WO2023123970A1 - 光纤传感数据的全局相位正交解调方法及装置 - Google Patents

光纤传感数据的全局相位正交解调方法及装置 Download PDF

Info

Publication number
WO2023123970A1
WO2023123970A1 PCT/CN2022/102915 CN2022102915W WO2023123970A1 WO 2023123970 A1 WO2023123970 A1 WO 2023123970A1 CN 2022102915 W CN2022102915 W CN 2022102915W WO 2023123970 A1 WO2023123970 A1 WO 2023123970A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
data
optical fiber
initial
processed data
Prior art date
Application number
PCT/CN2022/102915
Other languages
English (en)
French (fr)
Inventor
李彦鹏
张少华
蔡志东
Original Assignee
中国石油天然气集团有限公司
中国石油集团东方地球物理勘探有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团有限公司, 中国石油集团东方地球物理勘探有限责任公司 filed Critical 中国石油天然气集团有限公司
Priority to EP22913259.2A priority Critical patent/EP4343291A1/en
Publication of WO2023123970A1 publication Critical patent/WO2023123970A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/226Optoseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/14Signal detection
    • G01V2210/142Receiver location
    • G01V2210/1429Subsurface, e.g. in borehole or below weathering layer or mud line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of optical fiber sensing data demodulation, in particular to a global phase quadrature demodulation method for optical fiber sensing data, a global phase quadrature demodulation device for optical fiber sensing data, and a computer-readable storage medium.
  • Optical fiber distributed acoustic wave sensing technology is a detection technology based on the Rayleigh scattering principle of optical fiber.
  • the optical fiber distributed acoustic wave sensing technology obtains the phase information of Rayleigh scattering based on the in-phase/quadrature (I/Q) phase demodulation through the optical fiber sensing device, and the optical fiber is also used as a sensor
  • Media and transmission media can continuously sense the acoustic vibration or strain information around the optical fiber, and record relevant data through high-density time and space sampling.
  • phase information will produce a phase drift with an additive effect, which seriously affects the accuracy of phase demodulation and reduces the accuracy of optical fiber sensing data.
  • the existing technology can overcome the above-mentioned nonlinear effect and improve the signal-to-noise ratio through phase difference and local averaging within the gauge distance, but this phase demodulation method will lead to the loss of low-wavenumber wavefield information and make the noise level unable to be reduced To the ideal level, it has caused great troubles for technicians, and cannot meet the actual needs of technicians at present.
  • an embodiment of the present invention provides a global phase quadrature demodulation method of optical fiber sensing data, by analyzing the phase interference factors and nonlinear phase change factors in the initial optical fiber sensing data Analysis and corresponding optimization processing are carried out, thereby effectively improving the accuracy of optical fiber sensing data and meeting the actual needs of technicians.
  • an embodiment of the present invention provides a global phase quadrature demodulation method of optical fiber sensing data, the method comprising: acquiring initial optical fiber sensing IQ data; determining the corresponding direct phase based on the initial optical fiber sensing IQ data Value, perform the light source phase correction operation on the direct phase to obtain the first processed data; perform the receiving point initial phase correction operation on the first processed data to obtain the second processed data; perform light source linear phase correction on the second processed data operation to obtain the third processed data; perform the receiving point linear phase correction operation on the third processed data to obtain the fourth processed data; perform phase unwrapping processing and de-near DC component processing on the fourth processed data to obtain Data after global phase demodulation.
  • the initial optical fiber sensing IQ data is acquired from multiple sensing positions of the optical fiber, the corresponding direct phase value is determined based on the initial optical fiber sensing IQ data, and the light source phase correction operation is performed on the direct phase to obtain the first processed data , including: determining the preset reference position j0 from multiple sensing positions of the optical fiber; obtaining the direct phase value ⁇ 0 corresponding to the preset reference position from the initial optical fiber sensing IQ data, and the direct phase value ⁇ 0 is represented as: where I(i,j) is the in-phase signal in the initial fiber-optic sensing IQ data, Q(i,j) is the quadrature signal in the initial fiber-optic sensing IQ data, i is the sampling time, and j is the sampling position; based on The direct phase value ⁇ 0 determines the light source phase change factor ⁇ s (i), and the light source phase change factor ⁇ s (i) is characterized as: Where n1 is the number of samples for statistical light source
  • performing an initial phase correction operation at the receiving point on the first processed data to obtain the second processed data includes: extracting the initial optical fiber sensing data from the first processed data ⁇ 1 (i,j), the The initial optical fiber sensing data is generated based on the initial optical fiber sensing IQ data collected at the initial sampling time without the influence of external acoustic waves; the initial phase factor ⁇ r (j) of the receiving point is determined based on the initial optical fiber sensing IQ data, and the receiving point
  • the initial phase factor ⁇ r (j) is characterized as: Among them, i0 is the initial sampling time without the influence of external sound waves, and n2 is the number of samples of the initial phase of the receiving point; based on the second preset rule and the initial phase factor of the receiving point ⁇ r (j), the first processed data ⁇ 1 ( i, j) Perform the initial phase correction operation at the receiving point to obtain the second processed data ⁇ 2 (i, j), and the second preset rule is represented as: ⁇ 2 (i
  • performing a light source linear phase correction operation on the second processed data to obtain the third processed data includes: performing a light source linear phase analysis operation based on the second processed data ⁇ 2 (i,j), and obtaining a preset reference
  • the receiving point linear phase correction operation is performed on the third processed data to obtain the fourth processed data, including: obtaining the corresponding to the start time based on the third processed data ⁇ 3 (i,j)
  • the receiving point linear phase parameter, the receiving point linear phase parameter includes the second phase intercept b j and the second gradient k j ; based on the fourth preset rule and the receiving point linear phase parameter, the third processed data ⁇ 3 (i, j )
  • the present invention also provides a global phase quadrature demodulation device for optical fiber sensing data, said device comprising: an initial data acquisition unit for acquiring initial optical fiber sensing IQ data; a light source phase correction unit for The initial optical fiber sensing IQ data determines the corresponding direct phase value, performs the light source phase correction operation on the direct phase, and obtains the first processed data; the receiving point initial phase correction unit is used to perform the receiving point initial phase correction on the first processed data The operation is to obtain the second processed data; the light source linear phase correction unit is used to perform the light source linear phase correction operation on the second processed data to obtain the third processed data; the receiving point linear phase correction unit is used to perform the third processed data The received point linear phase correction operation is performed on the post-processing data to obtain the fourth post-processing data; the processing unit is configured to perform phase unwrapping processing and de-near DC component processing on the fourth post-processing data to obtain the post-global phase demodulation data.
  • the initial optical fiber sensing IQ data is acquired from multiple sensing positions of the optical fiber
  • the light source phase correction unit includes: a reference position determination module, configured to determine a preset reference position j0 from multiple sensing positions of the optical fiber ;
  • the reference information acquisition module is used to obtain the direct phase value ⁇ 0 corresponding to the preset reference position in the initial optical fiber sensing IQ data, and the direct phase value ⁇ 0 is characterized as: where I(i,j) is the in-phase signal in the initial fiber-optic sensing IQ data, Q(i,j) is the quadrature signal in the initial fiber-optic sensing IQ data, i is the sampling time, j is the sampling position; the light source
  • the phase change factor determination module is used to determine the light source phase change factor ⁇ s (i) based on the direct phase value ⁇ 0 , and the light source phase change factor ⁇ s (i) is characterized as: Where n1 is the number of sample points for statistical light source phase; the
