WO2023123137A1 - 显示缺陷的补偿方法、装置、介质、电子设备及显示装置 - Google Patents

显示缺陷的补偿方法、装置、介质、电子设备及显示装置 Download PDF

Info

Publication number
WO2023123137A1
WO2023123137A1 PCT/CN2021/142720 CN2021142720W WO2023123137A1 WO 2023123137 A1 WO2023123137 A1 WO 2023123137A1 CN 2021142720 W CN2021142720 W CN 2021142720W WO 2023123137 A1 WO2023123137 A1 WO 2023123137A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
defective
compensation
Prior art date
Application number
PCT/CN2021/142720
Other languages
English (en)
French (fr)
Inventor
尹朋飞
朱明毅
许静波
李慧慧
鲍文超
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/142720 priority Critical patent/WO2023123137A1/zh
Priority to CN202180004310.9A priority patent/CN116897385A/zh
Publication of WO2023123137A1 publication Critical patent/WO2023123137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present disclosure relates to the field of display technology, in particular, to a compensation method, device, medium, electronic equipment, and display device for display defects.
  • the size of the display panel is getting bigger and bigger, and the display resolution is getting higher and higher.
  • the display brightness of the display panel is uneven, which affects the display effect.
  • the problem of uneven brightness can be solved by means of compensation.
  • updating the pixel values of the defect area with the pixel values of the normal area will make the compensation of the defect area uneven.
  • the purpose of the present disclosure is to overcome the shortcomings of the above-mentioned prior art, and provide a compensation method, device, medium, electronic equipment and display device for display defects.
  • a compensation method for display defects including: acquiring a first captured image of the display panel; identifying a defective area and a normal area of the display panel based on the first captured image, the defective area includes defective pixels, and the normal area is The area includes normal pixels; when the display panel is in the display state, obtain a second shot image of the display panel at a preset brightness; perform interpolation calculation on the pixel values of the normal pixels of the second shot image to obtain the defect at the preset brightness The compensated pixel value of the pixel point; repeatedly obtaining the compensated sub-pixel value of all defective sub-pixel points; using the compensated pixel value to update the pixel value of the corresponding defective pixel point under the preset brightness to form a compensated image.
  • the pixel points include a plurality of different sub-pixel points
  • the pixel compensation value includes compensated sub-pixel values corresponding to the plurality of sub-pixel points
  • the pixel values of the normal pixel points of the second captured image are interpolated
  • the calculation to obtain the compensation pixel value of the defective pixel point under the preset brightness includes: performing interpolation calculation on the sub-pixel values of different defective sub-pixel points of the second captured image, so as to determine the compensation sub-pixel value of the defective sub-pixel point under the preset brightness Pixel value; using the compensated pixel value to update the pixel value of the pixel point in the defect area under the preset brightness to form a compensated image, including: using the compensated sub-pixel value to update the sub-pixel value of the defective sub-pixel point under the preset brightness to form a compensation image.
  • interpolation calculation is performed on the sub-pixel values of different defective sub-pixels of the second captured image to determine the compensated sub-pixel values of the defective sub-pixels at preset brightness, including: selecting a defective area a defective sub-pixel in the second image; extract the sub-pixel values of multiple sub-pixels in the second captured image; in at least four different directions, find the normal sub-pixel closest to the defective sub-pixel from the normal area, and record at least The sub-pixel values of the four normal sub-pixels; the distance between the defective sub-pixel and the normal sub-pixel is used as the weight, and the sub-pixel values of at least four normal sub-pixels are weighted to obtain the sub-pixel of the defective sub-pixel Compensate for subpixel values.
  • the distance between the defective sub-pixel and the normal sub-pixel is used as the weight, and the sub-pixel values of at least four normal sub-pixels are weighted to obtain the compensation sub-pixel of the defective sub-pixel Pixel values, including:
  • f( xi ,y j ) is the compensation sub-pixel value of the defective sub-pixel
  • f(x 1 ,y 1 ), f(x 1 ,y n ), f(x m ,y 1 ) and f( x m , y n ) are the sub-pixel values of normal sub-pixel points
  • is the weight of f(x 1 ,y 1 ) is the weight of f(x 1 ,y n )
  • i and m represent the serial numbers of different x
  • j and n represent the serial numbers of different y.
