WO2023123339A1 - 显示装置、抬头显示器以及交通设备 - Google Patents

显示装置、抬头显示器以及交通设备 Download PDF

Info

Publication number
WO2023123339A1
WO2023123339A1 PCT/CN2021/143651 CN2021143651W WO2023123339A1 WO 2023123339 A1 WO2023123339 A1 WO 2023123339A1 CN 2021143651 W CN2021143651 W CN 2021143651W WO 2023123339 A1 WO2023123339 A1 WO 2023123339A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display area
display
reflective
image light
Prior art date
Application number
PCT/CN2021/143651
Other languages
English (en)
French (fr)
Inventor
徐俊峰
吴慧军
方涛
Original Assignee
未来(北京)黑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未来(北京)黑科技有限公司 filed Critical 未来(北京)黑科技有限公司
Publication of WO2023123339A1 publication Critical patent/WO2023123339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0864Catadioptric systems having non-imaging properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • At least one embodiment of the present disclosure relates to a display device, a head-up display, and a traffic device.
  • the head-up display (HUD) device can use reflective optical design to project the image light (including vehicle information such as vehicle speed) from the image source onto the imaging window, so that the user does not need to look down at the instrument panel during driving You can directly see the information, which can not only improve the driving safety factor, but also bring a better driving experience.
  • vehicle information such as vehicle speed
  • Embodiments of the present disclosure provide a display device, a head-up display, and traffic equipment.
  • At least one embodiment of the present disclosure provides a display device, which includes an image source and a first reflective element.
  • the image source includes a plurality of display areas, and the plurality of display areas at least include a first display area and a second display area; the first reflective element is configured to reflect light emitted from the image source and transmitted to the first reflective element Image light.
  • the display device further includes a refraction element, and the image light emitted from at least one of the first display area and the second display area is refracted by the refraction element and propagates to the first reflection element, from the first display area to the first reflective element.
  • the optical distances of the image light emitted from the first display area and the second display area and transmitted to the first reflective element are different, and the image light emitted from the first display area and the second display area passes through the
  • the virtual image of the display device formed after reflection by the first reflective element is coaxial.
  • the display device further includes a transflective element.
  • One of the first image light emitted from the first display area and the second image light emitted by the second display area is transmitted to the first reflective element after being transmitted through the transflective element, and the first image light
  • the other one of the second image light and the second image light is reflected by the transflective element and travels to the first reflective element, and the first image light and the second image light pass through the transflective element.
  • the optical axes coincide, or the distance between the main optical axes of the first image light and the second image light after passing through the transflective element is within a set interval range.
  • the image source includes a first sub-image source and a second sub-image source that are independent of each other, the first sub-image source includes the first display area, and the second sub-image source including the second display area.
  • the image light emitted from one of the first display area and the second display area is refracted by the refraction element and then travels toward the first reflection element; or, the refraction element includes The first sub-refraction element and the second sub-refraction element, the image light emitted from the first display area is refracted by the first sub-refraction element and then travels to the first reflection element, and the image light emitted from the second display area The image light propagates toward the first reflective element after being refracted by the second sub-refractive element.
  • the size of the first sub-refractive element is different from that of the second sub-refractive element in the direction perpendicular to the display surface of the corresponding display area; and/or, the first sub-refractive element is different from the second sub-refractive element.
  • the refractive index of the second sub-refraction element is different; and/or, the angle between the exit surface of the first sub-refraction element and the display surface of the image source is the same as the exit surface of the second sub-refraction element
  • the included angle with the display surface of the image source is different; and/or, the shape of the exit surface of the first sub-refraction element is different from the shape of the exit surface of the second sub-refraction element.
  • the display device further includes: at least one second reflective element.
  • the at least one second reflective element is configured to reflect the image light emitted from the plurality of display areas and transmitted to the second reflective element, and the first reflective element is configured to reflect The image light transmitted to the first reflective element after being reflected by the reflective element; the image light emitted from the first display area and the second display area is captured by the same one of the at least one second reflective element After being reflected by the second reflective element, it propagates to the first reflective element.
  • the multiple display areas further include a third display area, the image light emitted by the first display area, the second display area, and the third display area are captured by the same second display area.
  • the reflective element propagates to the first reflective element after reflection; or, the plurality of display areas further include a third display area, the at least one second reflective element includes two second reflective elements, and the first display area
  • the image light emitted from the second display area is reflected by the same second reflective element and propagates to the first reflective element, and the image light emitted from the third display area is reflected by another second reflective element After reflection, propagate to the first reflective element.
  • the second reflective element includes at least one of a planar reflector or a curved reflector
  • the first reflective element includes a curved reflector or a planar reflector
  • the optical distances of the image light emitted from the first display area, the second display area and the third display area and transmitted to the first reflective element are all different.
  • the image source includes a plurality of sub-image sources independent of each other, and at least one of the first display area and the second display area is located in a different sub-image source than the third display area.
  • the exit surface of the refraction element away from the image source includes at least one of a plane, a concave surface, or a convex surface, and the exit surface of the refraction element is in contact with the display surface of the image source
  • the included angle is from 0° to 90°.
  • the incidence surface of the refraction element is attached to at least part of the display surface of the image source; or, the incidence surface of the refraction element is spaced apart from the display surface of the image source.
  • At least one embodiment of the present disclosure provides a head-up display, including a reflective imaging part and a display device, the reflective imaging part is configured to reflect the image light emitted from the first reflective element and propagated to the reflective imaging part to viewing area, and transmits ambient light.
  • the display device in the head-up display area is the display device in any of the above-mentioned embodiments.
  • the first display area and the second display area only one of the image light of the first display area and the image light of the second display area is refracted
  • the element is then transmitted to the reflective imaging part, the image light in the first display area is reflected by the reflective imaging part to form a first virtual image, and the image light in the second display area is reflected by the reflective imaging part to form a first virtual image.
  • the distance between the first virtual image and the observation area is different from the distance between the second virtual image and the observation area.
  • only the image light in the first display area travels to the reflective imaging part after passing through the refraction element, and the distance between the first virtual image and the observation area is smaller than that of the first virtual image. The distance between the two virtual images and the observation area.
  • the distance between the first virtual image and the observation area is 2-4 meters, and the distance between the second virtual image and the observation area is 20-50 meters.
  • At least one embodiment of the present disclosure provides a transportation device, including the above-mentioned display device or the above-mentioned head-up display.
  • FIG. 1a is a schematic diagram of a partial structure of a display device provided according to an embodiment of the present disclosure
  • Fig. 1b is a schematic structural diagram of a head-up display provided according to another embodiment of the present disclosure.
  • Fig. 2 is a partial cross-sectional structural schematic diagram of another display device provided according to an embodiment of the present disclosure
  • Fig. 3 is a partial cross-sectional structural schematic diagram of another display device provided according to an embodiment of the present disclosure.
  • FIG. 4 is a partial cross-sectional structural schematic diagram of another display device provided according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a head-up display provided according to another embodiment of the present disclosure.
  • Fig. 6 is an exemplary block diagram of a transportation device provided according to another embodiment of the present disclosure.
  • At least one embodiment of the present disclosure provides a display device, a head-up display, and traffic equipment.
  • the display device includes an image source and a first reflective element.
  • the image source includes a plurality of display areas, and the plurality of display areas at least include a first display area and a second display area; the first reflective element is configured to reflect image light emitted from the image source and propagated to the first reflective element.
  • the display device also includes a refraction element, and the image light emitted from at least one of the first display area and the second display area is refracted by the refraction element and propagates to the first reflective element, exits from the first display area and the second display area and propagates to The optical distance of the image light of the first reflective element is different, and the virtual image of the display device formed by the image light emitted from the first display area and the second display area after being reflected by the first reflective element is coaxial.
  • a refraction element is provided in the display device, and the virtual image formed by the image light emitted from the first display area and the second display area after passing through the first reflective element is coaxial, so that each structure of the display device can be made compact. setting, and realize the adjustment of the imaging position, and the above-mentioned coaxial virtual image users have a better experience when viewing.
  • the display device, the head-up display and the traffic equipment provided by the embodiments of the present disclosure will be described below with reference to the accompanying drawings. It should be noted that the same components can be arranged in the same way, and all embodiments of the present disclosure are applicable to multiple protection topics such as display devices, head-up displays, and traffic equipment, and the same or similar content will not be repeated in each protection topic , reference may be made to the descriptions in the embodiments corresponding to other protection subjects.
  • Fig. 1a is a schematic diagram of a partial structure of a display device provided according to at least one embodiment of the present disclosure.
  • the display device includes an image source 100 and a first reflective element 300 .
  • the image source 100 includes a plurality of display areas, and the plurality of display areas at least include a first display area 101 and a second display area 102 ; the first reflective element 300 is configured to reflect image light emitted by the image source 100 .
  • the display device also includes a refraction element 200, the image light emitted by at least one of the first display area 101 and the second display area 102 is refracted by the refraction element 200 and then propagates to the first reflection element 300, from the first display area 101 and the second display area 101 to the second display area 102.
  • the optical distances of the image light emitted from the area 102 and transmitted to the first reflective element 300 are different, and the virtual images formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 are coaxial.
  • a refraction element is provided in the display device, and the virtual image formed by the image light emitted from the first display area and the second display area after passing through the first reflective element is coaxial, so that each structure of the display device can be made compact. setting, and the adjustment of the imaging position can be realized, and the coaxial virtual image with different imaging distances has a better user experience.
  • the virtual image of the display device formed by the image light emitted from the first display area 101 and the second display area 102 after being reflected by the first reflective element 300 is coaxial.
  • the coaxial virtual image of the above display device is then processed by other components, such as the coaxial virtual image formed by reflection by the reflective imaging unit (explained in detail later).
  • image light rays emitted from different display areas are reflected at the first reflective element 300 on the same or close paths, and the virtual images formed by the display device are coaxial.
  • the paths of different image light rays reflected by the first reflective element 300 are basically coincident (for example, the main optical axes are basically coincident), and the virtual image formed by the display device is coaxial.
  • a head-up display to which the display device is applied can form a coaxial virtual image.
  • the image light emitted from the display area 101 and the display area 102 is reflected by the first reflective element 300, and then reflected by the reflective imaging unit 700; the reflective imaging unit 700 reflects the image light AB to form a virtual image 1120 and a virtual image 1110,
  • the user can observe a coaxial virtual image in the viewing area 800 .
  • the above-mentioned coaxial pictures with different imaging distances have basically the same viewing angle (such as the downward viewing angle), and the user's line of sight direction hardly changes when viewing the coaxial pictures with different distances, and the user experience is better; for example, compared with non-coaxial
  • the coaxial image is more suitable for augmented reality head-up display (Augmented Reality-HUD, AR-HUD);
  • the initial distance of the vehicle is 500 meters. When the vehicle is driving, the distance to the point of interest is gradually approaching.
  • the POI images in the AR-HUD also need to be displayed at different imaging distances to adapt to the above changes; during this process, the user ( For example, when the driver) watches the image displayed by AR-HUD, the angle of view is almost unchanged or changes very little, so the AR experience of the coaxial screen with basically the same angle of view will be better, the change process is more coherent, and the user's line of sight does not need to switch back and forth And offset, the experience is better.
  • the above-mentioned "downward viewing angle” may refer to a viewing angle viewed from above, and may be referred to as a top viewing angle.
  • the above-mentioned “coaxial” may refer to the center points of different virtual image frames and the center of the user's eye box being on the same straight line or nearly on the same straight line; or, it may also be the reflected light that forms different virtual image frames (as mentioned later The reflection paths of the reflective imaging part) overlap or nearly overlap; or, the viewing angles (such as the lower viewing angles) of the above-mentioned different virtual image screens observed by the user are basically the same and very close to each other.
  • the above-mentioned "coaxial” may mean that the image light emitted by the first display area 101 and the image light emitted by the second display area 102 overlap on the light path reflected to the observation area; or, it may also refer to the first display area 101 and The image displayed in the second display area 102 is processed by the first reflective element 300 and other optical elements to form two virtual images.
  • the projection of one virtual image to the other virtual image is within the range of the other virtual image; or, it can also refer to the first display area 101
  • the projection of one virtual image onto the other virtual image of the two virtual images formed after the image displayed on the second display area 102 is processed by the first reflective element 300 and other optical elements at least partially overlaps the other virtual image.
  • the above “optical distance” may refer to the product of the geometric path of the image light emitted from the display area to the first reflective element 300 and the refractive index of the propagation medium.
  • the optical distance of the image light emitted from the display area and transmitted to the first reflective element 300 may refer to the optical distance traveled by the main transmission light of the image light emitted from the display area.
  • the optical distance of the image light emitted from the display area and transmitted to the first reflective element 300 may refer to the optical distance traveled by the main optical axis of the image light emitted from the display area.
  • the above-mentioned optical distance may be the optical path of the image light emitted to the first reflective element 300 .
  • the image light propagating in the refraction element 200 is refracted during the process of exiting from the exit surface of the refraction element 200, because the refractive index of the refraction element 200 is often greater than 1, for example, after the light passes through the refraction of the refraction element 200, the optical path increases, and the exit
  • the propagation path of the light and the incident light has changed; for example, it can be considered that the image light emitted by the image source 100 passes through the refraction element 200, which is equivalent to moving the image displayed by the image source forward or backward, which can be considered as changing the image source 100
  • the equivalent object distance between the displayed image and the first reflective element 300 is equivalent object distance between the displayed image and the first reflective element 300 .
  • the equivalent object distance can be that when there is an optical element (such as a refracting element 200) between the image source and the first reflective element 300, the image source is imaged by the last optical element before the curved mirror (such as refracted by the optical element, The distance between the position imaged by reflection, diffraction, scattering, etc.) and the optical center/center of the first reflective element 300 .
  • the equivalent object distance is related to the optical distance between the image source 100 and the first reflective element 300 .
  • the equivalent object distance is related to the quantity and function of optical elements between the image source 100 and the first reflective element 300 .
  • the physical distance between the image displayed by the image source 100 and the first reflective element 300 is basically the same, but by setting the refraction element 200 between the image source 100 and the first reflective element 300, the distance from the image source 100 can be made
  • the optical path of the image light after passing through the refraction element 200 changes, and the equivalent object distance between the image displayed by the image source 100 and the first reflective element 300 also changes, for example, the equivalent object distance decreases in the above case.
  • the included angle between the virtual image formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 is 0°-90°.
  • the angle between the virtual image formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 is 10°-80°.
  • the angle between the virtual image formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 is 20°-70°.
  • the included angle between the virtual image formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 is 30°-45°.
  • the included angle between the virtual image formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 is 40°-60°.
  • the surface of the refraction element 200 away from the image source 100 includes at least one of a plane, a concave surface or a convex surface.
  • the surface on the side of the refraction element 200 away from the image source 100 includes a plane, it can be parallel to the surface of the refraction element 200 on the side close to the image source 100, or it can be preset with the surface of the refraction element 200 on the side close to the image source 100.
  • the included angle for example, the preset included angle may be 1°-20°.
  • the refraction element 200 may be a solid transparent component with a three-dimensional structure, its refractive index is greater than 1, and its optical power is zero or almost zero.
  • the refraction element 200 can be at least one of a regular cube structure, a cuboid structure, a parallelepiped structure and a trapezoid structure;
  • the incident surface and the outgoing surface of the refraction element 200 may both be parallel to the display surface of its corresponding display area.
  • the above-mentioned display area corresponding to the refraction element 200 may refer to an optical path where the refraction element 200 is arranged on the display area and the image light emitted from the display area propagates to the first reflective element.
  • the image displayed by the image source 100 can change the optical path between the image and the first reflective element 300 after passing through the refraction element 200, and the image source 100 can be changed.
  • the equivalent object distance between the displayed image and the first reflective element 300 is the equivalent object distance between the displayed image and the first reflective element 300 .
  • the refraction element 200 may be a light-transmitting element with non-zero focal power, for example, the surface on the side away from the image source 100 (such as the exit surface of the refraction element 200 ) includes concave, convex and other curved surfaces.
  • the refraction element 200 may include a single lens or multiple lenses, for example, may include a convex lens, a concave lens, or a combination of both; for example, may include a spherical lens or a Fresnel lens, or a combination of both.
  • the optical power of the system is mainly Determined by the first reflective element 300 (for example, the first reflective element 300 includes a curved mirror), after adding the refractive element 200 whose optical power is not 0, the optical power of the system increases or decreases, thereby changing the final imaging distance (such as the imaging distance of the display device, and/or the imaging distance of the virtual image of the head-up display using the display device); and, adding the refraction element 200 will also change the optical path of the light, which can change the image displayed by the image source 100 and the first reflection The equivalent object distance between elements 300. For example, after setting a light-transmitting element with non-zero optical power in the optical path, the imaging distance can be increased or decreased.
  • the first reflective element includes a curved reflector (for example, the reflective surface is concave)
  • the image including the image displayed on the display surface of the image source, or the image displayed by the image source is processed by some optical elements
  • the distance between the image) and the concave reflector is less than the focal length of the concave reflector, then the concave reflector forms an upright enlarged virtual image based on the image.
  • the imaging properties of the concave mirror it can be known that when the distance between the image and the concave mirror (such as the equivalent object distance) is smaller than the focal length of the concave mirror (that is, the image is located within one focal length of the concave mirror ), the image distance of the concave mirror increases with the distance between the image and the concave mirror.
  • the image light reflected and emitted by the first reflective element will pass through reflective imaging parts such as windshields of traffic equipment and then travel to the eyes of the user.
  • the windshield is generally a planar structure or a curved surface structure with a small curvature.
  • the image distance of the virtual image seen by the user is mainly determined by the first reflective element, that is, the position of the virtual image formed by the first reflective element reflecting the image light is mainly determined.
  • the position of the virtual image of the head-up display viewed by the user (such as the imaging distance of the virtual image); That is, the greater the distance between the image and the concave mirror, the greater the distance between the user using the HUD including the display device and the image viewed. That is, by changing the optical distance (for example, the optical distance) between the image source and the first reflective element, the equivalent object distance can be changed, and finally the distance between the user and the viewed image can be changed.
  • a refraction element with a small volume is arranged on the optical path where the image light emitted by the image source propagates to the first reflective element, so as to change the image formed by the image source displayed by the image source through the refraction element and the first reflective element
  • the imaging distance of the image formed by the first reflective element can be changed to realize the adjustment of the imaging position.
  • the image light emitted from the image source 100 is incident on the first reflection element 300 after passing through the refraction element 200 .
  • the light emitted from the refraction element 200 may directly enter the first reflection element 300 without being processed by other optical elements.
  • the light emitted from the refraction element 200 can be processed (for example, at least one of transmission, reflection, refraction, diffraction, aggregation, and scattering) by at least one optical element (such as a transflective element, a mirror, a lens, or a prism, etc.) species) and then incident on the first reflective element 300.
  • at least one optical element such as a transflective element, a mirror, a lens, or a prism, etc.
  • the first reflective element 300 may be located on the display side of the image source 100 (eg, the side where image light is emitted). But not limited thereto, for example, the first reflective element 300 may also be located on the non-display side of the image source 100 , and the light emitted by the image source 100 is reflected and propagated to the first reflective element 300 through other reflective structures.
  • the display device further includes a transflective element 600, and one of the first image light emitted from the first display area 101 and the second image light emitted by the second display area passes through the transflective element 600 and travels to The first reflective element 300, the other of the first image light and the second image light is reflected by the transflective element 600 and propagates to the first reflective element 300, and the first image light and the second image light pass through the transflective element 600
  • the main optical axes (chief light, chief ray, or optical axis) coincide, or the distance between the two main optical axes is within the set interval range.
  • the above-mentioned first image light and second image light may be directly incident on the transflective element 600 after exiting the display area, or may pass through other optical elements (such as reflective mirrors, refraction elements, diffraction elements, scattering elements, and concentrating elements, etc.) is incident on the transflective element 600 after the action.
