WO2023123810A1 - 一种柔性天线、其制作方法和心电贴 - Google Patents

一种柔性天线、其制作方法和心电贴 Download PDF

Info

Publication number
WO2023123810A1
WO2023123810A1 PCT/CN2022/092340 CN2022092340W WO2023123810A1 WO 2023123810 A1 WO2023123810 A1 WO 2023123810A1 CN 2022092340 W CN2022092340 W CN 2022092340W WO 2023123810 A1 WO2023123810 A1 WO 2023123810A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
inverted
flexible
floor
antenna structure
Prior art date
Application number
PCT/CN2022/092340
Other languages
English (en)
French (fr)
Inventor
钱正芳
梁豪
戴翔宇
蒋东廷
彭捷竣
邓睿华
孙一翎
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2023123810A1 publication Critical patent/WO2023123810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/085Flexible aerials; Whip aerials with a resilient base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/027Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing

Definitions

  • the invention relates to the field of flexible electronics, in particular to a flexible antenna, its manufacturing method and electrocardiographic stickers.
  • Flexible and wearable electronics is an emerging and developing field.
  • passive and active devices including sensors, antennas, connecting wires, batteries, and related circuits, are integrated on flexible substrates.
  • the typical thickness of flexible film substrates is about one millimeter and has superelastic deformation capabilities.
  • the integration technology of the flexible wearable system of the human intelligent body area network requires the structural design, collaborative optimization and high integration of the flexible ECG patch and the flexible nature, and the high integration with the node chip, so as to realize the excellent structural design and The low-cost manufacturing process solves the complex strain problem of body area network nodes in the wearable environment.
  • the main purpose of the present invention is to overcome the defects of the above-mentioned background technology, and provide a flexible antenna, its manufacturing method and electrocardiographic stickers.
  • the present invention adopts the following technical solutions:
  • a flexible antenna comprising a flexible film base, the upper surface of the flexible film base is provided with a first upper surface floor with an arc-shaped periphery and an inverted F arc-shaped antenna structure, and the flexible film base is also provided with a feed port ,
  • the inverted F arc-shaped antenna structure has an arc line as the main radiation element, a first line connected at the end of the arc line, and a second line connected in the middle of the arc line
  • the first line side of the inverted F arc antenna structure is connected to the first upper surface floor
  • the second line side of the inverted F arc antenna structure is connected to the feeding port
  • the inverted F circle The arc-line side of the arc-shaped antenna structure is arranged to extend along the extending direction of the arc-shaped periphery of the first upper surface floor.
  • the arc line side of the inverted-F arc-shaped antenna structure is parallel to the arc-shaped periphery of the first upper surface floor.
  • the first upper surface floor is circular or oval.
  • the feed port is a coaxial feed port.
  • the upper surface of the flexible film base is also provided with a second upper surface electrode plate, and there is a set distance between the second upper surface electrode plate and the first upper surface floor.
  • the lower surface of the flexible film base is provided with a lower surface floor having an arc-shaped periphery at a position corresponding to the upper surface floor, and the upper surface floor and the lower surface floor are connected through conductive vias on the flexible film base.
  • the inverted-F arc-shaped antenna structure is arranged at any position around the first upper surface floor.
  • An electrocardiographic patch comprising the flexible antenna, wherein the floor of the flexible antenna is used as an electrode for measuring electrocardiogram.
  • a wearable device includes the electrocardiographic patch.
  • a method for preparing the flexible antenna comprising:
  • a mold to print nano-silver paste or liquid metal on the surface of the flexible film substrate by screen printing, and form the floor and the inverted F arc-shaped antenna structure after curing; or, pass a laser on the single-layer graphene nanomaterial film
  • the floor and the inverted F arc-shaped antenna structure are processed directly; or, by evaporating a metal film with a nanometer thickness on a flexible film substrate, and then etching and processing the floor and the inverted F arc-shaped antenna structure; or, forming the floor and the inverted-F arc-shaped antenna structure on a flexible film substrate through a nanoimprint process.
  • the present invention provides a flexible antenna.
  • a first upper surface floor with an arc-shaped periphery and an inverted F arc-shaped antenna structure are arranged on the upper surface of the flexible film base.
  • the arc line edge of the inverted F arc-shaped antenna structure It is arranged to extend along the extension direction of the arc-shaped periphery of the first upper surface floor, the flexible film substrate can be stretched and bent, and the inverted F arc-shaped antenna structure cooperates with the circular floor to form a common deformation structure, especially
  • the arc edge strip is parallel to the circular floor or the circumference of the ellipse, which improves the stretchable and bending deformation performance of the flexible antenna, and can work normally in the communication bandwidth even if stretching and bending deformation occur It does not affect the radio frequency performance of the antenna.
  • the present invention can be mass-produced by methods such as nanomaterial structure and additive manufacturing.
  • the invention also has the advantages of compact design, small volume, high integration, batch and low-cost manufacture, and the like.
  • the flexible antenna structure of the present invention to be set up as an electrocardiogram patch, which can be attached to the surface of the human body for use, and the floor of the flexible antenna is used as an electrode for the sensing signal of the electrocardiogram patch to be pasted on the skin of the human body, which can realize real-time collection and monitoring of health data.
  • Wireless communication and realize the functional integration of sensing and communication.
  • the application of the flexible antenna structure to the ECG patch can not only improve the comfort of the ECG patch for smart wearable devices, but also is very suitable for application on the surface of the human body due to its high stretchability and bendable deformation performance and good anti-interference performance.
  • the invention integrates the antenna used for communication and the electrocardiogram sticker used for sensing with a unique design to realize an integrated solution for sensing and communication.
  • the electrocardiogram is used as the antenna substrate and also as the electrode for measuring the electrocardiogram.
  • the present invention provides a variety of integration methods for flexible antenna structures, utilizing the advantages of stretchable and bendable flexible film substrates, flexible film substrates, electrocardiographic electrodes, and inverted F arc-shaped antenna structures can all achieve superelastic deformation, solving the problem of The complex strain problem of body area network nodes in wearable environment.
  • Fig. 1 shows two examples of the first integration method of the inverted-F arc-shaped antenna structure on the flexible film substrate and the electrocardiogram according to the embodiment of the present invention.
  • FIG. 2 shows two examples of the second integration method of the inverted-F arc-shaped antenna structure on the flexible film substrate and the ECG sticker according to the embodiment of the present invention.
  • Fig. 3 is two examples of the third integration method of the inverted-F arc-shaped antenna structure on the flexible film substrate and the electrocardiogram according to the embodiment of the present invention.
  • Fig. 4 shows two examples of the fourth integration method of the inverted-F arc-shaped antenna structure on the flexible film substrate and the electrocardiographic stickers of different shapes according to the embodiment of the present invention.