  • the receiving point initial phase correction unit includes: an initial data acquisition module, configured to extract initial optical fiber sensing data from the first processed data ⁇ 1 (i,j), the initial optical fiber sensing The data is generated based on the initial optical fiber sensing IQ data collected at the initial sampling time without the influence of external acoustic waves; the initial phase factor determination module of the receiving point is used to determine the initial phase factor ⁇ r of the receiving point based on the initial optical fiber sensing IQ data j), the initial phase factor ⁇ r (j) at the receiving point is characterized by: Among them, i0 is the initial sampling time without the influence of external sound waves, and n2 is the number of samples of the initial phase of the receiving point for statistics; the initial phase correction module of the receiving point is used for based on the second preset rule and the initial phase factor of the receiving point ⁇ r (j) The initial phase correction operation at the receiving point is performed on the first processed data ⁇ 1 (i,j) to obtain the second processed data ⁇ 2 (i,j
  • the light source linear phase correction unit includes: a light source linear phase analysis module, configured to perform a light source linear phase analysis operation based on the second processed data ⁇ 2 (i,j), to obtain a light source linear phase corresponding to a preset reference position
  • the phase parameter, the linear phase parameter of the light source includes the first phase intercept bi and the first gradient k i ;
  • the receiving point linear phase correction unit includes: a receiving point linear phase analysis module, configured to obtain the receiving point linear phase parameter corresponding to the start time based on the third processed data ⁇ 3 (i,j), and the receiving point
  • the linear phase parameters include the second phase intercept b j and the second gradient k j ;
  • the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the global phase quadrature demodulation method for optical fiber sensing data provided by the present invention is implemented.
  • the present invention has at least the following technical effects:
  • Fig. 1 is the specific implementation flowchart of the global phase quadrature demodulation method of the optical fiber sensing data provided by the embodiment of the present invention
  • Fig. 2 is the phase diagram of the optical fiber information directly demodulated in the global phase quadrature demodulation method of optical fiber sensing data provided by the embodiment of the present invention
  • FIG. 3 is a schematic diagram of optical fiber sensing IQ data after light source phase correction is performed in the global phase quadrature demodulation method of optical fiber sensing data provided by an embodiment of the present invention
  • Fig. 4 is a schematic diagram of the optical fiber sensing data after the initial phase correction of the receiving point in the global phase quadrature demodulation method of the optical fiber sensing data provided by the embodiment of the present invention
  • Fig. 5 is a schematic diagram of optical fiber sensing data after linear phase correction of light source and receiving point in the global phase quadrature demodulation method of optical fiber sensing data provided by an embodiment of the present invention
  • Fig. 6 is a schematic diagram of optical fiber sensing data after performing de-near DC component processing in the global phase quadrature demodulation method of optical fiber sensing data provided by an embodiment of the present invention
  • Fig. 7 is a schematic structural diagram of a global phase quadrature demodulation device for optical fiber sensing data provided by an embodiment of the present invention.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, in view of this, “multiple” can also be understood as “at least two” in the embodiments of the present invention.
  • And/or describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/”, unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
  • an embodiment of the present invention provides a global phase quadrature demodulation method of optical fiber sensing data, the method comprising:
  • the optical fiber is laid on the position to be detected and the optical fiber is fully coupled with the position to be detected, a DAS (Distributed Acoustic Sensor) is connected to one end of the optical fiber, and the DAS instrument emits laser pulses,
  • the IQ (In-phase/Quadrature, In-phase/Quadrature) information of the Rayleigh scattering of the light pulse is obtained by the coherent detection method, and the corresponding optical fiber information is obtained after analyzing the information.
  • the optical fiber information is directly demodulated, the obtained optical fiber information has a large deviation due to the existence of a large amount of interference.
  • FIG. 2 which is the directly demodulated optical fiber Therefore, in order to solve the technical problems existing in the prior art and improve the accuracy of the optical fiber information, the above-mentioned obtained optical fiber information is optimized.
  • the initial optical fiber sensing IQ data is first obtained, for example, after the optical fiber emits light pulses at a certain frequency, the DAS obtains the corresponding IQ information I(i,j), Q(i,j), Wherein i represents the i-th sampling time, and j represents the j-th position serial number of the DAS data.
  • the initial optical fiber sensing IQ data includes phase information ⁇ 0 (i, j), and the phase information ⁇ 0 (i, j) is determined based on the following calculation rules: After the initial optical fiber sensing IQ data is acquired, the initial optical fiber sensing IQ data is further corrected.
  • the initial optical fiber sensing IQ data is collected from multiple sensing positions of the optical fiber, the corresponding direct phase value is determined based on the initial optical fiber sensing IQ data, and the light source phase correction operation is performed on the direct phase to obtain the first A processed data, including: determining the preset reference position j0 from multiple sensing positions of the optical fiber; obtaining the direct phase value ⁇ 0 corresponding to the preset reference position from the initial optical fiber sensing IQ data, and the direct phase value ⁇ 0 represents for: where I(i,j) is the in-phase signal in the initial fiber-optic sensing IQ data, Q(i,j) is the quadrature signal in the initial fiber-optic sensing IQ data, i is the sampling time, and j is the sampling position; based on The reference phase information ⁇ 0 determines the light source phase change factor ⁇ s (i), and the light source phase change factor ⁇ s (i) is characterized as: Where n1 is the number of samples for statistical
  • the preset reference position from the multiple sensing positions of the optical fiber, for example, you can choose to The reference position j0 in the middle of the optical fiber is used as the preset reference position, and then the data collected at each sampling time are counted at the preset reference position to obtain the change factor ⁇ s (i) of the light source phase of the optical fiber with time, the The variation factor ⁇ s (i) can be determined by taking the mean (or median) of multiple points: Wherein n1 is the number of samples for statistical light source phase.
  • the light source phase correction operation can be performed on the initial optical fiber sensing IQ data according to the first preset rule to obtain the first processed data ⁇ 1 (i, j), the first
  • the phase change factor of the light source of the fiber is obtained by analyzing the initial fiber sensing data, and the phase correction is performed on the initial fiber sensing data according to the phase change factor of the light source of the fiber, so as to obtain the preliminary corrected Optical fiber information can effectively eliminate the impact of light source phase changes on optical fiber information and improve data accuracy.
  • a further initial phase correction operation at the receiving point is performed on the above-mentioned first processed data.
  • performing an initial phase correction operation at the receiving point on the first processed data to obtain the second processed data includes: extracting the initial optical fiber sensor from the first processed data ⁇ 1 (i,j) Data, the initial optical fiber sensing data is generated based on the initial optical fiber sensing IQ data collected at the initial sampling time without the influence of external acoustic waves; the initial phase factor ⁇ r (j) of the receiving point is determined based on the initial optical fiber sensing data , the initial phase factor ⁇ r (j) at the receiving point is characterized by: Wherein i0 is the initial sampling time without the influence of external sound waves, and n2 is the number of samples of the initial phase of the statistical receiving point; based on the second preset rule and the initial phase factor of the receiving point ⁇ r (j), the first processed data ⁇ 1 (i,j) performs the initial phase correction operation at the receiving point to obtain the second processed data ⁇ 2 (i,j), and the second preset rule is represented as: ⁇ 2 (i,
  • the initial optical fiber sensing data is extracted from the first processed data ⁇ 1 (i,j), the above-mentioned
  • the initial optical fiber sensing IQ data starts to be collected when there is no external acoustic wave influence, so the initial optical fiber sensing IQ data includes the initial data without external acoustic wave influence, correspondingly, after the first processing, the data ⁇ 1 (i,j ) also includes the corresponding initial optical fiber sensing data, the initial optical fiber sensing data is the optical fiber sensing data collected when there is no external sound wave influence at time i0.
