WO2023124721A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023124721A1
WO2023124721A1 PCT/CN2022/135505 CN2022135505W WO2023124721A1 WO 2023124721 A1 WO2023124721 A1 WO 2023124721A1 CN 2022135505 W CN2022135505 W CN 2022135505W WO 2023124721 A1 WO2023124721 A1 WO 2023124721A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage container
air
communication port
section
air duct
Prior art date
Application number
PCT/CN2022/135505
Other languages
English (en)
French (fr)
Inventor
王睿龙
刘浩泉
苗建林
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023124721A1 publication Critical patent/WO2023124721A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the invention relates to fresh-keeping equipment, in particular to a refrigerator.
  • refrigerators Electrical equipment with low-temperature storage functions are collectively referred to as refrigerators, including not only refrigerators in the narrow sense, but also freezers, storage cabinets, and other refrigeration and freezing devices.
  • the interior of the refrigerator can define a hypoxic freshness preservation space, and the refrigerator can use the deoxygenation device to consume oxygen for the hypoxic freshness preservation space.
  • hypoxic fresh-keeping space is a closed environment, and the internal air is not connected, which will cause the deoxygenation device to be unable to fully contact with all the air in the hypoxic fresh-keeping space, thereby affecting the oxygen removal rate .
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigerator.
  • Yet a further object of the present invention is to increase the directional flow rate of air inside a storage container of a refrigerator.
  • Another further object of the present invention is to reduce or prevent the air drainage duct of the refrigerator from covering the communication opening.
  • a further object of the present invention is to simplify the structure of the refrigerator and reduce the difficulty of assembly.
  • a further object of the present invention is to reduce or avoid interference of the air drainage duct with the drawing process of the drawer body.
  • the present invention provides a refrigerator, comprising: a box body, a storage compartment is formed inside; a storage container is arranged in the storage compartment, and a communication port is opened on it; an oxygen removal device is arranged in the storage compartment; The interior of the storage container communicates with the internal space of the storage container through the communication port to consume the oxygen in the storage container; and the drainage air duct is arranged in the storage container to keep the interior of the storage container away from the communication port. The air at the position is directed toward the communication port.
  • the deoxygenation device is arranged on the outside of the storage container and attached to the communication port, so as to communicate with the internal space of the storage container and seal the communication port.
  • the communication port is located at the rear of the storage container; and the oxygen removal device is arranged at the rear of the storage container.
  • the diversion air channel includes: a horizontal air channel section extending horizontally from the front side of the communication opening and close to the communication opening; and a vertical air channel section communicating with the horizontal air channel section and extending from the horizontal air channel section An end of the channel section close to the communication port extends in the vertical direction so as to be at least partially positioned on the front side of the communication port.
  • At least one air outlet hole is opened on the vertical air duct section, opposite to the communication opening, for allowing the air flowing through the vertical air duct section to flow out and flow to the communication opening.
  • the storage container includes: a cylindrical body having a bottom wall and a top wall oppositely arranged, and side walls extending upward from lateral sides and rear sides of the bottom wall to the top wall, and the side walls are connected with the bottom wall and the top wall.
  • the walls jointly enclose a cylindrical body with a forward opening for arranging the following drawer body; and the drawer body can be drawn and arranged on the cylindrical body; and the horizontal air duct section is located at the top section of the storage container, and is fixed Assembled to the top wall of the barrel, and higher than the drawer body; the vertical air duct section extends vertically downward from the end of the horizontal air duct section near the communication port to the bottom section of the storage container, and is located between the drawer body and the drawer body. Between the side walls at the rear of the barrel.
  • the refrigerator further includes: an airflow actuating device, disposed in the storage container, and located at the end of the horizontal air duct section away from the communication port, used to push the interior of the storage container away from the communication port when the oxygen removal device is running.
  • the air at the opening flows through the draft duct and flows to the communication opening.
  • the airflow actuating device is a fan, located on the front side of the horizontal air duct section, its air inlet end faces the front section in the storage container, and its air outlet end is away from the horizontal air duct section away from the communication port.
  • One end is sealed and communicated, and is arranged horizontally toward the rear or inclined toward the rear and downward.
  • the airflow actuation device is also used to delay shutdown after the oxygen removal device is shut down, so that the oxygen removal device can use the airflow flowing through the drainage air channel and to the communication port to cool down; or the airflow actuation device is also used for deoxidation Intermittent activation while the unit is shut down to improve temperature uniformity within the storage container.
  • the drainage air duct can guide the air in the storage container away from the communication port toward the communication opening, so the drainage air duct can play a directional guiding role.
  • the effect of the air inside the storage container is beneficial to improve the contact efficiency between the oxygen removal device and the air inside the storage container, thereby increasing the oxygen removal rate in the storage container of the refrigerator.
  • the airflow actuation device can promote the air in the storage container away from the communication port to flow through the air drainage channel and flow to the communication port, therefore,
  • the airflow actuating device can improve the directional flow rate of the air inside the storage container, and the combination of the drainage duct and the airflow actuating device is beneficial to realize the rapid flow of the directional airflow to the communication port, thereby ensuring a higher the oxygen removal rate.
  • the air inside the storage container close to the communication port can flow to the communication port, therefore, in the orientation At the same time as the drainage effect, it can also reduce or prevent the drainage air duct from covering the communication port, so as not to affect the contact between the air near the communication port and the oxygen removal device.
  • the refrigerator of the present invention has the advantages of simple structure and easy assembly process.
  • the horizontal air duct section is higher than the drawer body, and the vertical air duct section is located between the drawer body and the side wall at the rear of the barrel, when the drainage air duct is assembled to the storage When the object container is placed, it will not interfere with the drawing process of the drawer body, and will hardly affect the space utilization rate of the drawer body.
  • FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the internal structure of a refrigerator according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the air drainage duct of the refrigerator shown in Fig. 2;
  • FIG. 4 is a schematic diagram of the internal structure of a refrigerator according to another embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a deoxygenation device of a refrigerator according to an embodiment of the present invention.
  • Fig. 6 is an exploded view of the oxygen removal device of the refrigerator shown in Fig. 5;
  • Fig. 7 is a schematic diagram of an internal structure of a refrigerator according to yet another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a refrigerator 10 according to one embodiment of the present invention.
  • the refrigerator 10 may generally include a box body 500 , a storage container 200 , an oxygen removal device 100 and an air drainage duct 400 .
  • the interior of the box body 500 forms a storage compartment 510 .
  • the number and temperature zones of the storage compartments 510 can be set arbitrarily according to actual needs.
  • the number of storage compartments 510 may be three, which are refrigerated compartments, freezer compartments and variable temperature compartments.
  • the storage container 200 and the oxygen removal device 100 can be arranged in any storage compartment 510 according to actual needs, and there is no specific limitation on this, for example, they can be arranged in a freezer compartment.
