WO2023123785A1 - 蓝牙信号发射设备、蓝牙信号控制方法和装置以及蓝牙设备 - Google Patents

蓝牙信号发射设备、蓝牙信号控制方法和装置以及蓝牙设备 Download PDF

Info

Publication number
WO2023123785A1
WO2023123785A1 PCT/CN2022/090689 CN2022090689W WO2023123785A1 WO 2023123785 A1 WO2023123785 A1 WO 2023123785A1 CN 2022090689 W CN2022090689 W CN 2022090689W WO 2023123785 A1 WO2023123785 A1 WO 2023123785A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
bluetooth
antenna
parasitic antenna
strength value
Prior art date
Application number
PCT/CN2022/090689
Other languages
English (en)
French (fr)
Inventor
乔文亮
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Publication of WO2023123785A1 publication Critical patent/WO2023123785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of antennas, and in particular to a Bluetooth signal transmitting device, a Bluetooth signal control method and device, a Bluetooth device, a computer readable storage medium, a computer program product and a computer program.
  • TWS Truste Wireless Stereo
  • the Bluetooth antenna determines the quality of the Bluetooth signal, but due to the limited structural space and the environment where the Bluetooth antenna is located, the Bluetooth signal needs to be further improved.
  • Embodiments of the present disclosure provide a bluetooth signal transmitting device, a bluetooth signal control method and device, a bluetooth device, a computer-readable storage medium, a computer program product and a computer program.
  • a Bluetooth signal transmitting device includes a main antenna, a parasitic antenna and a switch unit, the routing direction of the main antenna is the same as the routing direction of the parasitic antenna The direction of the line is different;
  • the switch unit is configured to control the state of the parasitic antenna, the state of the parasitic antenna includes a first state and a second state;
  • the bluetooth signal radiation range of the bluetooth signal transmitting device is recorded as the first radiation range; in the second state, the bluetooth signal radiation range of the bluetooth signal transmitting device is recorded as the second radiation range; the first radiation range is different from the second radiation range.
  • the switch unit includes a ground switch, and the parasitic antenna is grounded through the ground switch;
  • the parasitic antenna is grounded, and the parasitic antenna is in the first state
  • the parasitic antenna is not grounded, and the parasitic antenna is in the second state.
  • the wiring direction of the main antenna is opposite to that of the parasitic antenna.
  • the Bluetooth signal transmitting device further includes a feeding unit connected to the main antenna,
  • the feeding unit Based on the parasitic antenna being in the second state, the feeding unit applies a first current to the main antenna;
  • the feeding unit Based on the parasitic antenna being in the first state, the feeding unit applies a second current to the main antenna.
  • a Bluetooth device includes the Bluetooth signal transmitting device according to any one of the first aspect.
  • the bluetooth device further includes a bluetooth headset
  • the bluetooth headset includes a connected main body and a rod-shaped part
  • the main body is provided with a speaker
  • the rod-shaped part is provided with the bluetooth signal transmitting device, so
  • the main antenna of the Bluetooth signal transmitting device and the parasitic antenna of the Bluetooth signal transmitting device the main antenna is located close to the speaker, and the parasitic antenna is located far away from the speaker.
  • a Bluetooth signal control method applied to a first Bluetooth device comprising:
  • the antenna unit of the first Bluetooth device Based on the fact that the antenna unit of the first Bluetooth device is in a first stable state, according to the set strength value and the first strength value of the Bluetooth communication signal between the first Bluetooth device and the second Bluetooth device, control the antenna unit A state of the parasitic antenna, wherein the state of the parasitic antenna includes a first state and a second state.
  • controlling the state of the parasitic antenna including:
  • the first intensity value is determined once at intervals of a first set duration
  • the state of the parasitic antenna is controlled according to the set strength value and the first strength value.
  • controlling the state of the parasitic antenna according to the set strength value and the first strength value includes:
  • controlling the state of the parasitic antenna according to the set strength value and the first strength value includes:
  • controlling the antenna unit Based on determining that the first strength value is less than or equal to the set strength value, controlling the antenna unit to be in a detection state, wherein the state of the parasitic antenna in the detection state is the same as the state in the first stable state
  • the states of the parasitic antennas are different;
  • the state of the parasitic antenna is controlled according to the set strength difference value, the first strength value and the second strength value.
  • controlling the state of the parasitic antenna according to the set strength difference, the first strength value and the second strength value includes:
  • the antenna unit Based on the difference between the second strength value and the first strength value being greater than the set strength difference, controlling the antenna unit to be in a second stable state, the parasitic antenna in the second stable state The state is different from the state of the parasitic antenna in the first stable state.
  • controlling the state of the parasitic antenna according to the set strength difference, the first strength value and the second strength value includes:
  • the antenna unit Based on the difference between the second strength value and the first strength value being less than or equal to the set strength difference, the antenna unit is controlled to be in the first stable state.
  • the method includes:
  • the method includes:
  • the stopping the adjustment of the state of the parasitic antenna includes:
  • the set intensity difference is switched from a first value to a second value, and the second value is greater than the first value.
  • the method after stopping the adjustment of the state of the parasitic antenna, the method includes:
  • the method includes:
  • the default state of the parasitic antenna is the second state.
  • a Bluetooth signal control device which is applied to a first Bluetooth device, and the device includes:
  • a control module configured to control the antenna unit of the first Bluetooth device in a first stable state according to the set strength value and the first strength value of the Bluetooth communication signal between the first Bluetooth device and the second Bluetooth device
  • the state of the parasitic antenna in the antenna unit wherein the state of the parasitic antenna includes a first state and a second state.
  • a Bluetooth device includes:
  • the processor is configured to execute the Bluetooth signal control method according to any embodiment of the third aspect.
  • the Bluetooth device when the instructions in the storage medium are executed by the processor of the Bluetooth device, the Bluetooth device can perform the third The Bluetooth signal control method described in any embodiment of the aspect.
  • a computer program product including a computer program, and when the computer program is executed by a processor, the Bluetooth signal control method according to any embodiment of the third aspect is implemented.
  • a computer program including computer program code, when the computer program code is run on a computer, the computer is made to execute the Bluetooth signal control method described in any embodiment of the third aspect .
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: the solution of the present disclosure can drive the change of the bluetooth signal radiation direction by controlling the state of the parasitic antenna, thereby realizing the adjustment of the bluetooth signal strength in different directions to better To meet user needs and improve user experience.
  • FIG. 1 is a schematic diagram of a Bluetooth signal transmitting device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a Bluetooth device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a Bluetooth device according to an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a radiation state of a Bluetooth signal according to an embodiment of the disclosure.
  • FIG. 5 is a flowchart of a Bluetooth signal control method according to an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a Bluetooth signal control method according to an embodiment of the present disclosure
  • Fig. 7 is a block diagram of a Bluetooth signal control device according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a Bluetooth device according to an embodiment of the present disclosure.
  • the disclosure provides a bluetooth signal transmitting device, which can be applied to bluetooth devices.
  • the Bluetooth signal transmitting device is equipped with two Bluetooth antennas, respectively the main antenna and the parasitic antenna. By controlling the state of the parasitic antenna, it drives the change of the radiation direction of the Bluetooth signal, thereby realizing the adjustment of the Bluetooth signal strength in different directions, so as to better Meet user needs and improve user experience.
  • a Bluetooth signal transmitting device which can be applied to Bluetooth devices.
  • the bluetooth signal transmitting device includes a main antenna 1 (such as a conductor such as a copper plate) and a parasitic antenna 2 (such as a conductor such as a copper plate), wherein the wiring direction of the main antenna 1 is different from that of the parasitic antenna 2 , when there is current in both the parasitic antenna 2 and the main antenna 1, the current directions of the two are different.
  • the Bluetooth signal strength in different directions of the Bluetooth signal transmitting device can be adjusted to better meet the needs of users.
  • the Bluetooth signal of the Bluetooth signal transmitting device is only transmitted by the main antenna 1, at this time, the radiation range of the Bluetooth signal can be recorded as the first radiation range.
  • both the parasitic antenna 2 and the main antenna 1 can transmit bluetooth signals, and the bluetooth signals transmitted by the two can influence each other.
  • the bluetooth signal of the bluetooth signal transmitting device The radiation range may be referred to as a second radiation range. Since the Bluetooth signal transmitted by the parasitic antenna 2 and the Bluetooth signal transmitted by the main antenna 1 will interact with each other, the first radiation range is different from the second radiation range.
  • the routing direction of the main antenna 1 and the routing direction of the parasitic antenna 2 can be set oppositely, so as to realize the difference in the radiation direction of the parasitic antenna 2 and the main antenna 1, so that it is easier to realize the radiation direction of the parasitic antenna 2.
  • the state can adjust the radiation direction of the Bluetooth signal of the Bluetooth signal transmitting device in a large range, so as to better realize the adjustment of the strength of the Bluetooth signal in different directions, so as to better meet the needs of users and improve the user experience.
  • the Bluetooth signal transmitting device may include a switch unit 3 configured to control the state of the parasitic antenna 2 .
  • the states of the parasitic antenna 2 include a first state and a second state. That is, in the Bluetooth signal transmitting device, the switch unit 3 can control the parasitic antenna 2 to be in the first state or the second state, and then adjust the Bluetooth signal strength in different directions to better meet user needs.
  • the magnitude of the current input to the main antenna 1 can also be adjusted to change the radiation range of the bluetooth signal of the parasitic antenna 2 and the main antenna 1 under the radiation azimuth, and the signal strength under the radiation azimuth, Further improve user experience.
  • the bluetooth signal transmitting device is a bluetooth earphone, and when the bluetooth earphone and the mobile phone are in a bluetooth connection state, it is determined that when the parasitic antenna 2 is in the first state (or second state), the bluetooth communication effect between the bluetooth earphone and the mobile phone is better, but , the Bluetooth connection between the Bluetooth headset and the mobile phone is still intermittent.
  • the mobile phone determines that the mobile phone is in the pocket through scene detection, that is, determines that the mobile phone is in the pocket scene.
  • the mobile phone can transmit the result of the scene detection to the Bluetooth headset, and the Bluetooth headset adjusts the current input to the main antenna 1 according to the received detection result to expand the radiation range and signal strength of the Bluetooth signal, thereby further improving the communication between the Bluetooth headset and the mobile phone.
  • the stability of the bluetooth connection status improves the user experience.
  • the switch unit 3 may include a grounding switch, through which the parasitic antenna 2 is grounded, and the grounding switch is used to control whether the parasitic antenna 2 is grounded, thereby controlling the state of the parasitic antenna 2 .
  • the parasitic antenna 2 when the grounding switch is at contact A, it is in an open state, the parasitic antenna 2 is not grounded, and the parasitic antenna 2 is in the second state.
  • the main antenna 1 radiates the Bluetooth signal, and the radiation direction of the Bluetooth signal is shown as the dotted ellipse X1 in Fig.
  • the signal strength of the Bluetooth communication between the two will be better to ensure better Bluetooth communication.
  • the parasitic antenna 2 when it is in the closed state, the parasitic antenna 2 is grounded, and the parasitic antenna 2 is in the first state.
  • the main antenna 1 and the parasitic antenna 2 both radiate Bluetooth signals, and the Bluetooth signals radiated by the parasitic antenna 2 and the Bluetooth signals radiated by the main antenna 1 interact with each other, so that the overall radiation direction of the Bluetooth signal transmitting device is shown in the dashed ellipse X2 in Figure 1
  • the Bluetooth device realizes the Bluetooth communication connection with other devices through the Bluetooth signal jointly radiated by the main antenna 1 and the parasitic antenna 2.
  • the signal strength of the Bluetooth communication between the two will be relatively high. Well, to ensure better bluetooth communication.
  • the Bluetooth signal transmitting device can control the state of the parasitic antenna 2 by opening or closing the grounding switch, and then can control the radiation direction of the Bluetooth signal of the Bluetooth signal transmitting device, thereby realizing the adjustment of the Bluetooth signal strength in different directions , to better meet user needs and improve user experience.
  • a Bluetooth signal transmitting device is provided, which is applied to a Bluetooth device.
  • the Bluetooth signal transmitting device may include a feed unit 4 connected to the main antenna 1 .
  • connection in the present disclosure generally refers to electrical connection.
  • the feeding unit 4 can be used to control the current applied to the main antenna 1 . It should be noted that the bluetooth signal radiated by the parasitic antenna 2 in the bluetooth signal transmitting device and the bluetooth signal radiated by the main antenna 1 may cancel each other out. By adjusting the magnitude of the current, the bluetooth signals transmitted by the two are avoided from canceling each other, so as to better ensure the use of the bluetooth signal transmitting device and improve the user experience.
  • the feed unit 4 can apply the first current to the main antenna 1 through the contact C. At this time, the main antenna 1 is in the first current state.
  • the bluetooth signal is radiated under the action, and the strength of the bluetooth signal is better in the direction indicated by the dotted ellipse X1 in FIG. 1 .