  • the initial phase factor ⁇ r (j) of the receiving point of each detection position is determined according to the initial optical fiber sensing data , the initial phase factor ⁇ r (j) of the receiving point can be determined by taking the mean (or median) of multiple points: Among them, i0 is the initial sampling time without the influence of external sound waves, and n2 is the sample number of the initial phase of the statistical receiving point.
  • the first processing is further performed according to the second preset rule and the initial phase factor ⁇ r (j) of the receiving point
  • the post-data ⁇ 1 (i,j) is subjected to initial phase correction operation at the receiving point
  • the second processed data ⁇ 2 (i,j) is further subjected to light source linear phase correction processing.
  • FIG. 4 is a schematic diagram of optical fiber sensing data after initial phase correction at the receiving point provided by an embodiment of the present invention.
  • performing a light source linear phase correction operation on the second processed data to obtain the third processed data includes: performing a light source linear phase analysis operation based on the second processed data ⁇ 2 (i,j) to obtain A light source linear phase parameter corresponding to a preset reference position; performing a light source linear phase correction operation on the second processed data ⁇ 2 (i,j) based on a third preset rule and a light source linear phase parameter to obtain the third
  • the second processed data ⁇ 2 (i,j) after the second processed data ⁇ 2 (i,j) is obtained, a multi-scale phase linear change scan is performed at each time i near the j0 position, so as to obtain
  • the linear phase parameters of the light source include but not limited to the phase intercept b i and the gradient k i .
  • the second processed data ⁇ 2 (i , j) performing a light source linear phase correction operation to obtain the third processed data ⁇ 3 (i,j)
  • the receiving point linear phase correction operation is further performed on the third processed data ⁇ 3 (i,j), please refer to FIG. Data schematic.
  • a multi-scale phase linear change scan is performed on each detection position around time i0, so as to obtain Nearby receiving point linear phase parameters, for example, the receiving point linear phase parameters include but not limited to phase intercept bj and gradient kj, at this time, the third processed data is further passed through the fourth preset rule and the above-mentioned receiving point linear phase parameters ⁇ 3 (i,j) performs a linear phase correction operation at the receiving point, so as to obtain the corresponding fourth processed data ⁇ 4 (i,j).
  • the optical fiber sensing data is optimized according to the phase factor, and combined with the optical fiber
  • the linear parameters in the sensing data acquisition process are acquired and the optical fiber sensing data is linearly corrected, so as to overcome the influence of the phase change of the light source on the accuracy of the optical fiber sensing data, and further overcome the changes in the refractive index of the optical fiber, non-linear
  • the impact of problems such as linear phase drift on the accuracy of optical fiber sensing data greatly improves the accuracy of the final optical fiber sensing data and meets the actual needs of technicians.
  • optical fiber sensing data processed above is the original optical fiber sensing data, so further conversion and optimization processing is required to obtain usable optical fiber sensing phase demodulated data.
  • performing phase unwrapping processing on the fourth processed data to obtain global phase demodulated data includes: performing a phase unwrapping operation on the fourth processed data ⁇ 4 (i,j), The corresponding acoustic wave field data is obtained; the near-DC component processing is performed on the acoustic wave field data to obtain the data after global phase demodulation.
  • a phase unwrapping operation is further performed on the obtained fourth processed data ⁇ 4 (i,j) to obtain the required acoustic wave field data, in order to further eliminate the low-frequency noise, and perform de-near-DC component processing on the acoustic wave field data to obtain real global demodulation phase data, please refer to Figure 6, which is the optical fiber sensor after performing de-near-DC component processing provided by the embodiment of the present invention Schematic representation of the data.
  • an embodiment of the present invention provides a device for global phase quadrature demodulation of optical fiber sensing data
  • the device includes: an initial data acquisition unit for acquiring initial optical fiber sensing IQ data;
  • the light source phase correction unit is used to determine the corresponding direct phase value based on the initial optical fiber sensing IQ data, and performs the light source phase correction operation on the direct phase to obtain the first processed data;
  • the receiving point initial phase correction unit is used for the first processing
  • the post-processing data performs the initial phase correction operation of the receiving point to obtain the second processed data;
  • the light source linear phase correction unit is used to perform the light source linear phase correction operation on the second processed data to obtain the third post-processing data;
  • the receiving point linear phase correction The unit is used to perform the receiving point linear phase correction operation on the third processed data to obtain the fourth processed data;
  • the processing unit is used to perform phase unwrapping processing and de-near DC component processing on the fourth processed data to obtain Data after global phase demodulation.
  • the initial optical fiber sensing IQ data is acquired from multiple sensing positions of the optical fiber
  • the light source phase correction unit includes: a reference position determination module, configured to determine a predetermined value from the multiple sensing positions of the optical fiber.
  • the reference information acquisition module is used to obtain the direct phase value ⁇ 0 corresponding to the preset reference position in the initial optical fiber sensing IQ data, and the direct phase value ⁇ 0 is represented as: where I(i,j) is the in-phase signal in the initial fiber-optic sensing IQ data, Q(i,j) is the quadrature signal in the initial fiber-optic sensing IQ data, i is the sampling time, j is the sampling position; the light source The phase change factor determination module is used to determine the light source phase change factor ⁇ s (i) based on the direct phase value ⁇ 0 , and the light source phase change factor ⁇ s (i) is characterized as: Where n1 is the number of sample points for statistical light source phase; the light source phase correction module is used to perform a light source phase correction operation on the initial optical fiber sensing data based on the first preset rule and the light source phase change factor ⁇ s (i), to obtain The first pre-processed data ⁇
  • the receiving point initial phase correction unit includes: an initial data acquisition module, configured to extract initial optical fiber sensing data from the first processed data ⁇ 1 (i,j), the initial The initial optical fiber sensing data is generated based on the initial optical fiber sensing IQ data collected at the initial sampling time without the influence of external acoustic waves; the initial phase factor determination module of the receiving point is used to determine the initial phase of the receiving point based on the initial optical fiber sensing IQ data Factor ⁇ r (j), the initial phase factor ⁇ r (j) at the receiving point is characterized as: Among them, i0 is the initial sampling time without the influence of external sound waves, and n2 is the number of samples of the initial phase of the receiving point for statistics; the initial phase correction module of the receiving point is used for based on the second preset rule and the initial phase factor of the receiving point ⁇ r (j) The initial phase correction operation at the receiving point is performed on the first processed data ⁇ 1 (i,j) to obtain the second processed data
  • the light source linear phase correction unit includes: a light source linear phase analysis module, configured to perform a light source linear phase analysis operation based on the second processed data ⁇ 2 (i,j), to obtain a preset reference position
  • the corresponding light source linear phase parameter, the light source linear phase parameter includes the first phase intercept b i and the first gradient ki ;
  • the light source linear phase correction module is used to correct the second processed based on the third preset rule and the light source linear phase parameter
  • the processing unit is specifically configured to: perform a phase unwrapping operation on the fourth processed data ⁇ 4 (i,j) to obtain corresponding acoustic wave field data; perform dewrapping on the acoustic wave field data Near DC component processing to obtain data after global phase demodulation.
  • an embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the global phase quadrature demodulation method for optical fiber sensing data described in the present invention is implemented.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种光纤传感数据的全局相位正交解调方法及装置,该方法包括:获取初始光纤传感IQ数据;基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;对第四处理后数据执行相位解卷绕处理和去近直流分量处理,获得全局相位解调后数据。本方案通过对初始光纤传感数据的各种影响因素进行分析,采取对应的数据优化处理方法,克服光纤传感数据在采集过程中存在的问题,提高光纤传感数据的准确性。

