WO2023123886A1 - 激光雷达的探测方法以及激光雷达 - Google Patents

激光雷达的探测方法以及激光雷达 Download PDF

Info

Publication number
WO2023123886A1
WO2023123886A1 PCT/CN2022/098784 CN2022098784W WO2023123886A1 WO 2023123886 A1 WO2023123886 A1 WO 2023123886A1 CN 2022098784 W CN2022098784 W CN 2022098784W WO 2023123886 A1 WO2023123886 A1 WO 2023123886A1
Authority
WO
WIPO (PCT)
Prior art keywords
interpolation
detection
row
column
acquisition
Prior art date
Application number
PCT/CN2022/098784
Other languages
English (en)
French (fr)
Inventor
赵申森
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2023123886A1 publication Critical patent/WO2023123886A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to laser detection, in particular to a laser radar detection method and the laser radar.
  • Lidar is a commonly used ranging sensor, which has the characteristics of long detection distance, high resolution, and low environmental interference. It is widely used in intelligent robots, drones, unmanned driving and other fields.
  • the working principle of lidar is to use the time it takes for the laser to go back and forth between the radar and the target, or the frequency shift caused by the frequency modulation continuous light going back and forth between the radar and the target to evaluate information such as the distance or speed of the target.
  • the number of lines is an important indicator to measure the performance of the radar.
  • VFOV vertical field of view
  • the problem solved by the invention is how to control the cost without increasing the optical-mechanical complexity while increasing the number of laser radar lines.
  • the present invention provides a laser radar detection method.
  • the laser radar includes a plurality of light-emitting units and a plurality of calibration detection units, and the multiple calibration detection units correspond to the multiple light-emitting units one by one.
  • the detection methods include:
  • the detection method includes: performing a fixed value acquisition operation to obtain fixed value acquisition data, and the fixed value acquisition operation includes: performing acquisition through the plurality of light-emitting units and the plurality of calibration detection units to obtain the fixed value acquisition data data; perform at least one interpolation acquisition operation to obtain interpolation acquisition data; obtain the point cloud image according to the fixed value acquisition data and the interpolation acquisition data.
  • the interpolation acquisition operation includes: determining a plurality of interpolation detection units, the plurality of interpolation detection units correspond to the plurality of calibration detection units one by one; The detection unit performs collection to obtain the interpolation collection data.
  • each of the calibration detection units includes a plurality of detectors
  • each of the interpolation detection units includes a plurality of detectors; the plurality of detectors in the interpolation detection unit and the corresponding calibration detection unit Multiple detector sections are not identical.
  • the lidar includes: a plurality of detectors arranged in an array to form a detection array; along the row direction or column direction of the detection array, the interpolation detection unit and the The distance between the corresponding calibration detection units is smaller than the distance between adjacent calibration detection units in the corresponding direction; or, along the row direction or column direction of the detection array, the interpolation detection unit and the corresponding calibration detection unit The distances between the detection units are smaller than the dimensions of the calibration detection units in corresponding directions.
  • the step of performing at least one interpolation collection operation to obtain interpolation collection data includes: performing row and column interpolation collection operations to obtain row and column interpolation collection data, the interpolation collection data including the row and column interpolation collection data; wherein, the row and column interpolation collection operation It includes: determining a plurality of row and column interpolation detection units, and the direction of the row and column interpolation detection units pointing to the corresponding calibration detection unit is parallel to one of the row direction or the column direction of the detection array; through the plurality of light emitting units and the The plurality of row-column interpolation detection units perform collection to obtain the row-column interpolation collection data.
  • the step of performing at least one interpolation acquisition operation to obtain interpolation acquisition data further includes: performing an oblique interpolation acquisition operation to obtain oblique interpolation acquisition data, and the interpolation acquisition data also includes the oblique interpolation acquisition data; wherein, the oblique interpolation The acquisition operation includes: determining a plurality of oblique interpolation detection units, the direction of the oblique interpolation detection unit pointing to the corresponding calibration detection unit intersects both the row direction and the column direction; through the plurality of light emitting units and the A plurality of oblique interpolation detection units perform acquisition to obtain the oblique interpolation acquisition data.
  • the detectors are independently addressable and independently controllable detectors.
  • the step of the interpolation acquisition operation also includes: Based on the plurality of interpolation detection units, determine a plurality of interpolation light-emitting units, the plurality of interpolation light-emitting units correspond to the calibration light-emitting units one by one; acquisition to obtain the interpolated acquisition data.
  • each of the calibration light-emitting units includes a plurality of emitters
  • each of the interpolation light-emitting units includes a plurality of emitters; the multiple emitters in the interpolation light-emitting units are the same as those in the corresponding calibration light-emitting units. Multiple emitter parts are not the same.
  • the transmitters are independently addressable and independently controlled transmitters.
  • the lidar also includes a scanning device, which is suitable for deflecting the light generated by the light emitting unit to the detection angle by rotating or swinging;
  • the fixed value collection operation also includes: through the multiple Before the light-emitting unit and the plurality of calibration detection units perform collection to obtain fixed-value collection data, the detection angle is determined, and the fixed-value collection data corresponds to the detection angle;
  • the interpolation collection operation also includes: Before the light-emitting units and the plurality of interpolation detection units perform collection to obtain the interpolation collection data, a detection angle is determined, and the interpolation collection data corresponds to the detection angle.
  • the rotation axis is parallel to one of the row direction or the column direction of the detection array;
  • the detection method includes: a constant value scanning process, and the constant value scanning process includes: performing constant value acquisition at the i-th detection angle Operation: at the (i+1)th detection angle, a row and column interpolation acquisition operation is performed, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the direction corresponding to the calibration detection unit and is parallel to the rotation axis.
  • the detection method further includes: at least one interpolation scanning process, the interpolation scanning process is located between two adjacent constant value scanning processes; the interpolation scanning operation includes: performing row and column interpolation at the i-th detection angle In the acquisition operation, the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the corresponding calibration detection unit in a direction perpendicular to the direction of the rotation axis; at the i+1th detection angle, an oblique interpolation acquisition operation is performed.
  • the detection method includes: a first constant value scanning process, a first interpolation scanning process, a second constant value scanning process, and a second interpolation scanning process; wherein, the first constant value scanning process includes: Performing the fixed-value collection operation at the i-th detection angle; performing a row-column interpolation collection operation at the i+1-th detection angle; the first interpolation scanning process includes: performing a row-column interpolation collection operation at the i-th detection angle; At the i+1th detection angle, perform an oblique interpolation acquisition operation; the second fixed-value scanning process includes: at the i-th detection angle, perform a row-column interpolation acquisition operation; at the i+1th detection angle, perform the fixed-value acquisition operation ; The second interpolation scan process includes: performing an oblique interpolation acquisition operation at the i-th detection angle; performing a row-column interpolation acquisition operation at the i+1th detection angle; In the row and column interpolation
  • the oblique interpolation detection unit points to the direction corresponding to the calibration detection unit and during the first interpolation scanning process, the i+1th detection In the oblique interpolation acquisition operation performed at different angles, the oblique interpolation detection units point to the corresponding calibration detection unit in the same direction.
  • the present invention also provides a laser radar, including: multiple light-emitting units and multiple calibration detection units, the multiple calibration detection units correspond to the multiple light-emitting units one by one; detection processing device, the detection The processing device is adapted to implement the detection method of the invention.
  • the present invention also provides a laser radar, including: multiple light-emitting units and multiple calibration detection units, the multiple calibration detection units correspond to the multiple light-emitting units one by one; an acquisition module, the acquisition module is suitable for To perform a fixed value acquisition operation to obtain fixed value acquisition data, the fixed value acquisition operation includes: collecting through the plurality of light emitting units and the plurality of calibration detection units to obtain the fixed value acquisition data; it is also suitable for Perform at least one interpolation collection operation to obtain interpolation collection data; a processing module adapted to obtain the point cloud image according to the fixed value collection data and the interpolation collection data.
  • the acquisition module includes: a fixed value acquisition unit and an interpolation acquisition unit, the fixed value acquisition unit is suitable for performing fixed value acquisition operations, and the interpolation acquisition unit is suitable for interpolation acquisition operations;
  • the interpolation acquisition unit It includes: a detection selector and a processor; the detection selector is suitable for determining a plurality of interpolation detection units, and the plurality of interpolation detection units correspond to the plurality of calibration detection units one by one; the processor is suitable for using the The plurality of light emitting units and the plurality of interpolation detection units are collected to obtain the interpolation collection data.
  • each of the calibration detection units includes a plurality of detectors
  • each of the interpolation detection units includes a plurality of detectors; the plurality of detectors in the interpolation detection unit and the corresponding calibration detection unit Multiple detector sections are not identical.
  • the lidar includes: a plurality of detectors arranged in an array to form a detection array; along the row direction or column direction of the detection array, the interpolation detection unit and the The distance between the corresponding calibration detection units is smaller than the distance between adjacent calibration detection units in the corresponding direction; or, along the row direction or column direction of the detection array, the interpolation detection unit and the corresponding calibration detection unit The distances between the detection units are smaller than the dimensions of the calibration detection units in corresponding directions.
  • the interpolation acquisition unit is adapted to perform row and column interpolation acquisition operations to obtain row and column interpolation acquisition data
  • the interpolation acquisition data includes the row and column interpolation acquisition data
  • the detection selector includes: a row and column selection element, the row and column The selection element is suitable for determining a plurality of row and column interpolation detection units, and the direction of the row and column interpolation detection units pointing to the corresponding calibration detection unit is parallel to one of the row direction or the column direction of the detection array;
  • the processor passes the The multiple light-emitting units and the multiple row-column interpolation detection units perform collection to obtain the row-column interpolation collection data.
  • the interpolation acquisition unit is adapted to perform an oblique interpolation acquisition operation to obtain oblique interpolation acquisition data
  • the interpolation acquisition data also includes the oblique interpolation acquisition data
  • the detection selector includes: an oblique selection element, the The oblique selection element is suitable for determining a plurality of oblique interpolation detection units, and the direction of the oblique interpolation detection unit pointing to the corresponding calibration detection unit intersects both the row direction and the column direction;
  • the processor passes the plurality of The light emitting unit and the plurality of oblique interpolation detection units perform acquisition to obtain the oblique interpolation acquisition data.
  • the detector includes: a single photon avalanche diode.
  • the light-emitting unit used by the fixed-value acquisition unit during the fixed-value acquisition operation is a calibration light-emitting unit;
  • the interpolation acquisition unit further includes: a light-emitting selector, which is suitable for based on the A plurality of interpolation detection units, determining a plurality of interpolation light emitting units, the plurality of interpolation light emission units correspond to the calibration light emission units;
  • the processor uses the plurality of interpolation light emission units and the plurality of interpolation detection units Acquisition is performed to obtain the interpolated acquisition data.
  • each of the calibration light-emitting units includes a plurality of emitters
  • each of the interpolation light-emitting units includes a plurality of emitters; the multiple emitters in the interpolation light-emitting units are the same as those in the corresponding calibration light-emitting units. Multiple emitter parts are not the same.
  • the transmitter includes: a vertical cavity surface emitting transmitter.
  • the lidar also includes: a scanning device, which is suitable for deflecting the light generated by the light emitting unit around the rotation axis to a detection angle by rotating or swinging; the fixed value acquisition unit is also suitable for determining the detection angle. Angle, the fixed-value acquisition data corresponds to the detection angle; the interpolation acquisition unit is also suitable for determining the detection angle, and the interpolation acquisition data corresponds to the detection angle.
  • the rotation axis is parallel to one of the row direction or the column direction of the detection array;
  • the scanning process of the scanning device includes: a constant value scanning process;
  • the constant value scanning process includes: the ith detection angle, the The fixed value acquisition unit performs a fixed value acquisition operation; at the i+1th detection angle, the interpolation acquisition unit performs a row and column interpolation acquisition operation, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the corresponding calibration detection unit
  • the direction is parallel to the direction of the rotation axis.
  • the scanning process of the scanning device further includes: an interpolation scanning process, the interpolation scanning process is located between two adjacent constant value scanning processes; the interpolation scanning process includes: the i-th detection angle, the The interpolation acquisition unit performs the row and column interpolation acquisition operation, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the direction of the corresponding calibration detection unit and is perpendicular to the direction of the rotation axis; at the i+1th detection angle, the interpolation acquisition unit Perform oblique interpolation acquisition operations.
  • the scanning process of the scanning device includes: a first constant value scanning process, a first interpolation scanning process, a second constant value scanning process and a second interpolation scanning process; wherein, the first constant value scanning
  • the process includes: at the i-th detection angle, the fixed value acquisition unit performs the fixed value acquisition operation; at the i+1th detection angle, the interpolation acquisition unit performs row and column interpolation acquisition operations;
  • the first interpolation scanning process includes : at the i-th detection angle, the interpolation acquisition unit performs row and column interpolation acquisition operations; at the i+1th detection angle, the interpolation acquisition unit performs oblique interpolation acquisition operations;
  • the second constant value scanning process includes: at the i-th detection angle Detection angle, the interpolation acquisition unit performs row and column interpolation acquisition operation; the i+1th detection angle, the fixed value acquisition unit performs the fixed value acquisition operation;
  • the second interpolation scanning process includes: i-th detection angle , the interpol
  • At least one interpolation acquisition operation is performed to obtain the interpolation acquisition data, and the final point cloud image is based on the fixed value acquisition data and the interpolation Generated together with collected data.
  • the at least one interpolation acquisition operation can obtain data other than the fixed-value acquisition data, and the point cloud image obtained by splicing the fixed-value acquisition data and the interpolation acquisition data must have a higher line number density, and By increasing the number of acquisition operations to increase the line number density, there is no need to increase hardware costs, and the optical-mechanical complexity will not be increased, which can effectively control costs and ensure reliability.
  • the step of the interpolation acquisition operation further includes: determining a plurality of interpolation light-emitting units based on the plurality of interpolation detection units, and the plurality of interpolation light-emitting units correspond to the calibration light-emitting units one by one; Acquisition is performed by the plurality of interpolation light emitting units and the plurality of interpolation detection units to obtain the interpolation acquisition data.
  • the interpolation detection unit Based on the interpolation detection unit, determine the interpolation light-emitting unit, so that the center position of the light-emitting unit is translated synchronously with the detection unit during each interpolation acquisition operation, so as to ensure the receiving field of view of the interpolation detection unit and the spot center of the echo light Corresponding to ensure the detection efficiency and distance measurement capability.
  • Fig. 1 is a structural schematic diagram of an embodiment of the laser radar of the present invention
  • Fig. 2 is a schematic structural diagram of the detection array in the detection module in the lidar embodiment shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of the transmitting array in the transmitting module in the embodiment of the laser radar shown in Fig. 1;
  • Fig. 4 is a schematic flowchart of a detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 1;
  • Fig. 5 is a schematic diagram of the optical sensitive position of the calibration detection unit in the lidar embodiment shown in Fig. 1;
  • Fig. 6 is a schematic diagram of the optical path of the receiving field of view of the detection unit in the lidar embodiment shown in Fig. 1;
  • Fig. 7 is a schematic flow chart of the primary interpolation acquisition operation steps of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 4;
  • Fig. 8 is a schematic flowchart of at least one interpolation acquisition operation step of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 4;
  • Fig. 9 is the row and column interpolation acquisition operation of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 4 when the row and column interpolation detection unit points to the direction corresponding to the calibration detection unit and is parallel to the row of the detection array a schematic diagram of the direction;
  • Fig. 10 shows that in the row and column interpolation acquisition operation of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 4, when the row and column interpolation detection unit points to the direction corresponding to the calibration detection unit and is parallel to the column of the detection array a schematic diagram of the direction;
  • Fig. 11 is a schematic diagram of the oblique interpolation detection unit and the corresponding calibration detection unit in the oblique interpolation acquisition operation of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 4;
  • Fig. 12 is a schematic diagram of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 4 using an interpolation light-emitting unit to perform acquisition operations;
  • Fig. 13 is a schematic diagram of the detection array in the detection method implemented by the detection processing device described in another embodiment of the laser radar of the present invention.
  • Fig. 14 is a schematic diagram of the detection array during the first fixed-value scanning process of the detection method implemented by the detection processing device in another embodiment of the laser radar of the present invention
  • Fig. 15 is a schematic diagram of the detection array during the first interpolation scanning process of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 14;
  • Fig. 16 is a schematic diagram of the detection array during the second fixed-value scanning process of the detection method implemented by the detection processing device in the embodiment of the lidar shown in Fig. 14;
  • Fig. 17 is a schematic diagram of the detection array during the second interpolation scanning process of the detection method implemented by the detection processing device in the lidar embodiment shown in Fig. 14;
  • Fig. 18 is a schematic structural diagram of another embodiment of the lidar of the present invention.
  • Another method is to divide the original 1-line laser into multiple lines in the optical path of the laser radar.
  • this method needs to add a light splitting device to the optical path design of the laser radar, which increases the complexity of the optical machine;
  • this method increases the number of lines of the lidar, which will pose challenges to the performance of the lidar, such as distance measurement capability and heat dissipation capability.
  • the present invention provides a laser radar detection method
  • the laser radar includes a plurality of light-emitting units and a plurality of calibration detection units, the multiple calibration detection units and the multiple light-emitting units one by one
  • the detection method includes: performing a fixed value acquisition operation to obtain fixed value acquisition data
  • the fixed value acquisition operation includes: performing acquisition through the plurality of light-emitting units and the plurality of calibration detection units to obtain the fixed value value collection data; perform at least one interpolation collection operation to obtain interpolation collection data; obtain the point cloud image according to the fixed value collection data and the interpolation collection data.
