WO2023124042A1 - 光伏空调及其电能分配方法 - Google Patents

光伏空调及其电能分配方法 Download PDF

Info

Publication number
WO2023124042A1
WO2023124042A1 PCT/CN2022/107863 CN2022107863W WO2023124042A1 WO 2023124042 A1 WO2023124042 A1 WO 2023124042A1 CN 2022107863 W CN2022107863 W CN 2022107863W WO 2023124042 A1 WO2023124042 A1 WO 2023124042A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
photovoltaic air
photovoltaic
energy storage
storage unit
Prior art date
Application number
PCT/CN2022/107863
Other languages
English (en)
French (fr)
Inventor
金孟孟
武连发
焦华超
高晗
邱天
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023124042A1 publication Critical patent/WO2023124042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Definitions

  • the present disclosure relates to the technical field of photovoltaic air conditioners, and in particular to an electric energy distribution method of photovoltaic air conditioners and photovoltaic air conditioners.
  • the photovoltaic air-conditioning system needs to convert light energy into electric energy for air conditioning and store excess electric energy.
  • the photovoltaic air conditioning system is used for photovoltaic power generation, the photovoltaic power generation is directly supplied to the air conditioner side.
  • the present invention proposes a method for distributing electric energy of a photovoltaic air conditioner, including:
  • the address location information includes altitude information and/or climate zone information.
  • the power supply priority when the altitude of the photovoltaic air conditioner is higher than the preset altitude, if it is judged based on weather information that the cooling demand in summer is less than or equal to the preset cooling capacity, the power supply priority is energy storage unit > photovoltaic power generation > mains power; and/or if the heating demand in winter based on weather information is greater than the preset heating capacity, the power supply priority is photovoltaic power generation > mains power > energy storage unit.
  • the priority of power supply is that the energy storage unit is greater than the photovoltaic power generation than the mains power.
  • the method for distributing electric energy of a photovoltaic air conditioner further includes: according to weather information or climate region information, formulating power consumption priorities of photovoltaic air conditioners, energy storage units, and mains power.
  • the priority of power consumption for photovoltaic air conditioner power generation is photovoltaic air conditioner>energy storage unit>grid.
  • the photovoltaic air conditioner will generate electricity.
  • the priority of power consumption is energy storage unit>photovoltaic air conditioner>grid.
  • the photovoltaic air conditioner power generation is photovoltaic air conditioner > energy storage unit > power grid.
  • the priority of power consumption for photovoltaic air conditioner power generation is photovoltaic air conditioner>energy storage unit>grid .
  • the power consumption priority of the photovoltaic air conditioner for power generation in spring and autumn is the highest for the energy storage unit.
  • the power consumption priority of the photovoltaic air conditioner for power generation in spring, summer and autumn is the highest for the energy storage unit.
  • the power consumption priority of the photovoltaic air conditioner for power generation in spring, autumn and autumn is the highest for the energy storage unit.
  • the photovoltaic air conditioner proposed in the present disclosure includes a controller, and the controller distributes electric energy by using the electric energy distribution method of the photovoltaic air conditioner described in the above technical solution.
  • the photovoltaic air conditioner is an integrated solar-storage air conditioner.
  • the photovoltaic air-conditioning power distribution device proposed in the present disclosure includes: a memory; and a processor coupled to the memory, the processor is configured to, based on instructions stored in the memory device, Execute the power distribution method of the photovoltaic air conditioner in any one of the above embodiments.
  • the non-volatile computer-readable storage medium proposed in the present disclosure stores a computer program thereon, and when the program is executed by a processor, the method for distributing electric energy of a photovoltaic air conditioner in any one of the above-mentioned embodiments is implemented.
  • Fig. 1 is a flow chart of some embodiments of the electric energy distribution method of the photovoltaic air conditioner of the present disclosure
  • FIG. 2 is a block diagram of some embodiments of the photovoltaic air conditioner of the present disclosure
  • Fig. 3 is a block diagram of some embodiments of the electric energy distribution device of the photovoltaic air conditioner of the present disclosure.
  • the external unit of the air-conditioner, the photovoltaic inverter and the energy storage unit are required to be used in combination.
  • the installation of the project is difficult and the cost is high. Therefore, there is a need for an air-conditioning system that integrates an air-conditioning external unit, an inverter module, and an energy storage unit.