  • optical elements such as reflective mirrors, refraction elements, diffraction elements, scattering elements, and concentrating elements, etc.
  • the main optical axes of the above-mentioned first image light and the second image light are symmetrical or almost symmetrical with respect to the transflective element 600; coincident or nearly coincident; or, the principal optical axes of the above two can be within the set interval range, for example, the principal optical axes of the two beams of light are parallel or non-parallel; for example, the two beams of light overlap during propagation, can It is along the traveling direction of the light beam, the sections of the two beams of light overlap (such as completely overlapping or one completely falls into the other); or overlap and partially overlap (such as the area ratio of the overlapping part exceeds 40%, 50%, 60%, 70% or greater).
  • the image light emitted from the first display area 101 and the second display area 102 may both be processed by the transflective element 600 and then propagate to the first reflective element 300 .
  • a transflective element is arranged on the optical path where the image light emitted from two different display areas propagates to the first reflective element, so that the image light emitted from two different display areas can be formed by passing through the first reflective element.
  • Virtual image coaxial is arranged on the optical path where the image light emitted from two different display areas propagates to the first reflective element, so that the image light emitted from two different display areas can be formed by passing through the first reflective element.
  • the image light emitted from the first display area 101 is transmitted to the first reflective element 300 after being transmitted by the transflective element 600, and the image light emitted from the second display area 102 is reflected by the transflective element 600. propagates to the first reflective element 300.
  • the reflectivity of the transflective element 600 to one of the first image light and the second image light is greater than its reflectivity to the other;
  • the transmittance of one is greater than its transmittance of the other.
  • the reflectivity of the transflective element 600 to the light of the second image is greater than the reflectivity of the light of the first image.
  • the transmittance of the transflective element 600 to the light of the first image is greater than the transmittance of the light of the second image.
  • the reflectivity of the transflective element 600 to one of the first image light and the second image light is greater than its reflectivity to the other, and its transmittance to one is smaller than its transmittance to the other.
  • the reflectivity of the transflective element 600 for the second image light is greater than the reflectivity of the first image light, and the transmittance of the transflective element 600 for the second image light is smaller than the transmittance of the first image light.
  • the transflective element 600 has no or almost no selectivity to light, and has substantially the same transmittance and/or reflectance to different light (eg, first image light and second image light).
  • the reflectivity of the transflective element 600 to the image light emitted from the second display area 102 can be 30%, 40%, 50% or other applicable values, and the reflectance of the image light emitted from the first display area 101
  • the transmittance of light may be 70%, 60%, 50% or other applicable values.
  • the transflective element 600 may include a polarized transflective element, the second display area 102 emits the first polarized light (polarized light with the first polarization), and the first display area 101 emits the second polarized light (with the second polarized light).
  • polarized light for example, the polarization directions of the first polarized light and the second polarized light are perpendicular, and the transflective element is configured to reflect the first polarized light and transmit the second polarized light.
  • the polarizing transflective element may be an element formed by coating or sticking a film on a transparent substrate.
  • the polarizing transflective element can be a transflective film coated or pasted on the substrate with the characteristics of reflecting the first polarized light and transmitting the second polarized light, such as a reflective polarized light enhancement film (Dual Brightness Enhance Film, DBEF) or a prism One or more of Brightness Enhancement Film (BEF), etc.
  • DBEF Reflective polarized light enhancement film
  • BEF Brightness Enhancement Film
  • the transflective element may also be an integrated element, such as a polarization beam splitter with a three-dimensional structure, such as a cube polarization beam splitter.
  • a polarization beam splitter with a cubic structure can have higher stability.
  • the polarized transflective element can be an optical film with a polarized transflective function.
  • the polarized transflective element can be composed of multiple film layers with different refractive indices according to a certain stacking sequence (for example, the refraction between adjacent film layers different refractive index, or stacked sequentially according to the law of high-low repeated changes in refractive index), the thickness of each film layer is between 10 and 1000nm; the material of the film layer can be selected from inorganic dielectric materials, such as metal oxides and metal nitrogen One or more of compounds, etc.; one or more of polymer materials, such as polypropylene, polyvinyl chloride or polyethylene, etc. can also be selected.
  • the transflective element is in the form of an optical film, which can be easily installed and has the advantage of low cost.
  • one of the first polarized light and the second polarized light includes light in the S polarization state, and the other of the first polarized light and the second polarized light includes light in the P polarization state.
  • the included angle between the polarization directions of the first polarized light and the second polarized light may be approximately 90°.
  • the embodiment of the present disclosure is not limited thereto.
  • the first polarized light and the second polarized light may also be non-S polarized light or non-P polarized light, such as
  • the first polarized light and the second polarized light may be two kinds of linearly polarized lights whose polarization directions are perpendicular to each other, or two kinds of circularly polarized lights whose polarization directions are perpendicular to each other, or two kinds of elliptically polarized lights whose polarization directions are orthogonal to each other.
  • the transflective element may be a wavelength-selective transflective element, the wavelength band of the image light emitted by the first display area 101 is the second wave band group, the wave band of the image light emitted by the second display area 102 is the first wave band group, and the transflective The element is configured to reflect image light of the first waveband set and transmit image light of the second waveband set.
  • the above “wavelength band” may include a single wavelength, or may include a mixed range of multiple wavelengths.
  • the wavelength band includes a single wavelength
  • light of this wavelength may be mixed with light of nearby wavelengths due to process error.
  • the above-mentioned image light in the first band group and the second band group may include light in three bands of red, green and blue (RGB), and the full width at half maximum of the light in each band of RGB is not greater than 50 nm.
  • the first waveband group and the second waveband group may both include image light of three wavebands, for example, the peak of the first waveband among the three wavebands is located in the range of 410nm-480nm, and the peak of the second waveband is located in Within the range of 500nm to 565nm, the peak of the third band is located within the range of 590nm to 690nm.
  • the reflectivity of the transflective element 600 to one of the image light of the first waveband group and the image light of the second waveband group is greater than its reflectivity to the other; or, the transreflective element 600 to the first waveband group
  • the transmittance of one of the image light and the image light of the second waveband group is greater than that of the other.
  • the reflectivity of the transflective element 600 to the image light of the second waveband group is greater than the reflectivity of the image light of the first waveband group.
  • the transmittance of the transflective element 600 to the image light of the first waveband group is greater than the transmittance of the image light of the second waveband group.
  • the reflectivity of the transflective element 600 to one of the image light of the first waveband group and the image light of the second waveband group is greater than its reflectivity to the other, and its transmittance to one is smaller than its transmittance to the other.
  • the transmittance of the image rays for the band group is greater than its reflectivity to the other, and its transmittance to one is smaller than its transmittance to the other.
  • the reflectivity of the transflective element 600 using a wavelength-selective transflective element to the image light emitted from the second display area 102 can be 70%, 80%, 90%, 95% or other applicable values.
  • the light transmittance of the image light emitted from the region 101 may be 70%, 80%, 90%, 95% or other applicable values.
  • the transflective element may be a polarization-wavelength selective transflective element, for example, the image light emitted from the first display area 101 and the image light emitted from the second display area 102 have overlapping or substantially overlapping wavelength bands, but each has a different polarization state , the transflective element is configured to reflect the first image light and transmit the second image light.
  • the "band" has the same or similar characteristics as those in the foregoing embodiments, which will not be repeated here.
  • the polarization directions of the first polarization state and the second polarization state are perpendicular.
  • one of the first polarization state and the second polarization state includes the S polarization state
  • the other of the first polarization state and the second polarization state includes the P polarization state.
  • Embodiments of the present disclosure are not limited thereto.
  • the polarization directions of the first polarization state and the second polarization state may also be non-S polarization state or non-P polarization state, such as the first polarization state and the second polarization state It can be two linear polarization states whose polarization directions are perpendicular to each other, or two circular polarization states whose polarization directions are orthogonal to each other, or two elliptical polarization states whose polarization directions are orthogonal to each other, etc.
  • the first image light includes RGB light in S polarization state
  • the second image light includes RGB light in P vibration state
  • the first image light includes RGB light in P polarization state
  • the second image light includes RGB light in S vibration state light.
  • the reflectivity of the transflective element 600 to one of the first image light and the second image light is greater than its reflectivity to the other;
  • the transmittance of one is greater than its transmittance of the other.
  • the reflectivity of the transflective element 600 to the light of the second image is greater than the reflectivity of the light of the first image.
  • the transmittance of the transflective element 600 to the light of the first image is greater than the transmittance of the light of the second image.
  • the reflectivity of the transflective element 600 to one of the first image light and the second image light is greater than its reflectivity to the other, and its transmittance to one is smaller than its transmittance to the other.
  • the reflectivity of the transflective element 600 for the second image light is greater than the reflectivity of the first image light, and the transmittance of the transflective element 600 for the second image light is smaller than the transmittance of the first image light.
  • the reflectivity of the transflective element 600 using a polarization-wavelength selective transflective element to the image light emitted from the second display area 102 can be 70%, 80%, 90%, 95%, or other applicable values.
  • the light transmittance of the image light emitted from a display area 101 may be 70%, 80%, 90%, 95% or other applicable values.
  • the above-mentioned wavelength selective transflective element and/or polarization-wavelength selective transflective element may include a selective transflective film stacked by inorganic oxide films or polymer films, the transflective film is composed of at least two kinds of Layers of different refractive indices are stacked.
  • the "different refractive index" here means that the film layer has a different refractive index in at least one of the three xyz directions.
  • pre-select the required film layers with different refractive indices and stack the film layers according to the pre-set order, for example, the refractive index between adjacent film layers is different, or follow the law of high-low repeated changes in the refractive index Stacking; a transreflective film with selective reflection and selective transmission characteristics can be formed, and the transreflective film can selectively reflect light of a certain characteristic and transmit light of another characteristic.
  • the composition of the film layer is selected from the group consisting of tantalum pentoxide, titanium dioxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, magnesium fluoride, silicon nitride, silicon oxynitride , one or more of aluminum fluoride.
  • the film layer of organic polymer material includes at least two thermoplastic organic polymer film layers.
  • two thermoplastic polymer film layers are alternately arranged to form an optical film, and the refractive indices of the two thermoplastic polymer film layers are different.
  • the molecules of the above-mentioned organic polymer materials have a chain structure, and the molecules are arranged in a certain direction after stretching, resulting in different refractive indices in different directions, that is, the required film can be formed through a specific stretching process.
  • the above-mentioned thermoplastic polymers can be polyethylene terephthalate (PET) and its derivatives with different degrees of polymerization, polyethylene naphthalate (PEN) and its derivatives with different degrees of polymerization, different degrees of polymerization One or more of the degree of polybutylene terephthalate (PBT) and its derivatives.
  • the image source 100 includes a first sub-image source 110 and a second sub-image source 120 that are independent of each other, the first sub-image source 110 includes a first display area 101, and the second sub-image source 120 includes a second sub-image source 120. Two display areas 102 .
  • by setting a plurality of sub-image sources independent of each other it is beneficial to increase the field of view of the display device and improve user experience.
  • the positions where the light rays of the first sub-image source 110 and the second sub-image source 120 are incident on the transflective element are within a certain range to ensure beam combining, or the main optical axes of the first image light and the second image light are relative to the transflective element.
  • the components are arranged symmetrically.
  • the angle between the display surface of the first display area 101 and the display surface of the second display area 102 may be 5°-90°.
  • the angle between the display surface of the first display area 101 and the display surface of the second display area 102 may be 10°-80°.
  • the angle between the display surface of the first display area 101 and the display surface of the second display area 102 may be 20°-70°.
  • the included angle between the display surface of the first display area 101 and the display surface of the second display area 102 may be 30°-45°.
  • the included angle between the display surface of the first display area 101 and the display surface of the second display area 102 may be 40°-60°.
  • the angle between different virtual images can be adjusted by adjusting the angle between different display surfaces.
  • the first display area 101 and the second display area 102 may display the same image or different images, and a part of the image displayed in one display area may be the same as the image displayed in the other display area.
  • the example does not limit this, and it can be set according to actual product requirements.
  • the same image means that the displayed content is the same.
  • the display sizes of the first display area 101 and the second display area 102 may be the same or different.
  • the image light emitted from the first display area 101 and the second display area 102 and transmitted to the first reflective element 300 forms different virtual images.
  • the above-mentioned different virtual images may refer to virtual images that are not completely the same, for example, at least one of virtual image position, virtual image size, virtual image tilt degree and virtual image content is different.
  • the first virtual image formed by the image light emitted from the first display area 101 and transmitted to the first reflective element 300 and the second virtual image formed by the image light emitted from the second display area 102 and transmitted to the first reflective element 300 can be simultaneously displayed. or not at the same time.
  • the two can be combined with objects at different distances at the same time, such as the bank in front of the user and the road in the distance.
  • AR display is not performed, for example, only a flat UI including instrument information is displayed, and the other of the two can perform AR bonding with objects far away in front of the user (such as the vehicle in front, POI, etc.).
  • the image with the closest distance to the object is selected for AR bonding.
  • the viewing angles of the virtual images are almost the same, and matching the two virtual images with changing objects will also allow users to have a better experience.
  • the AR fitting, image and real-scene fitting, etc. referred to in at least one embodiment of the present disclosure may refer to a display screen (such as a display device or a head-up display including a display device) viewed by the user from the observation area (such as the eye box area).
  • the display content corresponding to the information in the image formed by the display such as the virtual image formed by reflection, corresponds to the preset position displayed in the real scene displayed by the windshield.
  • the image of the bank corresponds to the position of the bank in the real scene; At least one can be displayed in a sticky manner.
  • an image picture that matches the display content corresponding to the navigation map information, navigation prompt information or planned route information with the real scene is projected to the eye box area at the driver's position to achieve better
  • the display effect helps to improve the safety and driving experience of users driving traffic equipment.
  • the image light emitted from one of the first display area 101 and the second display area 102 is refracted by the refraction element 200 and travels to the first reflection element 300 .
  • the image light emitted from the first display area 101 is refracted by the refraction element 200 and then transmitted to the first reflective element 300, and the image light emitted by the second display area 102 is not refracted.
  • Element 200 only the image light emitted from the first display area 101 is refracted by the refraction element 200 and then transmitted to the first reflective element 300, and the image light emitted by the second display area 102 is not refracted.
  • the image light emitted from the second display area 102 is refracted by the refraction element 200 and propagates to the first reflective element 300, and the image light emitted by the first display area 101 is not refracted. Element 200.
  • the refraction element 200 when the refraction element 200 is removed from the optical path of the image light emitted from the first display area 101 and transmitted to the first reflective element 300, the image light emitted from the first display area 101 and transmitted to the first reflective element 300
  • the optical distance and the optical distance of the image light emitted from the second display area 102 and transmitted to the first reflective element 300 may be equal or unequal.
  • the refraction element 200 when the refraction element 200 is removed from the optical path of the image light emitted from the first display area 101 and propagates to the first reflective element 300, it is emitted from the first display area 101 and propagates to the first reflection element 300.
  • the optical distance of the image light of the element 300 is equal to the optical distance of the image light emitted from the second display area 102 and propagated to the first reflective element 300;
  • At least one of the parameters such as the size (such as thickness, width, etc.), refractive index, and surface shape of the refraction element 200 is to realize the optical distance and the second optical distance from the light of the image formed by the refraction element 200 to the first reflective element 300.
  • the optical distances of the image light emitted from the two display regions 102 and transmitted to the first reflective element 300 are different.
  • the refractive index of the refraction element 200 can be selected within a certain range (for example, the refractive index of the refraction element 200 can be 1.4-2.8, for example, it can be 1.4-2.0), or by selecting the refraction element 200 perpendicular to the corresponding
  • the size (such as thickness and/or width) of the direction of the display surface of the image source 100 is selected within a certain range (for example, the thickness of the refraction element 200 can be 10-200mm; for example, the thickness can be 20-100mm), and the The imaging position of the refraction element 200 is selected so as to effectively adjust the imaging distance of the display device.
  • At least one embodiment of the present disclosure facilitates adjustment of the imaging distance of the display device without changing the size of the display device by setting at least one of the refractive index and the thickness of the refraction element, so as to meet the needs of the user for the display device. Imaging distance requirements.
  • the angle between the surface of the refraction element 200 away from the image source and the display surface of the image source is different, and the virtual image formed by passing through the refraction element 200 and not passing through the refraction element 200
  • the angle of inclination can vary.
  • the angle between the display surface of the image source and the surface of the refraction element 200 away from the image source, and the angle between the display surface of the image source and the refraction element 200 facing the image source The angle between the surfaces on one side will adjust the state (eg angle) of the virtual image formed.
  • the display device also includes a light-transmitting support element (not shown in the figure), the refraction element 200 and the image source are respectively close to the two side surfaces of the light-transmission support element, such as the surface of the light-transmission support element facing the refraction element 200, and the The surface of the optical support element facing the image source (that is, the surface of the optical support element facing the first display area 110 or the second display area 120), that is, the optical support element is arranged between the refraction element 200 and the image source, And the two opposite surfaces of the light-transmitting support element are attached to the refraction element 200 and the image source, for example, in close contact with each other; source causing damage, such as crushing.
  • a light-transmitting support element not shown in the figure
  • the refraction element 200 and the image source are respectively close to the two side surfaces of the light-transmission support element, such as the surface of the light-transmission support element facing the refraction element 200
  • the The surface of the optical support element facing the image source that is
  • the number of refraction elements 200 can be one or more.
  • the imaging distance of the image formed by the device is adjusted.
  • the refractive indices of the plurality of refraction elements 200 may vary, such as gradually increasing or gradually decreasing.
  • adjacent refraction elements 200 can be arranged in close contact, but not limited thereto, adjacent refraction elements 200 can be arranged at intervals, and multiple refraction elements can be arranged according to actual product requirements.
  • the thicknesses of the refraction elements 200 covered at different positions on the display surface of the first sub-image source 110 may be the same or different, so as to adjust parameters such as the imaging distance or imaging angle of the image displayed by the display device.
  • the incident surface of the refraction element 200 is attached to the display surface of the image source 100 .
  • the shape of the incident surface of the refraction element 200 and the shape of the display surface of the image source 100 can be matched to achieve the lamination of the two.
  • the shape of the display surface of the image source 100 may be a plane, and the incident surface of the refraction element 200 may also be a plane.
  • the shape of the display surface of the image source 100 may be a curved surface, and the incident surface of the refraction element 200 may also be a curved surface with substantially the same curvature.
  • the incident surface of the refraction element 200 can be attached to the display surface of the image source 100 through transparent optical glue.
  • the side of the refraction element 200 can be provided with a fixing device, such as a buckle or a slot, so as to fix the refraction element 200 and prevent it from moving.
  • a fixing device such as a buckle or a slot
  • the incident surface of the refraction element 200 and the display surface of the image source 100 may also be arranged in parallel and spaced apart.
  • the distance between the incident surface of the refraction element 200 and the display surface of the image source 100 is small to prevent image light emitted from the display surface of the image source 100 from being reflected at the incident surface of the refraction element 200 , thereby causing waste.
  • the optical distance between the image light emitted from the first display area 101 and the image light emitted from the second display area 102 propagates to the first reflective element 300
  • the optical distance of the first reflective element 300 is the same; the refraction element 200 is set on the exit light path of the first display area 101, and when the refraction element 200 is not set on the exit light path of the second display area 102, the image displayed in the first display area 101 passes through the refraction element
  • the optical distance of the light imaged by 200 (for example, it can be considered that the position where the image light is emitted becomes the position where the image is refracted) travels to the first reflective element 300 is shorter than the optical distance that the image light emitted from the second display area 102 travels to the first reflective element 300
  • the optical distance can reduce the equivalent object distance between the image displayed on the first display area 101 and the first reflective element 300 , thereby reducing the distance of the virtual image formed by the first display area 101
  • the head-up display can form multi-layer images to display more information.