  • the at least one interpolation acquisition operation can obtain data other than fixed-value acquisition data, and the point cloud image obtained by splicing the fixed-value acquisition data and the interpolation acquisition data must have higher
  • the line density can be increased, and the method of increasing the line density by increasing the number of acquisition operations does not need to increase the hardware cost and the optical-mechanical complexity, which can effectively control the cost and ensure the reliability.
  • FIG. 1 shows a schematic structural diagram of an embodiment of the laser radar of the present invention.
  • the lidar includes multiple light emitting units 111 and multiple detection units 121 , and the multiple detection units 121 correspond to the multiple light emitting units 111 one by one.
  • the transmitting module 110 of the lidar includes: a plurality of light emitting units 111
  • the detecting module 120 of the lidar includes: a plurality of detecting units 121
  • the plurality of detecting units 121 are connected to the The plurality of light emitting units 111 are in one-to-one correspondence.
  • the emitting module 110 of the lidar is suitable for generating detection light, and the emitting module 110 includes a plurality of light emitting units 111, and each light emitting unit 111 generates a line of detection light.
  • the probe light generated by each light emitting unit 111 covers a certain range of field of view in the far field, that is, each light emitting unit 111 corresponds to one emission field of view in the far field.
  • the detection module 120 of the lidar is adapted to receive echo light formed after the detection light is reflected.
  • the detection module 120 includes: a plurality of detection units 121 .
  • Each detection unit 121 is capable of receiving echo light within a certain field of view in the far field, that is, each detection unit 121 corresponds to a receiving field of view in the far field.
  • the plurality of detection units 121 correspond to the plurality of light-emitting units 111 one-to-one, that is, in the lidar, the emission field of view of the light-emitting unit in the far field is the same as the reception field of view of the corresponding detection unit in the far field. Fields are the same to form a physical channel, that is, at the far-field position, the field of view of the light-emitting unit and the corresponding detection unit are the same, so the echo light formed by the reflection of the detection light emitted by the light-emitting unit is corresponding received by the receiving unit.
  • the 8 physical channels in the transmitting module 110 and the detecting module 120 of the lidar that is, the 8 light-emitting units 111 in the transmitting module 110, are respectively the 1st, 2nd and 3rd , ..., 8 light emitting units
  • the 8 detection units 121 in the detection module 120 are respectively the 1st, 2nd, 3rd, ..., 8th detection units.
  • the detection light generated by the light-emitting unit 111i of the i-th channel is reflected by obstacles outside the radar to form echo light, and the echo light is received by the detection unit 121i of the i-th channel.
  • the light-emitting unit 111i corresponds to the detection unit 121i to form the i-th channel; the light-emitting unit 111(i+1) corresponds to the detection unit 121(i+1) to form the (i+1)th channel aisle.
  • each detection unit 121 includes: a plurality of detectors 121s.
  • the lidar includes: a plurality of detectors 121s arranged in an array to form a detection array; each detection unit 121 includes a plurality of detection units 121s device 121s.
  • each of the detectors 121s is a detector with independent addressing and independent control, that is to say, each of the detectors 121s can be powered on independently and drawn out independently (as shown in circle 1213 in Figure 2 shown), to read a single probe signal by only powering up or only reading the probe on a specific address line.
  • the detector 1213 may include: a single photon avalanche diode (SPAD).
  • the light emitting unit 111 includes: a plurality of emitters.
  • the lidar includes: a plurality of emitters 111v arranged in an array to form a detection array; each of the light emitting units 111 includes a plurality of emitters 111v.
  • each of the transmitters 111v is an independently addressable and independently controlled transmitter, that is, each of the transmitters 111v can be powered on independently.
  • the plurality of emitters 111v are arranged in an array to form an emitter array, where a minimum unit composition is shown in circle 1113 .
  • Different transmitters 111v are selected by applying different voltages to the connection lines of A1-A3 and P1-P6, so as to realize independent addressing and independent control of the transmitters 111v.
  • the transmitter 111v includes: a vertical cavity surface emitting laser (VCSEL).
  • the light emitting unit may also be an independent laser, such as an edge emitting laser (EEL).
  • EEL edge emitting laser
  • the emission unit of the laser radar emits detection light
  • the detection unit determined after calibration is the calibration detection unit.
  • the calibration detection unit and the light-emitting unit correspond to the same field of view in the far field
  • the light-emitting unit corresponding to the calibration detection unit is also the calibration light-emitting unit
  • the process of calibration (installation) is also the process of matching the far-field field of view.
  • the light emitting unit 111 and the detection unit 121 in the laser radar shown in FIG. 1 are the calibration light emitting unit and the calibration detection unit of the laser radar. Therefore, each of the calibration light emitting units includes a plurality of the emitters, and each of the calibration detection units includes a plurality of the detectors.
  • FIG. 1 only shows one column of light emitting units and one column of detection units, and the transmitting module and receiving module of the laser radar respectively include multiple columns of light emitting units and multiple columns of detection units. Moreover, FIG. 1 shows that the number of light-emitting units included in each column of light-emitting units of the emitting module is also greater than 8, and the number of detection units included in each column of detection units is also greater than 8. Therefore, what is shown in FIG. 1 is a part of the laser radar transmitting array and detecting array.
  • the lidar further includes a scanning device (not shown in the figure), and the scanning device is suitable for deflecting the light generated by the light emitting unit to a detection angle by rotating or swinging.
  • the laser radar can be a mechanical laser radar, a rotating mirror laser radar, or a micro-vibrating mirror laser radar in which the motor drives the overall rotation of the transceiver device, so the scanning device can be an integral rotating mechanism with a motor , can also be a rotating mirror or a micro-galvanometer.
  • the lidar further includes: a detection processing device 130 suitable for implementing the detection method of the present invention.
  • FIG. 4 shows a schematic flowchart of a detection method implemented by the detection processing device in the lidar embodiment shown in FIG. 1 .
  • the detection method includes: executing step S110, performing a fixed value acquisition operation to obtain fixed value acquisition data, and the fixed value acquisition operation includes: performing acquisition through the plurality of light-emitting units and the plurality of calibration detection units to obtain the The fixed value collection data; execute step S120, perform at least one interpolation collection operation to obtain interpolation collection data; finally execute step S130, obtain the point cloud image according to the fixed value collection data and the interpolation collection data.
  • the at least one interpolation acquisition operation can obtain data other than the fixed-value acquisition data, and the point cloud image obtained by splicing the fixed-value acquisition data and the interpolation acquisition data must have a higher line number density, and By increasing the number of acquisition operations to increase the line number density, there is no need to increase hardware costs, and the optical-mechanical complexity will not be increased, which can effectively control costs and ensure reliability.
  • Step S110 is executed to perform a fixed value collection operation.
  • step S110 is executed to perform a fixed value acquisition operation to obtain fixed value acquisition data
  • the fixed value acquisition operation includes: performing Collect to obtain the fixed value collection data.
  • Acquisition through the plurality of light emitting units and the plurality of calibration detection units refers to the data collection realized by sending and receiving optical signals through the light emitting units and the calibration detection units.
  • the detection unit determined after the laser radar is calibrated is a calibration detection unit, so step S110 is executed, and during the operation of acquiring a fixed value, the detection is performed through the multiple light-emitting units and the multiple calibration detection units.
  • the light-emitting unit is a calibration light-emitting unit.
  • the optically sensitive position of the calibration detection unit 121i of the i-th channel (that is, the coordinates of the center position is (xi , y i ); as shown in FIG. 6 , the calibration detection unit 121i of the i-th channel
  • the angle corresponding to the field of view is (shown by the dotted line 602 in FIG. 6 ), where ⁇ i is the vertical viewing angle, ⁇ is the horizontal viewing angle, and f is the focal length of the optical system 601 .
  • the receiving field of view corresponds to the center position of the light spot, that is, the block 603 is the position corresponding to the calibration detection unit 121i of the i-th channel.
  • the lidar has a scanning device, therefore, the operation of collecting the fixed value also includes: collecting by the multiple light-emitting units and the multiple calibration detection units to obtain Before the fixed-value collection data, the detection angle is determined, and the fixed-value collection data corresponds to the detection angle.
  • step S120 is executed to perform at least one interpolation collection operation.
  • step S110 to perform the fixed value acquisition operation and performing step S120 to perform at least one interpolation acquisition operation is not limited.
  • FIG. 7 shows a schematic flowchart of an interpolation acquisition operation step in the detection method implemented by the detection processing device in the lidar embodiment shown in FIG. 4 .
  • one interpolation acquisition operation includes: performing step S120a, determining a plurality of interpolation detection units, and the plurality of interpolation detection units correspond to the plurality of calibration detection units one by one ; Then step S120b is executed, collecting by the plurality of light emitting units and the plurality of interpolation detection units to obtain the interpolation acquisition data.
  • the step of determining the plurality of interpolation detection units is suitable for determining the positions of the detection units receiving optical signals in the interpolation acquisition operation, so as to expand the line bundle and the resolution without additionally increasing the optical-mechanical complexity.
  • the multiple interpolation detection units correspond to the multiple calibration detection units one-to-one
  • the multiple calibration detection units that is, the detection unit 121 in FIG. 2
  • the plurality of interpolation detection units and the plurality of light emitting units 111 correspond one-to-one to form a channel in the interpolation acquisition operation.
  • step S120b is executed, and in the step of acquiring the interpolation acquisition data through the plurality of light-emitting units and the plurality of interpolation detection units, the detection light generated by the light-emitting unit 111i of the i-th channel is reflected by obstacles outside the radar Echo light is formed, and the echo light is received by the interpolation detection unit of the i-th channel.
  • the lidar has a scanning device. Therefore, as shown in FIG. 7 , the interpolation acquisition operation further includes: detecting Before the unit performs collection to obtain the interpolation collection data, step S120c is performed to determine a detection angle, and the interpolation collection data corresponds to the detection angle.
  • FIG. 8 shows a schematic flowchart of at least one interpolation acquisition operation step in the detection method implemented by the detection processing device in the lidar embodiment shown in FIG. 4 .
  • step S120 is performed to perform at least one interpolation acquisition operation to obtain interpolation acquisition data
  • the steps include: executing step S120xy, performing a row and column interpolation acquisition operation to obtain row and column interpolation acquisition data, and the interpolation acquisition data includes the row and column interpolation acquisition data; wherein, the row and column interpolation acquisition operation includes: executing step 121xy, determining a plurality of row and column interpolation acquisition data
  • the detection unit, the direction of the row and column interpolation detection unit pointing to the corresponding calibration detection unit is parallel to one of the row direction or the column direction of the detection array; step 122xy is performed, through the plurality of light emitting units and the plurality of The row-column interpolation detection unit performs collection to obtain the row-column interpolation collection data.
  • FIG. 9 shows a schematic diagram in which the direction of the row-column interpolation detection unit pointing to the corresponding calibration detection unit is parallel to the row direction of the detection array during the row-column interpolation acquisition operation.
  • the direction in which the row and column interpolation detection unit 122ix points to the corresponding calibration detection unit (shown by the dotted line box in FIG. 9 ) is parallel to the row direction of the detection array.
  • the row and column interpolation detection unit 122ix is horizontally translated by ⁇ x relative to the calibration detection unit 121i (as shown in FIG. 5 ), that is, the detector at the corresponding position is powered on or read, and the interpolation detection unit of the i-th channel
  • the angle of field of view corresponding to 121ix is
  • FIG. 10 it shows a schematic diagram of when the direction of the row and column interpolation detection unit pointing to the corresponding calibration detection unit is parallel to the column direction of the detection array during the row and column interpolation acquisition operation.
  • the direction of the row and column interpolation detection unit 122iy pointing to the corresponding calibration detection unit is parallel to the column direction of the detection array.
  • the row and column interpolation detection unit 122iy is vertically translated by ⁇ y relative to the calibration detection unit 121i (as shown in FIG. 5 ), that is, the detector at the corresponding position is powered on or read, and the interpolation detection unit of the i-th channel
  • the angle of field of view corresponding to 121ix is
  • the step of performing at least one interpolation acquisition operation to obtain interpolation acquisition data further includes: executing step S120d, performing oblique interpolation acquisition operation to obtain oblique interpolation acquisition data, and the interpolation acquisition data also includes the Oblique interpolation acquisition data; wherein, the oblique interpolation acquisition operation includes: performing step S121d, determining a plurality of oblique interpolation detection units, the direction of the oblique interpolation detection unit pointing to the corresponding calibration detection unit and the row direction and the column direction are all intersecting; step S122d is executed, and acquisition is performed by the plurality of light emitting units and the plurality of oblique interpolation detection units to obtain the oblique interpolation acquisition data.
  • FIG. 11 a schematic diagram of the oblique interpolation detection unit and the corresponding calibration detection unit in the oblique interpolation acquisition operation is shown.
  • the direction in which the oblique interpolation detection unit 122ixy points to the corresponding calibration detection unit intersects both the row direction and the column direction.
  • the oblique interpolation detection unit 122ixy is horizontally translated by ⁇ x and vertically translated by ⁇ y relative to the calibration detection unit 121i (as shown in FIG.
  • the angle of the field of view corresponding to the oblique interpolation detection unit 122ixy is
  • the distance between the interpolation detection unit and the corresponding calibration detection unit are smaller than the distances between adjacent calibration detection units in the corresponding direction.
  • the distance between the row and column interpolation detection unit 122ix and the corresponding calibration detection unit is smaller than the distance between adjacent calibration detection units in the row direction, that is The row and column interpolation detection unit 122ix is located between two adjacent calibration detection units in the row direction.
  • the distance between the row and column interpolation detection unit 122iy and the corresponding calibration detection unit is smaller than the distance between adjacent calibration detection units in the column direction , that is, the row and column interpolation detection unit 122iy is located between two adjacent calibration detection units in the column direction.
  • the distance between the oblique interpolation detection unit 122ixy and the corresponding calibration detection unit is smaller than the distance between adjacent calibration detection units in the row direction.
  • Distance that is, the oblique interpolation detection unit 122ixy is located between two adjacent calibration detection units in the row direction; and, along the column direction of the detection array, the distance between the oblique interpolation detection unit 122ixy and the corresponding calibration detection unit The distance between them is smaller than the distance between adjacent calibration detection units in the column direction, that is, the oblique interpolation detection unit 122ixy is located between two adjacent calibration detection units in the column direction.
  • the receiving module of the lidar includes multiple rows and multiple columns of detection units. However, this method is only an example. In some embodiments of the present invention, the receiving module of the lidar may also include only one column of detection units or one row of detection units.
  • the receiving module of the lidar when the receiving module of the lidar includes only one column of detection units or one row of detection units, along the row direction or column direction of the detection array, the interpolation detection unit and the corresponding calibration The distances between the detection units are smaller than the dimensions of the calibration detection units in corresponding directions.
  • the interpolation detection units include at least one of row and column interpolation units and oblique interpolation units, corresponding to The distance between the calibration detection units is smaller than the size of the calibration detection units in the row direction, that is, the optically sensitive position (ie, the center position) of the interpolation detection unit is located within the range of the calibration detection units in the row direction.
  • the interpolation detection unit includes at least one of a row-column interpolation unit and an oblique interpolation unit, and the corresponding calibration
  • the distance between the detection units is smaller than the size of the calibration detection unit in the column direction, that is, the optically sensitive position (ie, the center position) of the interpolation detection unit is located within the range of the calibration detection unit in the column direction.
  • the field of view of the detection unit corresponds to the central position of the light spot.
  • the interpolation detection unit is located between two adjacent calibration detection units in the corresponding direction, so the The field of view corresponding to the interpolation detection unit is located between the fields of view corresponding to two adjacent calibration detection units in the corresponding direction. Therefore, the angle between the field of view corresponding to the interpolation detection unit and the field of view corresponding to the adjacent calibration detection unit must be smaller than the angle between the fields of view corresponding to two adjacent calibration detection units. It can be seen that, The execution of the interpolation acquisition operation can effectively improve the resolution without increasing the optical-mechanical complexity.
  • the distance between the interpolation detection unit and the corresponding calibration detection unit can be set according to the resolution of the lidar.
  • the distance ⁇ x between the interpolation detection unit and the corresponding calibration detection unit is:
  • the distance ⁇ y between the interpolation detection unit and the corresponding calibration detection unit is:
  • the optically sensitive position (that is, the center position) of the interpolation detection unit is located within the range corresponding to the direction of the calibration detection unit, the interpolation
  • the part of the field of view corresponding to the detection unit coincides with the field of view of the calibration detection unit in the corresponding direction, and the other part extends beyond the calibration detection unit in the corresponding direction. Therefore, the angle between the field of view corresponding to the interpolation detection unit and the field of view corresponding to the adjacent calibration detection unit is bound to be smaller than the two calibration detection units corresponding to the two calibration detection units. From the included angle between the fields of view, it can be seen that the interpolation acquisition operation can effectively improve the resolution without increasing the optical-mechanical complexity.
  • the distance between the interpolation detection unit and the corresponding calibration detection unit is such that the interpolation detection unit
  • the difference between the corresponding viewing angle and the corresponding viewing angle of the calibration detection unit is smaller than the calibration resolution of the laser radar (ie, the radar resolution without interpolation acquisition operation).
  • each of the interpolation detection units includes a plurality of detectors, and the plurality of detectors in the interpolation detection unit and the plurality of detectors in the corresponding calibration detection unit parts are different.
  • one interpolation acquisition operation further includes: performing step S120d, determining a plurality of interpolation light emitting units based on the plurality of interpolation detection units, and the plurality of interpolation light emission units are related to the One-to-one correspondence between the calibration light-emitting units; step S120b is executed, and in the step of obtaining the interpolation acquisition data through the multiple light-emitting units and the multiple interpolation detection units, the interpolation light-emitting units and the multiple interpolation light-emitting units The multiple interpolation detection units perform collection to obtain the interpolation collection data.