  • the distance between the defective sub-pixel and the normal sub-pixel is used as the weight, and the sub-pixel values of at least four normal sub-pixels are weighted to obtain the compensation sub-pixel of the defective sub-pixel Pixel values, including:
  • the weight sum function is:
  • One normal sub-pixel is (a, b), the other normal sub-pixel is (g, h), u 0 and v 0 are the defect sub-pixels in the first direction and the second direction and the normal sub-pixels ( a, b) distance, the distance is normalized and expressed as and
  • A*C is the weight array of all normal sub-pixels, B is the sub-pixel value array of all normal sub-pixels, f(a+u 0 , b+v 0 ) is the compensated sub-pixel value of the defective sub-pixel.
  • the first captured image is obtained when the display panel is set in a non-display state
  • identifying the defect area of the display panel based on the first captured image includes: extracting the pixel of each sub-pixel in the first captured image Sub-pixel value; when the sub-pixel value of the sub-pixel exceeds the first preset sub-pixel value interval, the sub-pixel is a defective sub-pixel; all defective sub-pixels are determined, and all defective sub-pixels form a defective area .
  • the first captured image is acquired when the display panel is set in the display state, and identifying the defective area of the display panel based on the first captured image includes: extracting the sub-pixel of each sub-pixel in the first captured image Pixel value; when the sub-pixel value of the sub-pixel exceeds the second preset sub-pixel value interval, the sub-pixel is a defective sub-pixel, and the second preset sub-pixel value interval is greater than the first preset sub-pixel value interval; All defective sub-pixels are determined, and all defective sub-pixels form a defective region.
  • the method before performing interpolation calculation on the sub-pixel values of different defective sub-pixel points in the second captured image, the method further includes: determining the deflection angle of the second captured image; The coordinate axis of the captured image is transformed, and the coordinate values of the sub-pixels in the second captured image are converted, so as to eliminate the deflection angle of the second captured image.
  • the method before performing interpolation calculation on the sub-pixel values of different defective sub-pixel points in the second captured image, the method further includes: judging whether the area of the defective area is smaller than a preset value; when the area of the defective area is When the area is smaller than the preset value, the sub-pixel value of the defective sub-pixel is updated by using the sub-pixel value of the normal sub-pixel closest to the defect area.
  • the method before acquiring the first captured image of the display panel, the method further includes: acquiring a third captured image when the display panel is in a non-display state; judging whether the display panel exists based on the third captured image Foreign objects; if there are foreign objects on the display panel, clean the display panel.
  • the preset brightness includes a plurality of preset brightness values
  • the compensated sub-pixel value includes a plurality of compensated sub-pixel values corresponding to different preset brightness values; the corresponding preset brightness is updated respectively by using different compensated pixel values The pixel value of the defective pixel point under the value to form a different compensation image.
  • a compensation device for display defects including a first acquisition module, an identification module, a second acquisition module, a calculation module, a circulation module, and a compensation module
  • the first acquisition module is configured to acquire a display panel The first captured image
  • the identification module is configured to identify the defective area and the normal area of the display panel based on the first captured image, the defective area includes defective pixels, and the normal area includes normal pixels
  • the second acquisition module is configured to when the display panel When it is in the display state, the second captured image under the preset brightness is acquired
  • the calculation module is configured to perform interpolation calculation on the pixel values of the normal pixels of the second captured image, so as to obtain the compensated pixel value of the defective pixel under the preset brightness
  • the loop module is configured to repeatedly obtain the compensated sub-pixel values of all defective sub-pixels
  • the compensation module is configured to use the compensated pixel value to update the pixel value of the corresponding defective pixel at a preset brightness to form a compensated image.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method described in one aspect of the present disclosure is implemented.
  • an electronic device including a processor and a memory, and the memory is used to store executable instructions of the processor; wherein the processor is configured to execute the instructions described in one aspect of the present disclosure by executing the executable instructions. described method.