  • Fig. 2 is a schematic diagram of the internal structure of a refrigerator 10 according to an embodiment of the present invention, in which a storage container 200, a drainage air duct 400 and an oxygen removal device 100 are shown.
  • the storage container 200 is disposed in the storage compartment 510 and has a communication port (not shown) thereon.
  • the communication port serves as a material exchange port connecting the internal space of the storage container 200 with the external space, and has an opening shape. When the communication port is open, the air in the storage container 200 can flow out of the communication port and into the external space of the storage container 200 .
  • the storage container 200 in this embodiment may be any storage device such as a storage basket, a storage basket, a storage box, or a storage drawer.
  • the deoxygenation device 100 is disposed in the storage compartment 510 , and communicates with the inner space of the storage container 200 through the communication port to consume the oxygen in the storage container 200 .
  • the airflow communication through the communication port means that the air in the inner space of the storage container 200 can flow out of the communication port and flow to the oxygen removal device 100 .
  • the deoxygenation device 100 of this embodiment can be any device with the function of consuming oxygen, for example, it can be an electrolytic deoxygenation device that consumes oxygen by performing an electrochemical reaction, or it can be an oxygen separation device such as an oxygen-enriched membrane.
  • the air guiding duct 400 is disposed in the storage container 200 for guiding the air in the storage container 200 away from the communication port to the communication port. Since the oxygen removal device 100 is in airflow communication with the communication port, the air drainage channel 400 of this embodiment can guide the air in the storage container 200 away from the communication port to the oxygen removal device 100, so that the oxygen removal device 100 can smoothly Oxygen in the air is consumed.
  • the air drainage channel 400 may extend from a part inside the storage container 200 away from the communication port to the communication port.
  • the air guiding duct 400 may be an air guiding pipe or other air guiding elements with an air guiding function.
  • the drainage air duct 400 can guide the air in the storage container 200 away from the communication port toward the communication opening. Therefore, the drainage air duct 400 It can play the role of directionally guiding the air inside the storage container 200, which is conducive to improving the contact efficiency between the oxygen removal device 100 and the air inside the storage container 200, thereby improving the oxygen removal rate in the storage container 200 of the refrigerator 10, which is
  • the running time of the oxygen removal device 100 can be shortened, the energy consumption can be reduced, the preservation effect can be enhanced, and the storage period can be extended.
  • the deoxygenation device 100 is disposed on the outside of the storage container 200 and attached to the communication port, so as to communicate with the inner space of the storage container 200 and close the communication port. That is to say, when the oxygen removal device 100 is pasted on the communication port, it not only closes the communication port, but also realizes airflow communication with the inner space of the storage container 200.
  • the storage container 200 is roughly in the shape of a cuboid
  • the oxygen removal device 100 is roughly in the shape of a flat cuboid.
  • the connecting port can be in any shape such as a circle or a square.
  • the effect of airflow communication between the storage container 200 and the deoxygenation device 100 can be improved, thereby accelerating the deoxygenation rate.
  • the communication port is located at the rear of the storage container 200 .
  • the communication port may be located on the side wall 213 at the rear of the cylinder body 210 of the storage container 200 .
  • the oxygen removal device 100 is disposed on the rear side of the storage container 200 . With such arrangement, when the storage container 200 is a drawer-type appliance, the interference of the deoxygenation device 100 on the pulling process of the storage container 200 can be avoided.
  • FIG. 3 is a schematic diagram of the airflow duct 400 of the refrigerator 10 shown in FIG. 2 .
  • the air guiding duct 400 includes a horizontal duct section 410 and a vertical duct section 420 .
  • the diversion air duct 400 may also include an arc-shaped air duct section connected between the horizontal air duct section 410 and the vertical air duct section 420 .
  • the horizontal air duct section 410 horizontally extends backward from the front side of the communication opening and is close to the communication opening. That is, the horizontal air duct section 410 extends from front to back along the horizontal direction.
  • the length of the horizontal air duct section 410 may be set to be 0.1-0.5 times the length of the storage container 200 in the depth direction.
  • the vertical air duct section 420 communicates with the horizontal air duct section 410 and extends vertically from an end of the horizontal air duct section 410 near the communication opening, so as to be at least partially positioned in front of the communication opening.
  • the vertical air passage section 420 extends downwards in the vertical direction; when the horizontal air passage section 410 is located at the bottom of the storage container 200 During sectioning, the vertical air duct section 420 extends upwards along the vertical direction.
  • the oxygen in the air at the rear of the storage container 200 close to the oxygen removal device 100 is gradually consumed, while the oxygen concentration in the air at the front of the storage container 200 away from the oxygen removal device 100 is relatively high, forming A certain concentration gradient will reduce the working efficiency of the deoxygenation device 100 due to the relatively slow molecular diffusion rate.
  • the air flow duct 400 Utilize the interconnected horizontal air duct section 410 and the vertical air duct section 420 to construct the air flow duct 400, which can directionally guide the airflow to the oxygen removal device 100 at the communication port, and can reduce the other components inside the storage container 200.
  • the flow rate of the airflow in the space can reduce or avoid drying the items stored in the storage container 200 to a certain extent, and has the advantage of compact structure.
  • the horizontal air duct section 410 and the vertical air duct section 420 can be integrated, which is conducive to improving the structural integrity of the air drainage duct 400, omitting the assembly process, and ensuring that the horizontal air duct section 410 and the connection stability between the vertical duct section 420.
  • At least one air outlet hole (not shown) is opened on the vertical air duct section 420, opposite to the communication port, for allowing the air flowing through the vertical air duct section 420 to flow out, and flow to the connecting port.
  • the air flowing through the air diversion duct 400 can directly reach the deoxygenation device 100 at the communication port, thereby further improving the diversion effect.
  • the vertical air passage section 420 there is a gap between the vertical air passage section 420 and the communication port, so as to allow the air inside the storage container 200 near the communication port to flow to the communication port. That is to say, the vertical air channel section 420 is not close to the communication port, which can prevent the vertical air channel section 420 from covering the communication port, and the air near the communication port can still flow to the communication port through the gap. Therefore, while playing the role of directional drainage, the air drainage channel 400 can also reduce or avoid covering the communication opening, so as not to affect the contact between the air near the communication opening and the oxygen removal device 100 .
  • the storage container 200 is a drawer-type appliance.
  • the storage container 200 may include a barrel body 210 and a drawer body 220 , which cooperate with each other to define a closed storage container 200 .
  • cylinder body 210 has bottom wall 212 and top wall 211 that are arranged oppositely, and side wall 213 extending upwards to top wall 211 from the lateral sides and rear side of bottom wall 212, side wall 213 and bottom wall 212 and top wall 211 together enclose a cylinder 210 with a front opening for arranging the drawer body 220 described below.