  • the photovoltaic air conditioning system When used for photovoltaic power generation, the photovoltaic power generation is directly supplied to the air conditioner side. When the power generation cannot meet the power consumption of the air conditioner, it is automatically connected to the AC mains for supply. When the power generation exceeds the power consumption of the air conditioner, the excess power generation will be fed back Go to the utility grid to obtain income or choose to connect the energy storage unit module for storage. This method is inefficient and not energy-saving, and it is impossible to switch different power consumption modes with maximum efficiency according to the illumination conditions and photoelectric conversion conditions of different weather and climate zones according to local conditions.
  • the present disclosure proposes a photovoltaic air conditioner and a power distribution method thereof.
  • the electric energy distribution method of the photovoltaic air conditioner of the present disclosure is divided into two aspects to distribute the electric energy of the photovoltaic air conditioner, one is for the power consumption of the photovoltaic air conditioner, which part specifically flows out to supply power to the photovoltaic air conditioner.
  • the second is for the power generation of photovoltaic air conditioners, which part does the power generation of photovoltaic air conditioners flow to.
  • this disclosure formulates a distribution strategy for the distribution of photovoltaic air-conditioning power according to local conditions, which can reasonably control the mode switching of photovoltaic air-conditioning power generation, power consumption, and energy storage, so as to maximize the efficiency of light energy utilization and ensure the entire life cycle of air-conditioning. More energy efficient.
  • the sources of the total power consumption P of air conditioners are divided into three ways: 1
  • the photovoltaic power generation supply of photovoltaic air conditioners is defined as P power generation ;
  • 3 Obtain P energy storage from the energy storage unit.
  • step 110 by obtaining the geographic location information and weather information where the photovoltaic air conditioner is located.
  • step 120 according to the geographic location information or the geographic location information and the weather information, the power supply priority of the photovoltaic air conditioner power generation, the energy storage unit, and the mains power supply for the photovoltaic air conditioner is formulated.
  • the photovoltaic air conditioner obtains geographic location information and weather information through a wireless communication module, such as a DTU module.
  • the address location information includes altitude information and/or climate area information.
  • different regions are divided into different altitude regions according to their altitude, and regions are defined for different altitudes, and different power consumption priorities are implemented in different altitude regions.
  • the power supply priority is energy storage unit > photovoltaic power generation > mains power, and/or if Based on the weather information, the heating demand in winter is greater than the preset heating capacity, and the power supply priority is photovoltaic power generation > mains power > energy storage unit. Since the higher the altitude, the higher the overall light intensity, and the high light intensity in high-altitude areas is relatively sufficient for energy storage. However, in summer, high-altitude areas have low cooling demand.
  • the total power consumption P of air conditioners should be obtained from energy storage units first, and then from photovoltaic power generation.
  • different geographical locations are divided into different climate zones, such as hot climate zone, hot summer and warm winter climate zone, moderate climate zone, hot summer and cold winter climate zone, and cold climate zone.
  • climate zones such as hot climate zone, hot summer and warm winter climate zone, moderate climate zone, hot summer and cold winter climate zone, and cold climate zone.
  • Regional definitions for different climate zones are shown in Table 2 below. And implement different air conditioning power consumption priorities in different climate zones.
  • the climatic regions in the present disclosure are divided according to the regional dimensions and the annual climate conditions, among which the hot climate region refers to the hot climate where the temperature is above 25°C for more than 80% of the time throughout the year, and most of the time is in hot climate.
  • the hot climate region refers to the hot climate where the temperature is above 25°C for more than 80% of the time throughout the year, and most of the time is in hot climate.
  • near the equator such as Singapore and Thailand.
  • the hot summer and warm winter climate zone means that the temperature is above 25°C for more than 60% of the year, and the climate is hot in summer and warm in winter.
  • the temperate climate zone has a moderate climate throughout the year, such as Sichuan and Yunnan.
  • the hot summer and cold winter climate zone is an area with hot summer and cold winter and four distinct seasons, such as Jiangsu, Zhejiang and Shanghai.
  • the cold climate area refers to the area where the temperature is lower than 20°C for more than 50% of the year, such as Beijing, Inner Mongolia and other northern regions.
  • the priority of power supply is that the energy storage unit is greater than the photovoltaic power generation than the mains power.
  • Year-round air conditioning loads are high in hot climate zones.