  • the feed unit 4 can apply a second current to the main antenna 1 through the contact D. At this time, the main antenna 1 radiates Bluetooth signals under the action of the second current, and at the same time, since the parasitic antenna 2 is grounded , which is no longer a suspended metal conductor, causing the parasitic antenna 2 to also radiate Bluetooth signals.
  • the Bluetooth signal emitted by the blue-color signal transmitting device has a better strength in the direction indicated by the dotted ellipse X2 in FIG. 1 .
  • the size of the first current and the second current can be determined according to the specific design of the parasitic antenna 2 and the main antenna 1. For example, after the design of the parasitic antenna 2 and the main antenna 1 is completed, the appropriate first current can be determined through simulation. The current and the second current will not be described in detail here.
  • the Bluetooth signal transmitting device by setting the feeding unit 4 to better avoid the Bluetooth signal radiated by the parasitic antenna 2 and the Bluetooth signal radiated by the main antenna 1, there may be mutual cancellation, so that the use of the Bluetooth signal transmitting device can be better ensured , to improve user experience.
  • a Bluetooth device includes the Bluetooth signal transmitting device as described above, wherein the Bluetooth signal transmitting device is provided with two Bluetooth antennas, respectively the main antenna 1 and the parasitic antenna 2, and the Bluetooth device controls the parasitic antenna 2, to drive the change of the bluetooth signal radiation direction, so as to realize the adjustment of the bluetooth signal strength in different directions, so as to better meet the needs of users and improve the user experience.
  • the bluetooth device may include a bluetooth headset, a mobile phone, a computer, a wearable device and other devices that require bluetooth communication, which is not limited herein.
  • the bluetooth earphone of the present disclosure is generally a rod-shaped bluetooth earphone, which may be a full in-ear type or a half in-ear type, which is not limited here.
  • the bluetooth earphone may include a main body and a rod-shaped part, the main body is provided with a loudspeaker, and the rod-shaped part is provided with a bluetooth signal transmitting device.
  • the main antenna 1 In the main antenna 1 and the parasitic antenna 2 of the Bluetooth signal transmitting device, the main antenna 1 is located near the speaker 20 of the Bluetooth headset, and the parasitic antenna 2 is located away from the speaker 20, so that the main antenna 1 and the parasitic antenna 2 in the Bluetooth headset Reverse setting, so as to facilitate the adjustment of the Bluetooth signal strength in different directions in the Bluetooth headset, so as to better meet the user's needs and improve the user's experience.
  • the Bluetooth device is a Bluetooth headset
  • the Bluetooth headset includes a Bluetooth chip 5 , a main antenna 1 , a parasitic antenna 2 , a switch unit 3 and a power supply unit 4 .
  • the switch unit 3 includes a ground switch for controlling whether the parasitic antenna 2 is grounded.
  • the feed unit 4 includes a switch for controlling the magnitude of the feed current.
  • the bluetooth chip 5 is connected with the main antenna 1, and is grounded through a toggle switch.
  • the impedance of the main antenna 1 is controlled to match the impedance of the Bluetooth chip 5, thereby realizing the control of the magnitude of the feeding current.
  • the grounding switch when it is in the disconnected state, the parasitic antenna 2 is not grounded, and the parasitic antenna 2 is in the first state and the second state.
  • the switch is at contact C,
  • the bluetooth chip 5 applies the first current to the main antenna 1, only the main antenna 1 radiates the bluetooth signal, and the radiation direction of the bluetooth signal is shown by the dotted ellipse X1, that is, the bluetooth device realizes the bluetooth communication with other devices through the bluetooth signal radiated by the main antenna 1.
  • the signal strength of the Bluetooth communication between the two will be better, so as to ensure better Bluetooth communication.
  • the parasitic antenna 2 when the grounding switch is at the contact point B, when it is in the closed state, the parasitic antenna 2 is grounded, and the parasitic antenna 2 is in the first state. Antenna 1 applies a second current. At the same time, parasitic antenna 2 generates a coupling current. Both main antenna 1 and parasitic antenna 2 radiate Bluetooth signals.
  • the overall radiation direction of the device is shown by the dotted ellipse X2, that is, the Bluetooth device realizes the Bluetooth communication connection with other devices through the Bluetooth signal radiated by the main antenna 1 and the parasitic antenna 2.
  • the two Bluetooth The signal strength of the communication will be better to ensure better Bluetooth communication.
  • the bluetooth headset includes a main board for setting the bluetooth chip 5 , the main board 10 is provided with an antenna support 10 , and the antenna support 10 is a non-conductive structure, such as a plastic carrier.
  • Two copper plates are arranged on the antenna bracket 10 as the main antenna 1 and the parasitic antenna 2 respectively, wherein the main antenna 1 is located close to the speaker 20 , and the parasitic antenna 2 is located away from the speaker 20 .
  • the position of the main antenna 1 close to the speaker 20 (for example, the position shown in E in the figure) is connected to the Bluetooth chip 5, and the position of the parasitic antenna 2 away from the speaker 20 (for example, the position shown in F in the figure) is connected to the ground switch connection.
  • the signal radiation situation of the bluetooth signal under the two states of the grounding switch being closed and disconnected is simulated by software, and the signal radiation state as shown in Fig. 4 is obtained, wherein, the first curve Q1 is that the grounding switch is off The signal radiation curve in the state, the second curve Q2 is the signal radiation curve in the closed state of the grounding switch, and it can be seen from FIG. 3 that the signal radiation directions in the two states are different.
  • the Bluetooth headset can adjust the radiation direction of the Bluetooth signal through the ground switch, so as to better ensure the Bluetooth communication quality between other Bluetooth devices (such as mobile phones) and the Bluetooth headset, and improve user experience.
  • a Bluetooth signal control method is provided, which is applied to a first Bluetooth device, and the first Bluetooth device may be the above-mentioned Bluetooth device. Referring to Fig. 5, the method includes step S110.
  • the first Bluetooth device includes a Bluetooth signal transmitting device, and the Bluetooth signal transmitting device includes a main antenna and a parasitic antenna.
  • the antenna unit of the first Bluetooth device includes a main antenna and a parasitic antenna.
  • the parasitic antenna In the first stable state, the parasitic antenna may be stably in the first state, or may be stably in the second state. That is, the parasitic antenna is stably in any one of the first state and the second state, and the Bluetooth device determines whether to change the state of the parasitic antenna according to the set strength value and the first strength value, so that the Bluetooth signal
  • the radiation direction meets the requirements of Bluetooth communication and ensures the quality of Bluetooth communication signals to better meet user needs and improve user experience.
  • the set strength value can be set before the first bluetooth device leaves the factory, or after the first bluetooth device leaves the factory, and the set strength value can also be modified to better meet the needs of users.
  • the set strength value is used to judge whether the strength of the bluetooth communication signal between the first bluetooth device and the second bluetooth device meets the communication requirement.
  • the first Bluetooth device is a Bluetooth headset
  • the second Bluetooth device is a mobile phone.
  • the antenna unit of the Bluetooth headset is in the first stable state, and the parasitic antenna is in the second state.
  • the antenna unit based on the Bluetooth headset is in the first stable state, and the first strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is less than or equal to the set strength value, indicating that the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is relatively high.
  • the Bluetooth communication quality of the two is weak, it is necessary to switch the parasitic antenna of the Bluetooth headset to the first state to change the radiation direction of the Bluetooth signal emitted by the Bluetooth headset, so as to improve the Bluetooth communication quality between the Bluetooth headset and the mobile phone, better Fully meet the needs of Bluetooth communication and improve user experience.
  • the strength of the bluetooth communication signal between the first bluetooth device and the second bluetooth device is judged by setting the set strength value, and then the bluetooth signal of the first bluetooth device is adjusted by controlling the state of the parasitic antenna Radiation direction, so as to adjust the strength of the Bluetooth communication signal between the first Bluetooth device and the second Bluetooth device, better meet the Bluetooth communication requirements, and improve user experience.
  • a Bluetooth signal control method is provided, which is applied to a first Bluetooth device.
  • the parasitic antenna is controlled according to the set strength value and the first strength value of the Bluetooth communication signal between the first Bluetooth device and the second Bluetooth device. state, including step 201 and step 220.
  • the first set time length may be set before the first bluetooth device leaves the factory, or after the first bluetooth device leaves the factory, and after the first set time length is set, it can also be modified. In order to better meet the different needs of users.
  • the first set duration is used to control the period of determining the first intensity value, so as to avoid determining the first intensity value too frequently, which can reduce the energy consumption of the first Bluetooth device.
  • timing starts from the time the antenna unit enters the first stable state, and detects the strength value of the Bluetooth communication signal between the first bluetooth device and the second bluetooth device every interval of the first set time to determine the first bluetooth device and the second bluetooth device an intensity value.
  • the first set duration may be 1 second, 2 seconds or 3 seconds.
  • Setting the first set time length can prevent the first Bluetooth device from frequently detecting the strength of the Bluetooth communication signal, which affects the reliability of Bluetooth communication, and setting the first set time length can also reduce the energy consumption of the first Bluetooth device.
  • step S220 after each determination of the first intensity value, the quality of the Bluetooth communication between the first Bluetooth device and the second Bluetooth device is judged based on the determined first intensity value this time and the preset set intensity value , when the bluetooth communication quality is poor, the radiation direction of the bluetooth signal of the first bluetooth device can be adjusted in time by adjusting the state of the parasitic antenna, thereby adjusting the bluetooth communication quality between the first bluetooth device and the second bluetooth device, further improving the user's Use experience.
  • the first bluetooth device is a bluetooth headset
  • the second bluetooth device is a mobile phone
  • the first set duration is 3 seconds.
  • the strength detection unit of the bluetooth communication signal of the bluetooth headset detects the strength value of the bluetooth communication signal between the bluetooth headset and the mobile phone every 3 seconds, and transmits the detected strength value to the processor of the bluetooth headset, so that the processor can determine The first intensity value.
  • the Bluetooth headset After the processing of the Bluetooth headset determines the first intensity value, it is convenient to set the intensity value for comparison. Based on the fact that the first intensity value is greater than the set intensity value, it indicates that the Bluetooth communication quality between the Bluetooth headset and the mobile phone is good, and there is no need to adjust the state of the parasitic antenna in the Bluetooth headset. Based on the fact that the first intensity value is less than or equal to the set intensity value, it indicates that the Bluetooth communication quality between the Bluetooth headset and the mobile phone is poor, and the mobile phone is not in the current radiation direction of the Bluetooth signal sent by the Bluetooth headset, the state of the parasitic antenna can be adjusted to change the Bluetooth The radiation direction of the Bluetooth signal emitted by the headset improves the quality of the Bluetooth communication between the Bluetooth headset and the mobile phone and enhances user experience.
  • the first set duration it is possible to prevent the first bluetooth device from frequently detecting the strength of the bluetooth communication signal, which affects the reliability of the bluetooth communication, and setting the first set duration can also reduce the first bluetooth device energy consumption, further improving the user experience.
  • a Bluetooth signal control method is provided, which is applied to a first Bluetooth device.
  • controlling the state of the parasitic antenna according to the set strength value and the first strength value may include steps S310 to S350.
  • the relationship between the first intensity value and the set intensity value is judged to determine the quality of the Bluetooth communication between the first Bluetooth device and the second Bluetooth device at this time.
  • the antenna unit can be controlled to continue to be in the current state.
  • the stable state of that is, the control parasitic antenna continues to be in the current state.
  • the determination of the first intensity value is performed cyclically, and the new first intensity value and the set intensity The size of the value is judged, so as to know the quality of the Bluetooth communication between the first Bluetooth device and the second Bluetooth device in time.
  • the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device is poor, indicating that the second Bluetooth device is not in the Bluetooth signal of the first Bluetooth device. within the radiation range, indicating that it may be necessary to adjust the state of the parasitic antenna to adjust the radiation direction of the Bluetooth signal of the first Bluetooth device, and then adjust the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device to better ensure that the two The Bluetooth communication quality of the user is continuously in a good state, which improves the user experience.
  • step S330 after it is determined that the first strength value is less than or equal to the set strength value, the antenna unit can be controlled to be in the detection state, wherein the state of the parasitic antenna in the detection state is different from the state of the parasitic antenna in the first stable state. For example, if in the first stable state, the state of the parasitic antenna is the first state, then in the detection state, the state of the parasitic antenna is the second state. If in the first stable state, the state of the parasitic antenna is the second state, then in the detecting state, the state of the parasitic antenna is in the first state.
  • step S340 based on the detection state of the antenna unit, the strength value of the Bluetooth communication signal between the first Bluetooth device and the second Bluetooth device in the detection state is determined, and the strength value may be recorded as a second strength value.
  • step S350 based on the set strength difference, the first strength value and the second strength value, it can be judged whether the quality of the Bluetooth communication between the first Bluetooth device and the second Bluetooth device is good or bad after the state of the parasitic antenna is adjusted, so as to Better control the state of the parasitic antenna to meet the user's requirements for Bluetooth communication quality.
