WO2023123574A1 - 用于路面检测的相机标定系统及标定方法 - Google Patents

用于路面检测的相机标定系统及标定方法 Download PDF

Info

Publication number
WO2023123574A1
WO2023123574A1 PCT/CN2022/072384 CN2022072384W WO2023123574A1 WO 2023123574 A1 WO2023123574 A1 WO 2023123574A1 CN 2022072384 W CN2022072384 W CN 2022072384W WO 2023123574 A1 WO2023123574 A1 WO 2023123574A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
sensor module
coordinate system
ranging sensor
ground
Prior art date
Application number
PCT/CN2022/072384
Other languages
English (en)
French (fr)
Inventor
杨亚鹏
徐全亮
车霄宇
孙丙阳
张炳瑶
郄胜凯
Original Assignee
中公高科养护科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中公高科养护科技股份有限公司 filed Critical 中公高科养护科技股份有限公司
Publication of WO2023123574A1 publication Critical patent/WO2023123574A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the present application relates to the technical field of road surface detection, in particular to a camera calibration system and calibration method for road surface detection.
  • Pavement detection refers to a series of operations that use an area array camera to capture road images for observation and measurement of road surface disease data.
  • the area array camera needs to be calibrated before road surface detection, which includes internal reference and external reference calibration.
  • the internal reference is the internal parameter of the area array camera, which can be set by itself, while the external reference needs to be calibrated by a calibration device.
  • the prior art has the defect that the operation is very cumbersome, which leads to a decrease in the efficiency of road surface inspection.
  • the embodiment of the present application provides a camera calibration system and calibration method for road surface detection, so as to solve the defect that the operation of the prior art is very cumbersome, resulting in a decrease in the efficiency of road surface detection.
  • the embodiment of the present application provides a camera calibration system for road surface detection, including:
  • a ranging sensor module the ranging sensor module is used to measure the distance between the ranging sensor module and the ground;
  • a two-dimensional attitude sensor module is used to detect the inclination angle of the imaging chip of the camera relative to the ground;
  • a calculation module, the ranging sensor module and the two-dimensional attitude sensor module are electrically connected to the calculation module.
  • the beneficial effect of the camera calibration system for road surface detection of the present application is: the distance measurement sensor module and the two-dimensional attitude sensor module can perform real-time measurement when the installation position of the camera changes, and then calculate the external parameters in real time and quickly through the calculation module. Matrix, so that it is convenient to perform single calibration and real-time calibration of the external parameters of the camera, and does not need to manually use the checkerboard to perform complex multiple photo calculation calibrations, which reduces the workload of manual operations.
  • the camera calibration system for road surface detection can adjust the camera according to the actual needs of road surface detection, and perform real-time calibration, and has a wide range of applications and high engineering application value.
  • the ranging sensor module is a laser ranging sensor or an infrared ranging sensor.
  • the beneficial effect of adopting the above further scheme is that it is convenient to measure the distance from the ground.
  • the camera calibration system for road surface detection also includes a communication module, the communication module is used for electrical signal connection with the controller of the camera, the range sensor module, the two-dimensional attitude sensor module and the The computing modules are all electrically connected to the communication module.
  • the beneficial effect of adopting the above further scheme is that it is beneficial for the controller of the camera to send an instruction to calibrate the external parameters, so that manual operations only need to be performed on the camera.
  • the communication module is a Bluetooth module or a WIFI wireless communication module.
  • Another aspect of the present disclosure provides a calibration method applied to the above-mentioned camera calibration system for road surface detection, including the following steps:
  • the ranging sensor module measures the distance L between the ranging sensor module and the ground;
  • the two-dimensional attitude sensor module detects the tilt angle of the imaging chip of the camera relative to the ground
  • the extrinsic parameter matrix M is calculated according to the distance between the ranging sensor module and the ground and the inclination angle of the imaging chip of the camera relative to the ground.
  • the step of measuring the distance between the ranging sensor module and the ground by the ranging sensor module it also includes:
  • the origin O1 of the camera coordinate system is the focal point in the camera pinhole imaging model
  • the Z1 axis of the camera coordinate system is the optical axis of the camera
  • the X1 axis and Y1 axis of the camera coordinate system are adjacent to two adjacent sides of the camera imaging chip. side parallel;
  • the origin O2 of the world coordinate system is the intersection point of the camera optical axis and the road surface
  • the Z2 axis of the world coordinate system is the projection of the camera optical axis on the road surface
  • the X2 axis of the world coordinate system is perpendicular to the camera optical axis on the road surface
  • the Y2 axis of the world coordinate system is parallel to the road surface normal.
  • the beneficial effect of adopting the above further scheme is that it is beneficial to calculate the coordinate transformation relationship between the camera coordinate system and the world coordinate system, and then the external parameter calibration of the camera can be obtained.