Description

光纤传感数据的全局相位正交解调方法及装置 技术领域
本发明涉及光纤传感数据解调技术领域,具体地涉及一种光纤传感数据的全局相位正交解调方法、一种光纤传感数据的全局相位正交解调装置以及一种计算机可读存储介质。
背景技术
随着科技的不断发展,光纤技术被不断应用到生活、生产中的各个领域。光纤分布式声波传感技术是一种基于光纤的瑞利散射原理的检测技术,在井中地震数据采集、大坝安全监控、安防等技术领域得到广泛应用。
在应用过程中,光纤分布式声波传感技术通过光纤传感装置,基于同相/正交(In-phase/Quadrature,I/Q)相位解调获取瑞利散射的相位信息,光纤同时作为传感媒介和传输介质,可以连续感知光纤周围的声波震动或应变信息,并通过高密度的时间和空间采样记录相关的数据。
然而在实际应用过程中,由于激光在光纤中传播的非线性效应和频率漂移影响,相位信息会产生具有累加效应的相位漂移,严重影响相位解调的精度,降低光纤传感数据的精确性。现有技术可以通过标距内的相位求差及局部平均来克服上述非线性效应并提高信噪比,但这种相位解调方法会导致低波数波场信息的丢失,并使得噪声水平无法降低到理想水平,因此为技术人员造成了极大的困扰,无法满足目前技术人员的实际需求。
发明内容
为了克服现有技术中存在的上述技术问题,本发明实施例提供一种光纤传感数据的全局相位正交解调方法,通过对初始光纤传感数据中的相位干扰因素和非线性相位变化因素进行分析并进行对应的优化处理,从而有效提高光纤传感数据的精确性,满足了技术人员的实际需求。
为了实现上述目的,本发明实施例提供一种光纤传感数据的全局相位正交解调方法,所述方法包括:获取初始光纤传感IQ数据;基 于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;对第四处理后数据执行相位解卷绕处理和去近直流分量处理,获得全局相位解调后数据。
优选地,所述初始光纤传感IQ数据从光纤多个传感位置采集获取,基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据,包括:从光纤多个传感位置中确定预设参考位置j0;在初始光纤传感IQ数据中获取与预设参考位置对应的直接相位值ω 0,直接相位值ω 0表征为:
Figure PCTCN2022102915-appb-000001
其中I(i,j)为初始光纤传感IQ数据中的同相信号,Q(i,j)为初始光纤传感IQ数据中的正交信号,i为采样时间,j为采样位置;基于直接相位值ω 0确定光源相位变化因子ψ s(i),光源相位变化因子ψ s(i)表征为:
Figure PCTCN2022102915-appb-000002
其中n1为统计光源相位的样点数;基于第一预设规则和所述光源相位变化因子对所述初始光纤传感数据进行光源相位校正操作,获得所述第一处理后数据ω 1(i,j),第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i)。
优选地,对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据,包括:在第一处理后数据ω 1(i,j)中提取起始光纤传感数据,所述起始光纤传感数据基于在无外界声波影响的起始采样时间所采集的初始光纤传感IQ数据生成;基于起始光纤传感IQ数据确定接收点初相位因子ψ r(j),接收点初相位因子ψ r(j)表征为:
Figure PCTCN2022102915-appb-000003
其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数;基于第二预设规则和接收点初相位因子ψ r(j)对第一处理后数据ω 1(i,j)进行接收点初相位校正操作,获得第二处理后数据ω 2(i,j),第二预设规则表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j)。
优选地,对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据,包括:基于第二处理后数据ω 2(i,j)执行光源线性相位分析操作,获得与预设参考位置对应的光源线性相位参数,光源线性相位参数包括第一相位截距b i和第一梯度k i;基于第三预设规则和光源线性相位参数对第二处理后数据ω 2(i,j)进行光源线性相位校正操作,获得第三处理后数据ω 3(i,j),第三预设规则表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。
优选地,对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据,包括:基于所述第三处理后数据ω 3(i,j)获取与所述 起始时间对应的接收点线性相位参数,接收点线性相位参数包括第二相位截距b j和第二梯度k j;基于第四预设规则和接收点线性相位参数对第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,获得第四处理后数据ω 4(i,j),第四预设规则表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。
相应的,本发明还提供一种光纤传感数据的全局相位正交解调装置,所述装置包括:初始数据获取单元,用于获取初始光纤传感IQ数据;光源相位校正单元,用于基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;接收点初相位校正单元,用于对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;光源线性相位校正单元,用于对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;接收点线性相位校正单元,用于对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;处理单元,用于对第四处理后数据执行相位解卷绕处理和去近直流分量处理,获得全局相位解调后数据。
优选地,所述初始光纤传感IQ数据从光纤多个传感位置采集获取,所述光源相位校正单元包括:参考位置确定模块,用于从光纤多个传感位置中确定预设参考位置j0;参考信息获取模块,用于在初始光纤传感IQ数据中获取与预设参考位置对应的直接相位值ω 0,直接相位值ω 0表征为:
Figure PCTCN2022102915-appb-000004
其中I(i,j)为初始光纤传感IQ数据中的同相信号,Q(i,j)为初始光纤传感IQ数据中的正交信号,i为采样时间,j为采样位置;光源相位变化因子确定模块,用于基于直接相位值ω 0确定光源相位变化因子ψ s(i),光源相位变化因子ψ s(i)表征为:
Figure PCTCN2022102915-appb-000005
其中n1为统计光源相位的样点数;光源相位校正模块,用于基于第一预设规则和所述光源相位变化因子ψ s(i)对所述初始光纤传感数据进行光源相位校正操作,获得所述第一处理后数据ω 1(i,j),第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i)。
优选地,所述接收点初相位校正单元包括:起始数据获取模块,用于在第一处理后数据ω 1(i,j)中提取起始光纤传感数据,所述起始光纤传感数据基于在无外界声波影响的起始采样时间所采集的初始光纤传感IQ数据生成;接收点初相位因子确定模块,用于基于起始光纤传感IQ数据确定接收点初相位因子ψ r(j),接收点初相位因子ψ r(j)表征为:
Figure PCTCN2022102915-appb-000006
其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数;接收点初相位校正模块,用于基于第二预设规则和接收点初相位因子ψ r(j)对第一处理后 数据ω 1(i,j)进行接收点初相位校正操作,获得第二处理后数据ω 2(i,j),第二预设规则表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j)。
优选地,所述光源线性相位校正单元包括:光源线性相位分析模块,用于基于第二处理后数据ω 2(i,j)执行光源线性相位分析操作,获得与预设参考位置对应的光源线性相位参数,光源线性相位参数包括第一相位截距b i和第一梯度k i;光源线性相位校正模块,用于基于第三预设规则和光源线性相位参数对第二处理后数据ω 2(i,j)进行光源线性相位校正操作,获得第三处理后数据ω 3(i,j),第三预设规则表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。
优选地,所述接收点线性相位校正单元包括:接收点线性相位分析模块,用于基于第三处理后数据ω 3(i,j)获取与起始时间对应的接收点线性相位参数,接收点线性相位参数包括第二相位截距b j和第二梯度k j;接收点线性相位校正模块,用于基于第四预设规则和接收点线性相位参数对第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,获得第四处理后数据ω 4(i,j),第四预设规则表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。