  • the set strength difference can be set by the first bluetooth device before leaving the factory, or after leaving the factory, and the set strength difference can be modified later after the setting is completed, so as to better satisfy users demand.
  • the strength difference is set as a difference in the improvement of the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device set by the user after the state of the parasitic antenna is adjusted. Controlling The parasitic antenna continues to be in the first stable state. Otherwise, adjust the state of the parasitic antenna.
  • the intensity difference is set as d.
  • the parasitic antenna In the first stable state, the parasitic antenna is in the second state. Based on the antenna unit being in a first stable state, a first intensity value D1 is determined. Based on the fact that the antenna device is in the detection state (that is, the parasitic antenna is in the first state), the second strength value D2 is determined.
  • the parasitic antenna is controlled to be in the state corresponding to the first stable state, that is, the parasitic antenna is controlled to be in the second state, so that the antenna unit is in the first stable state.
  • the second intensity value D2 is greater than the sum of the first intensity value D1 and the set intensity difference d, it shows that after the state of the parasitic antenna is adjusted, the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device When the required improvement difference is reached, the adjusted antenna unit is no longer in the first stable state, that is, the parasitic antenna can be controlled to be in the first state.
  • the antenna unit is controlled to remain in the first stable state, and periodic detection and judgment are performed with the first set duration. Based on the first intensity value being less than or equal to the set intensity value, determine the improvement of the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device after the state adjustment of the parasitic antenna in the detection state, and then control the parasitic antenna based on the improvement In order to better meet the needs of users and further enhance the user experience.
  • the antenna unit can be controlled to be in the first stable state. That is, after the second intensity value in the detection state is determined, the state of the parasitic antenna is adjusted back to the original state.
  • the time required for the switch unit to complete the switching is relatively short, that is, the time required for the parasitic antenna to complete the state switching is relatively short, and the processing of the first Bluetooth device completes the processing of the set intensity difference, the first intensity value and The time required for the data processing of the second intensity value is poor. Therefore, after the first Bluetooth device determines the second strength value, the state of the parasitic antenna can be adjusted back to the original state.
  • the antenna unit is in the first stable state, and the parasitic antenna is in the second state.
  • the data processing time of the processor is t1 (for example, 2 seconds), and the time required for the state adjustment of the parasitic antenna is t2 (for example, 0.1 second).
  • the state of the parasitic antenna can be adjusted back to the second state first, and after the processor completes the data processing, then based on the set strength difference, the first strength value and the second strength value
  • the result of the processing determines whether the switch needs to adjust the state of the parasitic antenna, so as to prevent the quality of Bluetooth communication between the first Bluetooth device and the second Bluetooth device from being in a worse state during the data processing time t1, and further improve the user experience .
  • the state of the parasitic antenna after determining the second intensity value, whether it is necessary to adjust the state of the parasitic antenna back to the original state (that is, the state of the parasitic antenna when the antenna unit is in the first stable state) can be determined according to the data processing capability of the processor, etc. It is determined that if the time required for data processing is short, it is not necessary to return the parasitic antenna to the original state, but based on the processing results of the set strength difference, the first strength value and the second strength value, it is decided whether the switch needs Adjust the state of the parasitic antenna.
  • This setting can be flexibly determined according to actual conditions, and is not limited here.
  • a Bluetooth signal control method is provided, which is applied to a first Bluetooth device.
  • controlling the state of the parasitic antenna according to the set strength difference, the first strength value and the second strength value may include steps S410 to S430.
  • step S410 the difference can be obtained by subtracting the first strength value from the second strength value, and the difference is the actual improvement of the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device after the state of the parasitic antenna is adjusted difference.
  • step S420 based on the above difference being less than or equal to the set strength difference, it means that after the state of the parasitic antenna is adjusted, the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device does not reach the set improvement difference , the improvement requirement cannot be met, go to step S430. In another embodiment, based on the above difference being greater than the set strength difference, it means that after the state of the parasitic antenna is adjusted, the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device has reached the set improvement difference, If the improvement requirement can be met, step S420 is executed.
  • step S420 based on the actual improvement difference reaching the set strength difference, it means that after the status of the parasitic antenna is adjusted, the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device is greatly improved, and the parasitic antenna can be controlled
  • the adjusted state is maintained, and in this state, the antenna unit is in the second stable state. That is, the antenna unit is controlled to be in the second stable state, so as to improve the Bluetooth communication quality.
  • the second stable state is different from the first stable state. If in the first stable state, the parasitic antenna is in the first state, then in the second stable state, the parasitic antenna is in the second state. If in the first stable state, the parasitic antenna is in the second state, then in the second stable state, the parasitic antenna is in the first state.
  • step S430 based on the fact that the actual improvement difference is less than or equal to the set strength difference, it means that after the state of the parasitic antenna is adjusted, the improvement of the Bluetooth communication quality between the first Bluetooth device and the second Bluetooth device is limited, or even deteriorated, which may be The antenna unit is controlled to be in the first stable state, so as to avoid unnecessary switching.
  • the intensity difference is set as d.
  • the antenna unit is in the first stable state, and the parasitic antenna is in the second state.
  • a first intensity value D1 is determined.
  • the antenna unit is in the detection state (that is, the parasitic antenna is in the first state), determine the second strength value D2.
  • the difference obtained by subtracting the first intensity value D1 from the second intensity value D2 is less than or equal to the set intensity difference d, indicating that after the state of the parasitic antenna is adjusted, the first Bluetooth device and the second Bluetooth device If the Bluetooth communication quality does not reach the required improvement difference, the parasitic antenna is controlled to be in the state corresponding to the first stable state, that is, the parasitic antenna is controlled to be in the second state, so that the antenna unit is in the first stable state.
  • the difference obtained by subtracting the first intensity value D1 from the second intensity value D2 is greater than the set intensity difference d, indicating that after the state of the parasitic antenna is adjusted, the difference between the first Bluetooth device and the second Bluetooth device
  • the Bluetooth communication quality has reached the required improvement difference, adjusting the parasitic antenna is no longer in the second state, that is, controlling the parasitic antenna to be in the state (i.e. the first state) corresponding to the second stable state, so that the antenna unit is in the second stable state.
  • the difference between the second intensity value and the first intensity value is determined first, and then according to the size of the difference between the difference and the set intensity value, after the state of the parasitic antenna is adjusted, the first bluetooth device and the second bluetooth device Whether the quality of Bluetooth communication between them has been better improved to further control the state of the parasitic antenna, which can not only ensure the quality of Bluetooth communication between the first Bluetooth device and the second Bluetooth device, but also better avoid the frequent state of the parasitic antenna Switching further improves the user experience.
  • a Bluetooth signal control method is provided, which is applied to a first Bluetooth device.
  • the method may include step S510 and step S520.
  • S510 Determine switching times, where the antenna unit switches from the first stable state to the second stable state, and then switches from the second stable state back to the first stable state, which is counted as one switching.
  • step S510 it should be noted that based on controlling the antenna unit to enter the detection state, the state of the parasitic antenna also needs to be adjusted. However, the state after this adjustment is not the stable state of the antenna unit. Therefore, the state of the parasitic antenna this time The adjustment does not belong to the switching of the antenna unit from the first stable state to the second stable state, nor does it belong to the switching from the second stable state to the first stable state.
  • the process of switching the antenna unit from the first stable state to the second stable state may also include other states. That is, switching the antenna unit from the first stable state to the second stable state may include that the first stable state is directly switched to the second stable state, or the first stable state is first switched to at least one other state, and then switched to the second stable state. steady state.
  • the process of switching the antenna unit from the first stable state to the second stable state is similar to the process of switching from the first stable state to the second stable state, and will not be repeated here.
  • the first Bluetooth device is a Bluetooth headset
  • the second Bluetooth device is a mobile phone.
  • the antenna unit of the Bluetooth headset is in the first stable state, and the parasitic antenna is in the second state.
  • the antenna unit is in the second stable state, and the parasitic antenna is in the first state.
  • the parasitic antenna is in the first state.
  • the parasitic antenna is in the second state.
  • the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined, and this strength value is recorded as the first A strength value D11, the first strength value D11 is less than or equal to the set strength value D0, the parasitic antenna is switched from the second state to the first state, and the antenna unit is determined to be in the first detection state.
  • the parasitic antenna Based on the antenna unit being in the first detection state (that is, the parasitic antenna is in the first state), determine the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone, and this strength value is recorded as the second strength value D21. Based on the difference between the second intensity value D21 and the first intensity value D11 being greater than the set intensity difference d, the parasitic antenna is controlled to be in the first state, and the antenna unit is determined to be in the second stable state.
  • the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined, and this strength value is recorded as the first strength value D12.
  • the parasitic antenna is switched to the second state, and the antenna unit is determined to be in the second detection state.
  • the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined, and this strength value is recorded as the second strength value D22.
  • the parasitic antenna is controlled to be in the second state, and the antenna unit is determined to be in the first stable state.
  • the Bluetooth headset has completed one switch, and the number of switches is increased by one.
  • the first Bluetooth device is a Bluetooth headset
  • the second Bluetooth device is a mobile phone.
  • the antenna unit of the Bluetooth headset is in the first stable state, and the parasitic antenna is in the second state.
  • the antenna unit is in the second stable state, and the parasitic antenna is in the first state.
  • the parasitic antenna is in the first state.
  • the parasitic antenna is in the second state.
  • the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined, and this strength value is recorded as the first A strength value D11, the first strength value D11 is less than or equal to the set strength value D0, the parasitic antenna is switched from the second state to the first state, and the antenna unit is determined to be in the first detection state.
  • the antenna unit Based on the antenna unit being in the first detection state, determine the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone, and this strength value is recorded as the second strength value D21. After determining the second strength value D21, the parasitic antenna is switched back to the second state.
  • the parasitic antenna is switched to the first state, and the antenna unit is determined to be in the second stable state.
  • the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined, and this strength value is recorded as the first strength value D12, and the first strength value D12 is less than or equal to the set strength value D0, the parasitic antenna is switched to the second state, and it is determined that the antenna unit is in the second detection state.
  • the strength value of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined, and this strength value is recorded as the second strength value D22.
  • the parasitic antenna is switched back to the first state.
  • the parasitic antenna is switched to the second state, and the antenna unit is determined to be in the first stable state.
  • the Bluetooth headset has completed one switch, and the number of switches is increased by one.
  • the set number of times can be set before the first bluetooth device leaves the factory, and can also be set after the first bluetooth device leaves the factory, and after the set number of times is set, it can also be modified to better To meet the different needs of users.
  • the set times are set according to actual needs, for example, the set times may be 5 times, 10 times or 13 times, etc., which are not limited herein.
  • the accumulated number of switching times is greater than or equal to the set number of times, it means that the state of the antenna unit is switched too frequently between the first stable state and the second stable state, which means that the state of the parasitic antenna is switched too frequently, which means that regardless of the parasitic Whether the antenna is in the first state or the second state, and the Bluetooth communication signals between the first Bluetooth device and the second Bluetooth device are not stable enough, there is no need to frequently adjust the state of the parasitic antenna, and stop the adjustment of the state of the parasitic antenna. In order to avoid the influence caused by the frequent switching of the state of the parasitic antenna due to the unstable Bluetooth communication signal.
  • stopping the adjustment of the state of the parasitic antenna includes: switching the set intensity difference from a first value to a second value, and the second value is greater than the first value. That is, in this method, the frequent switching of the antenna unit between the first stable state and the second stable state is avoided by raising the set strength difference, so as to avoid frequent switching of the parasitic antenna between the first state and the second state. switch.
  • stop adjusting the state of the parasitic antenna may also be implemented in other ways, which is not limited here.
  • the timing may be performed after the adjustment of the state of the parasitic antenna is stopped. Based on the duration of the stop being longer than the second set duration (for example, 10 seconds, 20 seconds, etc.), restarting the adjustment of the state of the parasitic antenna can avoid the frequent switching of the state of the parasitic antenna due to the unstable Bluetooth communication signal. In addition, it can better ensure the quality of Bluetooth communication between the first Bluetooth device and the second Bluetooth device, and improve user experience.
  • a Bluetooth signal control method is provided, which is applied to a first Bluetooth device.
  • the method may include: the default state of the parasitic antenna is the second state. Wherein, generally, the default state is the stable second state.
  • the first bluetooth device is a bluetooth headset
  • the second bluetooth device is a mobile phone
  • the first set duration is 3 seconds
  • the set intensity value is D0
  • the set number of times is 10
  • the set intensity difference includes A first value d1 and a second value d2, wherein the second value d2 is greater than the first value d1.
  • the Bluetooth headset includes a main antenna and a parasitic antenna.
  • the main antenna is close to the speaker of the Bluetooth headset, and the parasitic antenna is far away from the speaker.
  • the wiring directions of the main antenna and the parasitic antenna are set.
  • the feed unit can apply the first current to the main antenna through the contact C, and only the main antenna radiates the Bluetooth signal.