  • Fig. 5 shows two examples of the fifth integration mode of the inverted-F arc-shaped antenna structure on the flexible film substrate and the ECG sticker with a central via hole according to the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the screen printing of the inverted-F arc-shaped antenna structure and the ECG sticker on the flexible film substrate according to the embodiment of the present invention.
  • Fig. 7 is a simulation diagram of the radio frequency performance of the flexible antenna according to the embodiment of the present invention.
  • connection can be used for fixation as well as for coupling or communication.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a flexible antenna including flexible film substrates 100, 110, 200, 210, 300, 310, 400, 410, 500, 510, for example using (but not limited to) based on Silicone flexible film base, the upper surface of the flexible film base 100, 110, 200, 210, 300, 310, 400, 410, 500, 510 is provided with a first upper surface floor 101, 103, 201 with an arc-shaped periphery .
  • the inverted F arc-shaped antenna structure has an arc line side as the main radiation unit, and is connected to the arc line
  • the arc-line side of the inverted-F arc-shaped antenna structure is parallel to the arc-shaped periphery of the first upper surface floor.
  • the flexible antenna is on the upper surface of its flexible film base, and the arc line edge of the inverted F circular arc antenna structure is set to extend along the extension direction of the arc periphery of the first upper surface floor, and the flexible film base can be pulled Stretching and bending deformation, and the common deformation structure formed by the inverted F circular arc antenna structure and the circular floor, especially the circular arc edge strip as the main radiation unit of the antenna structure is parallel to the circular floor or the circumference of the ellipse, which improves the
  • the stretchable and bending deformation properties of the flexible antenna can work normally within the communication bandwidth even if the stretching and bending deformation occurs, without affecting the radio frequency performance of the antenna.
  • the present invention can be mass-produced by methods such as nanomaterial structure and additive manufacturing.
  • the invention also has the advantages of compact design, small volume, high integration, batch and low-cost manufacture, and the like.
  • the first upper surface floors 101 , 103 , 201 , 203 , 301 , 303 are circular.
  • the first upper surface floors 401 , 403 , 501 , 503 are elliptical.
  • the feed ports 106, 108, 206, 208, 306, 308, 406, 408, 506, 508 are coaxial feed ports, which can be connected to the control circuit via a flexible coaxial cable.
  • the main board of the printed circuit board (PCB) (not shown in the figure).
  • the upper surface of the flexible film base is also provided with second upper surface electrode plates 102, 104, 202, 204, 302, 304, 402, 404, 502, 504 , the second upper surface electrode plates 102, 104, 202, 204, 302, 304, 402, 404, 502, 504 and the first upper surface floor plates 101, 103, 201, 203, 301, 303, 401, There is a set distance between 403, 501, and 503. Therefore, when the flexible antenna of this embodiment is used as an ECG patch, the first upper surface floor and the second upper surface electrode plate can be used as two electrodes attached to the human skin.
  • the lower surface of the flexible film base is provided with a lower surface floor (not shown in the figure) at a position corresponding to the upper surface floor 501, 502, 504, 503. ), the upper surface floor and the lower surface floor are connected through the conductive vias 511, 512, 513, 514 on the flexible film base.
  • the inverted F circular arc antenna structure 105, 107, 205, 207, 305, 307, 405, 407, 505, 507 can be set on the first Any position around the surface floor 101, 103, 201, 203, 301, 303, 401, 403, 501, 503, for example, above, below, above the first upper surface floor as shown in FIGS. 1 to 5 Either left or right.
  • the typical operating frequency of the flexible antenna can be Bluetooth, WIFI, or sub5G frequency band.
  • An embodiment of the present invention also provides an electrocardiographic patch, including the flexible antenna, wherein the floor of the flexible antenna serves as an electrode for measuring electrocardiogram.
  • An embodiment of the present invention also provides a wearable device, including the ECG patch.
  • the flexible antenna structure of the present invention to be set up as an electrocardiogram patch, which can be attached to the surface of the human body for use, and the floor of the flexible antenna is used as an electrode for the sensing signal of the electrocardiogram patch to be pasted on the skin of the human body, which can realize real-time collection and monitoring of health data.
  • Wireless communication and realize the functional integration of sensing and communication.
  • the application of the flexible antenna structure to the ECG patch can not only improve the comfort of the ECG patch for smart wearable devices, but also is very suitable for application on the surface of the human body due to its high stretchability and bendable deformation performance and good anti-interference performance.
  • the invention integrates the antenna used for communication and the electrocardiogram sticker used for sensing with a unique design to realize an integrated solution for sensing and communication.
  • the electrocardiogram is used as the antenna substrate and also as the electrode for measuring the electrocardiogram.
  • the present invention provides a variety of integration methods for flexible antenna structures, utilizing the advantages of stretchable and bendable flexible film substrates, flexible film substrates, electrocardiographic electrodes, and inverted F arc-shaped antenna structures can all achieve superelastic deformation, solving the problem of The complex strain problem of body area network nodes in wearable environment.
  • the embodiment of the present invention also provides a method for preparing the flexible antenna.
  • a mold 600 with openings 601, 602 can be used to print nanometers on the surface of a flexible film substrate 610 by screen printing.
  • the silver paste or liquid metal forms the floors 611 and 612 and the inverted-F arc-shaped antenna structure after solidification.
  • the floor and the inverted-F arc-shaped antenna structure can be directly processed on a single-layer graphene nanomaterial film by laser processing.
  • the floor and the inverted-F arc-shaped antenna structure can be processed by evaporating a nanometer-thick metal film on a flexible film substrate, and then etching.
  • the floor and the inverted-F arc-shaped antenna structure may be formed on a flexible film substrate by a nanoimprint process.
  • Fig. 1 is a schematic diagram of the first integration mode of the inverted F arc-shaped antenna structure on the flexible film substrate and the electrocardiographic sticker of the present invention.
  • Each ECG patch usually has two electrodes, such as 101 and 102 shown in FIG. 1 , which are fabricated on the surface of the flexible film substrate 100 by screen printing or other processes.
  • the elastic film matrix has a typical thickness of one millimeter, and its superelastic deformation can reach 100%.
  • the design of the disclosed inverted-F arc-shaped antenna structure 105 of the present invention has an arc-shaped radiating element parallel to the outer peripheral edge of the floor 101 (cardiac sticker).
  • the floor 101 (ECG sticker) is not only the connection terminal for ECG signal collection, but also the floor of the antenna, and its diameter is about 1/4 of the electromagnetic wave wavelength corresponding to the antenna radiation center frequency.
  • the inverted-F arc-shaped antenna structure 105 typically adopts a coaxial feed port 106, and is connected to the main board (not shown in the figure) of the printed circuit board (PCB) of the control circuit by a flexible coaxial cable.
  • Figure 1 shows two ways of integrating the inverted-F arc-shaped antenna structure and ECG stickers, wherein the inverted-F arc-shaped antenna structure 105 is integrated on the floor 101 (ECG sticker), and its radiation arm points to the right side of the paper. direction.
  • the inverted-F arc-shaped antenna structure 107 is integrated on the floor 103 (cardiac sticker), its radiation arm points to the left direction of the paper, and is fabricated on the surface of the flexible film substrate 110 .