  • Year-round air conditioning loads in temperate climate zones are low.
  • the total power consumption P of air conditioners in these two climatic regions should be prioritized to meet the current energy-saving strategy, and it should be obtained from energy storage units, then from photovoltaic power generation, and finally from city power.
  • the electric energy distribution method of the present disclosure will be described below with regard to the photovoltaic power generation current of the photovoltaic air conditioner.
  • Photovoltaic power generation is divided into 3 purposes: 1Supply for photovoltaic air-conditioning consumption; 2Feedback to the power grid to obtain power generation revenue; 3Store by energy storage unit for subsequent use.
  • the present disclosure sets the priority of electricity consumption of the photovoltaic air conditioner, the energy storage unit, and the mains electricity.
  • the power consumption priority of the photovoltaic air conditioner for power generation is photovoltaic air conditioner>energy storage unit>grid. For example, in the current time period, if the DTU module detects that the temperature in the next time period will rise significantly, and the sunshine intensity will also increase significantly, indicating that the load demand of photovoltaic air conditioners in the next time period will increase, the power consumption demand will increase, and the photovoltaic power generation will also increase. , then the photovoltaic power generation in the current time period should be given priority to meet the power supply for air conditioners, and the excess power generation should be stored for energy. If the energy storage unit is full, it will be fed back to the grid to obtain income.
  • the power consumption priority of the photovoltaic air conditioner is storage.
  • the power consumption priority of the photovoltaic air conditioner is photovoltaic air conditioner.
  • Energy storage unit Grid. For example, if the air-conditioning load demand is not high in the current time period, the photovoltaic power generation should give priority to energy storage. If the energy storage unit is full, it will be used for power consumption by the air conditioner; The priority is to meet the power supply for air conditioners, and the excess power generation is used for energy storage.
  • the power consumption priority of the photovoltaic air conditioner for power generation is photovoltaic air conditioner>energy storage unit>grid.
  • the DTU detects that the temperature in the next time period is significantly lower and the sunshine intensity is significantly increased it means that the air-conditioning load demand in the next time period will decrease and the power consumption demand will decrease, but the photovoltaic power generation will increase.
  • Photovoltaic power generation should be given priority to the use of power supply for air conditioners, and the excess power generation should be stored for energy. If the energy storage unit is full, it will be fed back to the grid to obtain income.
  • the power consumption priority of the photovoltaic air conditioner in spring and autumn is the highest for the energy storage unit.
  • the load of air conditioning is high in both summer and winter.
  • photovoltaic power generation is mostly used for energy storage for use in winter and summer.
  • the power consumption priority of the photovoltaic air conditioner for power generation in spring, summer and autumn is the highest for the energy storage unit.
  • Cold climates have low demand for air conditioning loads in summer and high air conditioning loads in winter.
  • photovoltaic power generation is mostly used for energy storage for winter use.
  • the power consumption priority of the photovoltaic air conditioner for power generation in spring, autumn and autumn is the highest for the energy storage unit.
  • the demand for air conditioning load is high in summer and low in winter.
  • photovoltaic power generation is mostly used for energy storage for summer use.
  • the present disclosure also protects the corresponding photovoltaic air conditioner.
  • the photovoltaic air conditioner 2 includes a controller 21 , and the controller 21 distributes electric energy by adopting the electric energy distribution method of the photovoltaic air conditioner in the above technical solution.
  • the photovoltaic air conditioner 1 of the present disclosure includes, but is not limited to, an integrated solar-storage air conditioner.
  • Fig. 3 is a block diagram of some embodiments of the electric energy distribution device of the photovoltaic air conditioner of the present disclosure.
  • the device 3 of this embodiment includes: a memory 31 and a processor 32 coupled to the memory 31 , the processor 32 is configured to execute any one of the implementations in the present disclosure based on instructions stored in the memory 31 .
  • the power distribution method of the photovoltaic air conditioner in the example is shown in FIG. 3 .
  • the memory 31 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), a database, and other programs.
  • the present disclosure formulates corresponding strategies to distribute the electric energy thereof, so as to maximize the utilization efficiency of light energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本公开公开了一种光伏空调及其电能分配方法。其中光伏空调的电能分配方法,包括:获取光伏空调所在的地理位置信息以及天气信息;根据地理位置信息或者地理位置信息和天气信息,制定光伏空调发电、储能单元以及市电为光伏空调进行供电的供电优先级。