  • the radiated Bluetooth signal realizes the Bluetooth communication connection with other devices. When other devices are located at the W1 position in Figure 1, the signal strength of the Bluetooth communication between the two will be better to ensure better Bluetooth communication.
  • the feed unit can apply a second current to the main antenna through the contact D, and both the main antenna and the parasitic antenna radiate Bluetooth signals, and the Bluetooth signals radiated by the parasitic antenna interact with the Bluetooth signals radiated by the main antenna, so that the Bluetooth signals transmit
  • the overall radiation of the device is shown by the dotted ellipse X2 in Figure 1, that is, the Bluetooth device realizes the Bluetooth communication connection with other devices through the Bluetooth signal radiated by the main antenna and the parasitic antenna.
  • the two Or the signal strength of Bluetooth communication will be better to ensure better Bluetooth communication.
  • the antenna unit is in the first stable state, and the parasitic antenna is in the second state.
  • the antenna unit is in the second stable state, and the parasitic antenna is in the first state.
  • the antenna unit is in the first detection state, the parasitic antenna is in the first state.
  • the antenna unit is in the second detection state, the parasitic antenna is in the second state.
  • the grounding switch is at contact A by default, the parasitic antenna is in the second state, and it is determined that the antenna unit is in the first stable state.
  • the set intensity difference defaults to the first value d1.
  • the strength detection unit of the bluetooth communication signal of the bluetooth headset Based on the antenna unit of the bluetooth headset being in the first stable state, the strength detection unit of the bluetooth communication signal of the bluetooth headset detects the strength value of the bluetooth communication signal of the bluetooth headset and the mobile phone every 3 seconds, and transmits the detected strength value to A processor of the Bluetooth headset, so that the processor determines the first intensity value.
  • the first intensity value D11 of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined.
  • the ground switch is switched to contact B, so that the parasitic antenna is in the first state, and it is determined that the antenna unit is switched to the first detection state.
  • the second strength value D21 of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined.
  • the strength value of the bluetooth communication signal between the bluetooth headset and the mobile phone is detected every 3 seconds, and the detected strength value is transmitted to the bluetooth headset a processor, such that the processor determines a first intensity value.
  • the first intensity value D12 of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined.
  • the ground switch is switched to contact A, so that the parasitic antenna switches to the second state, and determines that the antenna unit switches to the second detection state.
  • the second strength value D22 of the Bluetooth communication signal between the Bluetooth headset and the mobile phone is determined.
  • the grounding switch is maintained at the contact point B, so that the parasitic antenna is in the second state, and the antenna unit is determined to switch to the first stable state. So far, the Bluetooth headset has completed one switch, and the number of switches is increased by one.
  • the duration is recorded at the same time. Until the duration is greater than or equal to the second set duration, adjust the set strength difference back to the first value d1 to continue the above-mentioned adjustment to the state of the parasitic antenna, thereby realizing the control of the Bluetooth signal to ensure that the Bluetooth headset and the mobile phone
  • the quality of Bluetooth communication between devices further improves the user experience.
  • a device for controlling a Bluetooth signal is provided, which is applied to a first Bluetooth device.
  • the device is used to implement the above-mentioned bluetooth signal control method.
  • the device may include a control module 101 .
  • the control module 101 is used to control the parasitic in the antenna unit based on the first stable state of the antenna unit of the first Bluetooth device, according to the set strength value and the first strength value of the Bluetooth communication signal between the first Bluetooth device and the second Bluetooth device.
  • a state of the antenna, wherein the first stable state is the first state or the first state and the second state.
  • the bluetooth signal control device can better meet bluetooth communication requirements and improve user experience through the above bluetooth signal control method.
  • a Bluetooth device includes: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to perform any one of the aforementioned implementations The bluetooth signal control method described in the example.
  • the Bluetooth device is, for example, a Bluetooth headset, a mobile phone, a notebook computer, a tablet computer, and a wearable device.
  • bluetooth device 400 may include one or more of the following components: processing component 402, memory 404, power supply component 406, multimedia component 408, audio component 410, input/output (I/O) interface 412, sensor component 414, and communication component 416.
  • the processing component 402 generally controls the overall operations of the Bluetooth device 400, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 402 may include one or more processors 420 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 402 may include one or more modules that facilitate interaction between processing component 402 and other components. For example, processing component 402 may include a multimedia module to facilitate interaction between multimedia component 408 and processing component 402 .
  • the memory 404 is configured to store various types of data to support operations at the Bluetooth device 400 . Examples of such data include instructions for any application or method operating on the Bluetooth device 400, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 404 can be implemented by any type of volatile or non-volatile memory Bluetooth device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 406 provides power to various components of the Bluetooth device 400 .
  • Power component 406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to Bluetooth device 400 .
  • the multimedia component 408 includes a screen that provides an output interface between the Bluetooth device 400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • the multimedia component 408 includes a front camera module and/or a rear camera module.
  • the front camera module and/or the rear camera module can receive external multimedia data.
  • Each front camera module and rear camera module can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 410 is configured to output and/or input audio signals.
  • the audio component 410 includes a microphone (MIC), which is configured to receive external audio signals when the Bluetooth device 400 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 404 or sent via communication component 416 .
  • the audio component 410 also includes a speaker for outputting audio signals.