  • the interpolation detection unit Based on the interpolation detection unit, determine the interpolation light-emitting unit, so that the center position of the light-emitting unit is translated synchronously with the detection unit during each interpolation acquisition operation, so as to ensure the receiving field of view of the interpolation light-emitting unit and the spot center of the echo light Corresponding to ensure the detection efficiency and distance measurement capability.
  • the position of the echo light spot on the detection array can be translated synchronously with the detection unit, which can ensure Range capability and detection efficiency.
  • the lidar includes: a plurality of emitters, each of the calibration light emitting units includes a plurality of the emitters, and each of the interpolation light emitting units includes a plurality of the emitters; the interpolation light emitting The plurality of emitters in the unit is partially different from the plurality of emitters in the corresponding nominal lighting unit.
  • Step S130 is executed to obtain the point cloud image according to the fixed value collection data and the interpolation collection data.
  • the point cloud image is obtained according to the sum of the fixed-value collection data obtained by the fixed-value collection operation and the interpolation collection data obtained by each interpolation collection operation.
  • the lidar further includes: a scanning device, the fixed-value acquisition data corresponds to the detection angle, and the interpolation acquisition data corresponds to the detection angle; therefore, based on all detection angles, The fixed value collected data and the interpolated collected data are used to obtain a point cloud image.
  • FIG. 13 shows a schematic diagram of the detection array in the detection method implemented by the detection processing device in another embodiment of the lidar of the present invention.
  • FIG. 13 only shows schematic positions of four detection units in the lidar, and the number of detection units in the lidar is not limited to four, and may be other numbers.
  • the black solid origin in the figure represents the optically sensitive position (that is, the central position) of each detection unit.
  • the coordinates marked in the figure are the coordinates of the optically sensitive position of the uppermost detection unit in a row of 4 detection units shown.
  • the lidar has a scanning device, and the rotation axis of the scanning device is parallel to the column direction of the detection array. In other embodiments of the present invention, the rotation axis of the scanning device may also be parallel to the row direction of the detection array, which is not limited in the present invention.
  • the detection method includes: a fixed value scanning process, the fixed value scanning process includes: performing a fixed value acquisition operation at the (m-1)th detection angle; performing row and column interpolation at the mth detection angle In the acquisition operation, the direction in which the row and column interpolation detection unit points to the corresponding calibration detection unit in the row and column interpolation acquisition operation is parallel to the rotation axis.
  • the detection method includes: performing a constant value scanning process at the nth frame. Therefore, in the nth frame, during the (m-1) detection angle, a fixed value collection operation is carried out; in the nth frame, during the m detection angle, the row and column interpolation collection operation is carried out, and the row and column interpolation detection unit in the row and column interpolation collection operation
  • the direction pointing to the corresponding calibration detection unit is parallel to the column direction of the detection array.
  • the four detection units are calibration detection units, and the coordinates of the optically sensitive position of the uppermost detection unit are ( xi , y i ); in the nth frame, at the mth detection angle, the four detection units are row and column interpolation detection units, each of the row and column interpolation detection units is parallel to the line of the corresponding calibration detection unit to the column of the detection array direction, where the coordinates of the optically sensitive position of the uppermost detection unit are (x i , y i + ⁇ y).
  • the detection method further includes: at least one interpolation scanning process, the interpolation scanning process is located between two adjacent fixed value scanning processes; the interpolation scanning operation includes: At the (m-1)th detection angle, the row and column interpolation acquisition operation is performed, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the direction of the corresponding calibration detection unit perpendicular to the direction of the rotation axis; at the mth detection angle, Perform oblique interpolation acquisition operation.
  • the detecting method includes: performing the interpolation scanning process in the (n+1)th frame. Therefore, in the (n+1)th frame, during the (m-1) detection angle, the row and column interpolation acquisition operation is performed, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the direction of the corresponding calibration detection unit parallel to the Detect the row direction of the array; in the (n+1)th frame, at the mth detection angle, perform an oblique interpolation acquisition operation.
  • the four detection units are row and column interpolation detection units, and each of the row and column interpolation detection units is associated with the corresponding
  • the connection line of the calibration detection unit is parallel to the row direction of the detection array, wherein the coordinates of the optically sensitive position of the uppermost detection unit are ( xi + ⁇ x, y i ); in the (n+1)th frame, the mth detection
  • the four detection units are oblique interpolation detection units, and the coordinates of the optically sensitive position of the uppermost detection unit are ( xi + ⁇ x, y i + ⁇ y).
  • Inserting an interpolation scanning process between adjacent fixed-value scanning processes can make the row-column interpolation detection unit and the oblique interpolation detection unit fill in between adjacent calibration detection units, thereby uniformly expanding the line beam and improving resolution.
  • the calibration detection unit and the row-column interpolation detection unit in the constant value scanning process of the nth frame are carried out with the (n+1)th frame
  • the row-column interpolation detection unit and the oblique interpolation detection unit in the interpolation scanning process constitute a regular lattice.
  • the spacing of the detection units is equal; along the direction of the parallel axis of rotation (that is, on the column direction of the detection array), during the interpolation scanning process of the (n+1)th frame, the oblique interpolation detection unit determined by the oblique interpolation acquisition operation is the same as the corresponding
  • the distance between the calibration detection units is equal to the distance between the row and column interpolation detection units and the corresponding calibration detection units in the row and column interpolation acquisition operation performed at the
  • the traversal of the detectors in the detection array can be realized through cooperation of different acquisition operations and different scanning processes.
  • FIG. 14 to FIG. 17 schematic diagrams of the detection array in the detection method implemented by the detection processing device in another embodiment of the laser radar of the present invention are shown.
  • the detection method includes: the first constant value scanning process, the first interpolation scanning process, the second constant value scanning process and the second interpolation scanning process; wherein, as shown in frame b in Figure 14
  • the first constant value scanning process includes: at the (a-1)th detection angle, perform the fixed value acquisition operation; at the ath detection angle, perform row and column interpolation acquisition operation; as shown in Figure 15 (b As shown in +1) frame
  • the first interpolation scanning process includes: at the (a-1)th detection angle, perform row and column interpolation acquisition operation; at the ath detection angle, perform oblique interpolation acquisition operation; as shown in Fig.
  • the second fixed value scanning process includes: performing row and column interpolation acquisition operations at the (a-1) detection angle; performing the fixed value acquisition operation at the a detection angle; as shown in FIG.
  • the second interpolation scanning process includes: performing an oblique interpolation acquisition operation at the (a-1)th detection angle; performing a row-column interpolation acquisition operation at the ath detection angle; and
  • the second constant-value scanning process in the row-column interpolation acquisition operation performed at the (a-1)th detection angle, the row-column interpolation detection unit points to the direction corresponding to the calibration detection unit and the first constant-value scanning process
  • the direction of the row and column interpolation detection unit pointing to the corresponding calibration detection unit is the same; in the second interpolation scanning process, the row and column at the ath detection angle In the interpolation acquisition operation, the row and column
  • the oblique interpolation detection unit points to the corresponding
  • the direction of the calibration detection unit is the same as the direction in which the oblique interpolation detection unit points to the corresponding calibration detection unit in the oblique interpolation acquisition operation performed at the ath detection angle during the first interpolation scanning process.
  • Different scanning processes with different acquisition operations in different scanning processes, can make the calibration detection unit and interpolation detection unit traverse each detector in the detection array, and can maximize the An extended harness for increased resolution.
  • the first fixed-value scanning process, the first interpolation scanning process, the second constant-value scanning process and the second The calibration detection unit and the interpolation detection unit in the interpolation scanning process form a regular lattice.
  • the row-column interpolation detection unit points to the corresponding calibration detection unit in a direction and distance from the first
  • the direction and distance of the row-column interpolation detection unit pointing to the corresponding calibration detection unit are the same;
  • the row and column interpolation detection unit points to the corresponding calibration detection unit direction and distance from the row and column at the (a-1)th detection angle during the first interpolation scanning process
  • the direction and distance of the row and column interpolation detection unit pointing to the corresponding calibration detection unit are the same, and during the second interpolation scanning process, in the oblique interpolation acquisition operation performed at the (a)
  • the present invention also provides a laser radar.
  • the laser radar includes: a plurality of light-emitting units and a plurality of calibration detection units, the plurality of calibration detection units and the plurality of light-emitting units correspond one-to-one; an acquisition module, the acquisition module is suitable for performing fixed value acquisition operations to Obtaining fixed value acquisition data, the fixed value acquisition operation includes: collecting by the plurality of light emitting units and the plurality of calibration detection units to obtain the fixed value acquisition data; it is also suitable to perform at least one interpolation acquisition operation to Obtaining interpolation collection data; a processing module adapted to obtain the point cloud image according to the fixed value collection data and the interpolation collection data.
  • FIG. 15 shows a schematic structural diagram of an embodiment of the laser radar of the present invention.
  • the lidar includes multiple light emitting units 211 and multiple detection units 221 , and the multiple detection units 221 correspond to the multiple light emitting units 211 one by one.
  • the transmitting module 210 of the lidar includes: a plurality of light emitting units 211
  • the detection module 220 of the lidar includes: a plurality of detecting units 221, and the plurality of detecting units 221 are connected to the The plurality of light emitting units 211 are in one-to-one correspondence.
  • the emitting module 210 of the lidar is suitable for generating detection light, and the emitting module 210 includes a plurality of light emitting units 211, and each light emitting unit 211 generates a line of detection light.
  • the probe light generated by each light-emitting unit 211 covers a certain field of view in the far field, that is, each light-emitting unit 111 corresponds to an emission field of view in the far field.
  • the detection module 220 of the lidar is adapted to receive echo light formed after the detection light is reflected.
  • the detection module 220 includes: a plurality of detection units 221 .
  • Each detection unit 221 is capable of receiving echo light within a certain field of view in the far field, that is, each detection unit 221 corresponds to a receiving field of view in the far field.
  • the plurality of detection units 221 correspond to the plurality of light emitting units 211 one-to-one, that is, in the lidar, the emission field of view of the light emission unit in the far field is the same as the reception field of view of the corresponding detection unit in the far field. Fields are the same to form a physical channel, that is, at the far-field position, the field of view of the light-emitting unit and the corresponding detection unit are the same, so the echo light formed by the reflection of the detection light emitted by the light-emitting unit is corresponding received by the receiving unit.
  • the 8 physical channels in the transmitting module 210 and the detecting module 220 of the lidar that is, the 8 light-emitting units 211 in the transmitting module 210
  • the 8 detection units 221 in the detection module 120 are respectively the 1st, 2nd, 3rd, ..., 8th detection units.
  • the detection light generated by the light-emitting unit 211i of the i-th channel is reflected by obstacles outside the radar to form echo light, and the echo light is received by the detection unit 221i of the i-th channel.
  • the light-emitting unit 211i corresponds to the detection unit 221i to form the i-th channel; the light-emitting unit 211(i+1) corresponds to the detection unit 221(i+1) to form the (i+1)th channel aisle.
  • each detection unit 221 includes: a plurality of detectors 221s.
  • the lidar includes: a plurality of detectors 221s arranged in an array to form a detection array; each detection unit 221 includes a plurality of detection units 221 device 221s.
  • each of the detectors 221s is an independently addressable and independently controlled detector, that is to say, each of the detectors 221s can be independently powered on and independently drawn out (as shown in circle 1213 in Figure 2 shown), read a single probe signal by only powering up or only reading the probe on a specific address line.
  • the detector 221s may include: a single photon avalanche diode (SPAD).
  • the light emitting unit 211 includes: a plurality of emitters.
  • the lidar includes: a plurality of emitters 211v arranged in an array to form a detection array; each of the light emitting units 211 includes a plurality of emitters 211v.
  • each of the transmitters 211v is an independently addressable and independently controlled transmitter, that is, each of the transmitters 211v can be powered on independently.
  • the plurality of emitters 211v are arranged in an array to form an emitter array, and circle 1113 shows a minimum unit composition.
  • Different transmitters 211v are selected by applying different voltages to the connection lines of A1-A3 and P1-P6, so as to realize independent addressing and independent control of the transmitters 211v.
  • the emitter 211v includes: a vertical cavity surface emitting laser (VCSEL).
  • the configuration of the light emitting unit as a plurality of emitters is only an example.
  • the light emitting unit may also be an independent laser, such as an edge emitting laser (EEL).
  • EEL edge emitting laser
  • the emission unit of the laser radar emits detection light
  • the detection unit determined after calibration is the calibration detection unit.
  • the calibration detection unit and the light-emitting unit correspond to the same field of view in the far field Range
  • the light-emitting unit corresponding to the calibration detection unit is also the calibration light-emitting unit
  • the process of calibration (installation) is also the process of matching the far-field field of view.
  • the light emitting unit 211 and the detection unit 221 in the laser radar shown in FIG. 18 are the calibration light emitting unit and the calibration detection unit of the laser radar. Therefore, each of the calibration light emitting units includes a plurality of the emitters, and each of the calibration detection units includes a plurality of the detectors.
  • FIG. 18 only shows one column of light emitting units and one column of detection units, and the transmitting module and receiving module of the lidar respectively include multiple columns of light emitting units and multiple columns of detection units.
  • FIG. 18 shows that the emitting module includes more than 8 light-emitting units in each column of light-emitting units, and includes more than 8 detection units in each column of detection units. Therefore, what is shown in FIG. 18 is a part of the laser radar transmitting array and detecting array.
  • the lidar further includes a scanning device (not shown in the figure), and the scanning device is suitable for deflecting the light generated by the light emitting unit to a detection angle by rotating or swinging.
  • the laser radar can be a mechanical laser radar, a rotating mirror laser radar, or a micro-vibrating mirror laser radar in which the motor drives the overall rotation of the transceiver device, so the scanning device can be an integral rotating mechanism with a motor , can also be a rotating mirror or a micro-galvanometer.
  • the lidar further includes: an acquisition module 230 for performing acquisition operations and a processing module 240 for processing data.
  • the collection module 230 includes: a fixed value collection unit 231 , and the fixed value collection unit 231 is suitable for carrying out a fixed value collection operation.
  • the fixed value collection unit 231 is suitable for performing a fixed value collection operation, that is, suitable for collecting by the plurality of light emitting units and the plurality of calibration detection units to obtain the fixed value collection data.
  • collecting through the plurality of light emitting units and the plurality of calibration detection units refers to the data collection realized by sending and receiving optical signals through the light emitting units and the calibration detection units.
  • the detection unit determined after the laser radar is calibrated is a calibration detection unit, so during the constant value collection operation performed by the constant value collection unit 231 , the light emitting unit is a calibration light emitting unit.
  • the optically sensitive position of the calibration detection unit 121i of the i-th channel (that is, the coordinates of the center position is (xi , y i ); as shown in FIG. 6 , the calibration detection unit 121i of the i-th channel
  • the angle corresponding to the field of view is (shown by the dotted line 602 in FIG. 6 ), where ⁇ i is the vertical viewing angle, ⁇ is the horizontal viewing angle, and f is the focal length of the optical system 601 .
  • the receiving field of view corresponds to the center position of the light spot, that is, the block 603 is the position corresponding to the calibration detection unit 121i of the i-th channel.
  • the lidar has a scanning device. Therefore, after the scanning device determines the detection angle, the fixed value acquisition unit 231 performs a fixed value acquisition operation, and the fixed value The fixed-value collection data obtained by the collection unit 231 corresponds to the detection angle.
  • the acquisition module 230 further includes: an interpolation acquisition unit 232, the interpolation acquisition unit 232 is suitable for performing an interpolation acquisition operation; the interpolation acquisition unit 232 includes: a detection selector 232a and a processor 232b; The detection selector 232a is adapted to determine a plurality of interpolation detection units, and the plurality of interpolation detection units correspond to the plurality of calibration detection units one by one; The multiple interpolation detection units perform collection to obtain the interpolation collection data.
  • the detection selector 232a is suitable for determining the position of the detection unit receiving the optical signal in the interpolation acquisition operation, so as to expand the line beam and the resolution without additionally increasing the optical-mechanical complexity.
  • the multiple interpolation detection units correspond to the multiple calibration detection units one-to-one
  • the multiple calibration detection units that is, the detection unit 221 in FIG. 18
  • the multiple light-emitting units 211 correspond to the multiple light-emitting units 211 one-to-one.
  • the processor 232b passes the plurality of light-emitting units Unit and the plurality of interpolation detection units form a physical channel to perform interpolation acquisition operations to obtain the interpolation acquisition data, that is, the detection light generated by the light-emitting unit 111i of the i-th channel is reflected by external obstacles of the radar to form echo light, and the echo light is captured by the first Received by the interpolation detection unit of i channels.
  • the lidar has a scanning device, therefore, after the scanning device determines the detection angle, the interpolation acquisition unit 232 performs an interpolation acquisition operation, and the interpolation acquisition unit 232 The obtained interpolated acquisition data corresponds to the detection angle.
  • the interpolation acquisition unit 232 is adapted to perform row and column interpolation acquisition operations to obtain row and column interpolation acquisition data, and the interpolation acquisition data includes the row and column interpolation acquisition data;
  • the detection selector 232a includes: row and column selection Element 232a1, the row and column selection element 232a1 is suitable for determining a plurality of row and column interpolation detection units, and the direction of the row and column interpolation detection units pointing to the corresponding calibration detection unit is parallel to one of the row direction or column direction of the detection array;
  • the processor 232b collects through the plurality of light emitting units and the plurality of row and column interpolation detection units to obtain the row and column interpolation acquisition data.
  • FIG. 9 shows a schematic diagram in which the direction of the row-column interpolation detection unit pointing to the corresponding calibration detection unit is parallel to the row direction of the detection array during the row-column interpolation acquisition operation.
