and a computer-readable storage medium.
  • Power batteries are widely used in the field of electric vehicle power sources and backup power sources. In order to increase the energy and voltage of power batteries, it is necessary to connect several single cells in series to form power battery packs. However, in the process of producing single cells, due to Due to the production process, the self-discharge rate of each single battery is different, and the difference in self-discharge rate will cause the state of charge of each single battery to be inconsistent, so that each single battery cannot be fully charged to the upper limit voltage or discharged to the lower limit voltage synchronously. Therefore, it is necessary to detect the self-discharge capacity of each single battery to identify the single battery with a large deviation in self-discharge capacity.
  • the detection of the self-discharge of the single battery is the detection before leaving the factory. Specifically, the self-discharge rate of the single battery is tested before leaving the factory, and the single batteries with basically the same self-discharge rate are combined to form a power battery. Group. However, with the use and aging of the power battery pack, the self-discharge rate of each single battery will change. The aforementioned self-discharge detection is only a test before leaving the factory, and it cannot be used during the use of the power battery pack. self-discharge monitoring.
  • the present application provides a battery management method, a battery management device, a vehicle and a computer-readable storage medium, which can realize the target equivalent self-discharge value of a single battery during the use of a single battery.
  • the calculation can identify the single battery with abnormal self-discharge in time and manage the abnormal single battery.
  • the first aspect of the present application provides a battery management method.
  • the battery management method includes: obtaining the current high-voltage inflection point electric value corresponding to the high-voltage inflection point of the charging curve of each single battery at the current moment; The current historical cumulative balanced electric quantity value of the single battery; the current equalized electric quantity of the single battery is obtained according to the current high voltage inflection point electric quantity value of each single battery and the current historical accumulated balanced electric quantity value of the single battery effective self-discharge value; obtain the equivalent self-discharge value of each single battery at the last moment; subtract the last moment of the single battery from the current equivalent self-discharge value of each single battery Obtain the target equivalent self-discharge value of the single battery within the interval between the current moment and the previous moment by obtaining the equivalent self-discharge value; determine the target equivalent self-discharge value of all single batteries The maximum target equivalent self-discharge value and the minimum target equivalent self-discharge value; divide the maximum target equivalent self-discharge value by the interval time
  • the current equivalent self-discharge of the single battery is obtained according to the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the single battery Quantities, including:
  • the current equivalent self-discharge value of the single battery is obtained by subtracting the current historical cumulative balance electric quantity value of the single battery from the current high-voltage inflection point electric quantity value of each single battery.
  • the current equivalent self-discharge of the single battery is obtained according to the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the single battery Quantities, including:
  • the current equivalent self-discharge value of the single battery is obtained by subtracting the pre-processing current historical cumulative balance electric quantity value of the single battery from the pre-processing current high-voltage inflection point electric quantity value of each single battery (S1035 ).
  • the battery management device is applied to a vehicle, and the management of the target single battery corresponding to the maximum target equivalent self-discharge value includes:
  • the information of the target single battery includes the number and location of the target single battery, the target equivalent self-discharge value and equivalent self-discharge rate.
  • the battery management device further includes a plurality of reminder modules, each reminder module corresponds to a single battery, and the target single battery corresponding to the maximum target equivalent self-discharge value is management, which also includes:
  • the method further includes: replacing the current equivalent self-discharge value of each single battery with the last equivalent self-discharge value of the single battery, so as to update the The stored equivalent self-discharge value of the single battery.
  • the current equivalent self-discharge value of each single battery is replaced with the last equivalent self-discharge value of the single battery to update the stored
  • the equivalent self-discharge value of a single battery including:
  • the last moment is the moment when the vehicle leaves the factory
  • the equivalent self-discharge value of each single battery at the last moment is 0, and the last moment of each single battery is 0.
  • the historical accumulated balance power value is 0, and the power value at the high voltage inflection point of each single battery at the previous moment is 0.
  • the current moment is the moment when the charging curve is obtained during the current charging
  • the last moment is the moment when the charging curve is obtained during the last charging.
  • the single battery may be a power battery or an energy storage battery.
  • the second aspect of the present application further provides a battery management device, which includes: a plurality of single batteries, an acquisition module and a processing module.
  • the acquisition module is used to obtain the current high-voltage inflection point power value corresponding to the high-voltage inflection point of the charging curve of each single battery at the current moment, the current historical cumulative balance power value of each single battery at the current moment, and the current historical cumulative balance power value of each single battery. The equivalent self-discharge value of the previous moment.
  • the processing module is used to obtain the current equivalent self-discharge value of the single battery according to the current high-voltage inflection point electric quantity value of each single battery and the current historical cumulative balanced electric quantity value of the single battery , and the current equivalent self-discharge value of each single battery is subtracted from the equivalent self-discharge value of the single battery at the previous moment to obtain the The target equivalent self-discharge value within the interval duration of the previous moment, determine the maximum target equivalent self-discharge value and the minimum target equivalent self-discharge value among the target equivalent self-discharge values of all single batteries, and set The maximum equivalent self-discharge value is divided by the interval time to obtain the maximum equivalent self-discharge rate, and the minimum target equivalent self-discharge value is divided by the interval time to obtain the minimum equivalent self-discharge rate , and when it is determined that the difference between the maximum equivalent self-discharge rate and the minimum equivalent self-discharge rate is greater than a preset threshold, managing the target single battery corresponding to the maximum target equivalent
  • the current equivalent self-discharge of the single battery is obtained according to the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the single battery Quantities, including:
  • the current equivalent self-discharge value of the single battery is obtained by subtracting the current historical cumulative balance electric quantity of the single battery from the current high-voltage inflection point electric quantity of each single battery.
  • the current equivalent self-discharge of the single battery is obtained according to the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the single battery Quantities, including:
  • the current equivalent self-discharge value of the single battery is obtained by subtracting the preprocessed current historical cumulative balance electric quantity of the single battery from the preprocessed current high-voltage inflection point electric quantity of each single battery.
  • the battery management device is applied to a vehicle, and the battery management device further includes a communication module for communicating with the vehicle, and the maximum target equivalent self-discharge value corresponds to Target single cells to manage, including:
  • the information of the target single battery is sent to the vehicle and/or a terminal communicatively connected with the vehicle through the communication module.
  • the battery management device further includes a plurality of reminder modules, each reminder module corresponds to a single battery, and the target single battery corresponding to the maximum target equivalent self-discharge value is management, including:
  • the battery management device further includes a storage module, the storage module stores the self-discharge value of each single battery, and the processing module is also used to store all the self-discharge values of each single battery The current equivalent self-discharge value replaces the equivalent self-discharge value of the single battery at the previous moment, so as to update the stored self-discharge value of the single battery.
  • the current equivalent self-discharge value of each single battery is replaced with the last equivalent self-discharge value of the single battery to update the stored
  • the self-discharge value of a single battery including:
  • the third aspect of the present application further provides a vehicle, the vehicle comprising the aforementioned battery management device.
  • the fourth aspect of the present application also provides a computer-readable storage medium, wherein a computer program is stored in the computer-readable storage medium, and the computer program is invoked by a processor for execution, so as to realize the aforementioned battery management method.
  • the battery management method, the battery management device, the vehicle and the computer-readable storage medium provided by the present application obtain the current high-voltage inflection point power value and the current historical accumulated balance power value of the charging curve of each single battery , to obtain the current equivalent self-discharge value of each single battery, and subtract the current equivalent self-discharge value from the previous equivalent self-discharge value to obtain the current equivalent self-discharge value of each single battery
  • the target equivalent self-discharge value realizes the monitoring of the self-discharge conditions of all single cells during the use of the battery management device, and then calculates the maximum value through the target equivalent self-discharge value of all single cells
  • FIG. 1 is a flowchart of a battery management method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a charging curve provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a voltage differential curve provided by an embodiment of the present application.
  • FIG. 4 is a sub-flow chart of step S103 in FIG. 1 .
  • FIG. 5 is a structural block diagram of a battery management device provided by an embodiment of the present application.
  • Fig. 6 is a structural block diagram of a vehicle provided by an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection or a An indirect connection through an intermediary may also be an internal connection between two components; it may be a communication connection; it may be an electrical connection.
  • FIG. 1 is a flowchart of a battery management method provided by an embodiment of the present application.
  • the battery management method is applied to a battery management device, and the battery management device includes a plurality of single batteries.
  • the battery management method includes the following steps:
  • S105 Subtract the equivalent self-discharge value of each single battery from the equivalent self-discharge value of the single battery at the previous moment to obtain the current equivalent self-discharge value of the single battery at the current moment and the The target equivalent self-discharge value within the interval duration of the previous moment.
  • S106 Determine a maximum target equivalent self-discharge value and a minimum target equivalent self-discharge value among the target equivalent self-discharge values of all single cells.
  • S107 Divide the maximum target equivalent self-discharge value by the interval time to obtain the maximum equivalent self-discharge rate, and divide the minimum target equivalent self-discharge value by the interval time to obtain the minimum equivalent self-discharge rate self-discharge rate.
  • FIG. 2 is a schematic diagram of the charging curve provided by the embodiment of the present application
  • FIG. 3 is a schematic diagram of the voltage difference curve provided by the embodiment of the present application.
  • the charging curve is a voltage-electricity curve, that is, a relationship curve between voltage and electricity
  • the voltage-electricity curve has three intervals where the voltage changes relatively slowly, and the interval where the voltage changes relatively slowly It is a voltage plateau area, and there is a region with a faster voltage change between two adjacent voltage plateau regions, and the point where the voltage changes fastest
  • the high voltage inflection point and the low voltage inflection point respectively correspond to voltage Two maximum points (maximum point C and maximum value point D) on the differential curve (as shown in Figure 3), wherein, the high voltage inflection point B corresponds to the maximum value point C, and the low voltage Inflection point A corresponds to maximum value point D.
  • the current historical accumulated balanced power value is an accumulated value of the balanced power value obtained at the current time and the balanced power value obtained each time before the current time.