  • the I/O interface 412 provides an interface between the processing component 402 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 414 includes one or more sensors for providing various aspects of status assessment for Bluetooth device 400 .
  • the sensor component 414 can detect the on/off status of the Bluetooth device 400, the relative positioning of components, such as the display and the keypad of the Bluetooth device 400, and the sensor component 414 can also detect the Bluetooth device 400 or a component of the Bluetooth device 400. Changes in location, presence or absence of user contact with the Bluetooth device 400, Bluetooth device 400 orientation or acceleration/deceleration and temperature changes in the Bluetooth device 400.
  • the sensor assembly 414 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 414 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 416 is configured to facilitate wired or wireless communication between the Bluetooth device 400 and other Bluetooth devices.
  • the Bluetooth device 700 can access wireless networks based on communication standards, such as WiFi, 2G, 3G, 4G, 5G or combinations thereof.
  • the communication component 416 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 416 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • the Bluetooth device 400 may be programmed by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Bluetooth Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Bluetooth Devices
  • PLDs Programmable Logic Devices
  • FPGA Field Programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • a non-transitory computer-readable storage medium including instructions, such as the memory 404 including instructions, which can be executed by the processor 420 of the Bluetooth device 400 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage Bluetooth device, among others.
  • the Bluetooth device is enabled to execute the methods shown in the foregoing embodiments.
  • a computer program product including a computer program, when the computer program is executed by a processor, the Bluetooth signal control method as described in any one of the above embodiments is implemented.
  • a computer program is also provided, including computer program code.
  • the computer program code When the computer program code is run on the computer, the computer is made to execute the Bluetooth signal control method as described in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

提供了蓝牙信号发射设备、蓝牙信号控制方法和装置、蓝牙设备、计算机可读介质、计算机程序产品和计算机程序。蓝牙信号发射设备包括主天线、寄生天线以及开关单元,其中主天线的走线方向与寄生天线的走线方向不同;开关单元被配置为控制寄生天线的状态,寄生天线的状态包括第一状态和第二状态;其中,第一状态下,蓝牙信号发射设备的蓝牙信号辐射范围记为第一辐射范围;第二状态下,蓝牙信号发射设备的蓝牙信号辐射范围记为第二辐射范围;第一辐射范围与第二辐射范围不同。

Description

蓝牙信号发射设备、蓝牙信号控制方法和装置以及蓝牙设备
相关申请的交叉引用
本申请要求在2021年12月27日在中国提交的中国专利申请号202111610009.0的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及天线技术领域,具体涉及一种蓝牙信号发射设备、蓝牙信号控制方法和装置、蓝牙设备、计算机可读存储介质、计算机程序产品和计算机程序。
背景技术
随着穿戴类产品受到越来越多的用户所喜爱,其带来方便的同时又增加了很多附加功能给用户带来很多体验乐趣,尤其是TWS(True Wireless Stereo)无线耳机产品市场销量逐年不断上升,被越来越多的用户所使用,其无线通信主要靠蓝牙传输。
蓝牙天线决定了蓝牙信号的好坏,但是由于有限的结构空间以及蓝牙天线所处的环境,蓝牙信号需要进一步改进。
发明内容
本公开的实施例提供了一种蓝牙信号发射设备、蓝牙信号控制方法和装置、蓝牙设备、计算机可读存储介质、计算机程序产品和计算机程序。
根据本公开实施例的第一方面,提供了一种蓝牙信号发射设备,所述蓝牙信号发射设备包括主天线、寄生天线以及开关单元,所述主天线的走线方向与所述寄生天线的走线方向不同;
所述开关单元被配置为控制所述寄生天线的状态,所述寄生天线的状态包括第一状态和第二状态;
其中,所述第一状态下,所述蓝牙信号发射设备的蓝牙信号辐射范围记为第一辐射范围;所述第二状态下,所述蓝牙信号发射设备的蓝牙信号辐射范围记为第二辐射范围;所述第一辐射范围与所述第二辐射范围不同。
在一些实施例中,所述开关单元包括接地开关,所述寄生天线通过所述接地开关接地;
基于所述接地开关处于闭合状态,所述寄生天线接地,所述寄生天线处于所述第一状态;
基于所述接地开关处于断开状态,所述寄生天线不接地,所述寄生天线处于所述第二状态。
在一些实施例中,所述主天线的走线方向与所述寄生天线的走线方向相反。
在一些实施例中,所述蓝牙信号发射设备还包括馈电单元,所述馈电单元与所述主天线连接,
基于所述寄生天线处于所述第二状态,所述馈电单元向所述主天线施加第一电流;
基于所述寄生天线处于所述第一状态,所述馈电单元向所述主天线施加第二电流。
根据本公开实施例的第二方面,提供了一种蓝牙设备,所述蓝牙设备包括如第一方面任一项所述的蓝牙信号发射设备。
在一些实施例中,所述蓝牙设备还包括蓝牙耳机,所述蓝牙耳机包括相连的主体部和杆状部,所述主体部设置扬声器,所述杆状部设置所述蓝牙信号发射设备,所述蓝牙信号发射设备的主天线与所述蓝牙信号发射设备的寄生天线中,所述主天线位于靠近所述扬声器的位置,所述寄生天线位于远离所述扬声器的位置。。
根据本公开实施例的第三方面,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备,所述方法包括:
基于所述第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及所述第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述天线单元中寄生天线的状态,其中,所述寄生天线的状态包括第一状态和第二状态。
在一些实施例中,基于所述第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及所述第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述寄生天线的状态,包括:
基于所述天线单元处于所述第一稳定状态,每间隔第一设定时长,确定一次所述第一强度值;
根据所述设定强度值和所述第一强度值,控制所述寄生天线的状态。
在一些实施例中,所述根据所述设定强度值和所述第一强度值,控制所述寄生天线的状态,包括:
基于确定所述第一强度值大于所述设定强度值,控制所述天线单元处于所述第一稳定状态。
在一些实施例中,所述根据所述设定强度值和所述第一强度值,控制所述寄生天线的状态,包括:
基于确定所述第一强度值小于或等于所述设定强度值,控制所述天线单元处于检测状态,其中,所 述检测状态下的所述寄生天线的状态与所述第一稳定状态下的所述寄生天线的状态不同;
基于所述天线单元处于所述检测状态,确定所述第一蓝牙设备与所述第二蓝牙设备的蓝牙通信信号的第二强度值;
根据设定强度差值、所述第一强度值和所述第二强度值,控制所述寄生天线的状态。
在一些实施例中,所述根据设定强度差值、所述第一强度值和所述第二强度值,控制所述寄生天线的状态,包括:
基于所述第二强度值与所述第一强度值的差值大于所述设定强度差值,控制所述天线单元处于第二稳定状态,所述第二稳定状态下的所述寄生天线的状态与所述第一稳定状态下的所述寄生天线的状态不同。
在一些实施例中,所述根据设定强度差值、所述第一强度值和所述第二强度值,控制所述寄生天线的状态,包括:
基于所述第二强度值与所述第一强度值的差值小于或等于所述设定强度差值,控制所述天线单元处于所述第一稳定状态。
在一些实施例中,所述确定所述第一蓝牙设备与所述第二蓝牙设备的蓝牙通信信号的第二强度值之后,所述方法包括:
控制所述天线单元处于所述第一稳定状态。
在一些实施例中,所述方法包括:
确定切换次数,其中,所述天线单元由所述第一稳定状态切换为所述第二稳定状态,再由所述第二稳定状态切换回所述第一稳定状态,记作一次切换;
基于确定所述切换次数大于或等于设定次数,停止对所述寄生天线的状态的调整。
在一些实施例中,所述停止对所述寄生天线的状态的调整,包括:
将所述设定强度差值由第一值切换为第二值,所述第二值大于所述第一值。
在一些实施例中,所述停止对所述寄生天线的状态的调整之后,所述方法包括:
确定持续时长大于第二设定时长,则重启对所述寄生天线的状态的调整。
在一些实施例中,所述方法包括:
所述寄生天线的默认状态为所述第二状态。
根据本公开实施例的第四方面,提供了一种蓝牙信号控制装置,应用于第一蓝牙设备,所述装置包括:
控制模块,用于基于所述第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及所述第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述天线单元中寄生天线的状态,其中,所述寄生天线的状态包括第一状态和第二状态。
根据本公开实施例的第五方面,提供了一种蓝牙设备,所述蓝牙设备包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为执行如第三方面任一实施例所述的蓝牙信号控制方法。
根据本公开实施例的第六方面,提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由蓝牙设备的处理器执行时,使得所述蓝牙设备能够执行如第三方面任一实施例所述的蓝牙信号控制方法。
根据本公开实施例的第七方面,提供了计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如第三方面任一实施例所述的蓝牙信号控制方法。
根据本公开实施例的第八方面,提供了计算机程序,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如第三方面任一实施例所述的蓝牙信号控制方法。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开的方案可通过控制寄生天线的状态,来带动蓝牙信号辐射方向的改变,从而实现不同方向的蓝牙信号强度的调整,以更好地满足用户需求,提升用户的使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据本公开一实施例的蓝牙信号发射设备的示意图。
图2是根据本公开一实施例的蓝牙设备的示意图。
图3是根据本公开一实施例的蓝牙设备的示意图。
图4是根据本公开一实施例的蓝牙信号的辐射状态示意图。
图5是根据本公开一实施例的蓝牙信号控制方法的流程图。
图6是根据本公开一实施例的蓝牙信号控制方法的示意图
图7是根据本公开一实施例的蓝牙信号控制装置的框图。
图8是根据本公开一实施例的蓝牙设备的框图。
具体实施方式
这里将详细地对实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开提供了一种蓝牙信号发射设备,可应用于蓝牙设备。该蓝牙信号发射设备设置两个蓝牙天线,分别为主天线和寄生天线,通过控制寄生天线的状态,来带动蓝牙信号辐射方向的改变,从而实现不同方向的蓝牙信号强度的调整,以更好地满足用户需求,提升用户的使用体验。
在一个实施例中,提供了一种蓝牙信号发射设备,其可应用于蓝牙设备。参考图1所示,该蓝牙信号发射设备包括主天线1(例如铜板等导体)和寄生天线2(例如铜板等导体),其中,主天线1的走线方向与寄生天线2的走线方向不同,当寄生天线2和主天线1中均有电流时,二者的电流方向不同。由此,通过控制寄生天线2的状态,可调整蓝牙信号发射设备不同方向的蓝牙信号强度,以更好地满足用户的需求。
在一个实施例中,基于寄生天线2在第二状态,蓝牙信号发射设备的蓝牙信号仅仅由主天线1发射,此时,蓝牙信号的辐射范围可记为第一辐射范围。在另一个实施例中,基于寄生天线2处于第一状态,寄生天线2和主天线1均可发射蓝牙信号,二者发射的蓝牙信号可互相影响,此时,蓝牙信号发射设备的蓝牙信号的辐射范围可记为第二辐射范围。由于寄生天线2发射的蓝牙信号与主天线1发射蓝牙信号之间会互相影响,因此导致第一辐射范围与第二辐射范围不同。
在一个实施例中,主天线1的走线方向与寄生天线2的走线方向可相反设置,以便于实现寄生天线2与主天线1的辐射方向的不同,从而更容易实现通过寄生天线2的状态来大范围的调整蓝牙信号发射设备的蓝牙信号的辐射方向,以更好地实现不同方向的蓝牙信号强度的调整,以更好地满足用户需求,提升用户的使用体验。
在一个实施例中,该蓝牙信号发射设备可包括开关单元3,开关单元3被配置为控制寄生天线2的状态。寄生天线2的状态包括第一状态和第二状态。即,该蓝牙信号发射设备中,可通过开关单元3控制寄生天线2处于第一状态或第二状态,进而调整不同方向的蓝牙信号强度,以更好地满足用户需求。
该蓝牙信号发射设备中,也可以调节输入至主天线1的电流的大小,以改变寄生天线2和主天线1的蓝牙信号在该辐射方位下的辐射范围,以及该辐射方位下的信号强度,进一步提升用户使用体验。
例如,蓝牙信号发射设备为蓝牙耳机,在蓝牙耳机与手机处于蓝牙连接状态下,确定当寄生天线2处于第一状态(或第二状态)时,蓝牙耳机与手机的蓝牙通信效果较好,但是,蓝牙耳机与手机的蓝牙连接仍时断时续。手机通过场景检测,确定手机位于口袋,也就是,确定手机处于口袋场景。手机可将场景检测的结果传输至蓝牙耳机,蓝牙耳机根据接收到的检测结果,调整输入至主天线1的电流的大小,以扩大蓝牙信号的辐射范围和信号强度,从而进一步提升蓝牙耳机与手机的蓝牙连接状态的稳定性,提升用户使用体验。
在一个实施例中,开关单元3可包括接地开关,寄生天线2通过接地开关接地,接地开关用于控制寄生天线2是否接地,进而控制寄生天线2的状态。
在一个实施例中,参考图1所示,当接地开关处于触点A时,其处于断开状态时,寄生天线2不接地,寄生天线2处于第二状态。此情况下,只有主天线1辐射蓝牙信号,蓝牙信号的辐射方向如图1中虚线椭圆X1所示,即,蓝牙设备通过主天线1辐射的蓝牙信号实现与其他设备的蓝牙通信连接,其他设备位于图1中的W1位置时,二者蓝牙通信的信号强度才会较好,才能保证更好地蓝牙通信。
