WO2023124555A1 - 导丝伪影抑制方法、装置、ivus系统和存储介质 - Google Patents

导丝伪影抑制方法、装置、ivus系统和存储介质 Download PDF

Info

Publication number
WO2023124555A1
WO2023124555A1 PCT/CN2022/130793 CN2022130793W WO2023124555A1 WO 2023124555 A1 WO2023124555 A1 WO 2023124555A1 CN 2022130793 W CN2022130793 W CN 2022130793W WO 2023124555 A1 WO2023124555 A1 WO 2023124555A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan line
line data
guide wire
data
wire artifact
Prior art date
Application number
PCT/CN2022/130793
Other languages
English (en)
French (fr)
Inventor
何清
何志华
Original Assignee
深圳微创踪影医疗装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳微创踪影医疗装备有限公司 filed Critical 深圳微创踪影医疗装备有限公司
Publication of WO2023124555A1 publication Critical patent/WO2023124555A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the present application relates to the technical field of ultrasound imaging, in particular to a guide wire artifact suppression method, device, IVUS system and storage medium.
  • Intravascular ultrasound imaging is also called Intravascular Ultrasound, i.e. IVUS technology. It is a technology that installs a micro-ultrasound probe on the front end of a catheter. Through professional technology, the catheter is deep into the blood vessel to explore the tissue structure of the blood vessel. A relatively effective, direct, high-quality ultrasonic diagnostic technique.
  • IVUS system of the mechanical rotation type the single-array element transducer in the conductor is driven to rotate by the rotating motor. During the rotation process, the single-array element transducer will periodically transmit ultrasonic excitation signals and ultrasonic echo signals. Receive operation.
  • the embodiment of the present application provides a guide wire artifact suppression method, including steps:
  • the dynamic coefficient Based on the dynamic coefficient, logarithmize the second scan line data to obtain the third scan line data for reconstructing the ultrasound image; wherein, the dynamic coefficient is based on the second scan line data, the position of the guide wire artifact information and the reference The scan line data is obtained; the reference scan line data is obtained based on the first scan line data without guide wire artifact information.
  • logarithmic processing is performed on the data of the fourth scan line to obtain the data of the fifth scan line for reconstructing the ultrasonic image.
  • the filtering processing step is performed on each first scan line data, including:
  • bandpass filter processing is performed on the first scan line data
  • the first scan line data are respectively subjected to band-pass filter processing and band-stop filter processing.
  • the first scan line data includes a plurality of sub-data
  • the steps of using a classifier to process each feature value include:
  • a classifier is used to process the eigenvalues of the first N sub-data; the value of N is obtained according to the setting parameters of the ultrasound system and the structure of the catheter;
  • a classifier is used to sequentially process the eigenvalues of the sub-data until a guide-wire artifact determination event occurs; wherein, the guide-wire artifact determination event includes determining that there is a guide-wire artifact in the first scan line data based on the classification result corresponding to any sub-data movie information.
  • the neural network algorithm model is used to obtain the fitting function
  • the fitting function is used to process the position of guide wire artifact information, the actual data of the scan points in the first scan line data with guide wire artifact information, and the scanning angle relative to the first scan line data with guide wire artifact information. Adjacent reference scan line data to obtain the dynamic coefficient.
  • logarithmic processing is performed on the second scan line data to obtain the third scan line data for reconstructing the ultrasonic image, based on the following formula, the third Scanline data:
  • the embodiment of the present application also provides a guide wire artifact suppression device, including:
  • a data cache module configured to obtain the first scan line data
  • a processing module configured to perform filtering and tissue information extraction processing on the first scan line data to obtain second scan line data when guide wire artifact information exists in the first scan line data;
  • a logarithmic module configured to logarithmize the second scan line data based on a dynamic coefficient to obtain third scan line data for reconstructing an ultrasound image; wherein the dynamic coefficient is based on the second scan line data
  • the scan line data, the position of the guide wire artifact information and the reference scan line data are obtained; the reference scan line data is obtained according to the first scan line data without the guide wire artifact information.
  • the embodiment of the present application also provides an IVUS system, including a memory and a processor, the memory stores a computer program, and the processor implements the steps of any one of the above methods when executing the computer program.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of any one of the above-mentioned methods are implemented.
  • FIG. 1 is a first schematic flowchart of a method for suppressing guidewire artifacts in an embodiment
  • Figure 2 is a schematic diagram of a guidewire artifact in one embodiment
  • Fig. 3 is a schematic flowchart of the steps of judging whether there is guide wire artifact information in each first scan line data in an embodiment
  • Fig. 4 is a second schematic flowchart of a method for suppressing guidewire artifacts in an embodiment
  • Fig. 5 is a comparison diagram before and after processing an ultrasonic image containing a guide wire artifact using the method of the present application in an embodiment.
  • Fig. 6 is a first schematic flowchart of the step of determining the dynamic coefficient in an embodiment
  • Fig. 7 is a second schematic flowchart of the step of determining the dynamic coefficient in an embodiment
  • Fig. 8 is a structural block diagram of a guide wire artifact suppression device in an embodiment
  • Fig. 9 is an internal structure diagram of an IVUS system in one embodiment.
  • a method for suppressing guidewire artifacts is provided, which is described by taking the method applied to an IVUS system as an example, including the following steps:
  • the first scan line data refers to a digital signal
  • the digital signal is obtained by converting the reflected ultrasonic echo signal received by the ultrasonic probe into an electrical signal
  • the electrical signal is obtained through analog-to-digital conversion.
  • the first scan line data may be radio frequency signal data or the like.
  • An ultrasound probe is a component of an ultrasound imaging system.
  • the ultrasound imaging system is a mechanical rotation type intravascular ultrasound imaging system.
  • the guide wire artifact is due to the mechanical rotation of the ultrasound probe of the ultrasound system, so that the guide wire will be located on one side of the catheter when the probe rotates and scans, so the guide wire will be scanned by the ultrasound probe, and this will appear on the IVUS image. Guidewire artifacts.
  • the guide wire will appear as a bright echo signal on the intravascular ultrasound image, and the strong echo point shadow of the guide wire and the acoustic shadow behind the guide wire can be seen in the lumen, please refer to the figure for details The 12 o'clock direction of the left picture in 2 and the legend of the 2 o'clock direction of the right picture.
  • the first scan line data at each scan angle can be acquired by any means in the art.
  • the first scan line data transmitted from the ultrasound probe can be received directly.
  • the ultrasonic probe stores the collected first scan line data of each scan angle in a data buffer, and it can be directly extracted from the data buffer when guide wire artifact suppression processing is required.
  • the ultrasonic probe can collect echo signals containing blood vessel tissue information at different scanning angles, and the echo signals are digital-to-analog converted to obtain first scan line data at each scanning angle. That is to say, the first scan line data transmitted by the ultrasound probe may be acquired in real time, or a plurality of first scan line data or all first scan line data transmitted by the ultrasound probe may be acquired.
  • the real-time acquisition of the first scan line data transmitted by the ultrasonic probe is taken as an example for description.
  • the acquired first scan line data is the current first scan line data.
  • any means in the art may be used to perform filtering processing and tissue information extraction processing on the first scan line data.
  • bandpass filtering is performed on the first scan line data; Band-pass filtering and band-stop filtering to reduce signal energy generated by guidewire artifacts.
  • the band-pass filtering process may be FIR band-pass filtering
  • the band-stop filtering may be FIR band-stop filtering. It should be noted that, when there is no wire artifact information in the first scan line data, performing band-pass filter processing on the first scan line data can improve the signal-to-noise ratio of the radio frequency signal data.
  • adding a bandstop filter to the above bandpass filter can further suppress the signal energy near the frequency of the IVUS excitation signal based on the bandstop filter, thereby reducing guidewire artifacts generated signal energy.