Description

光伏空调及其电能分配方法
相关申请的交叉引用
本申请是以CN申请号为202111620350.4,申请日为2021年12月28的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光伏空调的技术领域,尤其涉及一种光伏空调的电能分配方法和光伏空调。
背景技术
在相关技术中,光伏空调系统要实现光能转化为电能供给空调使用以及多余电能的储存。光伏空调系统在光伏发电使用时,光伏发电是直接供电给空调侧使用的。
发明内容
根据本公开的一些实施例,本提出了一种光伏空调的电能分配方法,包括:
获取光伏空调所在的地理位置信息以及天气信息;
根据地理位置信息或者地理位置信息和天气信息,制定光伏空调发电、储能单元以及市电为光伏空调进行供电的供电优先级。
在一些实施例中,所述地址位置信息包括海拔信息和/或气候区域信息。
在一些实施例中,在所述光伏空调所处的海拔高于预设海拔时,若基于天气信息判断夏季的制冷需求小于等于预设制冷量时,则供电优先级为储能单元>光伏发电>市电;和/或若基于天气信息冬季的制暖需求大于预设制暖量,则供电优先级为光伏发电>市电>储能单元。
在一些实施例中,在所述光伏空调所处的气候区域信息为炎热气候区或温和气候区时,供电优先级为储能单元大于光伏发电大于市电。
在一些实施例中,光伏空调的电能分配方法还包括:根据天气信息或气候区域信息,制定光伏空调、储能单元以及市电的用电优先级。
在一些实施例中,若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度大于预设光照强度,则光伏空调发电的用电优先级为光伏空调>储能单元>电 网。
在一些实施例中,若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度小于等于预设光照强度,且当前时间段的空调负荷小于等于预设负荷,则光伏空调发电的用电优先级为储能单元>光伏空调>电网。
在一些实施例中,若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度小于等于预设光照强度,且当前时间段的空调负荷大于预设负荷,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。
在一些实施例中,若基于天气信息判断出下一个时间段的温度小于等于预设温度且光照强度大于预设光照强度,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。
在一些实施例中,在所述光伏空调所处的气候区域信息为夏热冬冷气候区时,在春季和秋季光伏空调发电的用电优先级为储能单元最高。
在一些实施例中,在所述光伏空调所处的气候区域信息为寒冷气候区时,在春季、夏季和秋季光伏空调发电的用电优先级为储能单元最高。
在一些实施例中,在所述光伏空调所处的气候区域信息为夏热冬冷气候区时,在春季、秋季和秋季光伏空调发电的用电优先级为储能单元最高。
本公开提出的光伏空调,包括控制器,所述控制器采用上述技术方案所述的光伏空调的电能分配方法对电能进行分配。
在一些实施例中,所述光伏空调为光储一体化空调。
在一些实施例中,本公开提出的光伏空调的电能分配装置,包括:存储器;和耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行上述任一个实施例中的光伏空调的电能分配方法。
在一些实施例中,本公开提出的非易失性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一个实施例中的光伏空调的电能分配方法。
附图说明
下面结合实施例和附图对本公开进行详细说明,其中:
图1是本公开的光伏空调的电能分配方法的一些实施例的流程图;
图2是本公开的光伏空调的一些实施例的框图;
图3是本公开的光伏空调的电能分配装置的一些实施例的框图。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行在一些实施例中详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
由此,本说明书中所指出的一个特征将用于说明本公开的一个实施方式的其中一个特征,而不是暗示本公开的每个实施方式必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的系统设计,但是这些特征也可用于其他的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