在另一个实施例中,当接地开关处于触点B时,其处于闭合状态时,寄生天线2接地,寄生天线2处于第一状态。此情况下,主天线1和寄生天线2均辐射蓝牙信号,寄生天线2辐射的蓝牙信号与主天线1辐射的蓝牙信号互相影响,使得蓝牙信号发射设备的整体辐射方向如图1中虚线椭圆X2所示,即,蓝牙设备通过主天线1和寄生天线2共同辐射的蓝牙信号实现与其他设备的蓝牙通信连接,其他设备位于图1中的W2位置时,二者蓝牙通信的信号强度才会较好,才能保证更好地蓝牙通信。
由此可知,此蓝牙信号发射设备可通过接地开关的断开或闭合,控制寄生天线2的状态,进而可以 控制蓝牙信号发射设备的蓝牙信号的辐射方向,从而实现不同方向的蓝牙信号强度的调整,以更好地满足用户需求,提升用户的使用体验。
在一个实施例中,提供了一种蓝牙信号发射设备,应用于蓝牙设备。参考图1所示,该蓝牙信号发射设备可包括馈电单元4,馈电单元4与主天线1连接。需要说明的是,本公开中的“连接”一般指电连接。
馈电单元4可用于控制向主天线1施加的电流。需要说明的是,蓝牙信号发射设备中寄生天线2辐射的蓝牙信号与主天线1辐射的蓝牙信号可能存在互相抵消的可能,设置用于控制向主天线1施加的电流的馈电单元4,可以通过调整电流的大小,来避免二者发射的蓝牙信号互相抵消,以更好地确保蓝牙信号发射设备的使用,提升用户的使用体验。
在一个实施例中,参考图1所示,寄生天线2处于第二状态下,馈电单元4可通过触点C向主天线1施加第一电流,此时,主天线1在第一电流的作用下辐射蓝牙信号,蓝牙信号在图1中虚线椭圆X1所示方向的强度较好。寄生天线2处于第一状态下,馈电单元4可通过触点D向主天线1施加第二电流,此时,主天线1在第二电流作用下辐射蓝牙信号,同时,由于寄生天线2接地,其不再是悬空的金属导体,导致寄生天线2也会辐射蓝牙信号,蓝颜信号发射设备发出的蓝牙信号在图1中虚线椭圆X2所示方向的强度较好。
在一个具体实例中,第一电流和第二电流的大小可根据寄生天线2和主天线1的具体设计确定,例如,寄生天线2和主天线1设计完成后,可通过模拟确定合适的第一电流和第二电流,在此不做赘述。
该蓝牙信号发射设备中,通过设置馈电单元4以更好地避免寄生天线2辐射的蓝牙信号与主天线1辐射的蓝牙信号可能存在互相抵消,从而可以更好地确保蓝牙信号发射设备的使用,提升用户的使用体验。
在一个实施例中,提供了一种蓝牙设备。参考图1至图3所示,该蓝牙设备包括如上所述的蓝牙信号发射设备,其中,蓝牙信号发射设备设置两个蓝牙天线,分别为主天线1和寄生天线2,蓝牙设备通过控制寄生天线2的状态,来带动蓝牙信号辐射方向的改变,从而实现不同方向的蓝牙信号强度的调整,以更好地满足用户需求,提升用户的使用体验。
在一个实施例中,蓝牙设备可以包括蓝牙耳机、手机、电脑以及穿戴设备等需要蓝牙通信的设备,在此不作限定。
以蓝牙耳机为例,本公开的蓝牙耳机一般为杆状蓝牙耳机,其可以是全入耳式,也可以是半入耳式,在此不作限定。蓝牙耳机可包括主体部和杆状部,主体部设置扬声器,杆状部设置蓝牙信号发射设备。蓝牙信号发射设备的主天线1和寄生天线2中,主天线1位于靠近蓝牙耳机的扬声器20的位置,寄生天线2位于远离扬声器20的位置,以便于蓝牙耳机中的主天线1与寄生天线2反向设置,从而便于实现蓝牙耳机中不同方向的蓝牙信号强度的调整,以更好地满足用户需求,提升用户的使用体验。
在一个具体实例中,参考图1至图3所示,蓝牙设备为蓝牙耳机,蓝牙耳机包括蓝牙芯片5、主天线1、寄生天线2、开关单元3和馈电单元4。开关单元3包括接地开关,用于来控制寄生天线2是否接地。馈电单元4包括切换开关,用来控制馈电电流的大小。蓝牙芯片5与主天线1连接,并且通过切换开关接地。
通过切换开关处于不同状态,控制主天线1阻抗与蓝牙芯片5阻抗匹配,进而实现对馈电电流大小的控制。
在一个实施例中,当接地开关处于触点A时,其处于断开状态时,寄生天线2不接地,寄生天线2处于第一状态第二状态,此情况下,切换开关位于触点C,蓝牙芯片5向主天线1施加第一电流,只有主天线1辐射蓝牙信号,蓝牙信号的辐射方向为虚线椭圆X1所示,即,蓝牙设备通过主天线1辐射的蓝牙信号实现与其他设备的蓝牙通信连接,其他设备位于图中W1位置时,二者蓝牙通信的信号强度才会较好,才能保证更好地蓝牙通信。
在一个实施例中,当接地开关处于触点B时,其处于闭合状态时,寄生天线2接地,寄生天线2处于第一状态,此情况下,切换开关位于触点D,蓝牙芯片5向主天线1施加第二电流,同时,寄生天线2产生耦合电流,主天线1和寄生天线2均辐射蓝牙信号,寄生天线2辐射的蓝牙信号与主天线1辐射的蓝牙信号互相影响,使得蓝牙信号发射设备的整体辐射方向为虚线椭圆X2所示,即,蓝牙设备通过主天线1和寄生天线2共同辐射的蓝牙信号实现与其他设备的蓝牙通信连接,其他设备位于图中W2位置时,二者蓝牙通信的信号强度才会较好,才能保证更好地蓝牙通信。
在一个实施例中,如图2所示,蓝牙耳机包括用于设置蓝牙芯片5的主板,主板10上设置有天线支架10,天线支架10为非导体结构,例如可以是塑胶载体。天线支架10上设置两个铜板,分别作为主天线1和寄生天线2,其中,主天线1位于靠近扬声器20的位置,寄生天线2位于远离扬声器20的位置。
在一个实施例中,主天线1的靠近扬声器20的位置(例如图中E所示位置)与蓝牙芯片5连接,寄生天线2的远离扬声器20的位置(例如图中F所示位置)与接地开关连接。
该蓝牙耳机中,通过软件仿真接地开关闭合和断开连两种状态下的蓝牙信号的信号辐射情况,得到如图4所示的信号辐射状态,其中,第一曲线Q1为接地开关处于断开状态下的信号辐射曲线,第二曲线Q2为接地开关处于闭合状态下的信号辐射曲线,通过图3可以看出在两种状态下的信号辐射方向不同。
蓝牙耳机可通过接地开关调整蓝牙信号的辐射方向,以更好地保证其他蓝牙设备(例如手机)与蓝牙耳机的蓝牙通信质量,提升用户使用体验。
在一个实施例中,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备,第一蓝牙设备可以是上述的蓝牙设备。参考图5所示,该方法包括步骤S110。
S110、基于第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制天线单元中寄生天线的状态。
在一个实施例中,第一蓝牙设备包括蓝牙信号发射设备,蓝牙信号发射设备包括主天线和寄生天线。第一蓝牙设备的天线单元包括主天线和寄生天线。第一稳定状态下,寄生天线可以稳定地处于第一状态,也可以是稳定地处于第二状态。也就是,寄生天线稳定地处于第一状态和第二状态中的任意一种状态,该蓝牙设备均根据设定强度值以及第一强度值,确定是否需要改变寄生天线的状态,以使得蓝牙信号的辐射方向满足蓝牙通信需求,确保蓝牙通信信号的质量,以更好地满足用户需求,提升用户的使用体验。
设定强度值可以是第一蓝牙设备出厂前设置的,也可以是第一蓝牙设备出厂后设置的,并且,还可对设定强度值进行修改,以更好地满足于用户的需求。设定强度值用于判断第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的强度是否满足通信需求。
在一个具体实例中,第一蓝牙设备为蓝牙耳机,第二蓝牙设备为手机。蓝牙耳机的天线单元处于第一稳定状态下,寄生天线处于第二状态。
该示例中,基于蓝牙耳机的天线单元处于第一稳定状态,蓝牙耳机与手机的蓝牙通信信号的第一强度值小于或等于设定强度值,说明蓝牙耳机与手机的蓝牙通信信号的强度值较小,二者的蓝牙通信质量较弱,需要将蓝牙耳机的寄生天线切换至第一状态下,以改变蓝牙耳机发射的蓝牙信号的辐射方位,以提升蓝牙耳机与手机的蓝牙通信质量,更好地满足蓝牙通信需求,提升用户使用体验。
该蓝牙信号控制方法中,通过设置设定强度值,判断第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的强弱,然后通过控制寄生天线的状态,来调整第一蓝牙设备的蓝牙信号的辐射方向,从而调整第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的强弱,更好地满足蓝牙通信需求,提升用户使用体验。
在一个实施例中,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备。该方法中,基于第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述寄生天线的状态,包括步骤201和步骤220。
S210、基于天线单元处于第一稳定状态,每间隔第一设定时长,确定一次第一强度值。
S220、根据设定强度值和第一强度值,控制寄生天线的状态。
在步骤S210中,第一设定时长可以是第一蓝牙设备出厂前设置的,也可以是第一蓝牙设备出厂后设置的,并且,第一设定时长设置后,还可对其进行修改,以更好地满足用户的不同需求。第一设定时长用于控制第一强度值的确定周期,以避免过于频繁的确定第一强度值,可以降低第一蓝牙设备的能耗。
此步骤中,从天线单元进入第一稳定状态开始,便开始计时,每间隔第一设定时长,检测一次第一蓝牙设备与第二蓝牙设备之间的蓝牙通信信号的强度值,以确定第一强度值。其中,第一设定时长可以是1秒、2秒或者3秒。
设定第一设定时长可以避免第一蓝牙设备频繁检测蓝牙通信信号的强度,影响蓝牙通信的可靠性,并且,设置第一设定时长,还可降低第一蓝牙设备的能耗。
在步骤S220中,每次确定了第一强度值后,基于本次确定的第一强度值,以及预设的设定强度值,判断第一蓝牙设备与第二蓝牙设备之间蓝牙通信的质量,当蓝牙通信质量较差时,可以及时通过调整寄生天线的状态来调整第一蓝牙设备的蓝牙信号的辐射方向,从而调整第一蓝牙设备与第二蓝牙设备的蓝牙通信质量,进一步提升用户的使用体验。
在一个具体实例中,第一蓝牙设备为蓝牙耳机,第二蓝牙设备为手机,第一设定时长为3秒。
蓝牙耳机的蓝牙通信信号的强度检测单元,每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,并将检测到的强度值传输至蓝牙耳机的处理器,以使的处理器确定第一强度值。
蓝牙耳机的处理确定第一强度值后,便于设定强度值进行比较。基于第一强度值大于设定强度值,说明蓝牙耳机与手机之间的蓝牙通信质量较好,无需调整蓝牙耳机中寄生天线的状态。基于第一强度值小于或等于设定强度值,说明蓝牙耳机与手机之间的蓝牙通信质量较差,手机不在蓝牙耳机发出的蓝牙 信号的当前辐射方位内,可调整寄生天线的状态,改变蓝牙耳机发出的蓝牙信号的辐射方向,以使得蓝牙耳机与手机之间的蓝牙通信质量改善,提升用户使用体验。
该方法中,通过设置第一设定时长,可以避免第一蓝牙设备频繁检测蓝牙通信信号的强度,影响蓝牙通信的可靠性,并且,设置第一设定时长,还可降低第一蓝牙设备的能耗,进一步提升用户的使用体验。
在一个实施例中,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备。该方法中,根据设定强度值和第一强度值,控制寄生天线的状态,可包括步骤S310至步骤S350。
S310、判断第一强度值是否大于设定强度值;若判断结果为是,则执行步骤S320;否则,执行步骤S330。
S320、控制天线单元处于第一稳定状态。
S330、控制天线单元处于检测状态,其中,检测状态下的寄生天线的状态与第一稳定状态下的寄生天线的状态不同。
S340、在天线单元处于检测状态下,确定第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第二强度值。
S350、根据设定强度差值、第一强度值和第二强度值,控制寄生天线的状态。
每次确定新的第一强度值后,便判断第一强度值与设定强度值的大小关系,以确定此时第一蓝牙设备与第二蓝牙设备之间蓝牙通信的质量。
在一个实施例中,基于第一强度值大于设定强度值,说明第一蓝牙设备与第二蓝牙设备之间的蓝牙通信质量较好,无需调整寄生天线的状态,可以控制天线单元继续处于当前的稳定状态,即控制寄生天线继续处于当前的状态。然后,间隔第一设定时长后,再次确定新的第一强度值,再次与设定强度值进行比较,依此类推。也就是,基于第一强度值大于设定强度值,维持现状不变,并以第一设定时长为间隔周期,循环进行第一强度值的确定,以及新的第一强度值与设定强度值的大小判断,以及时了解第一蓝牙设备与第二蓝牙设备之间蓝牙通信的质量。
在一个实施例中,基于第一强度值小于或等于设定强度值,说明第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量较差,说明第二蓝牙设备不在第一蓝牙设备的蓝牙信号的辐射范围内,说明可能需要调整寄生天线的状态,以调整第一蓝牙设备的蓝牙信号的辐射方向,进而调整第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量,以更好地确保二者的蓝牙通信质量持续处于较好的状态,提升用户的使用体验。
在步骤S330中,在确定第一强度值小于或等于设定强度值后,可控制天线单元处于检测状态,其中,检测状态下寄生天线的状态与第一稳定状态下寄生天线的状态不同。例如,若第一稳定状态时,寄生天线的状态为第一状态,则检测状态下,寄生天线的状态为第二状态。若第一稳定状态时,寄生天线的状态为第二状态,则检测状态下,寄生天线的状态为第一状态。
在步骤S340中,基于天线单元处于检测状态,确定检测状态下第一蓝牙设备与第二蓝牙设备之间蓝牙通信信号的强度值,此强度值可记为第二强度值。
在步骤S350中,可基于设定强度差值、第一强度值和第二强度值,判断寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的好坏,以更好地控制寄生天线的状态,满足用户对蓝牙通信质量的要求。
设定强度差值可以是第一蓝牙设备出厂前设置的,也可以是出厂后设置的,并且,设定强度差值在设置完成后,后续还可对其进行修改,以更好地满足用户的需求。
此步骤中,设定强度差值为,寄生天线的状态调整后,用户设定的第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的需要达到的改善差值。基于根据设定强度差值、第一强度值和第二强度值确定寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的未达到所需的改善差值,控制寄生天线继续处于第一稳定状态。否则,调整寄生天线的状态。
在一个具体实例中,设定强度差值为d。第一稳定状态下,寄生天线处于第二状态。基于天线单元处于第一稳定状态,确定第一强度值为D1。基于天线设备处于检测状态下(即寄生天线处于第一状态下),确定第二强度值为D2。
基于第二强度值D2小于或等于第一强度值D1与设定强度差值d的和值,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的未达到所需的改善差值,控制寄生天线处于第一稳定状态对应的状态,也就是,控制寄生天线处于第二状态,以使得天线单元处于第一稳定状态。
该示例中,基于第二强度值D2大于第一强度值D1与设定强度差值d的和值,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的达到了所需的改善差值,调整天线单元不再处于第一稳定状态,也就是,可控制寄生天线处于第一状态。
该方法中,基于第一强度值大于设定强度值,控制天线单元继续处于第一稳定状态,并以第一设定 时长进行周期性的检测与判断。基于第一强度值小于或等于设定强度值,在检测状态下确定寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的改善情况,然后基于改善情况控制寄生天线的状态,以更好地满足用户需求,进一步提升用户的使用体验。
需要说明的是,该方法中,在确定第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第二强度值之后,可控制天线单元处于第一稳定状态。也就是,在确定了检测状态下的第二强度值后,将寄生天线的状态调整回原先的状态。
一般情况下,开关单元完成切换所需的时长较短,也就是,寄生天线完成状态切换所需的时长较短,而第一蓝牙设备的处理完成对设定强度差值、第一强度值和第二强度值的数据处理,所需的时长较差。因此,可在第一蓝牙设备确定了第二强度值后,将寄生天线的状态调整回原先的状态。
例如,天线单元处于第一稳定状态下,寄生天线处于第二状态。处理器的数据处理时长为t1(例如2秒),寄生天线的状态调整所需要时长为t2(例如0.1秒)。那么,在确定了第二强度值后,可先将寄生天线的状态调回第二状态,待处理器完成数据处理后,再基于对设定强度差值、第一强度值和第二强度值的处理结果,决定开关是否需要调整寄生天线的状态,以防止在数据处理的时长t1内,第一蓝牙设备与第二蓝牙设备之间蓝牙通信的质量处于更差状态,进一步提升用户的使用体验。
另外,在确定了第二强度值后,是否需要将寄生天线的状态调回原先的状态(也就是天线单元处于第一稳定状态时,寄生天线的状态),可根据处理器的数据处理能力等确定,如果数据处理所需时长较短,也可以无需将寄生天线调回原先的状态,而是基于对设定强度差值、第一强度值和第二强度值的处理结果,决定开关是否需要调整寄生天线的状态。此设置可以根据实际情况灵活确定,在此不作限定。
在一个实施例中,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备。该方法中,根据设定强度差值、第一强度值和第二强度值,控制寄生天线的状态,可包括步骤S410至步骤S430。
S410、判断第二强度值与第一强度值的差值是否大于设定强度差值;若判断结果为是,则执行步骤S420;否则,执行步骤S430。
