WO2023123811A1 - 一种基于柔性基底的天线、心电贴及可穿戴设备 - Google Patents

一种基于柔性基底的天线、心电贴及可穿戴设备 Download PDF

Info

Publication number
WO2023123811A1
WO2023123811A1 PCT/CN2022/092341 CN2022092341W WO2023123811A1 WO 2023123811 A1 WO2023123811 A1 WO 2023123811A1 CN 2022092341 W CN2022092341 W CN 2022092341W WO 2023123811 A1 WO2023123811 A1 WO 2023123811A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
inverted
antenna
flexible
antenna structures
Prior art date
Application number
PCT/CN2022/092341
Other languages
English (en)
French (fr)
Inventor
钱正芳
梁豪
戴翔宇
邓睿华
彭捷竣
蒋东廷
孙一翎
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2023123811A1 publication Critical patent/WO2023123811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/085Flexible aerials; Whip aerials with a resilient base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields

Definitions

  • the invention relates to an antenna, an electrocardiographic sticker and a wearable device based on a flexible substrate.
  • the textile antenna is integrated on various textiles by using conductive cloth to make the antenna flexible, simple in shape, small in size, light in weight and easy to wear on the human body.
  • the electrical properties and manufacturing process of the materials used in textile antennas are different from those of traditional metal antennas, and they cannot achieve relatively large deformation.
  • the main purpose of the present invention is to overcome the defects of the above-mentioned background technology and provide an antenna and ECG patch based on a flexible substrate.
  • the present invention adopts the following technical solutions:
  • An antenna based on a flexible substrate comprising a flexible dielectric substrate, a first circular floor, two inverted F circular arc antenna structures and a power divider feed structure, the first circular floor is arranged on the flexible dielectric substrate
  • the two inverted-F arc-shaped antenna structures respectively have an arc line, a first line connected to the end of the arc line, and a second line connected to the middle of the arc line
  • the two inverted F arc-shaped antenna structures are symmetrically arranged on the front of the flexible dielectric substrate, and the power dividing and feeding structure is a symmetrical structure embedded between the front and back sides of the flexible dielectric substrate.
  • the ground ends of the two inverted-F arc-shaped antenna structures are connected to the first circular floor, and the feeding ends of the two inverted-F arc-shaped antenna structures are connected to the ground through the conductive vias on the flexible dielectric substrate. Describe the power split feed structure.
  • It also includes a second circular floor, the second circular floor is arranged on the opposite side of the flexible dielectric substrate, and the first circular floor and the second circular floor pass through the conductive pass on the flexible dielectric substrate. The holes are connected.
  • the arc line sides of the two inverted F arc-shaped antenna structures are parallel to the circumference of the circular floor, thereby forming a conformal structure.
  • the two inverted-F arc-shaped antenna structures are formed to share the first line side and arranged back-to-back, so that the butt joint of the arc line sides of the two inverted-F arc-shaped antenna structures forms an arc.
  • the ground ends of the two inverted F arc antenna structures are arranged on the first line edge of the two inverted F arc antenna structures, and the feed ends of the two inverted F arc antenna structures are arranged On the second line edge of the two inverted-F arc-shaped antenna structures.
  • the flexible dielectric substrate is an elastic film material with a dielectric constant of 2-5.
  • the power dividing feed structure forms a quarter-wavelength feeder.
  • the material of the circular floor, the inverted-F arc-shaped antenna structure and the power dividing and feeding structure is metal or conductive paint.
  • An electrocardiographic patch includes the antenna based on the flexible substrate, wherein the circular floor of the antenna serves as an electrode for measuring electrocardiogram.
  • a wearable device includes the electrocardiographic patch.
  • the invention provides a flexible antenna structure with symmetrical characteristics and tensile resistance.
  • the two inverted-F arc-shaped antenna structures of the flexible antenna of the present invention and its power-dividing feed structure have symmetry and good antenna radiation performance.
  • the two inverted-F arc-shaped antenna structures cooperate with the circular floor, especially It is formed as a conformal structure in which the arc edge is parallel to the circumference of the circular floor, which improves the stretchability of the antenna, and can be stretched and deformed without affecting the radio frequency performance of the antenna.
  • the circular floor not only generates the image current required by the monopole antenna, but also shields the external interference for the power dividing and feeding structure.