如前所述,光伏空调系统要实现光能转化为电能供给空调使用以及多余电能的储存,需要空调外机与光伏逆变器与储能单元三者组合使用,工程铺设安装困难,造价高,所以需要一种将空调外机、逆变器模块、储能单元集成一体化的空调系统。
光伏空调系统在光伏发电使用时,光伏发电是直接供电给空调侧使用,发电量无法满足空调功耗时自动接入交流市电来补给,发电量超出空调功耗时,多余的发电量会反馈到市电电网中获取收益或者选择连接储能单元模块进行储存。此方式效率低,不节能,无法因地制宜的根据不同天气不同气候区的光照情况、光电转化情况进行最大效率的切换不同用电模式。
为了解决光伏空调的电能分配方案比较单一的技术问题,本公开提出了光伏空调及其电能分配方法。
本公开的光伏空调的电能分配方法,分为两个方面对光伏空调的电能进行分配,一是针对光伏空调的耗电而言,具体由哪个部分流出,对光伏空调进行供电。二是针对光伏空调的发电而言,光伏空调的发电具体流向哪个部分。
本公开根据地理位置信息和天气信息对光伏空调的电能的分配制定因地制宜的分配策略,可以合理控制光伏空调发电、用电、储能的模式切换,使得光能利用效率最大化,整个生命周期空调更加节能。
下面针对光伏空调的耗电来说明本公开的电能分配方法,空调总耗电P的来源划分为3种途径:①光伏空调的光伏发电供给,定义为P 发电;②从市电电网获取P 市电;③从储能单元获取P 储能。同一时间空调总耗电P=P 发电+P 市电+P 储能,如果同一时间三者同时供电给空调使用。
如图1所示,在步骤110中,通过获取光伏空调所在的地理位置信息以及天气信 息。在步骤120中,根据地理位置信息或者地理位置信息和天气信息,制定光伏空调发电、储能单元以及市电为光伏空调进行供电的供电优先级。
在一个实施例中,光伏空调通过无线通信模块获取地理位置信息以及天气信息,如DTU模块等。其中地址位置信息包括海拔信息和/或气候区域信息。
根据空调内部DTU模块检测到的位置或经纬度信息,根据不同地区的海拔高度划分为不同的海拔区,针对不同海拔高度进行地区定义,不同海拔高度地区执行不同的用电优先级。
海拔高度 地区定义
1000m以下 AL1
1000~2000m AL2
2000~3000m AL3
3000~4000m AL4
4000以上 AL5
表1不同海拔定义为不同的海拔区
在光伏空调所处的海拔高于预设海拔时,若基于天气信息判断夏季的制冷需求小于等于预设制冷量时,则供电优先级为储能单元>光伏发电>市电、和/或若基于天气信息冬季的制暖需求大于预设制暖量,则供电优先级为光伏发电>市电>储能单元。由于海拔越高,光照强度整体越高,高海拔地区光照强度高储能相对充足,但在夏季高海拔地区制冷需求不高,空调总耗电P应该优先从储能单元获取,再从光伏发电获取,最后从市电获取。冬季制热需求高,空调的高耗电多在冬季,在此季节P应该优先从光伏发电获取,再从市电获取,储能储满后在从储能获取。
根据DTU模块检测到的位置或经纬度信息,划分不同的地理位置为不同的气候区域,例如炎热气候区、夏热冬暖气候区、温和气候区、夏热冬冷气候区、寒冷气候区,针对不同气候区进行地区定义,如下表2。并在不同气候区执行不同的空调耗电优先级。
气候区划分 地区定义
炎热气候区 CZ1
夏热冬暖气候区 CZ2
温和气候区 CZ3
夏热冬冷气候区 CZ4
寒冷气候区 CZ5
表2不同气候区域进行的地区定义
本公开的气候区域是根据地区的维度情况以及结合全年气候情况进行划分的,其中炎热气候区为全年80%以上时间气温在25℃以上,大部分时间处于炎热气候。例如新加坡、泰国等近赤道地区。夏热冬暖气候区为全年60%以上时间气温在25℃以上,夏季气候炎热;冬季温暖。例如广东、香港、台湾等地区。温和气候区为全年气候适中,例如四川、云南等地区。夏热冬冷气候区为夏季炎热、冬季寒冷的地区,四季分明的地区,例如江浙沪等地区。寒冷气候区为全年50%以上时间气温低于20℃的地区,例如北京、内蒙等北方地区。
在光伏一体化空调所处的气候区域信息为炎热气候区或温和气候区时,供电优先级为储能单元大于光伏发电大于市电。炎热气候区的全年空调负荷都高。温和气候区的全年空调负荷都不高。在此两个气候区域空调总耗电P应该优先满足当前的节能策略,从储能单元获取,再从光伏发电获取,最后从市电获取。
下面针对光伏空调的光伏发电流向来说明本公开的电能分配方法。