另一方面,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明提供的光纤传感数据的全局相位正交解调方法。
通过本发明提供的技术方案,本发明至少具有如下技术效果:
通过对直接基于DAS采集到的初始光纤传感数据在光源相位变化、光纤折射率变化、非线性相位漂移所对应的数据影响因素进行分析,并采取对应的数据优化处理方法,从而有效克服掉光纤传感数据在采集过程中存在的上述问题,大大提高了最终采集到的光纤传感数据的准确性,为后续进行准确的数据分析提供了有力的数据支撑,满足了技术人员的实际需求。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是本发明实施例提供的光纤传感数据的全局相位正交解调方法的具体实现流程图;
图2是本发明实施例提供的光纤传感数据的全局相位正交解调 方法中直接解调的光纤信息的相位图;
图3是本发明实施例提供的光纤传感数据的全局相位正交解调方法中执行光源相位校正后的光纤传感IQ数据的示意图;
图4是本发明实施例提供的光纤传感数据的全局相位正交解调方法中执行接收点初相位校正后的光纤传感数据示意图;
图5是本发明实施例提供的光纤传感数据的全局相位正交解调方法中执行光源和接收点线性相位校正后的光纤传感数据示意图;
图6是本发明实施例提供的光纤传感数据的全局相位正交解调方法中执行去近直流分量处理后的光纤传感数据的示意图;
图7是本发明实施例提供的光纤传感数据的全局相位正交解调装置的结构示意图。
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本发明实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
请参见图1,本发明实施例提供一种光纤传感数据的全局相位正交解调方法,所述方法包括:
S10)获取初始光纤传感IQ数据;
S20)基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;
S30)对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;
S40)对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;
S50)对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;
S60)对第四处理后数据执行相位解卷绕处理和去近直流分量处 理,获得全局相位解调后数据。
在本发明实施例中,首先将光纤布设到待检测位置上并将光纤与待检测位置进行充分耦合,在光纤的一端连接DAS(分布式声学传感器,Distributed acoustic sensor),DAS仪器发射激光脉冲,通过相干探测方法获取光脉冲瑞利散射的IQ(同相/正交,In-phase/Quadrature)信息,对该信息进行解析后获得对应的光纤信息。然而在现有技术中,若直接对光纤信息进行解调,则得到的光纤信息因大量干扰的存在而存在较大偏差,例如请参见图2,为本发明实施例提供的直接解调的光纤信息的相位图,因此为了解决现有技术中存在的技术问题,提高光纤信息的准确性,对上述获取的光纤信息进行优化处理。
在一种可能的实施方式中,首先获取初始光纤传感IQ数据,例如光纤在按照一定频率发射光脉冲后,DAS获取到对应的IQ信息I(i,j)、Q(i,j),其中i代表第i个采样时间,j代表DAS数据的第j个位置序号,在本发明实施例中,该初始光纤传感IQ数据包括相位信息ω 0(i,j),该相位信息ω 0(i,j)基于如下计算规则确定:
Figure PCTCN2022102915-appb-000007
Figure PCTCN2022102915-appb-000008
在获取到上述初始光纤传感IQ数据后,进一步对该初始光纤传感IQ数据进行校正。
在本发明实施例中,所述初始光纤传感IQ数据从光纤多个传感位置采集获取,基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据,包括:从光纤多个传感位置中确定预设参考位置j0;在初始光纤传感IQ数据中获取与预设参考位置对应的直接相位值ω 0,直接相位值ω 0表征为:
Figure PCTCN2022102915-appb-000009
其中I(i,j)为初始光纤传感IQ数据中的同相信号,Q(i,j)为初始光纤传感IQ数据中的正交信号,i为采样时间,j为采样位置;基于所述参考相位信息ω 0确定光源相位变化因子ψ s(i),光源相位变化因子ψ s(i)表征为:
Figure PCTCN2022102915-appb-000010
其中n1为统计光源相位的样点数;基于第一预设规则和所述光源相位变化因子对所述初始光纤传感数据进行光源相位校正操作,获得所述第一处理后数据ω 1(i,j),第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i)。
在一种可能的实施方式中,在获取到从光纤多个传感位置采集到的初始光纤传感IQ数据后,首先从上述光纤多个传感位置中确定预设参考位置,例如可以选择待测光纤的中部参考位置j0作为该预设参考位置,然后在该预设参考位置对各个采样时刻所采集得到的数据进行统计,得到光纤的光源相位随时间的变化因子ψ s(i),该变化因子ψ s(i)可以以多点取均值(或中值)的方式确定:
Figure PCTCN2022102915-appb-000011
Figure PCTCN2022102915-appb-000012
其中n1为统计光源相位的样点数,此时可以根据第一预设规则对该初始光纤传感IQ数据进行光源相位校正操作,获得第一处理后数据ω 1(i,j),该第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i),请参见图3,为本发明实施例提供的执行光源相位校正后的光纤传感IQ数据的示意图。
在本发明实施例中,通过对初始光纤传感数据进行分析以获得光纤的光源相位变化因子,并根据光纤的光源相位变化因子对初始光纤传感数据进行相位校正,从而获得进行初步校正后的光纤信息,能够有效消除光源相位变化对光纤信息造成的影响,提高了数据的准确性。为了进一步消除初始光纤传感IQ数据中的影响因素,提高数据准确性,对上述第一处理后数据进行进一步的接收点初相位校正操作。
在本发明实施例中,对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据,包括:在第一处理后数据ω 1(i,j)中提取起始光纤传感数据,所述起始光纤传感数据基于在无外界声波影响的起始采样时间所采集的初始光纤传感IQ数据生成;基于起始光纤传感数据确定接收点初相位因子ψ r(j),接收点初相位因子ψ r(j)表征为:
Figure PCTCN2022102915-appb-000013
其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数;基于第二预设规则和接收点初相位因子ψ r(j)对所述第一处理后数据ω 1(i,j)进行接收点初相位校正操作,获得第二处理后数据ω 2(i,j),第二预设规则表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j)。
在一种可能的实施方式中,在获取到上述第一处理后数据ω 1(i,j)之后,从第一处理后数据ω 1(i,j)中提取起始光纤传感数据,上述初始光纤传感IQ数据从外界无外界声波影响时就开始采集,因此该初始光纤传感IQ数据中包括无外界声波影响的初始数据,对应的,在第一处理后数据ω 1(i,j)中也包括对应的起始光纤传感数据,该起始光纤传感数据为在i0时刻无外界声波影响时采集到的光纤传感数据。在从第一处理后数据ω 1(i,j)中提取出该起始光纤传感数据后,根据该起始光纤传感数据确定每个检测位置的接收点初相位因子ψ r(j),该接收点初相位因子ψ r(j)可以通过多点取均值(或中值)的方式确定:
Figure PCTCN2022102915-appb-000014
其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数,此时进一步根据第二预设规则和该接收点初相位因子ψ r(j)对该第一处理后数据ω 1(i,j)进行接收点初相位校正操作,该第二预设规则可以表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j),根据上述接收点初相位校正操作,得到对应的第二处理后数据ω 2(i,j)。此时进一步对该第二处理后数据ω 2(i,j)进行光源线性相位校正处理,请参见图4,为本发明实施例提供的执行接收点初相位校 正后的光纤传感数据示意图。