  • There may be three side walls 213 wherein two side walls 213 are respectively located at one lateral end of the barrel 210 , and the other side wall 213 is located at the rear of the barrel 210 .
  • the drawer body 220 is retractably disposed on the cylinder body 210 . Thereby opening or closing the inner space of the storage container 200 .
  • the horizontal air channel section 410 is located at the top section of the storage container 200 , and is fixedly assembled to the top wall 211 of the barrel body 210 and is higher than the drawer body 220 .
  • the fact that the horizontal air duct section 410 is higher than the drawer body 220 means that the lower surface of the horizontal air duct section 410 is higher than the upper surface of the drawer body 220 .
  • the vertical air channel section 420 extends vertically downward from the end of the horizontal air channel section 410 near the communication port to the bottom section of the storage container 200, for example, it may extend to the bottom wall 212 of the cylinder body 210, and vertically The air channel section 420 is located between the drawer body 220 and the side wall 213 at the rear of the cylinder body 210 .
  • the fact that the vertical air passage section 420 is located between the drawer body 220 and the side wall 213 at the rear of the barrel 210 means that when the drawer body 220 is located inside the barrel 210 and closes the inner space of the storage container 200, the vertical air passage section The section 420 is interposed between the drawer body 220 and the side wall 213 at the rear of the barrel 210 .
  • the air drainage channel 400 can be assembled to the storage container 200, which has the advantages of simple structure and simple assembly process.
  • the horizontal air duct section 410 is higher than the drawer body 220, and the vertical air duct section 420 is located between the drawer body 220 and the side wall 213 at the rear of the cylinder body 210, when the air drainage duct 400 is assembled to the storage container 200, it will not interfere with the drawing process of the drawer body 220, and will hardly affect the space utilization rate of the drawer body 220 at the same time.
  • the refrigerator 10 may further include an air flow actuating device 300, which is disposed in the storage container 200 and located at the end of the horizontal air duct section 410 away from the communication port, for When the device 100 is in operation, the air inside the storage container 200 away from the communication port flows through the air flow channel 400 and flows to the communication port.
  • the end of the horizontal air duct section 410 away from the communication port forms the air intake hole 411 of the air drainage duct 400, the air in the storage container 200 can flow into the air drainage duct 400 from the air intake hole 411, and flow out of the air drainage duct from the air outlet hole 400.
  • the airflow actuation device 300 can promote the air in the storage container 200 away from the communication port to flow through the air flow duct 400 and flow to the communication port, therefore, the air flow actuation
  • the device 300 can increase the directional flow rate of the air inside the storage container 200, and the combination of the drainage duct 400 and the airflow actuating device 300 is beneficial to realize the rapid flow of the directional airflow to the communication port, thereby ensuring a higher
  • the oxygen removal rate shortens the working time of the oxygen removal device 100.
  • the air flow guided by the air duct 400 will spread out on the surface of the oxygen removal device 100, and the oxygen in the air flow will be used as the reactant of the oxygen removal device 100,
  • the airflow actuating device 300 is a fan, such as a miniature centrifugal fan or an axial fan, and is located at the front side of the horizontal air duct section 410.
  • the air inlet end of the airflow actuating device 300 faces the front section inside the storage container 200 .
  • the air outlet end of the airflow actuating device 300 is in sealing communication with the end of the horizontal air duct section 410 away from the communication opening, and is arranged horizontally toward the rear. Since the airflow actuating device 300 is located on the front side of the horizontal air duct section 410, when the air outlet end of the airflow actuating device 300 is horizontally arranged toward the rear (as shown in FIG. 2 ), the airflow flowing out of the air outlet end is along the horizontal direction. It flows into the air drainage channel 400 backward.
  • FIG. 4 is a schematic diagram of an internal structure of a refrigerator 10 according to another embodiment of the present invention.
  • the air outlet end of the airflow actuating device 300 in this embodiment is in sealing communication with the end of the horizontal air duct section 410 away from the communication opening, and is inclined toward the rear and downward.
  • the air outlet end of the airflow actuating device 300 is arranged obliquely toward the rear and downward, the airflow flowing out of the air outlet end obliquely flows into the air guiding duct 400 in a backward and downward direction.
  • the airflow flowing out of the air outlet end is obliquely flowed into the air guide duct 400 in a backward and downward direction, so that the airflow can flow in more easily.
  • the air path design is more in line with the flow direction of the air.
  • the airflow actuating device 300 is also used to delay shutdown after the oxygen removal device 100 is shut down, so that the oxygen removal device 100 cools down by using the airflow flowing through the drainage duct 400 and flowing to the communication port. For example, when the oxygen concentration in the storage container 200 drops below a preset concentration threshold, the deoxygenation device 100 can be shut down in a controlled manner. After the oxygen removal device 100 is shut down, the airflow actuating device 300 will not shut down immediately, but will continue to run for a period of time (for example, 5 to 20 minutes). The oxygen plant 100, therefore, the deoxygenation plant 100 can utilize these airflows for rapid cooling.
  • a period of time for example, 5 to 20 minutes
  • the airflow actuating device 300 is also used to start intermittently when the oxygen removal device 100 is in shutdown state, so as to improve the temperature uniformity in the storage container 200 .
  • the deaeration device 100 will remain in a shutdown state, and at this time, the airflow actuation device 300 will perform intermittent operation according to a preset cycle (for example, every 5-20 minutes). This can accelerate the gas circulation in the storage container 200, thereby improving the uniformity of temperature distribution.
  • Fig. 5 is a schematic diagram of the oxygen removal device 100 of the refrigerator 10 according to an embodiment of the present invention
  • Fig. 6 is an exploded view of the oxygen removal device 100 of the refrigerator 10 shown in Fig. 5 .
  • the oxygen removal device 100 may generally include the above-mentioned reaction vessel 110 and an anode plate 140 and a cathode plate 120 .
  • This embodiment is only an example for the structure of the deoxygenation device 100, but it should not be considered that the structure of the deoxygenation device 100 is limited thereto.
  • the reaction container 110 may be in the shape of a box.
  • a side opening 114 may be opened on the reaction vessel 110 .
  • the cathode plate 120 is disposed at the side opening 114 to define together with the reaction container 110 a liquid storage cavity for containing the electrolyte, and is configured to consume oxygen in the storage container through an electrochemical reaction.
  • the side opening 114 can communicate with the communication port of the storage container, which allows the cathode plate 120 to communicate with the inner space of the storage container for air flow. Oxygen in the air inside the storage container can undergo a reduction reaction at the cathode plate 120 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • one of the walls of the reaction vessel 110 may be opened to form the side opening 114 .
  • the cathode plate 120 in this embodiment can directly serve as a lateral wall of the reaction vessel 110 for sealing the liquid storage chamber.