  • Vascular tissue information extraction can be performed by any technical means in this field, and can be performed based on time domain, frequency domain or time-frequency domain, for example, it can be an orthogonal demodulation algorithm in ultrasonic image reconstruction based on time domain , and the wavelet extraction method in the time-frequency domain can also be used.
  • the adjusting algorithm extracts the blood vessel tissue information to obtain the current second scan line data.
  • the signal phase of the vascular tissue behind the guide wire will be greatly attenuated, and due to the relative position of the guide wire, vascular tissue and probe Different, the degree of attenuation of the vascular tissue signal will be different, so the logarithmic dynamic coefficient at this time will need to be adjusted in real time during the second scan line data processing process.
  • the current second scanning line data refers to the first scan line data adjacent to the current first scan line data without guide wire artifact information after data processing scanline data. That is to say, if the current first scan line data is the kth, the scan line data after the logarithmization processing of the nearest first scan line data without guide wire artifact information is the reference scan line data.
  • the logarithmized scan line data is the reference scan line data; if the k-1th first scan line data If there is guide wire artifact information in the line data, the k-2th line data is determined, and so on, the latest first scan line data without guide wire artifact information is determined. Since the vascular tissue has continuity on the IVUS image, the second scan line data can be processed to obtain the third scan line data based on the reference scan line data adjacent to the scan angle of the second scan line data. Through the above-mentioned logarithmic processing, various vascular tissues can be clearly displayed within a small range of grayscale changes, which is helpful for users to find lesions faster.
  • logarithmic processing is performed on the second scan line data based on the dynamic coefficient, and in the step of obtaining the third scan line data for reconstructing the ultrasound image, the third scan line data is obtained based on the following formula:
  • the above guide wire artifact suppression method can be processed for the current first scan line data, that is, when the ultrasound probe transmits any set of first scan line data (current first scan line data), the Any one of the first scan line data is processed by the above guide wire artifact suppression method; The scan line data is processed, and so on until all the first scan line data are processed.
  • multiple sets of first scan line data can also be processed simultaneously by using the above guide wire artifact suppression method, that is, when multiple sets of first scan line data are obtained, multiple processing resources can be allocated to simultaneously process The first scanline data is processed.
  • the above-mentioned guide wire artifact suppression method by performing corresponding filtering processing on each first scan line data when there is guide wire artifact information in the first scan line data, realizes effective control of guide wire artifact signals with higher energy. inhibition.
  • logarithmic processing is performed on the second scan line data based on the dynamic coefficient, which enhances the signal of the vascular tissue located in the guide wire artifact area and further suppresses the guide wire artifact information.
  • the authenticity and validity of the data are guaranteed to the greatest extent, and it is helpful to improve the display effect of lesions located in the guide wire artifact area.
  • the logarithmic processing of the second scan line data based on adjusting the appropriate dynamic coefficient can compress and expand the intensity variation gap of different tissue signals, so that as many different vascular tissues as possible can be obtained in a smaller grayscale. It can be clearly displayed to the user within the range of degree variation.
  • the step of judging whether there is guide wire artifact information in each first scan line data includes:
  • S310 Process the time domain, frequency domain or time-frequency domain of each first scan line data to obtain the feature value of each first scan line data;
  • the processing method in the frequency domain or the time-frequency domain may adopt a processing method commonly used in this field, such as FIR filtering, wavelet decomposition, and the like.
  • the first scan line data is the radio frequency (Radio Frequency, RF) signal, and the feature value is extracted in real time from the RF signal, and the feature value extracted in real time is input into the classifier for identification.
  • RF Radio Frequency
  • different classifiers can be used according to different development platform resources. In a specific example, it can be a Bayesian classifier, a neural network classifier, a deep belief network classifier, etc.
  • Whether there is guide wire artifact information in the first scan line data can be directly determined through the classification result.
  • the first scan line data includes a plurality of sub-data; the step of using a classifier to process feature values includes:
  • a classifier is used to process the eigenvalues of the first N sub-data; the value of N is obtained according to the setting parameters of the ultrasound system and the catheter structure; N is a natural number greater than 1.
  • the first scan line data includes a plurality of sub-data refers to a plurality of first scan line data acquired at different times.
  • the position of the guide wire will be relatively close to the position of the ultrasound probe, so for the scan line data affected by the guide wire artifact, the characteristics of the guide wire artifact will be reflected in the first N sub-data . Therefore, when performing feature extraction, it is not necessary to extract all the data in the entire scan line data, only the first N data of the first scan line data need to be extracted and identified.
  • the above method can greatly improve the real-time performance of the algorithm. performance and reduce algorithm delay.
  • the value of N can be obtained according to the parameter setting of the ultrasound system and the structure of the catheter.
  • the first scan line data may be radio frequency signal data.
  • the operation of feature extraction can be performed synchronously during the scan line data collection process, and the extracted features will be input into the classifier in real time for identification. Once the guide wire artifact is identified, the The search will be stopped immediately and the recognition results will be output. It is not necessary to wait until all the features of the first N data are extracted before outputting the results.
  • a guidewire artifact suppression method including steps:
  • S430 based on the dynamic coefficient, perform logarithmic processing on the second scan line data to obtain the third scan line data for reconstructing the ultrasound image; wherein, the dynamic coefficient is based on the position of the second scan line data and guide wire artifact information And the reference scan line data is obtained; the reference scan line data is obtained according to the first scan line data without guide wire artifact information.
  • any means in the art may be used to perform filtering processing and tissue information extraction processing on the first scan line data.
  • FIR bandpass filtering is performed on the first scan line data respectively.
  • FIR band-pass filtering is performed on the first scan line data without guidewire artifact information, so as to improve the signal-to-noise ratio of the RF data.
  • logarithmic processing is performed on the fourth scanning data by using a fixed coefficient.
  • the fixed coefficient will be determined before the IVUS system starts scanning according to the system itself and the user's requirements for the brightness of the ultrasound image.
  • the fixed coefficient is determined according to the image brightness requirement of the ultrasound image.
  • logarithmic processing is performed on the fourth scan line data, and the step of obtaining the fifth scan line data for reconstructing the ultrasonic image may be based on the following formula:
  • A is the data of the fifth scan line
  • B is the data of the fourth scan line
  • a is a fixed coefficient
  • Fig. 5 is the original image without the guide wire artifact suppression method of the present application and the processed image obtained after processing. It can be seen from FIG. 5 that after the guide wire artifact is processed by the method of the present application, the guide wire artifact can be significantly suppressed and the structure of the region is clarified.
  • the step of determining the dynamic coefficient includes:
  • S620 Determine the theoretical data of the scan point according to the position of the guide wire artifact information, the actual data of the scan point in the first scan line data with the guide wire artifact information, and the standard template;
  • the step of determining the dynamic coefficient can be based on the following formula:
  • k is the dynamic coefficient
  • x is the data of the second scan line
  • i is the position of the current RF data on the current scan line
  • line near is the data of the previous scan line that is not affected by the guide wire artifact.
  • the current scan line data and the previous scan line data not affected by the guide wire artifact will have a similar signal amplitude variation trend, so here it can be compared with the presence of the guide wire