  • the circular ECG patch in the present invention further provides the common deformation of the inverted F arc-shaped antenna structure, so that when the flexible film substrate 100 or 110 undergoes a certain degree of superelastic deformation, for example, less than 30% of the strain range, the antenna's The radio frequency performance does not change much, and the communication function of the antenna can still be satisfied.
  • Fig. 2 is a schematic diagram of the second integration mode of the inverted-F arc-shaped antenna structure on the flexible film substrate and the electrocardiogram of the present invention.
  • 200 and 210 are flexible film substrates respectively.
  • Floors 201, 202, 203, and 204 are electrodes of electrocardiographic stickers, respectively.
  • 205 and 207 are respectively an inverted F arc-shaped antenna structure, which are located below the electrodes of the ECG sticker.
  • 206 and 208 are feeding ports of the inverted-F circular arc antenna structures 205 and 207 respectively.
  • Figure 2 shows that the arc-shaped antenna radiation arm points to the right or left direction of the paper, and is parallel to the arc direction of the circular ECG sticker.
  • Fig. 3 is a schematic diagram of the third integration mode of the inverted-F arc-shaped antenna structure on the flexible film substrate and the electrocardiographic sticker according to the present invention.
  • 300 and 310 are flexible film substrates respectively.
  • Floors 301 , 302 , 303 , and 304 are electrodes of electrocardiographic stickers, respectively.
  • 305 and 307 are inverted F arc-shaped antenna structures respectively, 305 is on the left side of the ECG sticker, and 307 is on the right side of the ECG sticker.
  • 306 and 308 are feeding ports of the inverted-F circular arc antenna structures 305 and 307 respectively.
  • Figure 3 shows that the arc-shaped antenna radiation arm points downward or upward, and is parallel to the arc direction of the circular ECG sticker.
  • Fig. 4 is a schematic diagram of the fourth integration mode of the inverted F arc-shaped antenna structure on the flexible film substrate and different shapes of electrocardiographic stickers according to the present invention.
  • 400 and 410 are flexible film substrates respectively.
  • 401, 402, 403, and 404 are electrodes of the electrocardiogram respectively. Electrocardiogram electrodes can be in different shapes, preferably oval.
  • 405 and 407 are the inverted F arc-shaped antenna structures respectively, above the electrocardiographic stickers.
  • 406 and 408 are the feeding ports of the inverted-F circular arc antenna structures 405 and 407 respectively, typically using coaxial feeding ports.
  • Figure 4 shows that the radiation arm of the elliptical antenna points to the left or right direction, and is parallel to the arc direction of the elliptical electrocardiographic patch; the elliptical electrocardiographic patch further provides the common deformation of the circular arc antenna structure of the inverted F antenna, ensuring The radio frequency performance of the designed antenna basically does not change.
  • the inverted-F arc-shaped antenna structures of the foregoing embodiments can be integrated with different shapes of electrocardiogram electrodes, preferably elliptical.
  • Fig. 5 is a schematic diagram of a fifth integration mode of the inverted-F arc-shaped antenna structure on the flexible film substrate and the electrocardiographic patch with a central via (VIA) according to the present invention.
  • Common electrocardiographic stickers have relatively large electrodes on the upper surface of the flexible film substrate such as 500, such as the floor 501, 502, and have the same size or small circular electrodes (not shown in Figure 5) on the lower surface. They are connected through the conductive vias 511 and 512 in the center.
  • Figure 5 shows the antenna design and integration scheme of this ECG sticker.
  • 500, 510 are flexible film substrates, respectively.
  • 501 , 502 , 503 , and 504 are electrodes of the electrocardiographic patch, preferably round or oval.
  • 511 , 512 , 513 , 514 are the conductive vias of the electrocardiogram electrodes, which are used for electrical signal collection, and can be in different shapes, preferably circular or elliptical.
  • 505 and 507 are inverted F arc-shaped antenna structures respectively, above the electrocardiographic stickers.
  • 506 and 508 are the feeding ports of the inverted-F circular arc antenna structures 505 and 507 respectively, typically coaxial feeding ports are used.
  • the inverted F arc-shaped antenna structures 505 and 507 shown in FIG. 5 have elliptical or circular antenna radiation arms, which are parallel to the arc direction of the elliptical or circular ECG.
  • the integration positions of the inverted-F arc-shaped antenna structure and the electrocardiographic stickers in the foregoing embodiments can be integrated with electrodes of different shapes of electrocardiographic stickers with a central via hole, preferably elliptical or circular.
  • the ECG patch of the present invention utilizes the floor of the flexible antenna, and its diameter is about a quarter of the electromagnetic wave wavelength corresponding to the antenna radiation center frequency.
  • the RF current on the floor mainly moves and oscillates along the periphery of the circle, and is weakest near the center point. Therefore, the central via of the ECG sticker has little effect on the radio frequency performance of the antenna.
  • the flexible film substrates of the present invention can achieve up to 100% superelastic deformation.
  • the flexible film substrate undergoes a certain degree of superelastic deformation for example, less than 30% strain range, the radio frequency performance of the antenna does not change much, and the communication function of the antenna can still be satisfied.
  • the flexible antenna can be manufactured in batches and at low cost through a nanomaterial structure and an additive manufacturing method.
  • Fig. 6 is a schematic diagram of the screen printing of the inverted F circular arc antenna structure and the electrocardiogram sticker on the flexible film substrate.
  • the mold 600 can be made by machining, laser processing, or three-dimensional printing. 601 and 602 are the mold openings of the inverted-F arc-shaped antenna structure and the ECG sticker, respectively.
  • the mold 600 can be used to screen-print nano-silver paste or liquid metal on the surface of the flexible film substrate 610 to form an inverted F arc-shaped antenna structure and floor 611, 612 (cardiac stickers), and then cure the conductive adhesive by heating and drying procedures.
  • the elastic film can be applied in one layer using liquid metal.
  • the single-layer graphene nano-material film with the size of the electrocardiogram can also be processed by laser, using the mold 600 to directly process the floors 611, 612 (cardiac stickers). It is also possible to vapor-deposit a nanometer-thick metal film and perform etching using the mold 600 .
  • the nanoimprinting process can also be applied to transfer the inverted F arc-shaped antenna structure and the floor 611, 612 (cardiac sticker). It is also possible to directly process the flexible film substrate 610, the inverted F circular arc antenna structure and the floor 611, 612 (cardiac stickers) by 3D printing. Among them, processes such as screen printing and nanoimprinting can realize batch and low-cost manufacturing of the antenna and electrocardiogram patch of the present invention.
  • Fig. 7 is a simulation diagram of the radio frequency performance of the integration of the inverted-F arc-shaped antenna structure on the flexible film substrate of the present invention and the ECG patch. It shows that the radio frequency performance of the antenna of the present invention is excellent, and the impedance can be matched.
  • Figure 7 shows the frequency bands of Bluetooth and WIFI; however, the antenna of the present invention can also be used in other frequency bands, such as the Sub5G frequency band.
  • the Background of the Invention section may contain background information about the problem or circumstances of the invention without necessarily describing prior art. Accordingly, inclusion in the Background section is not an admission by the applicant of prior art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cardiology (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种柔性天线、其制作方法和心电贴,该柔性天线包括柔性薄膜基底,所述柔性薄膜基的上表面设置有具有弧形周边的第一上表面地板以及倒F圆弧形天线结构,所述柔性薄膜基还设置有馈电端口,所述倒F圆弧形天线结构具有作为主辐射单元的圆弧线边、连接在所述圆弧线边端部的第一线边以及连接在所述圆弧线边中间的第二线边,所述倒F圆弧形天线结构的第一线边连接所述第一上表面地板,而所述倒F圆弧形天线结构的第二线边连接所述馈电端口,所述倒F圆弧形天线结构的圆弧线边设置成沿着所述第一上表面地板的弧形周边的延伸方向延伸。该柔性天线可拉伸和可弯曲变形性能高,适于作为用在人体表面的心电贴,解决体域网节点在穿戴环境下的复杂应变问题。