  • the equivalent self-discharge value of each single battery at the previous moment is the value of the high voltage inflection point electric quantity of each single battery at the previous moment minus the history of the single battery at the previous moment Cumulative balance power value.
  • the historical accumulated balanced power value at the last moment is an accumulated value of the balanced power value obtained at the previous time and the balanced power value obtained every time before the last time.
  • the single battery will self-discharge due to the current manufacturing process, and the self-discharge process of each single battery is different, so that the self-discharge rates of the multiple single batteries are inconsistent . Since the self-discharging process of the single battery will cause the high voltage inflection point power value to shift, and the self-discharge rates of the multiple single cells are inconsistent, the degree of deviation of the high voltage inflection point power value of the multiple single cells Inconsistency, so that the obtained high-voltage inflection point power values of all single batteries are different.
  • the battery management device can balance the plurality of single batteries, specifically, compare the remaining power of all the single batteries , discharge the single battery with a higher remaining power to make the single battery generate a corresponding balanced power, wherein the smaller the self-discharge capacity of the single battery, the more the balanced power generated.
  • the equivalent self-discharge value of the single battery can be calculated by using the high-voltage inflection point power value of the single battery and the historical cumulative balanced power value, wherein the equivalent self-discharge value is a relative self-discharge value , since the absolute self-discharge value cannot be calculated, in this application, the equivalent self-discharge value is the relative self-discharge value of each single battery.
  • the last moment is the moment when the vehicle leaves the factory
  • the equivalent self-discharge value of each single battery at the last moment is 0, and the last moment of each single battery is 0.
  • the historical accumulated balance power value is 0, and the power value at the high voltage inflection point of each single battery at the previous moment is 0.
  • the current moment is the moment when the charging curve is obtained during the current charging
  • the last moment is the moment when the charging curve is obtained during the last charging.
  • the interval between the current moment and the previous moment is a preset interval, that is, the current moment is the moment of the previous moment plus the preset interval.
  • the preset interval can be set according to actual needs, for example, it can be 3 months.
  • the number of the plurality of single cells can be set according to actual needs, and is not limited here.
  • the single battery may be a power battery, and the battery management device may be applied to a vehicle, for example, a pure electric vehicle or a hybrid vehicle.
  • the single battery can be an energy storage battery, and the battery management device can be applied to energy storage power stations, peak-shaving and frequency-regulating power auxiliary services, and the like.
  • step S106 when determining the maximum target equivalent self-discharge value and the minimum target equivalent self-discharge value among the target equivalent self-discharge values of all single cells, all the single cells obtained by The target equivalent self-discharge value is compared to determine the maximum target equivalent self-discharge value and the minimum target equivalent self-discharge value.
  • the preset threshold can be set according to actual needs, which is not limited here.
  • Steps S106-S108 will be further specifically described below by taking the battery management device including 8 single batteries as an example.
  • the set of the target equivalent self-discharge values of all single batteries in the battery management device is ⁇ 2, 3, 2, 3, 1, 6, 3, 3 ⁇ , by comparing all the single batteries
  • the target equivalent self-discharge value determines that the minimum target equivalent self-discharge value is 1, and the maximum target equivalent self-discharge value is 6; the value of the interval duration is preset to 2, and the maximum The target equivalent self-discharge value is divided by the interval duration to obtain the maximum equivalent self-discharge rate (3), and the minimum target equivalent self-discharge value is divided by the interval duration to obtain the minimum equivalent self-discharge rate is (0.5); when it is determined that the difference (2.5) between the maximum equivalent self-discharge rate and the minimum equivalent self-discharge rate is greater than a preset threshold (preset to 2), the maximum target equivalent self-discharge rate
  • the target single battery corresponding to the discharge capacity value is managed, that is, the single battery with the target equivalent self-discharge capacity value of 6 is managed.
  • the battery management method provided in the embodiment of the present application obtains the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the charging curve of each single battery to obtain the current Equivalent self-discharge value, subtracting the current equivalent self-discharge value from the previous equivalent self-discharge value to obtain the target equivalent self-discharge value of each single battery, which realizes the During the use of the battery management device, the self-discharge conditions of all single batteries are monitored, and then the maximum equivalent self-discharge rate and the minimum equivalent self-discharge rate are obtained by calculating the target equivalent self-discharge values of all single batteries.
  • the target single battery with the largest equivalent self-discharge rate will be managed, so as to facilitate users to discover abnormal self-discharge in time single battery and repair or replace it.
  • the single battery is obtained according to the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the single battery.
  • the current equivalent self-discharge value including:
  • S1031 Determine the minimum current high-voltage inflection point electric quantity value among the current high-voltage inflection point electric quantity values of all single batteries.
  • S1033 Determine the minimum current historical cumulative balanced power value among the current historical cumulative balanced power values of all single batteries.
  • the obtained current high-voltage inflection point electric quantity values of all single batteries are compared to determine the Describe the minimum current high-voltage inflection point power value.
  • the minimum current historical cumulative balanced power value is determined by comparing the acquired current historical historical cumulative balanced power values of all single cells. The current historical cumulative balance power value.
  • Steps S1031-S1035 will be further specifically described below by taking the battery management device including 8 single batteries as an example.
  • the set of the current high-voltage inflection point power values of all single batteries in the battery management device is ⁇ 4, 6, 8, 5, 1, 7, 5, 3 ⁇ , by comparing the The current high voltage inflection point power value can determine the minimum current high voltage inflection point power value as 1; the current high voltage inflection point power value of each single battery is subtracted from the minimum current high voltage inflection point power value to obtain each The pre-processing current high-voltage inflection point power value of the single battery, and then the set ⁇ 3,5,7,4,0,6,4,2 ⁇ of the pre-processed current high-voltage inflection point power value of all single batteries can be obtained;
  • the set of the current historical accumulated balance power values of all single batteries in the battery management device is ⁇ 2, 4, 5, 6, 3, 4, 5, 3 ⁇ , by comparing the current The historical cumulative balanced power value can determine the minimum current historical cumulative balanced power value as 2; The preprocessing current historical cumulative balance power value of the individual battery, and then the set ⁇ 0, 2, 3, 4, 1, 2, 3, 1 ⁇ of
  • the preprocessing is performed by normalizing the current high-voltage inflection point electric quantity values of all single batteries and normalizing the current historical accumulated electric quantity values of all single batteries, namely , subtracting the minimum current high-voltage inflection point electricity value from the current high-voltage inflection point electricity value of each cell to obtain the pre-processed current high-voltage inflection point electricity value of each cell and dividing each cell
  • the current historical cumulative balanced power value of the current history is subtracted from the minimum current historical cumulative balanced power value to obtain the pre-processed current historical cumulative balanced power value of each single battery, and then the pre-processed current high-voltage inflection point power value is subtracted
  • the current equivalent self-discharge value can be obtained by preprocessing the current historical accumulated balanced electric quantity value, which can reduce the space required for storing the current equivalent self-discharge electric quantity value, reduce the requirement on the memory, and save costs.
  • the current equivalent self-efficiency of the single battery is obtained according to the current high-voltage inflection point power value of each single battery and the current historical cumulative balance power value of the single battery.
  • the discharge capacity value includes: subtracting the current historical cumulative balanced electric capacity value of the single battery from the current high-voltage inflection point electric capacity value of each single battery to obtain the current equivalent of the single battery Self-discharge value. That is, in other embodiments, there is no need to preprocess the current high-voltage inflection point power value and the current historical accumulated balanced power value, and the current high-voltage inflection point power value is directly subtracted from the current historical accumulated balanced power value value to obtain the current equivalent self-discharge value, which can reduce the number of calculations and save battery power.
  • the battery management device is applied to a vehicle, and the managing the target single battery corresponding to the maximum target equivalent self-discharge value includes: sending information about the target single battery to said vehicle and/or a terminal communicatively connected to said vehicle.
  • the information of the target single battery may include the serial number and position of the target single battery, the target equivalent self-discharge value and equivalent self-discharge rate, etc., and the information of the target single battery
  • the information is sent to the vehicle or/or a terminal connected to the vehicle through communication, for example, the terminal is a user's mobile phone.
  • the vehicle When the vehicle receives the information, it controls the display of the vehicle to display the information and send an early warning signal, and/or the terminal, when receiving the information, displays the information and sends an early warning signal to remind the user to detect the target as soon as possible.
  • Single battery for repair or replacement when receiving the information, displays the information and sends an early warning signal to remind the user to detect the target as soon as possible.
  • the terminal when it is determined that the difference between the maximum equivalent self-discharge rate and the minimum equivalent self-discharge rate is greater than a preset threshold, communicate with the vehicle and/or communicate with the vehicle
  • the terminal sends the information of the target single battery corresponding to the maximum target equivalent self-discharge value, which can inform the user of the information of the single battery with abnormal self-discharge and remind the user so that the user can take timely measures against the abnormal single battery measure.
  • the battery management device further includes a plurality of reminder modules, each reminder module corresponds to a single battery, and the target single battery corresponding to the maximum target equivalent self-discharge value is carried out.
  • the management also includes: controlling the reminder module corresponding to the target single battery to send out an early warning signal. By controlling the reminder module corresponding to the target single battery to send an early warning signal, the user can timely discover the single battery with abnormal self-discharge and repair or replace it.
  • the reminder module can be a buzzer component, a voice component, a warning light and so on.
  • the battery management method further includes: replacing the current equivalent self-discharge value of each single battery with the last equivalent self-discharge value of the single battery, to update the stored self-discharge value of the single battery.
  • the self-discharge value of each single battery is stored in the storage module 40 of the battery management device 100 shown in FIG. 5 .
  • the current equivalent self-discharge value is replaced by the equivalent self-discharge value at the previous moment for calculation of the target equivalent self-discharge value at the next moment.
  • the current equivalent self-discharge value is the aforementioned equivalent self-discharge value at the previous moment.
  • the current equivalent self-discharge value of each single battery is replaced with the last equivalent self-discharge value of the single battery, so as to update the stored
  • the self-discharge value of a single battery includes: determining the minimum current equivalent self-discharge value among the current equivalent self-discharge values of all batteries; subtracting the current equivalent self-discharge value of each single battery removing the minimum current equivalent self-discharge value to obtain the pre-processing current equivalent self-discharge value of each single battery; and replacing the pre-processing current equivalent self-discharge value of each single battery
  • the last equivalent self-discharge value of the single battery is updated to update the stored self-discharge value of the single battery.
  • the current equivalent self-discharge value of the preprocessing is the aforementioned equivalent self-discharge value at the previous moment.
  • the set of the current equivalent self-discharge values of all single batteries in the battery management device is ⁇ 5, 7, 4, 3, 2, 7, 8, 4 ⁇ , by comparing the values of all single batteries
