WO2023123639A1 - 电机结构、轮毂电机以及车辆 - Google Patents

电机结构、轮毂电机以及车辆 Download PDF

Info

Publication number
WO2023123639A1
WO2023123639A1 PCT/CN2022/077117 CN2022077117W WO2023123639A1 WO 2023123639 A1 WO2023123639 A1 WO 2023123639A1 CN 2022077117 W CN2022077117 W CN 2022077117W WO 2023123639 A1 WO2023123639 A1 WO 2023123639A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
tooth
teeth
splicing
Prior art date
Application number
PCT/CN2022/077117
Other languages
English (en)
French (fr)
Inventor
童恩东
肖竞
王细冬
Original Assignee
大富科技(安徽)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123430781.2U external-priority patent/CN216672825U/zh
Priority claimed from CN202111644812.6A external-priority patent/CN114189120A/zh
Priority claimed from CN202123388112.3U external-priority patent/CN216672687U/zh
Priority claimed from CN202123388111.9U external-priority patent/CN216672686U/zh
Priority claimed from CN202123430754.5U external-priority patent/CN216672693U/zh
Application filed by 大富科技(安徽)股份有限公司 filed Critical 大富科技(安徽)股份有限公司
Publication of WO2023123639A1 publication Critical patent/WO2023123639A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the present application relates to the technical field of motors, in particular to a motor structure, a hub motor and a vehicle.
  • the dual-rotor motor has two mechanical shafts, which can realize the independent transmission of energy of the two mechanical shafts. This kind of motor greatly reduces the volume and weight of the equipment, and can also improve work efficiency.
  • the traditional dual-rotor motor includes a stator, an inner rotor and an outer rotor.
  • a stator usually, there are two salient poles in opposite directions in the radial direction of the stator, and windings are wound on the salient poles.
  • the stator yoke has a magnetic isolation ring in the circumferential direction. Make the inner and outer windings independent of each other.
  • the closed path of the magnetic circuit needs to pass through the entire stator yoke and rotor yoke.
  • the magnetic circuit is too long and there are problems such as magnetic flux leakage, which in turn leads to low output torque of the dual-rotor motor.
  • One of the objectives of the embodiments of the present application is to provide a motor structure, an in-wheel motor with the motor structure, and a vehicle with the in-wheel motor, aiming at solving the problem of low output torque of the dual-rotor motor structure.
  • a motor structure including a stator structure in an annular structure, an outer rotor sleeved on the outer peripheral side of the stator structure, and an inner rotor placed on the inner peripheral side of the stator structure, the outer The rotor and the inner rotor are arranged coaxially, the stator structure includes a plurality of winding units forming a ring structure, the outer rotor forms N first rotor convex teeth toward the inner peripheral side of the stator structure, and the inner The rotor forms M second rotor convex teeth towards the outer peripheral side of the stator structure;
  • the two winding units when the winding units are energized, the two winding units that are energized, the two first rotor teeth corresponding to the two winding units that are energized, and the two windings that are energized
  • the two second rotor lobes corresponding to the unit form a magnetic circuit.
  • the present application further provides an in-wheel motor, including the motor structure described above.
  • the present application further provides a vehicle, including the above-mentioned in-wheel motor.
  • Fig. 1 is the front view of the motor structure provided by the embodiment of the present application.
  • Fig. 2 is the enlarged view of place A in Fig. 1;
  • Fig. 3 is a schematic diagram of the magnetic flux flow direction of the motor structure provided by the embodiment of the present application under the working state;
  • Fig. 4 is another front view of the motor structure provided by the embodiment of the present application.
  • FIG. 5 is a front view of the phase w in the stator structure of the motor structure provided by the embodiment of the present application in the energized state;
  • FIG. 6 is a front view of phase v in the energized state in the stator structure of the motor structure provided by the embodiment of the present application;
  • FIG. 7 is a front view of the u-phase in the energized state in the stator structure of the motor structure provided by the embodiment of the present application;
  • Fig. 8 is a structural schematic diagram of the stator structure, the outer rotor and the inner rotor of the motor structure provided by the embodiment of the present application;
  • Fig. 9 is a partial enlarged view of the motor structure provided by the embodiment of the present application.
  • Fig. 10 is another partial enlarged view of the motor structure provided by the embodiment of the present application.
  • Fig. 11 is another partial enlarged view of the motor structure provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a winding unit of a motor structure provided by an embodiment of the present application.
  • Fig. 13 is another structural schematic diagram of the winding unit of the motor structure provided by the embodiment of the present application.
  • Figure 14 is a front view of the outer rotor and inner rotor provided by the embodiment of the present application.
  • Fig. 15 is an enlarged view of place B in Fig. 14;
  • Fig. 16 is a partial enlarged view of the outer rotor and the inner rotor provided in Embodiment 1 of the present application without filling;
  • Fig. 17 is a partially enlarged view of the outer rotor and the inner rotor provided in Embodiment 2 of the present application without filling;
  • Fig. 18 is a partial enlarged view of the outer rotor and the inner rotor without filler provided in Embodiment 3 of the present application;
  • Fig. 19 is a front view of the stator structure provided by the embodiment of the present application.
  • Figure 20 is an enlarged view at C in Figure 19;
  • Figure 21 is a partial enlarged view of the stator structure provided by one of the embodiments of the present application.
  • Fig. 22 is another partial enlarged view of the stator structure provided by one embodiment of the present application.
  • Fig. 23 is a partial enlarged view of a stator structure provided by another embodiment of the present application.
  • Fig. 24 is a partial enlarged view of the stator structure provided by another embodiment of the present application.
  • Fig. 25 is another partial enlarged view of the stator structure provided by another embodiment of the present application.
  • Fig. 26 is a partial enlarged view of the stator structure provided by another embodiment of the present application.
  • Fig. 27 is an exploded view of the winding unit of the stator structure provided by the embodiment of the present application.
  • Fig. 28 is another exploded view of the winding unit of the stator structure provided by the embodiment of the present application.
  • Fig. 29 is a front view of the stator structure provided by Embodiment 1 of the present application.
  • Fig. 30 is a schematic structural view of the stator main body of the stator structure provided in Embodiment 1 of the present application;
  • Fig. 31 is a front view of the stator structure provided in Embodiment 2 of the present application.
  • Fig. 32 is a front view of the stator structure provided by Embodiment 3 of the present application.
  • the motor structure 100 of the embodiment of the present application includes a stator structure 10 , an outer rotor 20 and an inner rotor 30 .
  • the stator structure 10 is an annular structure.
  • the outer rotor 20 is sleeved on the outer peripheral side of the stator structure 10
  • the inner rotor 30 is placed on the inner peripheral side of the stator structure 10 .
  • the outer rotor 20 and the inner rotor 30 rotate coaxially around the central axis of the stator structure 10 .
  • the overall volume of the motor structure 100 of the embodiment of the present application is smaller.
  • the stator structure 10 includes a plurality of winding units 111 sequentially arranged along a circumference to form a ring structure. Each winding unit 111 generates a magnetic field when energized.
  • the outer rotor 20 forms N first rotor teeth 21 toward the inner peripheral side of the stator structure 10
  • the inner rotor 30 forms M second rotor teeth 31 toward the outer peripheral side of the stator structure 10 , where N and M are positive integers.
  • the first rotor lobe 21 and the second rotor lobe 31 are intermittently facing the winding unit 111 .
  • the number of first rotor lobe teeth 21 and the number of second rotor lobe teeth 31 may be the same or different.
  • the outer rotor 20 and the inner rotor 30 can obtain the same or similar rotational torque, and in the case of a large difference in the number of the two, the outer rotor 20 and the inner rotor 30 can obtain a large difference of torque.
  • the winding units 111 When in use, the winding units 111 are energized, the two winding units 111 that are energized, the two first rotor teeth 21 corresponding to the two winding units 111 that are energized, and the two winding units 111 that are energized correspond to
  • the two second rotor protruding teeth 31 form a magnetic circuit, and the two winding units 111 that are energized can be arranged adjacently or at a distance (there are other winding units 111 between them). Please refer to FIG.
  • the first two winding units 111 when two adjacent winding units 111 are in the energized state, the first two winding units 111 , the two first rotor lobe teeth 21 that are opposite or close to the two current winding units 111 , and the current two winding units 111
  • the two second rotor protruding teeth 31 facing or close to each other form a magnetic circuit, which is the shortest and the smallest reluctance compared with the case where the two windings arranged apart from each other are energized, and the maximum rotational torque can be obtained, which can reduce the loss of the motor , improve motor efficiency.
  • the principle of the coaxial rotation of the outer rotor 20 and the inner rotor 30 is as follows: Referring to FIG. A closed magnetic path is formed, and a tangential pulling force is generated on the first rotor lobe 21 and the second rotor lobe 31 as the magnetic field twists. Specifically, when the middle line L1 of the two electrified winding units 111 deviates from the middle line L2 of the corresponding first rotor lobe 21 and the middle line L3 of the corresponding second rotor lobe 31, the generated magnetic field forces The middle line L2 of the first rotor lobe 21 and the middle line L3 of the second rotor lobe 31 coincide with the middle line L1 of the two winding units 111 currently energized.
  • the outer rotor 20 and the inner rotor 30 generates a tangential pulling force, and when the middle line L2 of the first rotor lobe 21 and the middle line L3 of the second rotor lobe 31 are aligned with the middle line L1 of the two winding units 111 that are currently energized, and are in an overlapping state, The current first rotor lobe 21 and the second rotor lobe 31 are completely engaged with the corresponding winding unit 111 , and at this moment, the obtained tangential pulling force is minimum.
  • each winding unit 111 is connected to alternating current, and the magnetic flux is formed by adjusting the energization sequence of each winding unit 111, so that the outer rotor 20 and the inner rotor 30 obtain a tangential pulling force, Finally, the outer rotor 20 and the inner rotor 30 are coaxially rotated.
  • each winding unit 111 is energized locally in sequence, that is, only the local winding unit 111 is energized. In this way, the coaxial rotation of the outer rotor 20 and the inner rotor 30 is realized by means of switching on and off the local winding unit 111 .
  • the path size of the magnetic circuit is adjustable, that is, the torque output by the outer rotor 20 and the inner rotor 30 is adjustable.
  • the current two winding units 111, the two first rotor lobe teeth 21 opposite to the current two winding units 111, and the two first rotor teeth 21 opposite to the current two winding units 111 The second rotor teeth 31 form a magnetic circuit, and at this moment, the magnetic circuit is the shortest.
  • an external power supply supplies power to the stator structure 10 to realize the coaxial rotation of the outer rotor 20 and the inner rotor 30 .
  • the external power supply supplies power to each winding unit 111 , and the magnetic flux is formed by adjusting the energization sequence of each winding unit 111 .
  • the external power supply sequentially turns on and off power to the local winding units 111 .
  • an outer rotor 20 and an inner rotor 30 are respectively arranged on the outer peripheral side and the inner peripheral side of the stator structure 10 in an annular structure, and the outer rotor 20 and the inner rotor 30 are arranged coaxially , which satisfies the requirement of coaxial rotation.
  • This layout method realizes the output of dual moments, and at the same time, the overall volume is smaller and the space utilization rate is higher.
  • the two energized winding units 111 when the winding unit 111 is energized, the two energized winding units 111 generate a magnetic field, and the magnetic induction line flows out from one end of the current winding unit 111, passes through the first rotor tooth 21 corresponding to the current winding unit 111, and then flows through the After entering the first rotor lobe 21 corresponding to another winding unit 111, it enters another winding unit 111, and enters the corresponding second rotor lobe 31 through the other end of another winding unit 111, and then flows through the current winding After the second rotor tooth 31 corresponding to the unit 111, return to the current winding unit 111, the above is a magnetic circuit, as shown in Figure 3, that is, the path of the magnetic circuit is: winding unit a1-first rotor tooth b1- The first rotor lobe b2-winding unit a2-the second rotor lobe c1-the second rotor lobe c2-
  • the motor structure 100 of the embodiment of the present application has a shorter magnetic circuit, avoids the problem of magnetic flux leakage, and has higher output efficiency and larger output torque.
  • the motor structure 100 of the embodiment of the present application is applied to a switched reluctance motor.
  • the entire stator structure 10 is equally divided into X partitions.
  • X is greater than or equal to is a positive integer of 3
  • each partition contains the same number of stator windings 11, and in any energized state, one stator winding is energized in each partition, and the X stator windings that are energized at the same time are one phase, that is, in each In a partition, each corresponds to a stator winding, so it can be concluded that the number of stator windings in each partition is equal to the number of phases A.
  • the number of phases of the stator structure 10 is A, optionally, A is a positive integer greater than or equal to 3, for example, the motor structure 100 is a three-phase, four-phase or five-phase motor.
  • There are X stator windings 11 in each phase wherein, adjacent n winding units 111 form the stator winding 11, n is an even number, for example, the winding units 111 in each stator winding 11 can be two, four, Six etc.
  • the number of partitions of the stator structure 10, the number of phases of the stator winding 11 and the number of winding units 111 in the stator winding 11 can be adjusted as required.
  • each partition contains three sets of stator windings 11 of u, w, v, and the entire stator structure 10 includes U, w, v three-phase windings, each stator winding 11 contains eight winding units 111 .
  • the first rotor teeth 21 on the outer rotor 20 are evenly distributed, that is, the distance between each first rotor teeth 21 is the same.
  • first rotor teeth 21 on the outer rotor 20 are evenly distributed, and the second rotor teeth 31 on the inner rotor 30 are evenly distributed.
  • each second rotor teeth 31 of the inner rotor 30 are aligned with each of the outer rotor teeth 31
  • the first rotor teeth 21 correspond radially. In this way, it can always be ensured that every two first rotor lobe teeth 21 , the corresponding two second rotor lobe teeth 31 and the two winding units 111 between them form the shortest magnetic circuit.
  • the tooth angle ⁇ of the first rotor lobe 21 is the angle between the middle lines of two adjacent first rotor lobe teeth 21
  • the tooth angle ⁇ of the second rotor lobe 31 is the angle between two adjacent second rotor lobe teeth 31.
  • the tooth angle of the winding unit 111 is the included angle between the middle lines of two adjacent winding units 111 in the same stator winding.
  • the number of the first rotor teeth 21 and the number of the second rotor teeth 31 are more than the number of winding units 111, for example, when the annular circumference of the stator structure 10 is divided into three partitions, each partition has three Stator windings 11, that is, the number of phases is three, each stator winding 11 is composed of eight winding units 111, the number of winding units 111 is 72, the number of first rotor teeth 21 and the number of second rotor teeth 31 are In this way, more misalignments can be formed between each first rotor lobe 21 and each winding unit 111, and more misalignments can also be formed between each second rotor lobe 31 and each winding unit 111.
  • the winding unit 111 includes a stator body 11aa and a coil 11b wound on the stator body 11aa.
  • the coils 11b of each winding unit 111 are connected in series.
  • the stator main body 11aa has an I-shaped structure, and its opposite ends face the corresponding first rotor teeth 21 and the second rotor teeth 31 respectively.
  • the coil 11b is wound around the stator main body 11aa in the same direction.
  • the coil 11b is wound clockwise on the stator main body 11aa or counterclockwise on the stator main body 11aa, so that in the energized state, the magnetic flux lines of the magnetic field flow through the stator main body 11aa along the length direction of the stator main body 11aa.
  • first rotor lobe 21 and the second rotor lobe 31 mentioned in the embodiment of the present application face the stator main body 11aa or the winding unit 111, and it should be understood that the first rotor lobe 21, the second rotor lobe 31 and the The timing status of the stator main body 11aa or the winding unit 111 should not be understood as a status at any moment.
  • the stator main body 11aa has a first stator tooth portion 11a1 facing the first rotor lobe 21 and a second stator tooth portion 11a2 facing the second rotor lobe 31, and the tooth width c of the first stator tooth portion 11a1 is larger than that of the second stator tooth portion 11a1.
  • the coil 11b is wound on the stator main body 11aa between the first stator tooth portion 11a1 and the second stator tooth portion 11a2 to prevent the coil 11b from coming out of the stator main body 11aa.
  • each second rotor lobe 31 is in the inner circle, and each first rotor lobe 21 is in the outer circle, under the situation of the same number of the two, the spacing of each first rotor lobe 21 should be greater than that of the second rotor lobe 31, therefore, in order to achieve a better corresponding angle between the stator main body 11aa and the first rotor lobe 21, and the stator main body 11aa and the second rotor lobe 31, the first stator tooth portion 11a1 of the stator main body 11aa The width should be greater than the width of the second stator teeth 11a2.
  • the ratio of the slot width f of the outer rotor 20 to the tooth width e of the first rotor teeth 21 ranges from 1.6 to 1.9.
  • the slot width f of the outer rotor 20 refers to the distance between two adjacent first rotor teeth 21 .