Description

一种柔性天线、其制作方法和心电贴 技术领域
本发明涉及柔性电子领域,特别是涉及一种柔性天线、其制作方法和心电贴。
背景技术
随着5G通信技术的推广应用,人工智能的普及,元宇宙概率的兴起,老年化社会导致人体健康的实时检测要求越来越高。人们对可穿戴电子和人体的结合,用以实现健康实时检测和健康大数据采集,实现信息通信传输到5G网路和手机,越来越关注。因此,用于传感的传感器和用于通信的天线的集成,越来越重要,实现传感通信一体化,是5G技术的重要应用场景,有广阔的市场。
柔性电子和可穿戴电子是一个正在兴起和发展的领域。一般地,无源和有源器件,包括,传感器、天线、连接导线、电池、相关电路等集成在柔性底板上,柔性薄膜基底的典型厚度在一毫米左右,具有超弹性变形能力。例如,人体智能体域网的柔性可穿戴系统的集成技术,要求柔性心电贴和柔性天性的结构设计、协同优化、并与节点芯片的高度集成,实现可延展薄膜衬底的优异结构设计和低成本制造工艺,解决体域网节点在穿戴环境下复杂应变问题。
需要说明的是,在上述背景技术部分公开的信息仅用于对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的主要目的在于克服上述背景技术的缺陷,提供一种柔性天线、其制作方法和心电贴。
为实现上述目的,本发明采用以下技术方案:
一种柔性天线,包括柔性薄膜基底,所述柔性薄膜基的上表面设置有具有弧形周边的第一上表面地板以及倒F圆弧形天线结构,所述柔性薄膜基还设置有馈电端口,所述倒F圆弧形天线结构具有作为主辐射单元的圆弧线边、连接在所述圆弧线边端部的第一线边以及连接在所述圆弧线边中 间的第二线边,所述倒F圆弧形天线结构的第一线边连接所述第一上表面地板,而所述倒F圆弧形天线结构的第二线边连接所述馈电端口,所述倒F圆弧形天线结构的圆弧线边设置成沿着所述第一上表面地板的弧形周边的延伸方向延伸。
进一步地:
所述倒F圆弧形天线结构的圆弧线边与所述第一上表面地板的弧形周边平行。
所述第一上表面地板为圆形或椭圆形。
所述馈电端口为同轴馈电端口。
所述柔性薄膜基的上表面还设置有第二上表面电极板,所述第二上表面电极板与所述第一上表面地板之间具有设定的间距。
所述柔性薄膜基的下表面对应于上表面地板的位置设置有具有弧形周边的下表面地板,所述上表面地板和所述下表面地板通过所述柔性薄膜基上的导电过孔相连。
所述倒F圆弧形天线结构设置在所述第一上表面地板的四周的任一位置。
一种心电贴,包括所述的柔性天线,其中,所述柔性天线的地板作为测量心电的电极。
一种可穿戴设备,包括所述的心电贴。
一种制备所述的柔性天线的方法,包括:
使用模具通过丝网印刷在柔性薄膜基底的表面印刷纳米银浆或液体金属,固化后形成所述地板和所述倒F圆弧形天线结构;或者,在单层石墨烯纳米材料薄膜上通过激光加工直接加工出所述地板和所述倒F圆弧形天线结构;或者,通过在柔性薄膜基底上蒸镀纳米厚度的金属薄膜,再蚀刻加工出所述地板和所述倒F圆弧形天线结构;或者,通过纳米压印工艺在柔性薄膜基底上形成所述地板和所述倒F圆弧形天线结构。
本发明具有如下有益效果:
本发明提供一种柔性天线,在柔性薄膜基的上表面设置有具有弧形周边的第一上表面地板以及倒F圆弧形天线结构,所述倒F圆弧形天线结构的圆弧线边设置成沿着所述第一上表面地板的弧形周边的延伸方向延伸,柔性薄膜基底可拉伸和弯曲变形,而倒F圆弧形天线结构与圆形地板配合形成的共性变形结构,特别是作为天线结构主辐射单元的圆弧边条与圆形地板或椭圆形的圆周平行,提高了柔性天线的可拉伸和弯曲变形性能,即 使发生拉伸和弯曲变形也可以正常工作在通信带宽内,不影响天线射频性能。本发明可以通过例如纳米材料结构和增材制作等方法批量制造。本发明还具有设计紧凑、体积小、集成度高、可批量和低成本制造等优点。
利用本发明的柔性天线结构设置成心电贴,可以贴附在人体表面使用,将柔性天线的地板作为心电贴传感信号用的电极粘贴在人体皮肤上,可实现健康数据的实时采集和无线通信,并实现传感和通信的功能集成。该柔性天线结构应用于心电贴不仅可以提高智能穿戴设备的心电贴的舒适性,而且由于其可拉伸和可弯曲变形性能高,抗干扰性好,非常适于应用在人体表面。
本发明将用于通信的天线与用于传感的心电贴以独特设计相集成,实现一种传感通信一体化解决方案。心电贴作为天线基板,也作为测量心电的电极。本发明提供了柔性天线结构的多种集成方式,利用柔性薄膜基底可拉伸和弯曲变形的优点,柔性薄膜基底、心电贴电极、倒F圆弧形天线结构都可以实现超弹性变形,解决体域网节点在穿戴环境下的复杂应变问题。
附图说明
图1为本发明实施例的柔性薄膜基底上的倒F圆弧形天线结构与心电贴的第一种集成方式的两个示例。
图2为本发明实施例的柔性薄膜基底上的倒F圆弧形天线结构与心电贴的第二种集成方式的两个示例。
图3为本发明实施例的柔性薄膜基底上的倒F圆弧形天线结构与心电贴的第三种集成方式的两个示例。
图4为本发明实施例的柔性薄膜基底上的倒F圆弧形天线结构与不同形状心电贴的第四种集成方式的两个示例。
图5为本发明实施例的柔性薄膜基底上的倒F圆弧形天线结构与带中心过孔的心电贴的第五种集成方式的两个示例。
图6为本发明实施例的柔性薄膜基底上的倒F圆弧形天线结构与心电贴的丝网印刷示意图。
图7为本发明实施例的柔性天线的射频性能仿真图。
具体实施方式