  • the liquid storage chamber of the oxygen removal device 100 can hold an alkaline electrolyte, such as 1 mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • the anode plate 140 is disposed in the liquid storage chamber and is configured to provide reactants to the cathode plate 120 through an electrochemical reaction and generate oxygen.
  • the OH ⁇ produced by the cathode plate 120 can undergo an oxidation reaction at the anode plate 140 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • An anode power supply terminal 142 is formed on the anode plate 140 . to connect to an external power supply.
  • the reaction container 110 is also provided with an exhaust port 112 for allowing the gas generated in the reaction container 110 to be discharged to the external space.
  • the anode plate 140 in this embodiment generates oxygen when performing an electrochemical reaction, and the exhaust port is used to allow the oxygen generated by the anode plate 140 to discharge.
  • the exhaust port 112 can be disposed close to the top of the reaction vessel 110, which can reduce or avoid electrolyte leakage.
  • an exhaust pipe 160 may be connected to the exhaust port 112 .
  • the deoxygenation device 100 may further include a partition 130 and a fixing component 150 .
  • the separator 130 is disposed in the liquid storage chamber and between the cathode plate 120 and the anode plate 140 for separating the cathode plate 120 and the anode plate 140 to prevent the short circuit of the oxygen removal device 100 .
  • a plurality of protrusions 132 are formed on the side of the separator 130 facing the anode plate 140, the protrusions 132 are in contact with the anode plate 140, and the cathode plate 120 is attached to a side of the separator 130 away from the protrusions 132. side, so as to form a preset gap between the cathode plate 120 and the anode plate 140 , thereby separating the cathode plate 120 from the anode plate 140 .
  • the fixing assembly 150 can be disposed on the outside of the cathode plate 120 and configured to fix the cathode plate 120 at the side opening 114 of the reaction vessel 110 .
  • the fixing assembly 150 may further include a metal frame 152 and a support 154 .
  • the metal frame 152 is attached to the outside of the cathode plate 120 .
  • the metal frame 152 is in direct contact with the cathode plate 120, which can play the role of pressing the cathode plate 120, and the cathode power supply terminal 152b of the cathode plate 120 can also be provided on the metal frame 152 to be connected to an external power supply.
  • the supporting member 154 is formed with an insertion slot.
  • the metal frame 152 When the surrounding portion 152 a of the metal frame 152 enters the insertion slot of the support member 154 , the metal frame 152 can be fixed and positioned by the support member 154 , so that the metal frame 152 presses the cathode plate 120 .
  • Fig. 7 is a schematic diagram of the internal structure of a refrigerator 10 according to another embodiment of the present invention, in which a storage container 200, a drainage air duct 400 and an oxygen removal device 100 are shown.
  • the refrigerator 10 may further include an oxygen concentration sensor 700 disposed in the storage container 200 and another airflow actuation device (which may be named as the second airflow actuation device 600; the airflow actuation device in the foregoing embodiments The device may be named the first air flow actuated device).
  • the oxygen concentration sensor 700 may be disposed on the top wall of the storage container 200 for detecting the oxygen concentration in the inner space of the storage container 200 .