  • a display device including a display panel and a controller, the controller includes a compensation algorithm processor and a compensation parameter storage, the compensation parameter storage is configured to store electrical compensation parameters and optical compensation parameters,
  • the compensation algorithm processor is configured to receive the first image data of the image to be displayed on the display panel, call the electrical compensation parameters and optical compensation parameters stored in the compensation parameter storage according to the first image data of the image to be displayed, and perform compensation calculations to generate the image to be displayed
  • the compensated second image data, the optical compensation parameters are generated based on the compensated image according to any one aspect of the present disclosure and the image to be displayed.
  • the controller further includes an image processor, a drive controller and a sensing data converter;
  • the sensing data converter is configured to convert the sensing signal sensed by the display panel into a digital signal, And generate electrical compensation parameters based on the digital signal;
  • the image processor is configured to receive the second image data, and convert the second image data into digital information required to light up the corresponding sub-pixel;
  • the drive controller is configured to Output the required driving timing and display the image to be displayed.
  • the display device includes: a substrate and a plurality of sub-pixels located in the display area, the plurality of sub-pixels are arranged in multiple rows along a first direction, and are arranged in multiple columns along a second direction , each row of sub-pixels includes a plurality of sub-pixels, each column of sub-pixels includes a plurality of sub-pixels, and the first direction and the second direction cross each other.
  • the display device further includes: a plurality of gate lines and a plurality of data lines arranged on one side of the substrate and located in the display area, wherein the plurality of gate lines The lines extend along the first direction, the multiple data lines extend along the second direction, the sub-pixels in the same row are electrically connected to at least one gate line, and the sub-pixels in the same column are electrically connected to one data line.
  • each of the sub-pixels includes a pixel driving circuit and a light-emitting device electrically connected to the pixel driving circuit, and one gate line is connected to a plurality of the sub-pixels in the same row.
  • the pixel driving circuits are electrically connected, and one data line is electrically connected to multiple pixel driving circuits in the same column of the sub-pixels.
  • the pixel driving circuit includes: a switching transistor, a driving transistor, a sensing transistor, and a storage capacitor; the control electrode of the switching transistor is electrically connected to the first gate signal terminal, and the switching transistor The first pole of the switching transistor is electrically connected to the data signal terminal, the second pole of the switching transistor is electrically connected to the first node, the first gate signal terminal is electrically connected to one gate line, and the data signal terminal is electrically connected to a The data line is electrically connected; the switch transistor is configured to transmit the data signal received at the data signal terminal to the first gate signal terminal in response to the first scan signal received at the first gate signal terminal.
  • the control pole of the driving transistor is electrically connected to the first node, the first pole of the driving transistor is electrically connected to the sixth voltage signal terminal, and the second pole of the driving transistor is electrically connected to the second node
  • the driving transistor is configured to be turned on under the control of the voltage of the first node, and generate a driving signal according to the voltage of the first node and the sixth voltage signal received at the sixth voltage signal terminal , and transmit the driving signal to the second node;
  • the first end of the storage capacitor is electrically connected to the first node, the second end of the storage capacitor is electrically connected to the second node, and the The switching transistor charges the storage capacitor while charging the first node;
  • the anode of the light emitting device is electrically connected to the second node, and the cathode of the light emitting device is connected to the seventh voltage
  • the signal terminal is electrically connected;
  • the light emitting device is configured to emit light under the drive of the driving signal;
  • the control electrode of the sensing transistor is electrically connected to the second
  • FIG. 1 is a schematic structural diagram of a compensation system involved in the related art.
  • Fig. 2 is a schematic diagram of a proximity interpolation method involved in the related art.
  • FIG. 3 is a schematic diagram of a structure of a defect region involved in the related art.
  • FIG. 4 is a schematic diagram of another defect region structure involved in the related art.
  • FIG. 5 is a schematic diagram of another defect region structure involved in the related art.
  • FIG. 6 is a schematic diagram of compensation for a relatively small defect area involved in the related art.
  • FIG. 7 is a schematic diagram before compensation of a larger defect area involved in the related art.
  • FIG. 8 is a schematic diagram of a large defect area involved in the related art after compensation.