  • static information can be displayed in a picture with a relatively short imaging distance (such as the image formed by the image displayed in the first display area 101), and static information can be displayed in a picture with a relatively long imaging distance (such as the image formed by the image displayed in the second display area 102).
  • the dynamic information is displayed in the image), and the dynamic information can be augmented reality (AR) information.
  • the AR information can be combined with real objects and real scenes at different distances by setting them on different picture layers.
  • the first display area 101 can display a close-up picture, such as displaying key driving data such as a vehicle instrument, for example, displaying one or more of parameters such as vehicle speed, fuel quantity, and steering;
  • the second display area 102 can display a long-range picture,
  • the screen content may include points of interests (POIs), such as hospitals, banks, and restaurants.
  • POIs points of interests
  • the distant view picture displayed on the second display area 102 may include a bank
  • the image of the bank displayed on the second sub-image source 120 may include a bank logo. When you are in a building such as a bank, the bank logo is displayed on the display screen.
  • the area of the first display area 101 can be smaller than the area of the second display area 102 so that the imaging size of the virtual image formed by the first reflective element 300 reflecting the image light emitted from the first display area 101 is smaller than that of the first reflective element 300.
  • the imaging size of the virtual image formed by the image light emitted from the second display area 102 can be smaller than the area of the second display area 102 so that the imaging size of the virtual image formed by the first reflective element 300 reflecting the image light emitted from the first display area 101 is smaller than that of the first reflective element 300.
  • the first display area 101 is configured to display a close-up picture, and the display content of the close-up picture can be key driving parameters such as a vehicle instrument, so that the size of the close-up picture displayed can be relatively small; the second display area 102 is configured to display a long-range picture,
  • the displayed content of the distant scene picture needs to be matched and fused with the real scene outside the vehicle, such as buildings and the like, so that the size of the displayed distant scene picture is larger than that of the close shot picture. For example, a smaller foreground image will not block a larger foreground image.
  • the light B from the first display area 101 passing through the refraction element 200 and the light A emitted from the second display area 102 form a light AB after passing through the transflective element 600, and the light AB includes light A and light B.
  • the main optical axes of the two can coincide, or the distance between the two can be within the set interval range.
  • the light AB travels to the first reflective element 300, and after passing through the reflective imaging part (described later), a virtual image A' (a virtual image formed after the image of the first display area 101 is processed by an optical element) and a virtual image B' (The image in the first display area 101 is processed by an optical element to form a virtual image), the virtual image A' and the virtual image B' are coaxial.
  • virtual image A' and virtual image B' may both be along a vertical direction.
  • the above-mentioned vertical direction may refer to a direction perpendicular to the ground, and the vertical direction may refer to a direction parallel to the plane where the observation area (described later) is located, or a direction perpendicular to the running surface of the traffic equipment.
  • virtual image A' is closer to the viewing area than virtual image B'.
  • the virtual image A' can have a smaller frame, and the virtual image B' has a larger frame, and the projection of the virtual image A' on the virtual image B' can be completely located in the virtual image B', or partly overlapped with the virtual image B'.
  • the projection of the virtual image A' on the virtual image B' is completely located in the virtual image B', and the resolution of the image displayed on the first display area 101 is greater than that of the image displayed on the second display area 102.
  • the resolution of the surrounding area decreases sequentially.
  • the included angle between the high-definition area around the fixation point and the pupil of the human eye is 5°, and the resolution of the human eye to the area centered on the fixation point and the included angle with the pupil of the human eye is greater than 5° decreases rapidly.
  • the virtual image A' is imaged in the fovea region of the retina.
  • At least one embodiment of the present disclosure adjusts the resolutions of the images displayed in the first display area and the second display area to be different, so that the resolution of the virtual image A' located in the fovea region is higher than that of the virtual image B not located in the fovea region '
  • the resolution can not only improve the user's viewing experience, but also realize the resolution partition rendering of image display, which can reduce the pressure on the hardware's central image processing unit (Graphics Processing Unit, GPU).
  • the shape of the first display area 101 may be the same as that of the second display area 102 , or the shapes of the two may also be different.
  • the size of the imaging area of the first display area 101 reflected by the first reflective element 300 in the horizontal direction is greater than or equal to that of the second display area 102 reflected by the first reflective element 300
  • the size of the reflected imaging area in the horizontal direction; and/or, the imaging area of the first display area 101 after being reflected by the first reflective element 300 in the vertical direction is the vertical direction
  • the size is smaller than or equal to the size in the vertical direction of the imaging area of the second display area 102 after being reflected by the first reflective element 300 .
  • the included angle between the outgoing surface of the refraction element 200 and the display surface of the first display area 101 is 0° ⁇ 90°.
  • the exit surface of the refraction element 200 is parallel to the display surface of the first display area 101, and the second The image formed by the first display area 101 through the refraction element 200 can be parallel to the image displayed by the second display area 102, and the image formed by the first display area 101 through the refraction element 200 and the image displayed by the second display area 102 are subjected to the first reflection
  • the reflected image of the element 300 may be a parallel image.
  • the angle between the incident surface of the refraction element and the display surface of the image source will also adjust the angle of the virtual image, for example, when the refraction element is not close to and not parallel to the display surface of the image source (or the main optical axis of the image light Not perpendicular to the incident surface of the refraction element), the angle of the outgoing light is determined by the angle/surface shape of the exit surface and the incident surface of the refraction element.
  • the angle between the exit surface of the refraction element 200 and the display surface of the first display area 101 can be 5° ⁇ 90°, or 10° ⁇ 80°, or 30° ⁇ 70°, or 45° ⁇ 60°
  • the image formed by the first display area 101 through the refraction element 200 can be between the image displayed by the second display area 102
  • the virtual image obtained after the first reflective element 300 reflects the first display area 101 and is imaged by the refracting element 200 has a certain inclination angle relative to the virtual image obtained after the first reflective element 300 reflects the image of the second display area 102 .
  • At least one embodiment of the present disclosure can adjust the angle of the partial image formed by the display device by adjusting the angle between the exit surface of the refraction element and the display surface of the image source, so that the multi-layer image formed by the display device Include non-parallel two-layer images.
  • the display device further includes a second reflective element 500 configured to reflect image light emitted from a plurality of display areas, and the first reflective element 300 is configured to reflect The image light transmitted to the first reflective element 300 after being reflected by the element 500 .
  • the display device includes at least one second reflective element 500 .
  • no other optical elements are arranged between the transflective element 600 and the second reflective element 500 , and the image light emitted from the transflective element 600 can directly strike the second reflective element 500 .
  • other optical elements such as optical elements such as lenses or reflectors, may be arranged between the transflective element 600 and the second reflective element 500, and the image light emitted by the transflective element 600 may be processed by other optical elements and directed to the second reflective element.
  • Element 500 For example, the transflective element 600 is not attached to the second reflective element 500 .
  • no other optical elements are arranged between the second reflective element 500 and the first reflective element 300, and the light reflected by the second reflective element 500 to the first reflective element 300 can be directly incident on the first reflective element 300.
  • the embodiment of the present disclosure is not limited thereto.
  • Other optical elements such as optical elements such as lenses or mirrors, may be arranged between the second reflective element 500 and the first reflective element 300.
  • the second reflective element 500 reflects the light to the first reflective element 300 It may be incident to the first reflective element 300 after being processed by other optical elements.
  • the image light emitted from the first display area 101 and the second display area 102 is reflected by the same second reflective element 500 and travels to the first reflective element 300 .
  • the main optical axis coincides or the distance between the two is within the set interval range
  • the image light emitted from the two display areas passes through the transflective element
  • the spot area of the light formed after (or, after the image light is combined through the transflective element, the cross section of the light beam along the direction of propagation) is small, and can be reflected by the same reflective element, which can reduce the number of reflective elements in the display device, which is beneficial to A design that achieves a small size and compactness of the display device.
  • the second reflective element 500 may be a plane reflective mirror with a flat reflective surface.
  • the angles between each position of the second reflective element 500 and the display surface of the first sub-image source 110 may be equal.
  • the second reflective element 500 includes at least one of a plane reflective mirror, a curved reflective mirror, an aspheric reflective mirror and a spherical reflective mirror, and the first reflective element 300 includes a curved reflective mirror.
  • the second reflective element 500 is a plane reflector or a curved reflector
  • the first reflective element 300 is a curved reflector or a plane reflector.
  • the curved reflector may be a concave reflector; in this case, the surface of the concave reflector near the display area is a concave curved surface.
  • the setting of the curved mirror can make the head-up display have a farther imaging distance and a larger imaging size, and the curved mirror can also cooperate with the curved reflective imaging part (mentioned later) such as the windshield to eliminate the reflective imaging part resulting in virtual image distortion.
  • the concave reflective surface of the curved reflector faces the display area, if the image displayed in the display area passes through the second
  • the optical distance between the image formed by the reflective element 500 and the concave reflector is smaller than the focal length of the concave reflector, and the concave reflector forms an upright enlarged virtual image based on the image output from the display area.
  • the imaging properties of the concave reflector it can be known that the optical distance between the image displayed on the display area and the image formed by the second reflective element 500 is smaller than the focal length of the concave reflector (that is, the image is located at within one focal length of the concave reflector), the image distance of the concave reflector increases with the increase of the optical distance between the image displayed on the display area and the image formed by the second reflective element 500 and the concave reflector, that is The smaller the optical distance between the image displayed in the display area and the image formed by the second reflective element 500 and the concave mirror is, the smaller the distance between the user who uses the head-up display including the display device and the image viewed is. .
  • the optical distance between the image formed by the image displayed in the display area passing through the second reflection element 500 and the curved reflector can be changed.
  • the reflective surface of the first reflective element 300 may be a free-form surface, that is, the reflective surface of the first reflective element 300 does not have rotational symmetry, so as to improve the imaging quality of the display device.
  • a plane reflector, or two plane reflectors, or a plane reflector and a curved reflector, or two plane reflectors may be arranged in the optical path of the image light emitted by the image source 100 to the first reflective element 300.
  • Mirror and a curved mirror, etc., can be set according to product requirements.
  • FIG. 2 is a schematic partial cross-sectional structure diagram of another display device provided according to at least one embodiment of the present disclosure.
  • the difference between the display device shown in FIG. 2 and the display device shown in FIG. 1a is that the image light emitted from the first display area and the second display area is refracted by different sub-refractive elements and propagates to the first reflective element.
  • the image source 100 , the first reflective element 300 and the second reflective element 500 shown in FIG. 2 may be the same as the image source 100 , the first reflective element 300 and the second reflective element 500 shown in FIG. 1 a , so details are not repeated here.
  • the refraction element 200 includes a first sub-refraction element 210 and a second sub-refraction element 220, and the image light emitted from the first display area 101 is refracted by the first sub-refraction element 210 and propagates to the first reflection In the component 300 , the image light emitted from the second display area 102 travels to the first reflective component 300 after being refracted by the second sub-refractive component 220 .
  • the first sub-refractive element 210 is removed from the optical path where the image light emitted from the first display area 101 propagates to the first reflective element 300, and the image light emitted from the second display area 102 propagates to the optical path of the first reflective element 300.
  • the optical distance of the image light emitted from the first display area 101 and transmitted to the first reflective element 300 is the same as the optical distance of the image light emitted from the second display area 102 and transmitted to the first reflective element 300
  • the optical distances of the image rays are equal.
  • the first sub-refractive element 210 is removed from the optical path where the image light emitted from the first display area 101 propagates to the first reflective element 300, and the image light emitted from the second display area 102 propagates to the first reflective element 300.
  • the optical distance of the image light emitted from the first display area 101 and transmitted to the first reflective element 300 is the same as the optical distance of the image light emitted from the second display area 102 and transmitted to the first
  • the optical distances of the image light rays of the reflective element 300 may not be equal.
  • the first sub-refractive element 210 is different from the second sub-refractive element 220 in size, for example, the size in the direction perpendicular to the display surface of the corresponding display area is different, and/or the first sub-refractive element 210
  • the refractive index of the second sub-refractive element 220 is different from the optical distance for the light imaged by the first sub-refractive element 210 to travel to the first reflective element 300 and the optical distance for the imaged light of the second sub-refractive element 220 to propagate to the first reflective element
  • the optical distance of the 300 is different.
  • the display device provided by at least one embodiment of the present disclosure, by setting different sub-refractive elements on the light-emitting sides of the first display area and the second display area, it can be beneficial to reduce the number of image rays emitted by different sub-image sources passing through the first reflective element.
  • the imaging distance of the final image is increased, and the compactness of the structure of the display device is improved.
  • the angle between the exit surface of the first sub-refraction element 210 and the display surface of the image source is different from the angle between the exit surface of the second sub-refraction element 220 and the display surface of the image source; and/or, the The shape of the exit surface of the first sub-refraction element 210 is different from the shape of the exit surface of the second sub-refraction element 220, which can make the virtual images formed by the first display area and the second display area have different characteristics (for example, have different imaging distances) ).
  • the angle between the outgoing surface of the first sub-refractive element 210 and the display surface of the first display area 101 is 0°-90°
  • the included angle between the outgoing surface of the second sub-refractive element 220 and the display surface of the second display area 102 is 0°-90°.
  • the incident surface of the refraction element is attached to at least part of the display surface of the image source; for example, the incident surface of the refraction element is attached to a partial display surface of the image source.
  • the refraction element 200 when the refraction element 200 is not provided in the display device, and when the image displayed on the first display area 101 and the image displayed on the second display area 102 are directly incident on the transflective element 600 and two virtual images are arranged in parallel, by placing When the incident surfaces of the two sub-refractive elements are attached to the display surface of the image source, or arranged at intervals but parallel to each other, the outgoing surface of the first sub-refractive element 210 is set to be parallel to the display surface of the first display area 101, and the second sub-refractive element The exit surface of the refraction element 220 is set parallel to the display surface of the second display area 102, so that the image displayed in the first display area 101 can be imaged after passing through the first sub-refraction element 210 and the image displayed in the second display area 102 can pass through the second sub-refraction element 210.
  • the images formed by the two sub-refractive elements 220 are parallel, and the images formed by the two sub-refractive elements 220 are parallel after passing through the first reflective element 300, so that the display device can form a multi-layer image, wherein at least two layers of images are parallel.
  • no refraction element 200 is set in the display device, and two virtual images formed after the image displayed in the first display area 101 and the image displayed in the second display area 102 are directly incident on the transflective element 600 are arranged in parallel, and
  • the incident surface of the first sub-refractive element is attached to the display surface of the image source, or is arranged at intervals but parallel to each other
  • the included angle between the outgoing surface of the first sub-refractive element 210 and the display surface of the corresponding display area is a first included angle
  • the included angle between the outgoing surface of the second sub-refractive element 220 and the display surface of the corresponding display area is the second included angle
  • the first included angle is different from the second included angle, so that the image displayed in the first display area 101 can pass through the second included angle.
  • the included angle is such that the display device can form multiple layers of images, wherein at least two layers of images have a certain included angle.
  • the angle between the outgoing surface of the first sub-refractive element 210 and the display surface of the first display area 101 It can be 5°-90°, or 10°-80°, or 30°-70°, or 45°-60°.
  • the included angle between the outgoing surface of the second sub-refractive element 220 and the display surface of the second display area 102 may be 5°-90°, or 10°-80°, or 30°-70°, or 45°. ⁇ 60°.
  • FIG. 3 is a schematic diagram of a partial cross-sectional structure of another display device provided according to an embodiment of the present disclosure.
  • the display device shown in FIG. 3 differs from the display device shown in FIG. 1 a .
  • the display device further includes a third display area 103 .
  • FIG. 3 schematically shows that the image light emitted from the second display area 102 propagates to the optical path of the first reflective element 300 without sub-refractive elements, but it is not limited thereto, and the second sub-refractive element 220 shown in FIG. 2 can also be provided.
  • the first reflective element 300 may be the same as the first reflective element 300 in the display device shown in any example of FIG. 1a-FIG.
  • the refraction element 200 in the display device shown in FIG. 3 may be the refraction element 200 shown in FIG. 1a, and the correspondence between the refraction element 200 and the first display area 101 may also be the same as that in the above examples.
  • the plurality of display areas also includes a third display area 103, the image light emitted from the first display area 101, the second display area 102 and the third display area 103 and transmitted to the first reflective element 300
  • the optical distance can be different.
  • the included angle between the virtual image formed by the image light emitted from the first display area 101 and the second display area 102 after passing through the first reflective element 300 is 0°-90°
  • the first display area 101 and the third display area 103 The angle between the virtual image formed by the emitted image light passing through the first reflective element 300 is 0°-90°
  • the image light emitted from the third display area 103 and the second display area 102 is formed by passing through the first reflective element 300.
  • the included angle between virtual images is 0° ⁇ 90°.
  • the image source 100 includes a plurality of independent sub-image sources, and at least one of the first display area 101 and the second display area 102 is located in a different sub-image source than the third display area 103 .
  • the first display area 101, the second display area 102, and the third display area 103 are located in different sub-image sources.
  • Embodiments of the present disclosure are not limited thereto.
  • One of the second display areas 102 and the third display area 103 may be located in the same sub-image source.
  • the first display area 101 and the third display area 103 may be located at the same sub-image source.
  • the image light emitted by at least one of the first display area 101 and the second display area 102 propagates to the first reflective element 300 on the optical path with a refraction element 200, and the image light emitted by the third display area 103 propagates to the first reflective element
  • the refraction element 200 may or may not be disposed on the optical path of 300 .
  • the image light emitted from the first display area 101 propagates to the optical path of the first reflective element 300, and the refraction element 200 is set on the optical path, and the image light emitted from the second display area 102 and the third display area 103 propagates to the first reflection element 300.
  • No refraction element 200 is arranged on the optical path of a reflection element 300 .
  • the optical distance between the image light emitted from the first display area 101 and the first reflective element 300 after passing through the refraction element 200 is the first optical distance
  • the image light emitted from the second display area 102 The optical distance that travels to the first reflective element 300 is the second optical distance
  • the optical distance that the image light emitted from the third display area 103 travels to the first reflective element 300 is the third optical distance.
  • the first optical distance is less than the second optical distance, and the second optical distance is less than the third optical distance; or, the first optical distance is less than the second optical distance, and the third optical distance is less than the first optical distance; or, the first optical distance less than the second optical distance, and the third optical distance is greater than the first optical distance and less than the second optical distance.
  • the image formed by the image light emitted from the first display area 101 through the first reflective element 300 may be parallel to or have a certain angle with the image formed by the image light emitted by the second display area 102 through the first reflective element 300 .
  • the image formed by the image light emitted from the third display area 103 passing through the first reflective element 300 may be parallel to or have a certain angle with the image formed by the image light emitted from the second display area 102 passed through the first reflective element 300 .
  • the optical distances of the image light emitted from the three display areas to the first reflective element can be different, so that images can be formed at different distances, which is conducive to matching images at different distances with real scenes at different distances Fusion, so that when the display device is applied to the head-up display, the user does not need to switch back and forth between the image at a fixed distance and the real scene at a different distance, avoiding the conflict of visual vergence adjustment, and improving the use experience of the display device.
  • the included angle between the display surface of the first display area 101 and the display surface of the third display area 103 may be 0°-90°.
  • the angle between the display surface of the first display area 101 and the display surface of the third display area 103 is 10°-80°.
  • the angle between the display surface of the first display area 101 and the display surface of the third display area 103 is 20°-70°.
  • the angle between the display surface of the first display area 101 and the display surface of the third display area 103 is 30°-60°.
  • the angle between the display surface of the first display area 101 and the display surface of the third display area 103 is 15°-45°.
  • the images formed by the image light emitted from the first display area 101 , the second display area 102 and the third display area 103 after being processed by some optical elements may all be perpendicular to the ground.
  • the embodiment of the present disclosure is not limited thereto.