  • the power distribution feed structure is embedded in the middle of the flexible dielectric substrate and arranged between two floors on the front and back sides, which can effectively isolate the influence of the human body on the performance of the feed network.
  • the flexible antenna structure of the present invention is used to set up an electrocardiographic patch, which can be attached to the surface of the human body for use.
  • the circular floor of the flexible antenna is used as an electrode for the sensing signal of the electrocardiographic patch to be pasted on the human skin to realize real-time health data. Acquisition and wireless communication, and realize the functional integration of sensing and communication.
  • the application of the flexible antenna structure to the ECG patch can not only improve the comfort of the ECG patch for smart wearable devices, but also is very suitable for application on the surface of the human body due to its high stretchability and good anti-interference performance.
  • the flexible antenna structure of the present invention also has the advantages of compact design, large bandwidth, can be made with common metal materials and flexible dielectric substrates, and has the advantages of low cost.
  • FIG. 1 is a schematic structural diagram of an antenna based on a flexible substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an antenna based on a flexible substrate according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of simulation results of surface current distribution of an antenna according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of simulation results of return loss of antenna S 11 according to an embodiment of the present invention.
  • connection can be used for fixation as well as for coupling or communication.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • an antenna based on a flexible substrate includes a flexible dielectric substrate 1006, two circular floor plates 1003, 2003, two inverted F arc-shaped antenna structures 1001, 1002 and a work Sub-feed structure 1005, the two circular floor plates 1003, 2003 are respectively arranged on the front and back sides of the flexible dielectric substrate 1006, and the two inverted-F arc-shaped antenna structures 1001, 1002 respectively have The longer arc line edge, the shorter first line edge connected at the end of the arc line edge and the shorter second line edge connected in the middle of the arc line edge, the two inverted F circular arc-shaped antenna structures 1001, 1002 are symmetrically arranged on the front surface of the flexible dielectric substrate 1006, and the power dividing and feeding structure 1005 is embedded between the front and back surfaces of the flexible dielectric substrate 1006, and the two inverted The ground ends of the F arc-shaped antenna structures 1001, 1002 are connected to the front circular floor, and the feeding ends of the two inverted F arc-shaped antenna structures 1001, 1002 pass through the
  • the via hole 1007 is connected to the power dividing and feeding structure 1005 , and the two circular floor plates 1003 and 2003 are connected through the conductive via hole 1004 on the flexible dielectric substrate 1006 . It can be understood that the longer, shorter and shorter mentioned above refer to the relative lengths of the arc line side, the first line side and the second line side.
  • the two inverted F circular arc antenna structures 1001, 1002 and their power dividing feed structure 1005 of the flexible antenna are symmetrical and have good antenna radiation performance.
  • the two inverted F circular arc antenna structures 1001, 1002 and the circle It can be stretched and deformed without affecting the radio frequency performance of the antenna.
  • the circular floor not only generates the image current required by the monopole antenna, but also shields the power dividing and feeding structure 1005 from external interference.
  • the power dividing and feeding structure 1005 is embedded in the middle of the flexible dielectric substrate 1006, and is arranged between two floors on the front and back sides, which can effectively isolate the influence of the human body on the performance of the feeding network.
  • the arc lines of the two inverted F arc-shaped antenna structures 1001, 1002 are parallel to the circumference of the circular floor, and the conformal structure thus formed has a common property when stretched. Deformation further optimizes the stretchability of the antenna and maintains the RF performance of the antenna when stretched.
  • the two inverted-F circular-arc antenna structures 1001, 1002 are formed as a back-to-back arrangement sharing the first line edge, so that the circles of the two inverted-F circular-arc antenna structures 1001, 1002
  • the butt joint of the arc edge is a circular arc.
  • the ground terminals of the two inverted-F arc-shaped antenna structures 1001 , 1002 are arranged on the first line edge of the two inverted-F arc-shaped antenna structures 1001 , 1002 .
  • the feeding ends of the two inverted-F arc antenna structures 1001 , 1002 are arranged on the second line side of the two inverted-F arc-shaped antenna structures 1001 , 1002 .
  • the flexible dielectric substrate 1006 is an elastic film material with a dielectric constant between 2 and 5.