  • the two-dimensional attitude sensor module detects the angle of inclination of the imaging chip of the camera relative to the ground, including:
  • the two-dimensional attitude sensor module measures the angle P between the Z1 axis of the camera coordinate system and the Y2 axis of the world coordinate system;
  • the two-dimensional attitude sensor module measures the angle H between the X1 axis of the camera coordinate system and the X2 axis of the world coordinate system.
  • the beneficial effect of adopting the above further solution is that the tilt angle of camera installation can be corrected.
  • the external parameter matrix M is calculated according to the distance between the ranging sensor module and the ground and the inclination angle of the imaging chip of the camera relative to the ground, including:
  • the beneficial effect of adopting the above further scheme is that it is beneficial to calculate the extrinsic parameter matrix.
  • the second rotation matrix Rz is
  • the external parameter matrix M is a
  • Fig. 1 is a schematic diagram of the positional relationship between the camera coordinate system of the present application and the world coordinate system;
  • Fig. 2 is the flowchart of the calibration method of the present application
  • FIG. 3 is a schematic diagram of the connection relationship of the camera calibration system for road surface detection of the present application.
  • an aspect of the present disclosure provides a camera calibration system for road surface detection, including: a ranging sensor module, a two-dimensional attitude sensor module and a calculation module.
  • the ranging sensor module is used to measure the distance between the ranging sensor module and the ground.
  • the two-dimensional attitude sensor module is used to detect the inclination angle of the imaging chip of the camera relative to the ground. Both the ranging sensor module and the two-dimensional attitude sensor module are electrically connected to the computing module.
  • the ranging sensor module can measure the distance between the ranging sensor module and the ground, and the ranging sensor module is installed at the axis of the shooting end of the camera, so that the measuring axis of the ranging sensor is parallel to the optical axis of the camera or coincident.
  • the two-dimensional attitude sensor module has two measurement axes, the two measurement axes are perpendicular to each other, and the two measurement axes are parallel to the two adjacent sides of the imaging chip, so that the two measurement axes can measure the two adjacent sides of the imaging chip The slope angle from the ground.
  • the calculation module is used to calculate the extrinsic parameter matrix M from the data measured by the ranging sensor module and the data measured by the two-dimensional attitude sensor module.
  • the camera is calibrated through the extrinsic parameter matrix M, which facilitates the detection and analysis of road conditions.
  • the ranging sensor module, the two-dimensional attitude sensor module and the computing module are all used to be installed on the camera.
  • the distance measurement sensor module and the two-dimensional attitude sensor module can perform real-time measurement when the installation position of the camera changes, and then calculate the external parameter matrix in real time and quickly through the calculation module, so as to facilitate the single-dimensional analysis of the external parameters of the camera.
  • Sub-calibration and real-time calibration no need to manually use the checkerboard to perform complex multiple-photographing calculations and calibrations, reducing the workload of manual operations.
  • the camera calibration system for road surface detection can adjust the camera according to the actual needs of road surface detection, and perform real-time calibration, and has a wide range of applications and high engineering application value.
  • the ranging sensor module is a laser ranging sensor or an infrared ranging sensor.
  • the laser ranging sensor adopts laser for ranging, and the measuring end of the laser ranging sensor faces the ground.
  • the infrared ranging sensor uses infrared light for ranging, and the measuring end of the infrared ranging sensor also faces the ground.
  • the ranging sensor module may also be other sensors capable of realizing ranging.
  • the two-dimensional attitude sensor module is a two-axis inclination angle sensor, which measures the inclination angles between two adjacent sides of the imaging chip and the ground respectively through two measurement axes.
  • the two-dimensional attitude sensor module can also be other sensors capable of measuring the inclination angle between two adjacent sides of the imaging chip and the ground.
  • the calculation module is a microprocessor, and the microprocessor can implement data calculation.
  • the camera calibration system for road surface detection further includes a communication module, the communication module is used for electrical signal connection with the controller of the camera, and the ranging sensor module, the two-dimensional attitude sensor module and the calculation module are all electrically connected to the communication module.
  • the communication module is used to transmit control signals, and the communication module can establish a communication link with the controller of the camera, so that the controller of the camera can send signals to the ranging sensor module, the two-dimensional attitude sensor module and the The calculation module, and the ranging sensor module, the two-dimensional attitude sensor module and the calculation module can perform corresponding operations after receiving signals.
  • the extrinsic parameter matrix M calculated by the calculation module can also be transmitted back to the controller of the camera through the communication module, so as to realize the calibration of the extrinsic parameters of the camera.