  • the reference scan line data adjacent to the scan angle of the first scan line data of the artifact information is used as a normative template to determine the function f, and then combine the position of the guide wire artifact information and the current second scan line data to calculate the dynamic Coefficient k.
  • neural network technology can be introduced for linear fitting, and a more suitable function f can be obtained through large-scale training. For details, please refer to the relevant descriptions of steps S710 and S720 below.
  • the reference scan line data is the last scan line data not affected by the guide wire artifact. In another example, the reference scan line data is the previous scan line data that is not affected by the guide wire artifact and is adjacent (same or similar) to the scan angle of the first scan line data.
  • the step of determining the dynamic coefficient includes:
  • a neural network algorithm model is used for training to obtain a fitting function.
  • the output parameter of the fitting function is a dynamic coefficient
  • the input parameter of the fitting function includes any one of the reference scan line data and the processed scan line data. The data value and location information of the data point.
  • the fitting function can be obtained by training any neural network algorithm model in the field. It should be noted that the fitting function is the dynamic coefficient, the actual data of the scan point in the first scan line data with guide wire artifact information, and the scan angle adjacent to the first scan line data with guide wire artifact information Fitting function for the standard scan data of .
  • FIGS. 1-7 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figures 1-7 may include multiple sub-steps or multiple stages, these sub-steps or stages are not necessarily performed at the same time, but may be performed at different times, these sub-steps or stages The order of execution is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • a guidewire artifact suppression device comprising:
  • a data cache module configured to obtain the first scan line data
  • a processing module configured to perform filtering processing and tissue information extraction processing on the first scan line data to obtain second scan line data when there is guide wire artifact information in the first scan line data;
  • the logarithmic module is used to logarithmize the second scan line data based on the dynamic coefficient to obtain the third scan line data for reconstructing the ultrasonic image; wherein the dynamic coefficient is based on the second scan line data, the guide wire
  • the position of the artifact information and the reference scan line data are obtained; the reference scan line data is obtained according to the first scan line data without guide wire artifact information.
  • the processing module is further configured to perform filtering and tissue information extraction processing on the first scan line data to obtain the fourth scan line data when there is no guidewire artifact information in the first scan line data;
  • the logarithmization module is further configured to logarithmize the fourth scan line data based on the fixed coefficients to obtain fifth scan line data for reconstructing the ultrasonic image.
  • the processing module is further configured to perform band-pass filtering on the first scan line data when there is no guide wire artifact information in the first scan line data; when there is guide wire artifact information in the first scan line data information, the band-pass filter processing and the band-stop filter processing are respectively performed on the first scan line data.
  • the guide wire artifact suppression device further includes:
  • the extraction module is used to process the time domain, frequency domain or time-frequency domain of each first scan line data to obtain the feature value of each first scan line data;
  • the classification module is used to process each feature value with a classifier to obtain a classification result
  • the determining module is configured to determine whether there is guide wire artifact information in each first scan line data according to the classification result.
  • the first scan line data includes a plurality of sub-data
  • the classification module is further configured to use a classifier to process the feature values of the first N sub-data; the value of N is obtained according to the setting parameters of the ultrasound system and the structure of the catheter.
  • the first scan line data includes a plurality of sub-data; the classification module is further used to sequentially process the eigenvalues of the sub-data using a classifier until a guide wire artifact determination event occurs; wherein the guide wire artifact determination event
  • the method includes determining that guidewire artifact information exists in the first scan line data based on a classification result corresponding to any sub-data.
  • the logarithmization module is also used to use the reference scan line data as a normative template; according to the position of the guide wire artifact information, the norm template and the scan point in the first scan line data where the guide wire artifact information exists
  • the actual data determine the theoretical data of the scanning point; according to the theoretical data and actual data, determine the dynamic coefficient.
  • the logarithmic module is also used to obtain a fitting function using a neural network algorithm model; using the fitting function, the position of the guide wire artifact information and the first scan line data with guide wire artifact information are processed The actual data of the middle scan point and the reference scan line data adjacent to the scan angle of the first scan line data with guide wire artifact information are used to obtain the dynamic coefficient.
  • Each module in the above-mentioned device for suppressing guidewire artifacts can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • an IVUS system is provided, the internal structure diagram of which may be shown in FIG. 9 .
  • the computer device includes a processor, memory, network interface and database connected by a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer programs and databases.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer device is used to store the first scanline data.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by the processor, a guide wire artifact suppression method is realized.
  • FIG. 9 is only a block diagram of a part of the structure related to the solution of this application, and does not constitute a limitation on the computer equipment on which the solution of this application is applied.
  • the specific computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the dynamic coefficient Based on the dynamic coefficient, logarithmize the second scan line data to obtain the third scan line data for reconstructing the ultrasound image; wherein, the dynamic coefficient is based on the second scan line data, the position of the guide wire artifact information and the reference The scan line data is obtained; the reference scan line data is obtained based on the first scan line data without guide wire artifact information.
  • the computer program implements the following steps when executed by the processor:
  • logarithmic processing is performed on the data of the fourth scan line to obtain the data of the fifth scan line for reconstructing the ultrasonic image.
  • step of filtering the data of each first scan line when executed by the processor, the following steps are also implemented:
  • bandpass filter processing is performed on the first scan line data
  • the first scan line data are respectively subjected to band-pass filter processing and band-stop filter processing.
  • the computer program implements the following steps when executed by the processor:
  • step of using the classifier to process the feature value when executed by the processor, the following steps are also implemented:
  • a classifier is used to process the eigenvalues of the first N sub-data; the value of N is obtained according to the setting parameters of the ultrasound system and the structure of the catheter;
  • step of using the classifier to process the feature value when executed by the processor, the following steps are also implemented:
  • a classifier is used to sequentially process the eigenvalues of the sub-data until a guide-wire artifact determination event occurs; wherein, the guide-wire artifact determination event includes determining that there is a guide-wire artifact in the first scan line data based on the classification result corresponding to any sub-data movie information.
  • the neural network algorithm model is used to obtain the fitting function
  • the fitting function is used to process the position of guide wire artifact information, the actual data of the scan points in the first scan line data with guide wire artifact information, and the scanning angle relative to the first scan line data with guide wire artifact information. Adjacent reference scan line data to obtain the dynamic coefficient.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM random access memory
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDRSDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Chain Synchlink DRAM
  • Rambus DRAM read-only memory
  • RDRAM read-only memory
  • DRAM dynamic random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)