S420、控制天线单元处于第二稳定状态,第二稳定状态与第一稳定状态不同。
S430、控制天线单元处于第一稳定状态。
在步骤S410中,可通过第二强度值减去第一强度值得到差值,此差值为,寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的实际改善差值。
在一个实施例中,基于上述差值小于或等于设定强度差值,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的未达到设定的改善差值,不能满足改善要求,执行步骤S430。在另一个实施例中,基于上述差值大于设定强度差值,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的达到了设定的改善差值,能满足改善要求,则执行步骤S420。
在步骤S420中,基于实际改善差值达到了设定强度差值,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量得到较大的改善,可控制寄生天线维持在调整后的状态,该状态下,天线单元处于第二稳定状态。也就是,控制天线单元处于第二稳定状态,以提升蓝牙通信质量。
在一个实施例中,第二稳定状态与第一稳定状态不同。若第一稳定状态下,寄生天线处于第一状态,则第二稳定状态下,寄生天线处于第二状态。若第一稳定状态下,寄生天线处于第二状态,则第二稳定状态下,寄生天线处于第一状态。
在步骤S430中,基于实际改善差值小于或等于设定强度差值,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的改善有限,甚至变差,可控制天线单元处于第一稳定状态,以避免不必要的切换。
在一个实施例中,设定强度差值为d。天线单元处于第一稳定状态下,寄生天线处于第二状态。在天线单元处于第一稳定状态下,确定第一强度值为D1。在天线单元处于检测状态下(即寄生天线处于第一状态下),确定第二强度值为D2。
在一个实施例中,基于第二强度值D2减去第一强度值D1得到的差值小于或等于设定强度差值d,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的未达到所需的改善差值,控制寄生天线处于第一稳定状态对应的状态,也就是,控制寄生天线处于第二状态,以使得天线单元处于第一稳定状态。
在另一个实施例中,基于第二强度值D2减去第一强度值D1得到的差值大于设定强度差值d,说明寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量的达到了所需的改善差值,调整寄生天线不再处于第二状态,也就是,控制寄生天线处于第二稳定状态对应的状态(即第一状态),以使得天线单元处于第二稳定状态。
该方法中,先确定第二强度值与第一强度值的差值,然后根据此差值与设定强度差值的大小,确定寄生天线的状态调整后,第一蓝牙设备与第二蓝牙设备之间蓝牙通信质量是否得到较好的改善,以进一 步控制寄生天线的状态,既能保证第一蓝牙设备与第二蓝牙设备之间蓝牙通信的质量,又可更好地避免寄生天线的状态频繁切换,进一步提升了用户的使用体验。
在一个实施例中,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备。该方法可包括步骤S510和步骤S520。
S510、确定切换次数,其中,天线单元由第一稳定状态切换为第二稳定状态,再由第二稳定状态切换回第一稳定状态,记作一次切换。
S520、基于确定切换次数大于或等于设定次数,停止寄生天线的状态的调整。
在步骤S510中,需要说明的是,基于控制天线单元进入检测状态,也需要调整寄生天线的状态,但是,此次调整后的状态并不是天线单元的稳定状态,因此,此次寄生天线的状态调整,不属于天线单元由第一稳定状态切换为第二稳定状态,也不属于由第二稳定状态切换为第一稳定状态。
在一个实施例中,天线单元由第一稳定状态切换为第二稳定状态的过程中,还可包括其它状态。即,天线单元由第一稳定状态切换为第二稳定状态可包括,第一稳定状态直接切换为第二稳定状态,或者,第一稳定状态先切换至其它至少一种状态,再切换为第二稳定状态。
天线单元由第一稳定状态切换为第二稳定状态的过程,与其由第一稳定状态切换为第二稳定状态的过程类似,在此不做赘述。
在一个实施例中,参考图6所示,第一蓝牙设备为蓝牙耳机,第二蓝牙设备为手机。蓝牙耳机的天线单元处于第一稳定状态下,寄生天线处于第二状态。天线单元处于第二稳定状态下,寄生天线处于第一状态。天线单元处于第一检测状态下,寄生天线处于第一状态。天线单元处于第二检测状态下,寄生天线处于第二状态。
该示例中,第一时刻,蓝牙耳机的天线单元处于第一稳定状态(也就是寄生天线处于第二状态)下,确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第一强度值D11,第一强度值D11小于或等于设定强度值D0,便将寄生天线由第二状态切换至第一状态,并确定天线单元处于第一检测状态。
基于天线单元处于第一检测状态(也就是寄生天线处于第一状态),确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第二强度值D21。基于第二强度值D21与第一强度值D11的差值大于设定强度差值d,控制寄生天线处于第一状态,并确定天线单元处于第二稳定状态。
第二时刻,基于天线单元处于第二稳定状态(也就是寄生天线处于稳定地第一状态),确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第一强度值D12。基于第一强度值D12小于或等于设定强度值D0,将寄生天线切换至第二状态,并确定天线单元处于第二检测状态。
基于天线单元处于第二检测状态(也就是寄生天线处于第二状态),确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第二强度值D22。基于第二强度值D22与第一强度值D12的差值大于设定强度差值d,控制寄生天线处于第二状态,并确定天线单元处于第一稳定状态。
至此,蓝牙耳机便完成了一次切换,切换次数增加1次。
在一个实施例中,参考图6所示,第一蓝牙设备为蓝牙耳机,第二蓝牙设备为手机。蓝牙耳机的天线单元处于第一稳定状态下,寄生天线处于第二状态。天线单元处于第二稳定状态下,寄生天线处于第一状态。天线单元处于第一检测状态下,寄生天线处于第一状态。天线单元处于第二检测状态下,寄生天线处于第二状态。
该示例中,第一时刻,蓝牙耳机的天线单元处于第一稳定状态(也就是寄生天线处于第二状态)下,确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第一强度值D11,第一强度值D11小于或等于设定强度值D0,便将寄生天线由第二状态切换至第一状态,并确定天线单元处于第一检测状态。
基于天线单元处于第一检测状态,确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第二强度值D21。在确定第二强度值D21后,将寄生天线切换回第二状态。
然后判断第二强度值D21与第一强度值D11的差值是否大于设定强度差值d。基于确定第二强度值D21与第一强度值D11的差值大于设定强度差值d,将寄生天线切换至第一状态,并确定天线单元处于第二稳定状态。
第二时刻,基于天线单元处于第二稳定状态,确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第一强度值D12,第一强度值D12小于或等于设定强度值D0,便将寄生天线切换至第二状态,并确定天线单元处于第二检测状态。
基于天线单元处于第二检测状态,确定蓝牙耳机与手机之间蓝牙通信信号的强度值,此强度值记为第二强度值D22。在确定第二强度值D21后,将寄生天线切换回第一状态。
然后判断第二强度值D22与第一强度值D12的差值是否大于设定强度差值d。基于第二强度值D22 与第一强度值D12的差值大于设定强度差值d,将寄生天线切换至第二状态,并确定天线单元处于第一稳定状态。
至此,蓝牙耳机便完成了一次切换,切换次数增加1次。
在步骤S520中,设定次数可以是第一蓝牙设备出厂前设置的,也可以是第一蓝牙设备出厂后设置的,并且,设定次数设置完成后,还可对其进行修改,以更好地满足用户的不同需求。设定次数根据实际需要设置,例如,设定次数可以是5次、10次或13次等,在此不作限定。
在一个实施例中,累计的切换次数大于或等于设定次数,说明天线单元的状态在第一稳定状态和第二稳定状态之间的切换过于频繁,说明寄生天线状态切换过于频繁,说明无论寄生天线处于第一状态还是第二状态,第一蓝牙设备与第二蓝牙设备之间蓝牙通信信号均不够稳定,无需再频繁进行寄生天线的状态的调整,停止寄生天线的状态的调整。以避免由于蓝牙通信信号不稳定,导致寄生天线的状态频繁切换造成的影响。
在一个实施例中,停止对寄生天线的状态的调整,包括:将设定强度差值由第一值切换为第二值,且第二值大于第一值。也就是,该方法中,通过抬升设定强度差值,来避免天线单元在第一稳定状态与第二稳定状态之间的频繁切换,以避免寄生天线在第一状态和第二状态之间频繁切换。
需要说明的是,也可通过其他方式实现“停止对寄生天线的状态的调整”,在此不作限定。
另外,该方法中,停止寄生天线的状态的调整后,可进行计时。基于停止的持续时长大于第二设定时长(例如为10秒、20秒等),重启对寄生天线的状态的调整,既能避免由于蓝牙通信信号不稳定,导致寄生天线的状态频繁切换造成的影响,又可更好地确保第一蓝牙设备与第二蓝牙设备之间蓝牙通信的质量,提升用户使用体验。
该方法中,通过设置设定次数,可以更好地避免寄生天线在第一状态与第二状态之间频繁切换带来的影响,可以降低第一蓝牙设备的能耗,进一步提升用户的使用体验。
在一个实施例中,提供了一种蓝牙信号控制方法,应用于第一蓝牙设备。该方法可包括:寄生天线的默认状态为第二状态。其中,一般,默认状态为稳定地第二状态。
在一个实施例中,第一蓝牙设备为蓝牙耳机,第二蓝牙设备为手机,第一设定时长为3秒,设定强度值为D0,设定次数为10次,设定强度差值包括第一值d1和第二值d2,其中,第二值d2大于第一值d1。
蓝牙耳机包括主天线和寄生天线,主天线靠近蓝牙耳机的扬声器,寄生天线远离扬声器,主天线与寄生天线的走线方向设置。
在一个实施例中,参考图1所示,蓝牙耳机中,当接地开关处于触点A时,其处于断开状态时,寄生天线不接地,寄生天线处于第二状态。此情况下,馈电单元可通过触点C向主天线施加第一电流,只有主天线辐射蓝牙信号,蓝牙信号的辐射方向如图1中的虚线椭圆X1所示,即,蓝牙设备通过主天线辐射的蓝牙信号实现与其他设备的蓝牙通信连接,其他设备位于图1中W1位置时,二者蓝牙通信的信号强度才会较好,才能保证更好地蓝牙通信。
在一个实施例中,当接地开关处于触点B时,其处于闭合状态时,寄生天线接地,寄生天线处于第一状态。此情况下,馈电单元可通过触点D向主天线施加第二电流,主天线和寄生天线均辐射蓝牙信号,寄生天线辐射的蓝牙信号与主天线辐射的蓝牙信号互相影响,使得蓝牙信号发射设备的整体辐射如图1中的虚线椭圆X2所示,即,蓝牙设备通过主天线和寄生天线共同辐射的蓝牙信号实现与其他设备的蓝牙通信连接,其他设备位于图1中W2位置时,二者蓝牙通信的信号强度才会较好,才能保证更好地蓝牙通信。
天线单元处于第一稳定状态下,寄生天线处于第二状态。天线单元处于第二稳定状态下,寄生天线处于第一状态。天线单元处于第一检测状态下,寄生天线处于第一状态。天线单元处于第二检测状态下,寄生天线处于第二状态。
该示例中,蓝牙耳机的蓝牙通信功能开启后,接地开关默认处于触点A,寄生天线处于第二状态,并确定天线单元处于第一稳定状态。蓝牙耳机与手机建立蓝牙通信连接后,设定强度差值默认为第一值d1。
基于蓝牙耳机的天线单元处于第一稳定状态,蓝牙耳机的蓝牙通信信号的强度检测单元,每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,并将检测到的强度值传输至蓝牙耳机的处理器,以使的处理器确定第一强度值。
第一时刻,确定蓝牙耳机与手机之间蓝牙通信信号的第一强度值D11。
基于第一强度值D11大于设定强度值D0,维持接地开关处于触点A,使得寄生天线继续处于第二状态,也就是,使得天线单元继续处于第一稳定状态,并继续每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,以及后续的动作。
基于第一强度值D11小于或等于设定强度值D0,接地开关切换至触点B,使得寄生天线处于第一状态,并确定天线单元切换至第一检测状态。
基于天线单元处于第一检测状态,确定蓝牙耳机与手机之间蓝牙通信信号的第二强度值D21。
基于第二强度值D21与第一强度值D11的差值小于或等于第一值d1,将接地开关切换至触点A,使得寄生天线返回第二状态,并确定天线单元返回第一稳定状态,并继续每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,以及后续的动作。
基于第二强度值D21与第一强度值D11的差值大于第一值d1,保持接地开关处于触点B,使得寄生天线处于第一状态,并确定天线单元切换至第二稳定状态。
基于天线单元处于第二稳定状态下蓝牙耳机的蓝牙通信信号的强度检测单元,每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,并将检测到的强度值传输至蓝牙耳机的处理器,以使的处理器确定第一强度值。
第二时刻,确定蓝牙耳机与手机之间蓝牙通信信号的第一强度值D12。
基于第一强度值D12大于设定强度值D0,维持接地开关处于触点B,使得寄生天线处于第一状态,确定天线单元处于第二稳定状态,并继续每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,以及后续的动作。
基于第一强度值D12小于或等于设定强度值D0,接地开关切换至触点A,使得寄生天线切换至第二状态,并确定天线单元切换至第二检测状态。
基于天线单元处于第二检测状态,确定蓝牙耳机与手机之间蓝牙通信信号的第二强度值D22。
基于第二强度值D22与第一强度值D12的差值小于或等于第一值d1,将接地开关切换至触点B,使得寄生天线返回第一状态,确定天线单元返回第二稳定状态,并继续每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,以及后续的动作。
基于第二强度值D22与第一强度值D12的差值大于第一值d1,使接地开关维持在触点B,使得寄生天线处于第二状态,并确定天线单元切换至第一稳定状态。至此,蓝牙耳机便完成了一次切换,切换次数增加1次。
基于天线单元切换至第一稳定状态,继续每隔3秒检测一次蓝牙耳机与手机的蓝牙通信信号的强度值,以及后续的动作。
如此循环往复,直至切换次数达到10次,将设定强度差值调整为第二值d2,由于第二值d2大于第一值d1,因此,第二强度值与第一强度值的差值始终小于第二值d2,可以避免寄生天线在第一状态与第二状态之间频繁切换。
将设定强度差值调整为第二值d2后,同时记录持续时长。直至持续时长大于或等于第二设定时长,将设定强度差值调整回第一值d1,以继续上述对寄生天线的状态的调整,从而实现对蓝牙信号的控制,以确保蓝牙耳机与手机之间蓝牙通信质量,进一步提升用户的使用体验。
在一个实施例中,提供了一种蓝牙信号控制装置,应用于第一蓝牙设备。其中,该装置用于实施上述的蓝牙信号控制方法。示例地,参考图7所示,该装置可包括控制模块101。
控制模块101用于基于第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制天线单元中寄生天线的状态,其中,第一稳定状态为第一状态或第一状态第二状态。
该蓝牙信号控制装置通过上述蓝牙信号控制方法,可以更好地满足蓝牙通信需求,提升用户使用体验。
在一个实施例中,提供了一种蓝牙设备,所述蓝牙设备包括:处理器;用于存储所述处理器可执行指令的存储器;其中,所述处理器被配置为执行前述任一项实施例所述的蓝牙信号控制方法。
在一些实施例中,蓝牙设备例如为蓝牙耳机、手机、笔记本电脑、平板电脑以及可穿戴设备等。
参考图8所示,蓝牙设备400可以包括以下一个或多个组件:处理组件402,存储器404,电源组件406,多媒体组件408,音频组件410,输入/输出(I/O)的接口412,传感器组件414,以及通信组件416。
处理组件402通常控制蓝牙设备400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件402可以包括一个或多个处理器420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件402可以包括一个或多个模块,便于处理组件402和其他组件之间的交互。例如,处理组件402可以包括多媒体模块,以方便多媒体组件408和处理组件402之间的交互。
存储器404被配置为存储各种类型的数据以支持在蓝牙设备400的操作。这些数据的示例包括用于在蓝牙设备400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器404可以由任何类型的易失性或非易失性存储蓝牙设备或者它们的组合实现,如静态随机存取存 储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件406为蓝牙设备400的各种组件提供电力。电源组件406可以包括电源管理系统,一个或多个电源,及其他与为蓝牙设备400生成、管理和分配电力相关联的组件。