  • the working frequency of the antenna may include any one of Bluetooth, WIFI, or sub5G frequency bands.
  • the power dividing feed structure 1005 forms a quarter-wavelength feeder.
  • the material of the circular floor, the inverted-F circular arc antenna structure and the power dividing and feeding structure 1005 is metal or conductive paint.
  • An embodiment of the present invention also provides an electrocardiographic patch, which includes the antenna based on the flexible substrate, wherein the circular floor of the antenna serves as an electrode for measuring electrocardiogram.
  • the embodiment of the present invention also provides a wearable device, which includes the ECG patch.
  • the flexible antenna structure of the present invention to set up the electrocardiographic patch, which can be attached to the surface of the human body for use, and the circular floor of the flexible antenna is used as the electrode for the sensing signal of the electrocardiographic patch to be pasted on the human skin to realize real-time health data. Acquisition and wireless communication, and realize the functional integration of sensing and communication.
  • the application of the flexible antenna structure to the ECG patch can not only improve the comfort of the ECG patch for smart wearable devices, but also is very suitable for application on the surface of the human body due to its high stretchability and good anti-interference performance.
  • the flexible antenna structure of the present invention also has the advantages of compact design, large bandwidth, can be made with common metal materials and flexible dielectric substrates, and has the advantages of low cost.
  • a stretchable antenna based on a flexible dielectric substrate includes a flexible dielectric substrate 1006, the front and back sides of the flexible dielectric substrate 1006 are respectively provided with a circular floor 1003, and a conductive via hole 1004 is also provided on the flexible dielectric substrate 1006.
  • the front of the flexible dielectric substrate 1006 is provided with two structurally symmetrical inverted-F arc-shaped antenna structures 1001, 1002, which are the main radiation structures of the antenna.
  • FIG. 1 shows a perspective view of the flexible antenna structure of the present invention, and its section is shown in FIG. 2 .
  • the power division feed structure 1005 provides a feed network structure through a quarter-wavelength feeder to realize power division and impedance transformation.
  • the circular floor 1003, 2003 not only generates the mirror current necessary for the monopole antenna, but also provides The power feed structure shields external interference.
  • a symmetrical power distribution feed structure 1005 is placed between the front and back circular floors 1003 and 2003 , which can effectively isolate the impact of the human body on the performance of the feed network.
  • the materials of the circular floor, the inverted-F circular arc antenna structure and the power distribution feed structure can be metal materials, or high-conductivity coatings such as conductive silver glue.
  • the typical operating frequency of the antenna is Bluetooth, WIFI, or sub5G frequency band.
  • the flexible antenna structure of the present invention can be used to set up an electrocardiographic patch.
  • the circular floor is used as both an antenna floor and an electrode for measuring ECG.
  • a superelastic film material with a dielectric constant between 2 and 5 and good tensile properties can be selected.
  • a silica gel matrix such as PDMS material, can be used.
  • the material of the circular floor, the via hole, and the back-to-back inverted F antenna structure in the present invention can be metal, and can also be made by using high-conductivity nano-silver glue or liquid metal through screen printing and other processes.
  • conductive silver paste can be used.
  • Fig. 3 shows the surface current simulation results of the flexible antenna of the present invention and its power-dividing feed structure, which has symmetrical characteristics; when in use, the radio frequency signal is transmitted from the feed source to two back-to-back inverted F antenna elements through the power-dividing feed structure.
  • the ECG signal and the radio frequency signal GHz of communication will not interfere with each other.
  • the simulation results show that the flexible antenna structure has good performance and has good engineering application value.
  • the circular floor of the antenna in the present invention can be an electrocardiographic patch for sensing signals, pasted on human skin to realize real-time collection of health data as shown in the figure, and realize wireless communication through the antenna system, further realizing sensing and communication integrated functional integration.
  • the Background of the Invention section may contain background information about the problem or circumstances of the invention without necessarily describing prior art. Accordingly, inclusion in the Background section is not an admission by the applicant of prior art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