将光伏发电划分为3种用途:①供给光伏空调耗电使用;②反馈到市电的电网中获取发电收益;③通过储能单元储存起来留作后续使用。
将一天时间划分为几个时间段,早晨、上午、中午、下午、傍晚、夜晚,根据每个时间段的天气情况(如温度情况、光照情况)不一样,光伏发电量情况不一样,空调冷热负荷需求也不一样。因而本公开根据天气信息或气候区域信息,制定光伏空调、储能单元以及市电的用电优先级。
若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度大于预设光照强度,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。例如在当前时间段如果DTU模块检测到下一个时间段的气温明显升高,日照强度也明显增强,说明下一个时间段光伏空调的负荷需求会提高、耗电需求增加,光伏发电量也会提高,则当前时间段光伏发电应优先满足给空调供电使用,多余发电量进行储能,如果储能单元已储满则反馈至电网获取收益。
若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度小于等于预设光照强度,且当前时间段的空调负荷小于等于预设负荷,则光伏空调发电的用电优先级为储能单元>光伏空调>电网。例如在当前时间段,如果DTU模块检测到下 一个时间段的气温明显升高,日照强度也变化不大或者减弱,说明下一个时间段空调负荷需求会提高耗电需求增加,但光伏发电量不会提高且有可能减少。
若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度小于等于预设光照强度,且当前时间段的空调负荷大于预设负荷,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。例如当前时间段空调负荷需求不高,则光伏发电应优先进行储能,如果储能单元已储满则供给空调耗电使用;如果当前时间段空调负荷需求较高,则当前时间段光伏发电应优先满足给空调供电使用,多余发电量进行储能。
若基于天气信息判断出下一个时间段的温度小于等于预设温度且光照强度大于预设光照强度,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。例如在当前时间段如果DTU检测到下一个时间段的气温明显降低,日照强度明显增强,说明下一个时间段空调负荷需求会降低耗电需求减小,但光伏发电量会提高,则当前时间段光伏发电应优先满足给空调供电使用,多余发电量进行储能,如果储能单元已储满则反馈至电网获取收益。
另外,在光伏空调所处的气候区域信息为夏热冬冷气候区时,在春季和秋季光伏空调发电的用电优先级为储能单元最高。夏热冬冷气候区,夏季、冬季空调负荷都高。在春、秋季节,光伏发电多用于储能以供冬夏两季使用。
在光伏空调所处的气候区域信息为寒冷气候区时,在春季、夏季和秋季光伏空调发电的用电优先级为储能单元最高。寒冷气候区的夏季空调负荷需求低,冬季空调负荷高。在春、夏、秋季节,光伏发电多用于储能以供冬季使用。
在光伏空调所处的气候区域信息为夏热冬冷气候区时,在春季、秋季和秋季光伏空调发电的用电优先级为储能单元最高。夏热冬暖气候区的夏季空调负荷需求高,冬季空调负荷低。在春、秋、冬季节,光伏发电多用于储能以供夏季使用。
本公开还保护对应的光伏空调,如图2所示,该光伏空调2包括控制器21,该控制器21采用上述技术方案的光伏空调的电能分配方法对电能进行分配。本公开的光伏空调1包括但不限于光储一体化空调。
图3是本公开的光伏空调的电能分配装置的一些实施例的框图。
如图3所示,该实施例的装置3包括:存储器31以及耦接至该存储器31的处理器32,处理器32被配置为基于存储在存储器31中的指令,执行本公开中任意一个实施例中的光伏空调的电能分配方法。
其中,存储器31例如可以包括系统存储器、固定非易失性存储介质等。系统存储 器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)、数据库以及其他程序等。
本公开根据光伏空调所处的位置不同、天气不同,制定相应的策略来对其电能进行分配,实现光能利用效率最大化。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种光伏空调的电能分配方法,包括:
    获取光伏空调所在的地理位置信息以及天气信息;
    根据地理位置信息或者地理位置信息和天气信息,制定光伏空调发电、储能单元以及市电为光伏空调进行供电的供电优先级。