多媒体组件408包括在蓝牙设备400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件408包括一个前置相机模组和/或后置相机模组。当蓝牙设备400处于操作模式,如拍摄模式或视频模式时,前置相机模组和/或后置相机模组可以接收外部的多媒体数据。每个前置相机模组和后置相机模组可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件410被配置为输出和/或输入音频信号。例如,音频组件410包括一个麦克风(MIC),当蓝牙设备400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器404或经由通信组件416发送。在一些实施例中,音频组件410还包括一个扬声器,用于输出音频信号。
I/O接口412为处理组件402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件414包括一个或多个传感器,用于为蓝牙设备400提供各个方面的状态评估。例如,传感器组件414可以检测到蓝牙设备400的打开/关闭状态,组件的相对定位,例如组件为蓝牙设备400的显示器和小键盘,传感器组件414还可以检测蓝牙设备400或蓝牙设备400一个组件的位置改变,用户与蓝牙设备400接触的存在或不存在,蓝牙设备400方位或加速/减速和蓝牙设备400的温度变化。传感器组件414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件416被配置为便于蓝牙设备400和其他蓝牙设备之间有线或无线方式的通信。蓝牙设备700可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G、5G或它们的组合。在一个实施例中,通信组件416经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个实施例中,通信组件416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在实施例中,蓝牙设备400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理蓝牙设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的方法。
在一个实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器404,上述指令可由蓝牙设备400的处理器420执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储蓝牙设备等。当存储介质中的指令由蓝牙设备的处理器执行时,使得蓝牙设备能够执行上述实施例中示出的方法。
在一个实施例中,还提供了计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如上述任一实施例所述的蓝牙信号控制方法。
在一个实施例中,还提供了计算机程序,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上述任一实施例所述的蓝牙信号控制方法。
需要说明的是,前述对蓝牙信号控制方法实施例的解释说明也适用于上述实施例中的蓝牙设备、非临时性计算机可读存储介质、计算机程序产品和计算机程序,此处不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为的,本公开的真正范围和精神由权利要求指出。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为的,本公开的真正范围和精神由下面的权利要求指出。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保 护范围。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种蓝牙信号发射设备,其特征在于,所述蓝牙信号发射设备包括主天线、寄生天线以及开关单元,所述主天线的走线方向与所述寄生天线的走线方向不同;
    所述开关单元被配置为控制所述寄生天线的状态,所述寄生天线的状态包括第一状态和第二状态;
    其中,所述第一状态下,所述蓝牙信号发射设备的蓝牙信号辐射范围记为第一辐射范围;所述第二状态下,所述蓝牙信号发射设备的蓝牙信号辐射范围记为第二辐射范围;所述第一辐射范围与所述第二辐射范围不同。
  2. 根据权利要求1所述的蓝牙信号发射设备,其特征在于,所述开关单元包括接地开关,所述寄生天线通过所述接地开关接地;
    基于所述接地开关处于闭合状态,所述寄生天线接地,所述寄生天线处于所述第一状态;
    基于所述接地开关处于断开状态,所述寄生天线不接地,所述寄生天线处于所述第二状态。
  3. 根据权利要求1或2所述的蓝牙信号发射设备,其特征在于,所述主天线的走线方向与所述寄生天线的走线方向相反。
  4. 根据权利要求1-3中任一项所述的蓝牙信号发射设备,其特征在于,所述蓝牙信号发射设备还包括馈电单元,所述馈电单元与所述主天线连接,
    基于所述寄生天线处于所述第二状态,所述馈电单元向所述主天线施加第一电流;
    基于所述寄生天线处于所述第一状态,所述馈电单元向所述主天线施加第二电流。
  5. 一种蓝牙设备,其特征在于,所述蓝牙设备包括如权利要求1-4中任一项所述的蓝牙信号发射设备。
  6. 根据权利要求5所述的蓝牙设备,其特征在于,所述蓝牙设备还包括蓝牙耳机,所述蓝牙耳机包括相连的主体部和杆状部,所述主体部设置扬声器,所述杆状部设置所述蓝牙信号发射设备,所述蓝牙信号发射设备的主天线与所述蓝牙信号发射设备的寄生天线中,所述主天线位于靠近所述扬声器的位置,所述寄生天线位于远离所述扬声器的位置。
  7. 一种蓝牙信号控制方法,应用于第一蓝牙设备,其特征在于,所述方法包括:
    基于所述第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及所述第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述天线单元中寄生天线的状态,其中,所述寄生天线的状态包括第一状态和第二状态。
  8. 根据权利要求7所述的方法,其特征在于,基于所述第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及所述第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述寄生天线的状态,包括:
    基于所述天线单元处于所述第一稳定状态,每间隔第一设定时长,确定一次所述第一强度值;
    根据所述设定强度值和所述第一强度值,控制所述寄生天线的状态。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述设定强度值和所述第一强度值,控制所述寄生天线的状态,包括:
    基于确定所述第一强度值大于所述设定强度值,控制所述天线单元处于所述第一稳定状态。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述设定强度值和所述第一强度值,控制所述寄生天线的状态,包括:
    基于确定所述第一强度值小于或等于所述设定强度值,控制所述天线单元处于检测状态,其中,所述检测状态下的所述寄生天线的状态与所述第一稳定状态下的所述寄生天线的状态不同;
    基于所述天线单元处于所述检测状态,确定所述第一蓝牙设备与所述第二蓝牙设备的蓝牙通信信号的第二强度值;
    根据设定强度差值、所述第一强度值和所述第二强度值,控制所述寄生天线的状态。
  11. 根据权利要求10所述的方法,其特征在于,所述根据设定强度差值、所述第一强度值和所述第二强度值,控制所述寄生天线的状态,包括:
    基于所述第二强度值与所述第一强度值的差值大于所述设定强度差值,控制所述天线单元处于第二稳定状态,所述第二稳定状态下的所述寄生天线的状态与所述第一稳定状态下的所述寄生天线的状态不同。
  12. 根据权利要求10所述的方法,其特征在于,所述根据设定强度差值、所述第一强度值和所述第二强度值,控制所述寄生天线的状态,包括:
    基于所述第二强度值与所述第一强度值的差值小于或等于所述设定强度差值,控制所述天线单元处于所述第一稳定状态。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,所述确定所述第一蓝牙设备与所述第二蓝牙设备的蓝牙通信信号的第二强度值之后,所述方法包括:
    控制所述天线单元处于所述第一稳定状态。
  14. 根据权利要求7-13任一项所述的方法,其特征在于,所述方法包括:
    确定切换次数,其中,所述天线单元由所述第一稳定状态切换为所述第二稳定状态,再由所述第二稳定状态切换回所述第一稳定状态,记作一次切换;
    基于确定所述切换次数大于或等于设定次数,停止对所述寄生天线的状态的调整。
  15. 根据权利要求14所述的方法,其特征在于,所述停止对所述寄生天线的状态的调整,包括:
    将所述设定强度差值由第一值切换为第二值,所述第二值大于所述第一值。
  16. 根据权利要求14或15所述的方法,其特征在于,所述停止对所述寄生天线的状态的调整之后,所述方法包括:
    确定持续时长大于第二设定时长,则重启对所述寄生天线的状态的调整。
  17. 根据权利要求7-16任一项所述的方法,其特征在于,所述方法包括:
    所述寄生天线的默认状态为所述第二状态。
  18. 一种蓝牙信号控制装置,应用于第一蓝牙设备,其特征在于,所述装置包括:
    控制模块,用于基于所述第一蓝牙设备的天线单元处于第一稳定状态,根据设定强度值,以及所述第一蓝牙设备与第二蓝牙设备的蓝牙通信信号的第一强度值,控制所述天线单元中寄生天线的状态,其中,所述寄生天线的状态包括第一状态和第二状态。
  19. 一种蓝牙设备,其特征在于,所述蓝牙设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为执行如权利要求7-17中任一项所述的蓝牙信号控制方法。
  20. 一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由蓝牙设备的处理器执行时,使得所述蓝牙设备能够执行如权利要求7-17中任一项所述的蓝牙信号控制方法。
  21. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如权利要求7-17中任一项所述的蓝牙信号控制方法。
  22. 一种计算机程序,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求7-17中任一项所述的蓝牙信号控制方法。
PCT/CN2022/090689 2021-12-27 2022-04-29 蓝牙信号发射设备、蓝牙信号控制方法和装置以及蓝牙设备 WO2023123785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111610009.0A CN116367027A (zh) 2021-12-27 2021-12-27 蓝牙信号发射设备、控制方法、装置、设备及介质
CN202111610009.0 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023123785A1 true WO2023123785A1 (zh) 2023-07-06

Family

ID=86938923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090689 WO2023123785A1 (zh) 2021-12-27 2022-04-29 蓝牙信号发射设备、蓝牙信号控制方法和装置以及蓝牙设备

Country Status (2)

Country Link
CN (1) CN116367027A (zh)
WO (1) WO2023123785A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313080A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson Multi-beam smart antenna for wylan and pico cellular applications
CN104468942A (zh) * 2013-09-16 2015-03-25 联想(北京)有限公司 一种信息处理的方法、装置及电子设备
CN107240774A (zh) * 2017-04-28 2017-10-10 歌尔股份有限公司 一种可穿戴设备及其控制方法
CN207320324U (zh) * 2017-04-28 2018-05-04 歌尔股份有限公司 一种可穿戴设备
CN112533096A (zh) * 2019-09-17 2021-03-19 华为技术有限公司 蓝牙耳机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313080A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson Multi-beam smart antenna for wylan and pico cellular applications
CN104468942A (zh) * 2013-09-16 2015-03-25 联想(北京)有限公司 一种信息处理的方法、装置及电子设备
CN107240774A (zh) * 2017-04-28 2017-10-10 歌尔股份有限公司 一种可穿戴设备及其控制方法
CN207320324U (zh) * 2017-04-28 2018-05-04 歌尔股份有限公司 一种可穿戴设备
CN112533096A (zh) * 2019-09-17 2021-03-19 华为技术有限公司 蓝牙耳机

Also Published As

Publication number Publication date
CN116367027A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN104219448B (zh) 拍摄方法和装置
WO2017092371A1 (zh) 低功耗蓝牙设备的连接参数更新方法及装置
WO2017088376A1 (zh) 连接被控智能设备的方法及装置
US11706081B2 (en) Method for controlling beam failure recovery procedure, electronic device and storage medium
WO2017219503A1 (zh) 切换控制权的方法及控制终端
WO2017088260A1 (zh) 睡眠状态检测方法、装置及系统
CN105338177A (zh) 信息延迟广播方法及装置
CN104881104A (zh) 提高智能设备性能的方法、装置及智能设备
WO2020077623A1 (zh) 定时器配置方法及装置
US9398130B2 (en) Mobile terminal and method for controlling answer mode of the mobile terminal and non-transitory computer-readable storage medium
US11743355B2 (en) Prompting method and device
WO2018133341A1 (zh) 发射上行信号的方法及装置
CN105246135A (zh) 接入无线网络的方法、装置及移动终端
WO2022027495A1 (zh) 调整指示方法和装置、调整接收方法和装置
WO2020223931A1 (zh) 小区切换方法及装置、切换配置方法及装置和用户设备
CN104461358A (zh) 点亮屏幕的方法及装置
WO2023123785A1 (zh) 蓝牙信号发射设备、蓝牙信号控制方法和装置以及蓝牙设备
WO2020087321A1 (zh) 配置调整方法、装置、电子设备和计算机可读存储介质
CN107682101B (zh) 噪声检测方法、装置及电子设备
US20210410213A1 (en) Communication methods and electronic devices
WO2022021060A1 (zh) 接收指示方法和装置、接收控制方法和装置
CN108897553B (zh) 芯片烧写工装、系统、芯片烧写方法及装置
US11937130B2 (en) Bandwidth part adjustment method and bandwidth part adjustment apparatus
CN108539823B (zh) 充电方法及装置
CN113192312A (zh) 设备控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913081

Country of ref document: EP

Kind code of ref document: A1