  • the ratio of the slot width f of the outer rotor 20 to the tooth width e of the first rotor teeth 21 may be 1.6, 1.7, 1.8, 1.9, etc.
  • the ratio of the slot width f of the outer rotor 20 to the tooth width e of the first rotor protruding teeth 21 may also be other values, for example, 1.61, 1.775, 1.801 and so on.
  • the ratio of the slot width f of the outer rotor 20 to the tooth width e of the first rotor lobe 21 and the ratio of the slot width h of the inner rotor 30 to the tooth width i of the second rotor lobe 31 do not affect each other.
  • the values can be the same or different.
  • the ratio of the slot width h of the inner rotor 30 to the tooth width i of the second rotor convex teeth 31 ranges from 1.6 to 1.9.
  • the slot width h of the inner rotor 30 refers to the distance between two adjacent second rotor teeth 31 .
  • the ratio of the slot width h of the inner rotor 30 to the tooth width e of the first rotor teeth 21 may be 1.6, 1.7, 1.8, 1.9 and so on.
  • the ratio of the slot width h of the inner rotor 30 to the tooth width i of the second rotor protruding teeth 31 can also be other values, for example, 1.601, 1.772, 1.801 and so on.
  • the ratio of the tooth width e of the first rotor convex tooth 21 to the tooth width c of the first stator tooth portion 11a1 is in the range of 0.9 ⁇ 1.1. It can be understood that the tooth width c of the first stator tooth portion 11a1 refers to the width corresponding to the tooth width e of the first rotor tooth 21 . The ratio of the two can be 0.9, 1.0, 1.1, etc. Of course, the ratio of the tooth width e of the first rotor protruding tooth 21 to the tooth width c of the first stator tooth portion 11a1 can also be 0.91, 1.01, 1.001, etc.
  • the ratio of the tooth width e of the first rotor lobe 21 to the tooth width c of the first stator tooth portion 11a1 and the ratio of the tooth width i of the second rotor lobe tooth 31 to the tooth width d of the second stator tooth portion 11a2 do not affect each other, and the values of the two can be the same or different.
  • the ratio of the tooth width i of the second rotor convex tooth 31 to the tooth width d of the second stator tooth portion 11a2 ranges from 0.9 to 1.1.
  • the tooth width d of the second stator teeth 11 a 2 refers to a width corresponding to the tooth width i of the second rotor convex teeth 31 .
  • the ratio of the two can be 0.9, 1.0, 1.1, etc.
  • the ratio of the tooth width i of the second rotor protruding teeth 31 to the tooth width d of the second stator tooth portion 11a2 can also be 0.901, 1.011, 1.09, etc.
  • the ratio of the tooth length k of the first stator tooth portion 11a1 to the length of the stator main body 11aa is 5% ⁇ 15%.
  • the tooth length k of the first stator tooth portion 11a1 refers to the distance of the first stator tooth portion 11a1 along the length direction of the stator main body 11aa.
  • the tooth length k of the first stator tooth portion 11a1 can be 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, or 1% of the length of the stator main body 11aa. 15% etc.
  • the numerical value of the ratio of the tooth length k of the first stator tooth portion 11a1 to the length of the stator main body 11aa and the numerical value of the ratio of the tooth length j of the second stator tooth portion 11a2 to the length of the stator main body 11aa do not affect each other.
  • the values can be the same or different.
  • the ratio of the tooth length j of the second stator tooth portion 11a2 to the length of the stator main body 11aa is 5%-15%.
  • the tooth length j of the second stator tooth portion 11a2 refers to the distance of the second stator tooth portion 11a2 along the length direction of the stator main body 11aa.
  • the tooth length j of the second stator tooth portion 11a2 can be 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, or 15% of the length of the stator main body 11aa. %wait.
  • Simulation experiment design randomly select values for the above parameters, and apply them to the motor structure 100 corresponding to the parameter value, and at the same time ensure that the same current signal is applied to the motor structure 100 of each experimental group, and finally, obtain each The peak magnetic moment of the electric machine structure 100 of the experimental group.
  • the ratio of the slot width f of the outer rotor 20 to the tooth width e of the first rotor tooth 21 is simply referred to as the A1 group data; the slot width h of the inner rotor 30 and the tooth width e of the second rotor tooth 31
  • the ratio of the width i is referred to as group A2 data; the ratio of the tooth width e of the first rotor convex tooth 21 to the tooth width c of the first stator tooth portion 11a1 is referred to as group B1 data; the tooth width e of the second rotor convex tooth 31
  • the ratio of the width i to the tooth width d of the second stator tooth part 11a2 is referred to as the B2 group of data; the ratio of the tooth length k of the first
  • the data of group C1 and group C2 have little influence on the peak magnetic moment of the motor structure 100 and can be ignored.
  • the peak magnetic moment of the corresponding motor structure 100 is the largest, but as long as the A1 group data, A2 group data, B1 group data, B2 group data, C1 group data and C2 group data are within the scope defined in this application When it is inside, other motor structures 100 with high peak magnetic torque can be combined.
  • the stator windings 11 are energized sequentially, and the outer rotor 20 and the inner rotor 30 rotate forward; the stator windings 11 are energized in reverse order, and the outer rotor 20 and the inner rotor 30 rotate reversely.
  • sequential energization can be understood as energizing each stator winding 11 in a clockwise direction, then, the outer rotor 20 and inner rotor 30 rotate in the same direction as the energization direction, that is, clockwise rotation, and each stator winding 11 is energized in a counterclockwise direction.
  • the stator winding 11 When the stator winding 11 is energized, the outer rotor 20 and the inner rotor 30 rotate in the same direction as the energization, that is, they rotate counterclockwise.
  • the stator structure 10 is connected to a three-phase alternating current, and the specific power-on process is shown in the figure, and the power-on process is now explained:
  • each partition is provided with three stator windings 11
  • each stator winding 11 is composed of eight winding units 111 .
  • each partition includes a w-phase stator winding 11 , a v-phase stator winding 11 and a u-phase stator winding 11 .
  • the adjacent two first rotor lobe teeth 21, the two second rotor lobe teeth corresponding to the two first rotor lobe teeth 21 31 and the two winding units 111 form the shortest magnetic circuit, so that the current two first rotor lobe teeth 21 and the two second rotor lobe teeth 31 are subjected to tangential pulling force and rotate counterclockwise at a certain angle until the two first rotor lobe teeth 21 and the two second rotor protruding teeth 31 are in the suction state with the corresponding two winding units 111.
  • the u-phase stator winding 11 when the u-phase stator winding 11 is energized, in the stator winding 11, the adjacent two first rotor lobe teeth 21, the two second rotor lobe teeth corresponding to the two first rotor lobe teeth 21 31 and the two winding units 111 form the shortest magnetic circuit, so that the current two first rotor teeth 21 and two second rotor teeth 31 are tangentially pulled and rotate clockwise at a certain angle.
  • the v-phase stator When the winding 11 is energized, the above-mentioned actions are repeated, and the outer rotor 20 and the inner rotor 30 rotate clockwise for a certain angle again, and so on.
  • a gap is formed between two adjacent winding units 111 . It can be understood that when enclosing to form a ring structure, gaps are formed between the winding units 111 , so as to prevent the magnetic fields formed by two adjacent winding units 111 from influencing each other after electrification.
  • a gap is also formed between two adjacent stator windings 11, that is, a gap is formed between the outermost winding units 111 of two adjacent stator windings 11. gaps between. In this way, the mutual influence of the magnetic fields formed by two adjacent stator windings after energization can also be avoided.
  • each winding unit 111 is arranged in the corresponding installation slot, thereby forming a ring structure.
  • brackets are provided in the housing of the motor structure 100, that is, the winding unit 111 is fixed by the brackets and surrounded to form a ring structure.
  • the motor structure 100 further includes a permanent magnet set.
  • the permanent magnet group is used to supplement the magnetic flux leakage phenomenon existing in the process of turning on and off the stator structure 10 during the rotation of the outer rotor 20 and the inner rotor 30 . It can be understood that when the motor structure 100 is provided with permanent magnet groups, the motor structure 100 is suitable for the category of permanent magnet motors.
  • the arrangement position and quantity of the permanent magnet groups can be adjusted.
  • the permanent magnet assembly includes a first sub-magnet 51 disposed on the winding unit 111 and a second sub-magnet 52 disposed on the first rotor lobe 21 and corresponding to the first sub-magnet 51 .
  • the first sub-magnet 51 and the second sub-magnet 52 are respectively disposed on the surface of the winding unit 111 and the first rotor tooth 21 , or built into the winding unit 111 and the first rotor tooth 21 .
  • the permanent magnet assembly includes a first sub-magnet 51 disposed on the winding unit 111 and a third sub-magnet 53 disposed on the second rotor lobe 31 and corresponding to the first sub-magnet 51 .
  • the first sub-magnet 51 and the third sub-magnet 53 are respectively disposed on the surface of the winding unit 111 and the second rotor tooth 31 , or built into the winding unit 111 and the second rotor tooth 31 .
  • the permanent magnet assembly includes two first sub-magnets 51 arranged on the winding unit 111, a second sub-magnet 52 arranged on the first rotor lobe 21, and a second sub-magnet 52 arranged on the second rotor lobe. 31 on the third sub-magnet 53.
  • the magnetic flux of the stator is positively correlated with the number of turns of the coil and the current, and the power supply method of the motor is powered by the rated voltage. Increasing the number of turns through the coil will cause the resistance to increase and the current to decrease. Therefore, the increase of the magnetic flux of the stator will be limited. , will not increase after reaching a certain level.
  • the number of coils 11b is multiple, for example, the number of coils 11b is at least two or more, and the main body 11aa of the stator can carry.
  • the coils 11b are sequentially arranged along the length direction of the stator main body 11aa, and the coils 11b are connected in parallel, and the directions of the magnetic flux lines generated by each coil 11b after electrification are consistent. It can be understood that after the coils 11b are connected in parallel, the voltage of each coil 11b is the rated voltage connected to the motor, which avoids the problem that the coil series resistance becomes larger and the current becomes smaller, and the adjacent coils 11b It will not be disturbed, so the magnetic flux of the winding unit 111 can be greatly increased.
  • the outer rotor 20 includes a first rotor yoke 23 .
  • Each first rotor protruding tooth 21 is disposed on the inner peripheral side of the first rotor yoke 23 , and two adjacent first rotor protruding teeth 21 are spaced apart to form a first tooth gap 20a.
  • the first filler 22 is placed in the first tooth gap 20a.
  • the first filler 22 is non-magnetic.
  • the first filler 22 does not affect the distribution of the magnetic circuit, and no magnetic field lines flow through the first filler 22 .
  • the first filler 22 can be a non-metallic material, such as plastic with high structural strength, or the first filler 22 can also be a lightweight non-magnetic metal, such as aluminum alloy. It can be understood that, in this embodiment, "no magnetic field lines pass through the first filling 22" means that the number of magnetic field lines passing through the first filling 22 is zero or so small that the first rotor teeth can be ignored.
  • 21 on the first rotor yoke 23 is uniformly spaced or non-uniformly distributed, which is not limited here. Therefore, the widths of the first tooth gaps 20a may be the same or different, depending on the actual Use scenes to select.
  • the first filler 22 may fill part of the space of the first tooth gap 20a; or, fill the entire space of the first tooth gap 20a.
  • the end surface of the first filler 22 away from the first rotor yoke 23 is flush with the top end surface of the first rotor tooth 21; or, The end surface of the first filler 22 away from the first rotor yoke 23 is higher than the top end surface of the first rotor tooth 21 .
  • the first filler 22 is filled in a part of the space of the first tooth gap 20a, for example, the volume of the first filler 22 and the proportion of the accommodation space of the first tooth gap 20a are greater than 1/2 and less than one, Moreover, the end surface of the first filler 22 away from the first rotor yoke 23 can be arc-shaped or other shapes, which can greatly reduce the wind resistance when the rotor structure 100 rotates, so as to meet the corresponding rotation requirements, and at the same time, can improve the first rotor.
  • the structural strength of the protruding teeth 21 can be arc-shaped or other shapes, which can greatly reduce the wind resistance when the rotor structure 100 rotates, so as to meet the corresponding rotation requirements, and at the same time, can improve the first rotor.
  • the first filler 22 fills the space of the first tooth gap 20a, and the end surface of the first filler 22 away from the first rotor yoke 23 is flush with the top end surface of the first rotor tooth 21, and the top end of the tooth The surface is the end surface of the first rotor teeth 21 far away from the first rotor yoke 23.
  • the tooth top surface of each first rotor tooth 21 is connected with the end surface of each first filler 22 to form a whole, and then the rotor is greatly reduced. Wind resistance when the structure 100 rotates.
  • the first filler 22 fills the space of the first tooth gap 20a, and the end surface of the first filler 22 away from the first rotor yoke 23 is higher than the top end surface of the first rotor tooth 21, and the top end surface of the tooth is the end face of the first rotor lobe 21 away from the first rotor yoke 23 .
  • the part of the first filler 22 protruding from the first rotor tooth 21 is also adjusted in profile according to the wind resistance when the rotor structure 100 rotates.
  • the filler 22 with non-magnetic permeability When the first filler 22 with non-magnetic permeability is added, that is, the filler does not affect the formation of the magnetic circuit, and the magnetic flux lines will not pass through the filler. And, the first filler 22 is placed in each first tooth gap 20a, which can reduce or avoid the formation of wind resistance in each first tooth gap 20a during the operation of the motor to hinder the rotation of the rotor structure 100, thereby improving the performance of the motor.
  • the output efficiency at the same time, also increases the structural strength of the first rotor lobes 21 on the first rotor yoke 23 .
  • the end surface of the first filler 22 away from the first rotor yoke 23 is flush with and transitions smoothly from the top end surface of the first rotor tooth 21 .
  • the first filler 22 can be realized by completely filling or partially filling the space of each first tooth gap 20a, and the inner peripheral side of the outer rotor 20 is an arc-shaped surface with a smooth transition. The arc-shaped surface can greatly reduce the wind resistance encountered by the rotor structure 100 during its rotation around the axis.
  • the inner peripheral side of the outer rotor 20 forms an arc-shaped circumference and is concentrically arranged with the arc-shaped circumference on the outer peripheral side of the outer rotor 20, so that the wind resistance can be further reduced during the rotation of the rotor structure 100 around the axis, and the output efficiency can be improved.
  • the width of the first tooth gap 20 a gradually decreases inward along the radial direction of the outer rotor 20 .
  • the section of the first tooth gap 20a along the radial direction of the rotor structure 100 is wedge-shaped, that is, the first tooth gap 20a
  • the opening angle gradually decreases from the inside to the outside. In this way, during the rotation, the tooth side walls of two adjacent first rotor lobe teeth 21 opposite to the first filling 22 form a squeeze, thereby preventing the first filling 22 from the first filling.
  • the opening of a tooth gap 20a comes out.
  • the outer rotor 20 further includes a first detachment preventing structure 61 .
  • the first filler 22 is a high-strength plastic, and the first filler 22 is injected into each first tooth gap 20a by means of in-mold injection molding. Therefore, the first filler 22 is used in the It has the characteristics of fluidity in the molten state, and the first filler 22 is adapted to the outline of the first anti-loosening structure 61 before solidification, thereby increasing the contact between the solidified first filler 22 and the first rotor teeth 21 The point of stress between the side walls reduces the first filler 22 coming out of the corresponding first tooth gap 20a.
  • the first anti-loosening structure 61 includes a first protrusion 611 provided on the sidewall of the first rotor tooth 21 . Understandably, using the first convex portion 611 increases the stress point between the first rotor tooth 21 and the first filler 22 .
  • the first protruding portion 611 can be a protruding post, a protruding bone, or a tendon structure formed on the first rotor lobe 21 to prevent relative movement between the first filler 22 and the first rotor lobe 21 .
  • the first anti-loosening structure 61 includes a first concave portion 612 provided on the sidewall of the first rotor tooth 21 .
  • the molten first filler 22 can flow into the first concave portion 612 , so that after solidification, multiple stress points are formed between the sidewall of the first rotor protruding tooth 21 , so as to achieve the purpose of detachment.
  • the first anti-loosening structure 61 includes a first protrusion 611 provided on the side wall of the first rotor tooth 21 and a first recess 612 provided on the side wall of the first rotor tooth 21 .
  • the first anti-off structure 61 can be formed by a combination of the first convex portion 611 and the first concave portion 612, and the number and positions of the first convex portion 611 and the first concave portion 612 are not changed. limited.
  • the inner rotor 30 is arranged coaxially with the outer rotor 20 and placed inside the outer rotor 20 , and the inner rotor 30 can rotate coaxially with the outer rotor 20 .
  • the inner rotor 30 includes a second rotor yoke 33 .
  • the second rotor teeth 31 are provided on the outer peripheral side of the second rotor yoke 33 .