一种基于柔性基底的天线、心电贴及可穿戴设备,包括柔性介质基板、第一圆形地板、两个倒F圆弧形天线结构及功分馈电结构,第一圆形地板设置在柔性介质基板的正面,两个倒F圆弧形天线结构分别具有圆弧线边、连接在圆弧线边端部的第一线边以及连接在圆弧线边中间的第二线边,两个倒F圆弧形天线结构对称地设置在柔性介质基板的正面,功分馈电结构为嵌在柔性介质基板的正反两面之间的对称结构,两个倒F圆弧形天线结构的接地端连接第一圆形地板,而两个倒F圆弧形天线结构的馈电端通过柔性介质基板上的导电过孔连接功分馈电结构。该天线拉伸性能高,抗干扰性好,适于作为心电贴应用在人体表面,还具有设计紧凑,带宽大,成本低的优点。

Description

一种基于柔性基底的天线、心电贴及可穿戴设备 技术领域
本发明涉及一种基于柔性基底的天线、心电贴及可穿戴设备。
背景技术
随着柔性电子器件的发展,传统的天线设计无法适应新型柔性器件的应用需求。而且天线往往体积大、质量大,非常占用空间而且不易携带。
因为对柔性天线的迫切需求,近年来对纺织天线的研究也取得了一系列进展。纺织天线是使用导电布集成在各种纺织物上使天线具有柔韧性,具有外形简单、体积小、质量轻而且容易穿着在人体上。但是纺织天线使用材料的电性能和制作工艺都与传统金属天线不同,而且无法做到比较大的形变。
近年来,无线系统正在向小型化、智能化发展。因此在纺织天线的基础上,提出了一系列由柔性基底制作而成的天线。由液态金属实现的锥形天线、环形天线、偶极子天线以及贴片天线等,具有很高的形变能力,也带来了制作工艺的复杂性;也有利用碳纳米管作为导电材料和柔性聚合物基板制作的可拉伸天线。柔性天线的研究还没有完全成熟,适应于人体表面应用的新型柔性天线尚有待进一步研究和设计。
需要说明的是,在上述背景技术部分公开的信息仅用于对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的主要目的在于克服上述背景技术的缺陷,提供一种基于柔性基底的天线及心电贴。
为实现上述目的,本发明采用以下技术方案:
一种基于柔性基底的天线,包括柔性介质基板、第一圆形地板、两个倒F圆弧形天线结构以及功分馈电结构,所述第一圆形地板设置在所述柔性介质基板的正面,所述两个倒F圆弧形天线结构分别具有圆弧线边、连接在所述圆弧线边端部的第一线边以及连接在所述圆弧线边中间的第二线边,所述两个倒F圆弧形天线结构对称地设置在所述柔性介质基板的正面, 所述功分馈电结构为嵌在所述柔性介质基板的正反两面之间的对称结构,所述两个倒F圆弧形天线结构的接地端连接所述第一圆形地板,而所述两个倒F圆弧形天线结构的馈电端通过所述柔性介质基板上的导电过孔连接所述功分馈电结构。
进一步地:
还包括第二圆形地板,所述第二圆形地板设置在所述柔性介质基板的反面,所述第一圆形地板与所述第二圆形地板通过所述柔性介质基板上的导电过孔相连。
所述两个倒F圆弧形天线结构的圆弧线边与所述圆形地板的圆周平行,从而形成共形结构。
所述两个倒F圆弧形天线结构形成为共用第一线边的背靠背设置,从而使所述两个倒F圆弧形天线结构的圆弧线边的对接为一个圆弧。
所述两个倒F圆弧形天线结构的接地端设置在所述两个倒F圆弧形天线结构的第一线边上,所述两个倒F圆弧形天线结构的馈电端设置在所述两个倒F圆弧形天线结构的第二线边上。
所述柔性介质基板为介电常数为2-5的弹性薄膜材料。
所述功分馈电结构形成四分之一波长的馈线。
所述圆形地板、所述倒F圆弧形天线结构以及所述功分馈电结构的材料为金属或导率涂料。
一种心电贴,包括所述的基于柔性基底的天线,其中,所述天线的所述圆形地板作为测量心电的电极。
一种可穿戴设备,包括所述的心电贴。
本发明具有如下有益效果:
本发明提供了一种具有对称特性、抗拉伸的柔性天线结构。本发明的柔性天线的两个倒F圆弧形天线结构及其功分馈电结构具有对称性,具有很好的天线辐射性能,两个倒F圆弧形天线结构与圆形地板配合,特别是形成为圆弧边与圆形地板圆周平行的共形结构,提高了天线的可拉伸性能,既可拉伸变形又不影响天线射频性能。所述圆形地板既产生单极子天线所需的镜像电流,也为功分馈电结构屏蔽了外界的干扰。所述功分馈电结构嵌在所述柔性介质基板中间,设置在正反两面的两个地板之间,可以有效隔绝人体对馈电网络性能的影响。
利用本发明的柔性天线结构设置成心电贴,可以贴附在人体表面使用, 将柔性天线的圆形地板作为心电贴传感信号用的电极粘贴在人体皮肤上,可实现健康数据的实时采集和无线通信,并实现传感和通信的功能集成。该柔性天线结构应用于心电贴不仅可以提高智能穿戴设备的心电贴的舒适性,而且由于其拉伸性能高,抗干扰性好,非常适于应用在人体表面。此外,本发明的柔性天线结构还具有设计紧凑,带宽大,可以使用普通金属材料和柔性介质基板制作,成本低的优点。
附图说明
图1为本发明一种实施例的基于柔性基底的天线的结构示意图。
图2为本发明一种实施例的基于柔性基底的天线的剖面示意图。
图3为本发明一种实施例的天线表面电流分布仿真结果示意图。
图4为本发明一种实施例的天线S 11回波损耗仿真结果示意图。
具体实施方式
以下对本发明的实施方式做详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于耦合或连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参阅图1至图2,在一些实施例中,一种基于柔性基底的天线,包括柔性介质基板1006、两个圆形地板1003、2003、两个倒F圆弧形天线结构1001、1002以及功分馈电结构1005,所述两个圆形地板1003、2003分别 设置在所述柔性介质基板1006的正反两面,所述两个倒F圆弧形天线结构1001、1002分别具有作为主辐射臂的较长的圆弧线边、连接在所述圆弧线边端部的较短的第一线边以及连接在所述圆弧线边中间的更短的第二线边,所述两个倒F圆弧形天线结构1001、1002对称地设置在所述柔性介质基板1006的正面,所述功分馈电结构1005嵌在所述柔性介质基板1006的正反两面之间,所述两个倒F圆弧形天线结构1001、1002的接地端连接正面的圆形地板,而所述两个倒F圆弧形天线结构1001、1002的馈电端通过所述柔性介质基板1006上的相应的导电过孔1007连接所述功分馈电结构1005,所述两个圆形地板1003、2003通过所述柔性介质基板1006上的导电过孔1004相连。可以理解,上文所说的较长、较短、更短是所述圆弧线边、所述第一线边以及所述第二线边的长度相对而言。
该柔性天线的两个倒F圆弧形天线结构1001、1002及其功分馈电结构1005具有对称性,具有很好的天线辐射性能,两个倒F圆弧形天线结构1001、1002与圆形地板配合,提高了天线的可拉伸性能,既可拉伸变形又不影响天线射频性能。所述圆形地板既产生单极子天线所需的镜像电流,也为功分馈电结构1005屏蔽了外界的干扰。所述功分馈电结构1005嵌在所述柔性介质基板1006中间,并设置在正反两面的两个地板之间,可以有效隔绝人体对馈电网络性能的影响。
在优选的实施例中,所述两个倒F圆弧形天线结构1001、1002的圆弧线边与所述圆形地板的圆周平行,由此形成的共形结构在受到拉伸时发生共性变形,进一步优化了天线的可拉伸性能,在拉伸时保持天线射频性能。
在优选的实施例中,所述两个倒F圆弧形天线结构1001、1002形成为共用第一线边的背靠背设置,从而使所述两个倒F圆弧形天线结构1001、1002的圆弧线边的对接为一个圆弧。
在优选的实施例中,所述两个倒F圆弧形天线结构1001、1002的接地端设置在所述两个倒F圆弧形天线结构1001、1002的第一线边上。
在优选的实施例中,所述两个倒F圆弧形天线结构1001、1002的馈电端设置在所述两个倒F圆弧形天线结构1001、1002的第二线边上。