  2. 如权利要求1所述的光伏空调的电能分配方法,其中,所述地址位置信息包括海拔信息和/或气候区域信息。
  3. 如权利要求2所述的光伏空调的电能分配方法,其中,所述制定光伏空调发电、储能单元以及市电为光伏空调进行供电的供电优先级包括下面中的至少一项:
    在所述光伏空调所处的海拔高于预设海拔时,若基于天气信息判断夏季的制冷需求小于等于预设制冷量时,则供电优先级为储能单元>光伏发电>市电;或
    在所述光伏空调所处的海拔高于预设海拔时,若基于天气信息冬季的制暖需求大于预设制暖量,则供电优先级为光伏发电>市电>储能单元。
  4. 如权利要求2所述的光伏空调的电能分配方法,其中,所述制定光伏空调发电、储能单元以及市电为光伏空调进行供电的供电优先级包括:
    在所述光伏空调所处的气候区域信息为炎热气候区或温和气候区时,供电优先级为储能单元大于光伏发电大于市电。
  5. 如权利要求2至4任意一项所述的光伏空调的电能分配方法,还包括:
    根据天气信息或气候区域信息,制定光伏空调、储能单元以及市电的用电优先级。
  6. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    若基于天气信息判断出下一个时间段的温度大于预设温度,且光照强度大于预设光照强度,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。
  7. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度小于或等于预设光照强度,且当前时间段的空调负荷小于或等于预设负荷,则光伏空调发电的用电优先级为储能单元>光伏空调>电网。
  8. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    若基于天气信息判断出下一个时间段的温度大于预设温度且光照强度小于或等于预设光照强度,且当前时间段的空调负荷大于预设负荷,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。
  9. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    若基于天气信息判断出下一个时间段的温度小于或等于预设温度且光照强度大于预设光照强度,则光伏空调发电的用电优先级为光伏空调>储能单元>电网。
  10. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    在所述光伏空调所处的气候区域信息为夏热冬冷气候区时,在春季和秋季光伏空调发电的用电优先级为储能单元最高。
  11. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    在所述光伏空调所处的气候区域信息为寒冷气候区时,在春季、夏季和秋季光伏空调发电的用电优先级为储能单元最高。
  12. 如权利要求5所述的光伏空调的电能分配方法,其中,所述制定光伏空调、储能单元以及市电的用电优先级包括:
    在所述光伏空调所处的气候区域信息为夏热冬冷气候区时,在春季、秋季和秋季 光伏空调发电的用电优先级为储能单元最高。
  13. 一种光伏空调,包括控制器,所述控制器采用如权利要求1至12任意一项所述的光伏空调的电能分配方法对电能进行分配。
  14. 如权利要求13所述的光伏空调,其中,所述光伏空调为光储一体化空调。
  15. 一种光伏空调的电能分配装置,包括:
    存储器;和
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行权利要求1-12任一项所述的光伏空调的电能分配方法。
  16. 一种非易失性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-12任一项所述的光伏空调的电能分配方法。
PCT/CN2022/107863 2021-12-28 2022-07-26 光伏空调及其电能分配方法 WO2023124042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111620350.4 2021-12-28
CN202111620350.4A CN114374212A (zh) 2021-12-28 2021-12-28 光伏空调及其电能分配方法