Abstract

本申请涉及一种导丝伪影抑制方法、装置、IVUS系统和存储介质。该导丝伪影抑制方法包括步骤:获取第一扫描线数据;当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据;基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,动态系数为基于第二扫描线数据、导丝伪影信息的位置以及参考扫描线数据得到;参考扫描线数据为根据不存在导丝伪影信息的第一扫描线数据得到。

Description

导丝伪影抑制方法、装置、IVUS系统和存储介质
相关申请
本申请要求2021年12月31日申请的,申请号为202111672204.6,名称为“导丝伪影抑制方法、装置、IVUS系统和存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及超声成像技术领域,特别是涉及一种导丝伪影抑制方法、装置、IVUS系统和存储介质。
背景技术
血管内超声成像也被称之为Intravascular Ultrasound,即IVUS技术,是一种将微型超声探头安装在导管前端的技术,通过专业技术将导管深入到血管内从而探查血管的组织结构,是现阶段一种相对有效、直接、高质量的超声诊断技术。对于机械旋转类型的IVUS系统,是通过旋转电机带动导体内的单阵元换能器进行旋转,在旋转过程中,单阵元换能器会周期性地进行超声激励信号发射及超声回波信号接收操作。
发明内容
一方面,本申请实施例提供了一种导丝伪影抑制方法,包括步骤:
获取第一扫描线数据;
当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据;
基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,动态系数为基于第二扫描线数据、导丝伪影信息的位置以及参考扫描线数据得到;参考扫描线数据为根据不存在导丝伪影信息的第一扫描线数据得到。
在其中一个实施例中,还包括步骤:
当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行滤波和组织信息提取处理,得到第四扫描线数据;
基于固定系数,对第四扫描线数据进行对数化处理,得到用于重建超声图像的第五扫 描线数据。
在其中一个实施例中,对各第一扫描线数据进行滤波处理步骤,包括:
当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行带通滤波处理;
当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据分别进行带通滤波处理和带阻滤波处理。
在其中一个实施例中,还包括步骤:
对各第一扫描线数据的时域、频域或时频域进行处理,得到各第一扫描线数据的特征值;
采用分类器处理各特征值,得到分类结果;
根据分类结果,确定各第一扫描线数据中是否存在导丝伪影信息。
在其中一个实施例中,第一扫描线数据包括多个子数据;
采用分类器处理各特征值的步骤,包括:
采用分类器处理前N个子数据的特征值;N的值为根据超声系统的设置参数和导管结构得到;
或者采用分类器处理各特征值的步骤,包括:
采用分类器依次处理子数据的特征值,直至发生导丝伪影确定事件;其中,导丝伪影确定事件包括基于任一子数据对应的分类结果,确定第一扫描线数据中存在导丝伪影信息。
在其中一个实施例中,还包括步骤:
将与存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据,作为规范模板;
根据导丝伪影信息的位置、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据和规范模板,确定扫描点的理论数据;
根据理论数据和实际数据,确定动态系数。
在其中一个实施例中,还包括步骤:
采用神经网络算法模型获取拟合函数;
采用拟合函数,处理导丝伪影信息的位置、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据以及与存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据,得到动态系数。
在其中一个实施例中,基于动态系数,基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据的步骤中,基于以下公式,得到第三扫描线数据:
y=log(k*x+1);
其中,y为第三扫描线数据;k为动态系数;x为第二扫描线数据。
一方面,本申请实施例还提供了一种导丝伪影抑制装置,包括:
数据缓存模块,用于获取第一扫描线数据;
处理模块,用于当所述第一扫描线数据存在导丝伪影信息时,对所述第一扫描线数据进行滤波和组织信息提取处理,得到第二扫描线数据;
对数化模块,用于基于动态系数,对所述第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,所述动态系数为基于所述第二扫描线数据、所述导丝伪影信息的位置以及参考扫描线数据得到;所述参考扫描线数据为根据不存在所述导丝伪影信息的第一扫描线数据得到。
一方面,本申请实施例还提供了一种IVUS系统,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述任一项方法的步骤。
另一方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一项方法的步骤。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为一个实施例中导丝伪影抑制方法的第一示意性流程示意图;
图2为一个实施例中导丝伪影的示意图;
图3为一个实施例中判断各第一扫描线数据中是否存在导丝伪影信息的步骤的流程示意图;
图4为一个实施例中导丝伪影抑制方法的第二示意性流程示意图;
图5为一个实施例中采用本申请的方法处理含有导丝伪影的超声图像的前后对照图。
图6为一个实施例中确定动态系数的步骤的第一示意性流程示意图;
图7为一个实施例中确定动态系数的步骤的第二示意性流程示意图;
图8为一个实施例中导丝伪影抑制装置的结构框图;
图9为一个实施例中IVUS系统的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本 申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在实现过程中,发明人发现传统技术中至少存在如下问题:传统机械旋转类型的IVUS系统所呈现的IVUS图像存在导丝伪影。
基于此,有必要针对上述技术问题,提供一种能够对IVUS图像的导丝伪影进行抑制的导丝伪影抑制方法、装置、IVUS系统和存储介质。
在一个实施例中,如图1所示,提供了一种导丝伪影抑制方法,以该方法应用于IVUS系统为例进行说明,包括以下步骤:
S110,获取第一扫描线数据。
其中,第一扫描线数据指的是数字信号,该数字信号为超声探头将其接收到的反射回来的超声回波信号转换为电信号,电信号再通过模数转换而得到。该第一扫描线数据可以为射频信号数据等。超声探头为超声成像系统的组件。可选地,该超声成像系统为机械旋转类型的血管内超声成像系统。导丝伪影是由于超声系统的超声探头为机械旋转的结构,使得在探头旋转扫描时指引导丝会位于导管的一侧,因此指引导丝会被超声探头所扫描,在IVUS图像上呈现该导丝伪影。如图2所示,指引导丝在血管内超声图像上会呈现为亮的回声信号,在管腔内可见到导丝的强回声点状影以及在导丝后方的声影,可以具体参阅图2中左图的12点钟方向以及右图二点钟方向的图例。