在优选的实施例中,所述柔性介质基板1006为介电常数为2到5之间的弹性薄膜材料。
在优选的实施例中,所述天线的工作频率可以包括蓝牙、WIFI、或sub5G频段中的任一种。
在优选的实施例中,所述功分馈电结构1005形成四分之一波长的馈线。
在优选的实施例中,所述圆形地板、所述倒F圆弧形天线结构以及所述功分馈电结构1005的材料为金属或导率涂料。
本发明实施例还提供一种心电贴,其包括所述的基于柔性基底的天线,其中,所述天线的所述圆形地板作为测量心电的电极。
本发明实施例还提供一种可穿戴设备,其包括所述的心电贴。
利用本发明的柔性天线结构设置成心电贴,可以贴附在人体表面使用,将柔性天线的圆形地板作为心电贴传感信号用的电极粘贴在人体皮肤上,可实现健康数据的实时采集和无线通信,并实现传感和通信的功能集成。该柔性天线结构应用于心电贴不仅可以提高智能穿戴设备的心电贴的舒适性,而且由于其拉伸性能高,抗干扰性好,非常适于应用在人体表面。此外,本发明的柔性天线结构还具有设计紧凑,带宽大,可以使用普通金属材料和柔性介质基板制作,成本低的优点。
以下进一步描述本发明具体实施例。
在一些实施例中,一种基于柔性介质基板的可拉伸天线,包括柔性介质基板1006,柔性介质基板1006的正反两面分别设置圆形地板1003,柔性介质基板1006上还设置导电过孔1004连接正反两面的圆形地板1003、2003。柔性介质基板1006的正面设置有两个结构对称的倒F圆弧形天线结构1001、1002,其是天线的主要辐射结构,倒F圆弧形天线结构1001、1002各自的接地端连接在正面的圆形地板1003上,而各自的馈电端分别通过相应的导电过孔1007连接嵌在柔性介质基板1006中间的功分馈电结构1005,实现给倒F圆弧形天线结构1001、1002馈电。图1以透视图示出了本发明柔性天线结构,其剖面如图2所示。
所述功分馈电结构1005通过四分之一波长的馈线提供馈电网络结构,实现功分和阻抗变换,所述圆形地板1003、2003既产生单极子天线必须的镜像电流,也为功分馈电结构屏蔽了外界的干扰。如图2所示,对称的功分馈电结构1005放置在正反两面的圆形地板1003、2003之间,可以有效隔绝人体对馈电网络性能的影响。所述圆形地板、倒F圆弧形天线结构和功分馈电结构的材料可以使用金属材料,也可以用导电银胶等高电导率的涂料。
所述天线的典型工作频率是蓝牙、WIFI、或sub5G频段。
可利用本发明的柔性天线结构设置成心电贴,此时,所述圆形地板既 作为天线地板,也作为测量心电的电极。
对于柔性介质基底的材料,可以选择介电常数为2到5之间、拉伸性能好的超弹性薄膜材料。优选地,可以使用硅胶基体,例如PDMS材料。
本发明中的圆形地板、过孔、背对背倒F天线结构的材料可以是金属,也可以使用高电导率的纳米银胶或液体金属通过丝网印刷等工艺制作。优选地,可以使用导电银胶。
图3示出本发明柔性天线及其功分馈电结构的表面电流仿真结果,具有对称特性;使用时,射频信号从馈电源通过功分馈电结构传输到两个背靠背倒F天线单元。心电信号与通信的射频信号GHz不会形成相互干扰。
本发明柔性天线及其功分馈电结构的S 11回波损耗仿真结果如图4所示,具有宽带特征。
仿真结果表明该柔性天线结构性能良好,具有良好的工程应用价值。本发明的所述天线的圆形地板可以是传感信号的心电贴,粘贴在人体皮肤上,实现如图大健康数据的实时采集,并通过天线系统实现无线通信,进一步实现传感和通信的一体化功能集成。
本发明的背景部分可以包含关于本发明的问题或环境的背景信息,而不一定是描述现有技术。因此,在背景技术部分中包含的内容并不是申请人对现有技术的承认。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离专利申请的保护范围的情况下,可以在本文中进行各种改变、替换和变更。