  • the row and column interpolation detection unit 122ix determined by the row and column selection element 232a1 points to the corresponding calibration detection unit (shown by the dotted line box in FIG. 9 ) and is parallel to the row direction of the detection array. Therefore, the row and column interpolation detection unit 122ix is horizontally translated by ⁇ x relative to the calibration detection unit 121i (as shown in FIG. 5 ), that is, the detector at the corresponding position is powered on or read, and the interpolation detection unit of the i-th channel
  • the angle of field of view corresponding to 121ix is
  • FIG. 10 it shows a schematic diagram of when the direction of the row and column interpolation detection unit pointing to the corresponding calibration detection unit is parallel to the column direction of the detection array during the row and column interpolation acquisition operation.
  • the row and column interpolation detection unit 122iy determined by the row and column selection element 232a1 points to the corresponding calibration detection unit (shown by the dotted line box in FIG. 10 ) and is parallel to the column direction of the detection array. Therefore, the row and column interpolation detection unit 122iy is vertically translated by ⁇ y relative to the calibration detection unit 121i (as shown in FIG. 5 ), that is, the detector at the corresponding position is powered on or read, and the interpolation detection unit of the i-th channel
  • the angle of field of view corresponding to 121ix is
  • the interpolation acquisition unit 232 is also adapted to perform an oblique interpolation acquisition operation to obtain oblique interpolation acquisition data, and the interpolation acquisition data also includes the oblique interpolation acquisition data;
  • the detection selector includes: The selection element 232a2, the oblique selection element 232a2 is suitable for determining a plurality of oblique interpolation detection units, the direction of the oblique interpolation detection unit pointing to the corresponding calibration detection unit intersects both the row direction and the column direction;
  • the processor 232b collects through the plurality of light emitting units and the plurality of oblique interpolation detection units to obtain the oblique interpolation acquisition data.
  • FIG. 11 a schematic diagram of the oblique interpolation detection unit and the corresponding calibration detection unit in the oblique interpolation acquisition operation is shown.
  • the direction that the oblique interpolation detection unit 122ixy determined by the oblique selection element 232a2 points to the corresponding calibration detection unit intersects both the row direction and the column direction. Therefore, the oblique interpolation detection unit 122ixy is horizontally translated by ⁇ x and vertically translated by ⁇ y relative to the calibration detection unit 121i (as shown in FIG.
  • the angle of the field of view corresponding to the oblique interpolation detection unit 122ixy is
  • the distance between the interpolation detection unit and the corresponding calibration detection unit are smaller than the distances between adjacent calibration detection units in the corresponding direction.
  • the distance between the row and column interpolation detection unit 122ix and the corresponding calibration detection unit is smaller than the distance between adjacent calibration detection units in the row direction, that is The row and column interpolation detection unit 122ix is located between two adjacent calibration detection units in the row direction.
  • the distance between the row and column interpolation detection unit 122iy and the corresponding calibration detection unit is smaller than the distance between adjacent calibration detection units in the column direction , that is, the row and column interpolation detection unit 122iy is located between two adjacent calibration detection units in the column direction.
  • the distance between the oblique interpolation detection unit 122ixy and the corresponding calibration detection unit is smaller than the distance between adjacent calibration detection units in the row direction.
  • Distance that is, the oblique interpolation detection unit 122ixy is located between two adjacent calibration detection units in the row direction; and, along the column direction of the detection array, the distance between the oblique interpolation detection unit 122ixy and the corresponding calibration detection unit The distance between them is smaller than the distance between adjacent calibration detection units in the column direction, that is, the oblique interpolation detection unit 122ixy is located between two adjacent calibration detection units in the column direction.
  • the receiving module of the lidar includes multiple rows and multiple columns of detection units. However, this method is only an example. In some embodiments of the present invention, the receiving module of the lidar may also include only one column of detection units or one row of detection units.
  • the receiving module of the lidar when the receiving module of the lidar includes only one column of detection units or one row of detection units, along the row direction or column direction of the detection array, the interpolation detection unit and the corresponding calibration The distances between the detection units are smaller than the dimensions of the calibration detection units in corresponding directions.
  • the interpolation detection units include at least one of row and column interpolation units and oblique interpolation units, corresponding to The distance between the calibration detection units is smaller than the size of the calibration detection units in the row direction, that is, the optically sensitive position (ie, the center position) of the interpolation detection unit is located within the range of the calibration detection units in the row direction.
  • the interpolation detection unit includes at least one of a row-column interpolation unit and an oblique interpolation unit, and the corresponding calibration
  • the distance between the detection units is smaller than the size of the calibration detection unit in the column direction, that is, the optically sensitive position (ie, the center position) of the interpolation detection unit is located within the range of the calibration detection unit in the column direction.
  • the field of view of the detection unit corresponds to the central position of the light spot.
  • the interpolation detection unit is located between two adjacent calibration detection units in the corresponding direction, so the The field of view corresponding to the interpolation detection unit is located between the fields of view corresponding to two adjacent calibration detection units in the corresponding direction. Therefore, the angle between the field of view corresponding to the interpolation detection unit and the field of view corresponding to the adjacent calibration detection unit must be smaller than the angle between the fields of view corresponding to two adjacent calibration detection units. It can be seen that, The execution of the interpolation acquisition operation can effectively improve the resolution without increasing the optical-mechanical complexity.
  • the selection element including at least one of the row and column selection element 232a1 and the oblique selection element 232a2, can set the distance between the interpolation detection unit and the corresponding calibration detection unit according to the resolution of the lidar.
  • the distance ⁇ x between the interpolation detection unit and the corresponding calibration detection unit is:
  • the distance ⁇ y between the interpolation detection unit and the corresponding calibration detection unit is:
  • the optically sensitive position (that is, the center position) of the interpolation detection unit is located within the range corresponding to the direction of the calibration detection unit, the interpolation
  • the part of the field of view corresponding to the detection unit coincides with the field of view of the calibration detection unit in the corresponding direction, and the other part extends beyond the calibration detection unit in the corresponding direction. Therefore, the angle between the field of view corresponding to the interpolation detection unit and the field of view corresponding to the adjacent calibration detection unit must be smaller than the range of the field of view angles of the two adjacent calibration detection units.
  • the included angle between the fields of view corresponding to the detection units shows that the interpolation acquisition operation can effectively improve the resolution without increasing the optical-mechanical complexity.
  • the selection element including at least one of the row and column selection element 232a1 and the oblique selection element 232a2, along at least one of the row direction or column direction of the detection unit, the determined interpolation detection unit and the corresponding calibration detection.
  • the distance between the units makes the difference between the angle of view corresponding to the interpolation detection unit and the angle of view corresponding to the corresponding calibration detection unit smaller than the resolution of the lidar calibration (that is, the radar resolution without interpolation acquisition operation) .
  • each of the interpolation detection units includes a plurality of detectors, and the plurality of detectors in the interpolation detection unit and the plurality of detectors in the corresponding calibration detection unit parts are different.
  • the interpolation acquisition unit 232 further includes: a light emission selector 232c, the light emission selector 232c is adapted to determine a plurality of interpolation light emission units based on the plurality of interpolation detection units, The multiple interpolation light-emitting units correspond to the calibration light-emitting units one by one; the processor 232b collects through the multiple interpolation light-emitting units and the multiple interpolation detection units to obtain the interpolation collection data.
  • the light-emitting selector 232c determines the interpolation light-emitting unit based on the interpolation detection unit, so that the center position of the light-emitting unit is translated synchronously with the detection unit during each interpolation acquisition operation, so as to ensure the receiving field of view of the interpolation light-emitting unit It corresponds to the spot center of the echo light to ensure detection efficiency and distance measurement capability.
  • the position of the echo light spot on the detection array can be translated synchronously with the detection unit, which can ensure Range capability and detection efficiency.
  • the lidar includes: a plurality of emitters, each of the calibration light emitting units includes a plurality of the emitters, and each of the interpolation light emitting units includes a plurality of the emitters; the interpolation light emitting The plurality of emitters in the unit is partially different from the plurality of emitters in the corresponding nominal lighting unit.
  • the lidar further includes: a processing module 240 for processing data.
  • the processing module 240 obtains the point cloud image according to the sum of the fixed-value collection data obtained by the fixed-value collection operation and the interpolation collection data obtained by each interpolation collection operation.
  • the lidar further includes: a scanning device, the fixed-value acquisition data corresponds to the detection angle, and the interpolation acquisition data corresponds to the detection angle; therefore, the processing module 240 Based on the fixed-value collection data and the interpolation collection data under all detection angles, a point cloud image is obtained.
  • FIG. 13 it shows a schematic diagram of a detection unit used in different acquisition operations during different frame scanning processes of another embodiment of the laser radar of the present invention.
  • FIG. 13 only shows schematic positions of four detection units in the lidar, and the number of detection units in the lidar is not limited to four, and may be other numbers.
  • the black solid origin in the figure represents the optically sensitive position (that is, the central position) of each detection unit.
  • the coordinates marked in the figure are the coordinates of the optically sensitive position of the uppermost detection unit in a row of 4 detection units shown.
  • the lidar has a scanning device, and the rotation axis of the scanning device is parallel to the column direction of the detection array. In other embodiments of the present invention, the rotation axis of the scanning device may also be parallel to the row direction of the detection array, which is not limited in the present invention.
  • the scanning process of the scanning device includes: a constant value scanning process; the constant value scanning process includes: at the ith detection angle, the fixed value acquisition unit performs a fixed value acquisition operation; at the i+1th detection angle, the The interpolation acquisition unit performs the row and column interpolation acquisition operation, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the direction corresponding to the calibration detection unit and is parallel to the direction of the rotation axis.
  • the scanning process of the scanning device includes: performing a constant value scanning process at the nth frame. Therefore, in the nth frame, when the (m-1)th detection angle, the fixed value acquisition unit 231 performs a fixed value acquisition operation; in the nth frame, when the mth detection angle, the interpolation acquisition unit 232 performs the row and column interpolation acquisition operation A direction in which the row-column interpolation detection unit in the row-column interpolation acquisition operation points to the corresponding calibration detection unit is parallel to the column direction of the detection array.
  • the four detection units are calibration detection units, and the coordinates of the optically sensitive position of the uppermost detection unit are ( xi , y i ); in the nth frame, at the mth detection angle, the four detection units are row and column interpolation detection units, each of the row and column interpolation detection units is parallel to the line of the corresponding calibration detection unit to the column of the detection array direction, where the coordinates of the optically sensitive position of the uppermost detection unit are (x i , y i + ⁇ y).
  • the scanning process of the scanning device further includes: an interpolation scanning process, the interpolation scanning process is located between two adjacent constant value scanning processes; the interpolation scanning process includes: the ith detection angle , the interpolation acquisition unit performs a row and column interpolation acquisition operation, the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the direction corresponding to the calibration detection unit and is perpendicular to the direction of the rotation axis; at the i+1th detection angle, the The interpolation acquisition unit performs an oblique interpolation acquisition operation.
  • the scanning process of the scanning device includes: performing the interpolation scanning process in the (n+1)th frame. Therefore, in the (n+1)th frame and the (m-1) detection angle, the interpolation acquisition unit 232 performs a row and column interpolation acquisition operation, and the row and column interpolation detection unit in the row and column interpolation acquisition operation points to the corresponding calibration detection
  • the direction of the unit is parallel to the row direction of the detection array; at the (n+1)th frame and the mth detection angle, the interpolation acquisition unit 232 performs an oblique interpolation acquisition operation.
  • the four detection units are row and column interpolation detection units, and each of the row and column interpolation detection units is associated with the corresponding
  • the connection line of the calibration detection unit is parallel to the row direction of the detection array, wherein the coordinates of the optically sensitive position of the uppermost detection unit are ( xi + ⁇ x, y i ); in the (n+1)th frame, the mth detection
  • the four detection units are oblique interpolation detection units, and the coordinates of the optically sensitive position of the uppermost detection unit are ( xi + ⁇ x, y i + ⁇ y).
  • Inserting an interpolation scanning process between adjacent fixed-value scanning processes can make the row-column interpolation detection unit and the oblique interpolation detection unit fill in between adjacent calibration detection units, thereby uniformly expanding the line beam and improving resolution.
  • the calibration detection unit and the row-column interpolation detection unit in the constant value scanning process of the nth frame are carried out with the (n+1)th frame
  • the row-column interpolation detection unit and the oblique interpolation detection unit in the interpolation scanning process constitute a regular lattice.
  • the interpolation acquisition unit 232 performs The distance between the oblique interpolation detection unit and the corresponding calibration detection unit determined by the oblique interpolation acquisition operation and the row-column interpolation detection in the row-column interpolation acquisition operation
  • the traversal of the detectors in the detection array can be realized through cooperation of different acquisition operations and different scanning processes.
  • FIG. 14 it shows a schematic diagram of a detection unit used in different acquisition operations in different frame scanning processes of another embodiment of the laser radar of the present invention.
  • the scanning process of the scanning device includes: the first constant value scanning process, the first interpolation scanning process, the second constant value scanning process and the second interpolation scanning process; wherein, as shown in the b frame in Figure 14, the The first fixed-value scanning process includes: performing the fixed-value acquisition operation at the (a-1) detection angle; performing row and column interpolation acquisition operations at the a-th detection angle; as shown in the (b+1) frame in Figure 18 As shown, the first interpolation scanning process includes: performing row and column interpolation acquisition operations at the (a-1)th detection angle; performing oblique interpolation acquisition operations at the ath detection angle; as shown in Figure 16 (b+2) As shown in the frame, the second fixed-value scanning process includes: performing row and column interpolation acquisition operations at the (a-1)th detection angle; performing the fixed-value acquisition operation at the a-th detection angle; as shown in Figure 17 ( As shown in frame b+3), the second interpolation scanning process includes: performing an oblique interpolation acquisition operation at the (a
  • Different scanning processes with different acquisition operations in different scanning processes, can make the calibration detection unit and interpolation detection unit traverse each detector in the detection array, and can maximize the An extended harness for increased resolution.
  • the first fixed-value scanning process, the first interpolation scanning process, the second constant-value scanning process and the second The calibration detection unit and the interpolation detection unit in the interpolation scanning process form a regular lattice.