  • the communication module is a Bluetooth module or a WIFI wireless communication module.
  • the controller of the camera when the communication module is a Bluetooth module, the controller of the camera can be connected to the communication module by Bluetooth, and can transmit signals in real time.
  • the controller of the camera can realize WIFI wireless communication connection with the communication module, and can send signals conveniently and quickly.
  • Another aspect of the present disclosure also provides a calibration method applied to the above-mentioned camera calibration system for road surface detection, including the following steps:
  • the ranging sensor module measures the distance L between the ranging sensor module and the ground;
  • the two-dimensional attitude sensor module detects the tilt angle of the imaging chip of the camera relative to the ground
  • the extrinsic parameter matrix M is calculated according to the distance between the ranging sensor module and the ground and the inclination angle of the imaging chip of the camera relative to the ground.
  • the distance L is the linear distance between the measuring end of the ranging sensor module and the ground.
  • the two-dimensional attitude sensor module has two measurement axes, the two measurement axes are perpendicular to each other, and the two measurement axes are parallel to the two adjacent sides of the imaging chip, so that the two measurement axes can measure the two adjacent sides of the imaging chip The slope angle from the ground.
  • the distance measuring sensor module before the step of obtaining the distance between the distance measuring sensor module and the ground by the distance measuring sensor module, it also includes:
  • the origin O1 of the camera coordinate system is the focal point in the camera pinhole imaging model
  • the Z1 axis of the camera coordinate system is the optical axis of the camera
  • the X1 axis and Y1 axis of the camera coordinate system are adjacent to two adjacent sides of the camera imaging chip. side parallel;
  • the origin O2 of the world coordinate system is the intersection point of the camera optical axis and the road surface
  • the Z2 axis of the world coordinate system is the projection of the camera optical axis on the road surface
  • the X2 axis of the world coordinate system is perpendicular to the camera optical axis on the road surface
  • the Y2 axis of the world coordinate system is parallel to the road surface normal.
  • the calibration of the camera external parameters is the conversion relationship between the camera coordinate system and the world coordinate system, that is, the external parameter matrix M is obtained through calculation to facilitate the conversion between the camera coordinate system and the world coordinate system.
  • the camera coordinate system is located on the camera, and the world coordinate system is located on the ground.
  • the two-dimensional attitude sensor module detects the tilt angle of the imaging chip of the camera relative to the ground, including:
  • the two-dimensional attitude sensor module measures the angle P between the Z1 axis of the camera coordinate system and the Y2 axis of the world coordinate system;
  • the two-dimensional attitude sensor module measures the angle H between the X1 axis of the camera coordinate system and the X2 axis of the world coordinate system.
  • the camera due to the installation of the camera, the camera has a certain rotation angle relative to the ground, so that there is a certain angle between the adjacent two sides of the imaging chip of the camera relative to the ground, and the established camera coordinate system and the world coordinate system can be Converted to the angle P between the Z1 axis of the camera coordinate system and the Y2 axis of the world coordinate system, and the angle H between the X1 axis of the camera coordinate system and the X2 axis of the world coordinate system. Correct the rotation angle of the camera through the measured angle P and angle H, so as to facilitate the calibration of the external parameters of the camera.
  • the calculation of the external parameter matrix M according to the distance between the ranging sensor module and the ground and the inclination angle of the imaging chip of the camera relative to the ground includes:
  • the first rotation matrix Rx is
  • the second rotation matrix Rz is
  • the external parameter matrix M is a
  • the communication module receives a calibration instruction sent by the controller of the camera
  • the communication module sends the calibration instruction to the ranging sensor module, the two-dimensional attitude sensor module and the computing module.
  • the communication module is electrically connected to the controller of the camera, and the operator can operate the camera to enter the external parameter calibration mode.
  • the controller of the camera sends a calibration command to the communication module,
  • the communication module distributes instructions to the ranging sensor module, the two-dimensional attitude sensor module and the computing module to perform external parameter calibration.
  • the calibration method of the camera calibration system for road surface detection includes the following steps:
  • the communication module receives a calibration instruction from a camera controller.
  • the communication module sends the calibration instruction to the ranging sensor module, the two-dimensional attitude sensor module and the calculation module.
  • the ranging sensor module measures to obtain a distance L between the ranging sensor module and the ground.
  • R R x R z .
  • the calculation module After calculating the extrinsic parameter matrix M, the calculation module sends it to the communication module, and the communication module sends it to the controller of the camera to complete the calibration of the extrinsic parameters of the camera.