可以通过本领域任意手段获取各扫描角度的第一扫描线数据。在一个示例中,可以直接接收从超声探头传输的该第一扫描线数据。在另一个示例中,超声探头将采集到的各扫描角度的第一扫描线数据存储在数据缓存区中,在需要进行导丝伪影抑制处理时直接从数据缓冲区提取即可。超声探头可以采集到不同扫描角度下的包含血管组织信息的回波信号,该回波信号经数模转换后得到各扫描角度的第一扫描线数据。也就是说,可以实时获取超声探头传输的第一扫描线数据,也可以获取超声探头传输的多条第一扫描线数据或者全部第一扫描线数据。
在本实施例中,以实时获取超声探头传输的第一扫描线数据为例进行描述,此时,获取的第一扫描线数据为当前第一扫描线数据。
S120,当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据。
可以采用本领域任意手段对第一扫描线数据进行滤波处理和组织信息提取处理。在一个示例中,当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行带通滤波处理;对于存在导丝伪影信息的第一扫描线数据,则分别依次进行带通滤波和带阻滤波,从 而降低导丝伪影产生的信号能量。其中,带通滤波处理可以为FIR带通滤波,带阻滤波可以为FIR带阻滤波。需要说明的是,当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行带通滤波处理,能够提高射频信号数据的信噪比。对于存在导丝伪影信息的第一扫描线数据,在上述带通滤波基础上增加带阻滤波,能够进一步基于带阻滤波对IVUS激励信号频率附近的信号能量予以抑制,从而降低导丝伪影产生的信号能量。
需要说明的是,还可以采用其他滤波处理的方式,只要能够降低导丝伪影所产生的信号能量,并提高存在导丝伪影信息的第一扫描线数据的信噪比即可。
可以通过本领域任意一种技术手段进行血管组织信息提取,可以基于时域、频域或者时频域来进行血管组织信息提取,例如可以为基于时域的超声图像重建中的正交解调算法,也可以采用时频域的小波提取法等。
在本实施例中,对于步骤S110获取的当前第一扫描线数据,当其存在导丝伪影信息时,对该当前扫描线数据进行FIR带通滤波和FIR带组滤波,再通过正交解调算法提取血管组织信息,得到当前第二扫描线数据。
S130,基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据。其中,动态系数为基于第二扫描线数据、导丝伪影信息的位置以及参考扫描线数据得到;参考扫描线数据为根据不存在导丝伪影信息的第一扫描线数据得到。
对于第二扫描线数据而言,由于其大部分超声信号被导丝所阻挡,所以位于导丝后方的血管组织信号相会有极大的衰减,且由于导丝、血管组织以及探头的相对位置不同,血管组织信号的衰减程度会有所不同,所以此时的对数化的动态系数将需要在进行第二扫描线数据处理过程中实时调整。
需要说明的是,对于每一条第二扫描线数据进行对数化处理时,即对当前第二扫描线数据进行对数化处理时,其动态系数为导丝伪影信息的位置、当前第二扫描线数据的实际数据以及参考扫描线数据得到,其中,参考扫描线数据指的是与当前第一扫描线数据相邻的不存在导丝伪影信息的第一扫描线数据进行对数据处理后的扫描线数据。也就是说,若当前第一扫描线数据为第k个,则往前看最近的一个不存在导丝伪影信息的第一扫描线数据进行对数化处理后的扫描线数据即为参考扫描线数据。即,若第k-1个为不存在导丝伪影信息的第一扫描线数据,则其对数化处理后的扫描线数据即为参考扫描线数据;若第k-1个第一扫描线数据存在导丝伪影信息,则来确定第k-2个,以此类推,确定最近的一个不存在导丝伪影信息的第一扫描线数据。由于血管组织在IVUS图像上存在连续性,可以基于该第二扫描线数据的扫描角度相邻的参考扫描线数据,对该第二扫描线数据进行处理得到第三扫描线数据。通过上述对数化处理,可以使得各种不同的血管组织在一个较小灰度 变化范围内清晰展示,有利于用户更快发现病灶。
在一个具体示例中,基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据的步骤中,基于以下公式,得到第三扫描线数据:
y=log(k*x+1);
其中,y为第三扫描线数据;k为动态系数;x为第二扫描线数据。
可以理解的,上述导丝伪影抑制方法,可以针对于当前第一扫描线数据进行处理,也即当超声探头传输任一组第一扫描线数据(当前第一扫描线数据)时,对该任意一条第一扫描线数据采用上述导丝伪影抑制方法进行处理;且当该超声探头传输下一组第一扫描线数据时,再采用上述导丝伪影抑制方法对该下一组第一扫描线数据进行处理,以此类推直至处理完所有的第一扫描线数据。
在一些实施例中,也可以采用上述导丝伪影抑制方法同时对多组第一扫描线数据进行处理,也即获取的第一扫描线数据为多组时,可以分配多个处理资源同时对该第一扫描线数据进行处理。
上述导丝伪影抑制方法,通过在第一扫描线数据中存在导丝伪影信息时,对各第一扫描线数据进行相应的滤波处理,实现对能量较高的导丝伪影信号的有效抑制。同时,结合血管组织图像的连续性,基于动态系数对第二扫描线数据进行对数化处理,增强了位于导丝伪影区域的血管组织信号并进一步抑制导丝伪影信息,同时也较大程度地保障了数据的真实有效性,有助于提高位于导丝伪影区域的病灶的显示效果。换言之,基于调节适当的动态系数对第二扫描线数据进行对数化处理,能够压缩和扩大不同组织信号的强度变化差距,使得尽可能多的各种不同的血管组织可以在一个较小的灰度变化范围内清晰地展示给用户。
在其中一个实施例中,如图3所示,判断各第一扫描线数据中是否存在导丝伪影信息的步骤,包括:
S310,对各第一扫描线数据的时域、频域或时频域进行处理,得到各第一扫描线数据的特征值;
其中,频域或时频域的处理方式可以采用本领域惯用的处理方法,如FIR滤波,小波分解等。
S320,采用分类器处理各特征值,得到分类结果;
第一扫描线数据也即射频(Radio Frequency,RF)信号,对RF信号实时提取特征值,并将该实时提取到的特征值输入至分类器进行识别。在分类器的选择上可以根据不同的开发平台资源使用不同的分类器,在一个具体示例中,可以为贝叶斯分类器,神经网络分类 器,深度置信网络分类器等。
S330,根据分类结果,确定各第一扫描线数据中是否存在导丝伪影信息。
通过分类结果可以直接确定第一扫描线数据中是否存在导丝伪影信息。
在其中一个实施例中,第一扫描线数据包括多个子数据;采用分类器处理特征值的步骤,包括:
采用分类器处理前N个子数据的特征值;N的值为根据超声系统的设置参数和导管结构得到;N为大于1的自然数。这里,可以理解的是,第一扫描线数据包括多个子数据是指不同时刻获取的多个第一扫描线数据。
由于机械旋转式IVUS的导管结构,导丝的位置与超声探头位置会相对贴近,所以对于受到导丝伪影影响的扫描线数据,导丝伪影的特征在前N个子数据就会有所体现。所以在进行特征提取时,不需要提取整条扫描线数据中的所有数据,仅需要对第一扫描线数据的前N个数据进行提取和识别即可,通过上述方法可以极大提高算法的实时性,降低算法延时。对于N的取值,可以根据超声系统的参数设置和导管结构得到。需要说明的是,第一扫描线数据可以为射频信号数据。
在一个例子中,为了更进一步提高效率,可以扫描线数据采集过程中同步进行特征提取的操作,并且,提取的特征会实时地输入到分类器中进行识别,一旦识别到导丝伪影,就会立即停止搜索并输出识别结果,不需要等前N个数据的特征全部提取后才输出结果。
在其中一个实施例中,如图4所示,提供了一种导丝伪影抑制方法,包括步骤:
S410,获取第一扫描线数据;
S420,当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据;
S430,基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,动态系数为基于第二扫描线数据、导丝伪影信息的位置以及参考扫描线数据得到;参考扫描线数据为根据不存在导丝伪影信息的第一扫描线数据得到。
还包括步骤:
S440,当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行滤波和组织信息提取处理,得到第四扫描线数据;
可以采用本领域任意手段对第一扫描线数据进行滤波处理和组织信息提取处理。在一个具体示例中,当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据分别进行FIR带通滤波处理。通过该滤波处理,对于不存在导丝伪影信息的第一扫描线数据,进行FIR带通滤波,从而进行提高RF数据的信噪比。
S450,基于固定系数,对第四扫描线数据进行对数化处理,得到用于重建超声图像的第五扫描线数据。
对于第四扫描线数据,采用固定系数对第四扫描数据进行对数化处理。固定系数将根据系统本身和用户对超声图像的亮度要求在IVUS系统开始扫描前确定。对不存在导丝伪影信息的扫描数据进行对数化处理的步骤可以参考对存在导丝伪影信息的扫描数据对数化处理的过程。进一步的,固定系数为根据超声图像的图像亮度要求确定。
在另一个具体示例中,基于固定系数,对第四扫描线数据进行对数化处理,得到用于重建超声图像的第五扫描线数据的步骤可以基于以下公式:
A=log(a*B+1);
其中,A为第五扫描线数据,B为第四扫描线数据,a为固定系数。
需要说明的是,上述对数化处理的具体步骤为对第二扫描线数据中的每一个子数据进行对数化处理,当遍历完第二扫描线数据中的每一个子数据时,也即得到了第三扫描线数据。对第四扫描线数据的具体处理步骤可以参照上述第二扫描线数据的步骤。图5为未经本申请的导丝伪影抑制方法的原始图像以及经处理后得到的处理图像。从图5中可以看出,通过本申请的方法进行导丝伪影处理后,能够明显抑制导丝伪影,并使得该区域的结构清晰化。
在其中一个实施例中,如图6所示,确定动态系数的步骤,包括:
S610,将参考扫描线数据,作为规范模板;
S620,根据导丝伪影信息的位置、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据和规范模板,确定扫描点的理论数据;
S630,根据理论数据和实际数据,确定动态系数。
在一个实施例中,根据理论数据和实际数据,确定动态系数的步骤可以基于如下公式:
k=f(x,i,line near)
其中,k为动态系数,x为第二扫描线数据,i为当前RF数据在当前扫描线的位置,line near为上一条的不受导丝伪影影响的扫描线数据。
具体而言,由于血管组织图像的连续性,当前扫描线数据与上一条的不受导丝伪影影响的扫描线数据将具有相似的信号幅值变化趋势,所以此处可以将与存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据作为规范模板,以此确定函数f,再结合导丝伪影信息的位置和当前的第二扫描线数据,计算出动态系数k。在其他实施例中,可以引入神经网络技术进行线性拟合,通过大样本量训练得到更适合的函数f,具体可参见下方步骤S710和S720的相关描述。
在一个例子中,参考扫描线数据为上一条不受导丝伪影影响的扫描线数据。在另一个例子中,参考扫描线数据为上一条不受导丝伪影影响的、且与第一扫描线数据的扫描角度相邻(相同或相似)的扫描线数据。
在其中一个实施例中,如图7所示,确定动态系数的步骤,包括:
S710,采用神经网络算法模型获取拟合函数。
在一个例子中,采用神经网络算法模型训练,获取拟合函数,该拟合函数的输出参数为动态系数,该拟合函数的输入参数包括参考扫描线数据、处理的扫描线数据中的任一数据点的数据值及位置信息。
S720,采用拟合函数,处理导丝伪影信息的位置、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据以及与存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据,得到动态系数。
在一个例子中,可以通过本领域任意神经网络算法模型训练得到拟合函数。需要说明的是,该拟合函数为动态系数、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据,以及存在导丝伪影信息的第一扫描线数据的扫描角度相邻的标准扫描数据的拟合函数。
应该理解的是,虽然图1-7流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-7中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图8所示,提供了一种导丝伪影抑制装置,包括:
数据缓存模块,用于获取第一扫描线数据;
处理模块,用于当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据;
对数化模块,用于基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,动态系数为基于第二扫描线数据、导丝伪影信息的位置以及参考扫描线数据得到;参考扫描线数据为根据不存在导丝伪影信息的第一扫描线数据得到。
在其中一个实施例中,处理模块还用于当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行滤波和组织信息提取处理,得到第四扫描线数据;
对数化模块,还用于基于固定系数,对第四扫描线数据进行对数化处理,得到用于重建超声图像的第五扫描线数据。
在其中一个实施例中,处理模块还用于当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行带通滤波处理;当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据分别进行带通滤波处理和带阻滤波处理。
在其中一个实施例中,导丝伪影抑制装置还包括:
提取模块,用于对各第一扫描线数据的时域、频域或时频域进行处理,得到各第一扫描线数据的特征值;
分类模块,用于采用分类器处理各特征值,得到分类结果;
确定模块,用于根据分类结果,确定各第一扫描线数据中是否存在导丝伪影信息。
在其中一个实施例中,第一扫描线数据包括多个子数据,分类模块还用于采用分类器处理前N个子数据的特征值;N的值为根据超声系统的设置参数和导管结构得到。
在其中一个实施例中,第一扫描线数据包括多个子数据;分类模块还用于采用分类器依次处理子数据的特征值,直至发生导丝伪影确定事件;其中,导丝伪影确定事件包括基于任一子数据对应的分类结果,确定第一扫描线数据中存在导丝伪影信息。
在其中一个实施例中,对数化模块还用于将参考扫描线数据作为规范模板;根据导丝伪影信息的位置、规范模板和存在导丝伪影信息的第一扫描线数据中扫描点的实际数据,确定扫描点的理论数据;根据理论数据和实际数据,确定动态系数。
在其中一个实施例中,对数化模块还用于采用神经网络算法模型获取拟合函数;采用拟合函数,处理导丝伪影信息的位置、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据以及与存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据,得到动态系数。
关于导丝伪影抑制装置的具体限定可以参见上文中对于导丝伪影抑制方法的限定,在此不再赘述。上述导丝伪影抑制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种IVUS系统,其内部结构图可以如图9所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储 第一扫描线数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种导丝伪影抑制方法。
本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取第一扫描线数据;