  • Two adjacent second rotor teeth 31 are spaced apart to form a second tooth gap 30a. It can be understood that the distribution of the second rotor teeth 31 on the second rotor yoke 33 is evenly spaced or non-uniformly distributed, which is not limited here. Therefore, the width of each second tooth gap 30a It can be different, and you can choose according to the actual usage scenario.
  • the second filler 32 is placed in the second tooth gap 30a.
  • the second filler 32 is non-magnetic.
  • the second filler 32 will not affect the distribution of the magnetic circuit, and no magnetic field lines will flow through the second filler 32 .
  • the second filler 32 can be a non-metallic material, such as plastic with high structural strength, or the second filler 32 can also be a lightweight non-magnetic metal, such as aluminum alloy.
  • the second filler 32 can fill part of the space of the second tooth gap 30a; or, fill the entire space of the second tooth gap 30a, and the end surface of the second filler 32 away from the second rotor yoke 33 is flush on the tooth top surface of the second rotor lobe 31; or, the second filler 32 is filled in the entire space of the second tooth gap 30a, and the end surface of the second filler 32 away from the second rotor yoke 33 is higher than the second rotor The tooth top surface of the convex tooth 31.
  • the second filler 32 fills each of the second tooth gaps 30a accordingly, reducing or eliminating the wind resistance of the inner rotor 30 during rotation, thereby improving the output efficiency of the rotor structure 100, and at the same time, improving the convexity of the second rotor.
  • the structural strength of the teeth 31 on the second rotor yoke 33 is provided.
  • the number of second rotor lobe teeth 31 is the same as the number of first rotor lobe teeth 21 , each second rotor lobe tooth 31 faces each first rotor lobe tooth 21 , and, There is a one-to-one correspondence between the first rotor teeth 21 .
  • the number of the second rotor lobe teeth 31 and the number of the first rotor lobe teeth 21 may also be unequal, so that each first rotor lobe tooth 21 and each second rotor lobe tooth 31 have a phase misalignment and Corresponding to the arrangement of coexistence.
  • the end surface of the second filler 32 away from the second rotor yoke 33 is flush with the top end surface of the second rotor tooth 31 and transitions smoothly.
  • the second filler 32 completely fills the space of each second tooth space 30a, and makes the outer peripheral side of the inner rotor 30 an arc-shaped surface with a smooth transition.
  • the arc-shaped surface can greatly reduce the wind resistance encountered by the rotor structure 100 during its rotation around the axis.
  • the rotor structure 100 can be lowered when the rotor structure 100 rotates around the axis.
  • the effect of being subjected to wind resistance during the rotation process is better, and it is more conducive to processing and manufacturing.
  • the outer peripheral side of the inner rotor 30 forms an arc-shaped circumference and is concentrically arranged with the arc-shaped circumference on the inner peripheral side of the inner rotor 30. In this way, the wind resistance can be further reduced during the rotation of the rotor structure 100 around the axis, and the output efficiency can be improved. .
  • the width of the second tooth gap 30 a gradually decreases outward along the radial direction of the inner rotor 30 . It can be understood that when the inner rotor 30 rotates around the axis, the second filler 32 is subject to centrifugal force and loosens.
  • the first The cross-section of the second tooth space 30a along the radial direction of the rotor structure 100 is wedge-shaped, that is, the opening angle of the second tooth space 30a gradually decreases from the inside to the outside, so that during the rotation, two adjacent second rotor convex teeth
  • the sidewalls of the opposite teeth 31 press the second filler 32, so as to prevent the second filler 32 from coming out from the opening of the second tooth space 30a.
  • the inner rotor 30 further includes a second detachment preventing structure 62 .
  • the second filler 32 is a high-strength plastic, and the second filler 32 is injected into each second tooth gap 30a by means of in-mold injection molding. Therefore, the second filler 32 is used in the It has the characteristics of fluidity in the molten state, and the second filler 32 is adapted to the outline of the second anti-off structure 62 before solidification, thereby increasing the bond between the solidified second filler 32 and the second rotor teeth 31 The point of stress between the side walls reduces the second filler 32 coming out of the corresponding second tooth gap 30a.
  • the second anti-loosening structure 62 includes a second protrusion 621 disposed on the sidewall of the second rotor tooth 31 .
  • the second convex portion 621 increases the stress point between the second rotor tooth 31 and the second filler 32 .
  • the second protruding portion 621 can be a protruding post, a protruding bone or a tendon structure formed on the second rotor lobe 31 to prevent the relative movement between the second filler 32 and the second rotor lobe 31 .
  • the second anti-loosening structure 62 includes a second concave portion 622 defined on the sidewall of the second rotor protruding tooth 31 .
  • the molten second filler 32 can flow into the second concave portion 622 , so that after solidification, multiple stress points are formed between the sidewall of the second rotor tooth 31 , so as to achieve the purpose of detachment.
  • the second anti-loosening structure 62 includes a second protrusion 621 disposed on the side wall of the second rotor tooth 31 and a second recess 622 formed on the side wall of the second rotor protrusion 31 .
  • the second anti-off structure 62 can be formed by a combination of the second protrusions 621 and the second recesses 622, and the number and positions of the second protrusions 621 and the second recesses 622 are not changed. limited.
  • the opposite ends of the stator main body 11a in the radial direction of the ring structure face away from each other and protrude outward along the circumferential direction of the ring structure to form a first stator tooth portion 11a1 and a second stator tooth portion 11a2 .
  • the first stator teeth 11a1 of the stator main bodies 11a of two adjacent winding units 10 are spliced and connected, that is, the two winding units 10 are connected at the respective first stator teeth 11a1.
  • a splicing connection relationship is formed; or, the second stator teeth 11a2 of the stator main bodies 11a of two adjacent winding units 10 are spliced and connected, that is, the two winding units 10 form a splicing connection at their respective second stator teeth 11a2 relationship; or, the first stator tooth portion 11a1 and the second stator tooth portion 11a2 of the stator main body 11a of two adjacent winding units 10 are spliced and connected, that is, the two winding units 10 are connected on the respective first stator teeth Part 11a1 and the second stator tooth part 11a2 form a splicing connection relationship.
  • first stator teeth 11a1 of each stator main body 11a should correspond to each other, and the second stator teeth 11a2 of each stator main body 11a should correspond to each other.
  • the splicing connection form of the hole shaft structure is adopted, that is, the first stator tooth part 11a1 and/or the second stator tooth part 11a2 of one winding unit 10 is provided with a shaft structure, and the first stator tooth part 11a2 of the other winding unit 10 is provided with a shaft structure.
  • the stator tooth portion 11a1 and/or the second stator tooth portion 11a2 are provided with a hole structure matching the shaft structure.
  • the splicing connection form of slot tooth structure is adopted, that is, the tooth structure is set on the first stator tooth part 11a1 and/or the second stator tooth part 11a2 of one winding unit 10, and the first stator tooth part 11a2 of the other winding unit 10
  • the stator tooth portion 11a1 and/or the second stator tooth portion 11a2 are provided with a slot structure matching the tooth structure.
  • a combined splicing connection form of slot tooth structure and shaft hole structure is adopted, wherein the first stator tooth part 11a1 of one winding unit 10 is provided with a tooth structure, the second stator tooth part 11a2 is provided with a shaft structure, and the other winding unit 10
  • the first stator tooth part 11a1 of 10 is provided with a slot structure matching the tooth structure, and the second stator tooth part 11a2 is provided with a hole structure matching the shaft structure.
  • the stator structure 100 is formed by surrounding a plurality of winding units 10 in the circumferential direction, and the winding units 10 include a stator main body 11a.
  • the first stator tooth portion 11a1 and the second stator tooth portion 11a2 formed by protruding outwards from the opposite ends of the stator main body 11a, and when assembling, the first stator tooth portion 11a1 of the two adjacent stator main bodies 11a are carried out. Splicing connection; or, the second stator teeth 11a2 of two adjacent stator main bodies 11a are spliced; or, the first stator teeth 11a1 and the second stator teeth 11a2 of two adjacent stator main bodies 11a are spliced and connected .
  • the stator structure 100 of the present application does not have a fixed annular stator yoke, and each winding unit 10 can be disassembled independently, which facilitates later maintenance and lower maintenance costs.
  • the stator structure 100 includes a first splicing structure 71 , and the first stator teeth 11 a 1 of two adjacent stator bodies 11 a are spliced and connected through the first splicing structure 71 .
  • two adjacent winding units 10 are spliced and assembled at the first stator tooth portion 11a1 , and are detachably connected at the first stator tooth portion 11a1 through the first splicing structure 71 .
  • the first splicing structure 71 is a slot tooth structure, that is, the first stator tooth portion 11a1 of one winding unit 10 is provided with a tooth structure, and the first stator tooth portion 11a1 of the other winding unit 10 is provided with a tooth structure.
  • the slot structures with matching structures can realize quick disassembly and assembly of the two winding units 10 through cog fit during assembly.
  • the arrangement positions of the tooth structure and the groove structure can be exchanged.
  • the first splicing structure 71 is a hole shaft structure, that is, the first stator tooth part 11a1 of one winding unit 10 is provided with a shaft structure, and the first stator tooth part 11a1 of the other winding unit 10 is provided with a shaft structure.
  • the hole structure matching the structure realizes quick disassembly and assembly of the winding unit 10 during assembly, that is, through the hole-axis fit.
  • the arrangement positions of the shaft structure and the hole structure can be exchanged.
  • the first splicing structure 71 includes a third protrusion 711 provided on one of the first stator teeth 11a1 and a third protrusion 711 provided on the other first stator tooth 11a1.
  • Three concave parts 712 , the third convex part 711 is matched with the third concave part 712 .
  • the third convex portion 711 can be a structure such as a boss, a protruding tooth, or a protrusion; the third concave portion 712 can be a structure such as a groove or a blind hole.
  • each winding unit 10 is spliced one by one through the third convex portion 711 and the third concave portion 712; or, assemble along the axial direction of the stator structure 100, each winding unit 10 passes through the third The three convex parts 711 and the third concave part 712 are spliced one by one.
  • the first stator tooth portion 11 a 1 has two first splicing end surfaces 71 a disposed opposite to each other. It can be understood that, during assembly, when splicing is performed at the first stator tooth portion 11a1 of each winding unit 10, the current first stator tooth portion 11a1 has two opposite first splicing end surfaces 71a, which are respectively used for The set first stator tooth portion 11a1 and the rear set first stator tooth portion 11a1 abut against each other, thereby realizing a splicing connection.
  • a third convex portion 711 or a third concave portion 712 is provided on the two first splicing end surfaces 71 a. Then, on the first stator tooth portion 11a1 of the winding unit 10 at the front position and the rear position of the currently assembled winding unit 10, two third concave portions 712 matching the third convex portion 711 are provided. , or, on the first stator tooth portion 11a1 of the winding unit 10 at the front position and the rear position of the currently assembled winding unit 10, there are two third protrusions matching the third concave portion 712 711.
  • the final splicing result is: the winding units 10 with the third protrusions 711 provided on the two first splicing end faces 71a are arranged at intervals along the circumferential direction of the stator structure 100, and the first positioning of the winding units 10 at the front and rear positions Both splicing end surfaces of the sub-tooth portion 11a1 are provided with third concave portions 712 for splicing with them.
  • one of the first splicing end surfaces 71 a is provided with a third convex portion 711
  • the other first splicing end surface 71 a is provided with a third concave portion 712 .
  • a third concave portion 712 matching the current third convex portion 711 is provided, and, in the current assembly
  • the first stator tooth portion 11a1 of the winding unit 10 at the rear position of the winding unit 10 is provided with a third convex portion 711 matching the current third concave portion 712, and the final splicing result is: one of the The winding units 10 with the third convex portion 711 on the first splicing end surface 71 a and the third concave portion 712 on the other first splicing end surface 71 a can be arranged in sequence along the circumferential direction of the stator structure 100 .
  • the stator structure 100 includes a second splicing structure 72 , and the second stator teeth 11 a 2 of two adjacent stator bodies 11 a are spliced and connected by the second splicing structure 72 .
  • two adjacent winding units 10 are spliced and assembled at the second stator teeth 11a2, and detachable at the second stator teeth 11a2 through the second splice structure 72 connect.
  • the second splicing structure 72 is a slot tooth structure, that is, during assembly, the second stator tooth portion 11a2 of one of the winding units 10 is provided with a tooth structure, while the second stator tooth portion 11a2 of the other winding unit 10 is provided with a tooth structure.
  • the slot structure matched with the tooth structure, that is, the fast disassembly and assembly of the two winding units 10 can be realized through cogging.
  • the arrangement positions of the tooth structure and the groove structure can be exchanged.
  • the second splicing structure 72 is a hole shaft structure, that is, during assembly, the second stator tooth portion 11a2 of one winding unit 10 is provided with a shaft structure, and the second stator tooth portion 11a2 of the other winding unit 10 is provided with a shaft structure.
  • the hole structure adapted to the shaft structure, that is, the quick disassembly and assembly of the winding unit 10 can be realized through the cooperation of the hole and the shaft.
  • the arrangement positions of the shaft structure and the hole structure can be exchanged.
  • the second splicing structure 72 includes a fourth protrusion 721 provided on one of the second stator teeth 11a2 and a fourth recess provided on the other second stator tooth 11a2 722 , the fourth convex portion 721 is matched with the fourth concave portion 722 .
  • the fourth convex portion 721 can be a structure such as a boss, a convex tooth, or a protrusion;
  • the fourth concave portion 722 can be a structure such as a groove or a blind hole.
  • each winding unit 10 when assembling along the circumferential direction of the stator structure 100, each winding unit 10 is spliced one by one through the fourth convex portion 721 and the fourth concave portion 722; or, when assembling along the axial direction of the stator structure 100, each winding unit 10 passes through the fourth The four convex parts 721 and the fourth concave part 722 are spliced one by one.
  • the second stator tooth portion 11 a 2 has two second splicing end surfaces 172 a disposed opposite to each other. It can be understood that during assembly, when splicing is performed at the second stator teeth 11a2 of each winding unit 10, the current second stator teeth 11a2 have two opposite second splicing end faces 172a, which are respectively used for positioning with the front The second stator tooth part 11a2 of the second stator tooth part 11a2 of the second position abuts against the second stator tooth part 11a2 of the rear position, thereby realizing a splicing connection.
  • fourth protrusions 721 or fourth recesses 722 are provided on the two second splicing end surfaces 172 a. Then, two fourth concave portions 722 corresponding to the fourth convex portion 721 are provided on the second stator tooth portion 11a2 of the winding unit 10 at the front position and the rear position of the currently assembled winding unit 10; or Two fourth protrusions 721 corresponding to the fourth recesses 722 are provided on the second stator teeth 11 a 2 of the winding unit 10 at the front and rear positions of the currently assembled winding unit 10 .
  • the final splicing result is: the winding units 10 in which the fourth protrusions 721 are provided on the two second splicing end faces 172a are arranged at intervals along the circumferential direction of the stator structure 100, and the second stator of the winding units 10 in the front and rear positions
  • the fourth concave portion 722 is provided on both splicing end surfaces of the tooth portion 11a2 for splicing with it.
  • one of the second splicing end surfaces 172 a is provided with a fourth convex portion 721
  • the other second splicing end surface 172 a is provided with a fourth concave portion 722 .
  • a fourth concave portion 722 matching the current fourth convex portion 721 is provided on the second stator tooth portion 11a2 of the winding unit 10 at the front position of the currently assembled winding unit 10, and, in the currently assembled The second stator tooth portion 11a2 of the winding unit 10 at the rear position of the winding unit 10 is provided with a fourth convex portion 721 matching the current fourth concave portion 722, and the final splicing result is: one of the second The winding units 10 with the fourth convex portion 721 on the spliced end surface 172a and the fourth concave portion 722 on the other second spliced end surface 172a can be arranged in sequence along the circumferential direction of the stator structure 100 .
  • the stator structure 100 includes a first splicing structure 71 and a second splicing structure 72, and the first stator teeth 11a1 of two adjacent stator bodies 11a are spliced and connected by the first splicing structure 71. and, the second stator teeth 11a2 of two adjacent stator main bodies 11a are spliced and connected by the second splicing structure 72 .
  • the first splicing structure 71 includes a third protrusion 711 provided on one of the first stator teeth 11a1 and a third protrusion 711 provided on the other first stator tooth 11a1.
  • Concave 712, the third protruding part 711 is compatible with the third concavity 712;
  • the fourth concave portion 722 on the tooth portion 11 a 2 , the fourth convex portion 721 is matched with the fourth concave portion 722 .
  • the first stator tooth part 11a1 has two first splice end surfaces 71a arranged opposite to each other, and the second stator tooth part 11a2 has two second splice end surfaces 172a arranged opposite to each other.
  • first splicing end surfaces 71a of the front and rear winding units 10 abut against each other; at the same time, the second splicing end surfaces 172a of the front and rear winding units 10 also abut against each other.