  • the row-column interpolation detection unit points to the corresponding calibration detection unit in a direction and distance from the first
  • the direction and distance of the row-column interpolation detection unit pointing to the corresponding calibration detection unit are the same;
  • the row and column interpolation detection unit points to the corresponding calibration detection unit direction and distance from the row and column at the (a-1)th detection angle during the first interpolation scanning process
  • the direction and distance of the row and column interpolation detection unit pointing to the corresponding calibration detection unit are the same, and during the second interpolation scanning process, in the oblique interpolation acquisition operation performed at the (a)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达的探测方法以及激光雷达,所述激光雷达包括多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;所述探测方法包括:进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;进行至少一次插值采集操作以获得插值采集数据;根据所述定值采集数据和所述插值采集数据,获得所述点云图。所述定值采集数据和所述插值采集数据相拼接,能够在不增加光机复杂度的前提下,扩展线数、提高分辨率。

Description

激光雷达的探测方法以及激光雷达
本申请要求2021年12月28日提交中国专利局、申请号为2021116302957、发明名称为“激光雷达的探测方法以及激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光探测,特别涉及一种激光雷达的探测方法以及激光雷达。
背景技术
激光雷达是一种常用的测距传感器,具有探测距离远、分辨率高、受环境干扰小等特点,广泛应用于智能机器人、无人机、无人驾驶等领域。激光雷达的工作原理是利用激光往返于雷达和目标之间所用的时间,或者调频连续光在雷达和目标之间往返所产生的频移来评估目标的距离或速度等信息。
激光雷达中,线数多少是衡量雷达性能的一个重要指标。相同的垂直视场(VFOV),更多线数一定程度上提供了更强的空间分辨能力和更佳的成像效果。
但是现有提高激光雷达线数的方法会大幅增加硬件成本,或者增加光机复杂程度,会引起激光雷达整体成本的提升和可靠性的下降。
发明内容
本发明解决的问题是在提高激光雷达线数的同时,如何控制成本、不增加光机复杂程度。
为解决上述问题,本发明提供一种激光雷达的探测方法,所述激光雷达包括多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应,所述探测方法包括:
所述探测方法包括:进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;进行至少一次插值采集操作以获得插值采集数据;根据所述定值采集数据和所述插值采集数据,获得所述点云图。
可选的,所述插值采集操作包括:确定多个插值探测单元,所述多个插值探测单元与所述多个标定探测单元一一对应;通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
可选的,每个所述标定探测单元包括多个探测器,每个所述插值探测单元包括多个探测器;所述插值探测单元中的多个探测器与所对应的标定探测单元中的多个探测器部分不相同。
可选的,所述激光雷达包括:多个探测器,所述多个探测器呈阵列排布以构成探测阵列;沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于相对应方向上相邻标定探测单元之间的距离;或者,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于所述标定探测单元在相对应方向上的尺寸。
可选的,进行至少一次插值采集操作以获得插值采集数据的步骤包括:进行行列插值采集操作以获得行列插值采集数据,所述插值采集数据包括所述行列插值采集数据;其中,行列插值采集操作包括:确定多个行列插值探测单元,所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向或列方向中的一个方向;通过所述多个发光单元和所述多个行列插值探测单元进行采集以获得所述行列插值采集数据。
可选的,进行至少一次插值采集操作以获得插值采集数据的步骤还包括:进行斜插值采集操作以获得斜插值采集数据,所述插值采集数据还包括所述斜插值采集数据;其中,斜插值采集操作包括:确定 多个斜插值探测单元,所述斜插值探测单元指向所对应的标定探测单元的方向与所述行方向和所述列方向均相交;通过所述多个发光单元和所述多个斜插值探测单元进行采集以获得所述斜插值采集数据。
可选的,所述探测器为独立寻址和独立控制的探测器。
可选的,通过所述多个发光单元和所述多个标定探测单元进行采集以获得定值采集数据的步骤中,所述发光单元为标定发光单元;所述插值采集操作的步骤还包括:基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与所述标定发光单元一一对应;通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
可选的,每个所述标定发光单元包括多个发射器,每个所述插值发光单元包括多个发射器;所述插值发光单元中的多个发射器与所对应的标定发光单元中的多个发射器部分不相同。
可选的,所述发射器为独立寻址和独立控制的发射器。
可选的,所述激光雷达还包括扫描装置,所述扫描装置适宜于通过转动或摆动使发光单元所产生的光线偏折至探测角度;所述定值采集操作还包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得定值采集数据之前,确定探测角度,所述定值采集数据与所述探测角度相对应;所述插值采集操作还包括:通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据之前,确定探测角度,所述插值采集数据与所述探测角度相对应。
可选的,所述转轴平行探测阵列的行方向或列方向中的一个方向;所述探测方法包括:定值扫描过程,所述定值扫描过程包括:在第i探测角度,进行定值采集操作;在第i+1探测角度,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述转轴。
可选的,所述探测方法还包括:至少一次插值扫描过程,所述插 值扫描过程位于相邻两次定值扫描过程之间;所述插值扫描操作包括:在第i探测角度,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向垂直所述转轴的方向;在第i+1探测角度,进行斜插值采集操作。
可选的,所述探测方法包括:进行的第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程;其中,所述第一定值扫描过程包括:在第i探测角度,进行所述定值采集操作;在第i+1探测角度,进行行列插值采集操作;所述第一插值扫描过程包括:在第i探测角度,进行行列插值采集操作;在第i+1探测角度,进行斜插值采集操作;所述第二定值扫描过程包括:在第i探测角度,进行行列插值采集操作;在第i+1探测角度,进行所述定值采集操作;所述第二插值扫描过程包括:在第i探测角度,进行斜插值采集操作;在第i+1探测角度,进行行列插值采集操作;且所述第二定值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一定值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同;所述第二插值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一插值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同,所述第二插值扫描过程中,在第i探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向与所述第一插值扫描过程中,在第i+1探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向均相同。
相应的,本发明还提供一种激光雷达,包括:多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;探测处理装置,所述探测处理装置适宜于实施本发明的探测方法。
此外,本发明还提供一种激光雷达,包括:多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;采集模块,所述采集模块适宜于进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;还适宜于进行至少一次插值采集操作以获得插值采集数据;处理模块,所述处理模块适宜于根据所述定值采集数据和所述插值采集数据,获得所述点云图。
可选的,所述采集模块包括:定值采集单元和插值采集单元,所述定值采集单元适宜于进行定值采集操作,所述插值采集单元适宜于进行插值采集操作;所述插值采集单元包括:探测选择器和处理器;所述探测选择器适宜于确定多个插值探测单元,所述多个插值探测单元与所述多个标定探测单元一一对应;所述处理器适宜于通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
可选的,每个所述标定探测单元包括多个探测器,每个所述插值探测单元包括多个探测器;所述插值探测单元中的多个探测器与所对应的标定探测单元中的多个探测器部分不相同。
可选的,所述激光雷达包括:多个探测器,所述多个探测器呈阵列排布以构成探测阵列;沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于相对应方向上相邻标定探测单元之间的距离;或者,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于所述标定探测单元在相对应方向上的尺寸。
可选的,所述插值采集单元适宜于进行行列插值采集操作以获得行列插值采集数据,所述插值采集数据包括所述行列插值采集数据;所述探测选择器包括:行列选择元件,所述行列选择元件适宜于确定多个行列插值探测单元,所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向或列方向中的一个方向;所 述处理器通过所述多个发光单元和所述多个行列插值探测单元进行采集以获得所述行列插值采集数据。
可选的,所述插值采集单元适宜于进行斜插值采集操作以获得斜插值采集数据,所述插值采集数据还包括所述斜插值采集数据;所述探测选择器包括:斜选择元件,所述斜选择元件适宜于确定多个斜插值探测单元,所述斜插值探测单元指向所对应的标定探测单元的方向与所述行方向和所述列方向均相交;所述处理器通过所述多个发光单元和所述多个斜插值探测单元进行采集以获得所述斜插值采集数据。
可选的,所述探测器包括:单光子雪崩二极管。
可选的,所述定值采集单元进行定值采集操作的过程中所采用的发光单元为标定发光单元;所述插值采集单元还包括:发光选择器,所述发光选择器适宜于基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与所述标定发光单元一一对应;所述处理器通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
可选的,每个所述标定发光单元包括多个发射器,每个所述插值发光单元包括多个发射器;所述插值发光单元中的多个发射器与所对应的标定发光单元中的多个发射器部分不相同。
可选的,所述发射器包括:垂直腔面发射发射器。
可选的,所述激光雷达还包括:扫描装置,所述扫描装置适宜于通过转动或摆动使发光单元所产生的光线绕转轴偏折至探测角度;所述定值采集单元还适宜于确定探测角度,所述定值采集数据与所述探测角度相对应;所述插值采集单元还适宜于确定探测角度,所述插值采集数据与所述探测角度相对应。
可选的,所述转轴平行探测阵列的行方向或列方向中的一个方向;所述扫描装置的扫描过程包括:定值扫描过程;所述定值扫描过程包括:在第i探测角度,所述定值采集单元进行定值采集操作;在第i+1 探测角度,所述插值采集单元进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述转轴的方向。
可选的,所述扫描装置的扫描过程还包括:插值扫描过程,所述插值扫描过程位于相邻两次定值扫描过程之间;所述插值扫描过程包括:在第i探测角度,所述插值采集单元进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向垂直所述转轴的方向;在第i+1探测角度,所述插值采集单元进行斜插值采集操作。
可选的,所述扫描装置的扫描过程包括:进行的第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程;其中,所述第一定值扫描过程包括:在第i探测角度,所述定值采集单元进行所述定值采集操作;在第i+1探测角度,所述插值采集单元进行行列插值采集操作;所述第一插值扫描过程包括:在第i探测角度,所述插值采集单元进行行列插值采集操作;在第i+1探测角度,所述插值采集单元进行斜插值采集操作;所述第二定值扫描过程包括:在第i探测角度,所述插值采集单元进行行列插值采集操作;在第i+1探测角度,所述定值采集单元进行所述定值采集操作;所述第二插值扫描过程包括:在第i探测角度,所述插值采集单元进行斜插值采集操作;在第i+1探测角度,所述插值采集单元进行行列插值采集操作;且所述第二定值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一定值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同;所述第二插值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一插值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同,所述第二插值扫描过程中,在第i探测角度进行的斜插值采集操作内,所 述斜插值探测单元指向所对应的标定探测单元的方向与所述第一插值扫描过程中,在第i+1探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向均相同。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案中,除了进行定值采集操作以获得定值采集数据之外,还进行至少一次插值采集操作以获得插值采集数据,最终的点云图是基于所述定值采集数据和所述插值采集数据一起生成的。所述至少一次插值采集操作的进行,能够获得定值采集数据以外的数据,将所述定值采集数据和所述插值采集数据相拼接所获得的点云图势必具有更高的线数密度,而且通过增加采集操作次数增加线数密度的方法,无需增加硬件成本,不会增大光机复杂程度,能够有效控制成本、保证可靠性。
本发明可选方案中,所述插值采集操作的步骤还包括:基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与所述标定发光单元一一对应;通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。基于所述插值探测单元,确定插值发光单元,使发光单元的中心位置在每次插值采集操作过程中随着探测单元同步平移,以确保所述插值探测单元的接收视场和回波光的光斑中心对应,以保证探测效率和测远能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明激光雷达一实施例的结构示意图;
图2是图1所示激光雷达实施例中探测模块内探测阵列的结构示意图;
图3是图1所示激光雷达实施例中发射模块内发射阵列的结构示意图;
图4是图1所示激光雷达实施例中所述探测处理装置所实施探测方法的流程示意图;
图5是图1所示激光雷达实施例中标定探测单元的光学灵敏位置的示意图;
图6是图1所示激光雷达实施例中探测单元接收视场的光路示意图;
图7是图4所示激光雷达实施例中所述探测处理装置所实施探测方法的一次插值采集操作步骤的流程示意图;
图8是图4所示激光雷达实施例中所述探测处理装置所实施探测方法的进行至少一次插值采集操作步骤的流程示意图;
图9是图4所示激光雷达实施例中所述探测处理装置所实施探测方法的行列插值采集操作中当所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向的示意图;
图10是图4所示激光雷达实施例中所述探测处理装置所实施探测方法的行列插值采集操作中当所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的列方向的示意图;
图11是图4所示激光雷达实施例中所述探测处理装置所实施探测方法的斜插值采集操作中所述斜插值探测单元与所对应的标定探测单元的示意图;
图12是图4所示激光雷达实施例中所述探测处理装置所实施探测方法采用插值发光单元进行采集操作的示意图;
图13是本发明激光雷达另一实施例中所述探测处理装置所实施 探测方法中探测阵列的示意图;
图14是本发明激光雷达再一实施例中所述探测处理装置所实施探测方法第一定值扫描过程中探测阵列的示意图;
图15是图14所示激光雷达实施例中所述探测处理装置所实施探测方法第一插值扫描过程中探测阵列的示意图;
图16是图14所示激光雷达实施例中所述探测处理装置所实施探测方法第二定值扫描过程中探测阵列的示意图;
图17是图14所示激光雷达实施例中所述探测处理装置所实施探测方法第二插值扫描过程中探测阵列的示意图;
图18是本发明激光雷达又一实施例的结构示意图。
具体实施方式
由背景技术可知,现有技术中增加激光雷达线数的同时,往往会增大硬件成本、或增加光机复杂程度。现结合一种增大激光雷达线数的方法分析其硬件成本增加、光机复杂程度增加问题的原因:
现有增加激光雷达线数的方法,一种是在设计阶段增加发射发射器和接收探测器的个数,例如64线的激光雷达中使用64个发射器和64个探测器,可见,128线的激光雷达中,发射器和探测器的个数均需要翻倍。
另一种方法是在激光雷达的光路中将原来的1线激光分为多线,这种方法一方面需要在激光雷达的光路设计中加入分光装置,从而造成光机复杂程度的增加;另一方面这种方法增加激光雷达的线数,会对激光雷达的测远能力和散热能力等性能造成挑战。
由此可见,现有增加激光雷达线数的方法,会出现硬件成本上升、光机复杂程度增大等问题。
为解决所述技术问题,本发明提供一种激光雷达的探测方法,所 述激光雷达包括多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;所述探测方法包括:进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;进行至少一次插值采集操作以获得插值采集数据;根据所述定值采集数据和所述插值采集数据,获得所述点云图。
本发明技术方案中,所述至少一次插值采集操作的进行,能够获得定值采集数据以外的数据,将所述定值采集数据和所述插值采集数据相拼接所获得的点云图势必具有更高的线数密度,而且通过增加采集操作次数增加线数密度的方法,无需增加硬件成本,不会增大光机复杂程度,能够有效控制成本、保证可靠性。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参考图1,示出了本发明激光雷达一实施例的结构示意图。
如图1所示,所述激光雷达包括多个发光单元111和多个探测单元121,所述多个探测单元121和所述多个发光单元111一一对应。
具体的,如图1所示,所述激光雷达的发射模块110包括:多个发光单元111,所述激光雷达的探测模块120包括:多个探测单元121,所述多个探测单元121与所述多个发光单元111一一对应。
所述激光雷达的发射模块110适宜于产生探测光,所述发射模块110包括多个发光单元111,每个所述发光单元111产生一线探测光。每个发光单元111所产生的探测光在远场覆盖一定视场范围,即每个发光单元111在远场对应于一个发射视场。
所述激光雷达的探测模块120适宜于接收所述探测光被反射后形成的回波光。所述探测模块120包括:多个探测单元121。每个探测单元121能够接收远场一定视场范围内的回波光,即每个探测单元121在远场对应于一个接收视场。
所述多个探测单元121和所述多个发光单元111一一对应,即在所述激光雷达中,所述发光单元在远场的发射视场与所对应的探测单元在远场的接收视场相同,以构成物理通道,也就是说,在远场位置,所述发光单元和所对应的探测单元的视场相同,所以所述发光单元发射的探测光经反射形成的回波光被所对应的接收单元接收。
具体的,如图1示出了所述激光雷达的发射模块110和探测模块120中的8个物理通道,即所述发射模块110中的8个发光单元111,分别为第1、2、3、……、8个发光单元,所述探测模块120中的8个探测单元121,分别为第1、2、3、……、8个探测单元。第i个通道的发光单元111i产生的探测光经雷达外部障碍物反射形成回波光,回波光被第i个通道的探测单元121i接收。
所述发光单元111i和所述探测单元121i相对应以构成第i通道;所述发光单元111(i+1)和所述探测单元121(i+1)相对应以构成第(i+1)通道。
本发明一些实施例中,具体的,每个探测单元121包括:多个探测器121s。具体的,如图1所示,所述激光雷达包括:多个探测器121s,所述多个探测器121s呈阵列排布以构成探测阵列;每个所述探测单元121包括多个所述探测器121s。