以下对本发明的实施方式做详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件, 它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于耦合或连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参阅图1至图5,在一些实施例中,一种柔性天线,包括柔性薄膜基底100、110、200、210、300、310、400、410、500、510,例如采用(但不限于)基于硅胶的柔性薄膜基底,所述柔性薄膜基100、110、200、210、300、310、400、410、500、510的上表面设置有具有弧形周边的第一上表面地板101、103、201、203、301、303、401、403、501、503以及倒F圆弧形天线结构105、107、205、207、305、307、405、407、505、507,所述柔性薄膜基还设置有馈电端口106、108、206、208、306、308、406、408、506、508,所述倒F圆弧形天线结构具有作为主辐射单元的圆弧线边、连接在所述圆弧线边端部的第一线边以及连接在所述圆弧线边中间的第二线边,所述倒F圆弧形天线结构的第一线边连接所述第一上表面地板,而所述倒F圆弧形天线结构的第二线边连接所述馈电端口106、108、206、208、306、308、406、408、506、508,所述倒F圆弧形天线结构的圆弧线边设置成沿着所述第一上表面地板的弧形周边的延伸方向延伸。
在特别优选的实施例中,所述倒F圆弧形天线结构的圆弧线边与所述第一上表面地板的弧形周边平行。
该柔性天线在其柔性薄膜基的上表面上,倒F圆弧形天线结构的圆弧线边设置成沿着所述第一上表面地板的弧形周边的延伸方向延伸,柔性薄膜基底可拉伸和弯曲变形,而倒F圆弧形天线结构与圆形地板配合形成的 共性变形结构,特别是作为天线结构主辐射单元的圆弧边条与圆形地板或椭圆形的圆周平行,提高了柔性天线的可拉伸和弯曲变形性能,即使发生拉伸和弯曲变形也可以正常工作在通信带宽内,不影响天线射频性能。本发明可以通过例如纳米材料结构和增材制作等方法批量制造。本发明还具有设计紧凑、体积小、集成度高、可批量和低成本制造等优点。
参阅图1至图3,在优选的实施例中,所述第一上表面地板101、103、201、203、301、303为圆形。参阅图4至图5,在更优选的实施例中,所述第一上表面地板401、403、501、503为椭圆形。
在优选的实施例中,所述馈电端口106、108、206、208、306、308、406、408、506、508为同轴馈电端口,可经由柔性的同轴电缆连接到控制电路的印刷电路板(PCB)的主板(图中未示出)。
参阅图1至图5,在优选的实施例中,所述柔性薄膜基的上表面还设置有第二上表面电极板102、104、202、204、302、304、402、404、502、504,所述第二上表面电极板102、104、202、204、302、304、402、404、502、504与所述第一上表面地板101、103、201、203、301、303、401、403、501、503之间具有设定的间距。由此,当本实施例的柔性天线被用作心电贴时,第一上表面地板和第二上表面电极板可作为贴到人体皮肤上的两个电极。
参阅图5,在优选的实施例中,所述柔性薄膜基的下表面在对应于上表面地板501、502、504、503的位置设置有具有弧形周边的下表面地板(图中未示出),所述上表面地板和所述下表面地板通过所述柔性薄膜基上的导电过孔511、512、513、514相连。
参阅图1至图5,在不同的实施例中,所述倒F圆弧形天线结构105、107、205、207、305、307、405、407、505、507可以设置在所述第一上表面地板101、103、201、203、301、303、401、403、501、503的四周的任一位置,例如,如图1至图5中所示的第一上表面地板的上方、下方、左侧或右侧中任一位置。
所述柔性天线的典型工作频率可以是蓝牙、WIFI、或sub5G频段。
本发明实施例还提供一种心电贴,包括所述的柔性天线,其中,所述柔性天线的地板作为测量心电的电极。
本发明实施例还提供一种可穿戴设备,包括所述的心电贴。
利用本发明的柔性天线结构设置成心电贴,可以贴附在人体表面使用,将柔性天线的地板作为心电贴传感信号用的电极粘贴在人体皮肤上,可实 现健康数据的实时采集和无线通信,并实现传感和通信的功能集成。该柔性天线结构应用于心电贴不仅可以提高智能穿戴设备的心电贴的舒适性,而且由于其可拉伸和可弯曲变形性能高,抗干扰性好,非常适于应用在人体表面。
本发明将用于通信的天线与用于传感的心电贴以独特设计相集成,实现一种传感通信一体化解决方案。心电贴作为天线基板,也作为测量心电的电极。本发明提供了柔性天线结构的多种集成方式,利用柔性薄膜基底可拉伸和弯曲变形的优点,柔性薄膜基底、心电贴电极、倒F圆弧形天线结构都可以实现超弹性变形,解决体域网节点在穿戴环境下的复杂应变问题。
本发明实施例还提供一种制备所述的柔性天线的方法,参阅图6,在一些实施例中,可使用具有开口601、602的模具600通过丝网印刷在柔性薄膜基底610的表面印刷纳米银浆或液体金属,固化后形成所述地板611、612和所述倒F圆弧形天线结构。
在其他实施例中,可在单层石墨烯纳米材料薄膜上通过激光加工直接加工出所述地板和所述倒F圆弧形天线结构。
在其他实施例中,可通过在柔性薄膜基底上蒸镀纳米厚度的金属薄膜,再蚀刻加工出所述地板和所述倒F圆弧形天线结构。
在其他实施例中,可通过纳米压印工艺在柔性薄膜基底上形成所述地板和所述倒F圆弧形天线结构。
以下进一步描述本发明具体实施例。