  • the third protruding parts 711 are provided on the two first splicing end faces 71a, then the fourth protruding parts 721 are also provided on the two second splicing end faces 172a; or,
  • the fourth concavities 722 may be formed on the two second splicing end surfaces 172a; or, the third convex portion 711 is formed on one of the second splicing end surfaces 172a, and the third concave portion 712 is formed on the other second splicing end surface 172a.
  • one of the first splicing end faces 71a is provided with a third convex portion 711, and the other first splicing end face 71a is provided with a third concave portion 712, then the two second splicing ends
  • Both end surfaces 172a may be provided with fourth convex portions 721; or, two second splicing end surfaces 172a may be provided with fourth concave portions 722; or, one of the second splicing end surfaces 172a may be provided with third convex portions 711,
  • the other second joining end surface 172a defines a third concave portion 712 .
  • the third concave portion 712 is provided on the two first splicing end surfaces 71a, then the fourth convex portion 721 can be provided on the two second splicing end surfaces 172a; or, both The fourth concavities 722 may be formed on each of the second splicing end surfaces 172a; or, one of the second splicing end surfaces 172a is provided with a third convex portion 711, and the other second splicing end surface 172a is formed with a third concave portion 712.
  • the stator body 11a includes an I-shaped main body portion 11a3 and a coil 11a1 wound on the main body portion 11a3.
  • the opposite ends of the main body portion 11a3 protrude outward to form first stator teeth. part 11a1 and the second stator tooth part 11a2.
  • the main body parts 11a3 of each winding unit 10 are directly connected through the first stator tooth part 11a1 and the second stator tooth part 11a2.
  • the connection manner of the first stator tooth portion 11a1 and the second stator tooth portion 11a2 by splicing is the same as that of the foregoing embodiment, and will not be repeated here.
  • the stator main body 11a includes a main body part 11a3, a non-magnetically conductive sleeve 11a4 sleeved on the outside of the main body part 11a3, and a coil 11a1 wound on the sleeve 11a4.
  • the opposite sides of the sleeve 11a4 Both ends protrude outward to form a first stator tooth portion 11a1 and a second stator tooth portion 11a2.
  • the sleeve 11a4 has a hollow structure.
  • the main body portions 11a3 of the respective winding units 10 are not in contact, but are connected through an additional sleeve 11a4.
  • connection manner of the first stator tooth portion 11a1 and the second stator tooth portion 11a2 by splicing is the same as that of the foregoing embodiment, and will not be repeated here.
  • the shape of the main body part 11a3 is not limited, it can be put into the kit 11a4, and can be I-shaped, T-shaped, or I-shaped.
  • the first splicing structure 71 and the second splicing structure 72 have different structural forms, that is, the first splicing structure 71 includes a first shaft disposed on one of the first stator teeth 11a1 and a first shaft disposed on the other. A first hole on the first stator tooth portion 11a1, the first shaft fits into the first hole. It can be understood that the splicing connection of two adjacent winding units 10 is realized through cooperation between the first shaft and the first hole at the first stator tooth portion 11a1 of the two winding units 10 .
  • the second joining structure 72 includes a second shaft disposed on one of the second stator teeth 11a2 and a second hole opened on the other second stator teeth 11a2, and the second shaft is matched with the second hole. Then, when two adjacent winding units 10 are spliced and connected, the second shaft at the second stator tooth portion 11a2 of the two winding units 10 cooperates with the second hole.
  • the first shaft at the first stator tooth portion 11a1 of the two winding units 10 is matched with the first hole, and the two winding units
  • the second shaft and the second hole at the second stator tooth part 11a2 of 10 cooperate to realize it together.
  • the stator structure 100 may further include a stator yoke 20 in an annular structure.
  • Each stator main body 11 a includes a plurality of first sheet bodies 10 a stacked, and here, the stator main body 11 a and the stator yoke 20 are manufactured separately.
  • typesetting is carried out on the board with the outline of the first sheet 10a, punching to obtain a plurality of first sheets 10a, and the plurality of first sheets 10a are stacked in sequence along the thickness direction, and, The number of the first sheets 10a assembled to form each stator main body 11a is the same; and the stator yoke 20 can adopt the same method, first punched into sheets, and then formed by stacking each sheet, or the stator yoke 20 is directly cast into a whole.
  • typesetting is designed on the sheet according to the outline of the first sheet 10a, without the need to punch out the stator yoke integrally, the remaining material between each first sheet 10a is less, and the arrangement is more compact, which is beneficial to the sheet. utilization rate is higher. Therefore, more first sheet bodies 10 a of combined stator main bodies 11 a can be produced in the punching process stage.
  • the first piece 10a is made of a magnetically permeable material, for example, the first piece 10a is made of magnetic steel or the like.
  • the stator yoke 20 can also be made of a magnetically permeable material or a non-magnetically permeable material.
  • each stator main body 11a is arranged at intervals on the side wall of the stator yoke 20 with the central axis of the stator yoke 20 as the center, and the extension line of the middle line of each stator main body 11a passes through the center of the ring structure . It can be understood that each stator main body 11 a is radially arranged around the central axis of the stator yoke 20 .
  • each stator main body 11a can be connected with the stator yoke 20 by casting, that is, each stator main body 11a is fixed in the mold according to the set arrangement position, and then the stator yoke 20 is formed by casting. , and fix each stator main body 11a; or, slot or open a hole on the formed stator yoke 20, and then install each stator main body 11a on the stator yoke 20 again.
  • the stator body 11a and the stator yoke 20 of the stator structure 100 are manufactured separately and then assembled. Specifically, typesetting is carried out on the plate according to the outline of the stator main body 11a, and punched to form the first sheet 10a, and the first sheets 10a are stacked to form the stator main body 11a; and the stator yoke 20 can be punched first and then Manufactured in a layered manner, or cast in an integrated mold. Then, each stator main body 11a is arranged on the side wall of the stator yoke 20 at intervals around the center axis of the stator yoke 20 , and the middle line of each stator main body 11a extends to the center of the ring structure.
  • Each stator main body 11 a and the stator yoke 20 can be connected by casting, welding and other connection methods.
  • the stator main body 11 a and the stator yoke 20 are manufactured separately and then assembled. In this way, it is possible to avoid the problems of difficulty in plate layout and waste of materials caused by simultaneous punching of the stator main body 11 a and the stator yoke 20 .
  • each stator body 11 a is located outside the ring structure, the stator yoke 20 has an outer wall, and the same end of each stator body 11 a is connected to the outer wall of the stator yoke 20 . It can be understood that each stator body 11a is fixed by the stator yoke 20, and the free ends of each stator body 11a are away from the midpoint of the ring structure, so that in use, the rotor structure is sleeved on the outer peripheral side of the ring structure .
  • each stator body 11a is located inside the ring structure, the stator yoke 20 has an inner sidewall, and the same end of each stator body 11a is connected to the inner sidewall of the stator yoke 20 . It can be understood that each stator body 11a is fixed by the stator yoke 20, and the free ends of each stator body 11a point to the midpoint of the ring structure, so that, in use, the rotor structure is disposed inside the ring structure.
  • the stator yoke 20 has an inner side wall and an outer side wall opposite to the inner side wall, the ends of each stator main body 11a penetrate through the inner side wall and pass through the outer side wall, and the stator yoke Portion 20 is located in the middle of each stator body 11a.