  • the second airflow actuating device 600 can be arranged at the rear of the storage container 200, such as the front side of the oxygen removal device 100, and can improve the airflow velocity in the inner space of the storage container 200, promote uniform temperature, reduce condensation, And the effect of cooling down the oxygen removal device 100.
  • the refrigerator 10 can control each component according to the detection result of the oxygen concentration sensor 700 .
  • the refrigerator 10 may control the deoxygenation device 100 and the second airflow actuation device 600 to be closed or kept closed.
  • the refrigerator 10 can activate the deoxygenation device 100 and activate the second airflow actuation device 600 after a delay of t1.
  • the refrigerator 10 can turn off the oxygen removal device 100, and turn off the second time delay t2.
  • Airflow actuation device 600 The first limit value is smaller than the second limit value.
  • the oxygen removal device 100 starts to work, the oxygen concentration around it is relatively high, and there is little demand for the airflow actuation device.
  • the oxygen removal device 100 needs to be heated up to achieve a better oxygen removal efficiency. Therefore, the delay time t1 starts the first
  • the two-flow actuation device 600 can make the deoxygenation device 100 achieve better deoxygenation efficiency as soon as possible.
  • Delaying time t2 to turn off the airflow actuating device can accelerate the reduction of the temperature of the oxygen removal device 100, and reduce the heat dissipation process of the oxygen removal device 100 to have a continuous impact on the temperature of the inner space of the storage container 200, thereby improving the freshness preservation effect.
  • the drainage air duct 400 can guide the air in the storage container 200 away from the communication port toward the communication opening, therefore, the drainage air duct 400 can It plays the role of guiding the air inside the storage container 200 directionally, which is beneficial to improve the contact efficiency between the oxygen removal device 100 and the air inside the storage container 200 , thereby increasing the oxygen removal rate in the storage container 200 of the refrigerator 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱,包括:箱体,其内部形成储物间室;储物容器,设置于储物间室内,且其上开设有连通口;除氧装置,设置于储物间室内,并通过连通口与储物容器的内部空间气流连通,用于消耗储物容器内的氧气;以及引流风道,设置于储物容器内,用于将储物容器内部远离连通口处的空气朝向连通口导引。由于引流风道能够起到定向地导引储物容器内部空气的作用,因此,本发明的方案,能够提高除氧装置与储物容器内部空气的接触效率,从而提高冰箱储物容器内的除氧速率。

Description

冰箱 技术领域
本发明涉及保鲜设备,特别是涉及冰箱。
背景技术
具备低温存储功能的电器设备统称为冰箱,既包括狭义的冰箱,也包括冷柜、储藏柜以及其他冷藏冷冻装置。
为提升保鲜性能,冰箱的内部可以限定出低氧保鲜空间,并且冰箱可以利用除氧装置为低氧保鲜空间消耗氧气。
然而,发明人认识到,一般情况下,低氧保鲜空间为密闭环境,内部空气不连通,这会导致除氧装置无法充分地与低氧保鲜空间内的全部空气进行接触,从而影响除氧速率。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱。
本发明的一个进一步的目的是要定向地导引储物容器内的空气,从而提高冰箱储物容器内的除氧速率。
本发明的又一个进一步的目的是提高冰箱的储物容器内部空气的定向流动速率。
本发明的另一个进一步的目的是要减少或避免冰箱的引流风道遮蔽连通口。
本发明的再一个进一步的目的是要简化冰箱的结构,降低装配难度。
本发明的又一个进一步的目的是要减少或避免引流风道对抽屉本体的抽拉过程产生干涉。
特别地,本发明提供了一种冰箱,包括:箱体,其内部形成储物间室;储物容器,设置于储物间室内,且其上开设有连通口;除氧装置,设置于储物间室内,并通过连通口与储物容器的内部空间气流连通,用于消耗储物容器内的氧气;以及引流风道,设置于储物容器内,用于将储物容器内部远离连通口处的空气朝向连通口导引。
可选地,除氧装置设置于储物容器的外侧,并贴覆于连通口处,从而与 储物容器的内部空间气流连通且封闭连通口。
可选地,连通口位于储物容器的后部;且除氧装置设置于储物容器的后侧。
可选地,引流风道包括:水平风道区段,自连通口的前侧水平向后延伸并靠近连通口;以及竖直风道区段,与水平风道区段连通,且自水平风道区段靠近连通口的一端沿竖直方向延伸,从而至少部分地定位于连通口的前侧。
可选地,竖直风道区段上开设有至少一个出气孔,与连通口相对,用于允许流经竖直风道区段的空气流出,并流至连通口。
可选地,竖直风道区段与连通口之间具有间隙,以允许储物容器内部靠近连通口处的空气流动至连通口。
可选地,储物容器包括:筒体,其具有相对设置的底壁和顶壁、以及从底壁的横向两侧和后侧向上延伸至顶壁的侧壁,侧壁与底壁和顶壁共同围合出具有前向开口以供布置下述抽屉本体的筒体;以及抽屉本体,可抽拉地设置于筒体;且水平风道区段位于储物容器的顶部区段,并固定装配至筒体的顶壁,且高于抽屉本体;竖直风道区段自水平风道区段靠近连通口的一端竖直向下延伸至储物容器的底部区段,并位于抽屉本体与筒体后部的侧壁之间。
可选地,冰箱还包括:气流促动装置,设置于储物容器内,并位于水平风道区段的远离连通口的一端,用于在除氧装置运行时促使形储物容器内部远离连通口处的空气流经引流风道,并流至连通口。
可选地,气流促动装置为风机,位于水平风道区段的前侧,其进风端朝向储物容器内的前部区段,其出风端与水平风道区段远离连通口的一端密封连通,且朝向后方水平设置或者朝向后下方倾斜设置。
可选地,气流促动装置还用于在除氧装置停机后延迟关机,使得除氧装置利用流经引流风道并流至连通口的气流降温;或者气流促动装置还用于在除氧装置处于停机状态的情况下间歇性启动,以提高储物容器内的温度均匀性。