当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据;
基于动态系数,对第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,动态系数为基于第二扫描线数据、导丝伪影信息的位置以及参考扫描线数据得到;参考扫描线数据为根据不存在导丝伪影信息的第一扫描线数据得到。
在一个实施例中,计算机程序被处理器执行时实现以下步骤:
当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行滤波和组织信息提取处理,得到第四扫描线数据;
基于固定系数,对第四扫描线数据进行对数化处理,得到用于重建超声图像的第五扫描线数据。
在一个实施例中,对各第一扫描线数据进行滤波处理步骤被处理器执行时还实现以下步骤:
当第一扫描线数据不存在导丝伪影信息时,对第一扫描线数据进行带通滤波处理;
当第一扫描线数据存在导丝伪影信息时,对第一扫描线数据分别进行带通滤波处理和带阻滤波处理。
在一个实施例中,计算机程序被处理器执行时实现以下步骤:
对各第一扫描线数据的时域、频域或时频域进行处理,得到各第一扫描线数据的特征值;
采用分类器处理各特征值,得到分类结果;
根据分类结果,确定各第一扫描线数据中是否存在导丝伪影信息。
在一个实施例中,采用分类器处理特征值的步骤被处理器执行时还实现以下步骤:
采用分类器处理前N个子数据的特征值;N的值为根据超声系统的设置参数和导管结构得到;
在一个实施例中,采用分类器处理特征值的步骤被处理器执行时还实现以下步骤:
采用分类器依次处理子数据的特征值,直至发生导丝伪影确定事件;其中,导丝伪影确定事件包括基于任一子数据对应的分类结果,确定第一扫描线数据中存在导丝伪影信息。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
将参考扫描线数据作为规范模板;
根据导丝伪影信息的位置、规范模板和存在导丝伪影信息的第一扫描线数据中扫描点的实际数据,确定扫描点的理论数据;
根据理论数据和实际数据,确定动态系数。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
采用神经网络算法模型获取拟合函数;
采用拟合函数,处理导丝伪影信息的位置、存在导丝伪影信息的第一扫描线数据中扫描点的实际数据以及与存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据,得到动态系数。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线式动态随机存储器(Rambus DRAM,简称RDRAM)、以及接口动态随机存储器(DRDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种导丝伪影抑制方法,其中,包括步骤:
    获取第一扫描线数据;
    当所述第一扫描线数据存在导丝伪影信息时,对所述第一扫描线数据进行滤波处理和组织信息提取处理,得到第二扫描线数据;
    基于动态系数,对所述第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,所述动态系数为基于所述第二扫描线数据、所述导丝伪影信息的位置以及参考扫描线数据得到;所述参考扫描线数据为根据不存在所述导丝伪影信息的第一扫描线数据得到。
  2. 根据权利要求1所述的导丝伪影抑制方法,其中,还包括步骤:
    当所述第一扫描线数据不存在导丝伪影信息时,对所述第一扫描线数据进行滤波和组织信息提取处理,得到第四扫描线数据;
    基于固定系数,对所述第四扫描线数据进行对数化处理,得到用于重建所述超声图像的第五扫描线数据。
  3. 根据权利要求2所述的导丝伪影抑制方法,其中,对各所述第一扫描线数据进行滤波处理步骤,包括:
    当所述第一扫描线数据不存在导丝伪影信息时,对所述第一扫描线数据进行带通滤波处理;
    当所述第一扫描线数据存在导丝伪影信息时,对所述第一扫描线数据分别进行带通滤波处理和带阻滤波处理。
  4. 根据权利要求1至3任一项所述的导丝伪影抑制方法,其中,还包括步骤:
    对各所述第一扫描线数据的时域、频域或时频域进行处理,得到各所述第一扫描线数据的特征值;
    采用分类器处理各所述特征值,得到分类结果;
    根据所述分类结果,确定各所述第一扫描线数据中是否存在导丝伪影信息。
  5. 根据权利要求4所述的导丝伪影抑制方法,其中,所述第一扫描线数据包括多个子数据;
    所述采用分类器处理各所述特征值的步骤,包括:
    采用所述分类器处理前N个子数据的特征值;所述N的值为根据超声系统的设置参数和导管结构得到。
  6. 根据权利要求4所述的导丝伪影抑制方法,其中,所述第一扫描线数据包括多个子数据;
    所述采用分类器处理各所述特征值的步骤,包括:
    采用所述分类器依次处理所述子数据的特征值,直至发生导丝伪影确定事件;其中,所述导丝伪影确定事件包括基于任一所述子数据对应的分类结果,确定所述第一扫描线数据中存在导丝伪影信息。
  7. 根据权利要求1至6任一项所述的导丝伪影抑制方法,其中,还包括步骤:
    将所述参考扫描线数据作为规范模板;
    根据所述导丝伪影信息的位置、所述规范模板和所述存在导丝伪影信息的第一扫描线数据中扫描点的实际数据,确定所述扫描点的理论数据;
    根据所述理论数据和所述实际数据,确定所述动态系数。
  8. 根据权利要求1至6任一项所述的导丝伪影抑制方法,其中,还包括步骤:
    采用神经网络算法模型,获取拟合函数;
    采用所述拟合函数,处理所述导丝伪影信息的位置、所述存在导丝伪影信息的第一扫描线数据中扫描点的实际数据以及与所述存在导丝伪影信息的第一扫描线数据的扫描角度相邻的参考扫描线数据,得到所述动态系数。
  9. 根据权利要求1至8任一项所述的导丝伪影抑制方法,其中,所述基于动态系数,对所述第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据的步骤中,基于以下公式,得到所述第三扫描线数据:
    y=log(k*x+1);
    其中,y为所述第三扫描线数据;k为所述动态系数;x为所述第二扫描线数据。
  10. 一种导丝伪影抑制装置,其中,包括:
    数据缓存模块,用于获取第一扫描线数据;
    处理模块,用于当所述第一扫描线数据存在导丝伪影信息时,对所述第一扫描线数据进行滤波和组织信息提取处理,得到第二扫描线数据;
    对数化模块,用于基于动态系数,对所述第二扫描线数据进行对数化处理,得到用于重建超声图像的第三扫描线数据;其中,所述动态系数为基于所述第二扫描线数据、所述导丝伪影信息的位置以及参考扫描线数据得到;所述参考扫描线数据为根据不存在所述导丝伪影信息的第一扫描线数据得到。
  11. 一种血管内超声成像系统,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至9中任一项所述的方法的步骤。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述的方法的步骤。
PCT/CN2022/130793 2021-12-31 2022-11-09 导丝伪影抑制方法、装置、ivus系统和存储介质 WO2023124555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111672204.6 2021-12-31
CN202111672204.6A CN115063498A (zh) 2021-12-31 2021-12-31 导丝伪影抑制方法、装置、ivus系统和存储介质