在本发明实施例中,对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据,包括:基于第二处理后数据ω 2(i,j)执行光源线性相位分析操作,获得与预设参考位置对应的光源线性相位参数;基于第三预设规则和光源线性相位参数对所述第二处理后数据ω 2(i,j)进行光源线性相位校正操作,获得所述第三处理后数据ω 3(i,j),第三预设规则表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。
在一种可能的实施方式中,在获取到上述第二处理后数据ω 2(i,j)之后,对每个时刻i在j0位置附近进行多尺度相位线性变化扫描,以获得在j0位置附近的光源线性相位参数,该光源线性相位参数包括但不限于相位截距b i和梯度k i,此时根据第三预设规则和上述光源线性相位参数对该第二处理后数据ω 2(i,j)进行光源线性相位校正操作,以获得第三处理后数据ω 3(i,j),该第三预设规则可以表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。此时进一步对该第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,请参见图5,为本发明实施例提供的执行光源和接收点线性相位校正后的光纤传感数据示意图。
在本发明实施例中,对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据,包括:基于所述第三处理后数据ω 3(i,j)获取与所述起始时间对应的接收点线性相位参数,接收点线性相位参数包括第二相位截距b j和第二梯度k j;基于第四预设规则和接收点线性相位参数对第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,获得所述第四处理后数据ω 4(i,j),第四预设规则表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。
在一种可能的实施方式中,根据该第三处理后数据ω 3(i,j),对每个检测位置在i0时刻附近进行多尺度相位线性变化扫描,以获得每个检测位置在i0时刻附近的接收点线性相位参数,例如该接收点线性相位参数包括但不限于相位截距bj和梯度kj,此时进一步通过第四预设规则和上述接收点线性相位参数对该第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,从而获得对应的第四处理后数据ω 4(i,j),该第四预设规则可以表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。此时,完成了对初始光纤传感IQ数据的数据校正处理,获得了精确的光纤传感数据。
对于本领域技术人员很容易知道,技术人员可以根据实际需求,可以继续对后续采集的光纤传感数据重复执行上述步骤,例如可以采集基于人工震源激发或被动监测得到的光纤传感数据进行上述优化,或重复采集多次光纤传感数据并执行上述优化,以获得更精确的校正后光纤传感数据,都应该属于本发明实施例的保护范围,在此不做过多的赘述。
在本发明实施例中,通过对初始光纤传感IQ数据中随时间变化的光源相位因子和不同接收点初始相位因子进行分析,根据该相位因子对光纤传感数据进行优化处理,以及结合在光纤传感数据采集过程中的线性参数进行获取并对光纤传感数据进行线性相位校正,从而在克服光源相位变化对光纤传感数据的精确性影响的基础上,进一步克服了光纤折射率变化、非线性相位漂移等问题对光纤传感数据的精确性的影响,大大提高了最终的光纤传感数据的精确性,满足了技术人员的实际需求。
然而经过上述处理的光纤传感数据为原始的光纤传感数据,因此还需要进行进一步的转换优化处理,以获得可以使用的光纤传感相位解调后数据。
在本发明实施例中,对第四处理后数据执行相位解卷绕处理,获得全局相位解调后数据,包括:对第四处理后数据ω 4(i,j)执行相位解卷绕操作,获得对应的声波波场数据;对声波波场数据执行去近直流分量处理,获得全局相位解调后数据。
在一种可能的实施方式中,对获取到的上述第四处理后数据ω 4(i,j)进一步执行相位解卷绕操作,获得所需要的声波波场数据,为了进一步消除线性相位校正后的低频噪声,还对该声波波场数据执行去近直流分量处理,获得真正的全局解调相位数据,请参见图6,为本发明实施例提供的执行去近直流分量处理后的光纤传感数据的示意图。
在本发明实施例中,通过根据光纤传感数据的检测过程,对光纤传感数据中的噪声或影响因素进行分析,并进行精确的数据优化处理,从而获得了准确的光纤传感数据,为后续的数据处理和应用提供了有力的数据支撑。
下面结合附图对本发明实施例所提供的光纤传感数据的全局相位正交解调装置进行说明。
请参见图7,基于同一发明构思,本发明实施例提供一种光纤传感数据的全局相位正交解调装置,所述装置包括:初始数据获取单元,用于获取初始光纤传感IQ数据;光源相位校正单元,用于基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;接收点初相位校正单元,用于对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;光源线性相位校正单元,用于对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;接收点线性相位校正单元,用于对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;处理单元,用于对第四处理后数据执行相位解卷绕处理和去近直流分量处理,获得全局相位解调后数据。
在本发明实施例中,所述初始光纤传感IQ数据从光纤多个传感位置采集获取,所述光源相位校正单元包括:参考位置确定模块,用于从光纤多个传感位置中确定预设参考位置j0;参考信息获取模块,用于在初始光纤传感IQ数据中获取与预设参考位置对应的直接相位值ω 0,直接相位值ω 0表征为:
Figure PCTCN2022102915-appb-000015
其中I(i,j)为初始光纤传感IQ数据中的同相信号,Q(i,j)为初始光纤传感IQ数据中的正交信号,i为采样时间,j为采样位置;光源相位变化因子确定模块,用于基于直接相位值ω 0确定光源相位变化因子ψ s(i),光源相位变化因子ψ s(i)表征为:
Figure PCTCN2022102915-appb-000016
其中n1为统计光源相位的样点数;光源相位校正模块,用于基于第一预设规则和所述光源相位变化因子ψ s(i)对所述初始光纤传感数据进行光源相位校正操作,获得所述第一处理后数据ω 1(i,j),第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i)。
在本发明实施例中,所述接收点初相位校正单元包括:起始数据获取模块,用于在第一处理后数据ω 1(i,j)中提取起始光纤传感数据,所述起始光纤传感数据基于在无外界声波影响的起始采样时间所采集的初始光纤传感IQ数据生成;接收点初相位因子确定模块,用于基于起始光纤传感IQ数据确定接收点初相位因子ψ r(j),接收点初相位因子ψ r(j)表征为:
Figure PCTCN2022102915-appb-000017
其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数;接收点初相位校正模块,用于基于第二预设规则和接收点初相位因子ψ r(j)对第一处理后数据ω 1(i,j)进行接收点初相位校正操作,获得第二处理后数据ω 2(i,j),第二预设规则表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j)。
在本发明实施例中,所述光源线性相位校正单元包括:光源线性相位分析模块,用于基于第二处理后数据ω 2(i,j)执行光源线性相位分析操作,获得与预设参考位置对应的光源线性相位参数,光源线性相位参数包括第一相位截距b i和第一梯度k i;光源线性相位校正模块,用于基于第三预设规则和光源线性相位参数对第二处理后数据ω 2(i,j)进行光源线性相位校正操作,获得第三处理后数据ω 3(i,j),第三预设规则表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。
在本发明实施例中,所述接收点线性相位校正单元包括:接收点线性相位分析模块,用于基于第三处理后数据ω 3(i,j)获取与起始时间对应的接收点线性相位参数,接收点线性相位参数包括第二相位截距b j和第二梯度k j;接收点线性相位校正模块,用于基于第四预设规则和接收点线性相位参数对第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,获得第四处理后数据ω 4(i,j),第四预设规则表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。
在本发明实施例中,所述处理单元具体用于:对第四处理后数据ω 4(i,j)执行相位解卷绕操作,获得对应的声波波场数据;对声波波场数据执行去近直流分量处理,获得全局相位解调后数据。
进一步地,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明所述的光纤传感数据的全局相位正交解调方法。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。