  • the image light emitted from the first display area 101 and the second display area 102 can be processed by some optical elements to form a picture perpendicular to the ground, and the image light emitted from the third display area 103 passes through some optical elements.
  • the picture formed after the processing of the components is inclined relative to the ground.
  • the first display area 101 can display a close-up picture, such as displaying key driving data such as vehicle instrumentation, for example, displaying one or more of parameters such as vehicle speed, fuel quantity, and steering;
  • the third display area 103 can display a mid-view picture
  • the third display area 103 can display a lane picture, for example, when the picture is in an inclined state relative to the ground, the matching and fusion effect with the actual lane is better, and the user can see that the lane is marked by image fusion to guide the user to walk this lane;
  • the second display area 102 can display a vision picture, such as a building, etc.
  • the vision picture displayed in the second display area 102 is, for example, a bank
  • the image of the bank displayed by the second sub-image source 120 can include a bank logo
  • the logo image of the bank can be the same as that of the bank.
  • the location of the real scene is matched and fused, and when the user can see distant buildings, such as a bank, the logo of the bank
  • the area of the third display area 103 may be greater than the area of the first display area 101 and the area of the second display area 102, so that the first reflective element 300 reflects the imaging of the virtual image formed by the image light emitted from the third display area 103
  • the size is larger than the imaging size of the virtual image formed by the first reflective element 300 reflecting the image light emitted from the first display area 101 and the second display area 102 .
  • the shape of the third display area 103 can be the same as that of at least one of the first display area 101 and the second display area 102, but it is not limited thereto. The shape can be different, for example.
  • the middle ground image displayed in the third display area 103 may be inclined.
  • setting an inclined screen can help the image to fit the road surface and improve the use effect.
  • the slanted image needs to match the actual road surface, the slanted mid-ground image has a larger size and can cover at least half or the entire lane, so that the driver can have a better viewing effect, such as the slanted mid-ground
  • the screen covers the lane lines to make it easier for the driver to see the lane lines behind the image markers, which can better prompt the driver to keep or change lanes and improve the driving experience.
  • the imaging height of the oblique image formed by the third display area 103 is at least lower than that of the first display area 101 and/or the second display area 102, so that the oblique image can achieve a better effect of sticking to the ground.
  • the imaging height can be interpreted as: the distance of the virtual image along the direction perpendicular to the direction of the driving road surface.
  • the height of the tilted image may be the lowest, or may be the height whose value is in the middle among the three imaging heights.
  • the tilted picture can be located in the middle layer, which has a better effect of sticking to the ground.
  • the second reflective element 500 includes a first sub-reflective element 510 and a second sub-reflective element 520 that are independent of each other.
  • the reflection element 510 propagates to the first reflection element 300 after being reflected, and the image light emitted from the third display area 103 is reflected by the second sub-reflection element 520 and then propagates to the first reflection element 300 .
  • the sub-reflective element configured to reflect the image light emitted from the first display area and the sub-reflective element configured to reflect the image light emitted from the third display area are set as two independent sub-reflective elements.
  • the reflective element can conveniently adjust the position and angle of the imaging of the first display area and the third display area through the reflective element and other characteristics.
  • FIG. 4 is a schematic partial cross-sectional structure diagram of another display device provided according to at least one embodiment of the present disclosure.
  • the difference between the display device shown in FIG. 4 and the display device shown in FIG. 3 is that the image light emitted from the first display area 101, the second display area 102, and the third display area 103 is reflected by the same second reflective element 500 and propagates. to the first reflective element 300 .
  • FIG. 4 schematically shows that the image light emitted from the second display area 102 propagates to the optical path of the first reflective element 300 without a sub-refractive element, but it is not limited thereto, and the second sub-refractive element 220 shown in FIG. 2 can also be provided. .
  • the first reflective element 300 may be the same as the first reflective element 300 in the display device shown in any example of FIG. 1a-FIG. 3 , which will not be repeated here.
  • the refraction element 200 in the display device shown in FIG. 4 may be the refraction element 200 shown in FIG. 1 a
  • the correspondence between the refraction element 200 and the first display area 101 may also be the same as that in the above example.
  • the image light emitted from the three display areas is designed to be reflected by the same second reflective element and then propagate to the first reflective element, which can save the number of second reflective elements and help reduce the size of the display device. volume of.
  • FIG. 4 schematically shows that the first display area 101 and the third display area 103 are located in different sub-image sources, but not limited thereto, the first display area 101 and the third display area 103 may also be located in the same sub-image source .
  • FIG. 4 schematically shows that only the first display area 101 emits image light to the optical path of the first reflective element 300 to set the refraction element 200, but it is not limited thereto.
  • the second display area 102 and the third display area 103 emit images
  • a refraction element different from the refraction element 200 corresponding to the first display area 101 may also be provided on the optical path of the light to the first reflection element 300 .
  • the different refraction elements here may mean that the refraction elements have different refractive indices, different dimensions (eg thickness), or different optical powers.
  • the display device includes one display area, two display areas or three display areas, but is not limited thereto, and the display device may also include four display areas or more display areas.
  • FIG. 5 is a schematic structural diagram of a head-up display provided according to another embodiment of the present disclosure.
  • FIG. 5 schematically shows that the head-up display includes the display device shown in FIG. 3 and the reflective imaging unit 700 as an example.
  • Embodiments of the present disclosure are not limited thereto.
  • the head-up display may also include any The example provides a display device and a reflective imaging unit.
  • the image light reflected by the first reflective element 300 travels to the reflective imaging part 700, and the reflective imaging part 700 is configured to reflect the image light emitted from the first reflective element 300 and transmitted to the reflective imaging part 700. to viewing area 800, and transmits ambient light.
  • a user located in the observation area 800 can watch a plurality of virtual images formed by the image light emitted from the reflective imaging unit 700 to the display device and the environmental scene on the side of the reflective imaging unit 700 away from the observation area 800 .
  • the optical distance of the main transmission light transmitted by the light formed by the first display area 101 through the refraction element 200 to the reflective imaging part 700, the optical distance of the main transmitted light transmitted from the second display area 102 to the reflective imaging part 700, and The optical distances of the main transmission light emitted from the third display area 103 to the reflective imaging part 700 can be different.
  • the image light emitted by the display device enters the reflective imaging part 700, and the light reflected by the reflective imaging part 700 propagates to the user, such as the observation area 800 where the driver's eyes are located, and the user can observe, for example, a virtual image formed outside the reflective imaging part , and does not affect the user's observation of the external environment.
  • the observation area 800 may be an eyebox area, which refers to a plane area where the user's eyes are located and images displayed on the head-up display can be seen.
  • eyebox area refers to a plane area where the user's eyes are located and images displayed on the head-up display can be seen.
  • the user's eyes deviate from the center of the eye box area by a certain distance, such as moving up and down, left and right by a certain distance, the user can still see the image displayed on the head-up display while the user's eyes are still in the eye box area.
  • reflective imaging portion 700 may be a windshield or an imaging window of a motor vehicle.
  • the windshield is a windshield
  • the imaging window is a transparent imaging plate.
  • the windshield is used for the image light emitted by the transmissive and reflective windshield-HUD (Windshield-HUD, W-HUD) and the imaging window is used for the output of the transmissive and reflective combined head-up display (Combiner-HUD, C-HUD). Image light.
  • the first display area 101 and the second display area 102 among the first display area 101 and the second display area 102, only the image light in the first display area 101 passes through the refraction element 200 and then propagates to the reflective imaging part 700, and the first display area 101 The image light is reflected by the reflective imaging unit 700 to form a first virtual image 1110, and the image light in the second display area 102 is reflected by the reflective imaging unit 700 to form a second virtual image 1120.
  • the distance between the first virtual image 1110 and the observation area 800 is different from the distance between the second virtual image 1120 and the viewing area 800 .
  • the distance between the first virtual image 1110 and the viewing area 800 is smaller than the distance between the second virtual image 1120 and the viewing area 800 .
  • the image light emitted from the first display area 101 is reflected by the third reflective element 500 to the first reflective element 300 after being transmitted by the refraction element 200 and the imaged light is transmitted by the transflective element 600.
  • the first reflective element 300 reflects the image light to the reflective imaging part 700 to form a first virtual image 1110; the image light emitted from the second display area 102 is reflected by the transflective element 600 and then reflected by the third reflective element 500 to the first reflective element 300, the first The reflective element 300 reflects the image light to the reflective imaging part 700 to form a second virtual image 1120 .
  • the distance between the first virtual image 1110 and the observation area 800 is smaller than the distance between the second virtual image 1120 and the observation area 800 .
  • the distance between the first virtual image 1110 and the observation area 800 is 2-4 meters, and the distance between the second virtual image 1120 and the observation area 800 is 20-50 meters;
  • the distance between the second virtual image 1120 and the observation area 800 is 20-50 meters; for example, the distance between the first virtual image 1110 and the observation area 800 is 2-4 meters, and the second virtual image 1120
  • the distance from the observation area 800 is 7-14 meters.
  • the image light emitted from the first display area 101 is reflected by the third reflective element 500 to the first reflective element 300 after being transmitted by the refraction element 200 and imaged by the refraction element 200 .
  • the element 300 reflects the image light to the reflective imaging part 700 to form a first virtual image 1110; the image light emitted from the second display area 102 is reflected by the transflective element 600 and then reflected by the third reflective element 500 to the first reflective element 300.
  • a reflective element 300 reflects the image light to the reflective imaging part 700 to form a second virtual image 1120; the image light emitted from the third display area 113 is reflected by the third reflective element 500 to the first reflective element 300, and the first reflective element 300 will The image light is reflected to the reflective imaging unit 700 to form a third virtual image 1130 .
  • the angle between the first virtual image 1110 and the vertical direction is 0° ⁇ 90°
  • the angle between the second virtual image 1120 and the vertical direction is 0° ⁇ 90°
  • the angle between the third virtual image 1130 and the vertical direction is 0°-90°
  • the angle between the second virtual image 1120 and the vertical direction is 0°-90°
  • the angle between the first virtual image 1110 and the vertical direction is 10°-80°.
  • the angle between the first virtual image 1110 and the vertical direction is 20°-70°.
  • the angle between the first virtual image 1110 and the vertical direction is 30°-60°.
  • the angle between the first virtual image 1110 and the vertical direction is 15°-45°.
  • the angle between the second virtual image 1120 and the vertical direction is 10°-80°.
  • the angle between the second virtual image 1120 and the vertical direction is 20°-70°.
  • the angle between the second virtual image 1120 and the vertical direction is 30° ⁇ 60°.
  • the angle between the first virtual image 1110 and the vertical direction is 15°-45°.
  • the angle between the third virtual image 1130 and the vertical direction is 10°-80°.
  • the angle between the third virtual image 1130 and the vertical direction is 20°-70°.
  • the angle between the third virtual image 1130 and the vertical direction is 30°-60°.
  • the angle between the third virtual image 1130 and the vertical direction is 15°-45°.
  • the display surface of the first display area 101 and the display surface of the third display area 103 may be parallel to or tend to be parallel to the ground.
  • the first virtual image 1110 , the second virtual image 1120 and the third virtual image 1130 may all be along the vertical direction, or may be partly along the vertical direction, or have a certain angle between them and the vertical direction.
  • the above-mentioned vertical direction may refer to a direction parallel to the plane where the viewing area is located, or a direction perpendicular to the running surface of the traffic equipment.
  • the distance between the third virtual image 1130 and the observation area 800 is the shortest, and the distance between the second virtual image 1120 and the observation area 800 is the longest.
  • the distance between the first virtual image 1110 and the observation area 800 is the shortest, and the distance between the second virtual image 1120 and the observation area 800 is the longest; or, the distance between the first virtual image 1110 and the observation area 800 is the shortest. The distance between them is the shortest, and the distance between the third virtual image 1130 and the observation area 800 is the longest.
  • the distance between the third virtual image 1130 and the observation area 800 is 2-4 meters
  • the distance between the second virtual image 1120 and the observation area 800 is 20-50 meters
  • the distance between the first virtual image 1110 and the observation area 800 is 2-4 meters.
  • the distance between the zones 800 is 7-14 meters.
  • the distance between the third virtual image 1130 and the observation area 800 is 2.5-3.5 meters
  • the distance between the second virtual image 1120 and the observation area 800 is 30-40 meters
  • the distance between the first virtual image 1110 and the observation area 800 It is 10-12 meters.
  • the third virtual image 1130 can be a close-up picture, such as displaying key driving data such as vehicle instrumentation, for example, displaying one or more of parameters such as vehicle speed, fuel quantity, and steering;
  • the first virtual image 1110 can be a middle-ground picture
  • the first virtual image 1110 can be a lane picture, and the user can see that the lane is marked by image fusion to guide the user to walk this lane;
  • the second virtual image 1120 can be a vision picture, such as a building, etc.
  • the image of the bank displayed at 1120 may include the bank's logo, and the bank's logo image may be matched and fused with the real scene of the bank. When the user can see distant buildings, such as a bank, the bank's logo is identified on the display screen.
  • the head-up display provided by this embodiment when the head-up display provided by this embodiment is applied to traffic equipment such as vehicles, at least part of the virtual image can be an image perpendicular to the ground to achieve fusion with the real scene. Fusion can be interpreted as: the virtual image covers the real scene, or is displayed in conjunction with the real scene, such as It is located around the real scene to realize the identification function of the real scene.
  • the distance between the first virtual image 1110 and the observation area 800 is the shortest, and the distance between the second virtual image 1120 and the observation area 800 is the longest.
  • the angle between the third virtual image 1130 and the first virtual image 1110 can be 5°-90°, and the end of the third virtual image 1130 away from the ground is farther from the observation area 800 than the end of the third virtual image 1130 close to the ground In order to achieve the tilt of the picture, for example, the effect of matching and blending with the actual lane is better.
  • the included angle between the third virtual image 1130 and the first virtual image 1110 is 10° ⁇ 80°.
  • the included angle between the third virtual image 1130 and the first virtual image 1110 is 30° ⁇ 70°.
  • the included angle between the third virtual image 1130 and the first virtual image 1110 is 45° ⁇ 60°.
  • the third virtual image is tilted away from the viewing area.
  • at least one of the first virtual image 1110 , the second virtual image 1120 and the third virtual image 1130 is inclined in a direction away from the viewing area 800 .
  • the third virtual image 1130 is tilted toward the traveling direction of traffic equipment such as vehicles, and the tilted image can match the image with the road surface.
  • the angle between the third virtual image 1130 and the road surface can be 5°-90°.
  • the virtual image formed by the reflection of the second display area 102 by the first reflective element 300 is located at the focal plane of the reflective imaging part 700, or the distance between the above-mentioned virtual image and the reflective imaging part 700 is smaller than the focal length and the above-mentioned virtual image Close to the focal plane of the reflection imaging part 700 .
  • the second virtual image 1120 will be formed at a relatively far distance or even at infinity, which is suitable for matching with the real scene in the distance.
  • the head-up display provided by at least one embodiment of the present disclosure can form multi-layered images (such as a first virtual image, a second virtual image, and a third virtual image), and the imaging distances of different images are different, and different images can be compared with real scenes at different distances. Fusion, the sight of the user (such as the driver) does not need to switch back and forth between images at a fixed distance and real scenes at different distances, which effectively improves the experience of using the head-up display.
  • multi-layered images such as a first virtual image, a second virtual image, and a third virtual image
  • the virtual image whose distance from the viewing area 800 is in the middle can have a smaller inclination relative to the horizontal direction than the angles between the other two virtual images relative to the horizontal direction.
  • the horizontal direction may refer to a direction perpendicular to the plane where the viewing area is located, or a direction parallel to the running surface of the traffic equipment.
  • At least one embodiment of the present disclosure is not limited to the fact that the virtual image closest to the observation area and the virtual image farthest from the observation area are arranged along a vertical direction, and the virtual image whose distance from the observation area is in the middle is arranged along an oblique direction.
  • one of the virtual image closest to the observation area and the virtual image farthest from the observation area may also be an inclined virtual image, for example, along the direction from the virtual image to the observation area, the virtual image is inclined toward the observation area.
  • At least one embodiment of the present disclosure schematically shows that the image of the display device forms a three-layer image through the reflective imaging part, but is not limited thereto, and four or more layers of images may also be formed.
  • all images may be along the vertical direction, or part of the images may be along the vertical direction, or all images may have a certain angle with the vertical direction, which can be set according to actual user needs.
  • FIG. 6 is an exemplary block diagram of a transportation device provided according to another embodiment of the present disclosure.
  • the transportation device includes a head-up display provided by at least one embodiment of the present disclosure.
  • the traffic equipment may also be traffic equipment including any of the above display devices.
  • a front window (eg, a front windshield) of a traffic device is multiplexed as the reflective imaging portion 700 of a head-up display.
  • the above-mentioned head-up display is applied to traffic equipment, the above-mentioned first virtual image 1110 and second virtual image 1120 are perpendicular to the ground, and the end of the third virtual image 1130 far away from the ground is farther away from the observation area 800 than the end of the third virtual image 1130 close to the ground.
  • Each virtual image can be matched and fused with the corresponding real scene.
  • the traffic equipment uses the above-mentioned head-up display, which can enable the driver to view images at different distances, which is conducive to the matching and fusion of images at different distances and real scenes at different distances, so that the driver does not need to be at a fixed distance. Switching back and forth between the image of the image and the real scene at different distances avoids the conflict of visual vergence adjustment and improves the experience of using traffic equipment.
  • the above three virtual images may or may not be displayed simultaneously.
  • one or two virtual images are displayed at the same time period.