Publications (1)

Publication Number Publication Date
WO2023124042A1 true WO2023124042A1 (zh) 2023-07-06

Family

ID=81141472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107863 WO2023124042A1 (zh) 2021-12-28 2022-07-26 光伏空调及其电能分配方法

Country Status (2)

Country Link
CN (1) CN114374212A (zh)
WO (1) WO2023124042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117833346A (zh) * 2024-03-04 2024-04-05 湖南璟泰信息系统有限公司 一种光伏与电网互补的直流节能空调供电方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374212A (zh) * 2021-12-28 2022-04-19 珠海格力电器股份有限公司 光伏空调及其电能分配方法
CN116007089A (zh) * 2022-12-14 2023-04-25 珠海格力电器股份有限公司 一种光伏空调系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119119A1 (ja) * 2014-02-07 2015-08-13 株式会社 東芝 空調システム、空調装置、空調制御方法およびプログラム
CN107917502A (zh) * 2017-11-13 2018-04-17 广东美的制冷设备有限公司 太阳能空调器控制方法和太阳能空调器
CN109617212A (zh) * 2018-11-28 2019-04-12 奥克斯空调股份有限公司 一种空调器的供电控制方法及对应的空调器
CN109941064A (zh) * 2019-02-15 2019-06-28 苏州工业园区职业技术学院 一种用于汽车空调的太阳能供电控制系统
CN114374212A (zh) * 2021-12-28 2022-04-19 珠海格力电器股份有限公司 光伏空调及其电能分配方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2809011C (en) * 2012-11-06 2018-07-17 Mcmaster University Adaptive energy management system
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
CN109510295B (zh) * 2018-11-09 2020-09-22 珠海格力电器股份有限公司 一种车载光伏空调的供电方式控制方法、系统及空调器
CN112736908A (zh) * 2020-12-28 2021-04-30 江苏晟能科技有限公司 一种多能协同优化配置规划方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119119A1 (ja) * 2014-02-07 2015-08-13 株式会社 東芝 空調システム、空調装置、空調制御方法およびプログラム
CN107917502A (zh) * 2017-11-13 2018-04-17 广东美的制冷设备有限公司 太阳能空调器控制方法和太阳能空调器
CN109617212A (zh) * 2018-11-28 2019-04-12 奥克斯空调股份有限公司 一种空调器的供电控制方法及对应的空调器
CN109941064A (zh) * 2019-02-15 2019-06-28 苏州工业园区职业技术学院 一种用于汽车空调的太阳能供电控制系统
CN114374212A (zh) * 2021-12-28 2022-04-19 珠海格力电器股份有限公司 光伏空调及其电能分配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117833346A (zh) * 2024-03-04 2024-04-05 湖南璟泰信息系统有限公司 一种光伏与电网互补的直流节能空调供电方法及系统
CN117833346B (zh) * 2024-03-04 2024-05-14 湖南璟泰信息系统有限公司 一种光伏与电网互补的直流节能空调供电方法及系统

Also Published As

Publication number Publication date
CN114374212A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023124042A1 (zh) 光伏空调及其电能分配方法
CN103925635B (zh) 一种全天候太阳能供能系统
CN102679434B (zh) 一种太阳能相变蓄热及毛细管网辐射采暖系统
CN202485071U (zh) 一种太阳能相变蓄热及毛细管网辐射采暖装置
CN203810533U (zh) 一种全天候太阳能供能装置
CN102252454B (zh) 复合式可再生建筑能源供应系统
CN102261717A (zh) 空调器控制方法及装置、空调器
Zhao et al. A universal method for performance evaluation of solar photovoltaic air-conditioner
CN102032632A (zh) 一种新能源空调方式与系统
Deng et al. Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load
Wang et al. A comparison of battery and phase change coolth storage in a PV cooling system under different climates
CN104201972A (zh) 太阳能中央控制冷暖蓄能智能系统
Fong et al. Application potential of solar air-conditioning systems for displacement ventilation
CN103256670A (zh) 地源热泵复合空调系统
Ballerini et al. Effect of real temperature data on the seasonal coefficient of performance of air source heat pumps
Marletta et al. Are subsidies for thermally-driven solar-assisted cooling systems consistent? A critical investigation for Southern Italy
CN207350990U (zh) 用于医院的多能互补分布式能源系统
CN104964373A (zh) 空调系统及其控制方法
CN103876518B (zh) 温控床的温度调节系统
CN201152602Y (zh) 具多种电源选择的冷暖气储存装置
CN201159514Y (zh) 具多种电源选择的冷气储存装置
CN112484185A (zh) 应用于养殖场的光伏空调控制方法、装置及光伏空调
CN102243490A (zh) 建筑物能源智能化中央控制系统
Arcuri et al. PV driven heat pumps for the electric demand-side management: Experimental results of a demonstrative plant
CN204534918U (zh) 一种具有蓄能装置的分散控制型水环热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913331

Country of ref document: EP

Kind code of ref document: A1