Claims (11)

  1. 一种光纤传感数据的全局相位正交解调方法,其特征在于,所述方法包括:
    获取初始光纤传感IQ数据;
    基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;
    对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;
    对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;
    对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;
    对第四处理后数据执行相位解卷绕处理和去近直流分量处理,获得全局相位解调后数据。
  2. 根据权利要求1所述的方法,其特征在于,所述初始光纤传感IQ数据从光纤多个传感位置采集获取,基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据,包括:
    从光纤多个传感位置中确定预设参考位置j0;
    在初始光纤传感IQ数据中获取与预设参考位置对应的直接相位值ω 0,直接相位值ω 0表征为:
    Figure PCTCN2022102915-appb-100001
    其中I(i,j)为初始光纤传感IQ数据中的同相信号,Q(i,j)为初始光纤传感IQ数据中的正交信号,i为采样时间,j为采样位置;
    基于直接相位值ω 0确定光源相位变化因子ψ s(i),光源相位变化 因子ψ s(i)表征为:
    Figure PCTCN2022102915-appb-100002
    其中n1为统计光源相位的样点数;
    基于第一预设规则和所述光源相位变化因子ψ s(i)对所述初始光纤传感数据进行光源相位校正操作,获得所述第一处理后数据ω 1(i,j),第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i)。
  3. 根据权利要求2所述的方法,其特征在于,对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据,包括:
    在第一处理后数据ω 1(i,j)中提取起始光纤传感数据,所述起始光纤传感数据基于在无外界声波影响的起始采样时间所采集的初始光纤传感IQ数据生成;
    基于起始光纤传感IQ数据确定接收点初相位因子ψ r(j),接收点初相位因子ψ r(j)表征为:
    Figure PCTCN2022102915-appb-100003
    其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数;
    基于第二预设规则和接收点初相位因子ψ r(j)对第一处理后数据ω 1(i,j)进行接收点初相位校正操作,获得第二处理后数据ω 2(i,j),第二预设规则表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j)。
  4. 根据权利要求3所述的方法,其特征在于,对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据,包括:
    基于第二处理后数据ω 2(i,j)执行光源线性相位分析操作,获得与预设参考位置对应的光源线性相位参数,光源线性相位参数包括第一相位截距b i和第一梯度k i
    基于第三预设规则和光源线性相位参数对第二处理后数据ω 2(i,j)进行光源线性相位校正操作,获得第三处理后数据ω 3(i,j),第 三预设规则表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。
  5. 根据权利要求4所述的方法,其特征在于,对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据,包括:
    基于第三处理后数据ω 3(i,j)获取与起始时间对应的接收点线性相位参数,接收点线性相位参数包括第二相位截距b j和第二梯度k j
    基于第四预设规则和接收点线性相位参数对第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,获得第四处理后数据ω 4(i,j),第四预设规则表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。
  6. 一种光纤传感数据的全局相位正交解调装置,其特征在于,所述装置包括:
    初始数据获取单元,用于获取初始光纤传感IQ数据;
    光源相位校正单元,用于基于初始光纤传感IQ数据确定对应的直接相位值,对直接相位执行光源相位校正操作,获得第一处理后数据;
    接收点初相位校正单元,用于对第一处理后数据执行接收点初相位校正操作,获得第二处理后数据;
    光源线性相位校正单元,用于对第二处理后数据执行光源线性相位校正操作,获得第三处理后数据;
    接收点线性相位校正单元,用于对第三处理后数据执行接收点线性相位校正操作,获得第四处理后数据;
    处理单元,用于对第四处理后数据执行相位解卷绕处理和去近直流分量处理,获得全局相位解调后数据。
  7. 根据权利要求6所述的装置,其特征在于,所述初始光纤传 感IQ数据从光纤多个传感位置采集获取,所述光源相位校正单元包括:
    参考位置确定模块,用于从光纤多个传感位置中确定预设参考位置j0;
    参考信息获取模块,用于在初始光纤传感IQ数据中获取与预设参考位置对应的直接相位值ω 0,直接相位值ω 0表征为:
    Figure PCTCN2022102915-appb-100004
    Figure PCTCN2022102915-appb-100005
    其中I(i,j)为初始光纤传感IQ数据中的同相信号,Q(i,j)为初始光纤传感IQ数据中的正交信号,i为采样时间,j为采样位置;
    光源相位变化因子确定模块,用于基于直接相位值ω 0确定光源相位变化因子ψ s(i),光源相位变化因子ψ s(i)表征为:
    Figure PCTCN2022102915-appb-100006
    Figure PCTCN2022102915-appb-100007
    其中n1为统计光源相位的样点数;
    光源相位校正模块,用于基于第一预设规则和所述光源相位变化因子ψ s(i)对所述初始光纤传感数据进行光源相位校正操作,获得所述第一处理后数据ω 1(i,j),第一预设规则表征为:ω 1(i,j)=ω 0(i,j)-ψ s(i)。
  8. 根据权利要求7所述的装置,其特征在于,所述接收点初相位校正单元包括:
    起始数据获取模块,用于在第一处理后数据ω 1(i,j)中提取起始光纤传感数据,所述起始光纤传感数据基于在无外界声波影响的起始采样时间所采集的初始光纤传感IQ数据生成;
    接收点初相位因子确定模块,用于基于起始光纤传感IQ数据确定接收点初相位因子ψ r(j),接收点初相位因子ψ r(j)表征为:
    Figure PCTCN2022102915-appb-100008
    其中i0为无外界声波影响的起始采样时间,n2为统计接收点初相位的样点数;
    接收点初相位校正模块,用于基于第二预设规则和接收点初相位因子ψ r(j)对第一处理后数据ω 1(i,j)进行接收点初相位校正操作,获得第二处理后数据ω 2(i,j),第二预设规则表征为:ω 2(i,j)=ω 1(i,j)-ψ r(j)。
  9. 根据权利要求8所述的装置,其特征在于,所述光源线性相位校正单元包括:
    光源线性相位分析模块,用于基于第二处理后数据ω 2(i,j)执行光源线性相位分析操作,获得与预设参考位置对应的光源线性相位参数,光源线性相位参数包括第一相位截距b i和第一梯度k i
    光源线性相位校正模块,用于基于第三预设规则和光源线性相位参数对第二处理后数据ω 2(i,j)进行光源线性相位校正操作,获得第三处理后数据ω 3(i,j),第三预设规则表征为:ω 3(i,j)=ω 2(i,j)-b i-k i*(j-j 0)。
  10. 根据权利要求9所述的装置,其特征在于,所述接收点线性相位校正单元包括:
    接收点线性相位分析模块,用于基于第三处理后数据ω 3(i,j)获取与起始时间对应的接收点线性相位参数,接收点线性相位参数包括第二相位截距b j和第二梯度k j
    接收点线性相位校正模块,用于基于第四预设规则和接收点线性相位参数对第三处理后数据ω 3(i,j)执行接收点线性相位校正操作,获得第四处理后数据ω 4(i,j),第四预设规则表征为:ω 4(i,j)=ω 3(i,j)-b j-k j*(i-i 0)。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征 在于,该程序被处理器执行时实现权利要求1-5中任一项权利要求所述的光纤传感数据的全局相位正交解调方法。
PCT/CN2022/102915 2021-12-30 2022-06-30 光纤传感数据的全局相位正交解调方法及装置 WO2023123970A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22913259.2A EP4343291A1 (en) 2021-12-30 2022-06-30 Global phase quadrature demodulation method and apparatus for optical fiber sensing data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111650237.0 2021-12-30
CN202111650237.0A CN116429235A (zh) 2021-12-30 2021-12-30 光纤传感数据的全局相位正交解调方法及装置