  • the transportation device may be various appropriate means of transportation, for example, if the front window is set at the driving position of the transportation device and the image is projected onto the front window through the vehicle-mounted display system, it may include various types of automobiles, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置、抬头显示器以及交通设备。显示装置包括像源(100)和第一反射元件(300)。像源(100)至少包括第一显示区(101)和第二显示区(102);第一反射元件(300)反射传播至第一反射元件(300)的图像光线。显示装置还包括折射元件(200),从第一显示区(101)和第二显示区(102)至少之一出射的图像光线经过折射元件(200)折射后传播至第一反射元件(300),从第一显示区(101)和第二显示区(102)出射且传播至第一反射元件(300)的图像光线的光学距离不同,且图像光所成的显示装置的虚像同轴。本显示装置结构紧凑且实现成像位置的调节。

Description

显示装置、抬头显示器以及交通设备 技术领域
本公开至少一个实施例涉及一种显示装置、抬头显示器以及交通设备。
背景技术
抬头显示(Head Up Display,HUD)器可以利用反射式光学设计,通过将像源出射的图像光线(包括车速等车辆信息)投射到成像窗上,以使用户在驾驶过程中无需低头看仪表盘就可以直接看到信息,既能提高驾驶安全系数,又能带来更好的驾驶体验。
发明内容
本公开实施例提供一种显示装置、抬头显示器以及交通设备。
本公开至少一实施例提供一种显示装置,其包括像源和第一反射元件。像源包括多个显示区,所述多个显示区至少包括第一显示区和第二显示区;第一反射元件被配置为反射从所述像源发出后传播至所述第一反射元件的图像光线。所述显示装置还包括折射元件,从所述第一显示区和所述第二显示区至少之一出射的图像光线经过所述折射元件折射后传播至所述第一反射元件,从所述第一显示区和所述第二显示区出射且传播至所述第一反射元件的图像光线的光学距离不同,且从所述第一显示区和所述第二显示区出射的图像光线经所述第一反射元件反射后所成的所述显示装置的虚像同轴。
例如,在一些实施例中,显示装置还包括透反元件。所述第一显示区出射的第一图像光线和所述第二显示区出射的第二图像光线之一经过所述透反元件透射后传播至所述第一反射元件,所述第一图像光线和所述第二图像光线的另一个被所述透反元件反射后传播至所述第一反射元件,且所述第一图像光线和所述第二图像光线经过所述透反元件后的主光轴重合,或所述第一图像光线和所述第二图像光线经过所述透反元件后的主光轴之间的距离在设定间隔范围内。
例如,在一些实施例中,所述像源包括彼此独立的第一子像源和第二子像源,所述第一子像源包括所述第一显示区,所述第二子像源包括所述第二显示区。
例如,在一些实施例中,所述第一显示区和所述第二显示区之一出射的图像光线经过所述折射元件折射后向所述第一反射元件传播;或者,所述折射元件包括第一子折射元件和第二子折射元件,所述第一显示区出射的图像光线经过所述第一子折射元件的折射后向所述第一反射元件传播,所述第二显示区出射的图像光线经过所述第二子折射元件的折射后向所述第一反射元件传播。
例如,在一些实施例中,所述第一子折射元件与所述第二子折射元件在垂直于相应显 示区的显示面的方向的尺寸不同;和/或,所述第一子折射元件与所述第二子折射元件的折射率不同;和/或,所述第一子折射元件的出射面与所述像源的显示面之间的夹角与所述第二子折射元件的出射面与所述像源的显示面之间的夹角不同;和/或,所述第一子折射元件的出射面的形状与所述第二子折射元件的出射面的形状不同。
例如,在一些实施例中,显示装置还包括:至少一个第二反射元件。所述至少一个第二反射元件被配置为反射所述多个显示区发出且传播至所述第二反射元件的所述图像光线,所述第一反射元件被配置为反射在被所述第二反射元件反射后传播至所述第一反射元件的所述图像光线;所述第一显示区和所述第二显示区出射的所述图像光线被所述至少一个第二反射元件中的同一个第二反射元件反射后传播至所述第一反射元件。
例如,在一些实施例中,所述多个显示区还包括第三显示区,所述第一显示区、所述第二显示区以及所述第三显示区出射的图像光线被同一个第二反射元件反射后传播至所述第一反射元件;或者,所述多个显示区还包括第三显示区,所述至少一个第二反射元件包括两个第二反射元件,所述第一显示区和所述第二显示区出射的图像光线被同一个所述第二反射元件反射后传播至所述第一反射元件,所述第三显示区出射的图像光线被另一个所述第二反射元件反射后传播至所述第一反射元件。
例如,在一些实施例中,所述第二反射元件包括平面反射镜或曲面反射镜中的至少一种,所述第一反射元件包括曲面反射镜或平面反射镜。
例如,在一些实施例中,从所述第一显示区、所述第二显示区和所述第三显示区出射且传播至所述第一反射元件的图像光线的光学距离均不同。
例如,在一些实施例中,所述像源包括彼此独立的多个子像源,所述第一显示区和所述第二显示区至少之一与所述第三显示区位于不同的子像源。
例如,在一些实施例中,所述折射元件远离所述像源一侧的出射面包括平面、凹面或者凸面中的至少一种,且所述折射元件的出射面与所述像源的显示面之间的夹角为0°~90°。
例如,在一些实施例中,所述折射元件的入射面与所述像源的至少部分显示面贴合;或者,所述折射元件的入射面与所述像源的显示面间隔设置。
本公开至少一实施例提供一种抬头显示器,包括反射成像部以及显示装置,所述反射成像部被配置为将从所述第一反射元件出射且传播至所述反射成像部的图像光线反射至观察区,且透射环境光。抬头显示区中的所述显示装置为上述任一实施例中的显示装置。
例如,在一些实施例中,所述第一显示区和所述第二显示区中仅所述第一显示区的图像光线和所述第二显示区的图像光线中的一者经所述折射元件后传播至所述反射成像部,所述第一显示区的图像光线被所述反射成像部反射所成像为第一虚像,所述第二显示区的图像光线被所述反射成像部反射所成像为第二虚像,所述第一虚像与所述观察区之间的距离不同于所述第二虚像与所述观察区之间的距离。
例如,在一些实施例中,仅所述第一显示区的图像光线经所述折射元件后向所述反射 成像部传播,所述第一虚像与所述观察区之间的距离小于所述第二虚像与所述观察区之间的距离。
例如,在一些实施例中,所述第一虚像与所述观察区之间的距离为2~4米,所述第二虚像与所述观察区之间的距离为20~50米。
本公开至少一实施例提供一种交通设备,包括上述显示装置或上述抬头显示器。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1a为根据本公开实施例提供的显示装置的局部结构示意图;
图1b为根据本公开另一实施例提供的抬头显示器的结构示意图;
图2为根据本公开实施例提供的另一种显示装置的局部截面结构示意图;
图3为根据本公开实施例提供的另一种显示装置的局部截面结构示意图;
图4为根据本公开实施例提供的另一种显示装置的局部截面结构示意图;
图5为根据本公开另一实施例提供的抬头显示器的结构示意图;以及
图6为根据本公开另一实施例提供的交通设备的示例性框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开实施例中使用的“平行”、“垂直”以及“相同”等特征均包括严格意义的“平行”、“垂直”、“相同”等特征,以及“大致平行”、“大致垂直”、“大致相同”等包含一定误差的情况,考虑到测量和与特定量的测量相关的误差(例如,测量系统的限制),表示在本领域的普通技术人员所确定的对于特定值的可接受的偏差范围内。例如,“大致”能够表示在一个或多个标准偏差内,或者在所述值的10%或者5%内。在本公开实施例的下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。“至少一个”指一个或多个,“多个”指至少两个。
本公开至少一实施例提供一种显示装置、抬头显示器以及交通设备。显示装置包括像源和第一反射元件。像源包括多个显示区,多个显示区至少包括第一显示区和第二显示区;第一反射元件被配置为反射从像源发出后传播至第一反射元件的图像光线。显示装置还包括折射元件,从第一显示区和第二显示区至少之一出射的图像光线经过折射元件折射后传播至第一反射元件,从第一显示区和第二显示区出射且传播至第一反射元件的图像光线的光学距离不同,且从第一显示区和第二显示区出射的图像光线经第一反射元件反射后所成的显示装置的虚像同轴。本公开至少一实施例通过在显示装置中设置折射元件,且第一显示区和第二显示区出射的图像光线经第一反射元件后所成虚像同轴,可以在使得显示装置中各结构紧凑设置,并且实现成像位置的调节,且上述同轴的虚像用户在观看时具有较好的使用体验。
下面结合附图对本公开实施例提供的显示装置、抬头显示器以及交通设备进行描述。需要说明的是,相同部件可以采用相同的设置方式,本公开所有实施例均适用于显示装置、抬头显示器以及交通设备等多个保护主题,相同或类似的内容在每个保护主题中不再重复,可参考其他保护主题对应的实施例中的描述。
图1a为根据本公开至少一实施例提供的显示装置的局部结构示意图。如图1a所示,显示装置包括像源100和第一反射元件300。像源100包括多个显示区,多个显示区至少包括第一显示区101和第二显示区102;第一反射元件300被配置为反射像源100出射的图像光线。显示装置还包括折射元件200,第一显示区101和第二显示区102至少之一出射的图像光线经过折射元件200折射后传播至第一反射元件300,从第一显示区101和第二显示区102出射且传播至第一反射元件300的图像光线的光学距离不同,且第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像同轴。本公开至少一实施例通过在显示装置中设置折射元件,且第一显示区和第二显示区出射的图像光线经第一反射元件后所成虚像同轴,可以在使得显示装置中各结构紧凑设置,并且可以实现成像位置的调节,且不同成像距离的同轴虚像具有较好的使用体验。
例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300反射后所成的显示装置的虚像同轴。例如,上述显示装置的同轴虚像再经过其他元件的作用,例如被反射成像部(后文详细解释)反射所成的虚像同轴。例如,不同显示区出射的图像光线以相同或者接近的路径在第一反射元件300处反射,显示装置所成的虚像同轴。例如,第一反射元件300反射后的不同的图像光线的路径基本重合(例如主光轴基本重合),显示装置所成的虚像同轴。
例如,应用该显示装置的抬头显示器可以成同轴的虚像。如图1b所示,显示区101和显示区102出射的图像光线经过第一反射元件300反射后,再经反射成像部700反射;反射成像部700反射图像光线AB,形成虚像1120和虚像1110,用户在观察区800可以观看到同轴的虚像。
例如,上述不同成像距离的同轴的画面具有基本相同的视角(例如下视角),用户观看不同距离的同轴画面时视线方向几乎没有变化,使用体验较好;例如,相较于非同轴的不同成像距离的虚像,同轴画面更适用于增强现实抬头显示(Augmented Reality-HUD,AR-HUD);例如,AR-HUD显示某兴趣点(Point of interests,POI)图标,该兴趣点与交通工具初始距离为500米,在交通设备行驶时,与兴趣点的距离逐渐接近,AR-HUD中的POI图像也需要在不同成像距离处显示,以适应上述变化;在此过程中,用户(例如驾驶员)的观看AR-HUD显示的图像时,视角几乎不变或者变化很小,因此具有基本相同视角的同轴画面的AR体验会更好,变化过程更加连贯,用户视线也无需来回切换和偏移,使用体验更好。例如,上述“下视角”可以指由上向下看的视角,可以称为俯视角。
例如,上述“同轴”可以指不同虚像画面的中心点以及用户的眼盒中心在同一条直线或者近乎同一条直线上;或者,也可以是形成不同虚像画面的反射光线(如被后续提到的反射成像部反射)的路径重合或近乎重合;或者,用户观察上述不同虚像画面的视角(例如下视角)基本相同非常接近。例如,上述“同轴”可以指第一显示区101出射的图像光线和第二显示区102出射的图像光线在被反射至观察区的光线路径重合;或者,也可以指第一显示区101和第二显示区102显示的图像经过第一反射元件300等光学元件处理后形成的两个虚像中一个虚像向另一个虚像的投影在另一个虚像范围内;或者,也可以指第一显示区101和第二显示区102显示的图像经过第一反射元件300等光学元件处理后形成的两个虚像中一个虚像向另一个虚像的投影与另一个虚像至少部分交叠。
例如,上述“光学距离”可以指显示区出射的图像光线出射至第一反射元件300的几何路程与传播介质的折射率的乘积。例如,上述显示区出射且传播至第一反射元件300的图像光线的光学距离可以指显示区出射的图像光线的主传输光线传输的光学距离。例如,上述显示区出射且传播至第一反射元件300的图像光线的光学距离可以指显示区出射的图像光线的主光轴光线传输的光学距离。例如,上述光学距离可以是图像光线出射至第一反射元件300的光程。
例如,在折射元件200中传播的图像光线在折射元件200的出射面出射的过程中发生折射,因折射元件200的折射率往往大于1,例如光线经过折射元件200的折射后光程增加,出射光线与入射光线的传播路径发生了改变;例如,可以认为像源100出射的图像光线通过折射元件200后,相当于将像源显示的图像前移或后移,可以认为是改变了像源100显示的图像与第一反射元件300之间的等效物距。例如,等效物距可以是像源与第一反射元件300之间存在光学元件(例如折射元件200)时,像源经曲面反射镜之前的最后一个光学元件所成像(例如经光学元件折射、反射、衍射、散射等所成像)的位置与第一反射元件300的光心/中心之间的距离。例如,等效物距与像源100与第一反射元件300之间的光程有关。例如,等效物距与像源100与第一反射元件300之间的光学元件的数量和作用有关。
例如,像源100与第一反射元件300之间不设置折射元件200的情况与两者之间设置 折射元件200的情况相比,像源100显示的图像与第一反射元件300之间的物理距离(例如可以是光线经像源100出射至第一反射元件300的传播路程)基本相同,但是,通过在像源100与第一反射元件300之间设置折射元件200可以使得像源100出射的图像光线经折射元件200后光程变化,进而像源100显示的图像与第一反射元件300之间的等效物距也会变化,例如在上述情况下等效物距减小。
例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为0°~90°。例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为10°~80°。例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为20°~70°。例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为30°~45°。例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为40°~60°。
例如,折射元件200远离像源100一侧的表面(例如折射元件200的出射面)包括平面、凹面或者凸面中的至少一种。例如,折射元件200远离像源100一侧的表面包括平面时,其可以平行于折射元件200靠近像源100一侧的表面,也可以与折射元件200靠近像源100一侧的表面存在预设夹角,例如预设夹角可以是1°~20°。
例如,折射元件200可以为立体结构的实心透明部件,其折射率大于1,且光焦度为0或几乎为0。例如,折射元件200可以为正立方体结构、长方体结构、平行六面体结构和梯形体结构中的至少一种;例如,折射元件200相对于图像光线的入射面和出射面可以均为平面。例如,折射元件200的入射面和出射面可以均平行于其对应的显示区的显示面。例如,上述折射元件200对应的显示区可以指折射元件200设置在该显示区出射的图像光线传播至第一反射元件的光路上。通过在像源100与第一反射元件300之间设置折射元件200可以使得像源100显示的图像通过折射元件200后所成像与第一反射元件300之间的光程变化,可以改变像源100显示的图像与第一反射元件300之间的等效物距。
例如,折射元件200可以为光焦度不为零的透光元件,例如其远离像源100的一侧表面(例如折射元件200的出射面)包括凹面、凸面等曲面。例如,折射元件200可以包括单个或多个透镜,例如可以包括凸透镜、凹透镜,或两者的组合;例如,可以包括球面透镜或菲涅尔透镜,或两者的组合。通过在像源100与第一反射元件300之间设置光焦度不为零的透光元件,可以改变反射成像系统整体的光焦度,例如未设置折射元件200时,系统的光焦度主要由第一反射元件300(例如第一反射元件300包括曲面反射镜)决定,增加光焦度不为0的折射元件200后,系统的光焦度增加或者减小,进而改变最终的成像距离(例如显示装置的成像距离,和/或应用该显示装置的抬头显示器的虚像的成像距离);并且,增加折射元件200也会改变光线的光程,可以改变像源100显示的图像与第一反射元件300之间的等效物距。例如,在光路中设置光焦度不为零的透光元件后,可以增大或减 小成像距离。
例如,在第一反射元件包括曲面反射镜(例如反射面为凹面)的情况下,如果图像(包括像源的显示面显示的图像,或者像源显示的图像经过一些光学元件处理后的所成的像)与凹面反射镜之间的距离小于凹面反射镜的焦距,则凹面反射镜基于该图像形成正立放大的虚像。例如,根据凹面反射镜的成像性质可知,在图像与凹面反射镜之间的距离(例如等效物距)小于凹面反射镜的焦距情况下(也即,图像位于凹面反射镜的一倍焦距以内),凹面反射镜的像距随图像与凹面反射镜之间的距离的增大而增大。例如,第一反射元件反射并出射的图像光线会经过例如交通设备的挡风窗等反射成像部后传播至用户的眼睛。例如,挡风窗一般为平面结构或者曲率较小的曲面结构,用户看到的虚像的像距主要由第一反射元件决定,也即第一反射元件反射图像光线所成的虚像的位置主要决定了用户所观看的抬头显示器的虚像的位置(例如虚像的成像距离);如上述内容,第一反射元件反射图像光线所成的虚像的位置(例如虚像像距)随图像与凹面反射镜之间的距离的增大而增大,也即,图像与凹面反射镜之间的距离越大,则使用包括该显示装置的抬头显示器的用户与其观看到的图像之间的距离越大。也即,可以通过改变像源与第一反射元件之间的光学距离(例如光程),进而改变等效物距,最终改变用户与所观看到的图像之间的距离。
本公开至少一实施例中,通过在像源出射的图像光线传播至第一反射元件的光路上设置具有小体积的折射元件以改变像源显示的图像经折射元件后所成像与第一反射元件之间的光学距离,以改变经第一反射元件成像时的等效物距,可以改变第一反射元件所成像的成像距离,实现成像位置的调节。
例如,像源100出射的图像光线经过折射元件200后入射到第一反射元件300。例如,从折射元件200出射的光线可以不经过其他光学元件处理而直接入射到第一反射元件300。例如,从折射元件200出射的光线可以经过至少一个光学元件(例如透反元件、反射镜、透镜或者棱镜等光学元件)处理(例如透射、反射、折射、衍射、聚集及散射作用中的至少一种)后入射到第一反射元件300。
例如,第一反射元件300的至少部分可以位于像源100的显示侧(例如,出射图像光线的一侧)。但不限于此,例如,第一反射元件300也可以位于像源100的非显示侧,通过其他反射结构将像源100出射的光反射并传播至第一反射元件300。
例如,如图1a所示,显示装置还包括透反元件600,第一显示区101出射的第一图像光线和第二显示区出射的第二图像光线之一经过透反元件600透射后传播至第一反射元件300,第一图像光线和第二图像光线的另一个经过透反元件600反射后传播至第一反射元件300,且第一图像光线和第二图像光线经过透反元件600后的主光轴(chief light,chief ray,oroptical axis)重合,或者两者的主光轴之间的距离在设定间隔范围内。
例如,上述第一图像光线和第二图像光线可以经显示区出射后直接入射到透反元件600,也可以经过其他光学元件(例如反射镜、折射元件、衍射元件、散射元件及聚集元件 等)的作用后入射至透反元件600。
例如,上述第一图像光线和第二图像光线的主光轴关于透反元件600对称或几乎对称;例如,上述第一图像光线和第二图像光线经过透反元件600后的光线的主光轴重合或近乎重合;或者,上述两者的主光轴可以均处于设定间隔范围内,例如两束光线的主光轴平行或者不平行;例如,两束光线在传播过程中有交叠,可以是沿光束行进方向,两束光线的截面重合(例如完全重合或者一者完全落入另一者);或者交叠且部分重合(例如重合部分的面积比例超过40%,50%,60%,70%或者更大)。