  • FIG. 9 is a schematic structural diagram of a compensation system involved in an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display defect compensation device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a controller involved in an embodiment of the present disclosure.
  • Fig. 12 is a flow chart of data transmission in the controller involved in the embodiment of the present disclosure.
  • FIG. 13 is a schematic circuit diagram of a display panel involved in the related art.
  • FIG. 14 is a schematic circuit diagram of a sub-pixel involved in the related art.
  • FIG. 15 is a waveform diagram of different signal terminals and nodes in the sub-pixel working process involved in the related art.
  • FIG. 16 is a flow chart of an optical compensation parameter generation process involved in an embodiment of the present disclosure.
  • Fig. 17 is a flowchart of a compensation method involved in an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a larger defect area before compensation according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of a large defect area after compensation according to an embodiment of the present disclosure.
  • Fig. 20 is a schematic diagram of a linear interpolation method involved in an embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram of a cubic interpolation method involved in an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a method for determining a deflection angle of a sub-pixel according to an embodiment of the present disclosure.
  • FIG. 23 is a position diagram of the coordinate conversion of each sub-pixel point involved in the embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • Image acquisition device 1. Image acquisition device; 2. Processor; 3. Display panel, 31. Defect area, 32. Normal area; 4. Controller, 41. Sensing data converter, 42. Compensation parameter storage, 43. Compensation algorithm Processor, 44, image processor, 45, drive controller; 5, light source; 6, power supply.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • FIG. 1 a schematic structural diagram of a compensation system in the related art.
  • the compensation system includes an image acquisition device 1, a processor 2, a display panel 3, a controller 4 (TCON), a light source 5 and a power supply 6, the display panel 3 and the controller 4 form a display device, and the power supply 6 supplies power to the display device through the controller 4 , the display panel 3 is illuminated by the light source 5, images of different brightness values of the display panel 3 are captured by the image acquisition device 1, the compensation device 2 for display defects generates optical compensation parameters according to the captured images of different brightness values, and the controller 4 combines the corresponding optical The compensation parameter and the corresponding electrical compensation parameter compensate the first image data of the image to be displayed, generate compensated second image data to be displayed, and display the image to be displayed based on the second image data.
  • the conventional process is to take images of different sub-pixels with different brightness values after cleaning the display panel 3, then detect the defective area 31 and perform compensation for the defective area 31, and replace the sub-pixel value of the defective area 31 with the sub-pixel value of the adjacent normal area 32 .
  • the adjacent interpolation scheme is shown in Figure 2 below.
  • the sub-pixel value of the nearest position is used to replace the sub-pixel value of the defect area 31.
  • Q 1 , Q 2 , Q 3 , and Q 4 are the four normal sub-pixel points around point P. Q 1 and P is closest to , so the value of point P is equal to the value of Q1 .
  • the image detection algorithm is used to detect the defect area 31 , and there are three types of common defects as shown in FIGS. 3 to 5 .
  • Fig. 3 is a point-shaped defect area with a small area
  • Fig. 4 is a circular defect area with a large area
  • Fig. 5 is an irregular defect area with a large area.
  • the adjacent area replacement method is used for the small defective area 31 to replace the sub-pixel values of the defective area 31 with the sub-pixel values of the adjacent normal area 32 .
  • the sub-pixel values of the defect region 31 are also replaced with surrounding normal regions 32 .
  • the surrounding sub-pixel values for replacement will cause uneven defect compensation.
  • exemplary embodiments of the present disclosure provide a compensation method for display defects.
  • the application scenarios of this compensation method include but are not limited to: during the compensation process of display defects, the display panel 3 is set at different preset brightness values, the image acquisition device 1 acquires captured images under different preset brightness values, and the compensation device for display defects 2 Identify the defective area 31 according to the captured image, and compensate the defective area 31.
  • FIG. 9 shows a schematic structural diagram of the compensation system for display defects.
  • the compensation system may include a compensation system including an image acquisition device 1, a compensation device 2 for display defects, a display panel 3, a controller 4 (TCON), a power supply 6 and light sources arranged on four different sides of the edge of the display panel 3 5.