Publications (1)

Publication Number Publication Date
WO2023123970A1 true WO2023123970A1 (zh) 2023-07-06

Family

ID=86997368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102915 WO2023123970A1 (zh) 2021-12-30 2022-06-30 光纤传感数据的全局相位正交解调方法及装置

Country Status (3)

Country Link
EP (1) EP4343291A1 (zh)
CN (1) CN116429235A (zh)
WO (1) WO2023123970A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907627A (zh) * 2023-09-13 2023-10-20 之江实验室 基于光程差辅助的大动态范围分布式相位传感方法和装置
CN116956226A (zh) * 2023-09-19 2023-10-27 之江实验室 一种基于自监督式信号融合的das动态范围提升方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201025712Y (zh) * 2006-10-18 2008-02-20 深圳国人通信有限公司 一种双差分i/q调制装置
CN102549994A (zh) * 2011-11-15 2012-07-04 华为技术有限公司 一种校正同相正交信号的方法和装置
US20170183959A1 (en) * 2014-07-30 2017-06-29 Halliburton Energy Services, Inc. Distributed Sensing Systems nad Methods with I/Q Data Balancing Based on Ellipse Fitting
CN109297581A (zh) * 2018-08-31 2019-02-01 南京大学 一种用于补偿相位敏感光时域反射计中频率漂移的二次相位差分测量方法
US20200408572A1 (en) * 2019-06-28 2020-12-31 Alcatel Submarine Networks Method and apparatus for suppression of noise due to local oscillator instability in a coherent fiber optical sensor
US20200408574A1 (en) * 2019-06-28 2020-12-31 Alcatel Submarine Networks Method and apparatus for suppression of noise due to transmitted signal instability in a coherent fiber optical sensor system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201025712Y (zh) * 2006-10-18 2008-02-20 深圳国人通信有限公司 一种双差分i/q调制装置
CN102549994A (zh) * 2011-11-15 2012-07-04 华为技术有限公司 一种校正同相正交信号的方法和装置
US20170183959A1 (en) * 2014-07-30 2017-06-29 Halliburton Energy Services, Inc. Distributed Sensing Systems nad Methods with I/Q Data Balancing Based on Ellipse Fitting
CN109297581A (zh) * 2018-08-31 2019-02-01 南京大学 一种用于补偿相位敏感光时域反射计中频率漂移的二次相位差分测量方法
US20200408572A1 (en) * 2019-06-28 2020-12-31 Alcatel Submarine Networks Method and apparatus for suppression of noise due to local oscillator instability in a coherent fiber optical sensor
US20200408574A1 (en) * 2019-06-28 2020-12-31 Alcatel Submarine Networks Method and apparatus for suppression of noise due to transmitted signal instability in a coherent fiber optical sensor system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907627A (zh) * 2023-09-13 2023-10-20 之江实验室 基于光程差辅助的大动态范围分布式相位传感方法和装置
CN116907627B (zh) * 2023-09-13 2023-12-19 之江实验室 基于光程差辅助的大动态范围分布式相位传感方法和装置
CN116956226A (zh) * 2023-09-19 2023-10-27 之江实验室 一种基于自监督式信号融合的das动态范围提升方法和设备
CN116956226B (zh) * 2023-09-19 2023-12-22 之江实验室 基于自监督式信号融合的das动态范围提升方法和设备

Also Published As

Publication number Publication date
CN116429235A (zh) 2023-07-14
EP4343291A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2023123970A1 (zh) 光纤传感数据的全局相位正交解调方法及装置
WO2015100544A1 (zh) 基于零偏垂直地震剖面数据估计品质因子的方法和装置
CN103308151A (zh) 一种外差式激光测振装置及方法
AU2022200463A1 (en) Method and device for acquiring motion information
TW202336451A (zh) 使用去雜訊資料的機器學習模型訓練及帶有雜訊校正的模型預測
WO2023123972A1 (zh) 光纤传感数据的相干衰落噪声压制方法及装置
CN110824007B (zh) 一种管桩裂缝检测方法及系统
CN111854920A (zh) 一种基于dvs振动监测信号的预处理方法及系统
CN115901943A (zh) 一种内部空洞的检测方法及系统
CN112630841B (zh) 一种微地震事件检测分析方法
CN109446572B (zh) 一种量子测控数据的处理方法及装置
Zhang et al. First break of the seismic signals in oil exploration based on information theory
CN111399038B (zh) 斜率参数提取方法、装置及计算机可读存储介质
CN101963656A (zh) 一种附加磁场检测方法和装置
JP6956397B2 (ja) 液状化強度比の推定方法
EP4310785A1 (en) Depth calibration method and apparatus for downhole optical fiber
CN112649876A (zh) 建立地震偏移速度模型的方法和装置
CN112415597A (zh) 近地表品质因子确定方法及系统
WO2023123968A1 (zh) 光纤分布式声波传感数据正交解调不平衡校正方法及系统
CN117574245B (zh) 一种应用于山地勘探的智能检波器指标自检方法及系统
CN112485737A (zh) 检波器性能检测方法及系统
Robinson et al. Modelling acoustic signals in the calibration of underwater electroacoustic transducers in reverberant laboratory tanks.
CN117665923A (zh) 一种阵列波形数据对应的慢度的实时确定方法及装置
CN105372074A (zh) 一种发动机非线性阶次分量提取分析方法
JP3755025B2 (ja) 探索型の信号検出装置、信号検出方法、信号検出プログラム及びそのプログラムを記録した記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022913259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022913259

Country of ref document: EP

Effective date: 20231219