  • the middle part of the stator main body 11a not only refers to a half position of the stator main body 11a, but may be any position except both end parts. It can be understood that through holes penetrating through the inner side wall and the outer side wall are opened on the stator yoke 20 , and each stator main body 11 a is passed through the corresponding through holes for fixing.
  • the stator yoke 20 is formed by mold casting. That is, in the assembly process, the stator main bodies 11a are arranged in order in the mold, and the stator yoke 20 is formed by casting molten metal, and the stator main bodies 11a are fixed, and at the same time, the fixed positions can be fixed. Make a selection. That is, the casting position can be at opposite ends of each stator main body 11a, or at the middle of each stator main body 11a.
  • the stator yoke 20 can also be formed by stacking sheets.
  • the stator yoke 20 includes a plurality of second sheets arranged in layers. A plurality of second sheets are obtained by punching according to the profile of the second sheet on the plate, and the plurality of second sheets are stacked in sequence along the thickness direction, and assembled to form the first sheet of each stator yoke 20 . The number of two pieces is the same.
  • the present application also provides an in-wheel motor, including the motor structure 100 described above.
  • the in-wheel motor provided by the embodiment of the present application has a short magnetic circuit on the basis of the above-mentioned motor structure 100, thereby reducing the loss of the motor and improving the efficiency of the motor, that is, the overall volume of the in-wheel motor is smaller and the output efficiency is higher.
  • the present application further provides a vehicle, including the above-mentioned in-wheel motor.
  • the vehicle can be a new energy electric vehicle or a gasoline-electric hybrid vehicle.
  • the vehicle provided in the embodiment of the present application has the above-mentioned in-wheel motor, and the vehicle has a good speed-up capability, and is more stable during driving.
  • the above are only optional embodiments of the application, and are not intended to limit the application.
  • various modifications and changes may occur in this application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present application shall be included within the scope of the claims of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请公开一种电机结构、轮毂电机及车辆,该电机结构(100)包括定子结构(10)、外转子(20)以及内转子(30)。定子结构(10)包括围绕形成环形结构的多个绕组单元(111),外转子(20)朝向定子结构(10)的内周侧形成N个第一转子凸齿(21),内转子(30)朝向定子结构(10)的外周侧形成M个第二转子凸齿(31)。在定子结构(10)的外周侧和内周侧分别设置一个外转子(20)和一个内转子(30),并且,外转子(20)和内转子(30)呈同轴设置。该种布设方式,实现双力矩的输出,整体体积更小,空间利用率更高。本申请的电机结构(100),其磁回路更短,避免漏磁问题,输出效率更高,输出转矩更大。

Description

电机结构、轮毂电机以及车辆
本申请要求于2021年12月29日在中国专利局提交的、申请号为202111644812.6、发明名称为“电机结构、轮毂电机及车辆”、申请号为202123430781.2、发明名称为“电机结构、轮毂电机及车辆”、申请号为202123430754.5、发明名称为“转子结构、轮毂电机及车辆”、申请号为202123388111.9、发明名称为“定子结构、轮毂电机及车辆”、申请号为202123388112.3、发明名称为“定子结构、电机及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体涉及一种电机结构、轮毂电机以及车辆。
背景技术
双转子电机具有两个机械轴,可以实现两个机械轴能量的独立传递。该种电机极大的减小了设备的体积和重量,也能够提高工作效率。
传统的双转子电机包括定子、内转子以及外转子,通常是在定子的径向具有相反方向的两个凸极,并在凸极上绕制绕组,定子轭部具有圆周方向的隔磁环,使得内、外绕组相互独立。
然而,上述双转子电机结构,磁回路闭合路径需通过整个定子轭部和转子轭部,结果是磁回路过长,存在漏磁等问题,进而导致双转子电机的输出转矩较低。
技术问题
本申请实施例的目的之一在于:提供一种电机结构、具有该电机结构的轮毂电机以及具有该轮毂电机的车辆,旨在解决双转子电机结构的输出转矩低的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种电机结构,包括呈环形结构的定子结构、套设于所述定子结构的外周侧的外转子以及置于所述定子结构的内周侧的内转子,所述外转子和所述内转子同轴设置,所述定子结构包括围绕形成环形结构的多个绕组单元,所述外转子朝向所述定子结构的内周侧形成N个第一转子凸齿,所述内转子朝向所述定子结构的外周侧形成M个第二转子凸齿;
其中,当所述绕组单元通电时,通电的两个所述绕组单元、与通电的两个所述绕组单元相对应的两个所述第一转子凸齿、以及与通电的两个所述绕组单元相对应的两个第二转子凸齿形成磁回路。
第二方面,提供了一种本申请还提供一种轮毂电机,包括上述所述的电机结构。
第三方面,提供一种本申请还提供一种车辆,包括上述所述的轮毂电机。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的电机结构的主视图;
图2为图1中A处的放大图;
图3为本申请实施例提供的电机结构在工作状态下磁通流向的示意图;
图4为本申请实施例提供的电机结构的另一主视图;
图5为本申请实施例提供的电机结构的定子结构中w相处于通电状态下的主视图;
图6为本申请实施例提供的电机结构的定子结构中v相处于通电状态下的主视图;
图7为本申请实施例提供的电机结构的定子结构中u相处于通电状态下的主视图;
图8为本申请实施例提供的电机结构的定子结构、外转子以及内转子的结构示意图;
图9为本申请实施例提供的电机结构的局部放大图;
图10为本申请实施例提供的电机结构的另一局部放大图;
图11为本申请实施例提供的电机结构的又一局部放大图;
图12为本申请实施例提供的电机结构的绕组单元的结构示意图;
图13为本申请实施例提供的电机结构的绕组单元的另一结构示意图;
图14为本申请实施例提供的外转子和内转子的主视图;
图15为图14中B处的放大图;
图16为本申请实施例一提供的外转子和内转子无填充物状态下的局部放大图;
图17为本申请实施例二提供的外转子和内转子无填充物状态下的局部放大图;
图18为本申请实施例三提供的外转子和内转子无填充物状态下的局部放大图;
图19为本申请实施例提供的定子结构的主视图;
图20为图19中C处的放大图;
图21为本申请其中一实施例提供的定子结构的局部放大图;
图22为本申请其中一实施例提供的定子结构的另一局部放大图;
图23为本申请另一实施例提供的定子结构的局部放大图;
图24为本申请又一实施例提供的定子结构的局部放大图;
图25为本申请又一实施例提供的定子结构的另一局部放大图;
图26为本申请再一实施例提供的定子结构的局部放大图;
图27为本申请实施例提供的定子结构的绕组单元的爆炸图;
图28为本申请实施例提供的定子结构的绕组单元的另一爆炸图;
图29为本申请实施例一提供的定子结构的主视图;
图30为本申请实施例一提供的定子结构的定子主体的结构示意图;
图31为本申请实施例二提供的定子结构的主视图;
图32为本申请实施例三提供的定子结构的主视图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
第一方面,请参考图1至图3,本申请实施例的电机结构100包括定子结构10、外转子20和内转子30。
具体地,定子结构10呈的环形结构。外转子20套设在定子结构10的外周侧,内转子30置于定子结构10的内周侧。外转子20和内转子30绕于定子结构10的中轴线同轴转动,在获得相同力矩输出的情况下,本申请实施例的电机结构100的整体体积更小。
定子结构10包括沿着一圆周依次排列形成环形结构的多个绕组单元111。各绕组单元111在通电情况下产生磁场。
外转子20朝向定子结构10的内周侧形成N个第一转子凸齿21,内转子30朝向定子结构10的外周侧形成M个第二转子凸齿31,其中,N和M为正整数。当外转子20、内转子30相对定子结构10转动时,第一转子凸齿21、第二转子凸齿31会间断性地与绕组单元111正对。第一转子凸齿21的数量和第二转子凸齿31的数量可相同也可不同。在二者数量相同情况下,外转子20和内转子30能够获得相同或相近似的转动力矩,而在二者数量差异较大的情况下,外转子20和内转子30能够获得差异化较大的转动力矩。
在使用时,对绕组单元111进行通电,通电的两个绕组单元111、与通电的两个绕组单元111相对应的两个第一转子凸齿21、以及与通电的两个绕组单元111相对应的两个第二转子凸齿31形成磁回路,该通电的两个绕组单元111可以是相邻设置的,也可以是相隔设置的(两者之间还存在其他绕组单元111)。请参考图3,当相邻的两个绕组单元111处于通电状态时,当前两个绕组单元111、当前两个绕组单元111相对或接近的两个第一转子凸齿21以及当前两个绕组单元111相对或接近的两个第二转子凸齿31形成磁回路,与相隔设置的两个绕组通电的情况相比,该磁回路最短,磁阻最小,获得转动力矩最大,能够减小电机的损耗,提高电机效率。
外转子20和内转子30同轴转动的原理如下:参考图3,磁通在沿着相邻近的两个绕组单元111、两个第一转子凸齿21以及两个第二转子凸齿31形成闭合磁路径,随着磁场扭曲对第一转子凸齿21和第二转子凸齿31产生切向拉力。具体地,当通电的两个绕组单元111的中间线L1与对应的第一转子凸齿21的中间线L2和对应的第二转子凸齿31的中间线L3相错开时,产生的磁场则迫使第一转子凸齿21的中间线L2和第二转子凸齿31的中间线L3与当前通电的两个绕组单元111的中间线L1相重合,在重合的过程中,则对外转子20和内转子30产生切向拉力,而当第一转子凸齿21的中间线L2和第二转子凸齿31的中间线L3与当前通电的两个绕组单元111的中间线L1相对齐,处于重合状态时,当前的第一转子凸齿21和第二转子凸齿31和对应的绕组单元111完全吸合,此时,获得的切向拉力最小。
示例地,当电机结构100应用于永磁电机上时,各绕组单元111接入交流电,通过调整各绕组单元111的通电顺序来形成磁通,使得外转子20和内转子30获得切向拉力,最终使得外转子20和内转子30同轴转动。
示例地,当电机结构100应用于开关磁阻电机上时,各绕组单元111是采用局部顺次通电的方式,即,仅对局部绕组单元111进行通电。这样,通过局部绕组单元111进行通断电的方式,来实现外转子20和内转子30同轴转动。
同时,在本实施例中,磁回路的路径大小是可调控的,即,外转子20和内转子30所输出的力矩大小是调控的。例如,当相邻的两个绕组单元111处于通电状态时,当前两个绕组单元111、当前两个绕组单元111相对的两个第一转子凸齿21以及当前两个绕组单元111相对的两个第二转子凸齿31形成一个磁回路,此时,磁回路最短。或者,处于通电状态下的两个绕组单元111之间至少存在一个未通电的绕组单元111,那么,此时,所形成的磁回路的路径更大,磁阻也更大,适用于输出功率更小的电机。
需要说明地是,本申请的电机结构100,是由一个外设电源对定子结构10进行供电,以实现外转子20和内转子30的同轴转动。例如,当电机结构100应用于永磁电机上时,由该外设电源为各绕组单元111进行供电,通过调整各绕组单元111的通电顺序来形成磁通。或者,当电机结构100应用于开关磁阻电机上时,则是由该外设电源对局部各绕组单元111进行顺次通断电。
本申请实施例提供的电机结构100,在呈环形结构的定子结构10的外周侧和内周侧分别设置一个外转子20和一个内转子30,并且,外转子20和内转子30呈同轴设置,即满足同轴转动的需要。该种布设方式,实现双力矩的输出,同时,整体体积更小,空间利用率更高。具体地,当绕组单元111通电时,通电的两个绕组单元111产生磁场,磁感应线则由当前的绕组单元111的一端流出,经过当前绕组单元111对应的第一转子凸齿21,再流经另一绕组单元111所对应的第一转子凸齿21后,进入另一绕组单元111,并且,经由另一绕组单元111的另一端进入其对应的第二转子凸齿31,再流经当前绕组单元111对应的第二转子凸齿31后,回到当前绕组单元111,以上为一个磁回路,如图3所示,即该磁回路的路径为:绕组单元a1-第一转子凸齿b1-第一转子凸齿b2-绕组单元a2-第二转子凸齿c1-第二转子凸齿c2-绕组单元a1,磁回路以最短的路径形成闭环,可以理解,上述的a1、a2、b1、b2、c1、c2仅用于示意名称相同但位置不同的两个部件。随着磁场扭曲对第一转子凸齿21产生切向拉力,而使得外转子20绕于定子结构10的中轴线转动,同理地,磁场扭曲也对第二转子凸齿31产生切向拉力,内转子30则能够绕于定子结构10的中轴线转动,即在同一电机中获得双力矩的输出。综上,本申请实施例的电机结构100,其磁回路更短,避免漏磁问题,输出效率更高,输出转矩更大。
请参考图4至图7,在一个实施例中,将本申请实施例的电机结构100应用于开关磁阻电机中,整个定子结构10等分为X个分区,可选地,X 为大于等于3的正整数,每个分区中包含相同数量的定子绕组11,在任一通电状态下,每个分区中有一个定子绕组通电,同时通电的这X个定子绕组为一相,也即,在每一个分区中,每一相对应一个定子绕组,由此可以得出,每个分区中的定子绕组数与相数A相等。定子结构10的相数为A,可选地,A为大于等于3的正整数,例如,该电机结构100为三相、四相或五相电机。每个相中具有X个定子绕组11,其中,相邻的n个绕组单元111组成定子绕组11,n为偶数,例如,每个定子绕组11中的绕组单元111可为两个、四个、六个等。具体地,定子结构10的分区数,定子绕组11的相数以及定子绕组11中的绕组单元111的数量可根据需要进行调整。图5至图7中示意的定子结构10中,X=3、A=3、n=8,即三个分区,每个分区包含u、w、v三组定子绕组11,整个定子结构10包括u、w、v三相绕组,每个定子绕组11含有八个绕组单元111。在另一实施例中,定子结构10的相数、分区以及绕组单元的数量可为其他值,例如,X=5、A=4、n=10,即,定子结构分五个区,每个分区包含四个定子绕组11,以及,整个定子结构包括四相绕组,每个定子绕组11含有十个绕组单元111。综上,以此类推。
在开关磁阻电机中,第一转子凸齿21的数量等于第二转子凸齿31的数量,并且,第一转子凸齿21的数量N= A*n*X+X。
示例地,如图4所示,该电机结构100为三相电机,那么,定子结构10的相数为三,并且,定位结构10的环形圆周被等分为三个分区,每个相中具有三个定子绕组11,每个定子绕组11具有八个绕组单元111。那么,第一转子凸齿21的数量和第二转子凸齿31的数量N=3*8*3+3,为75个。
在一个实施例中,外转子20上的各第一转子凸齿21呈均匀分布,即每个第一转子凸齿21之间的间距是相同的。
在另一个实施例中,外转子20上的各第一转子凸齿21呈均匀分布,并且,内转子30上的各第二转子凸齿31呈均匀分布。
当第一转子凸齿21的数量和第二转子凸齿31的数量相同时,以定子结构10的中轴线为中心点,内转子30的各第二转子凸齿31则与外转子20的各第一转子凸齿21呈辐射状对应。这样,能够始终保证每两个第一转子凸齿21、其所对应的两个第二转子凸齿31以及二者之间存在两个绕组单元111形成最短磁回路。
请参考图2,在一个实施例中,当第一转子凸齿21和第二转子凸齿31的数量相同时,第一转子凸齿21的齿角度α和第二转子凸齿31的齿角度也相同,并且,二者的齿角度α与绕组单元111的角度相同,并且,α=360°/(A*n*X+X);相邻两个定子绕组11的最外侧的两个绕组单元111的中间线的夹角β=α*(A+1)/A。这里,第一转子凸齿21的齿角度α为相邻两个第一转子凸齿21的中间线的夹角,第二转子凸齿31的齿角度为相邻两个第二转子凸齿31的中间线的夹角;以及,绕组单元111的齿角度为同一定子绕组中相邻两个绕组单元111的中间线的夹角。
示例地,定子结构10的环形圆周被分为三个分区,每一分区具有三个定子绕组11,即相数为三,每个定子绕组11由八个绕组单元111组成,第一转子凸齿21的数量和第二转子凸齿31的数量为75个,那么,α=360°/75=4.8°,以及,相邻两个定子绕组11之间的夹角β=6.4°。
或者,示例地,定子结构10的环形圆周被分为四个分区,每一分区具有四个定子绕组11,即相数为四,每个定子绕组11由六个绕组单元111组成,第一转子凸齿21的数量和第二转子凸齿31的数量为100个,那么,α=4.5°,以及,相邻两个定子绕组11之间的夹角β=6°。
综上可知,第一转子凸齿21的数量和第二转子凸齿31的数量多于绕组单元111的数量,例如,当定子结构10的环形圆周被分为三个分区,每一分区有三个定子绕组11,即相数为三,每个定子绕组11由八个绕组单元111组成,绕组单元111的数量为72个,第一转子凸齿21的数量和第二转子凸齿31的数量为75个,这样,各第一转子凸齿21与各绕组单元111之间能够形成更多错位,以及,各第二转子凸齿31与各绕组单元111之间也能够形成更多错位,这样,在绕组单元111处于通电状态时,则有更多的第一转子凸齿21的中间线和第二转子凸齿31的中间线与对应的绕组单元111的中间线存在错位,从而在电机启动的瞬间或换相的瞬间对外转子20和内转子30提供切向拉力,以使外转子20和内转子30相对定子结构10的中轴线进行绕轴转动。
请参考图2、图8以及图15,在一个实施例中,绕组单元111包括定子主体11aa以及绕于定子主体11aa上的线圈11b,在一个定子绕组11中,各绕组单元111的线圈11b串联。优选地,定子主体11aa呈I型结构,其相对两端分别朝向对应的第一转子凸齿21和第二转子凸齿31。线圈11b通过同一方向绕于定子主体11aa上。例如,线圈11b顺时针绕于定子主体11aa上或者逆时针绕于定子主体11aa上,从而在通电状态下,磁场的磁感线沿定子主体11aa的长度方向流经定子主体11aa。
显而易见的是,本申请实施例所说的第一转子凸齿21、第二转子凸齿31朝向定子主体11aa或绕组单元111,应理解为第一转子凸齿21、第二转子凸齿31与定子主体11aa或绕组单元111正对时的状态,而不应理解为任意时刻的状态。
定子主体11aa具有朝向第一转子凸齿21的第一定子齿部11a1以及朝向于第二转子凸齿31的第二定子齿部11a2,第一定子齿部11a1的齿宽c大于第二定子齿部11a2的齿宽d。可以理解地,线圈11b绕于第一定子齿部11a1和第二定子齿部11a2之间的定子主体11aa上,以防止线圈11b从定子主体11aa上脱出。以及,由于各第二转子凸齿31处于内圈,各第一转子凸齿21处于外圈,在二者数量相同的情况下,各第一转子凸齿21的间距应大于第二转子凸齿31的间距,因此,为了实现定子主体11aa和第一转子凸齿21,以及,定子主体11aa和第二转子凸齿31有更好的对应角度,定子主体11aa的第一定子齿部11a1的宽度应该大于第二定子齿部11a2的宽度。
具体地,请参考图8,在一个实施例中,外转子20的槽宽f与第一转子凸齿21的齿宽e的比值范围为1.6~1.9。这里,外转子20的槽宽f是指相邻两个第一转子凸齿21之间的间距。外转子20的槽宽f与第一转子凸齿21的齿宽e的比值可为1.6、1.7、1.8以及1.9等。当然,外转子20的槽宽f与第一转子凸齿21的齿宽e的比值也可为其他数值,例如,1.61、1.775、1.801等。
同时,外转子20的槽宽f和第一转子凸齿21的齿宽e的比值与内转子30的槽宽h与第二转子凸齿31的齿宽i的比值互不影响,二者的取值上可以相同,也可以不同。同理地,内转子30的槽宽h与第二转子凸齿31的齿宽i的比值范围为1.6~1.9。同理地,内转子30的槽宽h是指相邻两个第二转子凸齿31之间的间距。同时,内转子30的槽宽h与第一转子凸齿21的齿宽e的比值可为1.6、1.7、1.8以及1.9等。内转子30的槽宽h与第二转子凸齿31的齿宽i的比值也可为其他数值,例如,1.601、1.772、1.801等。
具体地,请参考图8,在一个实施例中,第一转子凸齿21的齿宽e与第一定子齿部11a1的齿宽c的比值范围为0.9~1.1。可以理解地,第一定子齿部11a1的齿宽c是指与第一转子凸齿21的齿宽e相对应的宽度。二者的比值可为0.9、1.0以及1.1等。当然,第一转子凸齿21的齿宽e与第一定子齿部11a1的齿宽c的比值也可为0.91、1.01以及1.001等。
同时,第一转子凸齿21的齿宽e与第一定子齿部11a1的齿宽c的比值与第二转子凸齿31的齿宽i与第二定子齿部11a2的齿宽d的比值互不影响,二者的取值上可以相同,也可以不同。同理地,第二转子凸齿31的齿宽i与第二定子齿部11a2的齿宽d的比值范围为0.9~1.1。这里,第二定子齿部11a2的齿宽d是指与第二转子凸齿31的齿宽i相对应的宽度。二者的比值可为0.9、1.0以及1.1等。当然,第二转子凸齿31的齿宽i与第二定子齿部11a2的齿宽d的比值也可为0.901、1.011以及1.09等。
具体地,请参考图8,在一个实施例中,第一定子齿部11a1的齿长k与定子主体11aa的长度之比为5%~15%。这里,第一定子齿部11a1的齿长k是指第一定子齿部11a1沿定子主体11aa长度方向上的距离。第一定子齿部11a1的齿长k占比定子主体11aa的长度可为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%等。
同时,第一定子齿部11a1的齿长k与定子主体11aa的长度之比的数值与第二定子齿部11a2的齿长j与定子主体11aa的长度之比的数值互不影响,二者的取值上可以相同,也可以不同。同理地,第二定子齿部11a2的齿长j与定子主体11aa的长度之比为5%~15%。这里,第二定子齿部11a2的齿长j是指第二定子齿部11a2沿定子主体11aa长度方向上的距离。第二定子齿部11a2的齿长j占比定子主体11aa的长度可为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%等。
以上参数范围是由技术人员通过大量随机仿真模拟实验而获得,以下为实验过程:
仿真模拟实验设计:对于上述参数进行随机取值,并应用在该参数值所对应的电机结构100上,同时确保每个实验组别的电机结构100上施加相同的电流信号,最后,获得每个实验组别的电机结构100的峰值磁力矩。
需要说明的是,每个实验组别的电机结构100在定子结构10的分区、相数、定子绕组11中绕组单元111的数量保持相同。同时,为了简化表述,将外转子20的槽宽f与第一转子凸齿21的齿宽e的比值简称为A1组数据;将内转子30的槽宽h与第二转子凸齿31的齿宽i的比值简称为A2组数据;将第一转子凸齿21的齿宽e与第一定子齿部11a1的齿宽c的比值简称为B1组数据;将第二转子凸齿31的齿宽i与第二定子齿部11a2的齿宽d的比值简称为B2组数据;将第一定子齿部11a1的齿长k与定子主体11aa的长度之比简称为C1组数据;将第二定子齿部11a2的齿长j与定子主体11aa的长度之比简称为C2组数据,以下为仿真模拟结果,请参见下表:
  A1组数据 A2组数据 B1组数据 B2组数据 C1组数据 C2组数据 峰值磁力矩(N·m)
实验组别1 1.7 1.7                                                                                                                                                                                       1.0 1.0 15% 15% 325
实验组别2 1.8 1.8 1.0 1.0 15% 15% 311
实验组别3 1.9 1.9 1.0 1.0 15% 15% 305
实验组别4 2.0 2.0 1.0 1.0 15% 15% 235
实验组别5 2.5 2.5 1.0 1.0 15% 15% 101
实验组别6 1.6 1.6 1.0 1.0 15% 15% 307
实验组别7 1.5 1.5 1.0 1.0 15% 15% 220
实验组别8 1.0 1.0 1.0 1.0 15% 15% 113
实验组别9 1.7 1.7 0.9 0.9 15% 15% 310
实验组别10 1.7 1.7 0.8 0.8 15% 15% 241
实验组别11 1.7 1.7 0.5 0.5 15% 15% 109
实验组别12 1.7 1.7 1.1 1.1 15% 15% 309
实验组别13 1.7 1.7 1.5 1.5 15% 15% 101
实验组别14 1.61 1.61 1.0 1.0 15% 15% 327
实验组别15 1.85 1.85 1.0 1.0 15% 15% 321
实验组别16 1.7 1.7 1.0 1.0 5% 5% 323
实验组别17 1.7 1.7 1.0 1.0 20% 20% 326
实验组别18 1.7 1.7 1.0 1.0 3% 3% 123
实验组别19 1.7 1.7 1.0 1.0 25% 25% 130
实验组别20 2.0 1.5 0.5 1.5 3% 25% 125
实验组别21 1.5 2.0 1.5 0.5 25% 3% 113
以上各实验组别是大量随机实验中具有代表性的,由于实验次数庞大,因而未能尽数列举出来。
根据上述各实验组别的数据结果可知:比对实验组别1、2、3、6、9、12、14、15、16、17的数据,发现A1组数据、A2组数据、B1组数据、B2组数据、C1组数据以及C2组数据在本申请所限定的范围内时,对应的电机结构100的峰值磁力矩远大于超出本申请限定范围所对应的电机结构100的峰值磁力矩,并且,再单独对比实验组别4、5、10、11、18、19、20、21的数据,发现一旦A1组数据、A2组数据、B1组数据、B2组数据、C1组数据以及C2组数据中任意一或几组数值范围超出在本申请所限定的范围时,对应的电机结构100的峰值磁力矩出现骤降。由此得出:将A1组数据、A2组数据、B1组数据、B2组数据、C1组数据以及C2组数据在本申请所限定的范围内时,电机结构100的峰值磁力矩的数值较好。
比对实验组别1、2、9、12、14、15、16、17的数据, C1组数据和C2组数据对电机结构100的峰值磁力矩大小影响较小,可以忽略不计。同时,A1组数据和A2组数据与B1组数据和B2组数据之间的组合并不存在必然的叠加增益的逻辑关系,即,并非A1组数据和A2组数据与B1组数据和B2组数据均取中间值时,对应的电机结构100的峰值磁力矩最大,而是只要A1组数据、A2组数据、B1组数据、B2组数据、C1组数据以及C2组数据在本申请所限定的范围内时,就能够组合出其他高峰值磁力矩的电机结构100。
请参考图4至图7,在一个实施例中,各定子绕组11顺序通电,外转子20和内转子30正向转动;各定子绕组11逆序通电,外转子20和内转子30反向转动。这里,顺序通电可以理解为按照顺时针方向对各定子绕组11进行通电,那么,外转子20和内转子30则与通电方向相同进行转动,即做顺时针转动,以及,按照逆时针方向对各定子绕组11进行通电,那么,外转子20和内转子30则与通电方向相同进行转动,即做逆时针转动。
示例地,当本申请实施例的电机结构100应用于开关磁阻电机上时,对定子结构10接入三相交流电,其具体通电过程如图中所示,现对通电过程进行讲解:
请参考图5至图7,定子结构10的环形圆周被划分为三个分区,每一分区处设置有三个定子绕组11,每个定子绕组11由八个绕组单元111组成。为了方便说明,每个分区包括w相定子绕组11、v相定子绕组11以及u相定子绕组11。当通电顺序是w-v-u,且,每个定子绕组11中绕组单元111均通电时,外转子20和内转子30逆时针同轴转动。具体地,当w相定子绕组11通电时,在该定子绕组11中,相邻的两个第一转子凸齿21、与该两个第一转子凸齿21对应的两个第二转子凸齿31以及两个绕组单元111形成最短磁回路,使得当前的两个第一转子凸齿21和两个第二转子凸齿31受到切向拉力逆时针转动一定角度,直至两个第一转子凸齿21和两个第二转子凸齿31与对应的两个绕组单元111处于吸合状态,同理地,当v相定子绕组11通电时,重复上述动作,外转子20和内转子30再逆时针转动一定角度,依次类推,当u相定子绕组11通电时,外转子20和内转子30再逆时针转动一定角度,这样,按照上述通电顺序,外转子20和内转子30实现同轴逆时针转动。而当通电顺序是u-v-w,且,每个定子绕组11中绕组单元111均通电时,外转子20和内转子30顺时针同轴转动。
具体地,当u相定子绕组11通电时,在该定子绕组11中,相邻的两个第一转子凸齿21、与该两个第一转子凸齿21对应的两个第二转子凸齿31以及两个绕组单元111形成最短磁回路,使得当前的两个第一转子凸齿21和两个第二转子凸齿31切向拉力而顺时针转动一定角度,同理地,当v相定子绕组11通电时,重复上述动作,外转子20和内转子30再次顺时针转动一定角度,依次类推,当w相定子绕组11通电时,外转子20和内转子30再次顺时针转动一定角度,这样,按照上述通电顺序,外转子20和内转子303逐渐顺时针转动起来。
在一个实施例中,相邻两个绕组单元111之间形成间隙。可以理解地,在围合形成环形结构时,各绕组单元111之间形成间隙,这样,避免相邻两个的绕组单元111在通电后其形成磁场相互影响。
当本申请的电机结构100应用于开关磁阻电机上时,可以理解地,相邻两个定子绕组11之间也形成间隙,即,相邻两个定子绕组11的最外侧的绕组单元111之间形成间隙。这样,也能够避免相邻两个定子绕组在通电后其形成磁场相互影响。
具体地,可在电机结构100的壳体上开设若干个安装槽,并且,将各绕组单元111设于对应的安装槽内,从而形成环形结构。
或者,在电机结构100的壳体内设置若干个支架,即,通过支架将绕组单元111进行固定,并且围合形成环形结构。
请参考图9至图11,在一个实施例中,电机结构100还包括永磁体组。这里,永磁体组用于补充外转子20和内转子30在转动过程中,定子结构10在通断电过程中所存在的漏磁现象。可以理解地,当电机结构100增设永磁体组时,该电机结构100则适用于永磁电机的范畴。
具体地,根据实际使用的需要,永磁体组的设置位置和数量可进行调整。
例如,如图9所示,永磁体组件包括设于绕组单元111上的第一子磁体51以及设于第一转子凸齿21上的且与第一子磁体51相对应的第二子磁体52。这里,第一子磁体51和第二子磁体52分别设于绕组单元111和第一转子凸齿21的表面,或者,内置于绕组单元111和第一转子凸齿21。
或者,如图10所示,永磁体组件包括设于绕组单元111上的第一子磁体51以及设于第二转子凸齿31上的且与第一子磁体51相对应的第三子磁体53。同理地,第一子磁体51和第三子磁体53分别设于绕组单元111和第二转子凸齿31的表面,或者,内置于绕组单元111和第二转子凸齿31。
或者,如图11所示,永磁体组件包括设于绕组单元111上的两个第一子磁体51、设于第一转子凸齿21上的第二子磁体52以及设于第二转子凸齿31上的第三子磁体53。
定子的磁通量与线圈匝数和电流呈正相关的,而电机的供电方式则是采用额定电压供电,通过线圈增加匝数会导致电阻变大,电流变小,因此,定子的磁通量的增加会受到限制,达到一定程度后不会再增加。为了解决上述问题,在另一实施例中,请参考图13,线圈11b的数量为多个,例如,线圈11b的数量至少两个以及两个以上,以定子主体11aa能够承载为主。各线圈11b沿定子主体11aa的长度方向依次设置,并且,各线圈11b之间采用并联连接,每个线圈11b在通电后产生的磁感线方向一致。可以理解地,将各线圈11b进行并联设置接电后,每个线圈11b的电压均为电机接入的额定电压,避免了线圈串联电阻变大而导致电流变小的问题,相邻的线圈11b也不会被干扰,这样,绕组单元111的磁通量能够大幅增加。
请参考图14和图15,在一个实施例中,外转子20包括第一转子轭23。各第一转子凸齿21设于第一转子轭23的内周侧上,各相邻两个第一转子凸齿21相间隔形成第一齿隙20a。
以及,第一填充物22置于第一齿隙20a内。第一填充物22具有非导磁性。第一填充物22不会影响磁回路的分布,以及也没有磁感线流经第一填充物22。具体地,第一填充物22可为非金属材料,如,具有高结构强度的塑料等,或者,第一填充物22还可为轻质的非导磁金属,如,铝合金等。可以理解的是,本实施例所说的“没有磁感线经过第一填充物22”是指经过第一填充物22的磁感线数量为零或者极少量以致可以忽略各第一转子凸齿21在第一转子轭23上的分布形式为均匀间隔分布,或者,采用非均匀地分布形式,这里不做限定,因此,各第一齿隙20a的宽度可以相同,也可以不相同,依据实际使用场景进行选择。
根据实际使用需求,第一填充物22可填充第一齿隙20a的部分空间;或者,填充第一齿隙20a的全部空间。当第一填充物22可填充第一齿隙20a的部分空间或全部空间时,第一填充物22远离第一转子轭23的端面平齐于第一转子凸齿21的齿顶端面;或者,第一填充物22远离第一转子轭23的端面高于第一转子凸齿21的齿顶端面。
示例地,第一填充物22填充于第一齿隙20a的部分空间,例如,第一填充物22的体积与第一齿隙20a的容置空间的占比大于二分之一且小于一,并且,第一填充物22远离第一转子轭23的端面可呈弧形或其他形状,较大程度地降低转子结构100转动时的风阻,以满足相对应转动需要,同时,能够提高第一转子凸齿21的结构强度。
示例地,第一填充物22填充满第一齿隙20a的空间,并且,第一填充物22远离第一转子轭23的端面平齐于第一转子凸齿21的齿顶端面,该齿顶端面为第一转子凸齿21远离第一转子轭23的端面,这样,各第一转子凸齿21的齿顶端面与各第一填充物22的端面连接形成一个整体,进而,大大地降低转子结构100转动时的风阻。
示例地,第一填充物22填充满第一齿隙20a的空间,并且,第一填充物22远离第一转子轭23的端面高于第一转子凸齿21的齿顶端面,该齿顶端面为第一转子凸齿21远离第一转子轭23的端面。当然,第一填充物22凸出第一转子凸齿21的部分同样根据转子结构100转动时的风阻进行外形轮廓上的调整。
在增加了具有非导磁性的第一填充物22,即,该填充物不影响磁回路的形成,磁通线也不会经过填充物处。以及,第一填充物22置于各第一齿隙20a内,能够降低或避免电机在运行过程中,在各第一齿隙20a内形成风阻,以阻碍转子结构100转动,进而能够提高电机的输出效率,同时,也增加了第一转子凸齿21在第一转子轭23上的结构强度。
请参考图15,在本实施例中,第一填充物22远离第一转子轭23的端面与第一转子凸齿21的齿顶端面相平齐且平滑过渡。可以理解地,第一填充物22可采用将各第一齿隙20a的空间完全填充或部分填充来实现,并且,使得外转子20的内周侧为平滑过渡的弧形面。该弧形面能够大幅度地降低转子结构100在绕轴转动过程受到的风阻。优选地,外转子20的内周侧形成弧形圆周与外转子20的外周侧的弧形圆周呈同心圆设置,这样,在转子结构100的绕轴转动过程中能够进一步降低风阻,提高输出效率。
请参考图16,在一个实施例中,第一齿隙20a的宽度沿外转子20的径向方向向内递减。可以理解地,为了提高第一填充物22在各第一齿隙20a内的安装稳定性,第一齿隙20a沿转子结构100的径向方向的截面呈楔形,即,第一齿隙20a的开口角度由内向外逐渐减小,这样,在转动过程中,相邻两个第一转子凸齿21相对的齿侧壁对第一填充物22形成挤压,从而避免第一填充物22从第一齿隙20a的开口处脱出。
请参考图17和图18,在一个实施例中,外转子20还包括第一防脱结构61。在本实施例中,第一填充物22为高强度塑料,并且,通过模内注塑的方式,将第一填充物22注塑至各第一齿隙20a处,因此,利用第一填充物22在熔融状态下具有流动性的特点,第一填充物22在凝固前与第一防脱结构61的外形轮廓相适配,从而,增加凝固后的第一填充物22与第一转子凸齿21的侧壁之间受力点,降低了第一填充物22从对应的第一齿隙20a中脱出。
具体地,如图17所示,第一防脱结构61包括设于第一转子凸齿21的侧壁上的第一凸部611。可以理解地,利用第一凸部611增加第一转子凸齿21与第一填充物22之间的受力点。例如,第一凸部611可为形成于第一转子凸齿21上的凸柱、凸骨或者筋类结构等,以阻碍第一填充物22与第一转子凸齿21发生相对移动。
或者,如图18所示,第一防脱结构61包括开设于所第一转子凸齿21的侧壁上的第一凹部612。同理地,熔融状态的第一填充物22能够流入第一凹部612内,从而在凝固后与第一转子凸齿21的侧壁之间形成多个受力点,以达到防脱的目的。
或者,同理地,第一防脱结构61包括设于第一转子凸齿21的侧壁上的第一凸部611和开设于第一转子凸齿21的侧壁上的第一凹部612。可以理解地,在本实施例中,第一防脱结构61可由第一凸部611和第一凹部612所组合而成,并且,第一凸部611和第一凹部612的数量和位置不做限定。
请参考图14和图15,在一个实施例中,内转子30与外转子20同轴设置且置于外转子20内,内转子30能够与外转子20同轴转动。
内转子30包括第二转子轭33。第二转子凸齿31设于第二转子轭33的外周侧。各相邻两个第二转子凸齿31相间隔形成第二齿隙30a。可以理解地,各第二转子凸齿31在第二转子轭33上的分布形式为均匀间隔分布,或者,采用非均匀地分布形式,这里不做限定,因此,各第二齿隙30a的宽度可不相同,依据实际使用场景进行选择。
以及,第二填充物32置于第二齿隙30a内。第二填充物32具有非导磁性,同样地,第二填充物32也不会影响磁回路的分布,以及也没有磁感线流经第二填充物32。具体地,第二填充物32可为非金属材料,如,具有高结构强度的塑料等,或者,第二填充物32还可为轻质的非导磁金属,如,铝合金等。
根据实际使用需求,第二填充物32可填充第二齿隙30a的部分空间;或者,填充第二齿隙30a的全部空间,并且,第二填充物32远离第二转子轭33的端面平齐于第二转子凸齿31的齿顶端面;或者,第二填充物32填充于第二齿隙30a的全部空间,并且,第二填充物32远离第二转子轭33的端面高于第二转子凸齿31的齿顶端面。这样,第二填充物32将各第二齿隙30a进行相应的填充,降低或消除内转子30在转动过程中的风阻,从而提高转子结构100的输出效率,同时,也提高了第二转子凸齿31在第二转子轭33上的结构强度。
在一个实施例中,如图2所示,第二转子凸齿31的数量和第一转子凸齿21的数量相同,各第二转子凸齿31朝向各第一转子凸齿21,且,与各第一转子凸齿21一一对应。当然,在其他实施例中,第二转子凸齿31的数量和第一转子凸齿21的数量也可不相等,从而,各第一转子凸齿21与各第二转子凸齿31存在相错位和相对应共存的排布方式。
请参考图15,在一个实施例中,第二填充物32远离第二转子轭33的端面与第二转子凸齿31的齿顶端面相平齐且平滑过渡。同理地,第二填充物32将各第二齿隙30a的空间完全填充,并且,使得内转子30的外周侧为平滑过渡的弧形面。该弧形面能够大幅度地降低转子结构100在绕轴转动过程受到的风阻。进一步的,当第一填充物22采用将各第一齿隙20a的空间完全填充来实现,并且,使得外转子20的内周侧为平滑过渡的弧形面时,降低转子结构100在绕轴转动过程受到风阻的效果更优,且更利于加工制造。优选地,内转子30的外周侧形成弧形圆周与内转子30的内周侧的弧形圆周呈同心圆设置,这样,在转子结构100的绕轴转动过程中能够进一步降低风阻,提高输出效率。
请参考图16,在一个实施例中,第二齿隙30a的宽度沿内转子30的径向方向向外递减。可以理解地,内转子30在绕轴转动时,第二填充物32受到离心力而出现松脱的现象,因此,为了提高第二填充物32在各第二齿隙30a内的安装稳定性,第二齿隙30a沿转子结构100的径向方向的截面呈楔形,即,第二齿隙30a的开口角度逐渐由内向外减小,这样,在转动过程中,相邻两个第二转子凸齿31相对的齿侧壁对第二填充物32形成挤压,从而避免第二填充物32从第二齿隙30a的开口处脱出。
请参考图17和图18,在一个实施例中,内转子30还包括第二防脱结构62。在本实施例中,第二填充物32为高强度塑料,并且,通过模内注塑的方式,将第二填充物32注塑至各第二齿隙30a处,因此,利用第二填充物32在熔融状态下具有流动性的特点,第二填充物32在凝固前与第二防脱结构62的外形轮廓相适配,从而,增加凝固后的第二填充物32与第二转子凸齿31的侧壁之间受力点,降低了第二填充物32从对应的第二齿隙30a中脱出。
具体地,如图17所示,第二防脱结构62包括设于第二转子凸齿31的侧壁上的第二凸部621。可以理解地,利用第二凸部621增加第二转子凸齿31与第二填充物32之间的受力点。例如,第二凸部621可为形成于第二转子凸齿31上的凸柱、凸骨或者筋类结构等,以阻碍第二填充物32与第二转子凸齿31发生相对移动。
或者,如图18所示,第二防脱结构62包括开设于第二转子凸齿31的侧壁上的第二凹部622。同理地,熔融状态的第二填充物32能够流入第二凹部622内,从而在凝固后与第二转子凸齿31的侧壁之间形成多个受力点,以达到防脱的目的。
或者,同理地,第二防脱结构62包括设于第二转子凸齿31的侧壁上的第二凸部621和开设于第二转子凸齿31的侧壁上的第二凹部622。可以理解地,在本实施例中,第二防脱结构62可由第二凸部621和第二凹部622所组合而成,并且,第二凸部621和第二凹部622的数量和位置不做限定。
请参考图20至图28,定子主体11a在环形结构的径向上的相对两端沿环形结构的周向相背且向外凸伸形成的第一定子齿部11a1和第二定子齿部11a2。
各绕组单元10在装配时,相邻两个绕组单元10的定子主体11a的第一定子齿部11a1进行拼接连接,即,该两个绕组单元10在各自的第一定子齿部11a1处形成拼接连接关系;或者,相邻两个绕组单元10的定子主体11a的第二定子齿部11a2进行拼接连接,即,该两个绕组单元10在各自的第二定子齿部11a2处形成拼接连接关系;或者,相邻两个绕组单元10的定子主体11a的第一定子齿部11a1和第二定子齿部11a2进行拼接连接,即,该两个绕组单元10在各自的第一定子齿部11a1和第二定子齿部11a2处形成拼接连接关系。
需要说明地,各绕组单元10在进行装配时,应是各定子主体11a的第一定子齿部11a1相对应,以及,各定子主体11a的第二定子齿部11a2相对应。
示例地,采用孔轴结构的拼接连接形式,即,其中一个绕组单元10的第一定子齿部11a1和/或第二定子齿部11a2上设置轴结构,而另一个绕组单元10的第一定子齿部11a1和/或第二定子齿部11a2上开设与轴结构相适配的孔结构。
示例地,采用槽齿结构的拼接连接形式,即,其中一个绕组单元10的第一定子齿部11a1和/或第二定子齿部11a2上设置齿结构,而另一个绕组单元10的第一定子齿部11a1和/或第二定子齿部11a2上开设与齿结构相适配的槽结构。
示例地,采用槽齿结构和轴孔结构的组合拼接连接形式,其中一个绕组单元10的第一定子齿部11a1设置齿结构,第二定子齿部11a2上设置轴结构,而另一个绕组单元10的第一定子齿部11a1上设置与齿结构相适配的槽结构,第二定子齿部11a2上开设与轴结构相适配的孔结构。
该定子结构100由多个绕组单元10沿周向围合形成结构,并且,绕组单元10包括定子主体11a。定子主体11a的相对两端向外凸伸形成的第一定子齿部11a1和第二定子齿部11a2,而在进行装配时,相邻两个定子主体11a的第一定子齿部11a1进行拼接连接;或者,相邻两个定子主体11a的第二定子齿部11a2进行拼接连接;或者,相邻两个定子主体11a的第一定子齿部11a1和第二定子齿部11a2进行拼接连接。综上,本申请定子结构100无固定的圆环形定子轭,并且,各绕组单元10可进行独立地拆装,这样,便于后期的维护,维护成本也更低。
请参考图20至图21,在一个实施例中,定子结构100包括第一拼接结构71,相邻两个定子主体11a的第一定子齿部11a1通过第一拼接结构71拼接连接。在本实施例中,相邻两个绕组单元10通过在第一定子齿部11a1处进行拼接装配,并且,在第一定子齿部11a1处通过第一拼接结构71实现可拆卸地连接。
示例地,第一拼接结构71为槽齿结构,即,其中一个绕组单元10的第一定子齿部11a1设置齿结构,而另一个绕组单元10的第一定子齿部11a1上开设与齿结构相适配的槽结构,在装配时,即通过齿槽配合来实现两个绕组单元10快速拆装。当然,齿结构和槽结构的设置位置可调换。
示例地,第一拼接结构71为孔轴结构,即,其中一个绕组单元10的第一定子齿部11a1设置轴结构,而另一个绕组单元10的第一定子齿部11a1上开设与轴结构相适配的孔结构,在装配时,即通过孔轴配合来实现绕组单元10快速拆装。当然,轴结构和孔结构的设置位置可调换。
具体地,请参考图20至图21,第一拼接结构71包括设于其中一第一定子齿部11a1上的第三凸部711以及开设于另一第一定子齿部11a1上的第三凹部712,第三凸部711与第三凹部712相适配。可以理解地,第三凸部711可为凸柱、凸齿、凸起等结构;第三凹部712可为凹槽、盲孔等结构。在装配时,存在两个安装方向。例如,沿定子结构100的周向方向进行装配,各绕组单元10通过第三凸部711和第三凹部712逐一拼接;或者,沿定子结构100的轴向方向进行装配,各绕组单元10通过第三凸部711和第三凹部712逐一拼接。
请参考图20至图21、图27和图28,在一个实施例中,第一定子齿部11a1具有相对设置的两个第一拼接端面71a。可以理解地,在装配中,各绕组单元10的第一定子齿部11a1处进行拼接时,当前的第一定子齿部11a1具有相对的两个第一拼接端面71a,分别用于与前置位的第一定子齿部11a1和后置位的第一定子齿部11a1进行抵接,进而实现拼接连接。
例如,如图21和22所示,在同一个绕组单元10上,两个第一拼接端面71a上均设有第三凸部711或第三凹部712。那么,在当前装配的绕组单元10的前置处和后置位处的绕组单元10的第一定子齿部11a1上均开设与该第三凸部711相适配的两个第三凹部712,或者,在当前装配的绕组单元10的前置处和后置位处的绕组单元10的第一定子齿部11a1上均设有与第三凹部712相适配的两个第三凸部711。最终的拼接结果是:两个第一拼接端面71a均设第三凸部711的绕组单元10沿定子结构100的周向间隔设置,其前置位和后置位的绕组单元10的第一定子齿部11a1的两个拼接端面上均开设第三凹部712,来与其进行拼接。
或者,例如,如图23所示,在同一个绕组单元10上,其中一第一拼接端面71a上设有第三凸部711,另一第一拼接端面71a开设有第三凹部712。那么,在当前装配的绕组单元10的前置位处的绕组单元10的第一定子齿部11a1上开设与当前的第三凸部711相适配的第三凹部712,以及,在当前装配的绕组单元10的后置位处的绕组单元10的第一定子齿部11a1上设有与当前的第三凹部712相适配的第三凸部711,最终的拼接结果是:将其中一个第一拼接端面71a具有第三凸部711和另一第一拼接端面71a具有第三凹部712的各绕组单元10沿定子结构100的周向方向依次排列放置即可。
请参考图24至图26,在一个实施例中,定子结构100包括第二拼接结构72,相邻两个定子主体11a的第二定子齿部11a2通过第二拼接结构72拼接连接。同理地,在本实施例中,相邻两个绕组单元10通过在第二定子齿部11a2处进行拼接装配,并且,在第二定子齿部11a2处通过第二拼接结构72实现可拆卸地连接。
示例地,第二拼接结构72为槽齿结构,即,在装配时,其中一个绕组单元10的第二定子齿部11a2设置齿结构,而另一个绕组单元10的第二定子齿部11a2上开设与齿结构相适配的槽结构,即通过齿槽配合来实现两个绕组单元10快速拆装。当然,齿结构和槽结构的设置位置可调换。
示例地,第二拼接结构72为孔轴结构,即,在装配时,其中一个绕组单元10的第二定子齿部11a2设置轴结构,而另一个绕组单元10的第二定子齿部11a2上开设与轴结构相适配的孔结构,即通过孔轴配合来实现绕组单元10快速拆装。当然,轴结构和孔结构的设置位置可调换。
具体地,请参考图24至图26,第二拼接结构72包括设于其中一第二定子齿部11a2上的第四凸部721以及开设于另一第二定子齿部11a2上的第四凹部722,第四凸部721与第四凹部722相适配。可以理解地,第四凸部721可为凸柱、凸齿、凸起等结构;第四凹部722可为凹槽、盲孔等结构。在装配时,存在两个安装方向。例如,沿定子结构100的周向方向进行装配,各绕组单元10通过第四凸部721和第四凹部722逐一拼接;或者,沿定子结构100的轴向方向进行装配,各绕组单元10通过第四凸部721和第四凹部722逐一拼接。
请参考图24至图26、图27和图28,在一个实施例中,第二定子齿部11a2具有相对设置的两个第二拼接端面172a。可以理解地,在装配中,各绕组单元10的第二定子齿部11a2处进行拼接时,当前的第二定子齿部11a2具有相对的两个第二拼接端面172a,分别用于与前置位的第二定子齿部11a2和后置位的第二定子齿部11a2进行抵接,进而实现拼接连接。
例如,如图24和图25所示,在同一个绕组单元10上,两个第二拼接端面172a上均设有第四凸部721或第四凹部722。那么,在当前装配的绕组单元10的前置处和后置位处的绕组单元10的第二定子齿部11a2上均开设与该第四凸部721相对应的两个第四凹部722;或者,在当前装配的绕组单元10的前置处和后置位处的绕组单元10的第二定子齿部11a2上均设有与该第四凹部722相对应的两个第四凸部721。最终的拼接结果是:两个第二拼接端面172a均设第四凸部721的绕组单元10沿定子结构100的周向间隔设置,其前置位和后置位的绕组单元10的第二定子齿部11a2的两个拼接端面上均开设第四凹部722,来与其进行拼接。
或者,例如,如图26所示,在同一个绕组单元10上,其中一第二拼接端面172a上设有第四凸部721,另一第二拼接端面172a开设有第四凹部722。那么,在当前装配的绕组单元10的前置位处的绕组单元10的第二定子齿部11a2上开设与当前的第四凸部721相适配的第四凹部722,以及,在当前装配的绕组单元10的后置位处的绕组单元10的第二定子齿部11a2上设有与当前的第四凹部722相适配的第四凸部721,最终的拼接结果是:将其中一个第二拼接端面172a具有第四凸部721和另一第二拼接端面172a具有第四凹部722的各绕组单元10沿定子结构100的周向方向依次排列放置即可。
请参考图20,在本实施例中,定子结构100包括第一拼接结构71和第二拼接结构72,相邻两个定子主体11a的第一定子齿部11a1通过第一拼接结构71拼接连接;以及,相邻两个定子主体11a的第二定子齿部11a2通过第二拼接结构72拼接连接。
具体地,在同一绕组单元10上,第一拼接结构71包括设于其中一第一定子齿部11a1上的第三凸部711以及开设于另一第一定子齿部11a1上的第三凹部712,第三凸部711与第三凹部712相适配;以及,第二拼接结构72包括设于其中一第二定子齿部11a2上的第四凸部721以及开设于另一第二定子齿部11a2上的第四凹部722,第四凸部721与第四凹部722相适配。
第一定子齿部11a1具有相对设置的两个第一拼接端面71a,以及,第二定子齿部11a2具有相对设置的两个第二拼接端面172a。这样,在装配时,前后位的绕组单元10的第一拼接端面71a相抵接;同时,前后位的绕组单元10的第二拼接端面172a也相抵接。
例如,在同一个绕组单元10上,两个第一拼接端面71a上均设有第三凸部711,那么,其两个第二拼接端面172a上也均设有第四凸部721;或者,两个第二拼接端面172a上可均开设有第四凹部722;或者,其中一第二拼接端面172a上设有第三凸部711,另一第二拼接端面172a开设有第三凹部712。
或者,例如,在同一个绕组单元10上,其中一第一拼接端面71a上设有第三凸部711,另一第一拼接端面71a开设有第三凹部712,那么,其两个第二拼接端面172a上可均设有第四凸部721;或者,两个第二拼接端面172a上可均开设有第四凹部722;或者,其中一第二拼接端面172a上设有第三凸部711,另一第二拼接端面172a开设有第三凹部712。
或者,例如,在同一绕组单元10上,两个第一拼接端面71a均开设有第三凹部712,那么,其两个第二拼接端面172a上可均设有第四凸部721;或者,两个第二拼接端面172a上可均开设有第四凹部722;或者,其中一第二拼接端面172a上设有第三凸部711,另一第二拼接端面172a开设有第三凹部712。
请参考图27,在一个实施例中,定子主体11a包括呈I型的主体部11a3以及绕于主体部11a3上的线圈11a1,主体部11a3的相对两端向外凸伸形成第一定子齿部11a1和第二定子齿部11a2。在本实施例中,各绕组单元10的主体部11a3之间直接通过第一定子齿部11a1和第二定子齿部11a2连接。具体地,第一定子齿部11a1和第二定子齿部11a2采用拼接的连接方式与前述的实施例相同,这里不再赘述。
或者,请参考图28,在一个实施例中,定子主体11a包括主体部11a3、套设于主体部11a3的外侧的非导磁的套件11a4以及绕于套件11a4上的线圈11a1,套件11a4的相对两端向外凸伸形成第一定子齿部11a1和第二定子齿部11a2。在本实施例中,套件11a4呈中空结构。各绕组单元10的主体部11a3不接触,而是通过额外的套件11a4进行连接。具体地,第一定子齿部11a1和第二定子齿部11a2采用拼接的连接方式与前述的实施例相同,这里不再赘述。在本实施例中,主体部11a3的形状可以不做限定,放入套件11a4中即可,可以是I型,可以是T型,也可以是工型等。
在其他实施例中,第一拼接结构71和第二拼接结构72的结构形式不同,即,第一拼接结构71包括设于其中一第一定子齿部11a1上的第一轴以及开设于另一第一定子齿部11a1上的第一孔,第一轴与第一孔相适配。可以理解地,相邻两个绕组单元10在进行拼接连接时,是通过该两个绕组单元10的第一定子齿部11a1处的第一轴和第一孔相配合来实现的。
以及,第二拼接结构72包括设于其中一第二定子齿部11a2上的第二轴以及开设于另一第二定子齿部11a2上的第二孔,第二轴与第二孔相适配。那么,相邻两个绕组单元10在进行拼接连接时,是通过该两个绕组单元10的第二定子齿部11a2处的第二轴和第二孔相配合来实现的。
或者,相邻两个绕组单元10在进行拼接连接时,是通过该两个绕组单元10的第一定子齿部11a1处的第一轴和第一孔相配合,以及,该两个绕组单元10的第二定子齿部11a2处的第二轴和第二孔相配合来共同实现的。
请参考图29至图32,在一个实施例中,该定子结构100还可包括呈环形结构的定子轭部20。各定子主体11a均包括层叠设置的复数个第一片体10a,这里,定子主体11a和定子轭部20是分开制造的。具体地,在冲切工序阶段,在板材上以第一片体10a外形轮廓进行排版,冲切获得多个第一片体10a,将复数个第一片体10a沿厚度方向依次层叠,并且,组装形成每个定子主体11a的第一片体10a的数量是相同的;而定子轭部20可采用相同的方式,先冲切成片体,再由各片体层叠组成,或者,定子轭部20直接通过铸造方式而成为一个整体。综上,在冲切工序阶段,根据第一片体10a的轮廓在板材上设计排版,无需一体冲裁定子轭部,各第一片体10a之间余料更少,排列更加紧凑,对板材的利用率更高。因此,在冲切工序阶段,能够制造出更多组合定子主体11a的第一片体10a。同时,第一片体10a为导磁材料,例如,第一片体10a为磁钢等。定子轭部20也可为导磁材料,也可为非导磁材料。
在装配阶段,将各定子主体11a以定子轭部20的中轴线为中心间隔地设置于定子轭部20的侧壁上,并且,各定子主体11a的中间线的延长线均经过环形结构的圆心。可以理解地,各定子主体11a以定子轭部20的中轴线为中心呈放射状设置。而在连接方式,各定子主体11a可采用铸造的方式与定子轭部20进行连接,即,将各定子主体11a按照设定的排列位置固定在模具内,再通过铸造的方式形成定子轭部20,并对各定子主体11a进行固定;或者,在已经成型的定子轭部20上进行开槽或开孔,再将各定子主体11a安装再定子轭部20上。
定子结构100的定子主体11a和定子轭部20分别进行制造,然后再进行组装。具体地,在板材上按照定子主体11a的轮廓进行排版,并冲切形成第一片体10a,将各第一片体10a层叠形成定子主体11a;而,定子轭部20可采用先冲切再层叠的方式进行制造,也可采用一体成型的模具铸造。然后,将各定子主体11a以定子轭部20的中轴线为中心间隔地设置于定子轭部20的侧壁上,并且,各定子主体11a的中间线均延伸至环形结构的圆心。各定子主体11a与定子轭部20可通过铸造、焊接等连接方式进行连接。本申请的定子结构100在制造过程中,将定子主体11a和定子轭部20分开制造,再进行组装。这样,能够避免因定子主体11a和定子轭部20同时冲切所导致板材排版难度大,以及,材料浪费的问题。