Claims (10)

  1. 一种基于柔性基底的天线,其特征在于,包括柔性介质基板、第一圆形地板、两个倒F圆弧形天线结构以及功分馈电结构,所述第一圆形地板设置在所述柔性介质基板的正面,所述两个倒F圆弧形天线结构分别具有圆弧线边、连接在所述圆弧线边端部的第一线边以及连接在所述圆弧线边中间的第二线边,所述两个倒F圆弧形天线结构对称地设置在所述柔性介质基板的正面,所述功分馈电结构为嵌在所述柔性介质基板的正反两面之间的对称结构,所述两个倒F圆弧形天线结构的接地端连接所述第一圆形地板,而所述两个倒F圆弧形天线结构的馈电端通过所述柔性介质基板上的导电过孔连接所述功分馈电结构。
  2. 如权利要求1所述的基于柔性基底的天线,其特征在于,还包括第二圆形地板,所述第二圆形地板设置在所述柔性介质基板的反面,所述第一圆形地板与所述第二圆形地板通过所述柔性介质基板上的导电过孔相连。
  3. 如权利要求1所述的基于柔性基底的天线,其特征在于,所述两个倒F圆弧形天线结构的圆弧线边与所述圆形地板的圆周平行,从而形成共形结构。
  4. 如权利要求3所述的基于柔性基底的天线,其特征在于,所述两个倒F圆弧形天线结构形成为共用第一线边的背靠背设置,从而使所述两个倒F圆弧形天线结构的圆弧线边的对接为一个圆弧。
  5. 如权利要求1至4任一项所述的基于柔性基底的天线,其特征在于,所述两个倒F圆弧形天线结构的接地端设置在所述两个倒F圆弧形天线结构的第一线边上,所述两个倒F圆弧形天线结构的馈电端设置在所述两个倒F圆弧形天线结构的第二线边上。
  6. 如权利要求1至4任一项所述的基于柔性基底的天线,其特征在于,所述柔性介质基板为介电常数为2-5的弹性薄膜材料。
  7. 如权利要求1至4任一项所述的基于柔性基底的天线,其特征在于,所述功分馈电结构形成四分之一波长的馈线。
  8. 如权利要求1至4任一项所述的基于柔性基底的天线,其特征在于,所述圆形地板、所述倒F圆弧形天线结构以及所述功分馈电结构的材料为金属或导率涂料。
  9. 一种心电贴,其特征在于,包括如权利要求1至8任一项所述的 基于柔性基底的天线,其中,所述天线的所述圆形地板作为测量心电的电极。
  10. 一种可穿戴设备,其特征在于,包括如权利要求9所述的心电贴。
PCT/CN2022/092341 2021-12-27 2022-05-12 一种基于柔性基底的天线、心电贴及可穿戴设备 WO2023123811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111617721.3A CN114156628A (zh) 2021-12-27 2021-12-27 一种基于柔性基底的天线、心电贴及可穿戴设备
CN202111617721.3 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023123811A1 true WO2023123811A1 (zh) 2023-07-06

Family

ID=80452038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092341 WO2023123811A1 (zh) 2021-12-27 2022-05-12 一种基于柔性基底的天线、心电贴及可穿戴设备

Country Status (2)