例如,如图1a所示,第一显示区101和第二显示区102出射的图像光线可以均经过透反元件600的处理后传播至第一反射元件300。本公开至少一实施例通过在两个不同显示区出射的图像光线传播至第一反射元件的光路上设置透反元件,可以方便两个不同显示区出射的图像光线经第一反射元件后所成虚像同轴。
例如,如图1a所示,第一显示区101出射的图像光线经过透反元件600的透射后传播至第一反射元件300,第二显示区102出射的图像光线经过透反元件600的反射后传播至第一反射元件300。
例如,透反元件600对第一图像光线和第二图像光线中一者的反射率大于其对另一者的反射率;或者,透反元件600对第一图像光线和第二图像光线中一者的透射率大于其对另一者的透射率。例如,透反元件600对第二图像光线的反射率大于对第一图像光线的反射率。例如,透反元件600对第一图像光线的透射率大于对第二图像光线的透射率。
例如,透反元件600对第一图像光线和第二图像光线中一者的反射率大于其对另一者的反射率,且对一者的透射率小于其对另一者的透射率。例如,透反元件600对第二图像光线的反射率大于对第一图像光线的反射率,且透反元件600对第二图像光线的透射率小于对第一图像光线的透射率。
例如,透反元件600对光线不具有或者几乎不具有选择性,其对不同的光线(例如第一图像光线和第二图像光线)具有基本相同的透射率和/或反射率。例如,如图1a所示,透反元件600对第二显示区102出射的图像光线的反射率可以为30%、40%、50%或其它适用的数值,对第一显示区101出射的图像光线的透光率可以为70%、60%、50%或其它适用的数值。
例如,透反元件600可以包括偏振透反元件,第二显示区102发出第一偏振光(具有第一偏振性的偏振光),第一显示区101发出第二偏振光(具有第二偏振性的偏振光),例如第一偏振光和第二偏振光的偏振方向垂直,透反元件被配置为反射第一偏振光且透射第二偏振光。
例如,偏振透反元件可以是透明基板镀膜或贴膜形成的元件。例如,偏振透反元件可以是基板上镀设或贴覆具有反射第一偏振光且透射第二偏振光特性的透反膜,例如反射式偏光增亮膜(Dual Brightness Enhance Film,DBEF)或棱镜膜(Brightness Enhancement Film, BEF)等中的一种或多种。本公开实施例不限于此,例如,透反元件还可以是一体化元件,例如可以是立体结构的偏振分束器,例如立方体偏振分光镜。例如,采用立方体结构的偏振分束器可以具有较高的稳定性。
例如,偏振透反元件可以是具有偏振透反功能的光学膜,例如偏振透反元件可以由多层具有不同折射率的膜层按照一定的堆叠顺序组合而成(例如相邻膜层之间折射率不同,或者按照折射率高-低重复变化的规律依次堆叠),每个膜层的厚度约在10~1000nm之间;膜层的材料可以选用无机电介质材料,例如,金属氧化物和金属氮化物等中的一种或多种;也可以选用高分子材料,例如聚丙烯、聚氯乙烯或聚乙烯等中的一种或多种。例如,透反元件采用光学膜的形式既可以方便安装,又具有成本低的优点。
例如,第一偏振光和第二偏振光之一包括S偏振态的光线,第一偏振光和第二偏振光的另一个包括P偏振态的光线。例如,第一偏振光和第二偏振光的偏振方向之间的夹角可以为大致90°。本公开实施例不限于此,例如,在第一偏振光和第二偏振光的偏振方向垂直的情况下,第一偏振光和第二偏振光还可以是非S偏振光或非P偏振光,如第一偏振光和第二偏振光可以是偏振方向互相垂直的两种线偏振光,或者偏振方向互相垂直的两种圆偏振光,或者偏振方向互相正交的两种椭圆偏振光等。
例如,透反元件可以为波长选择性透反元件,第一显示区101出射的图像光线所在波段为第二波段组,第二显示区102出射的图像光线所在波段为第一波段组,透反元件被配置为反射第一波段组的图像光线且透射第二波段组的图像光线。
例如,上述“波段”可以包括单一波长,也可以包括多个波长的混合范围。例如,在波段包括单一波长的情况下,受到工艺误差的影响导致该波长的光可能混合了附近波长的光。
例如,上述第一波段组和第二波段组的图像光线均可以包括红绿蓝(RGB)三个波段的光线,RGB每个波段的光线的半高宽不大于50nm。例如,第一波段组和第二波段组可以均包括三个波段的图像光线,例如,这三个波段中的第一个波段的峰值位于410nm~480nm区间范围内,第二个波段的峰值位于500nm~565nm区间范围内,第三个波段的峰值位于590nm~690nm区间范围内。
例如,透反元件600对第一波段组的图像光线和第二波段组的图像光线中一者的反射率大于其对另一者的反射率;或者,透反元件600对第一波段组的图像光线和第二波段组的图像光线中一者的透射率大于其对另一者的透射率。例如,透反元件600对第二波段组的图像光线的反射率大于对第一波段组的图像光线的反射率。例如,透反元件600对第一波段组的图像光线的透射率大于对第二波段组的图像光线的透射率。
例如,透反元件600对第一波段组的图像光线和第二波段组的图像光线中一者的反射率大于其对另一者的反射率,且对一者的透射率小于其对另一者的透射率。例如,透反元件600对第二波段组的图像光线的反射率大于对第一波段组的图像光线的反射率,且透反 元件600对第二波段组的图像光线的透射率小于对第一波段组的图像光线的透射率。
例如,采用波长选择性透反元件的透反元件600对第二显示区102出射的图像光线的反射率可以为70%、80%、90%、95%或其它适用的数值,对第一显示区101出射的图像光线的透光率可以为70%、80%、90%、95%或其它适用的数值。由此,可以提高透反元件600对图像光线的利用率,以使第一显示区和第二显示区出射的图像光线的光能损失尽量降低。
例如,透反元件可以为偏振-波长选择性透反元件,例如第一显示区101出射的图像光线和第二显示区102出射的图像光线所在波段重合或基本重合,但各自具有不同的偏振态,透反元件被配置为反射第一图像光线且透射第二图像光线。
例如,“波段”与上述实施例具有相同或类似的特性,此处不再赘述。例如,第一偏振态和第二偏振态的偏振方向垂直。例如,第一偏振态和第二偏振态之一包括S偏振态,第一偏振态和第二偏振态的另一个包括P偏振态。本公开实施例不限于此,例如,在第一偏振态和第二偏振态的偏振方向垂直的情况下,还可以是非S偏振态或非P偏振态,如第一偏振态和第二偏振态可以是偏振方向互相垂直的两种线偏振态,或者偏振方向互相正交的两种圆偏振态,或者偏振方向互相正交的两种椭圆偏振态等。
例如,第一图像光线包括S偏振态的RGB光线,第二图像光线包括P振态的RGB光线;例如,第一图像光线包括P偏振态的RGB光线,第二图像光线包括S振态的RGB光线。
例如,透反元件600对第一图像光线和第二图像光线中一者的反射率大于其对另一者的反射率;或者,透反元件600对第一图像光线和第二图像光线中一者的透射率大于其对另一者的透射率。例如,透反元件600对第二图像光线的反射率大于对第一图像光线的反射率。例如,透反元件600对第一图像光线的透射率大于对第二图像光线的透射率。
例如,透反元件600对第一图像光线和第二图像光线中一者的反射率大于其对另一者的反射率,且对一者的透射率小于其对另一者的透射率。例如,透反元件600对第二图像光线的反射率大于对第一图像光线的反射率,且透反元件600对第二图像光线的透射率小于对第一图像光线的透射率。
例如,采用偏振-波长选择性透反元件的透反元件600对第二显示区102出射的图像光线的反射率可以为70%、80%、90%、95%或其它适用的数值,对第一显示区101出射的图像光线的透光率可以为70%、80%、90%、95%或其它适用的数值。由此,可以提高透反元件600对图像光线的利用率,以使第一显示区和第二显示区出射的图像光线的光能损失尽量降低。
例如,上述波长选择性透反元件和/或偏振-波长选择性透反元件可以包括由无机氧化物薄膜或高分子薄膜堆叠而成的选择性透反膜,该透反膜由至少两种具有不同折射率的膜层堆叠而成。这里的“不同折射率”指的是膜层在xyz三个方向上至少有一个方向上的折射率不同。例如,预先选取所需的不同折射率的膜层,并按照预先设置好的顺序对膜层进行堆叠, 例如相邻膜层之间折射率不同,或者按照折射率高-低重复变化的规律依次堆叠;可以形成具备选择反射和选择透射特性的透反膜,该透反膜可以选择性反射某一特性的光线、透过另一特性的光线。例如,对于采用无机氧化物材料的膜层,该膜层的成分选自五氧化二钽、二氧化钛、氧化镁、氧化锌、氧化锆、二氧化硅、氟化镁、氮化硅、氮氧化硅、氟化铝中的一种或多种。例如,对于采用有机高分子材料的膜层,该有机高分子材料的膜层包括至少两种热塑性有机聚合物膜层。例如,两种热塑性聚合物膜层交替排列形成光学膜,且两种热塑性聚合物膜层的折射率不同。例如,上述有机高分子材料的分子为链状结构,拉伸后分子朝某个方向排列,造成不同方向上折射率不同,即通过特定的拉伸工艺即可形成所需的薄膜。例如,上述热塑性聚合物可以为不同聚合程度的聚对苯二甲酸乙二酯(PET)及其衍生物、不同聚合程度的聚萘二甲酸乙二醇酯(PEN)及其衍生物、不同聚合程度的聚对苯二酸丁二酯(PBT)及其衍生物等中的一种或多种。
例如,如图1a所示,像源100包括彼此独立的第一子像源110和第二子像源120,第一子像源110包括第一显示区101,第二子像源120包括第二显示区102。本公开至少一实施例通过设置多个彼此独立的子像源,有利于增大显示装置所成像的视场角,可以提升使用体验。例如,第一子像源110和第二子像源120各自光线入射到透反元件的位置在一定范围内以保证合束,或者第一图像光线和第二图像光线的主光轴关于透反元件对称设置。
例如,第一显示区101的显示面和第二显示区102的显示面之间的夹角可以为5°~90°。例如。第一显示区101的显示面和第二显示区102的显示面之间的夹角可以为10°~80°。例如,第一显示区101的显示面和第二显示区102的显示面之间的夹角可以为20°~70°。例如,第一显示区101的显示面和第二显示区102的显示面之间的夹角可以为30°~45°。例如,第一显示区101的显示面和第二显示区102的显示面之间的夹角可以为40°~60°。例如,通过调节不同显示面之间的夹角可以调节不同虚像之间的角度。
例如,第一显示区101和第二显示区102可以显示相同的图像,也可以显示不同的图像,还可以一个显示区显示的图像中的一部分与另一个显示区显示的图像相同,本公开实施例对此不作限制,可以根据实际产品需求进行设置。例如,相同图像是指显示的内容一致。
例如,第一显示区101和第二显示区102的显示尺寸可以相同或者不同。
例如,从第一显示区101和第二显示区102出射且传播至第一反射元件300的图像光线形成不同的虚像。例如上述不同的虚像可以指不完全相同的虚像,例如虚像位置、虚像大小、虚像倾斜程度和虚像内容的至少之一不同。
例如,第一显示区101出射且传播至第一反射元件300的图像光线形成的第一虚像和第二显示区102出射且传播至第一反射元件300的图像光线形成的第二虚像可以同时显示或者不同时显示。例如,第一虚像和第二虚像同时显示时,两者可以同时与不同距离的物体进行AR贴合,比如分别与用户面前的银行和远方的路面进行AR贴合;或者,两者之一 可以不进行AR显示,例如仅显示包括仪表信息的平面UI,两者中的另一个可以与用户面前的距离较远的物体(例如前车、POI等)进行AR贴合。例如,第一虚像和第二虚像不同时显示时,为了配合不同距离变化的物体,根据物体与用户的距离,选用与物体距离接近的像与物体进行AR贴合,因同轴显示的两个虚像的视角几乎相同,将这两个虚像与变化的物体匹配也会使得用户具有较好的体验。
例如,本公开至少一实施例中所指的AR贴合、图像与实景贴合等,可以是用户从观察区(例如眼盒区域)观看到的显示画面(例如显示装置或包括显示装置的抬头显示器所成的图像,如反射所成的虚像)中信息对应的显示内容,对应显示在挡风窗展现的真实场景中的预设位置,例如显示画面中包含银行的图像,则用户通过挡风窗观看外界时,银行的图像对应显示在真实场景中银行的位置;例如,显示装置和/或抬头显示器至少基于增强现实(Augmented Reality,AR)和混合增强现实(Mixed Reality,MR)技术中的至少一种,能够以贴合的方式进行显示。例如,交通设备处于行驶状态,向处于驾驶员位置的眼盒区域投射出将导航地图信息、导航提示信息或者规划出的路径信息对应的显示内容与真实场景相贴合的图像画面,达到较好的显示效果,有助于提高用户驾驶交通设备的安全性和驾驶体验。
例如,如图1a所示,第一显示区101和第二显示区102中之一出射的图像光线经过折射元件200折射后传播至第一反射元件300。例如,第一显示区101和第二显示区102中仅第一显示区101出射的图像光线经过折射元件200折射后传播至第一反射元件300,第二显示区102出射的图像光线不经过折射元件200。例如,第一显示区101和第二显示区102中仅第二显示区102出射的图像光线经过折射元件200折射后传播至第一反射元件300,第一显示区101出射的图像光线不经过折射元件200。
例如,在从第一显示区101出射的图像光线传播至第一反射元件300的光路上去除折射元件200的情况下,从第一显示区101出射且传播至第一反射元件300的图像光线的光学距离与从第二显示区102出射且传播至第一反射元件300的图像光线的光学距离可以相等或者不相等。
例如,如图1a所示,在从第一显示区101出射的图像光线传播至第一反射元件300的光路上去除折射元件200的情况下,从第一显示区101出射且传播至第一反射元件300的图像光线的光学距离与从第二显示区102出射且传播至第一反射元件300的图像光线的光学距离相等;仅在第一显示区101出光侧设置折射元件200时,可以通过选取该折射元件200的尺寸(例如厚度、宽度等)、折射率及面型等参数中的至少一者,以实现折射元件200所成的像的光线传播至第一反射元件300的光学距离和第二显示区102出射且传播至第一反射元件300的图像光线的光学距离不同。
例如,可以通过对折射元件200的折射率进行一定范围内的选取(例如折射元件200的折射率可以为1.4-2.8,例如可以是1.4-2.0),或者通过对折射元件200在垂直于相应的 像源100的显示面的方向的尺寸(如厚度和/或宽度)进行一定范围内的选取(例如,折射元件200的厚度可以为10~200mm;例如,厚度可以为20~100mm),可以对折射元件200所成像的位置进行选取,以实现对显示装置的成像距离进行有效调节。
例如,在其他条件不变的情况下,折射元件200远离像源一侧表面为平面时,折射元件200的折射率越大,等效物距越小,成像距离越小。例如,在其他条件不变的情况下,折射元件200远离像源一侧表面为平面时,折射元件200的厚度越厚,等效物距越小,成像距离越小。
本公开至少一实施例通过对折射元件的折射率和厚度至少之一的设置,有利于在不改变显示装置的尺寸的情况下,对显示装置成像距离进行调节,以方便满足用户对显示装置的成像距离的需求。
例如,在折射元件200与像源的显示面贴合时,折射元件200远离像源一侧表面与像源显示面之间夹角不同,经过折射元件200与没有经过折射元件200所形成的虚像的倾斜角度可以不同。例如,在折射元件200与像源的显示面之间设置有间隔时,像源显示面与折射元件200远离像源一侧表面之间的角度,以及像源显示面与折射元件200面向像源一侧表面之间的角度都会对所成虚像的状态(例如角度)进行调节。
例如,显示装置还包括透光支撑元件(图未示出),折射元件200与像源分别紧贴透光支撑元件的两侧表面,如透光支撑元件的面向折射元件200的表面,和透光支撑元件面向像源的表面(也即透光支撑元件的面向第一显示区110或者第二显示区120的表面),也即,透光支撑元件设置于折射元件200与像源之间,且透光支撑元件彼此相对的两个表面分别与折射元件200与像源贴合例如紧贴接触;透光支撑元件可以对相对较重的折射元件200起到支撑作用,避免折射元件200对像源造成损害,例如压坏。
例如,沿垂直于第一子像源110的显示面的方向,折射元件200的数量可以为一个或多个,不同折射元件200的折射率不同,或者不同折射元件200的厚度不同,可以对显示装置所成像的成像距离进行调节。
例如,沿垂直于第一子像源110的显示面的方向,多个折射元件200的折射率可以是变化的,例如逐渐增大或者逐渐减小。
例如,在折射元件200的数量为多个时,相邻折射元件200可以贴合设置,但不限于此,相邻折射元件200可以间隔设置,多个折射元件可以根据实际产品需求进行设置。
例如,第一子像源110的显示面的不同位置处覆盖的折射元件200的厚度可以相同,也可以不同,以对显示装置所成像的成像距离,或者成像角度等参数进行调节。
例如,如图1a所示,折射元件200的入射面与像源100的显示面贴合。例如,折射元件200的入射面的形状与像源100的显示面的形状可以匹配以实现两者的贴合。例如,像源100的显示面的形状可以为平面,折射元件200的入射面也为平面。例如,像源100的显示面的形状可以为曲面,折射元件200的入射面也为曲率基本相同的曲面。
例如,折射元件200的入射面可以通过透明光学胶与像源100的显示面贴合。
例如,折射元件200的边侧可设置固定装置,如卡扣或者卡槽,以将折射元件200固定,避免其移动。
例如,折射元件200的入射面与像源100的显示面也可以平行且间隔设置。例如,折射元件200的入射面与像源100的显示面之间的间隔尺寸较小,以防止像源100的显示面出射的图像光线在折射元件200的入射面处发生反射,从而造成浪费。
例如,在一示例中,在显示装置中没有设置玻璃砖折射元件200时,第一显示区101出射的图像光线传播至第一反射元件300的光学距离与第二显示区102出射的图像光线传播至第一反射元件300的光学距离相同;第一显示区101出射光路上设置折射元件200,而第二显示区102出射光路上没有设置折射元件200时,第一显示区101显示的图像经过折射元件200所成像的光线(例如可以认为图像光线出射的位置变为折射所成像的位置)传播至第一反射元件300的光学距离小于第二显示区102出射的图像光线传播至第一反射元件300的光学距离,可以缩小第一显示区101显示的图像与第一反射元件300之间的等效物距,进而缩小了第一显示区101所成虚像的距离。在上述显示装置应用于抬头显示器时,该抬头显示器可以形成多层图像,显示更多的信息。例如,可以在成像距离较近的画面(如第一显示区101显示的图像所成的像)中显示静态信息,在成像距离较远的画面(如第二显示区102显示的图像所成的像)中显示动态信息,该动态信息可以是增强现实(AR)信息,AR信息通过设置在不同的画面层,可与不同距离的实物、实景相结合。
例如,第一显示区101可以显示近景画面,例如显示车辆仪表等关键驾驶数据,例如,显示车速、油量和转向等参数中的一种或多种;第二显示区102可以显示远景画面,例如画面内容可以包括兴趣点(Point of interests,POI),例如医院、银行及餐厅等。例如,第二显示区102显示的远景画面可以包括银行,第二子像源120显示的银行的图像可以包括银行的标志,银行的标志图像可以和银行实景的位置匹配融合,用户可以看到远处的建筑物,例如银行时,显示画面中标识了银行的标志。
例如,第一显示区101的面积可以小于第二显示区102的面积以使第一反射元件300反射第一显示区101出射的图像光线所成的虚像的成像尺寸小于第一反射元件300反射第二显示区102出射的图像光线所成的虚像的成像尺寸。第一显示区101被配置为显示近景画面,近景画面的显示内容可以是车辆仪表等关键驾驶参数,由此显示的近景画面的尺寸可以较小;第二显示区102被配置为显示远景画面,远景画面的显示内容需要和车外的实景,例如建筑物等实景匹配融合,由此显示的远景画面的尺寸比近景画面的尺寸大。例如,尺寸较小的近景画面不会遮挡尺寸较大的远景画面。
例如,如图1a所示,第一显示区101经过折射元件200后的光线B与第二显示区102出射的光线A在经过透反元件600后形成光线AB,光线AB中包括光线A和光线B,两者的主光轴可以重合,或者两者之间的距离在设定间隔范围内。例如,光线AB传播至第一反 射元件300,并在经过反射成像部(后面描述)后分别形成虚像A’(第一显示区101的图像经过光学元件处理后形成的虚像)和虚像B’(第一显示区101的图像经过光学元件处理后形成的虚像),虚像A’和虚像B’同轴。
例如,虚像A’和虚像B’可以均沿竖直方向。例如,上述竖直方向可以指垂直于地面的方向,该竖直方向可以指平行于观察区(后续描述)所在平面的方向,或者指垂直于交通设备行驶面的方向。
例如,虚像A’比虚像B’更靠近观察区。例如,虚像A’可以具有较小的画面,虚像B’具有较大的画面,虚像A’在虚像B’上的投影可以完全位于虚像B’中,或者与虚像B’的部分重合。