Publications (1)

Publication Number Publication Date
WO2023124555A1 true WO2023124555A1 (zh) 2023-07-06

Family

ID=83197519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130793 WO2023124555A1 (zh) 2021-12-31 2022-11-09 导丝伪影抑制方法、装置、ivus系统和存储介质

Country Status (2)

Country Link
CN (1) CN115063498A (zh)
WO (1) WO2023124555A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115063498A (zh) * 2021-12-31 2022-09-16 深圳微创踪影医疗装备有限公司 导丝伪影抑制方法、装置、ivus系统和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111462020A (zh) * 2020-04-24 2020-07-28 上海联影医疗科技有限公司 心脏图像的运动伪影校正方法、系统、存储介质和设备
CN111627083A (zh) * 2020-05-26 2020-09-04 上海联影医疗科技有限公司 骨硬化伪影校正方法、装置、计算机设备和可读存储介质
CN112150574A (zh) * 2020-09-28 2020-12-29 上海联影医疗科技股份有限公司 一种图像伪影自动校正方法、系统、装置及存储介质
CN115063498A (zh) * 2021-12-31 2022-09-16 深圳微创踪影医疗装备有限公司 导丝伪影抑制方法、装置、ivus系统和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111462020A (zh) * 2020-04-24 2020-07-28 上海联影医疗科技有限公司 心脏图像的运动伪影校正方法、系统、存储介质和设备
CN111627083A (zh) * 2020-05-26 2020-09-04 上海联影医疗科技有限公司 骨硬化伪影校正方法、装置、计算机设备和可读存储介质
CN112150574A (zh) * 2020-09-28 2020-12-29 上海联影医疗科技股份有限公司 一种图像伪影自动校正方法、系统、装置及存储介质
CN115063498A (zh) * 2021-12-31 2022-09-16 深圳微创踪影医疗装备有限公司 导丝伪影抑制方法、装置、ivus系统和存储介质

Also Published As

Publication number Publication date
CN115063498A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Zong et al. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing
KR100646715B1 (ko) 후처리를 통한 2차원 초음파 영상의 화질 개선 방법
JP4888026B2 (ja) 超音波映像システム及び超音波映像処理方法
EP2567357A1 (en) A method and device for estimating noise in a reconstructed image
CN104978717A (zh) Ct重建图像的处理方法、装置及设备
WO2023124555A1 (zh) 导丝伪影抑制方法、装置、ivus系统和存储介质
EP1967867A2 (en) Ultrasound system and method of forming ultrasound images
KR20120011692A (ko) 영상 처리 방법 및 장치와 이를 채용한 의료영상시스템
JP3878587B2 (ja) 臓器認識装置及びその方法
CN115670520B (zh) 血管内超声成像方法、装置、计算机设备、存储介质
Mitiche et al. Medical image denoising using dual tree complex thresholding wavelet transform
CN113469919B (zh) 超声图像的处理方法、装置及电子设备
US20240050062A1 (en) Analyzing apparatus and analyzing method
US20190282205A1 (en) Ultrasound imaging system and ultrasound imaging method
US6704437B1 (en) Noise estimation method and apparatus for noise adaptive ultrasonic image processing
CN108846813A (zh) 基于mfdf分解框架与nsst的医学ct图像去噪方法
DE102005045179A1 (de) Bildverbindung auf der Grundlage unabhängiger Rauschbedingungen
CN108877902B (zh) 超声图像亮度调节方法及调节系统
Göbl et al. Speckle2speckle: Unsupervised learning of ultrasound speckle filtering without clean data
CN111012379B (zh) 用于执行超声成像的方法和系统
CN101396278A (zh) 一种去除实时超声图像斑点噪声的方法
Opretzka et al. A synthetic aperture focusing technique with optimized beamforming for high-frequency ultrasound
Kumar et al. Denoising of Iris image using stationary wavelet transform
Saoji et al. Speckle and rician noise removal from medical images and Ultrasound images
Bhonsle et al. White Gaussian Noise Removal From Computed Tomography Images Using Python

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913818

Country of ref document: EP

Kind code of ref document: A1