图1是本发明在柔性薄膜基底上的倒F圆弧形天线结构与心电贴的第一种集成方式的示意图。每一个心电贴通常有两个电极,如图1所示的101和102,通过丝网印刷等工艺制作在柔性薄膜基底100表面。所述弹性薄膜基体,其典型厚度在一毫米,超弹性变形可以达到100%。本发明设计公开的倒F圆弧形天线结构105,其辐射单元为圆弧型,平行于地板101(心电贴)的外周边沿。同时,地板101(心电贴)既是心电信号采集的连接端,又是天线的地板,其直径大约是天线辐射中心频率对应的电磁波波长的四分之一。倒F圆弧形天线结构105典型的是采用同轴馈电端口106,由柔性同轴电缆连接到控制电路的印刷电路板(PCB)的主板(图中没有示出)。图1所示为倒F圆弧形天线结构与心电贴的两种集成方式,其中,倒F圆弧形天线结构105集成于地板101(心电贴),其辐射臂指向纸面的右 方向。另一示例中,倒F圆弧形天线结构107集成于地板103(心电贴),其辐射臂指向纸面的左方向,制作在柔性薄膜基底110的表面。本发明中的圆形心电贴进一步提供倒F圆弧形天线结构的共性变形,使得天线在柔性薄膜基底100或110发生一定程度的超弹性变形时候,例如,小于30%应变范围,天线的射频性能变化不大,依然能够满足所述天线的通信功能。
图2是本发明在柔性薄膜基底上的倒F圆弧形天线结构与心电贴的第二种集成方式的示意图。图中,200、210分别为柔性薄膜基底。地板201、202、203、204分别为心电贴的电极。205、207分别为倒F圆弧形天线结构,位于心电贴电极的下方。206、208分别是倒F圆弧形天线结构205、207的馈电端口。图2所示为圆弧形状的天线辐射臂指向纸面的右方向或左方向,并平行于圆形心电贴的圆弧方向。
图3是本发明在柔性薄膜基底上的倒F圆弧形天线结构与心电贴的第三种集成方式的示意图。图中,300、310分别为柔性薄膜基底。地板301、302、303、304分别为心电贴的电极。305、307分别为倒F圆弧形天线结构,305在心电贴的左方,307在心电贴的右方。306、308分别是倒F圆弧形天线结构305、307的馈电端口。图3所示为圆弧形状的天线辐射臂指向下或上方向,并平行于圆形心电贴的圆弧方向。
图4是本发明在柔性薄膜基底上的倒F圆弧形天线结构与不同形状心电贴的第四种集成方式的示意图。图中,400、410分别为柔性薄膜基底。401、402、403、404分别为心电贴的电极。心电贴电极可以是不同形状,优选椭圆形。405、407分别为倒F圆弧形天线结构,在心电贴的上方。406、408分别是倒F圆弧形天线结构405和407的馈电端口,典型的是采用同轴馈电端口。图4所示为椭圆形状的天线辐射臂指向左或右方向,并平行于椭圆形状心电贴的圆弧方向;椭圆形状心电贴进一步提供倒F天线圆弧形天线结构的共性变形,保证所设计的天线射频性能基本不变化。
前述各实施例的倒F圆弧形天线结构都可以与不同形状的心电贴电极集成,优选为椭圆形。
图5是本发明在柔性薄膜基底上的倒F圆弧形天线结构与带中心过孔(VIA)的心电贴的第五种集成方式的示意图。通常的心电贴,在柔性薄膜基底例如500的上表面有比较大的电极,例如地板501、502,在其下表面也有同样尺寸或小的圆形电极(图5中没有示出),它们通过中心的导电过孔511、512连接。图5示出这种心电贴的天线设计和集成方案。在图5 中,500、510分别为柔性薄膜基底。501、502、503、504分别为心电贴的电极,优选为圆形或椭圆形。511、512、513、514分别是心电贴电极的导电过孔,用于电信号采集,可以是不同形状,优选为圆形或椭圆型。505、507分别为倒F圆弧形天线结构,在心电贴的上方。506、508分别是倒F圆弧形天线结构505、507的馈电端口,典型的是采用同轴馈电端口。图5所示倒F圆弧形天线结构505、507具有椭圆形或圆形的天线辐射臂,平行于椭圆或圆形心电贴的圆弧方向。
前述各实施例的倒F圆弧形天线结构与心电贴的集成位置,都可以与带中心过孔的不同形状心电贴电极集成,优选为椭圆或圆形。
本发明的心电贴利用柔性天线的地板,其直径大约是天线辐射中心频率对应的电磁波波长的四分之一。天线辐射时,地板射频电流主要沿圆周边部分运动和震荡,在中心点附近最弱。因此,心电贴的中心过孔对天线射频性能影响不大。
本发明的柔性薄膜基底可以实现高达100%的超弹性变形。当柔性薄膜基底发生一定程度的超弹性变形时候,例如,小于30%应变范围,天线的射频性能变化不大,依然能够满足所述天线的通信功能。
所述柔性天线可以通过纳米材料结构和增材制作方法实现批量和低成本制造。
图6为柔性薄膜基底上的倒F圆弧形天线结构与心电贴的丝网印刷示意图。模具600可以通过机加工、激光加工、或三维打印制作。601和602分别为倒F圆弧形天线结构和心电贴的模具开口。可使用模具600在柔性薄膜基底610表面丝网印刷纳米银浆或液体金属而形成倒F圆弧形天线结构和地板611、612(心电贴),再通过加热烘干等程序固化导电胶。使用液体金属可涂一次层弹性薄膜。采用心电贴尺寸大小的单层石墨烯纳米材料薄膜,也可以通过激光加工,利用模具600直接加工出地板611、612(心电贴)。也可以蒸镀纳米厚度的金属薄膜,利用模具600进行蚀刻加工。纳米压印工艺也可以应用来转印倒F圆弧形天线结构和地板611、612(心电贴)。还可以3D打印直接加工柔性薄膜基底610、倒F圆弧形天线结构和地板611、612(心电贴)。其中,丝网印刷和纳米压印等工艺均能够实现批量和低成本制造本发明的天线和心电贴。
图7为本发明柔性薄膜基底上的倒F圆弧形天线结构与心电贴集成的射频性能仿真图。表明本发明的天线的射频性能优良,阻抗能够匹配,图 7所示为蓝牙和WIFI频段;但本发明天线也可以用于其他频段,例如Sub5G频段等。
本发明的背景部分可以包含关于本发明的问题或环境的背景信息,而不一定是描述现有技术。因此,在背景技术部分中包含的内容并不是申请人对现有技术的承认。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离专利申请的保护范围的情况下,可以在本文中进行各种改变、替换和变更。