例如,虚像A’在虚像B’上的投影完全位于虚像B’中,且第一显示区101显示的图像的分辨率大于第二显示区102显示的图像的分辨率。根据人眼的注视点特性,由于视网膜的中心凹区域的分辨率最高,周围区域的分辨率依次下降。当眼球转动时,想要看清的物体将成像在视网膜中心凹区域,而周围的物体成像在视网膜中心凹区域的周围,导致人眼只能看清注视点所在区域内的物体,而不能够看清注视点周围的物体。通常,注视点周围的高清区范围与人眼瞳孔的夹角为5°,人眼对以注视点为圆心且与人眼瞳孔夹角大于5°的区域的分辨率快速下降。例如,虚像A’成像于视网膜中心凹区域。本公开至少一实施例通过调节第一显示区和第二显示区显示的图像的分辨率不同,以使位于视网膜中心凹区域的虚像A’的分辨率高于没有位于视网膜中心凹区域的虚像B’的分辨率,既可以提高用户的观看体验,还可以实现图像显示的分辨率分区渲染,可以减小硬件中央图像处理器(Graphics Processing Unit,GPU)的压力。
例如,第一显示区101的形状可以与第二显示区102的形状相同,或者,两者的形状也可以不同。
例如,第一显示区101被第一反射元件300反射后的成像区域在水平方向(例如以平行于地面的方向为水平方向)上的尺寸大于或等于第二显示区102被第一反射元件300反射后的成像区域水平方向上的尺寸;和/或,第一显示区101被第一反射元件300反射后的成像区域在竖直方向(例如以垂直于地面的方向为竖直方向)上的尺寸小于或等于第二显示区102被第一反射元件300反射后的成像区域在竖直方向上的尺寸。
例如,如图1a所示,折射元件200的出射面与第一显示区101的显示面之间的夹角为0°~90°。
例如,如图1a所示,在折射元件200的入射面与像源的显示面贴合,或者间隔设置但是彼此平行时,折射元件200的出射面与第一显示区101的显示面平行,第一显示区101经折射元件200所成的像可以与第二显示区102显示的图像平行,第一显示区101经折射元件200所成的像和第二显示区102显示的图像经过第一反射元件300的反射后所成像可以为平行的像。折射元件的入射面与像源的显示面之间的夹角也会对虚像的角度有所调节, 例如折射元件不紧贴且不平行于像源显示面时(或者,图像光线的主光轴不垂直于折射元件的入射面),出射光线的角度由折射元件出射面和入射面的角度/面形共同决定。
例如,在折射元件200的入射面与像源的显示面贴合,或者间隔设置但是彼此平行时,折射元件200的出射面与第一显示区101的显示面之间的夹角可以为5°~90°,或者10°~80°,或者30°~70°,或者45°~60°,第一显示区101经过折射元件200所成的像可以与第二显示区102显示的图像之间具有一定夹角,第一反射元件300反射第一显示区101经折射元件200所成像后得到的虚像相对于第一反射元件300反射第二显示区102的图像后得到的虚像具有一定的倾斜角度。由此,本公开至少一实施例通过调节折射元件的出射面与像源的显示面之间的夹角,可以对显示装置所成的部分像的角度进行调节以使显示装置所成多层图像包括不平行的两层图像。
例如,如图1a所示,显示装置还包括第二反射元件500,第二反射元件500被配置为反射多个显示区出射的图像光线,第一反射元300被配置为反射在被第二反射元件500反射后传播至第一反射元件300的图像光线。例如,显示装置包括至少一个第二反射元件500。
例如,如图1a所示,透反元件600与第二反射元件500之间没有设置其他光学元件,透反元件600出射的图像光线可以直接射向第二反射元件500。例如,透反元件600与第二反射元件500之间还可以设置其他光学元件,例如透镜或者反射镜等光学元件,透反元件600出射的图像光线可以经过其他光学元件处理后射向第二反射元件500。例如,透反元件600与第二反射元件500没有贴合设置。
例如,如图1a所示,第二反射元件500与第一反射元件300之间没有设置其他光学元件,第二反射元件500反射向第一反射元件300的光线可以直接入射到第一反射元件300。本公开实施例不限于此,第二反射元件500与第一反射元件300之间可以设置其他光学元件,例如透镜或者反射镜等光学元件,第二反射元件500反射向第一反射元件300的光线可以经过其他光学元件处理后入射到第一反射元件300。
例如,如图1a所示,第一显示区101和第二显示区102出射的图像光线被同一个第二反射元件500反射后传播至第一反射元件300。在第一显示区和第二显示区出射的图像光线经过透反元件后主光轴重合或两者之间的距离在设定间隔范围内时,两个显示区出射的图像光线经过透反元件后形成的光线的光斑面积(或者,图像光线经过透反元件合束后,光束沿传播方向的截面)较小,可以被同一个反射元件反射,可以减少显示装置中反射元件的数量,有利于实现显示装置的小尺寸和紧凑化的设计。
例如,第二反射元件500可以为反射面为平面的平面反射镜。例如,第二反射元件500的各位置与第一子像源110的显示面之间的夹角可以均相等。
例如,如图1a所示,第二反射元件500包括平面反射镜、曲面反射镜、非球面反射镜和球面反射镜中的至少一种,第一反射元件300包括曲面反射镜。
例如,如图1a所示,第二反射元件500为平面反射镜或者曲面反射镜,第一反射元件 300为曲面反射镜或者平面反射镜。
例如,曲面反射镜可以为凹面反射镜;此种情况下,凹面反射镜靠近显示区的表面为凹曲面。曲面反射镜的设置可以使得抬头显示器具有更远的成像距离和更大的成像尺寸,且曲面反射镜还可与曲面的反射成像部(后续提到)如挡风窗配合,以消除反射成像部造成的虚像畸变。
例如,在第一反射元件300为凹面反射镜(也即,反射面为凹曲面的反射镜)的情况下,曲面反射镜的内凹反射面朝向显示区,如果显示区显示的图像经过第二反射元件500所成的像与凹面反射镜之间的光学距离小于凹面反射镜的焦距,则凹面反射镜基于显示区输出的图像形成正立放大的虚像。例如,根据凹面反射镜的成像性质可知,在显示区显示的图像经过第二反射元件500所成的像与凹面反射镜之间的光学距离小于凹面反射镜的焦距情况下(也即,像位于凹面反射镜的一倍焦距以内),凹面反射镜的像距随显示区显示的图像经过第二反射元件500所成的像与凹面反射镜之间的光学距离的增大而增大,也即,显示区显示的图像经过第二反射元件500所成的像与凹面反射镜之间的光学距离越小,则使用包括该显示装置的抬头显示器的用户与其观看到的图像之间的距离越小。通过在至少一显示区的出光侧设置折射元件,可以改变显示区显示的图像经过第二反射元件500所成的像与曲面反射镜之间的光学距离。
例如,第一反射元件300的反射面可以为自由曲面,也即,第一反射元件300的反射面不具有旋转对称特性,以提升显示装置的成像质量。
例如,像源100出射的图像光线在传播至第一反射元件300的光路中可以设置一个平面反射镜,或者两个平面反射镜,或者一个平面反射镜和一个曲面反射镜,或者两个平面反射镜和一个曲面反射镜等,可以根据产品需求进行设置。
图2为根据本公开至少一实施例提供的另一种显示装置的局部截面结构示意图。图2所示显示装置与图1a所示显示装置的不同之处在于第一显示区和第二显示区出射的图像光线经过不同的子折射元件的折射后传播至第一反射元件。图2所示像源100、第一反射元件300以及第二反射元件500可以与图1a所示的像源100、第一反射元件300以及第二反射元件500相同,在此不再赘述。
例如,如图2所示,折射元件200包括第一子折射元件210和第二子折射元件220,第一显示区101出射的图像光线经过第一子折射元件210的折射后传播至第一反射元件300,第二显示区102出射的图像光线经过第二子折射元件220的折射后传播至第一反射元件300。
例如,在从第一显示区101出射的图像光线传播至第一反射元件300的光路上去除第一子折射元件210,且从第二显示区102出射的图像光线传播至第一反射元件300的光路上去除第二子折射元件220的情况下,从第一显示区101出射且传播至第一反射元件300的图像光线的光学距离与从第二显示区102出射且传播至第一反射元件300的图像光线的光 学距离相等。但不限于此,在从第一显示区101出射的图像光线传播至第一反射元件300的光路上去除第一子折射元件210,且从第二显示区102出射的图像光线传播至第一反射元件300的光路上去除第二子折射元件220的情况下,从第一显示区101出射且传播至第一反射元件300的图像光线的光学距离与从第二显示区102出射且传播至第一反射元件300的图像光线的光学距离可以不相等。
例如,如图2所示,第一子折射元件210与第二子折射元件220的尺寸不同,例如在垂直于相应显示区的显示面的方向的尺寸不同,和/或第一子折射元件210与第二子折射元件220的折射率不同以使第一子折射元件210所成像的光线传播至第一反射元件300的光学距离与第二子折射元件220所成像的光线传播至第一反射元件300的光学距离不同。本公开至少一实施例提供的显示装置中,通过在第一显示区和第二显示区的出光侧均设置不同的子折射元件,可以有利于降低不同子像源出射图像光线经过第一反射元件后所成像的成像距离,提高显示装置的结构的紧凑性。
例如,第一子折射元件210的出射面与像源的显示面之间的夹角与第二子折射元件220的出射面与像源的显示面之间的夹角不同;和/或,所述第一子折射元件210的出射面的形状与第二子折射元件220的出射面的形状不同,可以使得第一显示区和第二显示区所成虚像具有不同特性(例如具有不同的成像距离)。
例如,在两个子折射元件的入射面与像源的显示面贴合,或者间隔设置但是彼此平行时,第一子折射元件210的出射面与第一显示区101的显示面之间的夹角为0°~90°,第二子折射元件220的出射面与第二显示区102的显示面之间的夹角为0°~90°。
例如,折射元件的入射面与像源的至少部分显示面贴合;例如,折射元件的入射面与像源的局部显示面贴合。
例如,在显示装置中没有设置折射元件200,且第一显示区101显示的图像与第二显示区102显示的图像直接入射到透反元件600后所成的两个虚像平行设置时,通过将在两个子折射元件的入射面与像源的显示面贴合,或者间隔设置但是彼此平行,第一子折射元件210的出射面与第一显示区101的显示面设置为平行,且第二子折射元件220的出射面与第二显示区102的显示面设置为平行,可以使得第一显示区101显示的图像经过第一子折射元件210后所成像与第二显示区102显示的图像经过第二子折射元件220后所成像平行,则两者经过第一反射元件300后所成像平行,以使显示装置可以形成多层图像,其中至少两层图像平行。
例如,在显示装置中没有设置折射元件200,且第一显示区101显示的图像与第二显示区102显示的图像直接入射到透反元件600后所成的两个虚像平行设置,且在两个子折射元件的入射面与像源的显示面贴合,或者间隔设置但是彼此平行时,第一子折射元件210的出射面与对应显示区的显示面之间的夹角为第一夹角,第二子折射元件220的出射面与对应显示区的显示面之间的夹角为第二夹角,第一夹角与第二夹角不同,可以使得第一显 示区101显示的图像经过第一子折射元件210后所成像与第二显示区102显示的图像经过第二子折射元件220后所成像之间具有一定夹角,则两者经过第一反射元件300后所成像之间具有一定夹角,以使显示装置可以形成多层图像,其中至少两层图像之间具有一定夹角。
例如,在两个子折射元件的入射面与像源的显示面贴合,或者间隔设置但是彼此平行时,第一子折射元件210的出射面与第一显示区101的显示面之间的夹角可以为5°~90°,或者10°~80°,或者30°~70°,或者45°~60°。例如,第二子折射元件220的出射面与第二显示区102的显示面之间的夹角可以为5°~90°,或者10°~80°,或者30°~70°,或者45°~60°。
例如,图3为根据本公开实施例提供的另一种显示装置的局部截面结构示意图。图3所示显示装置与图1a所示显示装置的不同之处在于显示装置还包括第三显示区103。图3示意性的示出第二显示区102出射的图像光线传播至第一反射元件300的光路没有设置子折射元件,但不限于此,也可以设置图2所示的第二子折射元件220。例如,图3所示显示装置中,第一反射元件300可以与图1a-图2任一示例所示的显示装置中的第一反射元件300相同,在此不再赘述。例如,图3所示显示装置中的折射元件200可以为图1a所示的折射元件200,且折射元件200与第一显示区101的对应关系也可以与上述示例中的对应关系相同。
例如,如图3所示,多个显示区还包括第三显示区103,从第一显示区101、第二显示区102和第三显示区103出射且传播至第一反射元件300的图像光线的光学距离可以均不同。例如,第一显示区101和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为0°~90°,第一显示区101和第三显示区103出射的图像光线经第一反射元件300后所成虚像之间的夹角为0°~90°,第三显示区103和第二显示区102出射的图像光线经第一反射元件300后所成虚像之间的夹角为0°~90°。
例如,如图3所示,像源100包括彼此独立的多个子像源,第一显示区101和第二显示区102至少之一与第三显示区103位于不同的子像源。
例如,如图3所示,第一显示区101、第二显示区102以及第三显示区103位于不同的子像源中,本公开实施例不限于此,例如,第一显示区101和第二显示区102之一可以与第三显示区103位于同一个子像源。例如,第一显示区101可以与第三显示区103位于同一子像源。
例如,第一显示区101和第二显示区102至少之一出射的图像光线传播至第一反射元件300的光路上设置折射元件200,第三显示区103出射的图像光线传播至第一反射元件300的光路上可以设置折射元件200,也可以不设置折射元件200。
例如,如图3所示,第一显示区101出射的图像光线传播至第一反射元件300的光路上设置折射元件200,第二显示区102和第三显示区103出射的图像光线传播至第一反射元件300的光路上均没有设置折射元件200。
例如,如图3所示,第一显示区101出射的图像光线经过折射元件200后所成像与第一反射元件300之间的光学距离为第一光学距离,第二显示区102出射的图像光线传播至第一反射元件300的光学距离为第二光学距离,第三显示区103出射的图像光线传播至第一反射元件300的光学距离为第三光学距离。
例如,第一光学距离小于第二光学距离,第二光学距离小于第三光学距离;或者,第一光学距离小于第二光学距离,第三光学距离小于第一光学距离;或者,第一光学距离小于第二光学距离,第三光学距离大于第一光学距离且小于第二光学距离。
例如,第一显示区101出射的图像光线经第一反射元件300所成的像可与第二显示区102出射的图像光线经第一反射元件300所成的像平行或者具有一定夹角。例如,第三显示区103出射的图像光线经第一反射元件300所成的像可与第二显示区102出射的图像光线经第一反射元件300所成的像平行或者具有一定夹角。
本示例提供的显示装置中,从三个显示区出射至第一反射元件的图像光线的光学距离可以不同,由此可以在不同距离处成像,有利于不同距离的图像与不同距离的实景进行匹配融合,以使该显示装置应用于抬头显示器时,用户无需在固定距离的图像与不同距离的实景之间来回切换,避免了视觉辐辏调节冲突,提高了显示装置的使用体验。
例如,第一显示区101的显示面和第三显示区103的显示面之间的夹角可以为0°~90°。例如,第一显示区101的显示面和第三显示区103的显示面之间的夹角为10°~80°。例如,第一显示区101的显示面和第三显示区103的显示面之间的夹角为20°~70°。例如,第一显示区101的显示面和第三显示区103的显示面之间的夹角为30°~60°。例如,第一显示区101的显示面和第三显示区103的显示面之间的夹角为15°~45°。
例如,第一显示区101、第二显示区102以及第三显示区103出射图像光线经一些光学元件的处理后所成画面可均与地面垂直。本公开实施例不限于此,例如,第一显示区101和第二显示区102出射图像光线经一些光学元件的处理后所成画面可与地面垂直,第三显示区103出射图像光线经一些光学元件的处理后所成画面相对于地面是倾斜的。例如,第一显示区101可以显示近景画面,例如显示车辆仪表等关键驾驶数据,例如,显示车速、油量和转向等参数中的一种或多种;第三显示区103可以显示中景画面,例如第三显示区103可以显示出车道画面,例如,画面相对于地面为倾斜状态时与实际车道匹配融合效果更好,用户可以看到车道被图像融合标记,指引用户走这条车道;第二显示区102可以显示远景画面,例如建筑等,第二显示区102显示的远景画面例如为银行,第二子像源120显示的银行的图像可以包括银行的标志,银行的标志图像可以和银行实景的位置匹配融合,用户可以看到远处建筑物,例如银行时,显示画面中标识了银行的标志。
例如,第三显示区103的面积可以大于第一显示区101的面积和第二显示区102的面积,以使第一反射元件300反射第三显示区103出射的图像光线所成的虚像的成像尺寸大于第一反射元件300反射第一显示区101和第二显示区102出射的图像光线所成的虚像的 成像尺寸。例如,第三显示区103的形状可以与第一显示区101和第二显示区102的至少之一的形状相同,但不限于此,第一显示区、第二显示区和第三显示区的形状例如可以不同。
例如,第三显示区103显示图像经过光学元件处理后的虚像位于中间时,第三显示区103显示的中景画面可以是倾斜的。例如,通过设置倾斜画面可以有利于图像贴合路面,提高使用效果。例如,因为倾斜的画面需要与实际的路面匹配贴合,倾斜的中景画面的尺寸较大,至少可覆盖半个或整个车道,使驾驶员可以有更好的观看效果,例如倾斜的中景画面覆盖车道线以使驾驶员可以更容易看清楚图像标记后的车道线,可更好的提示驾驶员保持或更换车道,提升驾驶体验。
例如,第三显示区103所形成的倾斜画面,其成像高度至少低于第一显示区101和/或第二显示区102的成像高度,以使倾斜画面实现更好的贴地效果。成像高度可以解释为:虚像沿垂直于行驶路面所在面方向的距离。例如,倾斜画面的高度可以为最低,或者,也可以为三个成像高度中数值位于中间的高度。例如,在成像距离方面,倾斜画面可以位于中间层,其具有更好的贴地效果。
例如,如图3所示,第二反射元件500包括彼此独立的第一子反射元件510和第二子反射元件520,第一显示区101和第二显示区102出射的图像光线被第一子反射元件510反射后传播至第一反射元件300,第三显示区103出射的图像光线被第二子反射元件520反射后传播至第一反射元件300。本公开提供的显示装置中,通过将被配置为反射第一显示区出射的图像光的子反射元件和被配置为反射第三显示区出射的图像光的子反射元件设置为彼此独立的两个子反射元件,可以方便对第一显示区和第三显示区经过反射元件所成像的位置以及角度等特性进行调整。
例如,图4为根据本公开至少一实施例提供的另一种显示装置的局部截面结构示意图。图4所示显示装置与图3所示显示装置的不同之处在于第一显示区101、第二显示区102以及第三显示区103出射的图像光线被同一个第二反射元件500反射后传播至第一反射元件300。图4示意性的示出第二显示区102出射的图像光线传播至第一反射元件300的光路没有设置子折射元件,但不限于此,也可以设置图2所示的第二子折射元件220。例如,图4所示显示装置中,第一反射元件300可以与图1a-图3任一示例所示的显示装置中的第一反射元件300相同,在此不再赘述。例如,图4所示显示装置中的折射元件200可以为图1a所示的折射元件200,且折射元件200与第一显示区101的对应关系也可以与上述示例中的对应关系相同。本公开提供的显示装置中,将三个显示区出射的图像光线设计为被同一个第二反射元件反射后传播至第一反射元件,可以节省第二反射元件的数量,有利于减小显示装置的体积。
例如,图4示意性的示出第一显示区101和第三显示区103位于不同的子像源,但不限于此,第一显示区101和第三显示区103还可以位于同一个子像源。例如,图4示意性 的示出仅第一显示区101出射图像光线至第一反射元件300的光路上设置折射元件200,但不限于此,第二显示区102和第三显示区103出射图像光线至第一反射元件300的光路上也可以设置与第一显示区101对应的折射元件200不同的折射元件。这里不同的折射元件可以指折射元件的折射率不同、尺寸(例如厚度)不同或者光焦度不同等。
本公开至少一实施例示意性的示出显示装置包括一个显示区、两个显示区或者三个显示区,但不限于此,显示装置还可以包括四个显示区或者更多个显示区。
例如,图5为根据本公开另一实施例提供的抬头显示器的结构示意图。图5示意性的示出抬头显示器包括图3所示的显示装置以及反射成像部700为例,本公开实施例不限于此,抬头显示器还可以包括图1a-2以及图4所示的任一示例提供的显示装置以及反射成像部。例如,如图5所示,第一反射元件300反射的图像光线传播至反射成像部700,反射成像部700被配置为将从第一反射元件300出射且传播至反射成像部700的图像光线反射至观察区800,且透射环境光。位于观察区800的用户可以观看到反射成像部700对显示装置出射的图像光线所成的多个虚像以及位于反射成像部700远离观察区800一侧的环境景象。
例如,第一显示区101经过折射元件200所成像的光线传播至反射成像部700的主传输光线传输的光学距离、第二显示区102出射至反射成像部700的主传输光线传输的光学距离以及第三显示区103出射至反射成像部700的主传输光线传输的光学距离可以均不同。
例如,显示装置出射的图像光线入射至反射成像部700,被反射成像部700反射的光线向用户传播,例如驾驶员眼睛所在的观察区800,用户可观察到形成于例如反射成像部外侧的虚像,也不影响用户对外界环境的观察。