本发明的冰箱,由于储物容器内具有引流风道,该引流风道能够将储物容器内部远离连通口处的空气朝向连通口导引,因此,该引流风道能够起到定向地导引储物容器内部空气的作用,这有利于提高除氧装置与储物容器内 部空气的接触效率,从而提高冰箱储物容器内的除氧速率。
进一步地,本发明的冰箱,由于储物容器内还具有气流促动装置,该气流促动装置能够促使储物容器内部远离连通口处的空气流经引流风道并流至连通口,因此,该气流促动装置能够起到提高储物容器内部空气的定向流动速率的作用,利用引流风道与气流促动装置相结合,有利于实现流向连通口的定向气流的快速流动,从而保证较高的除氧速率。
进一步地,本发明的冰箱,由于引流风道的竖直风道区段与连通口之间具有间隙,以允许储物容器内部靠近连通口处的空气流动至连通口,因此,在起到定向引流作用的同时,还能减少或避免引流风道遮蔽连通口,从而不会影响连通口附近的空气与除氧装置接触。
进一步地,本发明的冰箱,通过将引流风道的水平风道区段固定装配至储物容器筒体的顶壁,且将竖直风道区段限定在抽屉本体与筒体后部的侧壁之间,即可将引流风道装配至储物容器,因此,本发明的冰箱,具备结构简单、装配工序简易的优点。
更进一步地,本发明的冰箱,由于水平风道区段高于抽屉本体,且竖直风道区段位于抽屉本体与筒体后部的侧壁之间,因此,当引流风道装配至储物容器时,不会对抽屉本体的抽拉过程产生干涉,同时也几乎不会对抽屉本体的空间利用率产生影响。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意图;
图2是根据本发明一个实施例的冰箱的内部结构的示意图;
图3是图2所示的冰箱的引流风道的示意图;
图4是根据本发明另一实施例的冰箱的内部结构的示意图;
图5是根据本发明一个实施例的冰箱的除氧装置的示意图;
图6是图5所示的冰箱的除氧装置的分解图;
图7是根据本发明又一实施例的冰箱的内部结构的示意图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意图。冰箱10一般性地可包括箱体500、储物容器200、除氧装置100以及引流风道400。
箱体500的内部形成储物间室510。储物间室510的数量和温区可以根据实际需要进行任意设置。例如,储物间室510的数量可以为三个,分别为冷藏间室、冷冻间室和变温间室。储物容器200和除氧装置100可以根据实际需要设置于任一储物间室510,对此不做具体限定,例如,可以设置于冷冻间室。
图2是根据本发明一个实施例的冰箱10的内部结构的示意图,图中示出了储物容器200、引流风道400以及除氧装置100。
储物容器200设置于储物间室510内,且其上开设有连通口(未示出)。该连通口作为连通储物容器200的内部空间与外部空间的物质交换口,呈开口形状。当连通口为开放状态时,储物容器200内的空气可以流出连通口并流至储物容器200的外部空间。本实施例的储物容器200可以为储物篮、储物筐、储物盒或者储物抽屉等任一储物器具。
除氧装置100设置于储物间室510内,并通过连通口与储物容器200的内部空间气流连通,用于消耗储物容器200内的氧气。通过连通口气流连通是指,储物容器200的内部空间的空气可以流出连通口并流至除氧装置100。本实施例的除氧装置100可以为具备消耗氧气功能的任意装置,例如可以为通过进行电化学反应以消耗氧气的电解除氧装置,或者可以为富氧膜等氧气分离装置等。
引流风道400设置于储物容器200内,用于将储物容器200内部远离连通口处的空气朝向连通口导引。由于除氧装置100与连通口气流连通,因此,本实施例的引流风道400能够将储物容器200内部远离连通口处的空气导引至除氧装置100,使得除氧装置100能够顺利地消耗这些空气中的氧气。例如,引流风道400可以自储物容器200内部远离连通口的部位延伸至连通口。引流风道400可以为导气管或者其他具备气流导引功能的导气元件。
本实施例的冰箱10,由于储物容器200内具有引流风道400,该引流风道400能够将储物容器200内部远离连通口处的空气朝向连通口导引,因此,该引流风道400能够起到定向地导引储物容器200内部空气的作用,这有利 于提高除氧装置100与储物容器200内部空气的接触效率,从而提高冰箱10储物容器200内的除氧速率,这能够缩短除氧装置100的运行时间,降低能耗,增强保鲜效果,延长贮存期。
在一些可选的实施例中,除氧装置100设置于储物容器200的外侧,并贴覆于连通口处,从而与储物容器200的内部空间气流连通且封闭连通口。也就是说,当除氧装置100贴覆在连通口处时,既封闭了连通口,又与储物容器200的内部空间实现气流连通,例如,储物容器200大致呈长方体状,除氧装置100大致呈扁平的长方体状。连通口可以为圆形、方形等任意形状。
通过将除氧装置100贴覆在连通口处,以封闭连通口,可以提高储物容器200与除氧装置100之间的气流连通效果,从而加快除氧速率。
例如,连通口位于储物容器200的后部。在一些实施例中,连通口可以位于储物容器200的筒体210后部的侧壁213上。除氧装置100设置于储物容器200的后侧。如此设置,当储物容器200为抽屉型器具时,可以避免除氧装置100对储物容器200的抽拉过程产生干涉。
需要说明的是,“前”“后”“上”“下”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所描述的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
图3是图2所示的冰箱10的引流风道400的示意图。在一些可选的实施例中,引流风道400包括水平风道区段410和竖直风道区段420。在一些可选的实施例中,引流风道400还可以包括连接于水平风道区段410和竖直风道区段420之间的弧状风道区段。
其中,水平风道区段410自连通口的前侧水平向后延伸并靠近连通口。即,水平风道区段410沿水平方向由前至后地延伸设置。例如,水平风道区段410的长度可以设置为储物容器200在进深方向上的长度的0.1~0.5倍。竖直风道区段420与水平风道区段410连通,且自水平风道区段410靠近连通口的一端沿竖直方向延伸,从而至少部分地定位于连通口的前侧。例如,当水平风道区段410位于储物容器200的顶部区段时,竖直风道区段420沿竖直方向向下延伸设置,当水平风道区段410位于储物容器200的底部区段时,竖直风道区段420沿竖直方向向上延伸设置。
当除氧装置100运行时,储物容器200后部靠近除氧装置100的空气中 的氧气被逐渐消耗,而储物容器200前部远离除氧装置100的空气中的氧气浓度较高,形成一定的浓度梯度,由于分子扩散速度比较慢,这会降低除氧装置100的工作效率。
利用相互连通的水平风道区段410和竖直风道区段420构造引流风道400,能够定向地将气流导引至连通口处的除氧装置100,且能降低储物容器200内部其他空间的气流流动速率,在一定程度上能够减少或避免风干存放于储物容器200的物品,并具备结构精巧的优点。
在一些实施例中,水平风道区段410与竖直风道区段420可以为一体件,这有利于提高引流风道400的结构一体性,省略组装过程,也能保证水平风道区段410和竖直风道区段420之间的连接稳定性。
在一些可选的实施例中,竖直风道区段420上开设有至少一个出气孔(未示出),与连通口相对,用于允许流经竖直风道区段420的空气流出,并流至连通口。例如,出气孔可以为多个,沿竖直风道区段420的延伸方向间隔均匀分布,这有利于提高引流风道400的出风均匀性,还能在一定程度上缩短气流的流动路径,使得流经引流风道400的空气能够直接地到达位于连通口处的除氧装置100,从而进一步提高引流效果。
在一些可选的实施例中,竖直风道区段420与连通口之间具有间隙,以允许储物容器200内部靠近连通口处的空气流动至连通口。也就是说,竖直风道区段420并未紧贴连通口,这可以避免竖直风道区段420遮蔽连通口,连通口附近的空气仍然可以通过间隙流至连通口处。因此,在起到定向引流作用的同时,引流风道400还能减少或避免遮蔽连通口,从而不会影响连通口附近的空气与除氧装置100接触。
在一些可选的实施例中,储物容器200为抽屉型器具。储物容器200可以包括筒体210和抽屉本体220,二者相互配合可以限定出密闭的储物容器200。
其中,筒体210具有相对设置的底壁212和顶壁211、以及从底壁212的横向两侧和后侧向上延伸至顶壁211的侧壁213,侧壁213与底壁212和顶壁211共同围合出具有前向开口以供布置下述抽屉本体220的筒体210。侧壁213可以为三个,其中,两个侧壁213分别位于筒体210的横向一端,另一侧壁213位于筒体210的后部。抽屉本体220可抽拉地设置于筒体210。从而打开或关闭储物容器200的内部空间。