本发明一些实施例中,每个所述探测器121s为独立寻址和独立控制的探测器,也就是说,每个所述探测器121s可以单独上电、独立引出(如图2中圈1213所示),通过只上电或只读取特定地址线上的探测器以读取单个探测器信号。本发明一些实施例中,所述探测器1213可以包括:单光子雪崩二极管(SPAD)。
在本发明一些实施例中,如图1所示,所述发光单元111包括:多个发射器。具体的,所述激光雷达包括:多个发射器111v,所述多个发射器111v呈阵列排布以构成探测阵列;每个所述发光单元111包括多个所述发射器111v。
本发明一些实施例中,每个所述发射器111v为独立寻址和独立控制的发射器,也就是说,每个所述发射器111v可以单独上电。具体的,如图3所示,所述多个发射器111v呈阵列排布以构成发射阵列,其中圈1113中示出了一个最小单位组成。通过向A1~A3,P1~P6的连接线施以不同的电压,对不同的发射器111v进行选择,实现所述发射器111v的独立寻址和独立控制。具体的,本发明一些实施例中,所述发射器111v包括:垂直腔面发射激光器(VCSEL)。
需要说明的是,将所述发光单元设置为包括多个发射器构成的做法仅为一实例。本发明其他实施例中,所述发光单元还可以是独立的激光器,例如边发射激光器(EEL)。
还需要说明的是,激光雷达的发射单元发射探测光,通过标定(装调)后所确定的探测单元为标定探测单元,此时标定探测单元与发光单元在远场对应于相同的视场范围,与标定探测单元相对应的发光单元也即标定发光单元,标定(装调)的过程也就是远场视场匹配的过程。图1所示激光雷达中的发光单元111和探测单元121即为所述激光雷达的标定发光单元和标定探测单元。所以,每个所述标定发光单元包括多个所述发射器,每个所述标定探测单元包括多个所述探测器。
另外,图1仅示出了1列发光单元和1列探测单元,所述激光雷达的发射模块和接收模块分别包括多列发光单元和多列探测单元。而且图1示出了所述发射模块每列发光单元所包括发光单元的数量也大于8个,每列探测单元所包括探测单元的数量也大于8个。因此图1示出的是所述激光雷达发射阵列和探测阵列的一部分。
此外,本发明一些实施例中,所述激光雷达还包括扫描装置(图中未示出),所述扫描装置适宜于通过转动或摆动使发光单元所产生的光线偏折至探测角度。具体的,所述激光雷达可以是电机带动收发装置整体旋转的机械式的激光雷达、转镜式的激光雷达、微振镜式的激光雷达,因此所述扫描装置可以是具有电机的整体旋转机构,也可以是转镜或微振镜。
继续参考图1,所述激光雷达还包括:探测处理装置130适宜于实施本发明的探测方法。
结合参考图4,示出了图1所示激光雷达实施例中所述探测处理装置所实施探测方法的流程示意图。
所述探测方法包括:执行步骤S110,进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;执行步骤S120,进行至少一次插值采集操作以获得插值采集数据;最后执行步骤S130,根据所述定值采集数据和所述插值采集数据,获得所述点云图。
所述至少一次插值采集操作的进行,能够获得定值采集数据以外的数据,将所述定值采集数据和所述插值采集数据相拼接所获得的点云图势必具有更高的线数密度,而且通过增加采集操作次数增加线数密度的方法,无需增加硬件成本,不会增大光机复杂程度,能够有效控制成本、保证可靠性。
执行步骤S110,进行定值采集操作。
具体的,本发明一些实施例中,执行步骤S110,进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据。
通过所述多个发光单元和所述多个标定探测单元进行采集是指通过所述发光单元和所述标定探测单元进行光信号的收发以实现的数据采集。
需要说明的是,所述激光雷达标定后所确定的探测单元为标定探测单元,因此执行步骤S110,进行定值采集操作过程中,通过所述多个发光单元和所述多个标定探测单元进行采集以获得定值采集数据的步骤中,所述发光单元为标定发光单元。
具体的,如图5所示,第i通道的标定探测单元121i的光学灵敏 位置(即中心位置的坐标为(x i,y i);结合图6所示,第i通道的标定探测单元121i对应视场的角度为
Figure PCTCN2022098784-appb-000001
(图6中虚线602所示),其中,θ i为垂直视场角,φ为水平视场角,f为光学系统601的焦距。从图6中可以知道,接收视场和光斑中心位置相对应,即方框603为第i通道的标定探测单元121i对应的位置。
需要说明的是,本发明一些实施例中,所述激光雷达具有扫描装置,因此,所述定值采集操作还包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得定值采集数据之前,确定探测角度,所述定值采集数据与所述探测角度相对应。
如图4所示,执行步骤S120,进行至少一次插值采集操作。
需要说明的是,执行步骤S110,进行定值采集操作和执行步骤S120,进行至少一次插值采集操作的先后顺序并不限定。
结合参考图7,示出了图4所示激光雷达实施例中所述探测处理装置所实施探测方法中一次插值采集操作步骤的流程示意图。
如图7所示,本发明一些实施例中,一次所述插值采集操作包括:执行步骤S120a,确定多个插值探测单元,所述多个插值探测单元与所述多个标定探测单元一一对应;之后执行步骤S120b,通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
确定所述多个插值探测单元的步骤适宜于确定插值采集操作接收光信号的探测单元的位置,从而不额外增加光机复杂度的前提下,扩展线束和分辨率。
其中,所述多个插值探测单元与所述多个标定探测单元一一对应,而所述多个标定探测单元(即图2中的探测单元121)和所述多个发光单元111一一对应以构成物理通道,因此所述多个插值探测单元和 所述多个发光单元111一一对应以构成所述插值采集操作中的通道。所以执行步骤S120b,通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据的步骤中,第i通道的发光单元111i产生的探测光经雷达外部障碍物反射形成回波光,回波光被第i个通道的插值探测单元接收。
需要说明的是,本发明一些实施例中,所述激光雷达具有扫描装置,因此,如图7所示,所述插值采集操作还包括:通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据之前,执行步骤S120c,确定探测角度,所述插值采集数据与所述探测角度相对应。
结合参考图8,示出了图4所示激光雷达实施例中所述探测处理装置所实施探测方法中进行至少一次插值采集操作步骤的流程示意图。
如前所述,所述激光雷达中,所述多个探测器121s呈阵列排布以构成探测阵列;因此本发明一些实施例中,执行步骤S120,进行至少一次插值采集操作以获得插值采集数据的步骤包括:执行步骤S120xy,进行行列插值采集操作以获得行列插值采集数据,所述插值采集数据包括所述行列插值采集数据;其中,行列插值采集操作包括:执行步骤121xy,确定多个行列插值探测单元,所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向或列方向中的一个方向;执行步骤122xy,通过所述多个发光单元和所述多个行列插值探测单元进行采集以获得所述行列插值采集数据。
结合参考图9,示出了行列插值采集操作中所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向的示意图。
确定所述行列插值探测单元122ix的步骤中,所述行列插值探测单元122ix指向所对应的标定探测单元(图9中虚线框所示)的方向平行所述探测阵列的行方向。
所以,所述行列插值探测单元122ix相对于所述标定探测单元121i(如图5中所示)水平平移Δx,即上电或读取相对应位置的探测器,则第i通道的插值探测单元121ix对应的视场的角度为
Figure PCTCN2022098784-appb-000002
结合参考图10,示出了行列插值采集操作中当所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的列方向的示意图。
确定所述行列插值探测单元122iy的步骤中,所述行列插值探测单元122iy指向所对应的标定探测单元(图10中虚线框所示)的方向平行所述探测阵列的列方向。
所以,所述行列插值探测单元122iy相对于所述标定探测单元121i(如图5中所示)垂直平移Δy,即上电或读取相对应位置的探测器,则第i通道的插值探测单元121ix对应的视场的角度为
Figure PCTCN2022098784-appb-000003
继续参考图8,执行步骤S120,进行至少一次插值采集操作以获得插值采集数据的步骤还包括:执行步骤S120d,进行斜插值采集操作以获得斜插值采集数据,所述插值采集数据还包括所述斜插值采集数据;其中,斜插值采集操作包括:执行步骤S121d,确定多个斜插值探测单元,所述斜插值探测单元指向所对应的标定探测单元的方向与所述行方向和所述列方向均相交;执行步骤S122d,通过所述多个发光单元和所述多个斜插值探测单元进行采集以获得所述斜插值采集数据。
结合参考图11,示出了斜插值采集操作中所述斜插值探测单元与所对应的标定探测单元示意图。
确定所述斜插值探测单元122ixy的步骤中,所述斜插值探测单元122ixy指向所对应的标定探测单元(图11中虚线框所示)的方向与所述行方向和所述列方向均相交。
所以,所述斜插值探测单元122ixy相对于所述标定探测单元121i (如图5中所示)水平平移Δx且垂直平移Δy,即上电或读取相对应位置的探测器,则第i通道的斜插值探测单元122ixy对应的视场的角度为
Figure PCTCN2022098784-appb-000004
需要说明的是,如图5和图9~11所示,本发明一些实施例中,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于相对应方向上相邻标定探测单元之间的距离。
如图5和图9所示,沿所述探测阵列的行方向上,所述行列插值探测单元122ix与所对应的标定探测单元之间的距离小于行方向上相邻标定探测单元之间的距离,即所述行列插值探测单元122ix位于行方向上相邻两个标定探测单元之间。
如图5和图10所示,沿所述探测阵列的列方向上,所述行列插值探测单元122iy与所对应的标定探测单元之间的距离小于列方向上相邻标定探测单元之间的距离,即所述行列插值探测单元122iy位于列方向上相邻两个标定探测单元之间。
具体的,如图5和图11所示,沿所述探测阵列的行方向上,所述斜插值探测单元122ixy与所对应的标定探测单元之间的距离小于行方向上相邻标定探测单元之间的距离,即所述斜插值探测单元122ixy位于行方向上相邻两个标定探测单元之间;并且,沿所述探测阵列的列方向上,所述斜插值探测单元122ixy与所对应的标定探测单元之间的距离小于列方向上相邻标定探测单元之间的距离,即所述斜插值探测单元122ixy位于列方向上相邻两个标定探测单元之间。
还需要说明的是,本发明一些实施例中,所述激光雷达的接收模块包括多行多列探测单元。但是这种方式仅为一示例,本发明一些实施例中,所述激光雷达的接收模块也可以仅包括1列探测单元或者1行探测单元。
本发明一些实施例中,所述激光雷达的接收模块仅包括1列探测 单元或者1行探测单元时,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于所述标定探测单元在相对应方向上的尺寸。
具体的,所述激光雷达的接收模块仅包括1列探测单元时,沿所述探测阵列的行方向上,所述插值探测单元,包括行列插值单元和斜插值单元中的至少一种,与所对应的标定探测单元之间的距离小于所述标定探测单元在行方向上的尺寸,即所述插值探测单元的光学灵敏位置(即中心位置)位于所述标定探测单元行方向上的范围内。
所述激光雷达的接收模块仅包括1行探测单元时,沿所述探测阵列的列方向上,所述插值探测单元,包括行列插值单元和斜插值单元中的至少一种,与所对应的标定探测单元之间的距离小于所述标定探测单元在列方向上的尺寸,即所述插值探测单元的光学灵敏位置(即中心位置)位于所述标定探测单元列方向上的范围内。
探测单元的视场与光斑中心位置相对应,当所述激光雷达的接收模块包括多行多列探测单元,所述插值探测单元位于对应方向上相邻两个标定探测单元之间,因此所述插值探测单元对应的视场位于对应方向上相邻两个标定探测单元所对应的视场之间。所以,所述插值探测单元对应的视场与相邻的标定探测单元所对应的视场之间的夹角势必小于相邻两个标定探测单元所对应的视场之间的夹角,可见,所述插值采集操作的进行,能够有效提高分辨率而不增加光机复杂度。
因此,可以根据所述激光雷达的分辨率设定所述插值探测单元与所对应标定探测单元之间的距离。具体的,图5和图9~10所示实施例中,沿所述探测阵列的行方向上,所述插值探测单元与所对应标定探测单元之间的距离Δx为:
Figure PCTCN2022098784-appb-000005
沿所述探测阵列的列方向上,所述插值探测单元与所对应标定探测单元之间的距离Δy为:
Figure PCTCN2022098784-appb-000006
当所述激光雷达的接收模块也可以仅包括1列探测单元或者1行探测单元,所述插值探测单元的光学灵敏位置(即中心位置)位于标 定探测单元对应方向上的范围内,所述插值探测单元对应的视场部分与对应方向上所述标定探测单元的视场重合,另外部分延伸至对应方向上所述标定探测单元以外。所以,所述插值探测单元对应的视场与相邻的标定探测单元所对应的视场之间的夹角势必小于假定设置相邻的两个标定探测单元,这两个标定探测单元所对应的视场之间的夹角,可见,所述插值采集操作的进行,能够有效提高分辨率而不增加光机复杂度。
所以,所述插值采集操作的步骤中,沿所述探测单元的行方向或列方向中至少一个方向上,所述插值探测单元与所对应的标定探测单元之间距离使得所述插值探测单元所对应视场角与所对应的标定探测单元所对应视场角之差小于所述激光雷达标定的分辨率(即不进行插值采集操作的雷达分辨率)。
还需要说明的是,本发明一些实施例中,每个所述插值探测单元包括多个探测器,而且所述插值探测单元中的多个探测器与所对应的标定探测单元中的多个探测器部分不相同。
继续参考图7,本发明一些实施例中,一次所述插值采集操作还包括:执行步骤S120d,基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与所述标定发光单元一一对应;执行步骤S120b,通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据的步骤中,通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
基于所述插值探测单元,确定插值发光单元,使发光单元的中心位置在每次插值采集操作过程中随着探测单元同步平移,以确保所述插值发光单元的接收视场和回波光的光斑中心对应,以保证探测效率和测远能力。
如图12所示,通过所述多个插值发光单元和所述多个插值探测单元进行采集的插值采集操作中,所述探测阵列上回波光光斑的位置能够随着探测单元同步平移,能够确保测远能力和探测效率。
需要说明的是,所述激光雷达包括:多个发射器,每个所述标定发光单元包括多个所述发射器,每个所述插值发光单元包括多个所述发射器;所述插值发光单元中的多个发射器与所对应的标定发光单元中的多个发射器部分不相同。
执行步骤S130,根据所述定值采集数据和所述插值采集数据,获得所述点云图。
具体的,根据所述定值采集操作所获得的定值采集数据以及每一次所述插值采集操作所获得的插值采集数据的总和,获得所述点云图。
本发明一些实施例中,所述激光雷达还包括:扫描装置,所述定值采集数据与所述探测角度相对应,所述插值采集数据与所述探测角度相对应;因此基于所有探测角度下的所述定值采集数据和所述插值采集数据,获得点云图。
需要说明的是,针对具有扫描装置的激光雷达,可以通过在同一帧的扫描过程中不同角度采用不同的采集操作,不同帧的扫描过程中采用不同的采集操作,在将多次扫描的结果合并,以实现多帧拼接,从而在不增加光机复杂度的前提下,成倍扩展线束,提高分辨率。
参考图13,示出了本发明激光雷达另一实施例中所述探测处理装置所实施探测方法中探测阵列的示意图。
需要说明的是,图13仅示出了所述激光雷达中4个探测单元的示意位置,所述激光雷达中探测单元的数量并不限于4个,可以为其他数量。图中黑色实心原点表示每个探测单元的光学灵敏位置(即中心位置)。图中所标出的坐标为所示一列4个探测单元中最上面的探测单元的光学灵敏位置的坐标。
本发明一些实施例中,所述激光雷达具有扫描装置,所述扫描装置的所述转轴平行探测阵列的列方向。本发明其他实施例中,所述扫描装置的转轴也可以平行探测阵列的行方向,本发明对此不做限定。
如图13所示,所述探测方法包括:定值扫描过程,所述定值扫 描过程包括:在第(m-1)探测角度,进行定值采集操作;在第m探测角度,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述转轴。
具体的,所述探测方法包括:在第n帧进行定值扫描过程。因此第n帧,第(m-1)探测角度时,进行定值采集操作;在第n帧,第m探测角度时,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的列方向。
如图13中第一行所示,第n帧,第(m-1)探测角度时,4个探测单元为标定探测单元,其中最上面的探测单元的光学灵敏位置的坐标为(x i,y i);在第n帧,第m探测角度时,4个探测单元为行列插值探测单元,每个所述行列插值探测单元与所对应的标定探测单元的连线平行所述探测阵列的列方向,其中最上面的探测单元的光学灵敏位置的坐标为(x i,y i+Δy)。
如图13所示,本发明一些实施例中,所述探测方法还包括:至少一次插值扫描过程,所述插值扫描过程位于相邻两次定值扫描过程之间;所述插值扫描操作包括:在第(m-1)探测角度,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向垂直所述转轴的方向;在第m探测角度,进行斜插值采集操作。
具体的,所述探测方法包括:在第(n+1)帧进行所述插值扫描过程。因此,第(n+1)帧,第(m-1)探测角度时,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向;在第(n+1)帧,第m探测角度时,进行斜插值采集操作。
如图13中第二行所示,第(n+1)帧,第(m-1)探测角度时,4个探测单元为行列插值探测单元,每个所述行列插值探测单元与所对应的标定探测单元的连线平行所述探测阵列的行方向,其中最上面的 探测单元的光学灵敏位置的坐标为(x i+Δx,y i);在第(n+1)帧,第m探测角度时,4个探测单元为斜插值探测单元,其中最上面的探测单元的光学灵敏位置的坐标为(x i+Δx,y i+Δy)。
在相邻定值扫描过程之间插入插值扫描过程,能够使所述行列插值探测单元与斜插值探测单元填补于相邻标定探测单元之间,从而均匀的扩展线束、提高分辨率。
需要说明的是,为了降低探测器控制难度,降低探测阵列的读取难度,使第n帧进行的定值扫描过程中的标定探测单元和行列插值探测单元,与第(n+1)帧进行的所述插值扫描过程中的行列插值探测单元和斜插值探测单元构成规律的点阵。
具体的,本发明一些实施例中,沿垂直转轴方向(即所述探测阵列行方向上),第(n+1)帧进行的插值扫描过程中,斜插值采集操作所确定的斜插值探测单元与所对应的标定探测单元之间的间距和第(n+1)帧进行的插值扫描过程中,第(m-1)探测角度进行的行列插值采集操作中的行列插值探测单元与所对应的标定探测单元的间距相等;沿平行转轴方向(即所述探测阵列列方向上),第(n+1)帧进行的插值扫描过程中,斜插值采集操作所确定的斜插值探测单元与所对应的标定探测单元之间的间距和第n帧进行的定值扫描过程中,在第m探测角度进行的行列插值采集操作中的行列插值探测单元与所对应的标定探测单元的间距相等。
需要说明的是,本发明另一些实施例中,可以通过不同采集操作、不同扫描过程的配合,以实现探测阵列中探测器的遍历。
参考图14至图17,示出了本发明激光雷达再一实施例中所述探测处理装置所实施探测方法在探测阵列的示意图。
本发明一些实施例中,所述探测方法包括:进行的第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程;其中,如图14中第b帧所示,所述第一定值扫描过程包括:在第(a-1) 探测角度,进行所述定值采集操作;在第a探测角度,进行行列插值采集操作;如图15中第(b+1)帧所示,所述第一插值扫描过程包括:在第(a-1)探测角度,进行行列插值采集操作;在第a探测角度,进行斜插值采集操作;如图16中第(b+2)帧所示,所述第二定值扫描过程包括:在第(a-1)探测角度,进行行列插值采集操作;在第a探测角度,进行所述定值采集操作;如图17中第(b+3)帧所示,所述第二插值扫描过程包括:在第(a-1)探测角度,进行斜插值采集操作;在第a探测角度,进行行列插值采集操作;且所述第二定值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一定值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同;所述第二插值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一插值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同,所述第二插值扫描过程中,在第(a-1)探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向与所述第一插值扫描过程中,在第a探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向均相同。
不同扫描过程,不同扫描过程中搭配不同的采集操作,能够使所述标定探测单元和插值探测单元遍历所述探测阵列中每一个探测器,能够在不增加光机复杂度的前提下,最大限度的扩展线束,提高分辨率。
为了实现所述探测阵列中每一个探测器的遍历,为了尽可能均匀的扩展线数、提高分辨率,使第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程中的标定探测单元和插值探测单元构成规律的点阵。具体的,所述第二定值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所 对应的标定探测单元方向和距离与所述第一定值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向和距离均相同;所述第二插值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向和距离与所述第一插值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向和距离均相同,所述第二插值扫描过程中,在第(a-1)探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向和距离与所述第一插值扫描过程中,在第a探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向和距离均相同。