Claims (10)

  1. 一种柔性天线,其特征在于,包括柔性薄膜基底,所述柔性薄膜基的上表面设置有具有弧形周边的第一上表面地板以及倒F圆弧形天线结构,所述柔性薄膜基还设置有馈电端口,所述倒F圆弧形天线结构具有作为主辐射单元的圆弧线边、连接在所述圆弧线边端部的第一线边以及连接在所述圆弧线边中间的第二线边,所述倒F圆弧形天线结构的第一线边连接所述第一上表面地板,而所述倒F圆弧形天线结构的第二线边连接所述馈电端口,所述倒F圆弧形天线结构的圆弧线边设置成沿着所述第一上表面地板的弧形周边的延伸方向延伸。
  2. 如权利要求1所述的柔性天线,其特征在于,所述倒F圆弧形天线结构的圆弧线边与所述第一上表面地板的弧形周边平行。
  3. 如权利要求1或2所述的柔性天线,其特征在于,所述第一上表面地板为圆形或椭圆形。
  4. 如权利要求1或2所述的柔性天线,其特征在于,所述馈电端口为同轴馈电端口。
  5. 如权利要求1或2所述的柔性天线,其特征在于,所述柔性薄膜基的上表面还设置有第二上表面电极板,所述第二上表面电极板与所述第一上表面地板之间具有设定的间距。
  6. 如权利要求1或2所述的柔性天线,其特征在于,所述柔性薄膜基的下表面对应于上表面地板的位置设置有具有弧形周边的下表面地板,所述上表面地板和所述下表面地板通过所述柔性薄膜基上的导电过孔相连。
  7. 权利要求1或2所述的柔性天线,其特征在于,所述倒F圆弧形天线结构设置在所述第一上表面地板的四周的任一位置。
  8. 一种心电贴,其特征在于,包括如权利要求1至7任一项所述的柔性天线,其中,所述柔性天线的地板作为测量心电的电极。
  9. 一种可穿戴设备,其特征在于,包括如权利要求8所述的心电贴。
  10. 一种制备如权利要求1至7任一项所述的柔性天线的方法,其特征在于,包括:
    使用模具通过丝网印刷在柔性薄膜基底的表面印刷纳米银浆或液体金属,固化后形成所述地板和所述倒F圆弧形天线结构;或者,在单层石墨烯纳米材料薄膜上通过激光加工直接加工出所述地板和所述倒F圆弧形 天线结构;或者,通过在柔性薄膜基底上蒸镀纳米厚度的金属薄膜,再蚀刻加工出所述地板和所述倒F圆弧形天线结构;或者,通过纳米压印工艺在柔性薄膜基底上形成所述地板和所述倒F圆弧形天线结构。
PCT/CN2022/092340 2021-12-27 2022-05-12 一种柔性天线、其制作方法和心电贴 WO2023123810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111614870.4 2021-12-27
CN202111614870.4A CN114171886A (zh) 2021-12-27 2021-12-27 一种柔性天线、其制作方法和心电贴