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Road Repair (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种用于路面检测的相机标定系统及标定方法,用于路面检测的相机标定系统,包括:测距传感器模块,测距传感器模块用于测量测距传感器模块与地面的距离;二维姿态传感器模块,二维姿态传感器模块用于检测相机的成像芯片相对地面的倾斜角度;计算模块,测距传感器模块和二维姿态传感器模块均与计算模块电连接。用于路面检测的相机标定系统能够根据路面检测实际需要调整相机,并进行实时标定,标定速度快,操作简单,适用范围广,工程应用价值高。

Description

用于路面检测的相机标定系统及标定方法
相关申请的交叉引用
本公开要求在2021年12月28日提交中国专利局、申请号为202111631215.X、名称为“一种用于路面检测的相机标定系统及标定方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及路面检测的技术领域,尤其涉及一种用于路面检测的相机标定系统及标定方法。
背景技术
路面检测是指采用面阵相机拍摄路面图像,用于观察、测量路面病害数据的一系列操作。在进行路面检测前需要对面阵相机进行标定,其包括内参和外参标定,内参为面阵相机内部参数,可自行进行设定,而外参需要采用标定装置进行标定。
目前一般采用棋盘格拍摄若干图片进行标定,但是随着路面检测的逐步发展,面阵相机逐步向非固定式发展,当每次移动面阵相机后,均需要棋盘格拍摄若干图片进行标定,使得操作非常繁琐,导致路面检测效率降低。
经上述的技术分析,现有技术中存在操作非常繁琐,导致路面检测效率降低的缺陷。
发明内容
本申请实施例提供了一种用于路面检测的相机标定系统及标定方法,以解决现有技术操作非常繁琐,导致路面检测效率降低的缺陷。
本申请实施例提供了一种用于路面检测的相机标定系统,包括:
测距传感器模块,所述测距传感器模块用于测量所述测距传感器模块与地面的距离;
二维姿态传感器模块,所述二维姿态传感器模块用于检测相机的成像芯片相对地面的倾斜角度;
计算模块,所述测距传感器模块和所述二维姿态传感器模块均与所述计算模块电连接。
本申请的用于路面检测的相机标定系统的有益效果是:通过测距传感器模块和二维姿态传感器模块能够随相机安装位置变化时,进行实时测量,再通过计算模块进行实时快速的计算出外参矩阵,从而方便对相机的外参进行单次标定和实时标定,不需要人工采用棋盘进行复杂的多次拍照计算标定,降低了人工操作的工作量。本用于路面检测的相机标定系统能够根据路面检测实际需要调整相机,并进行实时标定,适用范围广,工程应用价值高。
在上述技术方案的基础上,本申请还可以做如下改进。
进一步,所述测距传感器模块为激光测距传感器或红外测距传感器。
采用上述进一步方案的有益效果是:方便测量距离地面的距离。
进一步,所述用于路面检测的相机标定系统还包括通信模块,所述通信模块用于与所述相机的控制器电信号连接,所述测距传感器模块、所述二维姿态传感器模块和所述计算模块均与所述通信模块电连接。
采用上述进一步方案的有益效果是:利于相机的控制器发送指令进行外参标定,使得人工仅需在相机上操作即可。
进一步,所述通信模块为蓝牙模块或WIFI无线通信模块。
采用上述进一步方案的有益效果是:利于进行通信连接。
本公开的另一方面提供一种应用于上述的用于路面检测的相机标定系统的标定方法,包括以下步骤:
测距传感器模块测量得到测距传感器模块与地面的距离L;
二维姿态传感器模块检测得到相机的成像芯片相对地面的倾斜角度;
根据所述测距传感器模块与地面的距离和所述相机的成像芯片相对地面的倾斜角度,计算得到外参矩阵M。
进一步,在所述测距传感器模块测量得到测距传感器模块与地面的距离步骤之前,还包括:
建立相机坐标系和建立世界坐标系;
所述相机坐标系的原点O1为相机小孔成像模型中聚焦点,所述相机坐标系的Z1轴为相机光轴,所述相机坐标系的X1轴和Y1轴与相机成像芯片的两相邻边平行;
所述世界坐标系的原点O2为相机光轴与路面交点,所述世界坐标系的Z2轴为相机光轴在路面上的投影,所述世界坐标系的X2轴垂直于相机光轴在路面上的投影,所述世界坐标系的Y2轴平行于路面法线。
采用上述进一步方案的有益效果是:利于进行计算出相机坐标系和世界坐标系之间的坐标转换关系,即可得出对相机的外参标定。
进一步,所述二维姿态传感器模块检测得到相机的成像芯片相对地面的倾斜角度,包括:
所述二维姿态传感器模块测量所述相机坐标系的Z1轴与所述世界坐标系的Y2轴的夹角P;
所述二维姿态传感器模块测量所述相机坐标系的X1轴与所述世界坐标系的X2轴的夹角H。
采用上述进一步方案的有益效果是:能够对相机安装的倾斜角度进行修正。