水平风道区段410位于储物容器200的顶部区段,并固定装配至筒体210的顶壁211,且高于抽屉本体220。水平风道区段410高于抽屉本体220是指水平风道区段410的下表面的高度高于抽屉本体220的上表面的高度。
竖直风道区段420自水平风道区段410靠近连通口的一端竖直向下延伸至储物容器200的底部区段,例如,可以延伸至筒体210的底壁212,并且竖直风道区段420位于抽屉本体220与筒体210后部的侧壁213之间。竖直风道区段420位于抽屉本体220与筒体210后部的侧壁213之间是指,当抽屉本体220位于筒体210内部且关闭储物容器200内部空间时,竖直风道区段420介于抽屉本体220与筒体210后部的侧壁213之间。
通过将引流风道400的水平风道区段410固定装配至储物容器200筒体210的顶壁211,且将竖直风道区段420限定在抽屉本体220与筒体210后部的侧壁213之间,即可将引流风道400装配至储物容器200,具备结构简单、装配工序简易的优点。
由于水平风道区段410高于抽屉本体220,且竖直风道区段420位于抽屉本体220与筒体210后部的侧壁213之间,因此,当引流风道400装配至储物容器200时,不会对抽屉本体220的抽拉过程产生干涉,同时也几乎不会对抽屉本体220的空间利用率产生影响。
在一些可选的实施例中,冰箱10还可以进一步地包括气流促动装置300,设置于储物容器200内,并位于水平风道区段410的远离连通口的一端,用于在除氧装置100运行时促使形储物容器200内部远离连通口处的空气流经引流风道400,并流至连通口。水平风道区段410远离连通口的一端形成引流风道400的进气孔411,储物容器200内的空气可以从该进气孔411流入引流风道400,并从出气孔流出引流风道400。
由于储物容器200内具有气流促动装置300,该气流促动装置300能够促使储物容器200内部远离连通口处的空气流经引流风道400并流至连通口,因此,该气流促动装置300能够起到提高储物容器200内部空气的定向流动速率的作用,利用引流风道400与气流促动装置300相结合,有利于实现流向连通口的定向气流的快速流动,从而保证较高的除氧速率,缩短除氧装置100的工作时间。被引流风道400导引的气流会在除氧装置100的表面散开,气流中的氧气将作为除氧装置100的反应物,
气流促动装置300为风机,例如可以设置为微型的离心风机或者轴流风 机,并位于水平风道区段410的前侧。气流促动装置300的进风端朝向储物容器200内的前部区段。
气流促动装置300的出风端与水平风道区段410远离连通口的一端密封连通,且朝向后方水平设置。由于气流促动装置300位于水平风道区段410的前侧,因此,当气流促动装置300的出风端朝向后方水平设置时(如图2所示),流出出风端的气流沿水平方向向后流入引流风道400内。
图4是根据本发明另一实施例的冰箱10的内部结构的示意图。本实施例的气流促动装置300的出风端与水平风道区段410远离连通口的一端密封连通,且朝向后下方倾斜设置。当气流促动装置300的出风端朝向后下方倾斜设置时,流出出风端的气流沿向后且向下的方向倾斜地流入引流风道400内。
由于竖直风道区段420位于水平风道区段410的下方,因此,使流出出风端的气流沿向后且向下的方向倾斜地流入引流风道400内,能使气流更容易地流入竖直风道区段420,气路设计更加符合气流的流向。
在一些可选的实施例中,气流促动装置300还用于在除氧装置100停机后延迟关机,使得除氧装置100利用流经引流风道400并流至连通口的气流降温。例如,当储物容器200内的氧气浓度降低至预设的浓度阈值以下时,除氧装置100可以受控地停机。除氧装置100停机之后,气流促动装置300不会立即关机,而是会继续运行一段时间(例如,5~20min),此时,由于储物容器200内的气流可以源源不断地吹送至除氧装置100,因此,除氧装置100可以利用这些气流进行快速降温。
在另一些可选的实施例中,气流促动装置300还用于在除氧装置100处于停机状态的情况下间歇性启动,以提高储物容器200内的温度均匀性。例如,当储物容器200内的氧气浓度始终低于浓度阈值时,除氧装置100会保持停机状态,此时气流促动装置300会按照预设的周期(例如每隔5~20min)进行间歇性启动,这可以加速储物容器200内的气体循环,从而提高温度分布的均匀性。
图5是根据本发明一个实施例的冰箱10的除氧装置100的示意图,图6是图5所示的冰箱10的除氧装置100的分解图。
除氧装置100一般性地可包括上述反应容器110以及阳极板140和阴极板120。本实施例仅是针对除氧装置100的结构进行举例,但不应视为除氧 装置100的结构仅限于此。
反应容器110可为盒体状。反应容器110上可以开设有侧向开口114。
阴极板120设置于侧向开口114处,以与反应容器110共同限定出用于盛装电解液的储液腔,并配置成通过电化学反应消耗储物容器内的氧气。侧向开口114可以连通储物容器的连通口,这使得阴极板120可与储物容器的内部空间气流连通。储物容器内部空气中的氧气可以在阴极板120处发生还原反应,即:O 2+2H 2O+4e -→4OH -
例如,反应容器110的其中一个壁面可以打开,以形成侧向开口114。本实施例的阴极板120可以直接作为反应容器110的侧向壁面,用于密封储液腔。除氧装置100的储液腔内可以盛装碱性电解液,例如1mol/L的NaOH,其浓度可以根据实际需要进行调整。
阳极板140设置于储液腔内,并配置成通过电化学反应向阴极板120提供反应物,且生成氧气。例如,阴极板120产生的OH -可以在阳极板140处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。阳极板140上形成有阳极供电端子142。以与外部电源相连。
反应容器110上还开设有排气口112,用于允许反应容器110内产生的气体排出至外部空间。本实施例的阳极板140在进行电化学反应时生成氧气,上述排气口用于允许阳极板140生成的氧气排出。排气口112可以靠近反应容器110的顶部设置,这可以减少或避免电解液泄露。在一些实施例中,排气口112处可以连接有排气管160。
在一些实施例中,除氧装置100还可以进一步地包括分隔件130和固定组件150。其中,分隔件130设置于储液腔内,并位于阴极板120与阳极板140之间,用于分隔阴极板120与阳极板140,防止除氧装置100短路。具体地,分隔件130上朝向阳极板140的一侧形成有多个凸起部132,凸起部132抵触于阳极板140上,阴极板120贴靠于分隔件130背离凸起部132的一侧,以在阴极板120与阳极板140形成预设间隙,进而将阴极板120与阳极板140分隔开。
固定组件150可以设置于阴极板120的外侧,配置成将阴极板120固定于反应容器110的侧向开口114处。具体地,该固定组件150还可以包括金属边框152和支撑件154。金属边框152贴靠于阴极板120的外侧。金属边框152与阴极板120直接接触,可以起到压紧阴极板120的作用,并且金属 边框152上还可以设置有阴极板120的阴极供电端子152b,以与外部电源相连。支撑件154形成有插接槽。当金属边框152的围立部152a进支撑件154的插接槽时,金属边框152可以由支撑件154固定和定位,进而使得金属边框152压紧阴极板120。
图7是根据本发明又一实施例的冰箱10的内部结构的示意图,图中示出了储物容器200、引流风道400以及除氧装置100。本实施例中,冰箱10可以进一步地包括设置于储物容器200内的氧气浓度传感器700以及另一气流促动装置(其可命名为第二气流促动装置600;前述实施例的气流促动装置可命名为第一气流促动装置)。其中,氧气浓度传感器700可以设置于储物容器200的顶壁上,用于检测储物容器200内部空间的氧气浓度。第二气流促动装置600例如可以设置于储物容器200的后部,例如除氧装置100的前侧,并起到提高储物容器200内部空间的气流流速,促进温度均匀、减少凝露、以及给除氧装置100降温的作用。
在冰箱10开启气调保鲜功能之后,冰箱10可根据氧气浓度传感器700的检测结果针对各个部件进行控制。例如,当氧气浓度传感器700的检测值低于第一限定值时,冰箱10可控制除氧装置100、第二气流促动装置600关闭或保持关闭。当氧气浓度传感器700的检测值大于等于第一限定值时,冰箱10可启动除氧装置100,且延时t1启动第二气流促动装置600。在启动除氧装置100和第二气流促动装置600之后,当氧气浓度传感器700的检测值降至低于第二限定值时,冰箱10可关闭除氧装置100,且延时t2关闭第二气流促动装置600。第一限定值小于第二限定值。在除氧装置100刚开始工作时,其周围的氧气浓度较高,对气流促动装置的需求不大,除氧装置100需要升温才能发挥更优的除氧效率,因此,延时t1启动第二气流促动装置600可使除氧装置100尽快达到较优的除氧效率。延时t2关闭气流促动装置可以加速降低除氧装置100的温度,减少除氧装置100的散热过程对储物容器200内部空间的温度产生持续影响,进而提升保鲜效果。