请参考图29,在一个实施例中,各定子主体11a位于环形结构的外部,定子轭部20具有外侧壁,各定子主体11a的同一端连接于定子轭部20的外侧壁上。可以理解地,各定子主体11a通过定子轭部20进行固定,并且,各定子主体11a的自由端均背离于环形结构的中点,这样,在使用时,转子结构套设在环形结构的外周侧。
请参考图31,在一个实施例中,各定子主体11a位于环形结构的内部,定子轭部20具有内侧壁,各定子主体11a的同一端连接于定子轭部20的内侧壁上。可以理解地,各定子主体11a通过定子轭部20进行固定,并且,各定子主体11a的自由端均指向于环形结构的中点,这样,在使用时,转子结构设置在环形结构的内部。
请参考图32,在一个实施例中,定子轭部20具有内侧壁以及与内侧壁相对的外侧壁,各定子主体11a的端部由内侧壁穿入且穿出于外侧壁,并且,定子轭部20位于各定子主体11a的中部。这里,定子主体11a的中部不仅指的是定子主体11a的二分之一的位置,还可以是除两端部的任意位置。可以理解地,在定子轭部20上开设贯穿内侧壁和外侧壁的通孔,将各定子主体11a穿设于对应的通孔进行固定。
在一个实施例中,定子轭部20通过模具铸造成型。即,在装配过程中,将各定子主体11a安排顺序排列在模具内,并且,通过浇筑金属液的方式铸造形成定子轭部20,并且,将各定子主体11a进行固定,同时,固定的位置可进行选择。即,铸造位置可在各定子主体11a的相对两端,也可在各定子主体11a的中部。
在另一个实施例中,定子轭部20也可通过片体层叠形成。具体地,定子轭部20包括层叠设置的复数个第二片体。通过在板材上依据第二片体的外形轮廓进行排版,冲切获得多个第二片体,将复数个第二片体沿厚度方向依次层叠,并且,组装形成每个定子轭部20的第二片体的数量是相同的。
第二方面,本申请还提供一种轮毂电机,包括上述的电机结构100。
本申请实施例提供的轮毂电机,在具有上述电机结构100的基础上,磁回路短,从而可减小电机损耗,提高电机效率,即,该轮毂电机的整体体积更小,输出效率更高。
第三方面,本申请还提供一种车辆,包括上述的轮毂电机。该车辆可为新能源电动车,也可为油电混合车。
本申请实施例提供的车辆,在具有上述轮毂电机的基础上,该车辆具有良好的提速能力,且,行驶过程中更加平稳。以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (31)

  1. 一种电机结构,其特征在于:包括呈环形结构的定子结构、套设于所述定子结构的外周侧的外转子以及置于所述定子结构的内周侧的内转子,所述外转子和所述内转子同轴设置,所述定子结构包括沿着一圆周依次排列形成环形结构的多个绕组单元,所述外转子朝向所述定子结构的内周侧形成N个第一转子凸齿,所述内转子朝向所述定子结构的外周侧形成M个第二转子凸齿;
    其中,当所述绕组单元通电时,通电的两个所述绕组单元、与通电的两个所述绕组单元相对应的两个所述第一转子凸齿、以及与通电的两个所述绕组单元相对应的两个第二转子凸齿形成磁回路。
  2. 根据权利要求1所述的电机结构,其特征在于:所述绕组单元包括定子主体以及绕于所述定子主体上的线圈,所述定子主体具有朝向所述第一转子凸齿的第一定子齿部以及朝向所述第二转子凸齿的第二定子齿部,所述第一定子齿部的齿宽c大于所述第二定子齿部的齿宽d。
  3. 根据权利要求2所述的电机结构,其特征在于:所述外转子的槽宽f与所述第一转子凸齿的齿宽e的比值范围为1.6~1.9;和/或,所述内转子的槽宽h与所述第二转子凸齿的齿宽i的比值范围为1.6~1.9。
  4. 根据权利要求3所述的电机结构,其特征在于:所述第一转子凸齿的齿宽e与所述第一定子齿部的齿宽c的比值范围为0.9~1.1;和/或,所述第二转子凸齿的齿宽i与所述第二定子齿部的齿宽d的比值范围为0.9~1.1。
  5. 根据权利要求2所述的电机结构,其特征在于:所述第一定子齿部的齿长k与所述定子主体的长度之比为5%~15%;和/或,所述第二定子齿部的齿长j与所述定子主体的长度之比为5%~15%。
  6. 根据权利要求1至5任一项所述的电机结构,其特征在于:所述定子结构的环形结构等分为X个分区,X为大于或等于3的正整数,所述定子结构的相数A为大于或等于3的正整数,每相中具有X个定子绕组,相邻的n个所述第一绕组单元组成所述定子绕组,n为偶数,并且,所述第一转子凸齿的数量等于所述第二转子凸齿的数量,N= A*n*X+X。
  7. 根据权利要求6所述的电机结构,其特征在于:所述第一转子凸齿的齿角度和所述第二转子凸齿的齿角度均相同,且为α,以及,所述第一转子凸齿的齿角度与所述绕组单元的齿角度也相同,并且,α=360°/(A*n*X+X);相邻两个所述定子绕组的最外侧的两个所述绕组单元的中间线的夹角β=α*(A+1)/A。
  8. 根据权利要求1至5任一项所述的电机结构,其特征在于:相邻两个所述绕组单元之间形成间隙。
  9. 根据权利要求1至5任一项所述的电机结构,其特征在于:所述电机结构还包括永磁体组件,所述永磁体组件包括设于所述绕组单元上的第一子磁体以及设于所述第一转子凸齿上的且与所述第一子磁体相对应的第二子磁体;或者,
    所述永磁体组件包括设于所述绕组单元上的第一子磁体以及设于所述第二转子凸齿上的且与所述第一子磁体相对应的第三子磁体;或者,
    所述永磁体组件包括设于所述绕组单元上的两个第一子磁体、设于所述第一转子凸齿上的第二子磁体以及设于所述第二转子凸齿上的第三子磁体。
  10. 根据权利要求2至5任一项所述的电机结构,其特征在于:所述线圈的数量为多个,各所述线圈沿所述定子主体的长度方向依次设置,并且,各所述线圈之间采用并联连接,每个所述线圈在通电后产生的磁感线方向一致。
  11. 根据权利要求1至5任一项所述的电机结构,其特征在于:所述外转子包括第一转子轭以及设于所述第一转子轭的内周侧的多个所述第一转子凸齿,各相邻两个所述第一转子凸齿相间隔形成第一齿隙,所述第一齿隙内设有非导磁的第一填充物。
  12. 根据权利要求11所述的电机结构,其特征在于:所述第一填充物远离所述第一转子轭的端面与所述第一转子凸齿的齿顶端面相平齐且平滑过渡。
  13. 根据权利要求11所述的电机结构,其特征在于:所述第一齿隙的宽度沿所述外转子的径向方向向内递减。
  14. 根据权利要求11所述的电机结构,其特征在于:所述外转子还包括第一防脱结构,所述第一防脱结构包括设于所述第一转子凸齿的侧壁上的第一凸部;或者,所述第一防脱结构包括开设于所述第一转子凸齿的侧壁上的第一凹部;或者,所述第一防脱结构包括设于所述第一转子凸齿的侧壁上的第一凸部和开设于所述第一转子凸齿的侧壁上的第一凹部。
  15. 根据权利要求11所述的电机结构,其特征在于:所述内转子包括第二转子轭以及设于所述第二转子轭的外周侧的多个所述第二转子凸齿,各相邻两个第二转子凸齿相间隔形成第二齿隙,所述第二齿隙内设有非导磁的第二填充物。
  16. 根据权利要求15所述的电机结构,其特征在于:所述第二填充物远离所述第二转子轭的端面与所述第二转子凸齿的齿顶端面相平齐且平滑过渡。
  17. 根据权利要求15所述的电机结构,其特征在于:所述第二齿隙的宽度沿所述内转子的径向方向向外递减。
  18. 根据权利要求15所述的电机结构,其特征在于:所述内转子还包括第二防脱结构,所述第二防脱结构包括设于所述第二转子凸齿的侧壁上的第二凸部;或者,所述第二防脱结构包括开设于所述第二转子凸齿的侧壁上的第二凹部;或者,所述第二防脱结构包括设于所述第二转子凸齿的侧壁上的第二凸部和开设于所述第二转子凸齿的侧壁上的第二凹部。
  19. 根据权利要求2所述的电机结构,其特征在于:所述定子主体在所述环形结构的径向上的相对两端沿所述环形结构的周向相背且向外凸伸形成的所述第一定子齿部和所述第二定子齿部;
    其中,相邻两个所述定子主体通过所述第一定子齿部和/或所述第二定子齿部拼接连接。
  20. 根据权利要求19所述的电机结构,其特征在于:所述定子主体包括第一拼接结构,相邻两个所述定子主体的所述第一定子齿部通过所述第一拼接结构拼接连接,所述第一拼接结构包括设于其中一所述第一定子齿部上的第三凸部以及开设于另一所述第一定子齿部上的第三凹部,所述第三凸部与所述第三凹部相适配。
  21. 根据权利要求20所述的电机结构,其特征在于:所述第一定子齿部沿所述环形结构周向上的相对两端具有相对设置的两个第一拼接端面;一部分所述绕组单元中,各所述绕组单元的两个所述第一拼接端面上均设有所述第三凸部,另一部分所述绕组单元中,各所述绕组单元的两个所述第一拼接端面均开设有所述第三凹部;或者,
    各所述绕组单元的其中一所述第一拼接端面上设有所述第三凸部,另一所述第一拼接端面开设有所述第三凹部;或者,
    一部分所述绕组单元中,各所述绕组单元的两个所述第一拼接端面上均设有所述第三凸部,一部分所述绕组单元中,各所述绕组单元的两个所述第一拼接端面均开设有所述第三凹部,另一部分所述绕组单元中,各所述绕组单元的其中一所述第一拼接端面上设有所述第三凸部,另一所述第一拼接端面开设有所述第三凹部。
  22. 根据权利要求19至21任一项所述的电机结构,其特征在于:所述定子结构包括第二拼接结构,相邻两个所述定子主体的所述第二定子齿部通过所述第二拼接结构拼接连接,所述第二拼接结构包括设于其中一所述第二定子齿部上的第四凸部以及开设于另一所述第二定子齿部上的第四凹部,所述第四凸部与所述第四凹部相适配。
  23. 根据权利要求22所述的电机结构,其特征在于:所述第二定子齿部沿所述环形结构周向上的相对两端具有相对设置的两个第二拼接端面;一部分所述绕组单元中,各所述绕组单元的两个所述第二拼接端面上均设有所述第四凸部,另一部分所述绕组单元中,各所述绕组单元的两个所述第二拼接端面均开设有所述第四凹部;或者,
    各所述绕组单元的其中一所述第二拼接端面上设有所述第四凸部,另一所述第二拼接端面开设有所述第四凹部;或者,
    一部分所述绕组单元中,各所述绕组单元的两个所述第二拼接端面上均设有所述第四凸部,一部分所述绕组单元中,各所述绕组单元的两个所述第二拼接端面均开设有所述第四凹部,另一部分所述绕组单元中,各所述绕组单元的其中一所述第二拼接端面上设有所述第四凸部,另一所述第二拼接端面开设有所述第四凹部。
  24. 根据权利要求19所述的电机结构,其特征在于:所述定子主体包括主体部,所述线圈绕于所述主体部上,所述主体部在所述环形结构的径向上的相对两端沿所述环形结构的周向相背且向外凸伸形成所述第一定子齿部和所述第二定子齿部。
  25. 根据权利要求19所述的电机结构,其特征在于:所述定子主体包括主体部以及套设于所述主体部的外侧的非导磁的套件,所述线圈绕于所述套件上,所述套件在所述环形结构的径向上的相对两端沿所述环形结构的周向相背且向外凸伸形成所述第一定子齿部和所述第二定子齿部。
  26. 根据权利要求19所述的电机结构,其特征在于:所述定子结构包括第一拼接结构,相邻两个所述定子主体的所述第一定子齿部通过所述第一拼接结构拼接连接,所述第一拼接结构包括设于其中一所述第一定子齿部上的第一轴以及开设于另一所述第一定子齿部上的第一孔,所述第一轴与所述第一孔相适配;
    和/或,所述定子结构包括第二拼接结构,相邻两个所述定子主体的所述第二定子齿部通过所述第二拼接结构拼接连接,所述第二拼接结构包括设于其中一所述第二定子齿部上的第二轴以及开设于另一所述第二定子齿部上的第二孔,所述第二轴与所述第二孔相适配。
  27. 根据权利要求2所述的电机结构,其特征在于:所述定子结构包括呈环形结构的定子轭部,所述定子主体均包括层叠设置的复数个第一片体,各所述定子主体以所述定子轭部的中轴线为中心间隔地设置于所述定子轭部,并且,各所述定子主体的中间线的延长线均经过至所述环形结构的圆心。
  28. 根据权利要求27所述的电机结构,其特征在于:各所述定子主体位于所述环形结构的内部,所述定子轭部具有内侧壁,各所述定子主体的同一端连接于所述定子轭部的所述内侧壁上;
    或者,各所述定子主体位于所述环形结构的外部,所述定子轭部具有外侧壁,各所述定子主体的同一端连接于所述定子轭部的所述外侧壁上;
    或者,所述定子轭部具有内侧壁以及与所述内侧壁相对的外侧壁,各所述定子主体的端部贯穿所述内侧壁和所述外侧壁,并且,所述定子轭部与各所述定子主体的中部相交。
  29. 根据权利要求27所述的电机结构,其特征在于:所述定子轭部包括层叠设置的复数个第二片体。
  30. 一种轮毂电机,其特征在于:包括如权利要求1至29任一项所述的电机结构。
  31. 一种车辆,其特征在于:包括如权利要求30所述的轮毂电机。
PCT/CN2022/077117 2021-12-29 2022-02-21 电机结构、轮毂电机以及车辆 WO2023123639A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202123430781.2 2021-12-29
CN202123430781.2U CN216672825U (zh) 2021-12-29 2021-12-29 电机结构、轮毂电机及车辆
CN202123388112.3 2021-12-29
CN202111644812.6A CN114189120A (zh) 2021-12-29 2021-12-29 电机结构、轮毂电机及车辆
CN202123388112.3U CN216672687U (zh) 2021-12-29 2021-12-29 定子结构、电机及车辆
CN202123388111.9U CN216672686U (zh) 2021-12-29 2021-12-29 定子结构、轮毂电机及车辆
CN202123430754.5 2021-12-29
CN202123388111.9 2021-12-29
CN202123430754.5U CN216672693U (zh) 2021-12-29 2021-12-29 转子结构、轮毂电机及车辆
CN202111644812.6 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023123639A1 true WO2023123639A1 (zh) 2023-07-06

Family

ID=86997283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077117 WO2023123639A1 (zh) 2021-12-29 2022-02-21 电机结构、轮毂电机以及车辆

Country Status (1)

Country Link
WO (1) WO2023123639A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1757151A (zh) * 2003-03-06 2006-04-05 勒鲁瓦-索梅尔发动机公司 包括定子和两个转子的旋转电动机械
CN104254965A (zh) * 2012-03-30 2014-12-31 阿莫泰克有限公司 三线连接结构的定子、无刷直流马达及其驱动方法
CN104600930A (zh) * 2015-01-08 2015-05-06 东南大学 永磁励磁无刷双馈风力发电机
CN104884699A (zh) * 2012-12-18 2015-09-02 阿莫泰克有限公司 洗衣机的驱动装置及具有该驱动装置的洗衣机
CN108448849A (zh) * 2018-02-27 2018-08-24 江苏大学 一种定子永磁型双转子磁场调制电机及其设计方法
US20190032266A1 (en) * 2017-07-27 2019-01-31 Samsung Electronics Co., Ltd Motor and method of controlling motor, washing machine having motor
CN109818471A (zh) * 2019-02-01 2019-05-28 江苏大学 一种双气隙磁场调制永磁电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1757151A (zh) * 2003-03-06 2006-04-05 勒鲁瓦-索梅尔发动机公司 包括定子和两个转子的旋转电动机械
CN104254965A (zh) * 2012-03-30 2014-12-31 阿莫泰克有限公司 三线连接结构的定子、无刷直流马达及其驱动方法
CN104884699A (zh) * 2012-12-18 2015-09-02 阿莫泰克有限公司 洗衣机的驱动装置及具有该驱动装置的洗衣机
CN104600930A (zh) * 2015-01-08 2015-05-06 东南大学 永磁励磁无刷双馈风力发电机
US20190032266A1 (en) * 2017-07-27 2019-01-31 Samsung Electronics Co., Ltd Motor and method of controlling motor, washing machine having motor
CN108448849A (zh) * 2018-02-27 2018-08-24 江苏大学 一种定子永磁型双转子磁场调制电机及其设计方法
CN109818471A (zh) * 2019-02-01 2019-05-28 江苏大学 一种双气隙磁场调制永磁电机

Similar Documents

Publication Publication Date Title
US7804216B2 (en) Permanent-magnet reluctance electrical rotary machine
CN101322303B (zh) 电机
CA2732646C (en) Interior permanent magnet motor including rotor with unequal poles
US6853105B2 (en) Permanent magnet motor
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
US8575810B2 (en) Motor
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
CN109818471B (zh) 一种双气隙磁场调制永磁电机
EP1253701A2 (en) Motor
JP2015033329A (ja) トルクリップルが低減されたスポーク永久磁石機械およびその製造方法
CN109964388B (zh) 旋转电机用转子以及旋转电机用转子的制造方法
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
JP2003299281A (ja) 回転電機及びその回転電機を用いたハイブリッド車両
CN113131700B (zh) 一种高功率密度轮毂电机结构
US20220368183A1 (en) Rotor for a synchronous machine
CN110492708B (zh) 叠层式游标电机
CN113273057B (zh) 具有磁通分配空隙的内置永磁体电机
WO2023123639A1 (zh) 电机结构、轮毂电机以及车辆
JP2004336999A (ja) 永久磁石形モータ
CN116260301A (zh) 连体式定子和同步并行连体电机
EP3324518B1 (en) Armature, dynamo-electric machine, crossflow fan
CN115378158A (zh) 电机
CN216672825U (zh) 电机结构、轮毂电机及车辆
CN112152350B (zh) 转子、马达以及驱动装置
CN113629917B (zh) 转子及具有其的电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912945

Country of ref document: EP

Kind code of ref document: A1