例如,上述观察区800可为眼盒(eyebox)区域,该眼盒区域是指用户眼睛所在的、可以看到抬头显示器显示的图像的平面区域。例如,用户的眼睛相对于眼盒区域的中心偏离一定距离,如上下、左右移动一定距离时,在用户眼睛仍处于眼盒区域内的情况下,用户仍然可以看到抬头显示器显示的图像。
例如,反射成像部700可为机动车的挡风窗或成像窗。例如,挡风窗为挡风玻璃,成像窗为透明成像板。例如,挡风窗用于透射、反射风挡式抬头显示器(Windshield-HUD,W-HUD)出射的图像光线和成像窗用于透射、反射组合式抬头显示器(Combiner-HUD,C-HUD)出射的图像光线。
例如,如图1b及图5所示,第一显示区101和第二显示区102中仅第一显示区101的图像光线经折射元件200后传播至反射成像部700,第一显示区101的图像光线被反射成像部700反射所成像为第一虚像1110,第二显示区102的图像光线被反射成像部700反射所成像为第二虚像1120,第一虚像1110与观察区800之间的距离不同于第二虚像1120与观察区800之间的距离。例如,第一虚像1110与观察区800之间的距离小于第二虚像1120与观察区800之间的距离。
例如,图1b所示,第一显示区101出射的图像光线经折射元件200所成像的光线经过 透反元件600的透射后被第三反射元件500反射至第一反射元件300,第一反射元件300将该图像光线反射至反射成像部700后形成第一虚像1110;第二显示区102出射的图像光线经过透反元件600反射后被第三反射元件500反射至第一反射元件300,第一反射元件300将该图像光线反射至反射成像部700后形成第二虚像1120。
例如,仅第一显示区101的图像光线经折射元件后向反射成像部700传播,第一虚像1110与观察区800之间的距离小于第二虚像1120与观察区800之间的距离。
例如,第一虚像1110与观察区800之间的距离为2~4米,第二虚像1120与观察区800之间的距离为20~50米;例如,第一虚像1110与观察区800之间的距离为7~14米,第二虚像1120与观察区800之间的距离为20~50米;例如,第一虚像1110与观察区800之间的距离为2~4米,第二虚像1120与观察区800之间的距离为7~14米。
例如,如图5所示,第一显示区101出射的图像光线经折射元件200所成像的光线经过透反元件600的透射后被第三反射元件500反射至第一反射元件300,第一反射元件300将该图像光线反射至反射成像部700后形成第一虚像1110;第二显示区102出射的图像光线经过透反元件600反射后被第三反射元件500反射至第一反射元件300,第一反射元件300将该图像光线反射至反射成像部700后形成第二虚像1120;第三显示区113出射的图像光线被第三反射元件500反射至第一反射元件300,第一反射元件300将该图像光线反射至反射成像部700后形成第三虚像1130。
例如,如图5所示,第一虚像1110和竖直方向夹角为0°~90°,第二虚像1120和竖直方向夹角为0°~90°。例如,第三虚像1130和竖直方向夹角为0°~90°,第二虚像1120和竖直方向夹角为0°~90°。例如,第一虚像1110和竖直方向夹角为10°~80°。例如,第一虚像1110和竖直方向夹角为20°~70°。例如,第一虚像1110和竖直方向夹角为30°~60°。例如,第一虚像1110和竖直方向夹角为15°~45°。例如,第二虚像1120和竖直方向夹角为10°~80°。例如,第二虚像1120和竖直方向夹角为20°~70°。例如,第二虚像1120和竖直方向夹角为30°~60°。例如,第一虚像1110和竖直方向夹角为15°~45°。例如,第三虚像1130和竖直方向夹角为10°~80°。例如,第三虚像1130和竖直方向夹角为20°~70°。例如,第三虚像1130和竖直方向夹角为30°~60°。例如,第三虚像1130和竖直方向夹角为15°~45°。
例如,如图5所示,第一显示区101的显示面和第三显示区103的显示面可以平行于或趋于平行于地面。例如,第一虚像1110、第二虚像1120以及第三虚像1130可以均沿竖直方向,也可以部分沿竖直方向,还可以均与竖直方向之间具有一定夹角。上述竖直方向可以指平行于观察区所在平面的方向,或者指垂直于交通设备行驶面的方向。
例如,如图5所示,第三虚像1130与观察区800之间的距离最短,第二虚像1120与观察区800之间的距离最长。本公开实施例不限于此,例如,第一虚像1110与观察区800之间的距离最短,第二虚像1120与观察区800之间的距离最长;或者,第一虚像1110与观察区800之间的距离最短,第三虚像1130与观察区800之间的距离最长。
例如,如图5所示,第三虚像1130与观察区800之间的距离为2~4米,第二虚像1120与观察区800之间的距离为20~50米,第一虚像1110与观察区800之间的距离为7~14米。例如,第三虚像1130与观察区800之间的距离为2.5~3.5米,第二虚像1120与观察区800之间的距离为30~40米,第一虚像1110与观察区800之间的距离为10~12米。
例如,第三虚像1130可以为近景画面,例如显示车辆仪表等关键驾驶数据,例如,显示车速、油量和转向等参数中的一种或多种;例如,第一虚像1110可以为中景画面,例如第一虚像1110可以为车道画面,用户可以看到车道被图像融合标记,指引用户走这条车道;例如,第二虚像1120可以为远景画面,例如建筑等,例如为银行,第二虚像1120显示的银行的图像可以包括银行的标志,银行的标志图像可以和银行实景的位置匹配融合,用户可以看到远处建筑物,例如银行时,显示画面中标识了银行的标志。
例如,当本实施例提供的抬头显示器应用于例如车辆等交通设备时,至少部分虚像可以为垂直于地面的像可以实现与实景融合,融合可以解释为:虚像覆盖实景、或与实景配合显示例如位于实景周围位置,实现对实景的标识作用。
例如,第一虚像1110与观察区800之间的距离最短,第二虚像1120与观察区800之间的距离最长。例如,第三虚像1130与第一虚像1110之间的夹角可以为5°~90°,且第三虚像1130远离地面的一端比第三虚像1130靠近地面的一端距离观察区800的距离更远以实现画面的倾斜,例如与实际车道匹配融合效果更好。例如,第三虚像1130与第一虚像1110之间的夹角为10°~80°。例如,第三虚像1130与第一虚像1110之间的夹角为30°~70°。例如,第三虚像1130与第一虚像1110之间的夹角为45°~60°。
例如,第三虚像向远离观察区的方向倾斜。例如,第一虚像1110、第二虚像1120和第三虚像1130的至少之一向远离观察区800的方向倾斜。例如,第三虚像1130朝向例如车辆等交通设备的行驶方向倾斜,倾斜的画面可以使图像与路面的匹配贴合,例如第三虚像1130与路面之间的夹角可以为5°~90°。
例如,如图5所示,第二显示区102被第一反射元件300反射所成的虚像位于反射成像部700的焦平面,或上述虚像与反射成像部700之间的距离小于焦距且上述虚像接近反射成像部700的焦平面处。此情况下,根据曲面成像规律,第二虚像1120会形成在较远的距离乃至无穷远处,适合与远处的实景进行匹配贴合。
例如,本公开至少一实施例提供的抬头显示器可形成多层图像(例如第一虚像、第二虚像以及第三虚像),且不同图像的成像距离不同,不同的图像可以与不同距离的实景进行融合,用户(例如驾驶员)的视线无需在固定距离的图像和不同距离的实景之间来回切换,有效提高了抬头显示器的使用体验。
例如,第一虚像1110、第二虚像1120和第三虚像1130中距离观察区800的距离居中的虚像相对于水平方向的倾斜程度可以小于其余两个虚像相对于水平方向的夹角。该水平方向可以指垂直于观察区所在平面的方向,或者指平行于交通设备行驶面的方向。
当然,本公开至少一实施例不限于距离观察区最近的虚像和距离观察区最远的虚像沿竖直方向设置,距离观察区的距离居中的虚像沿倾斜方向设置。例如,距离观察区最近的虚像和距离观察区最远的虚像之一也可以是倾斜的虚像,例如沿虚像到观察区方向,虚像面向观察区倾斜。
本公开至少一实施例示意性的示出显示装置的图像经过反射成像部形成三层图像,但不限于此,还可以形成四层或者更多层图像。多层图像中,所有图像可以均沿竖直方向,或者部分图像沿竖直方向,或者所有图像可以均与竖直方向具有一定夹角,可以根据实际用户需求进行设置。
例如,图6为根据本公开另一实施例提供的交通设备的示例性框图。如图6所示,该交通设备包括本公开的至少一个实施例提供的抬头显示器。交通设备也可以为包括上述任一显示装置的交通设备。
例如,交通设备的前窗(例如,前挡风玻璃)被复用为抬头显示器的反射成像部700。例如,在上述抬头显示器应用于交通设备时,上述第一虚像1110和第二虚像1120垂直于地面,第三虚像1130远离地面的一端比第三虚像1130靠近地面的一端距离观察区800的距离更远使各虚像可以均与相应的实景进行匹配融合。
本公开至少一实施例提供的交通设备应用上述抬头显示器,可以使驾驶员在不同距离处观看到图像,有利于不同距离的图像与不同距离的实景进行匹配融合,以使驾驶员无需在固定距离的图像与不同距离的实景之间来回切换,避免了视觉辐辏调节冲突,提高了交通设备的使用体验。
例如,上述三个虚像可以同时显示,也可以不同时显示。例如,同一时间段显示一个或者两个虚像。
例如,该交通设备可以是各种适当的交通工具,例如,在交通设备驾驶位置设置前窗且通过车载显示系统将图像投射到前窗上的情况下,其可以包括各种类型的汽车等陆上交通设备,或可以是船等水上交通设备。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (17)

  1. 一种显示装置,包括:
    像源,包括多个显示区,所述多个显示区至少包括第一显示区和第二显示区;
    第一反射元件,被配置为反射从所述像源发出后传播至所述第一反射元件的图像光线,
    其中,所述显示装置还包括折射元件,从所述第一显示区和所述第二显示区至少之一出射的图像光线经过所述折射元件折射后传播至所述第一反射元件,从所述第一显示区和所述第二显示区出射且传播至所述第一反射元件的图像光线的光学距离不同,且从所述第一显示区和所述第二显示区出射的图像光线经所述第一反射元件反射后所成的所述显示装置的虚像同轴。
  2. 根据权利要求1所述的显示装置,还包括:透反元件,其中,所述第一显示区出射的第一图像光线和所述第二显示区出射的第二图像光线之一经过所述透反元件透射后传播至所述第一反射元件,所述第一图像光线和所述第二图像光线的另一个被所述透反元件反射后传播至所述第一反射元件,且所述第一图像光线和所述第二图像光线经过所述透反元件后的主光轴重合,或所述第一图像光线和所述第二图像光线经过所述透反元件后的主光轴之间的距离在设定间隔范围内。
  3. 根据权利要求2所述的显示装置,其中,所述像源包括彼此独立的第一子像源和第二子像源,所述第一子像源包括所述第一显示区,所述第二子像源包括所述第二显示区。
  4. 根据权利要求1-3任一项所述的显示装置,其中,所述第一显示区和所述第二显示区之一出射的图像光线经过所述折射元件折射后向所述第一反射元件传播;或者,
    所述折射元件包括第一子折射元件和第二子折射元件,所述第一显示区出射的图像光线经过所述第一子折射元件的折射后向所述第一反射元件传播,所述第二显示区出射的图像光线经过所述第二子折射元件的折射后向所述第一反射元件传播。
  5. 根据权利要求4所述的显示装置,其中,所述第一子折射元件与所述第二子折射元件在垂直于相应显示区的显示面的方向的尺寸不同;和/或,所述第一子折射元件与所述第二子折射元件的折射率不同;和/或,所述第一子折射元件的出射面与所述像源的显示面之间的夹角与所述第二子折射元件的出射面与所述像源的显示面之间的夹角不同;和/或,所述第一子折射元件的出射面的形状与所述第二子折射元件的出射面的形状不同。
  6. 根据权利要求1-4任一项所述的显示装置,还包括:
    至少一个第二反射元件,其中,所述至少一个第二反射元件被配置为反射所述多个显示区发出且传播至所述第二反射元件的所述图像光线,所述第一反射元件被配置为反射在被所述第二反射元件反射后传播至所述第一反射元件的所述图像光线;
    所述第一显示区和所述第二显示区出射的所述图像光线被所述至少一个第二反射元件中的同一个第二反射元件反射后传播至所述第一反射元件。
  7. 根据权利要求6所述的显示装置,其中,所述多个显示区还包括第三显示区,所述第一显示区、所述第二显示区以及所述第三显示区出射的图像光线被同一个第二反射元件反射后传播至所述第一反射元件;或者,
    所述多个显示区还包括第三显示区,所述至少一个第二反射元件包括两个第二反射元件,所述第一显示区和所述第二显示区出射的图像光线被同一个所述第二反射元件反射后传播至所述第一反射元件,所述第三显示区出射的图像光线被另一个所述第二反射元件反射后传播至所述第一反射元件。
  8. 根据权利要求6或7所述的显示装置,其中,所述第二反射元件包括平面反射镜或曲面反射镜中的至少一种,所述第一反射元件包括曲面反射镜或平面反射镜。
  9. 根据权利要求7所述的显示装置,其中,从所述第一显示区、所述第二显示区和所述第三显示区出射且传播至所述第一反射元件的图像光线的光学距离均不同。
  10. 根据权利要求7或9所述的显示装置,其中,所述像源包括彼此独立的多个子像源,所述第一显示区和所述第二显示区至少之一与所述第三显示区位于不同的子像源。
  11. 根据权利要求1-10任一项所述的显示装置,其中,所述折射元件远离所述像源一侧的出射面包括平面、凹面或者凸面中的至少一种,且所述折射元件的出射面与所述像源的显示面之间的夹角为0°~90°。
  12. 根据权利要求1-11任一项所述的显示装置,其中,所述折射元件的入射面与所述像源的至少部分显示面贴合;或者,所述折射元件的入射面与所述像源的显示面间隔设置。
  13. 一种抬头显示器,包括反射成像部以及显示装置,
    其中,所述反射成像部被配置为将从所述第一反射元件出射且传播至所述反射成像部的图像光线反射至观察区,且透射环境光;其中,所述显示装置为权利要求1-12任一项所述的显示装置。
  14. 根据权利要求13所述的抬头显示器,其中,所述第一显示区和所述第二显示区中仅所述第一显示区的图像光线和所述第二显示区的图像光线中的一者经所述折射元件后传播至所述反射成像部,所述第一显示区的图像光线被所述反射成像部反射所成像为第一虚像,所述第二显示区的图像光线被所述反射成像部反射所成像为第二虚像,所述第一虚像与所述观察区之间的距离不同于所述第二虚像与所述观察区之间的距离。
  15. 根据权利要求14所述的抬头显示器,其中,仅所述第一显示区的图像光线经所述折射元件后向所述反射成像部传播,所述第一虚像与所述观察区之间的距离小于所述第二虚像与所述观察区之间的距离。
  16. 根据权利要求14或15所述的抬头显示器,其中,所述第一虚像与所述观察区之间的距离为2~4米,所述第二虚像与所述观察区之间的距离为20~50米。
  17. 一种交通设备,包括权利要求1-12任一项所述的显示装置,或者权利要求13-16任一项所述的抬头显示器。
PCT/CN2021/143651 2021-12-30 2021-12-31 显示装置、抬头显示器以及交通设备 WO2023123339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111653647.0A CN116413906A (zh) 2021-12-30 2021-12-30 显示装置、抬头显示器以及交通设备
CN202111653647.0 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123339A1 true WO2023123339A1 (zh) 2023-07-06

Family

ID=86997226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143651 WO2023123339A1 (zh) 2021-12-30 2021-12-31 显示装置、抬头显示器以及交通设备

Country Status (2)

Country Link
CN (1) CN116413906A (zh)
WO (1) WO2023123339A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319354B2 (ja) * 2016-02-23 2018-05-09 株式会社デンソー ヘッドアップディスプレイ装置
CN112789545A (zh) * 2021-03-11 2021-05-11 华为技术有限公司 一种hud系统、车辆及虚像的位置调节方法
CN213240675U (zh) * 2020-08-21 2021-05-18 未来(北京)黑科技有限公司 一种抬头显示装置及抬头显示系统
CN213338216U (zh) * 2020-09-23 2021-06-01 未来(北京)黑科技有限公司 抬头显示装置及车辆
CN114077053A (zh) * 2020-08-21 2022-02-22 未来(北京)黑科技有限公司 双层成像抬头显示装置、抬头显示系统及交通设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319354B2 (ja) * 2016-02-23 2018-05-09 株式会社デンソー ヘッドアップディスプレイ装置
CN213240675U (zh) * 2020-08-21 2021-05-18 未来(北京)黑科技有限公司 一种抬头显示装置及抬头显示系统
CN114077053A (zh) * 2020-08-21 2022-02-22 未来(北京)黑科技有限公司 双层成像抬头显示装置、抬头显示系统及交通设备
CN213338216U (zh) * 2020-09-23 2021-06-01 未来(北京)黑科技有限公司 抬头显示装置及车辆
CN112789545A (zh) * 2021-03-11 2021-05-11 华为技术有限公司 一种hud系统、车辆及虚像的位置调节方法

Also Published As

Publication number Publication date
CN116413906A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US10994613B2 (en) Information display device
US11921287B2 (en) Information display apparatus
US7616382B2 (en) Image observation apparatus and image observation system
WO2019001004A1 (zh) 显示系统及其显示方法、交通工具
CN213987029U (zh) 双层成像抬头显示装置、抬头显示系统及交通设备
CN109407315B (zh) 显示系统及其显示方法
CN110873954B (zh) 显示系统、电子镜系统以及移动体
CN114077053A (zh) 双层成像抬头显示装置、抬头显示系统及交通设备
JP6697754B2 (ja) 表示システム、電子ミラーシステム及び移動体
WO2022037703A1 (zh) 多层图像显示装置、抬头显示器以及交通设备
US20220388396A1 (en) Light source apparatus, and information display system and head-up display apparatus using the same
CN213092017U (zh) 多层图像显示装置、抬头显示器以及交通设备
JP2019069685A (ja) 情報表示装置
JP2021124539A (ja) 画像観察装置
CN108501722A (zh) 一种车载显示系统
CN219676374U (zh) 显示装置、抬头显示装置和交通工具
CN113031264B (zh) 双光程投射装置和显示系统
CN211375183U (zh) 一种抬头显示设备、成像系统和车辆
WO2023123338A1 (zh) 显示装置、抬头显示器以及交通设备
CN218213623U (zh) 显示装置、抬头显示器以及交通设备
WO2023123339A1 (zh) 显示装置、抬头显示器以及交通设备
CN217561835U (zh) 显示装置、抬头显示器以及交通设备
CN216748171U (zh) 导光装置、光源装置、显示装置、抬头显示器和交通设备
CN116413907A (zh) 显示装置、抬头显示器以及交通设备
CN211375181U (zh) 一种抬头显示设备、成像系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE