WO2023123888A1 - 激光雷达的探测方法以及激光雷达 - Google Patents

激光雷达的探测方法以及激光雷达 Download PDF

Info

Publication number
WO2023123888A1
WO2023123888A1 PCT/CN2022/098786 CN2022098786W WO2023123888A1 WO 2023123888 A1 WO2023123888 A1 WO 2023123888A1 CN 2022098786 W CN2022098786 W CN 2022098786W WO 2023123888 A1 WO2023123888 A1 WO 2023123888A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
corrected
module
correction
Prior art date
Application number
PCT/CN2022/098786
Other languages
English (en)
French (fr)
Inventor
赵申森
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2023123888A1 publication Critical patent/WO2023123888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to laser detection, in particular to a laser radar detection method and the laser radar.
  • Lidar is a commonly used ranging sensor, which has the characteristics of long detection distance, high resolution, and low environmental interference. It is widely used in intelligent robots, drones, unmanned driving and other fields.
  • the working principle of lidar is to use the time it takes for the laser to go back and forth between the radar and the target, or the frequency shift caused by the frequency modulation continuous light going back and forth between the radar and the target to evaluate information such as the distance or speed of the target.
  • the laser radar emits detection light into the three-dimensional space, and the detection light is reflected by the target to be detected to form an echo signal, and the laser radar receives the echo signal to obtain a point cloud image.
  • a laser radar detects by reflecting detection light into a three-dimensional space through a reflective surface of a scanning device.
  • the problem to be solved by the present invention is to provide a laser radar detection method and a laser radar, so as to reduce the influence of the attitude of the reflective surface on the optical path and suppress the occurrence of point cloud shaking.
  • the present invention provides a detection method of laser radar, the laser radar has a scanning module, the scanning module includes: at least one reflective surface; the detection method includes: based on the inclination of the pre-stored surface to be corrected, A plurality of correction detection units is determined, and the surface to be corrected is one of the at least one reflection surface; signal acquisition is performed by the plurality of correction detection units to obtain a point cloud image.
  • the scanning module includes: a plurality of reflective surfaces; the detection method further includes: determining a surface to be corrected before determining a plurality of correction detection units, and the surface to be corrected is one of the multiple reflective surfaces ; Based on the determined surface to be corrected, the inclination angle of the surface to be corrected is obtained; in the step of determining a plurality of correction detection units, based on the obtained inclination angle of the surface to be corrected, the plurality of correction detection units are determined, and the multiple correction detection units are determined.
  • a correction detection unit corresponds to the surface to be corrected.
  • the lidar has a light-emitting module
  • the light-emitting module includes: a plurality of light-emitting units, the plurality of light-emitting units correspond to the plurality of calibration detection units;
  • the step of signal collection includes: causing the light-emitting unit to generate detection light, and the detection light is reflected by an external object of the lidar to form a corresponding echo light; receiving the echo light by a corresponding correction detection unit to realize signal acquisition.
  • it also includes: after determining the multiple calibration detection units, based on the inclination angle of the surface to be corrected, combined with the multiple calibration detection units, determining multiple calibration light emitting units, the multiple calibration light emitting units and The plurality of correction detection units correspond to each other; the step of collecting signals through the plurality of correction detection units includes: causing the plurality of correction light-emitting units to generate detection light, and the detection light is reflected by an external object of the laser radar to form Corresponding echo light; the echo light is received by the corresponding calibration detection unit to realize signal acquisition.
  • each of the correction light emitting units includes a plurality of emitters.
  • the emitters are independently addressable and independently controllable lasers.
  • each calibration detection unit includes a plurality of detectors.
  • the detectors are independently addressable and independently controllable detectors.
  • the reflective surface rotates around a rotation axis.
  • the scanning module includes: a rotating mirror, and the reflecting surface is a mirror surface of the rotating mirror.
  • the lidar has a light-emitting module to generate detection light; the detection light is emitted after being reflected by the surface to be corrected; the emitted detection light is reflected by objects external to the radar to form echo light; The surface to be corrected is reflected to the plurality of corrected detection units.
  • the inclination of the surface to be corrected includes: a vertical inclination and a horizontal inclination; in the step of determining a plurality of calibration detection units, a plurality of calibration detection units is determined based on the vertical inclination and the horizontal inclination.
  • the present invention also provides a laser radar, including: a scanning module, which includes: at least one reflective surface; and a processing device, which is suitable for implementing the detection method of the present invention.
  • the present invention also provides a laser radar, including: a scanning module, the scanning module includes: at least one reflective surface; a correction module, the inclination angle of the surface to be corrected is pre-stored in the correction module, and the correction module is suitable for based on the Describe the inclination angle of the surface to be corrected, determine a plurality of correction detection units, the surface to be corrected is one of the at least one reflective surface; an acquisition module, the acquisition module is suitable for signal acquisition through the plurality of correction detection units to obtain a point cloud image.
  • a scanning module includes: at least one reflective surface
  • a correction module the inclination angle of the surface to be corrected is pre-stored in the correction module, and the correction module is suitable for based on the Describe the inclination angle of the surface to be corrected, determine a plurality of correction detection units, the surface to be corrected is one of the at least one reflective surface
  • an acquisition module the acquisition module is suitable for signal acquisition through the plurality of correction detection units to obtain a point cloud image.
  • the scanning module includes: a plurality of reflective surfaces; the lidar further includes: a selection module, the selection module is suitable for determining a surface to be corrected, and the surface to be corrected is one of the multiple reflective surfaces
  • the correction module obtains the inclination angle of the surface to be corrected based on the surface to be corrected determined by the selection module, and the correction module determines the plurality of correction detections based on the obtained inclination angle of the surface to be corrected unit, the multiple calibration detection units correspond to the surface to be corrected.
  • the lidar has a light-emitting module
  • the light-emitting module includes: a plurality of light-emitting units corresponding to the plurality of calibration detection units
  • the acquisition module includes: a detection control unit , the detection control unit is adapted to control the light-emitting unit to generate detection light, and the detection light is reflected by an external object of the laser radar to form a corresponding echo light
  • the receiving control unit is suitable for controlling the corresponding
  • the correction detection unit receives the echo light to realize signal acquisition.
  • the correction module is also adapted to determine a plurality of correction light-emitting units based on the inclination of the surface to be corrected in conjunction with the plurality of correction detection units, and the plurality of correction light-emitting units and the plurality of correction detection units One-to-one correspondence between units;
  • the acquisition module includes: a detection control unit, which is suitable for controlling the plurality of correction light-emitting units to generate detection light, and the detection light is reflected by an external object of the laser radar to form a corresponding echo light; a receiving control unit The receiving control unit is adapted to control the corresponding calibration detection unit to receive the echo light to realize signal acquisition.
  • each of the correction light emitting units includes a plurality of emitters.
  • the emitters are independently addressable and independently controllable lasers.
  • the transmitter includes: a vertical cavity surface emitting laser.
  • each calibration detection unit includes a plurality of detectors.
  • the detectors are independently addressable and independently controllable detectors.
  • the detector includes: a single photon avalanche diode.
  • the reflective surface rotates around a rotation axis.
  • the scanning module includes: a rotating mirror, and the reflecting surface is a mirror surface of the rotating mirror.
  • the lidar has a light-emitting module to generate detection light; the detection light is emitted after being reflected by the surface to be corrected; the emitted detection light is reflected by objects external to the radar to form echo light; The surface to be corrected is reflected to the plurality of corrected detection units.
  • the inclination of the surface to be corrected includes: a vertical inclination and a horizontal inclination; the calibration module determines a plurality of calibration detection units based on the vertical inclination and the horizontal inclination.
  • a plurality of correction detection units are determined to compensate the inclination angle of the reflection surface; signal acquisition is performed by the plurality of correction detection units to obtain a point cloud image.
  • the determination of the corrected detection unit can compensate the inclination angle of the surface to be corrected, so as to ensure that the determined detection unit corresponds to a fixed field of view direction , especially when the scanning module includes a plurality of reflective surfaces, according to the respective inclination angles of the plurality of reflective surfaces, different correction detection units are determined, so as to ensure that each reflection surface is consistent with the fixed detection unit according to the determined correction detection unit Corresponds to the direction of the field of view, so the occurrence of point cloud jitter can be suppressed between multiple reflective surfaces.
  • a plurality of calibration light-emitting units is determined, and the calibration light-emitting unit and the The correction detection unit is used for signal acquisition.
  • the determination of the plurality of corrected light-emitting units can make the receiving field of view of the corrected detection unit correspond to the center of the spot of the received echo light, so as to improve detection efficiency and ensure long distance.
  • Fig. 1 is a structural schematic diagram of a laser radar
  • Fig. 2 is a schematic diagram of the scanning field of view after the laser radar shown in Fig. 1 is installed on the vehicle;
  • Fig. 3 is a schematic diagram of point cloud jittering along the vertical direction caused by the lidar relay mirror shown in Fig. 1;
  • Fig. 4 is a schematic diagram of point cloud shaking along the horizontal direction caused by the lidar relay mirror shown in Fig. 1;
  • Fig. 5 is a schematic diagram of the optical path of the change of the receiving field of view caused by the lidar relay mirror shown in Fig. 1;
  • Fig. 6 is a structural schematic diagram of the receiving array of the detection module of the lidar shown in Fig. 1;
  • FIG. 7 is a schematic structural diagram of an embodiment of the laser radar of the present invention.
  • Fig. 8 is a schematic structural diagram of the light emitting module, the receiving module and the processing device of the lidar embodiment shown in Fig. 7;
  • Fig. 9 is a schematic structural diagram of the emitting array of the light-emitting module of the lidar embodiment shown in Fig. 7;
  • Fig. 10 is a schematic structural diagram of the receiving array of the detection module of the lidar embodiment shown in Fig. 7;
  • Fig. 11 is a schematic flowchart of a detection method implemented by the processing device in the lidar embodiment shown in Fig. 8;
  • Fig. 12 is a schematic diagram of the inclination angle of the reflective surface of the scanning module in the lidar embodiment shown in Fig. 7;
  • FIG. 13 is a schematic diagram of the inclination angle of the reflection surface of the scanning module in another embodiment of the laser radar of the present invention.
  • Fig. 14 is a schematic diagram of the optical path in the vertical field of view of the detection method implemented by the processing device in the lidar embodiment shown in Fig. 8;
  • Fig. 15 is a schematic diagram of the optical path in the horizontal field of view of the detection method implemented by the processing device in the lidar embodiment shown in Fig. 8;
  • Fig. 16 is a structural schematic diagram of the correction light-emitting unit and the correction detection unit when the detection method implemented by the processing device in the embodiment of the lidar shown in Fig. 8 is used for signal acquisition;
  • Fig. 17 is a schematic structural diagram of the light-emitting unit and the correction detection unit during signal acquisition in another embodiment of the laser radar of the present invention.
  • Fig. 18 is a functional block diagram of the processing device in another embodiment of the lidar of the present invention.
  • the laser radar in the prior art has the problem that the reflective surface of the scanning module affects the accuracy and stability of the optical path. Combining with a laser radar structure, the influence of the reflective surface of the scanning module on the optical path is analyzed.
  • FIG. 1 a schematic structural diagram of a laser radar is shown.
  • the lidar includes: a light emitting module, a scanning module and a detecting module, wherein the scanning module includes a rotating mirror.
  • the detection light generated by the light-emitting module 11 is projected onto the emission optical module Tx, and the detection light transmitted by the emission optical module Tx is reflected by the reflection surface 12r in the scanning module 12 and then emitted.
  • the outgoing probe light is reflected by the external target to form echo light.
  • the echo light is received and reflected by the reflective surface 12r in the scanning module 12 and projected to the receiving optical module Rx, and then projected to the detection module 13 after being transmitted by the receiving optical module Rx.
  • the reflective surface 12r in the scanning module 12 rotates to realize the scanning of the detection light, that is, in the laser radar as shown in FIG. .
  • the range of the horizontal field of view of the vertical axis of rotation is determined by the rotating mirror, and the range of the vertical field of view perpendicular to the horizontal field of view is determined by the distribution of lasers/detectors in the detection module 13 in the lidar and the attitude of the reflecting surface 12r in the rotating mirror (for example, the pitch angle of the reflective surface 12r) are jointly determined.
  • the attitude control accuracy of the reflective surface 12r is relatively low, and the ideal attitude of the reflective surface 12r in the design of the optical path will deviate from the ideal attitude of the reflective surface 12r.
  • the existence of the inclination angle of the reflective surface 12r will reduce the accuracy of the optical path of the laser radar, thereby affecting the stability of the optical path.
  • FIG. 2 a schematic diagram of the installation of the laser radar shown in FIG. 1 , that is, the scanning field of view, is shown.
  • the attitude control accuracy of the reflective surfaces 12r is low, and it is difficult to maintain the consistency of attitude among the multiple reflective surfaces 12r, which will make the field of view corresponding to the multiple reflective surfaces 12r Inconsistency, resulting in the inconsistency of the angles of each line of the lidar among the multiple reflective surfaces 12r, and the problem of point cloud jitter.
  • Figure 3 shows the jitter of the point cloud along the vertical direction caused by the LiDAR relay mirror shown in Figure 1
  • Figure 4 shows the point cloud caused by the LiDAR relay mirror shown in Figure 1 The jitter of clouds in the horizontal direction.
  • FIG. 5 shows a schematic diagram of an optical path in which the LiDAR relay mirror shown in FIG. 1 causes a change in the receiving field of view.
  • Fig. 5 shows a schematic diagram of the optical path in the vertical field of view.
  • the ideal posture 12id of the reflective surface 12r should be parallel to the rotation axis (that is, there is no inclination angle or the inclination angle is 0°), while the actual posture 12re of the reflection surface 12r is ⁇ ° with the rotation axis (that is, the inclination angle is 0°). is ⁇ °).
  • the detection module 13 of the lidar includes a plurality of detection units 13a, and the detection unit 13a includes a plurality of detectors 13b.
  • the detector 13b may be a single photon avalanche diode (SPAD).
  • the echo light received by the i-th detection unit 13i is the echo light 51id in the field of view direction of the i-th channel (the optical path shown by the dotted line 51id in FIG. 5) ; but when the reflective surface 12r was in the actual attitude 12re, the echo light received by the i detection unit was originally (that is, when 12r was in the ideal attitude 12id) the echo light 51re in other directions of the field of view (as shown by the solid line in Figure 5 51re), so the same detection unit corresponds to different fields of view when the reflective surface 12r is in different attitudes, that is, there is detection angle fluctuation between the reflective surfaces with different attitudes.
  • the included angle between the actual posture 12re of the reflective surface 12r and the ideal posture 12id is ⁇ °, that is, when the inclination angle is ⁇ °, in the vertical field of view, the deflection angle of the echo light is 2* ⁇ °, for example,
  • the angle between the actual posture 12re and the ideal posture 12id of the reflector is 0.1°
  • the vertical field angle of the echo light received by the same detection unit is shifted by 0.2°, that is, the direction of the field of view changes by 2* ⁇ °, that is, the return light
  • the included angle between the wave light 51id and the echo light 51re is 2* ⁇ °.
  • the inclination angle of the reflective surface 12r in the scanning device is actively adjusted, so that the inclination angles of the multiple reflective surfaces 12r have the highest consistency.
  • FIG. 1 for the laser radar with double-sided rotating mirror, the inclination angles of the two reflecting surfaces 12r of the double-sided rotating mirror are the same by adjusting the direction of the rotating axis of the double-sided rotating mirror.
  • the lidar assembly is completed, the inclination angles of multiple rotating mirrors are measured by measurement and calibration, and compensated to the angle information of the received echo light as a calibration calibration amount, thereby obtaining a correct point cloud image.
  • the existence of the inclination angle is output
  • the point cloud of is shown in Figure 3 and Figure 4.
  • the present invention provides a detection method of laser radar, the laser radar has a scanning module, the scanning module includes: at least one reflective surface; the detection method includes: based on the pre-stored surface to be corrected The inclination angle is to determine a plurality of correction detection units, and the surface to be corrected is one of the at least one reflective surface; signal acquisition is performed by the plurality of correction detection units to obtain a point cloud image.
  • the determination of the correction detection units can compensate the inclination of the surface to be corrected, so as to ensure that the determined correction detection units are consistent with Corresponding to the fixed field of view direction, especially when the scanning module includes multiple reflective surfaces, according to the respective inclination angles of the multiple reflective surfaces, different correction detection units are determined to ensure that each reflective surface is determined according to the The corrected detection units correspond to the fixed field of view direction, so the occurrence of point cloud shaking can be suppressed between multiple reflective surfaces.
  • FIG. 7 shows a schematic structural diagram of an embodiment of the lidar of the present invention.
  • the lidar includes: a light emitting module 110 , a scanning module 120 and a detecting module 130 .
  • the light emitting module 110 is suitable for generating detection light 111e.
  • the detection light 111e generated by the light emitting module 110 is projected onto the emission optical module Tx, and the detection light transmitted by the emission optical module Tx is projected to the scanning module 120 .
  • the light emitting module 110 of the lidar includes: a plurality of emitters 111i.
  • the transmitter 111i is an independently addressable and independently controlled laser (as shown in circle 101 in FIG. 9 ).
  • the multiple transmitters 111i are arranged in an array to form a transmitting array. Different transmitters 111 are selected by applying different voltages to the connection lines of A1-A3 and P1-P6, so as to realize independent addressing and independent control of the transmitters 111i.
  • the transmitter 111i includes: a vertical cavity surface emitting laser (VCSEL).
  • the scanning module 120 is adapted to change the outgoing angle of the detection light 111e.
  • the scanning module 120 includes at least one reflective surface 120r, and the reflective surface 120r reflects the detection light 111e, so that the detection light 111e is emitted to the outer space of the lidar.
  • the scanning module 120 has a rotating shaft 120i; the reflecting surface 120r rotates around the rotating shaft 120i, that is, the at least one reflecting surface 120r rotates around the rotating shaft 120i.
  • the scanning module 120 includes: a rotating mirror, the reflecting surface 120r is the mirror surface of the rotating mirror; the rotating axis of the rotating mirror is the rotating axis 120i.
  • the rotating mirror is a double-sided rotating mirror, that is, the scanning module 120 includes two reflecting surfaces 120r, and the two reflecting surfaces 120r rotate around the rotating axis 120i.
  • the outgoing detection light 112 is emitted to the outer space of the lidar, and is reflected by the target to be measured to form an echo light 131 .
  • the echo light 131 is received and reflected by the same reflective surface 120 r in the scanning module 120 , and projected to the receiving optical module Rx, and then projected to the detection module 130 after being transmitted by the receiving optical module Rx.
  • the detection module 130 of the lidar is suitable for receiving the echo light 122 transmitted by the receiving optical module Rx to realize detection.
  • the detection module 130 includes a plurality of detectors 131i.
  • the detector 131i is an independently addressable and independently controlled detector (as shown in circle 101 in FIG. 10 ).
  • the plurality of detectors 131i are arranged in an array to form a receiving array.
  • Each of the detectors 131i can be individually powered on and independently drawn out, and a single detector signal can be read by only powering on or reading only the detectors on a specific address line.
  • the detector 131i includes a single photon avalanche diode.
  • the circle 101 in FIG. 11 is a unit of the detector 131i, including a single photon avalanche diode 101a and a quenching resistor 101b.
  • the light-emitting module 110 includes a plurality of light-emitting units 111, and each light-emitting unit 111 includes a plurality of emitters 111i; the detection module 130 includes a plurality of detection units 131 , each of the detection units 131 includes a plurality of the detectors 131i.
  • the plurality of light emitting units 111 correspond to the plurality of detection units 131 one by one, that is, the emission field of view of the light emitting unit 111 in the far field and the receiving field of view of the corresponding detection unit 131 in the far field
  • the field of view is the same to form a physical channel, that is, at the far-field position, the field of view of the light emitting unit 111 and the corresponding detection unit 131 are the same, so the detection light emitted by the light emitting unit 111 is reflected to form echo light Received by the corresponding detection unit 131, that is, each physical channel has a certain channel field of view direction, for example, the vertical field of view direction is 40°.
  • the configuration of the light emitting unit 111 as a plurality of emitters is only an example.
  • the light emitting unit 111 may also be an independent laser, such as an edge emitting laser (EEL).
  • EEL edge emitting laser
  • the lidar further includes: a processing device 140 adapted to implement the detection method of the present invention to compensate the inclination of the reflective surface in the scanning module.
  • FIG. 11 shows a schematic flowchart of the detection method implemented by the processing device in the lidar embodiment shown in FIG. 8 .
  • the detection method includes: performing step S110, determining a plurality of correction detection units based on the prestored inclination angle of the surface to be corrected, and the surface to be corrected is one of the at least one reflecting surface; performing step S120, through the multiple A calibration detection unit is used for signal acquisition to obtain a point cloud image.
  • the determination of the correction detection units can compensate the inclination of the surface to be corrected, so as to ensure that the determined correction detection units are consistent with the fixed field of view direction.
  • different correction detection units are determined according to the respective inclination angles of the plurality of reflection surfaces, so as to ensure that each reflection surface is compatible with the determined correction detection units.
  • the fixed field of view corresponds to the direction, so the occurrence of point cloud shaking can be suppressed between multiple reflective surfaces.
  • step S110 is first performed to determine a plurality of calibration detection units based on the prestored inclination of the surface to be corrected, the surface to be corrected being the at least one reflective surface 120r (as shown in FIG. 8 ) one of the.
  • the step of determining the correction detection unit is suitable for using the position of the correction detection unit to compensate the inclination angle of the surface to be corrected.
  • the scanning module 120 includes a plurality of reflective surfaces 120r. Therefore, as shown in FIG. , execute step S131, determine the surface to be corrected, the surface to be corrected is one of the plurality of reflective surfaces.
  • the scanning device 120 includes a rotating mirror, the rotating mirror is an n-surface rotating mirror, and the reflecting surface is a mirror surface of the rotating mirror, that is, the scanning device 120 includes n reflecting surfaces. Therefore, step S131 is executed, and in the step of determining the surface to be corrected, the surface to be corrected is one of the n mirror surfaces of the n-surface rotating mirror.
  • the scanning module 120 includes two reflective surfaces 120r, and the surface to be corrected is one of the two mirror surfaces of the two-sided rotating mirror.
  • step S132 is executed to obtain an inclination angle of the surface to be corrected based on the determined surface to be corrected.
  • the inclination angle of the at least one reflective surface is prestored in the lidar.
  • the laser radar pre-stores the inclination angles of the multiple reflective surfaces, and the inclination angles of the multiple reflective surfaces correspond to the multiple reflective surfaces one by one.
  • the inclination angle of the surface to be corrected refers to the angle between the actual posture and the ideal posture of the surface to be corrected.
  • the ideal posture of the surface to be corrected is the posture of the reflecting surface in the design requirements of the scanning module 120; the actual posture of the surface to be corrected is, after the scanning module 120 is produced and transferred, the facial posture.
  • the scanning module 120 includes two reflective surfaces.
  • the ideal postures 121 of the two reflecting surfaces of the scanning module 120 are parallel to each other and parallel to the rotation axis 120i (as shown by the dotted line in FIG. 12 );
  • the actual posture 122 of the reflective surface deviates from the ideal posture 121 (shown by the solid line in FIG. 12 ).
  • the scanning device 230 includes three reflecting surfaces.
  • the ideal posture 231 of the three reflecting surfaces of the scanning module 230 constitutes a triangular prism with an equilateral triangle in cross section, and the rotating shaft 220i is located at the line connecting the ground center of the triangular prism; actual production and assembly After completion, the actual position 232 of one reflective surface deviates from the ideal position 121 (as shown in FIG. 13 ).
  • FIG. 12 and FIG. 13 only one reflective surface among the multiple reflective surfaces of the scanning device deviates from its ideal position.
  • the present invention does not limit the number of reflective surfaces that deviate from the ideal position.
  • multiple reflective surfaces may deviate from their ideal positions.
  • the inclination of the surface to be corrected includes: a vertical inclination ⁇ and a horizontal inclination ⁇ .
  • the vertical inclination angle ⁇ of the surface to be corrected that is, the pitch angle, refers to the angle between the actual posture of the reflecting surface and the ideal posture projected in the plane passing through the rotating shaft;
  • the horizontal angle of the surface to be corrected refers to the angle projected by the angle between the actual posture and the ideal posture of the reflective surface in a plane perpendicular to the rotation axis.
  • each set of inclination angles includes a vertical inclination angle ⁇ and a horizontal inclination angle ⁇ corresponding to the same reflective surface in the scanning module 120, that is to say, there are n sets of inclination angles pre-stored in the lidar.
  • At least one set of inclination angles pre-stored in the lidar can be obtained during the calibration process of the lidar, that is, in some embodiments of the present invention, the calibration process of the lidar includes: measuring the The inclination angle of at least one reflective surface in the scanning module 120 is described above.
  • step S132 is executed, and in the step of obtaining the inclination angle of the surface to be corrected based on the determined surface to be corrected, the inclination angle of the surface to be corrected is determined based on the reflective surface as the surface to be corrected.
  • the surface to be corrected is the ith reflective surface of the scanning module 120, that is, the i mirror surfaces of the n-surface rotating mirror (i is an integer greater than or equal to 1 and less than or equal to n), and the inclination angle is The inclination angle of group i, ( ⁇ i , ⁇ i ).
  • step S110 is executed to determine a plurality of correcting detection units 131 .
  • the scanning module includes a plurality of reflective surfaces, and the surface to be corrected is one of the plurality of reflective surfaces; therefore step S110 is executed, and in the step of determining a plurality of calibration detection units, based on the The obtained inclination angle of the surface to be corrected is used to determine the plurality of correction detection units, and the plurality of correction detection units correspond to the determined surface to be corrected.
  • the detection module 130 of the lidar includes a plurality of detectors 131i; therefore, each of the calibration detection units includes a plurality of detectors 131i.
  • the detectors 131i are individually addressable and readable, and the photosensitive area corresponding to the channel is changed by electronic control.
  • Adjusting the received photosensitive region makes the photosensitive region offset to compensate the inclination angle of the corresponding surface to be corrected, so that each corresponding correction detection unit receives the echo light in the direction of the field of view of the fixed channel, such as the first The field of view direction of the i channel corresponds to the vertical field of view direction of 40°
  • the readout data of the first calibration detection unit is used when the surface 1 to be corrected is at the first inclination angle
  • the readout data of the second calibration detection unit is used when the surface 2 to be corrected is at the second inclination angle Read out the data to ensure that the two calibration detection units correspond to the vertical field of view direction of 40°, so that the radar receiving field of view is stable at a specific angle, and the detection angle between multiple reflecting
  • the inclination angle of the surface to be corrected includes: vertical inclination angle ⁇ and horizontal inclination angle ⁇ ; execute step S110, in the step of determining a plurality of correction detection units, based on the vertical inclination angle ⁇ and the horizontal inclination angle ⁇ , to determine a number of correction detection units.
  • FIG. 14 shows a schematic diagram of the optical path in the vertical field of view of the detection method implemented by the processing device in the lidar embodiment shown in FIG. 8 .
  • the surface to be corrected 120r i Since both the detection light emission and the echo light reception are reflected by the surface to be corrected 120r i , and the surface to be corrected 120r i has an inclination angle, that is, between the ideal posture 120id i and the actual posture 120re i of the surface to be corrected 120r i There is an included angle ⁇ i .
  • the echo light in the field of view direction of channel b (the solid arrow R b and the dotted arrow R b ' in the figure, where the solid arrow R b and the dotted arrow R b ' are parallel to each other, and R b indicates that the projection is in the actual posture 120re i
  • FIG. 14 shows a schematic optical path in the vertical field of view.
  • the detection module 130 is located at the focal plane of the receiving optical assembly Rx. Therefore, without compensation, the ordinate of the center position of the bth ideal detection unit 131id b is y b , where b is the channel number, and the vertical viewing angle of the bth channel field of view corresponding to the bth ideal detection unit 131id b is ⁇ b , that is, the vertical field angle of the echo light received by the b-th detection unit corresponding to the detection light output is:
  • f is the focal length of the receiving optical assembly Rx.
  • the laser radar pre-stores n groups of inclination angles corresponding to the n reflective surfaces in the scanning module 120 one by one, and the vertical inclination angles of the n reflective surfaces are respectively ⁇ 1 , ⁇ 2 , . . . , ⁇ n .
  • the vertical inclination angle corresponding to the surface to be corrected 120r i is ⁇ i .
  • Both the detection light output and the echo light reception are reflected by the surface to be corrected 120r i , so the reflected light formed by the echo light R b in the field of view direction of the b-th channel is reflected by the surface 120r i to be corrected, and the reflected light is shifted in the vertical direction
  • step S110 is executed, based on the obtained inclination angle of the surface to be corrected, in the step of determining the plurality of calibration detection units, the determined b-th calibration detection unit 130ch b is vertical to the center position of the b-th detection unit The difference between the coordinates is ⁇ y. Moreover, the direction in which the center position of the b-th detection unit points to the center position of the b-th detection unit is opposite to the direction in which the position of the reflection point of the surface to be corrected 120r i shifts.
  • FIG. 15 shows a schematic diagram of the optical path in the horizontal field of view of the detection method implemented by the processing device in the lidar embodiment shown in FIG. 8 .
  • the compensation principle in the horizontal field of view is similar to that in the vertical field of view.
  • FIG. 15 shows a schematic optical path in the horizontal field of view.
  • the abscissa of the center position of the bth ideal detection unit 131id b is x b , where b is the channel number, and the horizontal viewing angle of the bth channel field of view corresponding to the bth ideal detection unit 131id b is ⁇ b , that is, the horizontal field angle of the echo light received by the b-th detection unit corresponding to the output of the detection light is:
  • f is the focal length of the receiving optical assembly Rx.
  • the laser radar pre-stores n groups of inclination angles corresponding to the n reflective surfaces in the scanning module 120 one by one, and the horizontal inclination angles of the n reflective surfaces are ⁇ 1 , ⁇ 2 , . . . , ⁇ n respectively.
  • the horizontal inclination angle corresponding to the surface to be corrected 120r i is ⁇ i .
  • step S110 is executed, and in the step of determining the plurality of calibration detection units based on the obtained inclination angle of the surface to be corrected, the determined b-th calibration detection unit 130ch b is transverse to the center position of the b-th detection unit.
  • the difference between the coordinates is ⁇ x.
  • the direction in which the center position of the b-th detection unit points to the center position of the b-th detection unit is opposite to the direction in which the position of the reflection point of the surface to be corrected 120r i shifts.
  • the determination of the correction detection unit can compensate the inclination angle of the surface to be corrected, so as to ensure that the determined correction detection unit corresponds to a fixed field of view direction, especially when the scanning module includes multiple reflective surfaces, According to the respective inclination angles of the plurality of reflective surfaces, different correction detection units are determined to ensure that each reflective surface corresponds to a fixed field of view direction according to the determined correction detection units, so that points can be suppressed between multiple reflective surfaces. Occurrence of cloud jitter phenomenon.
  • the ideal detection unit such as the bth ideal detection unit 131id b in Fig. 14 and Fig. 15, is the detection unit without compensation, that is, the detection unit determined by calibration of the laser radar in Fig. 8 Unit 131, the ideal detection unit includes a plurality of the detectors, and the plurality of detectors in the ideal detection unit are at least partially different from the plurality of detectors in the corrected detection unit.
  • the detection module 130 includes a plurality of independently powered and independently drawn detectors 131i, so by only powering on or reading the The signal of the detector is used to change the receiving area of the receiving array, thereby achieving the purpose of maintaining a stable field of view.
  • the light-emitting module 110 of the lidar includes a plurality of independently addressable and independently controlled lasers. Therefore, the detection method further includes: performing step S110, after determining the multiple calibration detection units, performing step S140, based on the inclination angle of the surface to be corrected, and combining the multiple calibration detection units, determining multiple calibration light emitting units , the plurality of calibration light emitting units corresponds to the plurality of calibration detection units one by one.
  • the one-to-one correspondence between the plurality of calibration light emitting units and the plurality of calibration detection units means that the field angles of the calibration light emitting units and the corresponding calibration detection units in the far field are the same, that is, in the far field, the correction
  • the emission field angle of the light emitting unit is the same as the reception field angle of the corresponding correction detection unit.
  • different voltages are applied to the connecting wires of the emitting array to select different emitters to emit light.
  • the transmitting module 110 of the lidar includes a plurality of emitters; therefore, each of the correction light emitting units includes a plurality of emitters.
  • the receiving field angle of the correction detection unit is the same as the emission field angle of the correction light-emitting unit, so as to ensure the distance measuring capability and detection efficiency of the lidar.
  • the detection method further includes: executing step S120 , performing signal acquisition through the plurality of corrected detection units to obtain a point cloud image.
  • step S120 is executed, and the step of acquiring a point cloud image through the multiple calibration detection units 131 includes: first, causing the multiple calibration light emitting units 111' to generate detection light, the The detection light is reflected by an external object of the lidar to form a corresponding echo light; the echo light is received by the corresponding correction detection unit 131 to realize signal acquisition.
  • the detection light is emitted after being reflected by the surface to be corrected, and the emitted detection light is reflected by objects outside the radar to form echo light; the echo light is reflected by the surface to be corrected to the plurality of correction detection units .
  • the surface to be corrected is one of multiple reflective surfaces of the scanning device.
  • the correction detection unit 131 is determined before signal acquisition, and the correction detection unit 131 is determined based on the inclination angle of the surface to be corrected, that is, the position of the correction detection unit 131 has been adjusted to compensate
  • the deflection caused by the frontal inclination achieves the effect of maintaining a stable field of view.
  • FIG. 16 shows a schematic diagram of the correction light emitting unit 111 ′ and the correction detection unit 131 in the embodiment of the lidar shown in FIG. 8 when signal acquisition is implemented.
  • the determination of the corrected light-emitting unit 111' is based on the inclination angle of the surface to be corrected and the corrected detection unit 131, so when the signal is sent and received, the light spot on the receiving array is still located at the center of the corrected detection unit 131, that is,
  • the correction detection unit can obtain all the energy of the echo spot corresponding to the field of view direction of the channel (the circle in the figure represents the spot), so as to improve the detection efficiency and ranging capability.
  • the lidar has a light emitting module
  • the light emitting module 210 includes: a plurality of light emitting units 211, and There is a one-to-one correspondence between each of the correction detection units 231; step S120 is executed, and the step of signal acquisition through the plurality of correction detection units 231 includes: causing the light-emitting unit 211 to generate detection light, which is reflected by an external object of the lidar The corresponding echo light is formed; the echo light is received by the corresponding correction detection unit 231 to realize signal acquisition.
  • the present invention also provides a laser radar.
  • FIG. 7 shows a schematic structural diagram of an embodiment of the lidar of the present invention.
  • the lidar includes: a light emitting module 110 and a detection module 130 .
  • the light emitting module 110 is suitable for generating detection light 111e.
  • the detection light 111e generated by the light emitting module 110 is projected onto the emission optical module Tx, and the detection light transmitted by the emission optical module Tx is projected to the scanning module 120 .
  • the light emitting module 110 of the lidar includes: a plurality of emitters 111i.
  • the transmitter 111i is an independently addressable and independently controlled laser (as shown in circle 101 in FIG. 9 ).
  • the multiple transmitters 111 are arranged in an array to form a transmitting array. Different transmitters 111 are selected by applying different voltages to the connection lines of A1-A3 and P1-P6, so as to realize independent addressing and independent control of the transmitters 111i.
  • the transmitter 111i includes: a vertical cavity surface emitting laser (VCSEL).
  • the detection module 130 is suitable for receiving the echo light 122 transmitted by the receiving optical module Rx to realize detection.
  • the detection module 130 includes a plurality of detectors 131i.
  • the detector 131i is an independently addressable and independently controlled detector (as shown in circle 101 in FIG. 10 ).
  • the plurality of detectors 131i are arranged in an array to form a receiving array.
  • Each of the detectors 131i can be individually powered on and independently drawn out, and a single detector signal can be read by only powering on or reading only the detectors on a specific address line.
  • the detector 131i includes a single photon avalanche diode.
  • the circle 101 in FIG. 11 is a unit of the detector 131i, including a single photon avalanche diode 101a and a quenching resistor 101b.
  • the light-emitting module 110 includes a plurality of light-emitting units, each of which includes a plurality of emitters 111i; the detection module 130 includes a plurality of detection units, and each of the detection units includes a plurality of one of the detectors 131i.
  • the multiple light emitting units correspond to the multiple light emitting units one by one, that is, the emitting field of view of the light emitting unit in the far field is the same as the receiving field of view of the corresponding detection unit in the far field.
  • a physical channel is formed, that is, at the far-field position, the field of view of the light-emitting unit and the corresponding detection unit are the same, so the echo light formed by reflection of the detection light emitted by the light-emitting unit is received by the corresponding receiving unit , that is, each physical channel has a certain channel field of view direction.
  • the configuration of the light emitting unit as a plurality of emitters is only an example.
  • the light emitting unit may also be an independent laser, such as an edge emitting laser (EEL).
  • EEL edge emitting laser
  • the lidar further includes: a scanning module 120 .
  • the scanning module 120 is adapted to change the outgoing angle of the detection light 111e.
  • the scanning module 120 includes at least one reflective surface 120r, and the reflective surface 120r reflects the detection light 111e, so that the detection light 111e is emitted to the outer space of the lidar.
  • the scanning module 120 has a rotating shaft 120i; the reflecting surface 120r rotates around the rotating shaft 120i, that is, the at least one reflecting surface 120r rotates around the rotating shaft 120i.
  • the scanning module 120 includes: a rotating mirror, the reflecting surface 120r is the mirror surface of the rotating mirror; the rotating axis of the rotating mirror is the rotating axis 120i.
  • the rotating mirror is a double-sided rotating mirror, that is, the scanning module 120 includes two reflecting surfaces 120r, and the two reflecting surfaces 120r rotate around the rotating axis 120i.
  • the outgoing detection light 112 is emitted to the outer space of the lidar, and is reflected by the target to be measured to form an echo light 131 .
  • the echo light 131 is received and reflected by the same reflective surface 120 r in the scanning module 120 , and projected to the receiving optical module Rx, and then projected to the detection module 130 after being transmitted by the receiving optical module Rx.
  • the lidar further includes: a processing device 140, the processing device 140 is connected to both the light emitting module 110 and the detection module 130, and the processing device 140 is suitable for controlling the light emitting module 110 and the detection module 130.
  • the detection module 130 performs signal acquisition to obtain a point cloud image.
  • FIG. 18 a functional block diagram of the processing device in the lidar embodiment shown in FIG. 8 is shown.
  • the processing device 140 includes: a correction module 141, the inclination angle of the surface to be corrected is pre-stored in the correction module 141, and the correction module 141 is suitable for determining a plurality of correction detection units based on the inclination angle of the surface to be corrected, and the inclination angle of the surface to be corrected is determined.
  • the correction surface is one of the at least one reflective surface; the collection module 142 is adapted to perform signal collection through the plurality of correction detection units to obtain a point cloud image.
  • the correction module 141 is suitable for compensating the inclination angle of the surface to be corrected by using the position of the correction detection unit.
  • the scanning module 120 includes a plurality of reflective surfaces 120r, so as shown in FIG. 18, the processing device 140 further includes: a selection module 143, and the selection module 143 is suitable for For determining the surface to be corrected, the surface to be corrected is one of the plurality of reflective surfaces.
  • the scanning device 120 includes a rotating mirror, the rotating mirror is an n-surface rotating mirror, and the reflecting surface is a mirror surface of the rotating mirror, that is, the scanning device 120 includes n reflecting surfaces.
  • the selection module 143 selects one of the n mirror surfaces of the n-surface rotating mirror as the surface to be corrected, that is, the surface to be corrected is one of the n mirror surfaces of the n-surface rotating mirror.
  • the scanning module 120 includes two reflective surfaces 120r, and the selection module 143 selects one of the two mirror surfaces of the two-sided rotating mirror as the surface to be corrected, that is, the surface to be corrected.
  • the correction surface is one of the two mirror surfaces of the two-sided rotating mirror.
  • the correction module 141 obtains the inclination angle of the surface to be corrected based on the surface to be corrected determined by the selection module 143 .
  • the inclination angle of at least one reflective surface in the scanning module 120 is prestored in the calibration module 141 .
  • the laser radar pre-stores the inclination angles of the multiple reflective surfaces, and the inclination angles of the multiple reflective surfaces correspond to the multiple reflective surfaces one by one.
  • the inclination angle of the surface to be corrected refers to the angle between the actual posture and the ideal posture of the surface to be corrected.
  • the ideal posture of the surface to be corrected is the posture of the reflecting surface in the design requirements of the scanning module 120; the actual posture of the surface to be corrected is, after the scanning module 120 is produced and transferred, the facial posture.
  • the scanning module 120 includes two reflective surfaces.
  • the ideal postures 121 of the two reflecting surfaces of the scanning module 120 are parallel to each other and parallel to the rotation axis 120i (as shown by the dotted line in FIG. 12 );
  • the actual posture 122 of the reflective surface deviates from the ideal posture 121 (shown by the solid line in FIG. 12 ).
  • the scanning device 230 includes three reflecting surfaces.
  • the ideal posture 231 of the three reflecting surfaces of the scanning module 230 constitutes a triangular prism with an equilateral triangle in cross section, and the rotating shaft 220i is located at the line connecting the ground center of the triangular prism; actual production and assembly After completion, the actual position 232 of one reflective surface deviates from the ideal position 121 (as shown in FIG. 13 ).
  • Fig. 12 and Fig. 13 only illustrate that one of the multiple reflective surfaces of the scanning device deviates from its ideal position. However, the present invention does not limit the number of reflective surfaces that deviate from the ideal position. In some other embodiments of the present invention, among the multiple reflective surfaces of the scanning device, multiple reflective surfaces may deviate from their ideal positions.
  • the inclination of the surface to be corrected includes: a vertical inclination ⁇ and a horizontal inclination ⁇ .
  • the vertical inclination angle ⁇ of the surface to be corrected that is, the pitch angle, refers to the angle between the actual posture of the reflecting surface and the ideal posture projected in the plane passing through the rotating shaft;
  • the horizontal angle of the surface to be corrected refers to the angle projected by the angle between the actual posture and the ideal posture of the reflective surface in a plane perpendicular to the rotation axis.
  • At least one set of inclination angles is pre-stored in the correction module 141, and each set of inclination angles includes a vertical inclination angle ⁇ and a horizontal inclination angle ⁇ corresponding to the same reflective surface in the scanning module 120, that is to say, n is pre-stored in the lidar.
  • At least one set of inclination angles prestored in the correction module 141 can be obtained during the lidar calibration process, that is, in some embodiments of the present invention, the at least one set of inclination angles prestored in the correction module 141 is the Measured during the calibration process of the lidar described above.
  • the calibration module 141 reads at least one set of inclination angles prestored based on the surface to be calibrated determined by the selection module 143 , and determines the inclination angle of the surface to be calibrated.
  • the surface to be corrected is the ith reflective surface of the scanning module 120, that is, the i mirror surfaces of the n-surface rotating mirror (i is an integer greater than or equal to 1 and less than or equal to n), and the inclination angle is The inclination angle of group i, ( ⁇ i , ⁇ i ).
  • the correction module 141 determines a plurality of correction detection units 131 .
  • the scanning module 120 includes multiple reflective surfaces, and the surface to be corrected is one of the multiple reflective surfaces; the correction module 141 determines based on the obtained inclination angle of the surface to be corrected The multiple calibration detection units, the multiple calibration detection units correspond to the determined surface to be corrected.
  • the detection module 130 of the lidar includes a plurality of detectors 131i; therefore, each of the calibration detection units includes a plurality of detectors 131i.
  • the correction module 141 uses the electronic aperture function of the multiple detectors 131i to form an array, that is, the detectors 131i can be individually addressable, readable and controllable, and the correction module 141 changes the photosensitive area corresponding to the channel through electronic control, and each time Before receiving the echo light, the correction module 141 adjusts the received photosensitive region (Region of interest, ROI) so that the photosensitive region is shifted to compensate the inclination angle of the corresponding surface to be corrected, so that each corresponding correction detection unit receives a fixed
  • the readout data of the first calibration detection unit is used when the surface 1 to be corrected is at the first inclination angle, and the surface 2 to be corrected is at the first inclination angle 2
  • the inclination of the surface to be corrected includes: vertical inclination ⁇ and horizontal inclination ⁇ ; unit.
  • FIG. 14 a schematic diagram of the optical path in the vertical field of view of the lidar embodiment shown in FIG. 7 is shown.
  • the surface to be corrected 120r i Since both the detection light emission and the echo light reception are reflected by the surface to be corrected 120r i , and the surface to be corrected 120r i has an inclination angle, that is, between the ideal posture 120id i and the actual posture 120re i of the surface to be corrected 120r i There is an included angle ⁇ i .
  • the echo light R b in the field of view direction of channel b (the solid arrow R b and the dotted arrow R b ' in the figure, where the solid arrow R b and the dotted arrow R b ' are parallel to each other, R b shows that the projection is in the actual posture
  • the echo light of 120rei, R b ' shows the echo light projected on the ideal posture 120id i ) on the surface to be corrected 120r i
  • FIG. 14 shows a schematic optical path in the vertical field of view.
  • the detection module 130 is located at the focal plane of the receiving optical assembly Rx. Therefore, without compensation, the ordinate of the center position of the bth ideal detection unit 131id b is y b , where b is the channel number, and the vertical viewing angle of the bth channel field of view corresponding to the bth ideal detection unit 131id b is ⁇ b , that is, the vertical field angle of the echo light received by the b-th detection unit corresponding to the detection light output is:
  • f is the focal length of the receiving optical assembly Rx.
  • the calibration module 141 pre-stores n sets of inclination angles corresponding to the n reflective surfaces in the scanning module 120 one by one, and the vertical inclination angles of the n reflective surfaces are respectively ⁇ 1 , ⁇ 2 , . . . , ⁇ n .
  • the vertical inclination angle corresponding to the surface to be corrected 120r i is ⁇ i .
  • Both the detection light output and the echo light reception are reflected by the surface to be corrected 120r i , so the reflected light formed by the echo light R b in the field of view direction of the b-th channel is reflected by the surface 120r i to be corrected, and the reflected light is shifted in the vertical direction
  • the direction in which the center position of the b-th detection unit points to the center position of the b-th detection unit is opposite to the direction in which the position of the reflection point of the surface to be corrected 120r i shifts.
  • FIG. 15 shows a schematic diagram of the optical path in the horizontal field of view of the lidar embodiment shown in FIG. 7 .
  • the compensation principle in the horizontal field of view is similar to that in the vertical field of view.
  • FIG. 15 shows a schematic optical path in the horizontal field of view.
  • the abscissa of the center position of the bth ideal detection unit 131id b is x b , where b is the channel number, and the horizontal viewing angle of the bth channel field of view corresponding to the bth ideal detection unit 131id b is ⁇ b , that is, the horizontal field angle of the echo light received by the b-th detection unit corresponding to the output of the detection light is:
  • f is the focal length of the receiving optical assembly Rx.
  • the correction module 141 pre-stores n sets of inclination angles corresponding to the n reflective surfaces in the scanning module 120 one by one, and the horizontal inclination angles of the n reflective surfaces are ⁇ 1 , ⁇ 2 , . . . , ⁇ n respectively.
  • the horizontal inclination angle corresponding to the surface to be corrected 120r i is ⁇ i .
  • Both the detection light output and the echo light reception are reflected by the surface to be corrected 120r i , so the reflected light formed by the echo light R b in the field of view direction of the b-th channel is reflected by the surface to be corrected 120r i and the reflected light is shifted in the horizontal direction
  • the direction in which the center position of the b-th detection unit points to the center position of the b-th detection unit is opposite to the direction in which the position of the reflection point of the surface to be corrected 120r i shifts.
  • the corrected detection unit determined by the correction module 141 can compensate the inclination angle of the surface to be corrected, so as to ensure that the determined detection unit corresponds to a fixed field of view direction, especially when the scanning module includes multiple reflective surfaces.
  • the correction module 141 determines different correction detection units, so as to ensure that each reflection surface corresponds to a fixed field of view direction according to the determined correction detection units.
  • the occurrence of point cloud jitter can be suppressed between two reflective surfaces.
  • the ideal detection unit such as the bth ideal detection unit 131id b in Fig. 14 and Fig. 15, is the detection unit without compensation, that is, the detection unit determined by calibration of the laser radar in Fig. 8 Unit 131, the ideal detection unit includes a plurality of the detectors, and the plurality of detectors in the ideal detection unit are at least partially different from the plurality of detectors in the corrected detection unit. .
  • the detection module 130 includes a plurality of detectors 131i that are independently powered on and drawn out, so the calibration module 141 only powers on or reads The signal of the detector on the specific address line is used to change the receiving area of the receiving array, thereby achieving the purpose of maintaining a stable field of view.
  • the light-emitting module 110 of the lidar includes a plurality of independently addressable and independently controlled lasers. Therefore, the correction module 141 is also adapted to determine a plurality of correction light-emitting units based on the inclination of the surface to be corrected, in combination with the plurality of correction detection units, and the plurality of correction light-emitting units and the plurality of correction detection units One to one correspondence.
  • the one-to-one correspondence between the plurality of calibration light emitting units and the plurality of calibration detection units means that the field angles of the calibration light emitting units and the corresponding calibration detection units in the far field are the same, that is, in the far field, the correction
  • the emission field angle of the light emitting unit is the same as the reception field angle of the corresponding correction detection unit.
  • the calibration module 141 applies different voltages to the connecting wires of the emitting array, so as to select different emitters to emit light.
  • the transmitting module 110 of the lidar includes a plurality of emitters; therefore, each of the correction light emitting units includes a plurality of emitters.
  • the correction module 141 makes the receiving field angle of the correction detection unit the same as the emission field angle of the correction light unit through the determination of the correction light-emitting unit, so as to ensure the distance measurement capability and detection capability of the laser radar. efficiency.
  • the processing device 140 further includes: an acquisition module 142 adapted to perform signal acquisition through the plurality of calibration detection units to obtain a point cloud image.
  • the acquisition module 142 includes a detection control unit 142a, and the detection control unit 142a is suitable for controlling the plurality of correction light emitting units 111' to generate detection light, and the detection light is reflected by an external object of the lidar to form a corresponding echo light .
  • the acquisition module 142 also includes a receiving control unit 142b, which is suitable for controlling the corresponding calibration detection unit to receive the echo light to realize signal acquisition.
  • the detection light is emitted after being reflected by the surface to be corrected, and the emitted detection light is reflected by objects outside the radar to form echo light; the echo light is reflected by the surface to be corrected to the plurality of correction detection units .
  • the surface to be corrected is one of multiple reflective surfaces of the scanning device.
  • the correction detection unit 131 is determined by the acquisition module 142 before signal acquisition, and the correction detection unit 131 is determined based on the inclination angle of the surface to be corrected, that is, the position of the correction detection unit 131 has been made Adjust to compensate the deflection caused by the inclination angle of the surface to be corrected, so as to achieve the effect of maintaining a stable field of view.
  • FIG. 16 shows a schematic diagram of the correction light emitting unit 111 ′ and the correction detection unit 131 in the embodiment of the lidar shown in FIG. 8 when signal acquisition is implemented.
  • the determination of the corrected light-emitting unit 111' is based on the inclination angle of the surface to be corrected and the corrected detection unit 131, so when the signal is sent and received, the light spot on the receiving array is still located at the center of the corrected detection unit 131, that is,
  • the correction detection unit can obtain all the energy of the echo spot corresponding to the field of view direction of the channel (the circle in the figure represents the spot), so as to improve the detection efficiency and ranging capability.
  • the lidar has a light emitting module
  • the light emitting module 210 includes: a plurality of light emitting units 211, and The correction detection units 231 correspond one to one; the acquisition module 142 makes the light emitting unit 211 generate detection light, and the detection light forms corresponding echo light after being reflected by the external object of the lidar; the acquisition module 142 corresponds to The correction detection unit 231 receives the echo light to realize signal acquisition.
  • a plurality of correction detection units are determined to compensate the inclination angle of the reflection surface; signal acquisition is performed by the plurality of correction detection units to obtain a point cloud image. Since the plurality of correction detection units are determined based on the inclination of the surface to be corrected, the determination of the correction detection units can compensate the inclination of the surface to be corrected, so as to ensure that the determined correction detection units are consistent with the fixed field of view direction. Correspondingly, especially when the scanning module includes a plurality of reflective surfaces, different correction detection units are determined according to the respective inclination angles of the plurality of reflection surfaces, so as to ensure that each reflection surface is compatible with the determined correction detection units.
  • the fixed field of view corresponds to the direction, so the occurrence of point cloud shaking can be suppressed between multiple reflective surfaces.
  • the plurality of calibration detection units after determining the plurality of calibration detection units, based on the inclination angle of the surface to be corrected, combined with the plurality of calibration detection units, determine a plurality of calibration light-emitting units, and use the calibration light-emitting unit and the calibration detection unit to perform Signal Acquisition.
  • the determination of the plurality of corrected light-emitting units can make the receiving field of view of the corrected detection unit correspond to the center of the spot of the received echo light, so as to improve detection efficiency and ensure long distance.

Abstract

一种激光雷达的探测方法以及激光雷达,激光雷达具有扫描模块(120),扫描模块(120)包括:至少一个反射面(120r);探测方法包括:基于预存的待校正面的倾角,确定多个校正探测单元,待校正面为至少一个反射面(120r)中的一个(S110);通过多个校正探测单元进行信号采集以获得点云图(S120)。由此能够补偿待校正面的倾角,以保证确定的校正探测单元与固定的视场方向相对应,特别是当扫描模块(120)包括多个反射面(120r)的时候,在多个反射面(120r)间能够抑制点云抖动现象的出现。

Description

激光雷达的探测方法以及激光雷达
本申请要求2021年12月30日提交中国专利局、申请号为2021116597987、发明名称为“激光雷达的探测方法以及激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光探测,特别涉及一种激光雷达的探测方法以及激光雷达。
背景技术
激光雷达是一种常用的测距传感器,具有探测距离远、分辨率高、受环境干扰小等特点,广泛应用于智能机器人、无人机、无人驾驶等领域。激光雷达的工作原理是利用激光往返于雷达和目标之间所用的时间,或者调频连续光在雷达和目标之间往返所产生的频移来评估目标的距离或速度等信息。
激光雷达向三维空间发射探测光,探测光被待探测目标反射形成回波信号,激光雷达接收回波信号以获得点云图。其中,一种激光雷达是通过扫描装置的反射面将探测光反射至三维空间而进行探测的。
由于制造工艺的限制,扫描装置中反射面的姿态控制难度较高、精度较低,从而容易出现光路精度不够,稳定性差的问题,表现为出现点云抖动现象。
发明内容
本发明解决的问题是提供一种激光雷达的探测方法以及激光雷达,以降低反射面姿态对光路的影响,抑制点云抖动现象的出现。
为解决上述问题,本发明提供一种激光雷达的探测方法,所述激光雷达具有扫描模块,所述扫描模块包括:至少一个反射面;所述探测方法包括:基于预存的待校正面的倾角,确定多个校正探测单元, 所述待校正面为所述至少一个反射面中的一个;通过所述多个校正探测单元进行信号采集以获得点云图。
可选的,所述扫描模块包括:多个反射面;所述探测方法还包括:确定多个校正探测单元之前,确定待校正面,所述待校正面为所述多个反射面中的一个;基于所确定的待校正面,获得所述待校正面的倾角;确定多个校正探测单元的步骤中,基于所获得的待校正面的倾角,确定所述多个校正探测单元,所述多个校正探测单元与所述待校正面对应。
可选的,所述激光雷达具有发光模块,所述发光模块包括:多个发光单元,所述多个发光单元与所述多个校正探测单元一一对应;通过所述多个校正探测单元进行信号采集的步骤包括:使所述发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;以相对应的校正探测单元接收所述回波光以实现信号采集。
可选的,还包括:确定所述多个校正探测单元之后,基于所述待校正面的倾角,结合所述多个校正探测单元,确定多个校正发光单元,所述多个校正发光单元与所述多个校正探测单元一一对应;通过所述多个校正探测单元进行信号采集的步骤包括:使所述多个校正发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;以相对应的校正探测单元接收所述回波光以实现信号采集。
可选的,每个所述校正发光单元包括多个发射器。
可选的,所述发射器为独立寻址和独立控制的激光器。
可选的,每个所述校正探测单元包括多个探测器。
可选的,所述探测器为独立寻址和独立控制的探测器。
如可选的,所述反射面绕转轴转动。
可选的,所述扫描模块包括:转镜,所述反射面为所述转镜的镜面。
可选的,所述激光雷达具有发光模块以产生探测光;所述探测光经所述待校正面反射后出射;出射的探测光被雷达外部物体反射后形成回波光;所述回波光经所述待校正面反射至所述多个校正探测单元。
可选的,所述待校正面的倾角包括:垂直倾角和水平倾角;确定多个校正探测单元的步骤中,基于所述垂直倾角和所述水平倾角,确定多个校正探测单元。
相应的,本发明还提供一种激光雷达,包括:扫描模块,所述扫描模块包括:至少一个反射面;处理装置,所述处理装置适宜于实施本发明的探测方法。
此外,本发明还提供一种激光雷达,包括:扫描模块,所述扫描模块包括:至少一个反射面;校正模块,所述校正模块内预存有待校正面的倾角,所述校正模块适宜于基于所述待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面中的一个;采集模块,所述采集模块适宜于通过所述多个校正探测单元进行信号采集以获得点云图。
可选的,所述扫描模块包括:多个反射面;所述激光雷达还包括:选择模块,所述选择模块适宜于确定待校正面,所述待校正面为所述多个反射面中的一个;所述校正模块基于所述选择模块所确定的待校正面,获得所述待校正面的倾角,所述校正模块基于所获得的所述待校正面的倾角,确定所述多个校正探测单元,所述多个校正探测单元与所述待校正面相对应。
可选的,所述激光雷达具有发光模块,所述发光模块包括:多个发光单元,所述多个发光单元与所述多个校正探测单元一一对应;所述采集模块包括:探测控制单元,所述探测控制单元适宜于控制所述发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;接收控制单元,所述接收控制单元适宜于控制相对应的校正探测单元接收所述回波光以实现信号采集。
可选的,所述校正模块还适宜于基于所述待校正面的倾角,结合所述多个校正探测单元,确定多个校正发光单元,所述多个校正发光单元与所述多个校正探测单元一一对应;
所述采集模块包括:探测控制单元,所述探测控制单元适宜于控制所述多个校正发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;接收控制单元,所述接收控制单元适宜于控制相对应的校正探测单元接收所述回波光以实现信号采集。
可选的,每个所述校正发光单元包括多个发射器。
可选的,所述发射器为独立寻址和独立控制的激光器。
可选的,所述发射器包括:垂直腔面发射激光器。
可选的,每个所述校正探测单元包括多个探测器。
可选的,所述探测器为独立寻址和独立控制的探测器。
可选的,所述探测器包括:单光子雪崩二极管。
可选的,所述反射面绕转轴转动。
可选的,所述扫描模块包括:转镜,所述反射面为所述转镜的镜面。
可选的,所述激光雷达具有发光模块以产生探测光;所述探测光经所述待校正面反射后出射;出射的探测光被雷达外部物体反射后形成回波光;所述回波光经所述待校正面反射至所述多个校正探测单元。
可选的,所述待校正面的倾角包括:垂直倾角和水平倾角;所述校正模块基于所述垂直倾角和所述水平倾角,确定多个校正探测单元。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案,基于预存的待校正面的倾角,确定多个校正探测单元以补偿所述反射面的倾角;通过所述多个校正探测单元进行信号采集以获得点云图。由于所述多个校正探测单元是基于待校正面的 倾角确定的,因此所述校正探测单元的确定能够补偿所述待校正面的倾角,以保证确定的探测单元与固定的视场方向相对应,特别是当所述扫描模块包括多个反射面的时候,根据所述多个反射面各自的倾角,确定各自不同的校正探测单元,以保证每个反射面根据确定的校正探测单元均与固定的视场方向对应,因此在多个反射面间能够抑制点云抖动现象的出现。
本发明可选方案中,确定所述多个校正探测单元之后,基于所述待校正面的倾角,结合所述多个校正探测单元,确定多个校正发光单元,以所述校正发光单元和所述校正探测单元进行信号采集。所述多个校正发光单元的确定,能够使所述校正探测单元的接收视场和所接收回波光的光斑中心相对应,以提高探测效率,保证侧远距离。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种激光雷达的结构示意图;
图2是图1所示激光雷达在车上安装后扫描视场的示意图;
图3是图1所示的激光雷达中转镜导致的点云沿垂直方向抖动的示意图;
图4是图1所示的激光雷达中转镜导致的点云沿水平方向抖动的示意图;
图5是图1所示激光雷达中转镜导致接收视场变化的光路示意图;
图6是图1所示激光雷达的探测模块的接收阵列的结构示意图;
图7是本发明激光雷达一实施例的结构示意图;
图8是图7所示激光雷达实施例发光模块、接收模块和处理装置的结构示意图;
图9是图7所示激光雷达实施例发光模块的发射阵列的结构示意图;
图10是图7所示激光雷达实施例探测模块的接收阵列的结构示意图;
图11是图8所示激光雷达实施例中所述处理装置所实施探测方法的流程示意图;
图12是图7所示激光雷达实施例中扫描模块的反射面倾角示意图;
图13是本发明激光雷达另一实施例中扫描模块的反射面倾角示意图;
图14是图8所示激光雷达实施例中所述处理装置所实施探测方法垂直视场内的光路示意图;
图15是图8所示激光雷达实施例中所述处理装置所实施探测方法水平视场内的光路示意图;
图16是图8所示激光雷达实施例中所述处理装置所实施探测方法进行信号采集时校正发光单元和校正探测单元的结构示意图;
图17是本发明激光雷达另一实施例中进行信号采集时发光单元和校正探测单元的结构示意图;
图18是本发明激光雷达另一实施例中所述处理装置的功能框图。
具体实施方式
由背景技术可知,现有技术中的激光雷达存在扫描模块的反射面 影响光路精度、稳定性的问题。现结合一种激光雷达的结构,分析扫描模块的反射面对光路的影响。
参考图1,示出了一种激光雷达的结构示意图。
所述激光雷达包括:发光模块、扫描模块和探测模块,其中所述扫描模块包括转镜。
所述发光模块11产生的探测光投射至发射光学模组Tx上,经所述发射光学模组Tx传输后的探测光经所述扫描模块12中的反射面12r的反射后出射。出射的探测光被外部目标物反射形成回波光。回波光被所述扫描模块12中的反射面12r接收并反射后投射至接收光学模组Rx,经所述接收光学模组Rx传输后投射至探测模块13。
根据发光模块11发射探测光的时刻与探测模块13接收回波光的时刻之间的差值Δt,基于飞行时间(Time of Flight,TOF)测距原理:d=c*Δt/2,从而获得外部目标物和激光雷达的距离d,其中c为光速。
所述扫描模块12中的反射面12r发生转动以实现探测光的扫描,即如图1所示的激光雷达中,所述转镜进行360°的扫描,形成对外部空间一定视场范围的扫描。
其中,垂直转轴的水平视场范围由转镜确定,垂直所述水平视场的垂直视场范围由所述激光雷达中探测模块13中激光器/探测器的分布和转镜中反射面12r的姿态(例如反射面12r的俯仰角)共同决定。
可见,在工艺限制下,所述反射面12r姿态控制精度较低,所述反射面12r与光路设计时反射面12r的理想姿态会有偏差,所述反射面12r的实际姿态与理想姿态之间会有倾角,即所述反射面12r的倾角,所述反射面12r倾角的存在,会降低激光雷达的光路精度,进而影响光路的稳定性。
结合参考图2,示出了图1所示激光雷达在车上的安装即扫描视场示意图。
特别是当扫描装置12中包括多个反射面12r的时候,反射面12r姿态控制精度较低,多个反射面12r之间难以保持姿态一致性,会使多个反射面12r所对应的视场不一致,从而出现激光雷达各线角度在多个反射面12r之间不一致,出现点云抖动的问题。如图3和图4所示,其中图3示出了图1所示的激光雷达中转镜导致的点云沿垂直方向的抖动;图4示出了图1所示激光雷达中转镜导致的点云沿水平方向的抖动。
参考图5,示出了图1所示激光雷达中转镜导致接收视场变化的光路原理图。
图5示出了垂直视场内的光路示意图。其中,所述反射面12r的理想姿态12id应该是与转轴平行(即无倾角或倾角为0°),而所述反射面12r的实际姿态12re是与所述转轴之间呈θ°(即倾角为θ°)。
需要说明的是,如图6所示,所述激光雷达的探测模块13包括多个探测单元13a,所述探测单元13a包括多个探测器13b。所述探测器13b可以为单光子雪崩二极管(SPAD)。
如图5所示,当所述反射面12r处于理想姿态12id时,第i探测单元13i所接收的回波光为第i通道视场方向的回波光51id(如图5中虚线51id所示光路);但是当所述反射面12r处于实际姿态12re时,第i探测单元所接收到的回波光为原本(即12r处于理想姿态12id时)其他视场方向的回波光51re(如图5中实线51re所示),因此同一探测单元在反射面12r处于不同姿态时对应不同的视场,也即在不同姿态反射面间存在探测角度晃动。
而且所述反射面12r的实际姿态12re和理想姿态12id之间夹角为θ°,即倾角为θ°时,垂直视场内,所述回波光的偏转角度为2*θ°,例如所述反射镜的实际姿态12re和理想姿态12id之间夹角为0.1°时,同一探测单元所接收回波光的垂直视场角偏移0.2°,即视场方向变化了2*θ°,也即回波光51id和回波光51re之间的夹角为2*θ°。
可见,当扫描装置12中的多个反射面12r之间姿态不一致,不同反射面12r的实际姿态12re与理想姿态12id的倾角不相同,则同一探测单元13a(如图6所示)所接收回波光的视场方向会随着扫描的进行、反射面12r的变化而变化,每个反射面对应一次完整的视场遍历,因此不同反射面间会出现点云抖动的问题。
通常在激光雷达集成装配的时候,主动调校所述扫描装置中反射面12r的倾角,以使多个反射面12r的倾角一致性最高。如图1所示具有双面转镜的激光雷达,通过调配所述双面转镜的转轴方向,使得双面转镜的两个反射面12r倾角相同。在所述激光雷达装配完成之后,通过测量标定将多个转镜的倾角测出,作为标定校准量补偿到所接收回波光的角度信息中,进而获得正确的点云图,此时倾角的存在输出的点云如图3和图4所示。
为解决所述技术问题,本发明提供一种激光雷达的探测方法,所述激光雷达具有扫描模块,所述扫描模块包括:至少一个反射面;所述探测方法包括:基于预存的待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面中的一个;通过所述多个校正探测单元进行信号采集以获得点云图。
本发明技术方案中,由于所述多个校正探测单元是基于待校正面的倾角确定的,因此所述校正探测单元的确定能够补偿所述待校正面的倾角,以保证确定的校正探测单元与固定的视场方向相对应,特别是当所述扫描模块包括多个反射面的时候,根据所述多个反射面各自的倾角,确定各自不同的校正探测单元,以保证每个反射面根据确定的校正探测单元均与与固定的视场方向对应,因此在多个反射面间能够抑制点云抖动现象的出现。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参考图7,示出了本发明激光雷达一实施例的结构示意图。
所述激光雷达包括:发光模块110、扫描模块120和探测模块130。
所述发光模块110适宜于产生探测光111e。所述发光模块110产生的探测光111e投射至发射光学模组Tx上,经所述发射光学模组Tx传输后的探测光投射至所述扫描模块120。
如图8所示,本发明一些实施例中,所述激光雷达的发光模块110包括:多个发射器111i。具体的,所述发射器111i为独立寻址和独立控制的激光器(如图9中圈101内所示)。
具体的,如图8和图9所示,所述多个发射器111i呈阵列排布以构成发射阵列。通过向A1~A3,P1~P6的连接线施以不同的电压,对不同的发射器111进行选择,实现所述发射器111i的独立寻址和独立控制。具体的,本发明一些实施例中,所述发射器111i包括:垂直腔面发射激光器(VCSEL)。
所述扫描模块120适宜于改变所述探测光111e出射的角度。所述扫描模块120包括至少一个反射面120r,所述反射面120r反射所述探测光111e,使所述探测光111e出射至激光雷达外部空间。
本发明一些实施例中,所述扫描模块120具有转轴120i;所述反射面120r绕所述转轴120i转动,即所述至少一个反射面120r绕所述转轴120i转动。具体的,如图7所示实施例中,所述扫描模块120包括:转镜,所述反射面120r为所述转镜的镜面;所述转镜的转轴即为所述转轴120i。
如图7所示,所述转镜为两面转镜,即所述扫描模块120包括2个反射面120r,所述2个反射面120r绕所述转轴120i转动。
出射的探测光112出射至激光雷达外部空间后,经待测目标反射后形成回波光131。所述回波光131被所述扫描模块120中的同一个反射面120r接收并反射后,投射至接收光学模组Rx,经所述接收光学模组Rx传输后投射至所述探测模块130。
所述激光雷达的探测模块130适宜于接收经所述接收光学模组 Rx传输的回波光122以实现探测。
如图8和图10所示,所述探测模块130包括多个探测器131i。具体的,所述探测器131i为独立寻址和独立控制的探测器(如图10中圈101内所示)。
具体的,所述多个探测器131i呈阵列排布以构成接收阵列。每个所述探测器131i可以单独上电、独立引出,通过只上电或只读取特定地址线上的探测器以读取单个探测器信号。具体的,本发明一些实施例中,所述探测器131i包括单光子雪崩二极管。图11中圈101为所述探测器131i的一个单元组成,包括单光子雪崩二极管101a和猝灭电阻101b。
需要说明的是,如图8所示,所述发光模块110包括多个发光单元111,每个所述发光单元111包括多个所述发射器111i;所述探测模块130包括多个探测单元131,每个所述探测单元131包括多个所述探测器131i。所述激光雷达标定以后,所述多个发光单元111和所述多个探测单元131一一对应,即所述发光单元111在远场的发射视场与所对应探测单元131在远场的接收视场相同以构成物理通道,也就是说,在远场位置,所述发光单元111和所对应的探测单元131的视场相同,所以所述发光单元111发射的探测光经反射形成的回波光被所对应的探测单元131接收,也即每个物理通道具有确定的通道视场方向,例如垂直视场方向40°。
还需要说明的是,将所述发光单元111设置为多个发射器构成的做法仅为一实例。本发明其他实施例中,所述发光单元111还可以是独立的激光器,例如边发射激光器(EEL)。
继续参考图8,所述激光雷达还包括:处理装置140,所述处理装置适宜于实施本发明的探测方法以补偿所述扫描模块中反射面的倾角。
结合参考图11,示出了图8所示激光雷达实施例中所述处理装 置所实施探测方法的流程示意图。
所述探测方法包括:执行步骤S110,基于预存的待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面中的一个;执行步骤S120,通过所述多个校正探测单元进行信号采集以获得点云图。
由于所述多个校正探测单元是基于待校正面的倾角确定的,因此所述校正探测单元的确定能够补偿所述待校正面的倾角,以保证确定的校正探测单元与固定的视场方向相对应,特别是当所述扫描模块包括多个反射面的时候,根据所述多个反射面各自的倾角,确定各自不同的校正探测单元,以保证每个反射面根据确定的校正探测单元均与固定的视场方向对应,因此在多个反射面间能够抑制点云抖动现象的出现。
如图7和图11所示,首先执行步骤S110,基于预存的待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面120r(如图8所示)中的一个。
确定所述校正探测单元的步骤适宜于利用校正探测单元的位置补偿所述待校正面的倾角。
如图7所示,本发明一些实施例中,所述扫描模块120包括多个反射面120r,因此如图11所示,所述探测方法还包括:执行步骤S110,确定多个校正探测单元之前,执行步骤S131,确定待校正面,所述待校正面为所述多个反射面中的一个。
具体的,所述扫描装置120包括转镜,所述转镜为n面转镜,所述反射面为所述转镜的镜面,即所述扫描装置120包括n个反射面。因此,执行步骤S131,确定待校正面的步骤中,所述待校正面为所述n面转镜的n个镜面中的一个。如图7所示实施例中,所述扫描模块120包括2个反射面120r,所述待校正面为所述两面转镜的2个镜面中的一个。
确定所述待校正面之后,执行步骤S132,基于所确定的待校正面,获得所述待校正面的倾角。
所述激光雷达内预存有所述至少一个反射面的倾角。所述反射面为多个时,所述激光雷达内预存有多个反射面的倾角,所述多个反射面的倾角与所述多个反射面一一对应。
需要说明的是,所述待校正面的倾角是指所述待校正面实际姿态与理想姿态之间的夹角。其中,所述待校正面的理想姿态为所述扫描模块120的设计要求中反射面的姿态;所述待校正面的实际姿态为,所述扫描模块120制作、转配完成之后,所述反射面的姿态。
具体的,如图12所示,所述扫描模块120包括2个反射面。设计要求中,所述扫描模块120的2个反射面的理想姿态121相互平行,且平行于所述转轴120i(如图12中虚线所示);实际制作、装配完成之后,其中1个所述反射面的实际姿态122偏离了所述理想姿态121(如图12中实线所示)。
如图13所示,本发明另一些实施例中,所述扫描装置230包括3个反射面。设计要求中,所述扫描模块230的3个反射面的理想姿态231构成横截面为等边三角型的三棱柱,所述转轴220i位于所述三棱柱地面中心的连线位置;实际制作、装配完成之后,1个所述反射面的实际位置232偏离了所述理想位置121(如图13中实现所示)。
需要说明的是,图12和图13仅适宜了所述扫描装置的多个反射面中的一个反射面偏离其理想位置。但是本发明对偏离理想位置的反射面的数量并不限定。本发明另一些实施例中,所述扫描装置的多个反射面中,可以有多个反射面偏离其理想位置。
此外,本发明一些实施例中,所述待校正面的倾角包括:垂直倾角θ和水平倾角φ。其中,所述待校正面的垂直倾角θ,即俯仰角,是指反射面的实际姿态与理想姿态之间的夹角在经过所述转轴的平面内投影的角度;所述待校正面的水平倾角φ,即水平偏移角,是指 反射面的实际姿态与理想姿态之间的夹角在垂直所述转轴的平面内投影的角度。
所述激光雷达内预存有至少一组倾角,每一组倾角包括与所述扫描模块120中同一反射面相对应的垂直倾角θ和水平倾角φ,也就是说,所述激光雷达内预存有n组倾角,(θ 1,φ 1)、(θ 2,φ 2)、……、(θ n,φ n),所述n组倾角与所述扫描模块120的n个镜面一一对应。
需要说明的是,所述激光雷达内预存的至少一组倾角可以在所述激光雷达标定过程中获得,也就是说,本发明一些实施例中,所述激光雷达的标定过程包括:量测所述扫描模块120中至少一个反射面的倾角。
所以,执行步骤S132,基于所确定的待校正面,获得所述待校正面的倾角的步骤中,基于作为所述待校正面的反射面,确定所述待校正面的倾角。具体的,所述待校正面为所述扫描模块120的第i个反射面,即所述n面转镜的i个镜面(i为大于等于1且小于等于n的整数),所述倾角为第i组倾角,(θ i,φ i)。
继续参考图11,获得待校正面的倾角之后,执行步骤S110,确定多个校正探测单元131。
本发明一些实施例中,所述扫描模块包括多个反射面,所述待校正面为所述多个反射面中的一个;因此执行步骤S110,确定多个校正探测单元的步骤中,基于所获得的待校正面的倾角,确定所述多个校正探测单元,所述多个校正探测单元与所确定的待校正面相对应。
此外,如图8和图10所示,所述激光雷达的探测模块130包括多个探测器131i;因此每个所述校正探测单元包括多个所述探测器131i。
利用所述多个探测器131i构成阵列的电子光阑功能,即所述探测器131i单独可寻址读出可控,通过电控改变通道对应的感光区域,在每次接收回波光之前,通过调节接收的光敏区域(Region of interest, ROI)使得光敏区域偏移,以补偿所对应待校正面的倾角,从而使得每个相对应的校正探测单元接收固定通道视场方向的回波光,例如第i通道视场方向对应垂直视场方向40°,那么待校正面1在第1倾角时使用第1校正探测单元的读出数据,待校正面2在第2倾角时使用第2校正探测单元的读出数据,确保这2个校正探测单元均对应垂直视场方向40°,使得雷达接收视场稳定在特定角度,避免在多个反射面间探测角度晃动。
具体的,如前所述,所述待校正面的倾角包括:垂直倾角θ和水平倾角φ;执行步骤S110,确定多个校正探测单元的步骤中,基于所述垂直倾角θ和所述水平倾角φ,确定多个校正探测单元。
结合参考图14,示出了图8所示激光雷达实施例中所述处理装置所实施探测方法垂直视场内的光路示意图。
由于探测光出射和回波光接收均经所述待校正面120r i反射,而所述待校正面120r i存在倾角,即所述待校正面120r i的理想姿态120id i和实际姿态120re i之间存在夹角θ i。第b通道视场方向的回波光(如图中实线箭头R b和虚线箭头R b',其中实线箭头R b与虚线箭头R b'相互平行,R b示意出投射在实际姿态120re i的回波光,R b'示意出投射在理想姿态120id i的回波光)在所述待校正面120r i上反射点位置发生偏移(由理想姿态120id i的O'点偏移为实际姿态120re i的O),此时理想探测单元131id b并不能够接收第b通道视场方向的回波光,此时其实际接收的为视场方向R k',R k'和R b'存在夹角Δθ=2*θ i,第b通道视场方向的回波光由校正探测单元130ch b接收。
具体的,图14示出了垂直视场内的示意光路。
所述探测模块130位于所述接收光学组件Rx的焦平面位置。所以未补偿时,第b理想探测单元131id b的中心位置纵坐标为y b,其中b为通道编号,与第b理想探测单元131id b相对应的第b通道视场的垂直视场角为θ b,即第b探测单元所接收回波光对应探测光出射的垂直视场角为:
Figure PCTCN2022098786-appb-000001
其中,f为接收光学组件Rx的焦距。
所述激光雷达内预存有所述扫描模块120内n个反射面一一对应的n组倾角,n个反射面的垂直倾角分别为θ 1、θ 2、……、θ n。其中,所述待校正面120r i所对应的垂直倾角为θ i。探测光出射和回波光接收均经所述待校正面120r i反射,因此第b通道视场方向的回波光R b经所述待校正面120r i反射后所形成的反射光在垂直方向偏移角度为Δθ=2*θ i,即所形成反射光在所述探测模块130上所形成光斑的位置沿对应方向平移Δy=Δθ*f。所以,执行步骤S110,基于所获得的待校正面的倾角,确定所述多个校正探测单元的步骤中,确定的所述第b校正探测单元130ch b与所述第b探测单元的中心位置纵坐标之间的差值为Δy。而且所述第b校正探测单元的中心位置指向所述第b探测单元的中心位置的方向与所述待校正面120r i反射点位置偏移方向相反。
可见,执行步骤S110,确定所述多个校正探测单元的步骤中,基于所述待校正面的倾角,确定的所述校正探测单元将所述探测模块130中的光敏区域反向平移Δy。因此,对于第b校正探测单元131ch b而言,所接收回波光对应探测光的垂直视场角为,
Figure PCTCN2022098786-appb-000002
Figure PCTCN2022098786-appb-000003
即与所述待校正面120r i不存在倾角(垂直倾角为θ i=0)时所对应的视场角相同。
结合参考图15,示出了图8所示激光雷达实施例中所述处理装 置所实施探测方法水平视场内的光路示意图。
水平视场内的补偿原理与垂直视场内的补偿原理相似。
具体的,图15示出了水平视场内的示意光路。
未补偿时,第b理想探测单元131id b的中心位置横坐标为x b,其中b为通道编号,与第b理想探测单元131id b相对应的第b通道视场的水平视场角为φ b,即第b探测单元所接收回波光对应探测光出射的水平视场角为:
Figure PCTCN2022098786-appb-000004
其中,f为接收光学组件Rx的焦距。
所述激光雷达内预存有所述扫描模块120内n个反射面一一对应的n组倾角,n个反射面的水平倾角分别为φ 1、φ 2、……、φ n。其中,所述待校正面120r i所对应的水平倾角为φ i。探测光出射和回波光接收均经所述待校正面120r i反射,因此第b通道视场方向的回波光R b经所述待校正面120r i反射后所形成的反射光在水平方向偏移角度为Δφ=2*φ i,即所形成反射光在所述探测模块130上所形成光斑的位置沿对应方向平移Δx=Δφ*f。所以,执行步骤S110,基于所获得的待校正面的倾角,确定所述多个校正探测单元的步骤中,确定的所述第b校正探测单元130ch b与所述第b探测单元的中心位置横坐标之间的差值为Δx。而且所述第b校正探测单元的中心位置指向所述第b探测单元的中心位置的方向与所述待校正面120r i反射点位置偏移方向相反。
可见,执行步骤S110,确定所述多个校正探测单元的步骤中, 基于所述待校正面的倾角,确定的所述校正探测单元将所述探测模块130中的光敏区域反向平移Δx。因此,对于第b校正探测单元131ch b而言,所接收回波光对应探测光出射的水平视场角为,
Figure PCTCN2022098786-appb-000005
Figure PCTCN2022098786-appb-000006
即与所述待校正面120r i不存在倾角(水平倾角为φ i=0)时所对应的视场角相同。
所以,所述校正探测单元的确定能够补偿所述待校正面的倾角,以保证确定的校正探测单元与固定的视场方向相对应,特别是当所述扫描模块包括多个反射面的时候,根据所述多个反射面各自的倾角,确定各自不同的校正探测单元,以保证每个反射面根据确定的校正探测单元均与固定的视场方向对应,因此在多个反射面间能够抑制点云抖动现象的出现。
需要说明的是,所述理想探测单元,如图14和图15中的第b理想探测单元131id b,为未进行补偿时的探测单元,即图8中所述激光雷达经标定所确定的探测单元131,所述理想探测单元包括多个所述探测器,所述理想探测单元中的多个探测器与所述校正探测单元中的多个探测器至少部分不同。
还需要说明的是,如前所述,本发明一些实施例中,所述探测模块130包括多个独立上电、独立引出的探测器131i,因此通过只上电或读取特定地址线上的探测器的信号,以改变接收阵列的接收区域,进而达到维持视场稳定的目的。
继续参考图8和图11所示,本发明一些实施例中,所述激光雷达的发光模块110包括多个独立寻址和独立控制的激光器。所以所述探测方法还包括:执行步骤S110,确定所述多个校正探测单元之后,执行步骤S140,基于所述待校正面的倾角,结合所述多个校正探测单元,确定多个校正发光单元,所述多个校正发光单元与所述多个校正探测单元一一对应。
其中,所多个校正发光单元和所述多个校正探测单元一一对应是指所述校正发光单元和所对应的校正探测单元在远场的视场角相同,即在远场,所述校正发光单元的发射视场角与所对应的校正探测单元的接收视场角相同。具体的,对所述发射阵列连接线施以不同的电压,以选择不同的发射器进行发光。
需要说明的是,所述激光雷达的发射模块110包括多个发射器;因此每个所述校正发光单元包括多个所述发射器。通过所述校正发光单元的确定,使所述校正探测单元的接收视场角与所述校正发光单元的发射视场角相同,以保证所述激光雷达的测远能力和探测效率。
继续参考图11,确定校正探测单元、校正发光单元之后,所述探测方法还包括:执行步骤S120,通过所述多个校正探测单元进行信号采集以获得点云图。
结合参考图7和图16,执行步骤S120,通过所述多个校正探测单元131进行信号采集以获得点云图的步骤包括:首先,使所述多个校正发光单元111'产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;以相对应的校正探测单元131接收所述回波光以实现信号采集。
具体的,所述探测光经所述待校正面反射后出射,出射的探测光被雷达外部物体反射后形成回波光;所述回波光经所述待校正面反射至所述多个校正探测单元。其中,所述待校正面为所述扫描装置的多个反射面中的一个。
由于在信号采集之前确定所述校正探测单元131,而且所述校正探测单元131是基于所述待校正面的倾角确定的,即所述校正探测单元131的位置已经做出调整,以补偿待校正面倾角所引起的偏转,从而达到维持视场稳定的效果。
此外,结合参考图16,示出了图8所示激光雷达实施例中所述校正发光单元111'和所述校正探测单元131实现信号采集时的示意图。
所述校正发光单元111'的确定基于所述待校正面的倾角以及所述校正探测单元131,因此在信号收发的时候,接收阵列上的光斑依旧位于所述校正探测单元131的中心位置,即所述校正探测单元能够获得对应通道视场方向回波光斑的全部能量(图中圆形代表光斑),以提高探测效率和测距能力。
需要说明的是,本发明其他实施例中,如图17所示,所述激光雷达具有发光模块,所述发光模块210包括:多个发光单元211,所述多个发光单元211与所述多个校正探测单元231一一对应;执行步骤S120,通过所述多个校正探测单元231进行信号采集的步骤包括:使所述发光单元211产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;以相对应的校正探测单元231接收所述回波光以实现信号采集。
相应的,本发明还提供一种激光雷达。
参考图7,示出了本发明激光雷达一实施例的结构示意图。
所述激光雷达包括:发光模块110和探测模块130。
所述发光模块110适宜于产生探测光111e。所述发光模块110产生的探测光111e投射至发射光学模组Tx上,经所述发射光学模组Tx传输后的探测光投射至所述扫描模块120。
如图8所示,本发明一些实施例中,所述激光雷达的发光模块110包括:多个发射器111i。具体的,所述发射器111i为独立寻址和独立控制的激光器(如图9中圈101内所示)。
具体的,如图8和图9所示,所述多个发射器111呈阵列排布以构成发射阵列。通过向A1~A3,P1~P6的连接线施以不同的电压,对不同的发射器111进行选择,实现所述发射器111i的独立寻址和独立控制。具体的,本发明一些实施例中,所述发射器111i包括:垂直腔面发射激光器(VCSEL)。
所述探测模块130适宜于接收经所述接收光学模组Rx传输的回 波光122以实现探测。
如图8和图10所示,所述探测模块130包括多个探测器131i。具体的,所述探测器131i为独立寻址和独立控制的探测器(如图10中圈101内所示)。
具体的,所述多个探测器131i呈阵列排布以构成接收阵列。每个所述探测器131i可以单独上电、独立引出,通过只上电或只读取特定地址线上的探测器以读取单个探测器信号。具体的,本发明一些实施例中,所述探测器131i包括单光子雪崩二极管。图11中圈101为所述探测器131i的一个单元组成,包括单光子雪崩二极管101a和猝灭电阻101b。
需要说明的是,所述发光模块110包括多个发光单元,每个所述发光单元包括多个所述发射器111i;所述探测模块130包括多个探测单元,每个所述探测单元包括多个所述探测器131i。所述激光雷达标定以后,所述多个发光单元和所述多个发光单元一一对应,即所述发光单元在远场的发射视场与所对应探测单元在远场的接收视场相同以构成物理通道,也就是说,在远场位置,所述发光单元和所对应的探测单元的视场相同,所以所述发光单元发射的探测光经反射形成的回波光被所对应的接收单元接收,也即每个物理通道具有确定的通道视场方向。
还需要说明的是,将所述发光单元设置为多个发射器构成的做法仅为一实例。本发明其他实施例中,所述发光单元还可以是独立的激光器,例如边发射激光器(EEL)。
继续参考图7,所述激光雷达还包括:扫描模块120。
所述扫描模块120适宜于改变所述探测光111e出射的角度。所述扫描模块120包括至少一个反射面120r,所述反射面120r反射所述探测光111e,使所述探测光111e出射至激光雷达外部空间。
本发明一些实施例中,所述扫描模块120具有转轴120i;所述反 射面120r绕所述转轴120i转动,即所述至少一个反射面120r绕所述转轴120i转动。具体的,如图7所示实施例中,所述扫描模块120包括:转镜,所述反射面120r为所述转镜的镜面;所述转镜的转轴即为所述转轴120i。
如图7所示,所述转镜为两面转镜,即所述扫描模块120包括2个反射面120r,所述2个反射面120r绕所述转轴120i转动。
出射的探测光112出射至激光雷达外部空间后,经待测目标反射后形成回波光131。所述回波光131被所述扫描模块120中的同一个反射面120r接收并反射后,投射至接收光学模组Rx,经所述接收光学模组Rx传输后投射至所述探测模块130。
继续参考图8,所述激光雷达还包括:处理装置140,所述处理装置140与所述发光模块110和所述探测模块130均相连,所述处理装置140适宜于控制所述发光模块110和所述探测模块130进行信号采集以获得点云图。
结合参考图18,示出了图8所示激光雷达实施例中所述处理装置的功能框图。
所述处理装置140包括:校正模块141,所述校正模块141内预存有待校正面的倾角,所述校正模块141适宜于基于所述待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面中的一个;采集模块142,所述采集模块142适宜于通过所述多个校正探测单元进行信号采集以获得点云图。
所述校正模块141适宜于利用校正探测单元的位置补偿所述待校正面的倾角。
如图7所示,本发明一些实施例中,所述扫描模块120包括多个反射面120r,因此如图18所示,所述处理装置140还包括:选择模块143,所述选择模块143适宜于确定待校正面,所述待校正面为所述多个反射面中的一个。
具体的,所述扫描装置120包括转镜,所述转镜为n面转镜,所述反射面为所述转镜的镜面,即所述扫描装置120包括n个反射面。
因此,所述选择模块143从所述n面转镜的n个镜面中选择一个作为所述待矫正面,即所述待校正面为所述n面转镜的n个镜面中的一个。如图7所示实施例中,所述扫描模块120包括2个反射面120r,所述选择模块143从所述两面转镜的2个镜面中选择一个作为所述待矫正面,即所述待校正面为所述两面转镜的2个镜面中的一个。
所述校正模块141基于所述选择模块143确定的待矫正面,获得所述待校正面的倾角。
所述校正模块141内预存有所述扫描模块120中,至少一个反射面的倾角。所述反射面为多个时,所述激光雷达内预存有多个反射面的倾角,所述多个反射面的倾角与所述多个反射面一一对应。
需要说明的是,所述待校正面的倾角是指所述待校正面实际姿态与理想姿态之间的夹角。其中,所述待校正面的理想姿态为所述扫描模块120的设计要求中反射面的姿态;所述待校正面的实际姿态为,所述扫描模块120制作、转配完成之后,所述反射面的姿态。
具体的,如图12所示,所述扫描模块120包括2个反射面。设计要求中,所述扫描模块120的2个反射面的理想姿态121相互平行,且平行于所述转轴120i(如图12中虚线所示);实际制作、装配完成之后,其中1个所述反射面的实际姿态122偏离了所述理想姿态121(如图12中实线所示)。
如图13所示,本发明另一些实施例中,所述扫描装置230包括3个反射面。设计要求中,所述扫描模块230的3个反射面的理想姿态231构成横截面为等边三角型的三棱柱,所述转轴220i位于所述三棱柱地面中心的连线位置;实际制作、装配完成之后,1个所述反射面的实际位置232偏离了所述理想位置121(如图13中实现所示)。
需要说明的是,图12和图13仅示意了所述扫描装置的多个反射 面中的一个反射面偏离其理想位置。但是本发明对偏离理想位置的反射面的数量并不限定。本发明另一些实施例中,所述扫描装置的多个反射面中,可以有多个反射面偏离其理想位置。
此外,本发明一些实施例中,所述待校正面的倾角包括:垂直倾角θ和水平倾角φ。其中,所述待校正面的垂直倾角θ,即俯仰角,是指反射面的实际姿态与理想姿态之间的夹角在经过所述转轴的平面内投影的角度;所述待校正面的水平倾角φ,即水平偏移角,是指反射面的实际姿态与理想姿态之间的夹角在垂直所述转轴的平面内投影的角度。
所述校正模块141内预存有至少一组倾角,每一组倾角包括与所述扫描模块120中同一反射面相对应的垂直倾角θ和水平倾角φ,也就是说,所述激光雷达内预存有n组倾角,(θ 1,φ 1)、(θ 2,φ 2)、……、(θ n,φ n),所述n组倾角与所述扫描模块120的n个镜面一一对应。
需要说明的是,所述校正模块141内预存的至少一组倾角可以在所述激光雷达标定过程中获得,即本发明一些实施例中,所述校正模块141内预存的至少一组倾角为所述激光雷达的标定过程中量测所得。
所以,所述校正模块141基于所述选择模块143确定的待校正面,读取预存的至少一组倾角,确定所述待校正面的倾角。具体的,所述待校正面为所述扫描模块120的第i个反射面,即所述n面转镜的i个镜面(i为大于等于1且小于等于n的整数),所述倾角为第i组倾角,(θ i,φ i)。
获得所述待矫正面的倾角之后,所述校正模块141确定多个校正探测单元131。
本发明一些实施例中,所述扫描模块120包括多个反射面,所述待校正面为所述多个反射面中的一个;所述校正模块141基于所获得的待校正面的倾角,确定所述多个校正探测单元,所述多个校正探测 单元与所确定的待校正面相对应。
此外,如图8和图10所示,所述激光雷达的探测模块130包括多个探测器131i;因此每个所述校正探测单元包括多个所述探测器131i。
利用所述多个探测器131i构成阵列的电子光阑功能,即所述探测器131i可单独可寻址读出可控,所述校正模块141通过电控改变通道对应的感光区域,在每次接收回波光之前,所述校正模块141调节接收的光敏区域(Region of interest,ROI)使得光敏区域偏移,以补偿所对应待校正面的倾角,从而使得每个相对应的校正探测单元接收固定通道视场方向的回波光,例如第i通道视场方向对应垂直视场方向40°,那么待校正面1在第1倾角时使用第1校正探测单元的读出数据,待校正面2在第2倾角时使用第2校正探测单元的读出数据,确保这2个校正探测单元均对应垂直视场方向40°,从而使得雷达接收视场稳定在特定角度,避免在多个反射面间探测角度晃动。
具体的,如前所述,所述待校正面的倾角包括:垂直倾角θ和水平倾角φ;因此,所述校正模块141基于所述垂直倾角θ和所述水平倾角φ,确定多个校正探测单元。
结合参考图14,示出了图7所示激光雷达实施例垂直视场内的光路示意图。
由于探测光出射和回波光接收均经所述待校正面120r i反射,而所述待校正面120r i存在倾角,即所述待校正面120r i的理想姿态120id i和实际姿态120re i之间存在夹角θ i。第b通道视场方向的回波光R b(如图中实线箭头R b和虚线箭头R b',其中实线箭头R b与虚线箭头R b'相互平行,R b示意出投射在实际姿态120rei的回波光,R b'示意出投射在理想姿态120id i的回波光)在所述待校正面120r i上反射点位置发生偏移(由理想姿态120id i的O'点偏移为实际姿态120re i的O),此时理想探测单元131id b并不能够接收第b通道视场方向的回波光,此时其实际接收的为视场方向R k',R k'和R b'存在夹角Δθ=2*θ i,第b 通道视场方向的回波光由校正探测单元130ch b接收。
具体的,图14示出了垂直视场内的示意光路。
所述探测模块130位于所述接收光学组件Rx的焦平面位置。所以未补偿时,第b理想探测单元131id b的中心位置纵坐标为y b,其中b为通道编号,与第b理想探测单元131id b相对应的第b通道视场的垂直视场角为θ b,即第b探测单元所接收回波光对应探测光出射的垂直视场角为:
Figure PCTCN2022098786-appb-000007
其中,f为接收光学组件Rx的焦距。
所述校正模块141内预存有所述扫描模块120内n个反射面一一对应的n组倾角,n个反射面的垂直倾角分别为θ 1、θ 2、……、θ n。其中,所述待校正面120r i所对应的垂直倾角为θ i。探测光出射和回波光接收均经所述待校正面120r i反射,因此第b通道视场方向的回波光R b经所述待校正面120r i反射后所形成的反射光在垂直方向偏移角度为Δθ=2*θ i,即所形成反射光在所述探测模块130上所形成光斑的位置沿对应方向平移Δy=Δθ*f。所以,所述校正模块141确定的所述第b校正探测单元130ch b与所述第b探测单元的中心位置纵坐标之间的差值为Δy。而且所述第b校正探测单元的中心位置指向所述第b探测单元的中心位置的方向与所述待校正面120r i反射点位置偏移方向相反。
可见,所述校正模块141基于所述待校正面的倾角,确定的所述校正探测单元将所述探测模块130中的光敏区域反向平移Δy。因此, 对于第b校正探测单元131ch b而言,所接收回波光对应探测光出射的垂直视场角为,
Figure PCTCN2022098786-appb-000008
即与所述待校正面120r i不存在倾角(垂直倾角为θ i=0)时所对应的视场角相同。
结合参考图15,示出了图7所示激光雷达实施例水平视场内的光路示意图。
水平视场内的补偿原理与垂直视场内的补偿原理相似。
具体的,图15示出了水平视场内的示意光路。
未补偿时,第b理想探测单元131id b的中心位置横坐标为x b,其中b为通道编号,与第b理想探测单元131id b相对应的第b通道视场的水平视场角为φ b,即第b探测单元所接收回波光对应探测光出射的水平视场角为:
Figure PCTCN2022098786-appb-000009
其中,f为接收光学组件Rx的焦距。
所述校正模块141内预存有所述扫描模块120内n个反射面一一对应的n组倾角,n个反射面的水平倾角分别为φ 1、φ 2、……、φ n。其中,所述待校正面120r i所对应的水平倾角为φ i。探测光出射和回波光接收均经所述待校正面120r i反射,因此第b通道视场方向的回波光R b经所述待校正面120r i反射后所形成的反射光在水平方向偏移角度为Δφ=2*φ i,即所形成反射光在所述探测模块130上所形成光斑的位置沿对应方向平移Δx=Δφ*f。所以,所述校正模块141确定的所述第b校正探测单元130ch b与所述第b探测单元的中心位置横坐标之间的差值为Δx。而且所述第b校正探测单元的中心位置指向所述第b 探测单元的中心位置的方向与所述待校正面120r i反射点位置偏移方向相反。
可见,所述校正模块141基于所述待校正面的倾角,确定的所述校正探测单元将所述探测模块130中的光敏区域反向平移Δx。因此,对于第b校正探测单元131ch b而言,所接收回波光对应探测光出射的水平视场角为,
Figure PCTCN2022098786-appb-000010
即与所述待校正面120r i不存在倾角(水平倾角为φ i=0)时所对应的视场角相同。
所以,所述校正模块141确定的校正探测单元能够补偿所述待校正面的倾角,以保证确定的探测单元与固定的视场方向相对应,特别是当所述扫描模块包括多个反射面的时候,根据所述多个反射面各自的倾角,所述校正模块141确定各自不同的校正探测单元,以保证每个反射面根据确定的校正探测单元均与固定的视场方向对应,因此在多个反射面间能够抑制点云抖动现象的出现。
需要说明的是,所述理想探测单元,如图14和图15中的第b理想探测单元131id b,为未进行补偿时的探测单元,即图8中所述激光雷达经标定所确定的探测单元131,所述理想探测单元包括多个所述探测器,所述理想探测单元中的多个探测器与所述校正探测单元中的多个探测器至少部分不同。。
还需要说明的是,如前所述,本发明一些实施例中,所述探测模块130包括多个独立上电、独立引出的探测器131i,因此所述校正模块141通过只上电或读取特定地址线上的探测器的信号,以改变接收阵列的接收区域,进而达到维持视场稳定的目的。
继续参考图8和图11所示,本发明一些实施例中,所述激光雷达的发光模块110包括多个独立寻址和独立控制的激光器。所以,所述校正模块141还适宜于基于所述待校正面的倾角,结合所述多个校 正探测单元,确定多个校正发光单元,所述多个校正发光单元与所述多个校正探测单元一一对应。
其中,所多个校正发光单元和所述多个校正探测单元一一对应是指所述校正发光单元和所对应的校正探测单元在远场的视场角相同,即在远场,所述校正发光单元的发射视场角与所对应的校正探测单元的接收视场角相同。具体的,所述校正模块141对所述发射阵列的连接线施以不同的电压,以选择不同的发射器进行发光。
需要说明的是,所述激光雷达的发射模块110包括多个发射器;因此每个所述校正发光单元包括多个所述发射器。所述校正模块141通过所述校正发光单元的确定,使所述校正探测单元的接收视场角与所述校正发光单的发射视场角相同,以保证所述激光雷达的测远能力和探测效率。
继续参考图1,所述处理装置140还包括:采集模块142,所述采集模块142适宜于通过所述多个校正探测单元进行信号采集以获得点云图。
所述采集模块142包括探测控制单元142a,所述探测控制单元142a适宜于控制所述多个校正发光单元111'产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光。所述采集模块142还包括接收控制单元142b,所述接收控制单元142b适宜于控制相对应的校正探测单元接收所述回波光以实现信号采集。
具体的,所述探测光经所述待校正面反射后出射,出射的探测光被雷达外部物体反射后形成回波光;所述回波光经所述待校正面反射至所述多个校正探测单元。其中,所述待校正面为所述扫描装置的多个反射面中的一个。
由于所述采集模块142在信号采集之前确定的所述校正探测单元131,而且所述校正探测单元131是基于所述待校正面的倾角确定的,即所述校正探测单元131的位置已经做出调整,以补偿待校正面 倾角所引起的偏转,从而达到维持视场稳定的效果。
此外,结合参考图16,示出了图8所示激光雷达实施例中所述校正发光单元111'和所述校正探测单元131实现信号采集时的示意图。
所述校正发光单元111'的确定基于所述待校正面的倾角以及所述校正探测单元131,因此在信号收发的时候,接收阵列上的光斑依旧位于所述校正探测单元131的中心位置,即所述校正探测单元能够获得对应通道视场方向回波光斑的全部能量(图中圆形代表光斑),以提高探测效率和测距能力。
需要说明的是,本发明其他实施例中,如图17所示,所述激光雷达具有发光模块,所述发光模块210包括:多个发光单元211,所述多个发光单元211与所述多个校正探测单元231一一对应;所述采集模块142使所述发光单元211产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;所述采集模块142以相对应的校正探测单元231接收所述回波光以实现信号采集。
综上,基于预存的待校正面的倾角,确定多个校正探测单元以补偿所述反射面的倾角;通过所述多个校正探测单元进行信号采集以获得点云图。由于所述多个校正探测单元是基于待校正面的倾角确定的,因此所述校正探测单元的确定能够补偿所述待校正面的倾角,以保证确定的校正探测单元与固定的视场方向相对应,特别是当所述扫描模块包括多个反射面的时候,根据所述多个反射面各自的倾角,确定各自不同的校正探测单元,以保证每个反射面根据确定的校正探测单元均与固定的视场方向对应,因此在多个反射面间能够抑制点云抖动现象的出现。
而且,确定所述多个校正探测单元之后,基于所述待校正面的倾角,结合所述多个校正探测单元,确定多个校正发光单元,以所述校正发光单元和所述校正探测单元进行信号采集。所述多个校正发光单元的确定,能够使所述校正探测单元的接收视场和所接收回波光的光斑中心相对应,以提高探测效率,保证侧远距离。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (27)