此外,本发明还提供一种激光雷达。所述激光雷达包括:多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;采集模块,所述采集模块适宜于进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;还适宜于进行至少一次插值采集操作以获得插值采集数据;处理模块,所述处理模块适宜于根据所述定值采集数据和所述插值采集数据,获得所述点云图。
参考图15,示出了本发明激光雷达一实施例的结构示意图。
如图18所示,所述激光雷达包括多个发光单元211和多个探测单元221,所述多个探测单元221和所述多个发光单元211一一对应。
具体的,如图18所示,所述激光雷达的发射模块210包括:多个发光单元211,所述激光雷达的探测模块220包括:多个探测单元221,所述多个探测单元221与所述多个发光单元211一一对应。
所述激光雷达的发射模块210适宜于产生探测光,所述发射模块210包括多个发光单元211,每个所述发光单元211产生一线探测光。每个发光单元211所产生的探测光在远场覆盖一定视场范围,即每个 发光单元111在远场对应于一个发射视场。
所述激光雷达的探测模块220适宜于接收所述探测光被反射后形成的回波光。所述探测模块220包括:多个探测单元221。每个探测单元221能够接收远场一定视场范围内的回波光,即每个探测单元221在远场对应于一个接收视场。
所述多个探测单元221和所述多个发光单元211一一对应,即在所述激光雷达中,所述发光单元在远场的发射视场与所对应的探测单元在远场的接收视场相同,以构成物理通道,也就是说,在远场位置,所述发光单元和所对应的探测单元的视场相同,所以所述发光单元发射的探测光经反射形成的回波光被所对应的接收单元接收。
具体的,如图18示出了所述激光雷达的发射模块210和探测模块220中的8个物理通道,即所述发射模块210中的8个发光单元211,分别为第1、2、3、……、8个发光单元,所述探测模块120中的8个探测单元221,分别为第1、2、3、……、8个探测单元。第i个通道的发光单元211i产生的探测光经雷达外部障碍物反射形成回波光,回波光被第i个通道的探测单元221i接收。
所述发光单元211i和所述探测单元221i相对应以构成第i通道;所述发光单元211(i+1)和所述探测单元221(i+1)相对应以构成第(i+1)通道。
本发明一些实施例中,具体的,每个探测单元221包括:多个探测器221s。具体的,如图18所示,所述激光雷达包括:多个探测器221s,所述多个探测器221s呈阵列排布以构成探测阵列;每个所述探测单元221包括多个所述探测器221s。
本发明一些实施例中,每个所述探测器221s为独立寻址和独立控制的探测器,也就是说,每个所述探测器221s可以单独上电、独立引出(如图2中圈1213所示),通过只上电或只读取特定地址线上的探测器以的读取单个探测器信号。本发明一些实施例中,所述探测 器221s可以包括:单光子雪崩二极管(SPAD)。
本发明一些实施例中,如图18所示,所述发光单元211包括:多个发射器。具体的,所述激光雷达包括:多个发射器211v,所述多个发射器211v呈阵列排布以构成探测阵列;每个所述发光单元211包括多个所述发射器211v。
本发明一些实施例中,每个所述发射器211v为独立寻址和独立控制的发射器,也就是说,每个所述发射器211v可以单独上电。具体的,如图3所示,所述多个发射器211v呈阵列排布以构成发射阵列,其中圈1113中示出了一个最小单位组成。通过向A1~A3,P1~P6的连接线施以不同的电压,对不同的发射器211v进行选择,实现所述发射器211v的独立寻址和独立控制。具体的,本发明一些实施例中,所述发射器211v包括:垂直腔面发射激光器(VCSEL)。
需要说明的是,将所述发光单元设置为多个发射器构成的做法仅为一实例。本发明其他实施例中,所述发光单元还可以是独立的激光器,例如边发射激光器(EEL)。
还需要使说明的是,激光雷达的发射单元发射探测光,通过标定(装调)后所确定的探测单元为标定探测单元,此时标定探测单元与发光单元在远场对应于相同的视场范围,与标定探测单元相对应的发光单元也即标定发光单元,标定(装调)的过程也就是远场视场匹配的过程。图18所示激光雷达中的发光单元211和探测单元221即为所述激光雷达的标定发光单元和标定探测单元。所以,每个所述标定发光单元包括多个所述发射器,每个所述标定探测单元包括多个所述探测器。
另外,图18仅示出了1列发光单元和1列探测单元,所述激光雷达的发射模块和接收模块分别包括多列发光单元和多列探测单元。而且图18示出了所述发射模块每列发光单元所包括发光单元的数量也大于8个,每列探测单元所包括探测单元的数量也大于8个。因此图18示出的是所述激光雷达发射阵列和探测阵列的一部分。
此外,本发明一些实施例中,所述激光雷达还包括扫描装置(图中未示出),所述扫描装置适宜于通过转动或摆动使发光单元所产生的光线偏折至探测角度。具体的,所述激光雷达可以是电机带动收发装置整体旋转的机械式的激光雷达、转镜式的激光雷达、微振镜式的激光雷达,因此所述扫描装置可以是具有电机的整体旋转机构,也可以是转镜或微振镜。
继续参考图18,所述激光雷达还包括:进行采集操作的采集模块230和处理数据的处理模块240。
如图18所示,本发明一些实施例中,所述采集模块230包括:定值采集单元231,所述定值采集单元231适宜于进行定值采集操作。
所述定值采集单元231适宜于进行定值采集操作,即适宜于通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据。其中,通过所述多个发光单元和所述多个标定探测单元进行采集是指通过所述发光单元和所述标定探测单元进行光信号的收发以实现的数据采集。
需要说明的是,所述激光雷达标定后所确定的探测单元为标定探测单元,因此所述定值采集单元231进行的定值采集操作过程中,所述发光单元为标定发光单元。
具体的,如图5所示,第i通道的标定探测单元121i的光学灵敏位置(即中心位置的坐标为(x i,y i);结合图6所示,第i通道的标定探测单元121i对应视场的角度为
Figure PCTCN2022098784-appb-000007
(图6中虚线602所示),其中,θ i为垂直视场角,φ为水平视场角,f为光学系统601的焦距。从图6中可以知道,接收视场和光斑中心位置相对应,即方框603为第i通道的标定探测单元121i对应的位置。
需要说明的是,本发明一些实施例中,所述激光雷达具有扫描装 置,因此,在所述扫描装置确定探测角度后,所述定值采集单元231进行定值采集操作,且所述定值采集单元231所获得的定值采集数据与所述探测角度相对应。
本发明一些实施例中,所述采集模块230还包括:插值采集单元232,所述插值采集单元232适宜于进行插值采集操作;所述插值采集单元232包括:探测选择器232a和处理器232b;所述探测选择器232a适宜于确定多个插值探测单元,所述多个插值探测单元与所述多个标定探测单元一一对应;所述处理器232b适宜于通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
所述探测选择器232a适宜于确定插值采集操作接收光信号的探测单元的位置,从而不额外增加光机复杂度的前提下,扩展线束和分辨率。
其中,所述多个插值探测单元与所述多个标定探测单元一一对应,而所述多个标定探测单元(即图18中的探测单元221)和所述多个发光单元211一一对应以构成物理通道,因此所述多个插值探测单元和所述多个发光单元211一一对应以构成所述插值采集操作中的通道,也就是说,所述处理器232b通过所述多个发光单元和所述多个插值探测单元构成物理通道进行插值采集操作以获得所述插值采集数据,即第i通道的发光单元111i产生的探测光经雷达外部障碍物反射形成回波光,回波光被第i个通道的插值探测单元接收。
需要说明的是,本发明一些实施例中,所述激光雷达具有扫描装置,因此,在所述扫描装置确定探测角度后,所述插值采集单元232进行插值采集操作,且所述插值采集单元232所获得的插值采集数据与所述探测角度相对应。
本发明一些实施例中,所述插值采集单元232适宜于进行行列插值采集操作以获得行列插值采集数据,所述插值采集数据包括所述行列插值采集数据;所述探测选择器232a包括:行列选择元件232a1, 所述行列选择元件232a1适宜于确定多个行列插值探测单元,所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向或列方向中的一个方向;所述处理器232b通过所述多个发光单元和所述多个行列插值探测单元进行采集以获得所述行列插值采集数据。
结合参考图9,示出了行列插值采集操作中所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向的示意图。
所述行列选择元件232a1确定的所述行列插值探测单元122ix指向所对应的标定探测单元(图9中虚线框所示)的方向平行所述探测阵列的行方向。所以,所述行列插值探测单元122ix相对于所述标定探测单元121i(如图5中所示)水平平移Δx,即上电或读取相对应位置的探测器,则第i通道的插值探测单元121ix对应的视场的角度为
Figure PCTCN2022098784-appb-000008
结合参考图10,示出了行列插值采集操作中当所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的列方向的示意图。
所述行列选择元件232a1确定的所述行列插值探测单元122iy指向所对应的标定探测单元(图10中虚线框所示)的方向平行所述探测阵列的列方向。所以,所述行列插值探测单元122iy相对于所述标定探测单元121i(如图5中所示)垂直平移Δy,即上电或读取相对应位置的探测器,则第i通道的插值探测单元121ix对应的视场的角度为
Figure PCTCN2022098784-appb-000009
本发明一些实施例中,所述插值采集单元232还适宜于进行斜插值采集操作以获得斜插值采集数据,所述插值采集数据还包括所述斜插值采集数据;所述探测选择器包括:斜选择元件232a2,所述斜选择元件232a2适宜于确定多个斜插值探测单元,所述斜插值探测单元指向所对应的标定探测单元的方向与所述行方向和所述列方向均相 交;所述处理器232b通过所述多个发光单元和所述多个斜插值探测单元进行采集以获得所述斜插值采集数据。
结合参考图11,示出了斜插值采集操作中所述斜插值探测单元与所对应的标定探测单元示意图。
所述斜选择元件232a2确定的所述斜插值探测单元122ixy指向所对应的标定探测单元(图11中虚线框所示)的方向与所述行方向和所述列方向均相交。所以,所述斜插值探测单元122ixy相对于所述标定探测单元121i(如图5中所示)水平平移Δx且垂直平移Δy,即上电或读取相对应位置的探测器,则第i通道的斜插值探测单元122ixy对应的视场的角度为
Figure PCTCN2022098784-appb-000010
需要说明的是,如图5和图9~11所示,本发明一些实施例中,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于相对应方向上相邻标定探测单元之间的距离。
如图5和图9所示,沿所述探测阵列的行方向上,所述行列插值探测单元122ix与所对应的标定探测单元之间的距离小于行方向上相邻标定探测单元之间的距离,即所述行列插值探测单元122ix位于行方向上相邻两个标定探测单元之间。
如图5和图10所示,沿所述探测阵列的列方向上,所述行列插值探测单元122iy与所对应的标定探测单元之间的距离小于列方向上相邻标定探测单元之间的距离,即所述行列插值探测单元122iy位于列方向上相邻两个标定探测单元之间。
具体的,如图5和图11所示,沿所述探测阵列的行方向上,所述斜插值探测单元122ixy与所对应的标定探测单元之间的距离小于行方向上相邻标定探测单元之间的距离,即所述斜插值探测单元122ixy位于行方向上相邻两个标定探测单元之间;并且,沿所述探测阵列的列方向上,所述斜插值探测单元122ixy与所对应的标定探测 单元之间的距离小于列方向上相邻标定探测单元之间的距离,即所述斜插值探测单元122ixy位于列方向上相邻两个标定探测单元之间。
还需要说明的是,本发明一些实施例中,所述激光雷达的接收模块包括多行多列探测单元。但是这种方式仅为一示例,本发明一些实施例中,所述激光雷达的接收模块也可以仅包括1列探测单元或者1行探测单元。
本发明一些实施例中,所述激光雷达的接收模块仅包括1列探测单元或者1行探测单元时,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于所述标定探测单元在相对应方向上的尺寸。
具体的,所述激光雷达的接收模块仅包括1列探测单元时,沿所述探测阵列的行方向上,所述插值探测单元,包括行列插值单元和斜插值单元中的至少一种,与所对应的标定探测单元之间的距离小于所述标定探测单元在行方向上的尺寸,即所述插值探测单元的光学灵敏位置(即中心位置)位于所述标定探测单元行方向上的范围内。
所述激光雷达的接收模块仅包括1行探测单元时,沿所述探测阵列的列方向上,所述插值探测单元,包括行列插值单元和斜插值单元中的至少一种,与所对应的标定探测单元之间的距离小于所述标定探测单元在列方向上的尺寸,即所述插值探测单元的光学灵敏位置(即中心位置)位于所述标定探测单元列方向上的范围内。
探测单元的视场与光斑中心位置相对应,当所述激光雷达的接收模块包括多行多列探测单元,所述插值探测单元位于对应方向上相邻两个标定探测单元之间,因此所述插值探测单元对应的视场位于对应方向上相邻两个标定探测单元所对应的视场之间。所以,所述插值探测单元对应的视场与相邻的标定探测单元所对应的视场之间的夹角势必小于相邻两个标定探测单元所对应的视场之间的夹角,可见,所述插值采集操作的进行,能够有效提高分辨率而不增加光机复杂度。
因此,选择元件,包括行列选择元件232a1和斜选择元件232a2中至少一个,可以根据所述激光雷达的分辨率设定所述插值探测单元与所对应标定探测单元之间的距离。具体的,图5和图9~10所示实施例中,沿所述探测阵列的行方向上,所述插值探测单元与所对应标定探测单元之间的距离Δx为:
Figure PCTCN2022098784-appb-000011
沿所述探测阵列的列方向上,所述插值探测单元与所对应标定探测单元之间的距离Δy为:
Figure PCTCN2022098784-appb-000012
当所述激光雷达的接收模块也可以仅包括1列探测单元或者1行探测单元,所述插值探测单元的光学灵敏位置(即中心位置)位于标定探测单元对应方向上的范围内,所述插值探测单元对应的视场部分与对应方向上所述标定探测单元的视场重合,另外部分延伸至对应方向上所述标定探测单元以外。所以,所述插值探测单元对应的视场与相邻的标定探测单元所对应的视场之间的夹角势必小于假定设置相邻的两个标定探测单元的视场角范围,这两个标定探测单元所对应的视场之间的夹角,可见,所述插值采集操作的进行,能够有效提高分辨率而不增加光机复杂度。
所以,选择元件,包括行列选择元件232a1和斜选择元件232a2中至少一个,沿所述探测单元的行方向或列方向中至少一个方向上,所确定的所述插值探测单元与所对应的标定探测单元之间距离使得所述插值探测单元所对应视场角与所对应的标定探测单元所对应视场角之差小于所述激光雷达标定的分辨率(即不进行插值采集操作的雷达分辨率)。
还需要说明的是,本发明一些实施例中,每个所述插值探测单元包括多个探测器,而且所述插值探测单元中的多个探测器与所对应的标定探测单元中的多个探测器部分不相同。
继续参考图18,本发明一些实施例中,所述插值采集单元232还包括:发光选择器232c,所述发光选择器232c适宜于基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与 所述标定发光单元一一对应;所述处理器232b通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
所述发光选择器232c基于所述插值探测单元,确定插值发光单元,使发光单元的中心位置在每次插值采集操作过程中随着探测单元同步平移,以确保所述插值发光单元的接收视场和回波光的光斑中心对应,以保证探测效率和测远能力。
如图12所示,通过所述多个插值发光单元和所述多个插值探测单元进行采集的插值采集操作中,所述探测阵列上回波光光斑的位置能够随着探测单元同步平移,能够确保测远能力和探测效率。
需要说明的是,所述激光雷达包括:多个发射器,每个所述标定发光单元包括多个所述发射器,每个所述插值发光单元包括多个所述发射器;所述插值发光单元中的多个发射器与所对应的标定发光单元中的多个发射器部分不相同。
继续参考图18,所述激光雷达还包括:处理数据的处理模块240。
具体的,所述处理模块240根据所述定值采集操作所获得的定值采集数据以及每一次所述插值采集操作所获得的插值采集数据的总和,获得所述点云图。
本发明一些实施例中,所述激光雷达还包括:扫描装置,所述定值采集数据与所述探测角度相对应,所述插值采集数据与所述探测角度相对应;因此所述处理模块240基于所有探测角度下的所述定值采集数据和所述插值采集数据,获得点云图。
需要说明的是,针对具有扫描装置的激光雷达,可以通过在同一帧的扫描过程中不同角度采用不同的采集操作,不同帧的扫描过程中采用不同的采集操作,在将多次扫描的结果合并,以实现多帧拼接,从而在不增加光机复杂度的前提下,成倍扩展线束,提高分辨率。
参考图13,示出了本发明激光雷达另一实施例的不同帧扫描过程中所采用不同采集操作的探测单元的示意图。
需要说明的是,图13仅示出了所述激光雷达中4个探测单元的示意位置,所述激光雷达中探测单元的数量并不限于4个,可以为其他数量。图中黑色实心原点表示每个探测单元的光学灵敏位置(即中心位置)。图中所标出的坐标为所示一列4个探测单元中最上面的探测单元的光学灵敏位置的坐标。
本发明一些实施例中,所述激光雷达具有扫描装置,所述扫描装置的所述转轴平行探测阵列的列方向。本发明其他实施例中,所述扫描装置的转轴也可以平行探测阵列的行方向,本发明对此不做限定。
所述扫描装置的扫描过程包括:定值扫描过程;所述定值扫描过程包括:在第i探测角度,所述定值采集单元进行定值采集操作;在第i+1探测角度,所述插值采集单元进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述转轴的方向。
具体的,所述扫描装置的扫描过程包括:在第n帧进行定值扫描过程。因此第n帧,第(m-1)探测角度时,所述定值采集单元231进行定值采集操作;在第n帧,第m探测角度时,所述插值采集单元232进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的列方向。
如图13中第一行所示,第n帧,第(m-1)探测角度时,4个探测单元为标定探测单元,其中最上面的探测单元的光学灵敏位置的坐标为(x i,y i);在第n帧,第m探测角度时,4个探测单元为行列插值探测单元,每个所述行列插值探测单元与所对应的标定探测单元的连线平行所述探测阵列的列方向,其中最上面的探测单元的光学灵敏位置的坐标为(x i,y i+Δy)。
本发明一些实施例中,所述扫描装置的扫描过程还包括:插值扫描过程,所述插值扫描过程位于相邻两次定值扫描过程之间;所述插值扫描过程包括:在第i探测角度,所述插值采集单元进行行列插值 采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向垂直所述转轴的方向;在第i+1探测角度,所述插值采集单元进行斜插值采集操作。
具体的,所述扫描装置的扫描过程包括:在第(n+1)帧进行所述插值扫描过程。因此,第(n+1)帧,第(m-1)探测角度时,所述插值采集单元232进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向;在第(n+1)帧,第m探测角度时,所述插值采集单元232进行斜插值采集操作。
如图13中第二行所示,第(n+1)帧,第(m-1)探测角度时,4个探测单元为行列插值探测单元,每个所述行列插值探测单元与所对应的标定探测单元的连线平行所述探测阵列的行方向,其中最上面的探测单元的光学灵敏位置的坐标为(x i+Δx,y i);在第(n+1)帧,第m探测角度时,4个探测单元为斜插值探测单元,其中最上面的探测单元的光学灵敏位置的坐标为(x i+Δx,y i+Δy)。
在相邻定值扫描过程之间插入插值扫描过程,能够使所述行列插值探测单元与斜插值探测单元填补于相邻标定探测单元之间,从而均匀的扩展线束、提高分辨率。
需要说明的是,为了降低探测器控制难度,降低探测阵列的读取难度,使第n帧进行的定值扫描过程中的标定探测单元和行列插值探测单元,与第(n+1)帧进行的所述插值扫描过程中的行列插值探测单元和斜插值探测单元构成规律的点阵。
具体的,本发明一些实施例中,沿垂直转轴方向(即所述探测阵列行方向上),第(n+1)帧进行的插值扫描过程中,所述插值采集单元232进行的斜插值采集操作所确定的斜插值探测单元与所对应的标定探测单元之间的间距和第(n+1)帧进行的插值扫描过程中,第(m-1)探测角度进行的行列插值采集操作中的行列插值探测单元与所对应的标定探测单元的间距相等;沿平行转轴方向(即所述探测阵 列列方向上),第(n+1)帧进行的插值扫描过程中,所述插值采集单元232进行斜插值采集操作所确定的斜插值探测单元与所对应的标定探测单元之间的间距和第n帧进行的定值扫描过程中,在第m探测角度进行的行列插值采集操作中的行列插值探测单元与所对应的标定探测单元的间距相等。
需要说明的是,本发明另一些实施例中,可以通过不同采集操作、不同扫描过程的配合,以实现探测阵列中探测器的遍历。
参考图14,示出了本发明激光雷达另一实施例的不同帧扫描过程中所采用不同采集操作的探测单元的示意图。