进一步,所述根据所述测距传感器模块与地面的距离和所述相机的成像芯片相对地面的倾斜角度,计算得到外参矩阵M,包括:
根据所述夹角P得出第一旋转矩阵Rx;
根据所述夹角H得出第二旋转矩阵Rz;
根据所述第一旋转矩阵Rx和所述第二旋转矩阵Rz,计算出旋转矩阵R;
根据所述测距传感器模块与地面的距离L得出平移矩阵t;
确定所述相机坐标系的原点O1在所述世界坐标系的坐标T;
根据所述旋转矩阵R和所述平移矩阵t,得出外参矩阵M。
采用上述进一步方案的有益效果是:利于计算出外参矩阵。
进一步,所述第一旋转矩阵Rx为
Figure PCTCN2022072384-appb-000001
所述第二旋转矩阵Rz为
Figure PCTCN2022072384-appb-000002
所述旋转矩阵R为R=R xR z
所述平移矩阵t为t=[0 -L×sin P -L×cos P];
所述外参矩阵M为
Figure PCTCN2022072384-appb-000003
采用上述进一步方案的有益效果是:能够直接计算出外参矩阵。
进一步,在建立相机坐标系和建立世界坐标系之前,还包括:
接收到相机的控制器发出的标定指令;
将所述标定指令发送至所述测距传感器模块、所述二维姿态传感器模块和计算模块。
采用上述进一步方案的有益效果是:方便直接在相机上操作进行外参标定,操作更加简单方便。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的相机坐标系与世界坐标系的位置关系示意图;
图2为本申请的标定方法的流程图;
图3为本申请的用于路面检测的相机标定系统的连接关系示意图。
附图中,各标号所代表的部件列表如下:
1、相机
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获取的所有其他实施例,都属于本申请保护的范围。
如图1和图3所示,本公开的一方面提供一种用于路面检测的相机标定系统,包括:测距传感器模块、二维姿态传感器模块和计算模块。
所述测距传感器模块用于测量所述测距传感器模块与地面的距离。所述二维姿态传感器模块用于检测相机的成像芯片相对地面的倾斜角度。所述测距传感器模块和所述二维姿态传感器模块均与所述计算模块电连接。
其中,本实施方式中,测距传感器模块能够测量测距传感器模块与地面的距离,而测距传感器模块安装在相机的拍摄端的轴心处,使得测距传感器的测量轴与相机的光轴平行或重合。其中,二维姿态传感器模块具有两个测量轴,两个测量轴互相垂直,两个测量轴与成像芯片的相邻两个边平行,从而两个测量轴能够测量成像芯片的相邻两个边与地面的倾斜角度。计算模块用于将测距传感器模块测量得到的数据和二维姿态传感器模块测量得到的数据计算出外参矩阵M,通过外参矩阵M实现对相机进行标定,方便对路面情况进行检测分析。其中,测距传感器模块、二维姿态传感器模块和计算模块均用于安装在相机上。
上述技术方案中,通过测距传感器模块和二维姿态传感器模块能够随相机安装位置变化时,进行实时测量,再通过计算模块进行实时快速的计算出外参矩阵,从而方便对相机的外参进行单次标定和实时标定,不需要人工采用棋盘进行复杂的多次拍照计算标定,降低了人工操作的工作量。本用于路面检测的相机标定系统能够根据路面检测实际需要调整相机,并进行实时标定,适用范围广,工程应用价值高。
可选地,本公开的一种实施方式中,所述测距传感器模块为激光测距传感器或红外测距传感器。
其中,本实施方式中,激光测距传感器为采用激光进行测距,激光测距传感器的测量端朝向地面。红外测距传感器为采用红外光进行测距,红外测距传感器的测量端同样朝向地面。当然,在其他一些实施方式中,测距传感器模块也可为其他可实现测距的传感器。
可选地,本公开的一种实施方式中,二维姿态传感器模块为二轴倾斜角传感器,其通过两个测量轴来分别测量成像芯片的相邻两个边与地面的倾斜角度。当然,可选地,在其他的实施方式中,二维姿态传感器模块也可为其 他能够测量成像芯片的相邻两个边与地面的倾斜角度的传感器。
可选地,本公开的一种实施方式中,计算模块为微处理器,微处理器能够实现数据计算。
可选地,本公开的一种实施方式中,所述用于路面检测的相机标定系统还包括通信模块,所述通信模块用于与所述相机的控制器电信号连接,所述测距传感器模块、所述二维姿态传感器模块和所述计算模块均与所述通信模块电连接。
其中,本实施方式中,通信模块用于传输控制信号,通信模块能够与相机的控制器建立通信联系,使得相机的控制器能够发送信号至测距传感器模块、所述二维姿态传感器模块和所述计算模块,而测距传感器模块、所述二维姿态传感器模块和所述计算模块接受到信号后能够进行对应操作。另外,计算模块计算出的外参矩阵M也能通过通信模块传输回到相机的控制器,实现对相机的外参标定。
可选地,本公开的一种实施方式中,所述通信模块为蓝牙模块或WIFI无线通信模块。