  1. 一种激光雷达的探测方法,其特征在于,所述激光雷达具有扫描模块,所述扫描模块包括:至少一个反射面;
    所述探测方法包括:
    基于预存的待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面中的一个;
    通过所述多个校正探测单元进行信号采集以获得点云图。
  2. 如权利要求1所述的探测方法,其特征在于,所述扫描模块包括:多个反射面;
    所述探测方法还包括:
    确定多个校正探测单元之前,确定待校正面,所述待校正面为所述多个反射面中的一个;
    基于所确定的待校正面,获得所述待校正面的倾角;
    确定多个校正探测单元的步骤中,基于所获得的待校正面的倾角,确定所述多个校正探测单元,所述多个校正探测单元与所述待校正面对应。
  3. 如权利要求1或2所述的探测方法,其特征在于,所述激光雷达具有发光模块,所述发光模块包括:多个发光单元,所述多个发光单元与所述多个校正探测单元一一对应;
    通过所述多个校正探测单元进行信号采集的步骤包括:
    使所述发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;
    以相对应的校正探测单元接收所述回波光以实现信号采集。
  4. 如权利要求1或2所述的探测方法,其特征在于,还包括:
    确定所述多个校正探测单元之后,基于所述待校正面的倾角,结 合所述多个校正探测单元,确定多个校正发光单元,所述多个校正发光单元与所述多个校正探测单元一一对应;
    通过所述多个校正探测单元进行信号采集的步骤包括:
    使所述多个校正发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;
    以相对应的校正探测单元接收所述回波光以实现信号采集。
  5. 如权利要求4所述的探测方法,其特征在于,每个所述校正发光单元包括多个发射器。
  6. 如权利要求5所述的探测方法,其特征在于,所述发射器为独立寻址和独立控制的激光器。
  7. 如权利要求1或2所述的探测方法,其特征在于,每个所述校正探测单元包括多个探测器。
  8. 如权利要求7所述的探测方法,其特征在于,所述探测器为独立寻址和独立控制的探测器。
  9. 如如权利要求1所述的探测方法,其特征在于,所述反射面绕转轴转动。
  10. 如权利要求9所述的探测方法,其特征在于,所述扫描模块包括:转镜,所述反射面为所述转镜的镜面。
  11. 如权利要求1所述的探测方法,其特征在于,所述激光雷达具有发光模块以产生探测光;
    所述探测光经所述待校正面反射后出射;
    出射的探测光被雷达外部物体反射后形成回波光;
    所述回波光经所述待校正面反射至所述多个校正探测单元。
  12. 如权利要求1所述的探测方法,其特征在于,所述待校正面的倾 角包括:垂直倾角和水平倾角;
    确定多个校正探测单元的步骤中,基于所述垂直倾角和所述水平倾角,确定多个校正探测单元。
  13. 一种激光雷达,其特征在于,包括:
    扫描模块,所述扫描模块包括:至少一个反射面;
    处理装置,所述处理装置适宜于实施权利要求1~12中任一项所述的探测方法。
  14. 一种激光雷达,其特征在于,包括:
    扫描模块,所述扫描模块包括:至少一个反射面;
    校正模块,所述校正模块内预存有待校正面的倾角,所述校正模块适宜于基于所述待校正面的倾角,确定多个校正探测单元,所述待校正面为所述至少一个反射面中的一个;
    采集模块,所述采集模块适宜于通过所述多个校正探测单元进行信号采集以获得点云图。
  15. 如权利要求14所述的激光雷达,其特征在于,所述扫描模块包括:多个反射面;
    所述激光雷达还包括:
    选择模块,所述选择模块适宜于确定待校正面,所述待校正面为所述多个反射面中的一个;
    所述校正模块基于所述选择模块所确定的待校正面,获得所述待校正面的倾角,所述校正模块基于所获得的所述待校正面的倾角,确定所述多个校正探测单元,所述多个校正探测单元与所述待校正面相对应。
  16. 如权利要求14或15所述的激光雷达,其特征在于,所述激光雷达具有发光模块,所述发光模块包括:多个发光单元,所述多个 发光单元与所述多个校正探测单元一一对应;
    所述采集模块包括:
    探测控制单元,所述探测控制单元适宜于控制所述发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;
    接收控制单元,所述接收控制单元适宜于控制相对应的校正探测单元接收所述回波光以实现信号采集。
  17. 如权利要求14或15所述的激光雷达,其特征在于,所述校正模块还适宜于基于所述待校正面的倾角,结合所述多个校正探测单元,确定多个校正发光单元,所述多个校正发光单元与所述多个校正探测单元一一对应;
    所述采集模块包括:
    探测控制单元,所述探测控制单元适宜于控制所述多个校正发光单元产生探测光,所述探测光经激光雷达外部物体反射后形成相对应的回波光;
    接收控制单元,所述接收控制单元适宜于控制相对应的校正探测单元接收所述回波光以实现信号采集。
  18. 如权利要求17所述的激光雷达,其特征在于,每个所述校正发光单元包括多个发射器。
  19. 如权利要求18所述的激光雷达,其特征在于,所述发射器为独立寻址和独立控制的激光器。
  20. 如权利要求19所述的激光雷达,其特征在于,所述发射器包括:垂直腔面发射激光器。
  21. 如权利要求14或15所述的激光雷达,其特征在于,每个所述校正探测单元包括多个探测器。
  22. 如权利要求21所述的激光雷达,其特征在于,所述探测器为独立 寻址和独立控制的探测器。
  23. 如权利要求22所述的激光雷达,其特征在于,所述探测器包括:单光子雪崩二极管。
  24. 如权利要求14所述的激光雷达,其特征在于,所述反射面绕转轴转动。
  25. 如权利要求24所述的激光雷达,其特征在于,所述扫描模块包括:转镜,所述反射面为所述转镜的镜面。
  26. 如权利要求14所述的激光雷达,其特征在于,所述激光雷达具有发光模块以产生探测光;
    所述探测光经所述待校正面反射后出射;
    出射的探测光被雷达外部物体反射后形成回波光;
    所述回波光经所述待校正面反射至所述多个校正探测单元。
  27. 如权利要求14所述的激光雷达,其特征在于,所述待校正面的倾角包括:垂直倾角和水平倾角;
    所述校正模块基于所述垂直倾角和所述水平倾角,确定多个校正探测单元。
PCT/CN2022/098786 2021-12-30 2022-06-15 激光雷达的探测方法以及激光雷达 WO2023123888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111659798.7 2021-12-30
CN202111659798.7A CN116413693A (zh) 2021-12-30 2021-12-30 激光雷达的探测方法以及激光雷达