Publications (1)

Publication Number Publication Date
WO2023123810A1 true WO2023123810A1 (zh) 2023-07-06

Family

ID=80488517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092340 WO2023123810A1 (zh) 2021-12-27 2022-05-12 一种柔性天线、其制作方法和心电贴

Country Status (2)

Country Link
CN (1) CN114171886A (zh)
WO (1) WO2023123810A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171886A (zh) * 2021-12-27 2022-03-11 深圳大学 一种柔性天线、其制作方法和心电贴

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394370A (zh) * 2000-03-29 2003-01-29 精工爱普生株式会社 用于高频无线电设备的天线设备、高频无线电设备和手表式无线电设备
US20090179816A1 (en) * 2008-01-12 2009-07-16 Yen-Ming Chen Antenna system for producing circular polarized waves with PIFAs
CN211858882U (zh) * 2020-04-03 2020-11-03 清研讯科(北京)科技有限公司 一种天线和电子设备
CN112510349A (zh) * 2020-12-09 2021-03-16 维沃移动通信有限公司 一种可穿戴设备
CN213309784U (zh) * 2020-08-07 2021-06-01 浙江智柔科技有限公司 心电贴片装置
CN114171886A (zh) * 2021-12-27 2022-03-11 深圳大学 一种柔性天线、其制作方法和心电贴

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712233B2 (en) * 2012-02-24 2014-04-29 Apple Inc. Electronic device assemblies
US10396427B2 (en) * 2016-05-06 2019-08-27 GM Global Technology Operations LLC Dual polarized wideband LTE thin film antenna
CN106299650A (zh) * 2016-09-05 2017-01-04 哈尔滨工业大学 L型加载改进地板的宽带全向圆极化印刷天线
CN108011188A (zh) * 2017-11-28 2018-05-08 电子科技大学 一种三频段低剖面全向圆极化天线
CN109044326B (zh) * 2018-06-26 2021-07-23 中国科学院深圳先进技术研究院 一种基于印刷技术的全柔性干电极及其制备方法
CN109193142A (zh) * 2018-09-03 2019-01-11 北京理工大学 一种可穿戴天线的加工方法
CN111478036A (zh) * 2020-05-15 2020-07-31 上海电力大学 基于共面波导馈电的柔性单阻带uwb-mimo天线
CN113288159B (zh) * 2021-05-27 2023-01-31 中国人民解放军总医院第二医学中心 一种心电采集系统、采集方法及心电采集系统的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394370A (zh) * 2000-03-29 2003-01-29 精工爱普生株式会社 用于高频无线电设备的天线设备、高频无线电设备和手表式无线电设备
US20090179816A1 (en) * 2008-01-12 2009-07-16 Yen-Ming Chen Antenna system for producing circular polarized waves with PIFAs
CN211858882U (zh) * 2020-04-03 2020-11-03 清研讯科(北京)科技有限公司 一种天线和电子设备
CN213309784U (zh) * 2020-08-07 2021-06-01 浙江智柔科技有限公司 心电贴片装置
CN112510349A (zh) * 2020-12-09 2021-03-16 维沃移动通信有限公司 一种可穿戴设备
CN114171886A (zh) * 2021-12-27 2022-03-11 深圳大学 一种柔性天线、其制作方法和心电贴

Also Published As

Publication number Publication date
CN114171886A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
US20190069788A1 (en) Tunable, flexible and stretchable adhesive-integrated antenna
Zhu et al. Structural design for stretchable microstrip antennas
Kim et al. Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks
US20170172439A1 (en) Electrodes and sensors having nanowires
Krykpayev et al. A wearable tracking device inkjet-printed on textile
Lin et al. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication
US10263320B2 (en) Methods of making stretchable and flexible electronics
WO2023123810A1 (zh) 一种柔性天线、其制作方法和心电贴
CN108365328B (zh) 一种基于石墨烯的微波柔性滤波天线
Zhu et al. Strain-insensitive hierarchically structured stretchable microstrip antennas for robust wireless communication
US10496192B2 (en) Computer stylus having integrated antenna and sensor structures
CN108333227B (zh) 一种柔性气体传感器及其制备方法
WO2023123811A1 (zh) 一种基于柔性基底的天线、心电贴及可穿戴设备
Xu et al. Design of non-dimensional parameters in stretchable microstrip antennas with coupled mechanics-electromagnetics
Wang et al. New Advances in Antenna Design toward Wearable Devices Based on Nanomaterials
CN216624539U (zh) 一种柔性天线、心电贴和可穿戴设备
CN205354076U (zh) 一种带湿度传感部件的无源电子标签
Kong et al. Wireless Technologies in Flexible and Wearable Sensing: from Materials Design, System Integration to Applications
Yang et al. Materials, Designs, and Implementations of Wearable Antennas and Circuits for Biomedical Applications: A Review
CN216698696U (zh) 一种基于柔性基底的天线、心电贴及可穿戴设备
CN212114016U (zh) 手机天线结构
CN211530179U (zh) 适用于蜂窝网通信的对称fpc偶极子天线
CN205750832U (zh) 一种湿度传感电子标签天线
Afyf et al. Flexible antennas for wearable technologies
CN115377658B (zh) 智能穿戴设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913106

Country of ref document: EP

Kind code of ref document: A1