其中,本实施方式中,通信模块为蓝牙模块时,相机的控制器能够与通信模块蓝牙连接,能够实时传输信号。通信模块为WIFI无线通信模块时,相机的控制器能够与通信模块实现WIFI无线通信连接,能够方便快速的发送信号。
本公开的另一方面还提供一种应用于上述的用于路面检测的相机标定系统的标定方法,包括以下步骤:
测距传感器模块测量得到测距传感器模块与地面的距离L;
二维姿态传感器模块检测得到相机的成像芯片相对地面的倾斜角度;
根据所述测距传感器模块与地面的距离和所述相机的成像芯片相对地面的倾斜角度,计算得到外参矩阵M。
其中,距离L为测距传感器模块的测量端与地面的直线距离。其中,二维姿态传感器模块具有两个测量轴,两个测量轴互相垂直,两个测量轴与成像芯片的相邻两个边平行,从而两个测量轴能够测量成像芯片的相邻两个边与地面的倾斜角度。
可选地,在所述测距传感器模块测量得到测距传感器模块与地面的距离 步骤之前,还包括:
建立相机坐标系和建立世界坐标系;
所述相机坐标系的原点O1为相机小孔成像模型中聚焦点,所述相机坐标系的Z1轴为相机光轴,所述相机坐标系的X1轴和Y1轴与相机成像芯片的两相邻边平行;
所述世界坐标系的原点O2为相机光轴与路面交点,所述世界坐标系的Z2轴为相机光轴在路面上的投影,所述世界坐标系的X2轴垂直于相机光轴在路面上的投影,所述世界坐标系的Y2轴平行于路面法线。
其中,相机外参的标定即是相机坐标系与世界坐标系之间的转换关系,即通过计算得到外参矩阵M来方便将相机坐标系与世界坐标系进行转换。其中,相机坐标系位于相机上,而世界坐标系位于地面上。
可选地,本公开的一种实施方式中,所述二维姿态传感器模块检测得到相机的成像芯片相对地面的倾斜角度,包括:
所述二维姿态传感器模块测量所述相机坐标系的Z1轴与所述世界坐标系的Y2轴的夹角P;
所述二维姿态传感器模块测量所述相机坐标系的X1轴与所述世界坐标系的X2轴的夹角H。
其中,本实施方式中,由于相机安装的原因,相机相对地面存在一定旋转角度,从而相机的成像芯片的相邻两侧边相对地面存在一定夹角,通过建立的相机坐标系和世界坐标系可转换为所述相机坐标系的Z1轴与所述世界坐标系的Y2轴的夹角P,以及相机坐标系的X1轴与所述世界坐标系的X2轴的夹角H。通过测量的夹角P和夹角H对相机的旋转角度进行修正,以此来方便对相机的外参进行标定。
可选地,本公开的一种实施方式中,所述根据所述测距传感器模块与地面的距离和所述相机的成像芯片相对地面的倾斜角度,计算得到外参矩阵M,包括:
根据所述夹角P得出第一旋转矩阵Rx;
根据所述夹角H得出第二旋转矩阵Rz;
根据所述第一旋转矩阵Rx和所述第二旋转矩阵Rz,计算出旋转矩阵R;
根据所述测距传感器模块与地面的距离L得出平移矩阵t;
确定所述相机坐标系的原点O1在所述世界坐标系的坐标T;
根据所述旋转矩阵R和所述平移矩阵t,得出外参矩阵M。
可选地,本公开的一种实施方式中,所述第一旋转矩阵Rx为
Figure PCTCN2022072384-appb-000004
所述第二旋转矩阵Rz为
Figure PCTCN2022072384-appb-000005
所述旋转矩阵R为R=R xR z
所述平移矩阵t为t=[0 -L×sin P -L×cos P];
所述外参矩阵M为
Figure PCTCN2022072384-appb-000006
可选地,本公开的一种实施方式中,在建立相机坐标系和建立世界坐标系之前,还包括:
所述通信模块接收到相机的控制器发出的标定指令;
所述通信模块将所述标定指令发送至所述测距传感器模块、所述二维姿态传感器模块和计算模块。
其中,本实施方式中,当相机安装完成后,将通信模块与相机的控制器电信号连接,操作人员可操作相机,进入外参标定模式,此时相机的控制器向通信模块发送标定指令,通信模块将指令分发至测距传感器模块、所述二维姿态传感器模块和所述计算模块,进行外参标定。
如图2所示,本用于路面检测的相机标定系统的标定方法,包括以下步骤:
S201、所述通信模块接收到相机的控制器发出的标定指令。
S202、所述通信模块将所述标定指令发送至所述测距传感器模块、所述二维姿态传感器模块和计算模块。
S203、建立相机坐标系和建立世界坐标系。
S204、测距传感器模块测量得到测距传感器模块与地面的距离L。
S2051、测量所述相机坐标系的Z1轴与所述世界坐标系的Y2轴的夹角P。
S2052、测量所述相机坐标系的X1轴与所述世界坐标系的X2轴的夹角H。
S206、计算外参矩阵M。
S2061、根据所述夹角P得出第一旋转矩阵Rx,
Figure PCTCN2022072384-appb-000007
S2062、根据所述夹角H得出第二旋转矩阵Rz,
Figure PCTCN2022072384-appb-000008
S2063、根据所述第一旋转矩阵Rx和所述第二旋转矩阵Rz,计算出旋转矩阵R,
R=R xR z
S2064、根据所述测距传感器模块与地面的距离L得出平移矩阵t,