Publications (1)

Publication Number Publication Date
WO2023123888A1 true WO2023123888A1 (zh) 2023-07-06

Family

ID=86997332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098786 WO2023123888A1 (zh) 2021-12-30 2022-06-15 激光雷达的探测方法以及激光雷达

Country Status (2)

Country Link
CN (1) CN116413693A (zh)
WO (1) WO2023123888A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870700A (zh) * 2019-04-02 2019-06-11 深圳市镭神智能系统有限公司 一种激光雷达、设备及激光雷达安装角度的校准方法
CN111090085A (zh) * 2018-10-24 2020-05-01 光宝电子(广州)有限公司 基于飞行时间测距的校正系统及其方法
CN112955778A (zh) * 2019-09-26 2021-06-11 深圳市速腾聚创科技有限公司 校正方法、装置、存储介质及多通道激光雷达
CN113204004A (zh) * 2021-04-30 2021-08-03 北京航迹科技有限公司 一种激光雷达校准装置和方法
CN113447933A (zh) * 2020-03-24 2021-09-28 上海禾赛科技有限公司 激光雷达的探测单元、激光雷达及其探测方法
WO2021228815A1 (de) * 2020-05-13 2021-11-18 Robert Bosch Gmbh Verfahren zum kalibrieren und/oder justieren und steuereinheit für ein lidar-system, lidar-system und arbeitsvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111090085A (zh) * 2018-10-24 2020-05-01 光宝电子(广州)有限公司 基于飞行时间测距的校正系统及其方法
CN109870700A (zh) * 2019-04-02 2019-06-11 深圳市镭神智能系统有限公司 一种激光雷达、设备及激光雷达安装角度的校准方法
CN112955778A (zh) * 2019-09-26 2021-06-11 深圳市速腾聚创科技有限公司 校正方法、装置、存储介质及多通道激光雷达
CN113447933A (zh) * 2020-03-24 2021-09-28 上海禾赛科技有限公司 激光雷达的探测单元、激光雷达及其探测方法
WO2021228815A1 (de) * 2020-05-13 2021-11-18 Robert Bosch Gmbh Verfahren zum kalibrieren und/oder justieren und steuereinheit für ein lidar-system, lidar-system und arbeitsvorrichtung
CN113204004A (zh) * 2021-04-30 2021-08-03 北京航迹科技有限公司 一种激光雷达校准装置和方法

Also Published As

Publication number Publication date
CN116413693A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US10088557B2 (en) LIDAR apparatus
WO2022095247A1 (zh) 激光雷达的测距误差标定系统和标定方法
EP4130786A1 (en) Detection unit of lidar, lidar, and detection method
CN207249108U (zh) 多波长激光雷达的集成扫描装置
CN102508221B (zh) 一种机载激光雷达侧滚角偏差补偿方法
CN210142187U (zh) 一种距离探测装置
US10816646B2 (en) Distance measurement instrument
CN111902730B (zh) 一种标定板、深度参数标定方法、探测装置及标定系统
WO2021175227A1 (zh) 激光雷达及使用激光雷达测距的方法
CN109490909A (zh) 激光雷达扫描探测装置及其探测方法
CN115113219A (zh) 测量距离的方法及激光雷达
WO2023123888A1 (zh) 激光雷达的探测方法以及激光雷达
US11879996B2 (en) LIDAR sensors and methods for LIDAR sensors
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
WO2020155159A1 (zh) 增加点云采样密度的方法、点云扫描系统、可读存储介质
CN113126104A (zh) 一种飞时偏光感测系统及其光发射器
CN113820721B (zh) 一种收发分离的激光雷达系统
WO2022217520A1 (zh) 探测方法、装置、可移动平台及存储介质
WO2022077711A1 (zh) 一种激光雷达系统及其校准方法
CN115480260A (zh) 激光雷达及智能感应设备
CN219302670U (zh) 激光雷达的收发组件及激光雷达
WO2022213813A1 (zh) 一种激光雷达的同步控制装置及方法
WO2022217564A1 (zh) 激光雷达系统、空间测量设备及方法
US20230213618A1 (en) Lidar system having a linear focal plane, and related methods and apparatus
WO2024045884A1 (zh) 激光雷达、电子设备及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913177

Country of ref document: EP

Kind code of ref document: A1