Country Link
CN (1) CN114156628A (zh)
WO (1) WO2023123811A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156628A (zh) * 2021-12-27 2022-03-08 深圳大学 一种基于柔性基底的天线、心电贴及可穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112732A (ja) * 1992-09-30 1994-04-22 Naohisa Goto 平面型ダイバーシチアンテナ
US20140354494A1 (en) * 2013-06-03 2014-12-04 Daniel A. Katz Wrist Worn Device with Inverted F Antenna
US20150357717A1 (en) * 2014-06-06 2015-12-10 L.S. Research, LLC Flexible planar inverted f antenna
CN205863385U (zh) * 2016-06-30 2017-01-04 厦门恩匹令克科技有限公司 一种可穿戴设备的新型天线
CN108493589A (zh) * 2018-05-17 2018-09-04 华南理工大学 一种用于可穿戴设备的滤波天线
CN113745849A (zh) * 2020-05-28 2021-12-03 广东小天才科技有限公司 单频圆极化定位天线和可穿戴设备
CN114156628A (zh) * 2021-12-27 2022-03-08 深圳大学 一种基于柔性基底的天线、心电贴及可穿戴设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112732A (ja) * 1992-09-30 1994-04-22 Naohisa Goto 平面型ダイバーシチアンテナ
US20140354494A1 (en) * 2013-06-03 2014-12-04 Daniel A. Katz Wrist Worn Device with Inverted F Antenna
US20150357717A1 (en) * 2014-06-06 2015-12-10 L.S. Research, LLC Flexible planar inverted f antenna
CN205863385U (zh) * 2016-06-30 2017-01-04 厦门恩匹令克科技有限公司 一种可穿戴设备的新型天线
CN108493589A (zh) * 2018-05-17 2018-09-04 华南理工大学 一种用于可穿戴设备的滤波天线
CN113745849A (zh) * 2020-05-28 2021-12-03 广东小天才科技有限公司 单频圆极化定位天线和可穿戴设备
CN114156628A (zh) * 2021-12-27 2022-03-08 深圳大学 一种基于柔性基底的天线、心电贴及可穿戴设备

Also Published As

Publication number Publication date
CN114156628A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
Kiani et al. A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications
US10263320B2 (en) Methods of making stretchable and flexible electronics
CN109742550B (zh) 一种加载米字形人工磁导体的低背向辐射的天线系统
WO2023123811A1 (zh) 一种基于柔性基底的天线、心电贴及可穿戴设备
Dey et al. Design and performance analysis of UWB circular disc monopole textile antenna and bending consequences
CN106848564B (zh) 一种柔性双面对称单极子1×2天线阵列
CN204424449U (zh) 双频段微带天线
Amsaveni et al. Design and performance analysis of low SAR hexagonal slot antenna using cotton substrate
CN108832283A (zh) 新型柔性双频环形胶囊天线
Arora et al. A survey on UWB textile antenna for wireless body area network (WBAN) applications
WO2023123810A1 (zh) 一种柔性天线、其制作方法和心电贴
CN216698696U (zh) 一种基于柔性基底的天线、心电贴及可穿戴设备
CN108879101A (zh) 环形圆极化植入式微带天线
Arora et al. Ultrawide Band Antenna for Wireless Communications: Applications and Challenges
CN106856579A (zh) 一种头戴式设备
CN209691945U (zh) 一种可重构可穿戴微带天线
Afroz et al. Dual band circular patch flexible wearable antenna design for sub-6 GHz 5G applications
Kittur et al. Design of tri-band textile fractal antenna using three different substrate materials for Wi-Fi applications
CN216624539U (zh) 一种柔性天线、心电贴和可穿戴设备
Patel et al. Conformable patch antenna design for remote health monitoring
Pandey et al. Review on miniaturized flexible wearable antenna for body area network
CN109860998A (zh) 一种可重构可穿戴微带天线
Shrivastava et al. Compact wearable textile antenna design for Biomedical Applications
CN208753525U (zh) 一种利用纺织材料和导电织物设计的可穿戴天线
Hu et al. Dual-band WLAN button antenna for both on and off-body applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913107

Country of ref document: EP

Kind code of ref document: A1