t=[0 -L×sin P -L×cos P];
S2065、确定所述相机坐标系的原点O1在所述世界坐标系的坐标T。
S2066、根据所述旋转矩阵R和所述平移矩阵t,得出外参矩阵M,
Figure PCTCN2022072384-appb-000009
S207、计算模块计算得到外参矩阵M后,发送至通信模块,由通信模块发送至相机的控制器,完成相机外参的标定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种用于路面检测的相机标定系统,其特征在于,包括:
    测距传感器模块,所述测距传感器模块用于测量所述测距传感器模块与地面的距离;
    二维姿态传感器模块,所述二维姿态传感器模块用于检测相机的成像芯片相对地面的倾斜角度;
    计算模块,所述测距传感器模块和所述二维姿态传感器模块均与所述计算模块电连接。
  2. 根据权利要求1所述的用于路面检测的相机标定系统,其特征在于,所述测距传感器模块为激光测距传感器或红外测距传感器。
  3. 根据权利要求1所述的用于路面检测的相机标定系统,其特征在于,所述用于路面检测的相机标定系统还包括通信模块,所述通信模块用于与所述相机的控制器电信号连接,所述测距传感器模块、所述二维姿态传感器模块和所述计算模块均与所述通信模块电连接。
  4. 根据权利要求3所述的用于路面检测的相机标定系统,其特征在于,所述通信模块为蓝牙模块或WIFI无线通信模块。
  5. 一种应用于如权利要求1-4任一项所述的用于路面检测的相机标定系统的标定方法,其特征在于,包括以下步骤:
    测距传感器模块测量得到测距传感器模块与地面的距离L;
    二维姿态传感器模块检测得到相机的成像芯片相对地面的倾斜角度;
    根据所述测距传感器模块与地面的距离和所述相机的成像芯片相对地面的倾斜角度,计算得到外参矩阵M。
  6. 根据权利要求5所述的标定方法,其特征在于,在所述测距传感器模块测量得到所述测距传感器模块与地面的距离L的步骤之前,还包括:
    建立相机坐标系和建立世界坐标系;
    所述相机坐标系的原点O1为相机小孔成像模型中聚焦点,所述相机坐标系的Z1轴为相机光轴,所述相机坐标系的X1轴和Y1轴与所述相机的成像芯片的两相邻边平行;
    所述世界坐标系的原点O2为所述相机光轴与路面交点,所述世界坐标系的Z2轴为所述相机光轴在路面上的投影,所述世界坐标系的X2轴垂直于所 述相机光轴在路面上的投影,所述世界坐标系的Y2轴平行于路面法线。
  7. 根据权利要求6所述的标定方法,其特征在于,所述二维姿态传感器模块检测得到所述相机的成像芯片相对地面的倾斜角度,包括:
    所述二维姿态传感器模块测量所述相机坐标系的Z1轴与所述世界坐标系的Y2轴的夹角P;
    所述二维姿态传感器模块测量所述相机坐标系的X1轴与所述世界坐标系的X2轴的夹角H。
  8. 根据权利要求7所述的标定方法,其特征在于,所述根据所述测距传感器模块与地面的距离和所述相机的成像芯片相对地面的倾斜角度,计算得到外参矩阵M,包括:
    根据所述夹角P得出第一旋转矩阵Rx;
    根据所述夹角H得出第二旋转矩阵Rz;
    根据所述第一旋转矩阵Rx和所述第二旋转矩阵Rz,计算出旋转矩阵R;
    根据所述测距传感器模块与地面的距离L得出平移矩阵t;
    确定所述相机坐标系的原点O1在所述世界坐标系的坐标T;
    根据所述旋转矩阵R和所述平移矩阵t,得出所述外参矩阵M。
  9. 根据权利要求8所述的标定方法,其特征在于,所述第一旋转矩阵Rx为
    Figure PCTCN2022072384-appb-100001
    所述第二旋转矩阵Rz为
    Figure PCTCN2022072384-appb-100002
    所述旋转矩阵R为R=R xR z
    所述平移矩阵t为t=[0 -L×sin P -L×cos P];
    所述外参矩阵M为
    Figure PCTCN2022072384-appb-100003
  10. 根据权利要求6所述的标定方法,其特征在于,在建立相机坐标系 和建立世界坐标系之前,还包括:
    接收所述相机的控制器发出的标定指令;
    将所述标定指令发送至所述测距传感器模块、所述二维姿态传感器模块和计算模块。
PCT/CN2022/072384 2021-12-28 2022-01-17 用于路面检测的相机标定系统及标定方法 WO2023123574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111631215.X 2021-12-28
CN202111631215.XA CN114445505A (zh) 2021-12-28 2021-12-28 一种用于路面检测的相机标定系统及标定方法