所述扫描装置的扫描过程包括:进行的第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程;其中,如图14中第b帧所示,所述第一定值扫描过程包括:在第(a-1)探测角度,进行所述定值采集操作;在第a探测角度,进行行列插值采集操作;如图18中第(b+1)帧所示,所述第一插值扫描过程包括:在第(a-1)探测角度,进行行列插值采集操作;在第a探测角度,进行斜插值采集操作;如图16中第(b+2)帧所示,所述第二定值扫描过程包括:在第(a-1)探测角度,进行行列插值采集操作;在第a探测角度,进行所述定值采集操作;如图17中第(b+3)帧所示,所述第二插值扫描过程包括:在第(a-1)探测角度,进行斜插值采集操作;在第a探测角度,进行行列插值采集操作;且所述第二定值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一定值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同;所述第二插值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一插值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同,所述第二 插值扫描过程中,在第(a-1)探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向与所述第一插值扫描过程中,在第a探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向均相同。
不同扫描过程,不同扫描过程中搭配不同的采集操作,能够使所述标定探测单元和插值探测单元遍历所述探测阵列中每一个探测器,能够在不增加光机复杂度的前提下,最大限度的扩展线束,提高分辨率。
为了实现所述探测阵列中每一个探测器的遍历,为了尽可能均匀的扩展线数、提高分辨率,使第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程中的标定探测单元和插值探测单元构成规律的点阵。具体的,所述第二定值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向和距离与所述第一定值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向和距离均相同;所述第二插值扫描过程中,在第a探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向和距离与所述第一插值扫描过程中,在第(a-1)探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向和距离均相同,所述第二插值扫描过程中,在第(a-1)探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向和距离与所述第一插值扫描过程中,在第a探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向和距离均相同。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (29)

  1. 一种激光雷达的探测方法,其特征在于,所述激光雷达包括多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;
    所述探测方法包括:
    进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;
    进行至少一次插值采集操作以获得插值采集数据;
    根据所述定值采集数据和所述插值采集数据,获得所述点云图。
  2. 如权利要求1所述的探测方法,其特征在于,所述插值采集操作包括:
    确定多个插值探测单元,所述多个插值探测单元与所述多个标定探测单元一一对应;
    通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
  3. 如权利要求2所述的探测方法,其特征在于,每个所述标定探测单元包括多个探测器,每个所述插值探测单元包括多个探测器;
    所述插值探测单元中的多个探测器与所对应的标定探测单元中的多个探测器部分不相同。
  4. 如权利要求3所述的探测方法,其特征在于,所述激光雷达包括:多个探测器,所述多个探测器呈阵列排布以构成探测阵列;
    沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于相对应方向上相邻标定探测单元之间的距离;
    或者,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于所述标定探测单元在相对应方向上的尺寸。
  5. 如权利要求4所述的探测方法,其特征在于,进行至少一次插值采集操作以获得插值采集数据的步骤包括:进行行列插值采集操作以获得行列插值采集数据,所述插值采集数据包括所述行列插值采集数据;
    其中,行列插值采集操作包括:确定多个行列插值探测单元,所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向或列方向中的一个方向;通过所述多个发光单元和所述多个行列插值探测单元进行采集以获得所述行列插值采集数据。
  6. 如权利要求4所述的探测方法,其特征在于,进行至少一次插值采集操作以获得插值采集数据的步骤还包括:进行斜插值采集操作以获得斜插值采集数据,所述插值采集数据还包括所述斜插值采集数据;
    其中,斜插值采集操作包括:确定多个斜插值探测单元,所述斜插值探测单元指向所对应的标定探测单元的方向与所述行方向和所述列方向均相交;通过所述多个发光单元和所述多个斜插值探测单元进行采集以获得所述斜插值采集数据。
  7. 如权利要求3或4所述的探测方法,其特征在于,所述探测器为独立寻址和独立控制的探测器。
  8. 如权利要求2所述的探测方法,其特征在于,通过所述多个发光单元和所述多个标定探测单元进行采集以获得定值采集数据的步骤中,所述发光单元为标定发光单元;
    所述插值采集操作的步骤还包括:
    基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与所述标定发光单元一一对应;
    通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
  9. 如权利要求8所述的探测方法,其特征在于,每个所述标定发光单元包括多个发射器,每个所述插值发光单元包括多个发射器;
    所述插值发光单元中的多个发射器与所对应的标定发光单元中的多个发射器部分不相同。
  10. 如权利要求9所述的探测方法,其特征在于,所述发射器为独立寻址和独立控制的发射器。
  11. 如权利要求2所述的探测方法,其特征在于,所述激光雷达还包括扫描装置,所述扫描装置适宜于通过转动或摆动使发光单元所产生的光线偏折至探测角度;
    所述定值采集操作还包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得定值采集数据之前,确定探测角度,所述定值采集数据与所述探测角度相对应;
    所述插值采集操作还包括:通过所述多个发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据之前,确定探测角度,所述插值采集数据与所述探测角度相对应。
  12. 如权利要求11所述的探测方法,其特征在于,所述转轴平行探测阵列的行方向或列方向中的一个方向;
    所述探测方法包括:定值扫描过程,所述定值扫描过程包括:
    在第i探测角度,进行定值采集操作;
    在第i+1探测角度,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述转轴。
  13. 如权利要求11或12所述的探测方法,其特征在于,所述探测方法还包括:至少一次插值扫描过程,所述插值扫描过程位于相邻 两次定值扫描过程之间;
    所述插值扫描操作包括:
    在第i探测角度,进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向垂直所述转轴的方向;
    在第i+1探测角度,进行斜插值采集操作。
  14. 如权利要求11所述的探测方法,其特征在于,所述探测方法包括:进行的第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程;
    其中,
    所述第一定值扫描过程包括:在第i探测角度,进行所述定值采集操作;在第i+1探测角度,进行行列插值采集操作;
    所述第一插值扫描过程包括:在第i探测角度,进行行列插值采集操作;在第i+1探测角度,进行斜插值采集操作;
    所述第二定值扫描过程包括:在第i探测角度,进行行列插值采集操作;在第i+1探测角度,进行所述定值采集操作;
    所述第二插值扫描过程包括:在第i探测角度,进行斜插值采集操作;在第i+1探测角度,进行行列插值采集操作;
    且所述第二定值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一定值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同;
    所述第二插值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一插值扫描过程中,在第i探测角度进行的行列插值采集操作 内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同,
    所述第二插值扫描过程中,在第i探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向与所述第一插值扫描过程中,在第i+1探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向均相同。
  15. 一种激光雷达,其特征在于,包括:
    多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;
    探测处理装置,所述探测处理装置适宜于实施权利要求1~14中任意一项所述的探测方法。
  16. 一种激光雷达,其特征在于,包括:
    多个发光单元和多个标定探测单元,所述多个标定探测单元和所述多个发光单元一一对应;
    采集模块,所述采集模块适宜于进行定值采集操作以获得定值采集数据,所述定值采集操作包括:通过所述多个发光单元和所述多个标定探测单元进行采集以获得所述定值采集数据;还适宜于进行至少一次插值采集操作以获得插值采集数据;
    处理模块,所述处理模块适宜于根据所述定值采集数据和所述插值采集数据,获得所述点云图。
  17. 如权利要求16所述的激光雷达,其特征在于,所述采集模块包括:定值采集单元和插值采集单元,所述定值采集单元适宜于进行定值采集操作,所述插值采集单元适宜于进行插值采集操作;所述插值采集单元包括:探测选择器和处理器;
    所述探测选择器适宜于确定多个插值探测单元,所述多个插值探测单元与所述多个标定探测单元一一对应;
    所述处理器适宜于通过所述多个发光单元和所述多个插值探测 单元进行采集以获得所述插值采集数据。
  18. 如权利要求17所述的激光雷达,其特征在于,
    每个所述标定探测单元包括多个探测器,每个所述插值探测单元包括多个探测器;
    所述插值探测单元中的多个探测器与所对应的标定探测单元中的多个探测器部分不相同。
  19. 如权利要求18所述的激光雷达,其特征在于,所述激光雷达包括:多个探测器,所述多个探测器呈阵列排布以构成探测阵列;
    沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于相对应方向上相邻标定探测单元之间的距离;
    或者,沿所述探测阵列的行方向或列方向上,所述插值探测单元与所对应的标定探测单元之间的距离均小于所述标定探测单元在相对应方向上的尺寸。
  20. 如权利要求19所述的激光雷达,其特征在于,所述插值采集单元适宜于进行行列插值采集操作以获得行列插值采集数据,所述插值采集数据包括所述行列插值采集数据;
    所述探测选择器包括:行列选择元件,所述行列选择元件适宜于确定多个行列插值探测单元,所述行列插值探测单元指向所对应的标定探测单元的方向平行所述探测阵列的行方向或列方向中的一个方向;
    所述处理器通过所述多个发光单元和所述多个行列插值探测单元进行采集以获得所述行列插值采集数据。
  21. 如权利要求19所述的激光雷达,其特征在于,所述插值采集单元适宜于进行斜插值采集操作以获得斜插值采集数据,所述插值采集数据还包括所述斜插值采集数据;
    所述探测选择器包括:斜选择元件,所述斜选择元件适宜于确定多个斜插值探测单元,所述斜插值探测单元指向所对应的标定探测单元的方向与所述行方向和所述列方向均相交;
    所述处理器通过所述多个发光单元和所述多个斜插值探测单元进行采集以获得所述斜插值采集数据。
  22. 如权利要求18或19所述的激光雷达,其特征在于,所述探测器包括:单光子雪崩二极管。
  23. 如权利要求17所述的激光雷达,其特征在于,所述定值采集单元进行定值采集操作的过程中所采用的发光单元为标定发光单元;
    所述插值采集单元还包括:发光选择器,所述发光选择器适宜于基于所述多个插值探测单元,确定多个插值发光单元,所述多个插值发光单元与所述标定发光单元一一对应;
    所述处理器通过所述多个插值发光单元和所述多个插值探测单元进行采集以获得所述插值采集数据。
  24. 如权利要求23所述的激光雷达,其特征在于,
    每个所述标定发光单元包括多个发射器,每个所述插值发光单元包括多个发射器;
    所述插值发光单元中的多个发射器与所对应的标定发光单元中的多个发射器部分不相同。
  25. 如权利要求24所述的激光雷达,其特征在于,所述发射器包括:垂直腔面发射发射器。
  26. 如权利要求17所述的激光雷达,其特征在于,所述激光雷达还包括:扫描装置,所述扫描装置适宜于通过转动或摆动使发光单元所产生的光线绕转轴偏折至探测角度;
    所述定值采集单元还适宜于确定探测角度,所述定值采集数据与所述探测角度相对应;
    所述插值采集单元还适宜于确定探测角度,所述插值采集数据与所述探测角度相对应。
  27. 如权利要求26所述的激光雷达,其特征在于,所述转轴平行探测阵列的行方向或列方向中的一个方向;
    所述扫描装置的扫描过程包括:定值扫描过程;
    所述定值扫描过程包括:
    在第i探测角度,所述定值采集单元进行定值采集操作;
    在第i+1探测角度,所述插值采集单元进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向平行所述转轴的方向。
  28. 如权利要求27所述的激光雷达,其特征在于,所述扫描装置的扫描过程还包括:插值扫描过程,所述插值扫描过程位于相邻两次定值扫描过程之间;
    所述插值扫描过程包括:
    在第i探测角度,所述插值采集单元进行行列插值采集操作,所述行列插值采集操作中的行列插值探测单元指向所对应的标定探测单元的方向垂直所述转轴的方向;
    在第i+1探测角度,所述插值采集单元进行斜插值采集操作。
  29. 如权利要求26所述的激光雷达,其特征在于,所述扫描装置的扫描过程包括:进行的第一定值扫描过程、第一插值扫描过程、第二定值扫描过程和第二插值扫描过程;
    其中,所述第一定值扫描过程包括:在第i探测角度,所述定值采集单元进行所述定值采集操作;在第i+1探测角度,所述插值采集单元进行行列插值采集操作;
    所述第一插值扫描过程包括:在第i探测角度,所述插值采集单 元进行行列插值采集操作;在第i+1探测角度,所述插值采集单元进行斜插值采集操作;
    所述第二定值扫描过程包括:在第i探测角度,所述插值采集单元进行行列插值采集操作;在第i+1探测角度,所述定值采集单元进行所述定值采集操作;
    所述第二插值扫描过程包括:在第i探测角度,所述插值采集单元进行斜插值采集操作;在第i+1探测角度,所述插值采集单元进行行列插值采集操作;
    且所述第二定值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一定值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同;
    所述第二插值扫描过程中,在第i+1探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元方向与所述第一插值扫描过程中,在第i探测角度进行的行列插值采集操作内,所述行列插值探测单元指向所对应的标定探测单元的方向均相同,所述第二插值扫描过程中,在第i探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向与所述第一插值扫描过程中,在第i+1探测角度进行的斜插值采集操作内,所述斜插值探测单元指向所对应的标定探测单元的方向均相同。
PCT/CN2022/098784 2021-12-28 2022-06-15 激光雷达的探测方法以及激光雷达 WO2023123886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111630295.7A CN116359884A (zh) 2021-12-28 2021-12-28 激光雷达的探测方法以及激光雷达
CN202111630295.7 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023123886A1 true WO2023123886A1 (zh) 2023-07-06

Family

ID=86909581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098784 WO2023123886A1 (zh) 2021-12-28 2022-06-15 激光雷达的探测方法以及激光雷达

Country Status (2)

Country Link
CN (1) CN116359884A (zh)
WO (1) WO2023123886A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180284274A1 (en) * 2017-03-31 2018-10-04 Luminar Technologies, Inc. Multispectral lidar system
CN110879401A (zh) * 2019-12-06 2020-03-13 南京理工大学 基于相机和激光雷达的无人驾驶平台实时目标3d检测方法
CN112313534A (zh) * 2019-05-31 2021-02-02 深圳市大疆创新科技有限公司 一种多通道激光雷达点云插值的方法和测距装置
CN212905427U (zh) * 2020-06-09 2021-04-06 北京因泰立科技有限公司 一种基于面阵探测器的三维扫描激光雷达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180284274A1 (en) * 2017-03-31 2018-10-04 Luminar Technologies, Inc. Multispectral lidar system
CN112313534A (zh) * 2019-05-31 2021-02-02 深圳市大疆创新科技有限公司 一种多通道激光雷达点云插值的方法和测距装置
CN110879401A (zh) * 2019-12-06 2020-03-13 南京理工大学 基于相机和激光雷达的无人驾驶平台实时目标3d检测方法
CN212905427U (zh) * 2020-06-09 2021-04-06 北京因泰立科技有限公司 一种基于面阵探测器的三维扫描激光雷达

Also Published As

Publication number Publication date
CN116359884A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN108226899B (zh) 激光雷达及其工作方法
CN108369274A (zh) 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统
JP6969425B2 (ja) 光測距装置
CN108375762B (zh) 激光雷达及其工作方法
EP3639057B1 (en) Time-of-flight apparatus
CN109814128B (zh) 时间飞行与关联成像相结合的高分辨快速成像系统及方法
CN111175786B (zh) 一种多路消除串扰的宽视场高分辨率固态激光雷达
WO2016208318A1 (ja) 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体
US20190011539A1 (en) Light Projecting/Reception Unit And Radar
US20220221584A1 (en) Laser radar and method for generating laser point could data
CN113227827A (zh) 激光雷达及自动驾驶设备
US20210311193A1 (en) Lidar sensor for optically detecting a field of vision, working device or vehicle including a lidar sensor, and method for optically detecting a field of vision
WO2023123886A1 (zh) 激光雷达的探测方法以及激光雷达
CN111819602A (zh) 增加点云采样密度的方法、点云扫描系统、可读存储介质
CN113126064B (zh) 一种信号处理方法及相关装置
CN114076929A (zh) 激光雷达系统、车辆以及激光雷达探测方法
US20230132616A1 (en) Laser radar system and detection method
US20220365219A1 (en) Pixel Mapping Solid-State LIDAR Transmitter System and Method
CN216748074U (zh) 一种广角固态激光雷达系统
CN214623040U (zh) 一种大视场关联成像装置
US20210318416A1 (en) Sensor and sensor system
US20210389430A1 (en) Scanning surveying system
JPH0123071B2 (zh)
WO2019093372A1 (ja) 物体検出システム及び物体検出プログラム
CN111257907A (zh) 基于激光雷达的偏振去雾探测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913175

Country of ref document: EP

Kind code of ref document: A1