  • the current equivalent self-discharge value determines the minimum current equivalent self-discharge value is 2; the current equivalent self-discharge value of each single battery is subtracted from the minimum current equivalent self-discharge value And the pretreatment current equivalent self-discharge value of each single battery is obtained, and then the set of the pretreatment current equivalent self-discharge value of all single batteries is ⁇ 3,5,2,1,0, 5, 6, 2 ⁇ ; Replace the set of the pre-processing current equivalent self-discharge values of all single cells with the set of the previous equivalent self-discharge values of all single cells.
  • the battery management method provided in the embodiment of the present application performs normalized preprocessing on the current equivalent self-discharge values of all single batteries, that is, the current equivalent self-discharge value of each single battery Subtract the minimum current equivalent self-discharge value of the single battery from the discharge capacity value to obtain the pre-processing current equivalent self-discharge value of all single batteries, and then store the current equivalent self-discharge value of all single batteries.
  • Preprocessing the current equivalent self-discharge value can reduce the space required for storing the preprocessed current equivalent self-discharge value, reduce the requirement on the memory, and save costs.
  • FIG. 5 is a structural block diagram of a battery management device 100 provided in an embodiment of the present application.
  • the battery management device 100 includes a plurality of single batteries 50 , an acquisition module 10 and a processing module 20 .
  • the acquiring module 10 is used to acquire the current high-voltage inflection point electrical value corresponding to the high-voltage inflection point of the charging curve of each single battery 50 at the current moment, the current historical cumulative balance electrical quantity value of each single battery 50 at the current moment, and each The equivalent self-discharge value of the single battery 50 at the last moment.
  • the processing module 20 is used to obtain the current equivalent power of the single battery 50 according to the current high-voltage inflection point power value of each single battery 50 and the current historical cumulative balance power value of the single battery 50 .
  • the self-discharge value, and the current equivalent self-discharge value of each single battery 50 is subtracted from the equivalent self-discharge value of the single battery 50 at the last moment to obtain the current equivalent self-discharge value of the single battery 50.
  • the target equivalent self-discharge value within the interval between the current moment and the previous moment is determined to determine the maximum target equivalent self-discharge value and the minimum target equivalent self-discharge value among the target equivalent self-discharge values of all single cells 50 Equivalent self-discharge value, divide the maximum target equivalent self-discharge value by the interval duration to obtain the maximum equivalent self-discharge rate, divide the minimum target equivalent self-discharge value by the interval duration To obtain the minimum equivalent self-discharge rate, when it is determined that the difference between the maximum equivalent self-discharge rate and the minimum equivalent self-discharge rate is greater than a preset threshold, the corresponding value of the maximum target equivalent self-discharge value The target cell 50 is managed.
  • the acquisition module 10 and the processing module 20 can be processing chips such as processors, single-chip microcomputers, controllers, etc., and the acquisition module 10 and the processing module 20 can be separate processing chips or integrated Processing chips together.
  • the battery management device 100 obtaineds the current high-voltage inflection point power value of the charging curve of each single battery 50 and the current historical cumulative balance power value to obtain the The current equivalent self-discharge value of 50, subtract the current equivalent self-discharge value from the previous equivalent self-discharge value to obtain the target equivalent self-discharge value of each single battery 50 value, which realizes the monitoring of the self-discharge conditions of all single cells 50 during the use of the battery management device 100, and calculates the maximum equivalent self-discharge value through the target equivalent self-discharge values of all single cells 50.
  • the self-discharge rate and the minimum equivalent self-discharge rate manage the target single battery 50 with the largest equivalent self-discharge rate , so that the user can find out the abnormal self-discharging single battery in time and repair or replace it.
  • the current level of the single battery 50 is obtained according to the current high-voltage inflection point power value of each single battery 50 and the current historical cumulative balance power value of the single battery 50.
  • Effective self-discharge value including: the processing module 20 determines the minimum current high-voltage inflection point electric value among the current high-voltage inflection point electric value of all single cells 50; Subtracting the minimum current high-voltage inflection point electric quantity from the electric quantity value to obtain the pre-processed current high-voltage inflection point electric quantity value of each single battery 50; determine the minimum current historical cumulative value among the current historical accumulated balance electric quantity values of all single batteries 50 Balanced electricity value; subtracting the minimum current historical accumulated balanced electricity value from the current historical accumulated balanced electricity value of each single battery 50 to obtain the pre-processed current historical accumulated balanced electricity value of each single battery 50; and The current equivalent self-discharge capacity of the single battery 50 is obtained by subtracting the pre-processed current historical cumulative balance electric quantity value of the single battery 50 from
  • the battery management device 100 normalizes the current high-voltage inflection point power values of all single batteries 50 and performs the current historical cumulative power values of all single batteries 50 Normalize these preprocessing, that is, subtract the minimum current high voltage inflection point electricity value from the current high voltage inflection point electricity value of each single battery 50 to obtain the preprocessed current high voltage of each single battery 50 Inflection point power value and the current historical cumulative balanced power value of each single battery 50 minus the minimum current historical cumulative balanced power value to obtain the pre-processed current historical cumulative balanced power value of each single battery 50, and then
  • the current equivalent self-discharge value is obtained by subtracting the pre-processing current high-voltage inflection point electric quantity value from the pre-processed current historical cumulative balance electric quantity value, which can reduce the time required for storing the current equivalent self-discharge electric quantity value. Space, reduce memory requirements, and save costs.
  • the current value of the single battery 50 is obtained according to the current high-voltage inflection point power value of each single battery 50 and the current historical cumulative balance power value of the single battery 50.
  • the equivalent self-discharge value includes: the processing module 20 subtracts the current historical cumulative balance power value of each single battery 50 from the current high-voltage inflection point power value of each single battery 50 to obtain the The current equivalent self-discharge value of the single battery 50.
  • the battery management device 100 is applied to a vehicle. As shown in FIG. 5 , the battery management device 100 further includes a communication module 30 for communicating with the vehicle.
  • the management of the target single battery 50 corresponding to the target equivalent self-discharge value includes: sending the information of the target single battery 50 to the vehicle and/or the vehicle connected to the vehicle through the communication module 30 terminal.
  • the battery management device 100 can send the serial number, location, target equivalent self-discharge value and equivalent self-discharge rate of the target single battery 50 to the vehicle and/or
  • the terminal communicated with the vehicle enables the user to discover the abnormal self-discharging single battery in time and repair or replace it.
  • the battery management device 100 further includes a plurality of reminder modules 60, each reminder module 60 corresponds to a single battery 50, and the target corresponding to the maximum target equivalent self-discharge value
  • the management of the single battery 50 includes: controlling the reminder module 60 corresponding to the target single battery 50 to send out an early warning signal.
  • the reminder module 60 can be a buzzer component, a voice component, a warning light and so on.
  • the processing module 20 determines the target single battery corresponding to the maximum equivalent self-discharge rate 50 and control the reminder module 60 corresponding to the target single battery 50 to send an early warning signal.
  • the plurality of single batteries are numbered in advance
  • the plurality of reminder modules 60 have numbers corresponding to the numbers of the plurality of single batteries
  • the processing module 20 is at the maximum equivalent self-discharge
  • an early warning signal for example, buzzing, voice broadcast, warning light flashing, etc.
  • the battery management device 100 further includes a storage module 40, the storage module 40 stores the self-discharge value of each single battery 50, and the processing module 20 It is also used to replace the current equivalent self-discharge value of each single battery 50 with the equivalent self-discharge value of the single battery 50 at the last moment, and update and store in the storage module 40
  • the self-discharge value of the single battery 50 is used for the calculation of the target equivalent self-discharge value at the next moment.
  • the current equivalent self-discharge value is the aforementioned equivalent self-discharge value at the previous moment.
  • the current equivalent self-discharge value of each single battery 50 is replaced with the previous equivalent self-discharge value of the single battery 50 to update the value stored in the
  • the self-discharge value of the single battery 50 in the storage module 40 includes: determining the minimum current equivalent self-discharge value among the current equivalent self-discharge values of all batteries; The minimum current equivalent self-discharge value is subtracted from the current equivalent self-discharge value to obtain the pre-processing current equivalent self-discharge value of each single battery 50; Preprocessing the current equivalent self-discharge value to replace the equivalent self-discharge value of the single battery 50 at the previous moment, so as to update the stored self-discharge value of the single battery 50 .
  • the current equivalent self-discharge value of the preprocessing is the aforementioned equivalent self-discharge value at the previous moment.
  • the storage module 40 also stores the charging curve of each single battery 50 at the current moment and the current high-voltage inflection point power value, so that the acquisition module 10 can obtain the charging curve of each single battery 50 at the current moment.
  • the current high-voltage inflection point power value of the battery 50 is not limited to the battery 50 .
  • the storage module 40 also stores the current historical cumulative balance electric quantity value of each single battery 50 at the current moment, so that the acquisition module 10 can obtain the said value of each single battery 50 at the current moment.
  • Current high voltage inflection point power value is the current high voltage inflection point power value.
  • the storage module 40 can be a non-volatile memory, for example, FRAM (Ferroelectric Random Access Memory, ferroelectric random access memory), EEPROM (Electrically Erasable Programmable Read Only Memory, electronic erasable rewritable read-only memory) ), EPROM (Erasable Programmable Read Only Memory, Erasable Programmable Read Only Memory), etc.
  • FRAM Feroelectric Random Access Memory, ferroelectric random access memory
  • EEPROM Electrical Erasable Programmable Read Only Memory, electronic erasable rewritable read-only memory
  • EPROM Erasable Programmable Read Only Memory, Erasable Programmable Read Only Memory
  • the battery management device 100 provided in the embodiment of the present application performs normalized preprocessing on the current equivalent self-discharge values of all single batteries 50, that is, all the values of each single battery 50
  • the minimum current equivalent self-discharge value of the single battery 50 is subtracted from the current equivalent self-discharge value to obtain the pre-processing current equivalent self-discharge value of all single cells 50, and then store all
  • the pre-processing current equivalent self-discharge value of the single battery 50 can reduce the space required for storing the pre-processing current equivalent self-discharge value, reduce the requirement on the memory, and save costs.
  • the battery management device 100 corresponds to the aforementioned battery management method.
  • the battery management device 100 is similar to the aforementioned battery management method Methods are also cross-referenced.
  • FIG. 6 is a structural block diagram of a vehicle 200 provided in an embodiment of the present application.
  • the vehicle 200 includes the battery management device 100 provided in any one of the foregoing embodiments.
  • the vehicle 200 may be a pure electric vehicle, or a hybrid vehicle, for example, a pure electric vehicle, a pure electric truck, a hybrid truck and the like.
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program is called and executed by a processor, so as to realize the described How to manage batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电池的管理方法,包括获取每一单体电池的当前高电压拐点电量值;获取每一单体电池的当前历史累计均衡电量值;计算得到每一单体电池的当前等效自放电量值;获取每一单体电池的上一时刻等效自放电量值;计算得到每一单体电池的目标等效自放电量值;确定最大目标等效自放电量值和最小目标等效自放电量值;计算得到最大等效自放电率及最小等效自放电率;在最大等效自放电率与最小等效自放电率的差值大于预设阈值时,对最大目标等效自放电量值对应的目标单体电池进行管理。本申请还提供一种电池的管理装置、车辆及计算机可读存储介质。

Description

电池的管理方法及管理装置及计算机可读存储介质
本申请要求于2021年12月30日提交中国专利局、申请号为202111681358.1、申请名称为“电池的管理方法及管理装置、车辆及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池的管理方法及管理装置及计算机可读存储介质。
背景技术
动力电池广泛应用在电动汽车动力源以及备用电源领域中,为了提高动力电池的能量和电压,需要将若干个单体电池串联成动力电池组进行使用,但是在生产单体电池的过程中,由于生产工艺的原因使得各单体电池的自放电率不一样,自放电率的差异会导致各单体电池的荷电状态不一致,使得各单体电池无法同步充满至上限电压或放空至下限电压,而影响整个动力电池组的容量发挥,因此,需要对各单体电池的自放电量进行检测以识别出自放电量偏差较大的单体电池。
目前,关于单体电池的自放电的检测均为出厂前的检测,具体的,在出厂前,对单体电池的自放电率进行检测,将自放电率基本一致的单体电池配组成动力电池组。然而,随着动力电池组的使用和老化,各单体电池的自放电率会发生变化,前述的自放电的检测仅为出厂前的测试,无法在动力电池组的使用过程中对动力电池组的自放电情况进行监测。
发明内容
为解决上述技术问题,本申请提供一种电池的管理方法、电池的管理装置、车辆及计算机可读存储介质,能够在单体电池的使用过程中进行单体电池的目标等效自放电量值的计算,可及时识别出自放电异常的单体电池并对异常单体电池进行管理。
本申请第一方面提供一种电池的管理方法,所述电池的管理方法包括:获取当前时刻每一单体电池的充电曲线的高电压拐点对应的当前高电压拐点电量值;获取当前时刻每一单体电池的当前历史累计均衡电量值;根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值;获取每一单体电池的上一时刻等效自放电量值;将每一单体电池的当前等效自放电量值减去所述单体电池的所述上一时刻等效自放电量值而得到所述单体电池在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值;确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值;将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率;以及在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,对所述最大目标等效自放电量值对应的目标单体电池进行管理。
在一个实施例中,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
将每一单体电池的所述当前高电压拐点电量值减去所述单体电池的所述当前历史累计均 衡电量值而得到所述单体电池的所述当前等效自放电量值。
在一个实施例中,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值(S1031);
将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值(S1032);
确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值(S1033);
将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值(S1034);以及
将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值(S1035)。
在一个实施例中,所述电池的管理装置应用于车辆,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,包括:
将所述目标单体电池的信息发送至所述车辆和/或与所述车辆通讯连接的终端。
在一个实施例中,所述目标单体电池的信息包括所述目标单体电池的编号、位置、所述目标等效自放电量值及等效自放电率。
在一个实施例中,所述电池的管理装置还包括多个提醒模块,每一提醒模块与一单体电池对应,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,还包括:
控制与所述目标单体电池对应的提醒模块发出预警信号。
在一个实施例中,所述方法还包括:将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的等效自放电量值。
在一个实施例中,所述将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的等效自放电量值,包括:
确定所有电池的当前等效自放电量值中的最小当前等效自放电量值;
将每一单体电池的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池的预处理当前等效自放电量值;以及
将每一单体电池的所述预处理当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的所述自放电量值。
在一个实施例中,所述上一时刻为所述车辆出厂的时刻,每一单体电池的所述上一时刻等效自放电量值为0,每一单体电池的所述上一时刻历史累计均衡电量值为0,每一单体电池的所述上一时刻高电压拐点电量值为0。
在一个实施例中,所述当前时刻为当前充电时,获取到所述充电曲线的时刻,所述上一时刻为上一次充电时,获取到所述充电曲线的时刻。
在一个实施例中,所述单体电池可为动力电池或储能电池。
本申请第二方面还提供一种电池的管理装置,所述电池的管理装置包括:多个单体电池、获取模块和处理模块。所述获取模块用于获取当前时刻每一单体电池的充电曲线的高电压拐点对应的当前高电压拐点电量值、当前时刻每一单体电池的当前历史累计均衡电量值以及每一单体电池的上一时刻等效自放电量值。所述处理模块用于根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前 等效自放电量值,以及将每一单体电池的所述当前等效自放电量值减去所述单体电池的上一时刻等效自放电量值而得到所述单体电池在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值,确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值,将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率,以及在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,对所述最大目标等效自放电量值对应的目标单体电池进行管理。
在一个实施例中,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
将每一单体电池的所述当前高电压拐点电量值减去所述单体电池的所述当前历史累计均衡电量值而得到所述单体电池的所述当前等效自放电量值。
在一个实施例中,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值;
将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值;
确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值;
将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值;以及
将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值。
在一个实施例中,所述电池的管理装置应用于车辆,所述电池的管理装置还包括通讯模块,用于与所述车辆通讯,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,包括:
通过所述通讯模块将所述目标单体电池的信息发送至所述车辆和/或与所述车辆通讯连接的终端。
在一个实施例中,所述电池的管理装置还包括多个提醒模块,每一提醒模块与一单体电池对应,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,包括:
控制与所述目标单体电池对应的提醒模块发出预警信号。
在一个实施例中,所述电池的管理装置还包括存储模块,所述存储模块中存储有每一单体电池的自放电量值,所述处理模块还用于将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的自放电量值。
在一个实施例中,所述将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的自放电量值,包括:
确定所有电池的当前等效自放电量值中的最小当前等效自放电量值;
将每一单体电池的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池的预处理当前等效自放电量值;以及
将每一单体电池的所述预处理当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的所述自放电量值。
本申请第三方面还提供一种车辆,所述车辆包括如前所述的电池的管理装置。
本申请第四方面还提供一种计算机可读存储介质,所述计算机可读存储介质内存储有计 算机程序,所述计算机程序供处理器调用后执行,以实现前述的电池的管理方法。
本申请提供的电池的管理方法、电池的管理装置、车辆及计算机可读存储介质,通过获取每一单体电池的充电曲线的所述当前高电压拐点电量值以及所述当前历史累计均衡电量值,得到每一单体电池的所述当前等效自放电量值,将所述当前等效自放电量值减去所述上一时刻等效自放电量值得到每一单体电池的所述目标等效自放电量值,实现了在所述电池的管理装置的使用过程中对所有单体电池的自放电情况进行监测,再通过所有单体电池的目标等效自放电量值计算得到最大等效自放电率以及最小等效自放电率,并在最大等效自放电率与最小等效自放电率的差值大于预设阈值时,对等效自放电率最大的目标单体电池进行管理,以利于用户及时发现自放电异常的单体电池并对其进行维修或更换。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电池的管理方法的流程图。
图2为本申请实施例提供的充电曲线的示意图。
图3为本申请实施例提供的电压差分曲线的示意图。
图4为图1中步骤S103的子流程图。
图5为本申请实施例提供的电池的管理装置的结构框图。
图6为本申请实施例提供的车辆的结构框图。
附图标记说明:100-电池的管理装置;10-获取模块;20-处理模块;30-通讯模块;40-存储模块;200-车辆;50-单体电池;60-提醒模块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的描述中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,也可以是两个元件内部的连通;可以是通讯连接;可以是电连接。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
请参阅图1,图1为本申请实施例提供的电池的管理方法的流程图。所述电池的管理方法应用于电池的管理装置,所述电池的管理装置包括多个单体电池。如图1所示,所述电池的管理方法包括以下步骤:
S101:获取当前时刻每一单体电池的充电曲线的高电压拐点对应的当前高电压拐点电量值。
S102:获取当前时刻每一单体电池的当前历史累计均衡电量值。
S103:根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值。
S104:获取每一单体电池的上一时刻等效自放电量值。
S105:将每一单体电池的当前等效自放电量值减去所述单体电池的所述上一时刻等效自放电量值而得到所述单体电池在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值。
S106:确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值。
S107:将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率。
S108:在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,对所述最大目标等效自放电量值对应的目标单体电池进行管理。
请一并参阅图2及图3,图2为本申请实施例提供的充电曲线的示意图,图3为本申请实施例提供的电压差分曲线的示意图。其中,所述电池的管理装置中所有单体电池串联连接,在对所有单体电池充电时,所述车辆实时采集并记录每一单体电池的参数,所述参数包括:电压、电流、温度、SOC(荷电状态)等,通过对所述参数进行数据处理,例如滤波、微分、积分、你和、小波分析、神经网络运算等数据处理,可获得每一单体电池的所述充电曲线,如图2所示,所述充电曲线为电压-电量曲线,即,电压和电量的关系曲线,所述电压-电量曲线存在三个电压变化较为缓慢的区间,所述电压变化较为缓慢的区间为电压平台区,相邻的两个电压平台区之间存在一个电压变化较快的区域,所述电压变化较快的区域内电压变化最快的点为电压拐点,所述电压-电量曲线中存在两个电压拐点,所述两个电压拐点分别为高电压拐点(图2中的B)和低电压拐点(图2中的A),所述高电压拐点和所述低电压拐点分别对应电压差分曲线(如图3所示)上的两个极大值点(极大值点C和极大值点D),其中,所述高电压拐点B对应极大值点C,所述低电压拐点A对应极大值点D。
其中,所述当前历史累计均衡电量值为当前时刻获取的均衡电量值与所述当前时刻之前的每一次获取的均衡电量值的累加值。
在一些实施例中,每一单体电池的所述上一时刻等效自放电量值为每一单体电池的上一时刻高电压拐点电量值减去所述单体电池的上一时刻历史累计均衡电量值。其中,上一时刻历史累计均衡电量值为上一时刻获取的均衡电量值与上一时刻之前的每一次获取的均衡电量值的累加值。
在所述单体电池的使用过程中,所述单体电池由于目前制造工艺的原因会自放电,每一单体电池的自放电过程不同,使得所述多个单体电池的自放电率不一致。由于单体电池的自放电过程会使得高电压拐点电量值发生偏移,而所述多个单体电池的自放电率不一致,使得所述多个单体电池的高电压拐点电量值偏移程度不一致,而使得获取到的所有单体电池的高电压拐点电量值不同。为了补偿由于单体电池的自放电率不一致而导致单体电池的剩余电量不一致,所述电池的管理装置可对所述多个单体电池进行均衡,具体的,比较所有单体电池的剩余电量,对剩余电量较高的单体电池进行放电而使得单体电池产生相应的均衡电量,其中,单体电池的自放电量越少,产生的均衡电量越多。从而,可通过使用单体电池的高电压拐点电量值和历史累计均衡电量值计算得到该单体电池的等效自放电量值,其中,所述等效自放电量值为相对自放电量值,由于绝对自放电量值无法计算,本申请中,等效自放电量值为各单体电池的相对自放电量值。
在一些实施例中,所述上一时刻为所述车辆出厂的时刻,每一单体电池的所述上一时刻等效自放电量值为0,每一单体电池的所述上一时刻历史累计均衡电量值为0,每一单体电池 的所述上一时刻高电压拐点电量值为0。
在一些实施例中,所述当前时刻为当前充电时,获取到所述充电曲线的时刻,所述上一时刻为上一次充电时,获取到所述充电曲线的时刻。
在一些实施例中,所述当前时刻与所述上一时刻之间的间隔时长为预设间隔时长,即,所述当前时刻为所述上一时刻加上所述预设间隔时长的时刻。其中,所述预设间隔时长可根据实际需求设定,例如,可为3个月。
其中,所述多个单体电池的数量可根据实际需求设置,在此不作限定。
在一些实施例中,所述单体电池可为动力电池,所述电池的管理装置可应用于车辆,例如,纯电动车辆或者混动车辆。在其它一些实施例中,所述单体电池可为储能电池,所述电池的管理装置可应用于储能电站、调峰调频电力辅助服务等。
其中,在步骤S106中,在确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值时,通过对得到的所有单体电池的目标等效自放电量值进行比较,而确定所述最大目标等效自放电量值和所述最小目标等效自放电量值。
其中,在步骤S108中,所述预设阈值可根据实际需求设定,在此不做限定。
以下以所述电池的管理装置包括8个单体电池为例对步骤S106-S108进行进一步地具体说明。
所述电池的管理装置中所有单体电池的所述目标等效自放电量值的集合为{2,3,2,3,1,6,3,3},通过比较所有单体电池的所述目标等效自放电量值确定所述最小目标等效自放电量值为1,所述最大目标等效自放电量值为6;所述间隔时长的值预设为2,将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率(3),将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率为(0.5);在确定所述最大等效自放电率与所述最小等效自放电率的差值(2.5)大于预设阈值(预设为2)时,对所述最大目标等效自放电量值对应的目标单体电池进行管理,即,对目标等效自放电量值为6的单体电池进行管理。
本申请实施例提供的电池的管理方法,通过获取每一单体电池的充电曲线的所述当前高电压拐点电量值以及所述当前历史累计均衡电量值,得到每一单体电池的所述当前等效自放电量值,将所述当前等效自放电量值减去所述上一时刻等效自放电量值得到每一单体电池的所述目标等效自放电量值,实现了在所述电池的管理装置的使用过程中对所有单体电池的自放电情况进行监测,再通过所有单体电池的目标等效自放电量值计算得到最大等效自放电率以及最小等效自放电率,并在最大等效自放电率与最小等效自放电率的差值大于预设阈值时,对等效自放电率最大的目标单体电池进行管理,以利于用户及时发现自放电异常的单体电池并对其进行维修或更换。
请参阅图4,图4为图1中步骤S103的子流程图。在一些实施例中,如图4所示,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
S1031:确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值。
S1032:将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值。
S1033:确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值。
S1034:将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值。
S1035:将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值。
其中,在确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值时,通过对获取到的所有单体电池的所述当前高电压拐点电量值进行比较,而确定所述最小当前高电压拐点电量值。
其中,在确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值时,通过对获取到的所有单体电池的当前历史累计均衡电量值进行比较,而确定所述最小当前历史累计均衡电量值。
以下以所述电池的管理装置包括8个单体电池为例对步骤S1031-S1035进行进一步地具体说明。
所述电池的管理装置中所有单体电池的所述当前高电压拐点电量值的集合为{4,6,8,5,1,7,5,3},通过比较所有单体电池的所述当前高电压拐点电量值可确定所述最小当前高电压拐点电量值为1;将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值,进而可得到所有单体电池的预处理当前高电压拐点电量值的集合{3,5,7,4,0,6,4,2};所述电池的管理装置中所有单体电池的所述当前历史累计均衡电量值的集合为{2,4,5,6,3,4,5,3},通过比较所有单体电池的所述当前历史累计均衡电量值可确定所述最小当前历史累计均衡电量值为2;将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值,进而可得到所有单体电池的预处理当前历史累计均衡电量值的集合{0,2,3,4,1,2,3,1};将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值,进而可得到所有单体电池的所述当前等效自放电量值的集合{3,2,4,0,-1,4,1,1}。
从而,在一些实施例中,通过对所有单体电池的所述当前高电压拐点电量值进行归一化以及对所有单体电池的所述当前历史累计电量值进行归一化这些预处理,即,将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值以及将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值,再将所述预处理当前高电压拐点电量值减去所述预处理当前历史累计均衡电量值得到所述当前等效自放电量值,可减小存储所述当前等效自放电量值所需的空间,降低对存储器的要求,而节省成本。
在其它一些实施例中,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:将每一单体电池的所述当前高电压拐点电量值减去所述单体电池的所述当前历史累计均衡电量值而得到所述单体电池的所述当前等效自放电量值。即,在其他实施例中,无需对所述当前高电压拐点电量值以及所述当前历史累计均衡电量值进行预处理,直接将所述当前高电压拐点电量值减去所述当前历史累计均衡电量值而得到所述当前等效自放电量值,可减少运算次数,节省电池电量。
在一些实施例中,所述电池的管理装置应用于车辆,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,包括:将所述目标单体电池的信息发送至所述车辆和/或与所述车辆通讯连接的终端。
其中,所述目标单体电池的信息可包括所述目标单体电池的编号、位置、所述目标等效 自放电量值及等效自放电率等,并将所述目标单体电池的信息发送至所述车辆或者和/或所述车辆通讯连接的终端,例如,所述终端为用户的手机。所述车辆在接收到该信息时,控制车辆的显示器显示该信息并发出预警信号,和/或所述终端在接收到该信息时,显示该信息并发出预警信号,提醒用户尽快对所述目标单体电池进行维修或更换。
本申请实施例提供的电池的管理方法,在确定所述最大等效自放电率与最小等效自放电率的差值大于预设阈值时,向所述车辆和/或与所述车辆通讯连接的终端发送所述最大目标等效自放电量值对应的目标单体电池的信息,可告知用户自放电异常的单体电池的信息并提醒用户以使得用户可及时针对异常的单体电池采取应对措施。
在一些实施例中,所述电池的管理装置还包括多个提醒模块,每一提醒模块与一单体电池对应,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,还包括:控制与所述目标单体电池对应的提醒模块发出预警信号。通过控制与所述目标单体电池对应的提醒模块发出预警信号可使得用户及时发现自放电异常的单体电池并对其进行维修或更换。
其中,所述提醒模块可为蜂鸣组件、语音组件、警示灯等等。
在一些实施例中,所述电池的管理方法还包括:将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的自放电量值。其中,每一单体电池的所述自放电量值存储于如图5所示的电池的管理装置100的存储模块40中。将所述当前等效自放电量值替换所述上一时刻等效自放电量值,以用于下一时刻的目标等效自放电量值的计算。在下一次进行目标等效自放电量值的计算时,所述当前等效自放电量值即为前述的上一时刻等效自放电量值。
在一些实施例中,所述将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的自放电量值,包括:确定所有电池的当前等效自放电量值中的最小当前等效自放电量值;将每一单体电池的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池的预处理当前等效自放电量值;以及将每一单体电池的所述预处理当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新存储的所述单体电池的所述自放电量值。其中,在下一次进行目标等效自放电量值的计算时,所述预处理当前等效自放电量值即为前述的上一时刻等效自放电量值。
以下以所述电池的管理装置包括8个单体电池为例对上述步骤进行进一步地具体说明。
所述电池的管理装置中所有单体电池的所述当前等效自放电量值的集合为{5,7,4,3,2,7,8,4},通过比较所有单体电池的所述当前等效自放电量值确定所述最小当前等效自放电量值为2;将每一单体电池的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池的预处理当前等效自放电量值,进而得到所有单体电池的所述预处理当前等效自放电量值的集合为{3,5,2,1,0,5,6,2};将所有单体电池的所述预处理当前等效自放电量值的集合替换所有单体电池的所述上一时刻等效自放电量值的集合。
本申请实施例提供的电池的管理方法,通过对所有单体电池的所述当前等效自放电量值进行归一化的预处理,即,将每一单体电池的所述当前等效自放电量值减去所述单体电池的所述最小当前等效自放电量值,而得到所有单体电池的所述预处理当前等效自放电量值,再存储所有单体电池的所述预处理当前等效自放电量值,可减小存储所述预处理当前等效自放电量值所需的空间,降低对存储器的要求,而节省成本。
请参阅图5,图5为本申请实施例提供的电池的管理装置100的结构框图。如图5所示,所述电池的管理装置100包括多个单体电池50、获取模块10以及处理模块20。所述获取模 块10用于获取当前时刻每一单体电池50的充电曲线的高电压拐点对应的当前高电压拐点电量值、当前时刻每一单体电池50的当前历史累计均衡电量值以及每一单体电池50的上一时刻等效自放电量值。所述处理模块20用于根据每一单体电池50的所述当前高电压拐点电量值以及所述单体电池50的所述当前历史累计均衡电量值得到所述单体电池50的当前等效自放电量值,并将每一单体电池50的所述当前等效自放电量值减去所述单体电池50的上一时刻等效自放电量值而得到所述单体电池50在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值,确定所有单体电池50的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值,将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率,在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,对所述最大目标等效自放电量值对应的目标单体电池50进行管理。
在一些实施例中,所述获取模块10和所述处理模块20可为处理器、单片机、控制器等处理芯片,且所述获取模块10和所述处理模块20可为单独的处理芯片或者整合在一起的处理芯片。
本申请实施例提供的所述电池的管理装置100,通过获取每一单体电池50的充电曲线的所述当前高电压拐点电量值以及所述当前历史累计均衡电量值,得到每一单体电池50的所述当前等效自放电量值,将所述当前等效自放电量值减去所述上一时刻等效自放电量值得到每一单体电池50的所述目标等效自放电量值,实现了在所述电池的管理装置100的使用过程中对所有单体电池50的自放电情况进行监测,并通过所有单体电池50的目标等效自放电量值计算得到最大等效自放电率以及最小等效自放电率,并在最大等效自放电率与最小等效自放电率的差值大于预设阈值时,对等效自放电率最大的目标单体电池50进行管理,以利于用户及时发现自放电异常的单体电池并对其进行维修或更换。
在一些实施例中,所述根据每一单体电池50的所述当前高电压拐点电量值以及所述单体电池50的所述当前历史累计均衡电量值得到所述单体电池50的当前等效自放电量值,包括:所述处理模块20确定所有单体电池50的当前高电压拐点电量值中的最小当前高电压拐点电量值;将每一单体电池50的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池50的预处理当前高电压拐点电量值;确定所有单体电池50的当前历史累计均衡电量值中的最小当前历史累计均衡电量值;将每一单体电池50的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池50的预处理当前历史累计均衡电量值;以及将每一单体电池50的所述预处理当前高电压拐点电量值减去所述单体电池50的预处理当前历史累计均衡电量值而得到所述单体电池50的当前等效自放电量值。
本申请实施例提供的所述电池的管理装置100,通过对所有单体电池50的所述当前高电压拐点电量值进行归一化以及对所有单体电池50的所述当前历史累计电量值进行归一化这些预处理,即,将每一单体电池50的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池50的预处理当前高电压拐点电量值以及将每一单体电池50的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池50的预处理当前历史累计均衡电量值,再将所述预处理当前高电压拐点电量值减去所述预处理当前历史累计均衡电量值得到所述当前等效自放电量值,可减小存储所述当前等效自放电量值所需的空间,降低对存储器的要求,而节省成本。
在其它一些实施例中,所述根据每一单体电池50的所述当前高电压拐点电量值以及所述单体电池50的所述当前历史累计均衡电量值得到所述单体电池50的当前等效自放电量值, 包括:所述处理模块20将每一单体电池50的所述当前高电压拐点电量值减去所述单体电池50的所述当前历史累计均衡电量值而得到所述单体电池50的所述当前等效自放电量值。即,在其他实施例中,无需对所述当前高电压拐点电量值以及所述当前历史累计均衡电量值进行预处理,直接将所述当前高电压拐点电量值减去所述当前历史累计均衡电量值而得到所述当前等效自放电量值,可减少运算次数,节省电池电量。
在一些实施例中,所述电池的管理装置100应用于车辆,如图5所示,所述电池的管理装置100还包括通讯模块30,用于与所述车辆通讯,所述对所述最大目标等效自放电量值对应的目标单体电池50进行管理,包括:通过所述通讯模块30将所述目标单体电池50的信息发送至所述车辆和/或与所述车辆通讯连接的终端。
其中,所述电池的管理装置100可通过所述通讯模块30将所述目标单体电池50的编号、位置、目标等效自放电量值以及等效自放电率发送至所述车辆和/或与所述车辆通讯连接的终端,使得用户可及时发现自放电异常的单体电池并对其进行维修或更换。
在一些实施例中,所述电池的管理装置100还包括多个提醒模块60,每一提醒模块60与一单体电池50对应,所述对所述最大目标等效自放电量值对应的目标单体电池50进行管理,包括:控制与所述目标单体电池50对应的提醒模块60发出预警信号。
在一些实施例中,所述提醒模块60可为蜂鸣组件、语音组件、警示灯等等。
其中,在所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,所述处理模块20确定与所述最大等效自放电率对应的目标单体电池50并控制与所述目标单体电池50对应的提醒模块60发出预警信号。示例性地,所述多个单体电池预先被编号,所述多个提醒模块60具有与所述多个单体电池的编号对应的编号,所述处理模块20在所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,确定所述目标单体电池50的编号并控制编号与所述目标单体电池50的编号相同的提醒模块60发出预警信号,例如,发出蜂鸣、语音播报、警示灯闪烁等,以提醒用户单体电池出现自放电异常并告知用户自放电异常的单体电池的编号,使得用户可明确自放电异常的单体电池的位置并及时对其进行维修或更换。
在一些实施例中,如图5所示,所述电池的管理装置100还包括存储模块40,所述存储模块40中存储有每一单体电池50的自放电量值,所述处理模块20还用于将每一单体电池50的所述当前等效自放电量值替换所述单体电池50的所述上一时刻等效自放电量值,而更新存储在所述存储模块40中的所述单体电池50的自放电量值,以用于下一时刻的目标等效自放电量值的计算。在下一次进行目标等效自放电量值的计算时,所述当前等效自放电量值即为前述的上一时刻等效自放电量值。
在一些实施例中,所述将每一单体电池50的所述当前等效自放电量值替换所述单体电池50的所述上一时刻等效自放电量值以更新存储在所述存储模块40中的所述单体电池50的自放电量值,包括:确定所有电池的当前等效自放电量值中的最小当前等效自放电量值;将每一单体电池50的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池50的预处理当前等效自放电量值;以及将每一单体电池50的所述预处理当前等效自放电量值替换所述单体电池50的所述上一时刻等效自放电量值,以更新存储的所述单体电池50的所述自放电量值。其中,在下一次进行目标等效自放电量值的计算时,所述预处理当前等效自放电量值即为前述的上一时刻等效自放电量值。
在一些实施例中,所述存储模块40中还存储有当前时刻每一单体电池50的充电曲线以及所述当前高电压拐点电量值,以供所述获取模块10获取当前时刻每一单体电池50的所述 当前高电压拐点电量值。
在一些实施例中,所述存储模块40中还存储有当前时刻每一单体电池50的当前历史累计均衡电量值,以供所述获取模块10获取当前时刻每一单体电池50的所述当前高电压拐点电量值。
其中,所述存储模块40可为非易失性存储器,例如,FRAM(Ferroelectric Random Access Memory,铁电随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电子擦除式可复写只读存储器)、EPROM(Erasable Programmable Read Only Memory,可擦可编程只读存储器)等。
本申请实施例提供的所述电池的管理装置100,通过对所有单体电池50的所述当前等效自放电量值进行归一化的预处理,即,将每一单体电池50的所述当前等效自放电量值减去所述单体电池50的所述最小当前等效自放电量值,得到所有单体电池50的所述预处理当前等效自放电量值,再存储所有单体电池50的所述预处理当前等效自放电量值,可减小存储所述预处理当前等效自放电量值所需的空间,降低对存储器的要求,而节省成本。
其中,所述电池的管理装置100与前述的电池的管理方法对应,更详细的描述可参见前述的电池的管理方法的各个实施例的内容,所述电池的管理装置100与前述的电池的管理方法的内容也可相互参照。
请参阅图6,图6为本申请实施例提供的车辆200的结构框图。如图6所示,所述车辆200包括前述的任一实施例提供的电池的管理装置100。
其中,所述车辆200可为纯电动车辆,或者混合动力车辆等,例如,纯电动汽车、纯电动货车、混合动力卡车等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序供处理器调用后执行,以实现前述的任一实施例提供的所述电池的管理方法。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器、随机存取器、磁盘或光盘等。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种电池的管理方法,应用于电池的管理装置,所述电池的管理装置包括多个单体电池,其特征在于,所述电池的管理方法包括以下步骤:
    获取当前时刻每一单体电池的充电曲线的高电压拐点对应的当前高电压拐点电量值(S101);
    获取当前时刻每一单体电池的当前历史累计均衡电量值(S102);
    根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值(S103);
    获取每一单体电池的上一时刻等效自放电量值(S104);
    将每一单体电池的当前等效自放电量值减去所述单体电池的所述上一时刻等效自放电量值而得到所述单体电池在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值(S105);
    确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值(S106);
    将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率(S107);以及
    在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,对所述最大目标等效自放电量值对应的目标单体电池进行管理(S108)。
  2. 根据权利要求1所述的电池的管理方法,其特征在于,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
    将每一单体电池的所述当前高电压拐点电量值减去所述单体电池的所述当前历史累计均衡电量值而得到所述单体电池的所述当前等效自放电量值。
  3. 根据权利要求1所述的电池的管理方法,其特征在于,所述根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,包括:
    确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值(S1031);
    将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值(S1032);
    确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值(S1033);
    将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值(S1034);以及
    将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值(S1035)。
  4. 根据权利要求1至3任一项所述的电池的管理方法,其特征在于,所述电池的管理装置应用于车辆,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,包括:
    将所述目标单体电池的信息发送至所述车辆和/或与所述车辆通讯连接的终端。
  5. 根据权利要求4所述的电池的管理方法,其特征在于,所述目标单体电池的信息包括所述目标单体电池的编号、位置、所述目标等效自放电量值及等效自放电率。
  6. 根据权利要求1至5任一项所述的电池的管理方法,其特征在于,所述电池的管理装置还包括多个提醒模块,每一提醒模块与一单体电池对应,所述对所述最大目标等效自放电量值对应的目标单体电池进行管理,还包括:
    控制与所述目标单体电池对应的提醒模块发出预警信号。
  7. 根据权利要求1至6任一项所述的电池的管理方法,其特征在于,所述方法还包括:将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的等效自放电量值。
  8. 根据权利要求7所述的电池的管理方法,其特征在于,所述将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的等效自放电量值,包括:
    确定所有电池的当前等效自放电量值中的最小当前等效自放电量值;
    将每一单体电池的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池的预处理当前等效自放电量值;以及
    将每一单体电池的所述预处理当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的所述自放电量值。
  9. 根据权利要求1至8任一项所述的电池的管理方法,其特征在于,所述上一时刻为所述车辆出厂的时刻,每一单体电池的所述上一时刻等效自放电量值为0,每一单体电池的所述上一时刻历史累计均衡电量值为0,每一单体电池的所述上一时刻高电压拐点电量值为0。
  10. 根据权利要求1至8任一项所述的电池的管理方法,其特征在于,所述当前时刻为当前充电时,获取到所述充电曲线的时刻,所述上一时刻为上一次充电时,获取到所述充电曲线的时刻。
  11. 根据权利要求1至10任一项所述的电池的管理方法,其特征在于,所述单体电池可为动力电池或储能电池。
  12. 一种电池的管理装置(100),所述电池的管理装置包括多个单体电池(50),其特征在于,所述电池的管理装置(100)还包括:
    获取模块(10),用于获取当前时刻每一单体电池的充电曲线的高电压拐点对应的当前高电压拐点电量值、当前时刻每一单体电池的当前历史累计均衡电量值以及每一单体电池的上一时刻等效自放电量值;
    处理模块(20),用于根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,并将每一单体电池的所述当前等效自放电量值减去所述单体电池的上一时刻等效自放电量值而得到所述单体电池在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值,确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值,将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率,以及在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,对所述最大目标等效自放电量值对应的目标单体电池进行管理。
  13. 根据权利要求12所述的电池的管理装置,其特征在于,在用于根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体 电池的当前等效自放电量值,所述处理模块(20)具体用于:
    将每一单体电池的所述当前高电压拐点电量值减去所述单体电池的所述当前历史累计均衡电量值而得到所述单体电池的所述当前等效自放电量值。
  14. 根据权利要求12所述的电池的管理装置,其特征在于,在用于根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值,所述处理模块(20)具体用于:
    确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值;
    将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值;
    确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值;
    将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值;以及
    将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值。
  15. 根据权利要求12至14任一项所述的电池的管理装置,其特征在于,所述电池的管理装置应用于车辆,所述电池的管理装置还包括通讯模块(30),用于与所述车辆通讯,在用于对所述最大目标等效自放电量值对应的目标单体电池进行管理,所述处理模块(20)具体用于:
    通过所述通讯模块(30)将所述目标单体电池的信息发送至所述车辆和/或与所述车辆通讯连接的终端。
  16. 根据权利要求12至15任一项所述的电池的管理装置,其特征在于,所述电池的管理装置还包括多个提醒模块(60),每一提醒模块(60)与一单体电池(50)对应,在用于对所述最大目标等效自放电量值对应的目标单体电池进行管理,所述处理模块(20)具体用于:
    控制与所述目标单体电池对应的提醒模块(60)发出预警信号。
  17. 根据权利要求12至16任一项所述的电池的管理装置,其特征在于,所述电池的管理装置还包括存储模块(40),所述存储模块(40)中存储有每一单体电池的自放电量值,所述处理模块(20)还用于将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的自放电量值。
  18. 根据权利要求17所述的电池的管理装置,其特征在于,在用于将每一单体电池的所述当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的自放电量值,所述处理模块(20)具体用于:
    确定所有电池的当前等效自放电量值中的最小当前等效自放电量值;
    将每一单体电池的所述当前等效自放电量值减去所述最小当前等效自放电量值而得到每一单体电池的预处理当前等效自放电量值;以及
    将每一单体电池的所述预处理当前等效自放电量值替换所述单体电池的所述上一时刻等效自放电量值,以更新所存储的所述单体电池的所述自放电量值。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序供处理器调用后执行:
    获取当前时刻多个单体电池中的每一单体电池的充电曲线的高电压拐点对应的当前高电压拐点电量值;
    获取当前时刻每一单体电池的当前历史累计均衡电量值;
    根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值;
    获取每一单体电池的上一时刻等效自放电量值;
    将每一单体电池的当前等效自放电量值减去所述单体电池的所述上一时刻等效自放电量值而得到所述单体电池在所述当前时刻与所述上一时刻的间隔时长内的目标等效自放电量值;
    确定所有单体电池的目标等效自放电量值中的最大目标等效自放电量值和最小目标等效自放电量值;
    将所述最大目标等效自放电量值除以所述间隔时长而得到最大等效自放电率,将所述最小目标等效自放电量值除以所述间隔时长而得到最小等效自放电率;以及
    在确定所述最大等效自放电率与所述最小等效自放电率的差值大于预设阈值时,具体用于。
  20. 根据权利要求19所述的计算机可读存储介质,其特征在于,在根据每一单体电池的所述当前高电压拐点电量值以及所述单体电池的所述当前历史累计均衡电量值得到所述单体电池的当前等效自放电量值方面,所述计算机程序供处理器调用后执行:
    确定所有单体电池的当前高电压拐点电量值中的最小当前高电压拐点电量值;
    将每一单体电池的所述当前高电压拐点电量值减去所述最小当前高电压拐点电量值而得到每一单体电池的预处理当前高电压拐点电量值;
    确定所有单体电池的当前历史累计均衡电量值中的最小当前历史累计均衡电量值;
    将每一单体电池的所述当前历史累计均衡电量值减去所述最小当前历史累计均衡电量值而得到每一单体电池的预处理当前历史累计均衡电量值;以及
    将每一单体电池的所述预处理当前高电压拐点电量值减去所述单体电池的预处理当前历史累计均衡电量值而得到所述单体电池的当前等效自放电量值。
PCT/CN2022/135668 2021-12-30 2022-11-30 电池的管理方法及管理装置及计算机可读存储介质 WO2023124733A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22913988.6A EP4404327A1 (en) 2021-12-30 2022-11-30 Battery management method and apparatus, and computer-readable storage medium
AU2022426154A AU2022426154A1 (en) 2021-12-30 2022-11-30 Battery management method and apparatus, and computer-readable storage medium
KR1020247012204A KR20240055854A (ko) 2021-12-30 2022-11-30 배터리 관리 방법 및 장치, 및 컴퓨터 판독가능한 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111681358.1A CN116409203A (zh) 2021-12-30 2021-12-30 电池的管理方法及管理装置、车辆及计算机可读存储介质
CN202111681358.1 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124733A1 true WO2023124733A1 (zh) 2023-07-06

Family

ID=86997587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135668 WO2023124733A1 (zh) 2021-12-30 2022-11-30 电池的管理方法及管理装置及计算机可读存储介质

Country Status (5)

Country Link
EP (1) EP4404327A1 (zh)
KR (1) KR20240055854A (zh)
CN (1) CN116409203A (zh)
AU (1) AU2022426154A1 (zh)
WO (1) WO2023124733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826930A (zh) * 2023-08-29 2023-09-29 浙江达航数据技术有限公司 一种电池dc/dc智能均衡器及均衡方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428356A (zh) * 2017-08-31 2019-03-05 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN111142039A (zh) * 2019-11-27 2020-05-12 衡阳市鑫晟新能源有限公司 一种锂电池的配组方法
KR20210046407A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 충전 상태 추정 장치 및 방법
CN113376525A (zh) * 2021-06-15 2021-09-10 多氟多新能源科技有限公司 一种锂离子电池低压挑选方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428356A (zh) * 2017-08-31 2019-03-05 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
KR20210046407A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 충전 상태 추정 장치 및 방법
CN111142039A (zh) * 2019-11-27 2020-05-12 衡阳市鑫晟新能源有限公司 一种锂电池的配组方法
CN113376525A (zh) * 2021-06-15 2021-09-10 多氟多新能源科技有限公司 一种锂离子电池低压挑选方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826930A (zh) * 2023-08-29 2023-09-29 浙江达航数据技术有限公司 一种电池dc/dc智能均衡器及均衡方法
CN116826930B (zh) * 2023-08-29 2023-11-14 浙江达航数据技术有限公司 一种电池dc/dc智能均衡器及均衡方法

Also Published As

Publication number Publication date
KR20240055854A (ko) 2024-04-29
EP4404327A1 (en) 2024-07-24
AU2022426154A1 (en) 2024-05-02
CN116409203A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN106501736B (zh) 电池内阻估算方法及装置
US10447046B2 (en) Secondary battery management system with remote parameter estimation
KR102335296B1 (ko) 무선 네트워크 기반 배터리 관리 시스템
Shahriari et al. Online state-of-health estimation of VRLA batteries using state of charge
WO2023185601A1 (zh) 一种电池健康状态信息确定方法、装置及电池系统
CN101206246A (zh) 预估电池剩余容量的方法
CN112924866B (zh) 容量保持率的检测方法、检测装置、车辆及存储介质
US20230059529A1 (en) Characterization of Rechargeable Batteries Using Machine-Learned Algorithms
WO2023124733A1 (zh) 电池的管理方法及管理装置及计算机可读存储介质
CN107942261A (zh) 电池荷电状态的估计方法及系统
CN115219932A (zh) 用于评价设备电池组的相对老化状态的方法和装置
CN113419185B (zh) 一种锂离子动力蓄电池的单体容量检测方法和系统
CN110687460A (zh) 一种soc预估方法
WO2021169162A1 (zh) 电池备电单元监测方法、装置、服务器及可读存储介质
US20230324463A1 (en) Method and Apparatus for Operating a System for Detecting an Anomaly of an Electrical Energy Store for a Device by Means of Machine Learning Methods
CN112114268A (zh) 基于嵌入式ai算法的批量电芯外特征故障预测方法
CN115986881A (zh) 锂电池串联化成分容检测设备的恒压控制方法及装置
CN116068402A (zh) 新能源汽车锂电池状态预测方法、装置、设备及存储介质
CN114690057A (zh) 一种电池系统性能评估的方法和系统
KR20230108663A (ko) 배터리 충전 심도 산출 장치 및 그것의 동작 방법
CN111403830B (zh) 锂电池安全监测系统
CN114683964A (zh) 一种电池状态信息确定方法及充电设备
CN115811119B (zh) 管理电池的方法及装置
CN110579710A (zh) 一种soc预估装置
CN114435182B (zh) 一种动力电池的控制方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012204

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: AU2022426154

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022913988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202427031634

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022913988

Country of ref document: EP

Effective date: 20240419

ENP Entry into the national phase

Ref document number: 2022426154

Country of ref document: AU

Date of ref document: 20221130

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024007972

Country of ref document: BR