本发明的冰箱10,由于储物容器200内具有引流风道400,该引流风道400能够将储物容器200内部远离连通口处的空气朝向连通口导引,因此,该引流风道400能够起到定向地导引储物容器200内部空气的作用,这有利于提高除氧装置100与储物容器200内部空气的接触效率,从而提高冰箱10储物容器200内的除氧速率。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括:
    箱体,其内部形成储物间室;
    储物容器,设置于所述储物间室内,且其上开设有连通口;
    除氧装置,设置于所述储物间室内,并通过所述连通口与所述储物容器的内部空间气流连通,用于消耗所述储物容器内的氧气;以及
    引流风道,设置于所述储物容器内,用于将所述储物容器内部远离所述连通口处的空气朝向所述连通口导引。
  2. 根据权利要求1所述的冰箱,其中,
    所述除氧装置设置于所述储物容器的外侧,并贴覆于所述连通口处,从而与所述储物容器的内部空间气流连通且封闭所述连通口。
  3. 根据权利要求1所述的冰箱,其中,
    所述连通口位于所述储物容器的后部;且
    所述除氧装置设置于所述储物容器的后侧。
  4. 根据权利要求3所述的冰箱,其中,
    所述引流风道包括:
    水平风道区段,自所述连通口的前侧水平向后延伸并靠近所述连通口;以及
    竖直风道区段,与所述水平风道区段连通,且自所述水平风道区段靠近所述连通口的一端沿竖直方向延伸,从而至少部分地定位于所述连通口的前侧。
  5. 根据权利要求4所述的冰箱,其中,
    所述竖直风道区段上开设有至少一个出气孔,与所述连通口相对,用于允许流经所述竖直风道区段的空气流出,并流至所述连通口。
  6. 根据权利要求4所述的冰箱,其中,
    所述竖直风道区段与所述连通口之间具有间隙,以允许所述储物容器内部靠近所述连通口处的空气流动至所述连通口。
  7. 根据权利要求4所述的冰箱,其中,
    所述储物容器包括:
    筒体,其具有相对设置的底壁和顶壁、以及从所述底壁的横向两侧和后侧向上延伸至所述顶壁的侧壁,所述侧壁与所述底壁和所述顶壁共同围合出具有前向开口以供布置下述抽屉本体的筒体;以及
    抽屉本体,可抽拉地设置于所述筒体;且
    所述水平风道区段位于所述储物容器的顶部区段,并固定装配至所述筒体的顶壁,且高于所述抽屉本体;所述竖直风道区段自所述水平风道区段靠近所述连通口的一端竖直向下延伸至所述储物容器的底部区段,并位于所述抽屉本体与所述筒体后部的侧壁之间。
  8. 根据权利要求4所述的冰箱,还包括:
    气流促动装置,设置于所述储物容器内,并位于所述水平风道区段的远离所述连通口的一端,用于在所述除氧装置运行时促使形所述储物容器内部远离所述连通口处的空气流经所述引流风道,并流至所述连通口。
  9. 根据权利要求8所述的冰箱,其中,
    所述气流促动装置为风机,位于所述水平风道区段的前侧,其进风端朝向所述储物容器内的前部区段,其出风端与所述水平风道区段远离所述连通口的一端密封连通,且朝向后方水平设置或者朝向后下方倾斜设置。
  10. 根据权利要求8所述的冰箱,其中,
    所述气流促动装置还用于在所述除氧装置停机后延迟关机,使得所述除氧装置利用流经所述引流风道并流至所述连通口的气流降温;或者
    所述气流促动装置还用于在所述除氧装置处于停机状态的情况下间歇性启动,以提高所述储物容器内的温度均匀性。
PCT/CN2022/135505 2021-12-30 2022-11-30 冰箱 WO2023124721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123398431.2U CN217686086U (zh) 2021-12-30 2021-12-30 冰箱
CN202123398431.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124721A1 true WO2023124721A1 (zh) 2023-07-06

Family

ID=83726296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135505 WO2023124721A1 (zh) 2021-12-30 2022-11-30 冰箱

Country Status (2)

Country Link
CN (1) CN217686086U (zh)
WO (1) WO2023124721A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217686086U (zh) * 2021-12-30 2022-10-28 青岛海尔电冰箱有限公司 冰箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618152A (ja) * 1992-07-03 1994-01-25 Toshiba Corp 冷蔵庫
CN212205217U (zh) * 2020-04-03 2020-12-22 青岛海尔特种电冰箱有限公司 冰箱
CN112747527A (zh) * 2019-10-31 2021-05-04 青岛海尔电冰箱有限公司 冰箱
CN113294964A (zh) * 2020-02-24 2021-08-24 海信容声(广东)冰箱有限公司 一种冰箱
CN113639507A (zh) * 2021-07-19 2021-11-12 重庆海尔制冷电器有限公司 冷藏冷冻设备
CN217686086U (zh) * 2021-12-30 2022-10-28 青岛海尔电冰箱有限公司 冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618152A (ja) * 1992-07-03 1994-01-25 Toshiba Corp 冷蔵庫
CN112747527A (zh) * 2019-10-31 2021-05-04 青岛海尔电冰箱有限公司 冰箱
CN113294964A (zh) * 2020-02-24 2021-08-24 海信容声(广东)冰箱有限公司 一种冰箱
CN212205217U (zh) * 2020-04-03 2020-12-22 青岛海尔特种电冰箱有限公司 冰箱
CN113639507A (zh) * 2021-07-19 2021-11-12 重庆海尔制冷电器有限公司 冷藏冷冻设备
CN217686086U (zh) * 2021-12-30 2022-10-28 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN217686086U (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2023124721A1 (zh) 冰箱
WO2021083431A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN112747525A (zh) 冰箱
CN215930250U (zh) 冷藏冷冻装置
WO2021083433A1 (zh) 冰箱
JP2012083081A (ja) 冷蔵庫
WO2023143368A1 (zh) 冰箱
CN216409401U (zh) 冰箱
JP6242586B2 (ja) 減酸素装置
WO2023124679A1 (zh) 冰箱
JP2015094553A (ja) 減酸素装置と冷蔵庫
WO2023124678A1 (zh) 冰箱
CN214537052U (zh) 用于冰箱的储物装置以及具有其的冰箱
US20230324101A1 (en) Refrigerator
WO2023274168A1 (zh) 冰箱
CN220017828U (zh) 冷藏冷冻装置
CN220338807U (zh) 冷藏冷冻装置
WO2022242240A1 (zh) 冰箱
CN220338805U (zh) 冷藏冷冻装置
CN219037349U (zh) 用于冰箱的抽屉和冰箱
CN219531304U (zh) 冰箱
CN220017827U (zh) 冰箱
WO2023143367A1 (zh) 冰箱
CN217541307U (zh) 一种烘干机自动除水系统
WO2021190013A1 (zh) 保鲜装置及冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913976

Country of ref document: EP

Kind code of ref document: A1