Publications (1)

Publication Number Publication Date
WO2023123574A1 true WO2023123574A1 (zh) 2023-07-06

Family

ID=81365593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072384 WO2023123574A1 (zh) 2021-12-28 2022-01-17 用于路面检测的相机标定系统及标定方法

Country Status (2)

Country Link
CN (1) CN114445505A (zh)
WO (1) WO2023123574A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271639B1 (ko) * 2011-12-13 2013-06-17 (주)팜비젼 휴대 단말 카메라 외부 파라미터 교정 방법 및 시스템
CN106127787A (zh) * 2016-07-01 2016-11-16 北京美讯美通信息科技有限公司 一种基于逆投影变换的相机标定方法
CN106558080A (zh) * 2016-11-14 2017-04-05 天津津航技术物理研究所 一种单目相机外参在线标定系统及方法
WO2020151212A1 (zh) * 2019-01-24 2020-07-30 惠州市德赛西威汽车电子股份有限公司 车载相机系统相机外参的标定方法及标定系统
CN112308930A (zh) * 2020-10-30 2021-02-02 杭州海康威视数字技术股份有限公司 相机外参标定方法、系统及装置
CN113686314A (zh) * 2021-07-28 2021-11-23 武汉科技大学 船载摄像头的单目水面目标分割及单目测距方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271639B1 (ko) * 2011-12-13 2013-06-17 (주)팜비젼 휴대 단말 카메라 외부 파라미터 교정 방법 및 시스템
CN106127787A (zh) * 2016-07-01 2016-11-16 北京美讯美通信息科技有限公司 一种基于逆投影变换的相机标定方法
CN106558080A (zh) * 2016-11-14 2017-04-05 天津津航技术物理研究所 一种单目相机外参在线标定系统及方法
WO2020151212A1 (zh) * 2019-01-24 2020-07-30 惠州市德赛西威汽车电子股份有限公司 车载相机系统相机外参的标定方法及标定系统
CN112308930A (zh) * 2020-10-30 2021-02-02 杭州海康威视数字技术股份有限公司 相机外参标定方法、系统及装置
CN113686314A (zh) * 2021-07-28 2021-11-23 武汉科技大学 船载摄像头的单目水面目标分割及单目测距方法

Also Published As

Publication number Publication date
CN114445505A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN106920261B (zh) 一种机器人手眼静态标定方法
US11157766B2 (en) Method, apparatus, device and medium for calibrating pose relationship between vehicle sensor and vehicle
CN102778207B (zh) 一种结构件应力应变的测量方法、装置及系统
CN108828554B (zh) 无需激光落点的基于坐标变换的测量方法、系统及装置
CN107256568B (zh) 一种高精度机械臂手眼相机标定方法及标定系统
KR101033167B1 (ko) 카메라 및 레이저 센서의 캘리브레이션 장치, 캘리브레이션 시스템 및 캘리브레이션 방법
CN112070841A (zh) 一种毫米波雷达与摄像头快速联合标定方法
CN112334733B (zh) 拍摄装置的校正装置、监视装置、作业机械及校正方法
CN109916304B (zh) 镜面/类镜面物体三维测量系统标定方法
CN109978960B (zh) 基于摄影测量的高精度屏幕-相机位姿标定方法
CN109465830B (zh) 机器人单目立体视觉标定系统及方法
CN103791889B (zh) 一种利用十字结构光辅助的单目视觉位姿测量方法
CN105865349B (zh) 一种大型建筑物位移监测方法
CN103175512B (zh) 一种混凝土泵车臂架末端位置姿态的摄像测量方法
CN111220120A (zh) 一种动平台双目测距自校准方法及装置
WO2023123574A1 (zh) 用于路面检测的相机标定系统及标定方法
CN205300518U (zh) 双目立体视觉测量装置
CN109990801B (zh) 基于铅垂线的水平仪装配误差标定方法
WO2020215296A1 (zh) 可移动平台的巡线控制方法、设备、可移动平台及系统
CN111287054A (zh) 一种地面平整信息检测传感器及实时检测方法
CN113240751B (zh) 一种机器人末端相机的标定方法
CN113960564A (zh) 一种用于水下检测的激光综合参考系统及测距和标定的方法
TWI730859B (zh) 單攝影機建築結構層間變位監測系統及相關方法
CN104567812A (zh) 空间位置测量方法及装置
KR20210020496A (ko) 자율주행 차량의 센서 캘리브레이션용 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912882

Country of ref document: EP

Kind code of ref document: A1