  • the display panel 3 and the controller 4 form a display device
  • the power supply 6 supplies power to the display device through the controller 4
  • the display panel 3 is illuminated by the light source 5
  • the image acquisition device 1 is used to capture pictures of different brightness values of the display panel 3, and the compensation of display defects
  • the device 2 generates optical compensation parameters according to captured images with different brightness values
  • the controller 4 displays the image to be displayed in combination with the optical compensation parameters and the electrical compensation parameters.
  • the image capture device 1 may be configured to capture a first captured image when the display panel 3 is in a non-display state, and capture a second captured image when the display panel 3 is set at a preset brightness.
  • the image acquisition device 1 can be a camera, a video camera, a smart phone or a computer with a shooting function, and the like.
  • the image acquisition device 1 used in the embodiment of the present disclosure is a CCD camera, and the image resolution of the CCD camera must be at least three times higher than that of the display panel 3 in order to effectively distinguish the exact pixel value of each pixel.
  • the processor 2 can establish a connection with the image acquisition device 1 through a network, and the processor 2 can be a smart phone, a personal computer, a tablet computer, etc. with image display and processing functions.
  • the processor 2 may comprise compensation means for display defects.
  • the compensation device 100 for displaying defects includes a first acquisition module 101, an identification module 102, a second acquisition module 103, a calculation module 104, a circulation module 105 and a first compensation module 106, and the first acquisition module 101 is configured In order to obtain the first captured image of the display panel; the identification module 102 is configured to identify the defective area and the normal area of the display panel based on the first captured image, the defective area includes defective pixels, and the normal area includes normal pixels; the second acquisition module 103 It is configured to obtain a second captured image at a preset brightness when the display panel is in a display state; the calculation module 104 is configured to perform interpolation calculation on the pixel values of normal pixels of the second captured image to obtain a second captured image at a preset brightness.
  • the compensated pixel value of the defective pixel point is configured to repeatedly obtain the compensated sub-pixel value of all defective sub-pixel points; the compensation module is configured to use the compensated pixel value to update the pixel value of the corresponding defective pixel point under the preset brightness, to form a compensated image.
  • the pixel point includes a plurality of different sub-pixel points
  • the pixel compensation value includes compensated sub-pixel values corresponding to the plurality of sub-pixel points
  • the calculation module 104 may be specifically configured to: The sub-pixel values of the normal sub-pixels of the image are interpolated to determine the compensated sub-pixel values of the defective sub-pixels at the preset brightness; the compensation module can be specifically configured to: update the defective sub-pixels at the preset brightness The sub-pixel values of the pixels to form the compensated image.
  • the calculation module 104 may be specifically configured to: select a defective sub-pixel in the defective area; extract sub-pixel values of multiple sub-pixels in the second captured image; In different directions, find the normal sub-pixel closest to the defective sub-pixel from the normal area, and record the sub-pixel values of at least four normal sub-pixels; the distance between the defective sub-pixel and the normal sub-pixel is used as the weight , performing a weighted operation on the sub-pixel values of at least four normal sub-pixels to obtain the compensated sub-pixel values of the defective sub-pixels.
  • the calculation module 104 may specifically be configured to execute the following formula:
  • f( xi ,y j ) is the compensation sub-pixel value of the defective sub-pixel
  • f(x 1 ,y 1 ), f(x 1 ,y n ), f(x m ,y 1 ) and f( x m , y n ) are the sub-pixel values of normal sub-pixel points
  • is the weight of f(x 1 ,y 1 ) is the weight of f(x 1 ,y n )
  • i and m represent the serial numbers of different x
  • j and n represent the serial numbers of different y.
  • the calculation module 104 may specifically be configured to execute the following formula:
  • the weight sum function is:
  • One normal sub-pixel is (a, b), the other normal sub-pixel is (g, h), u 0 and v 0 are the defect sub-pixels in the first direction and the second direction and the normal sub-pixels ( a, b) distance, the distance is normalized and expressed as and
  • A*C is the weight array of all normal sub-pixels, B is the sub-pixel value array of all normal sub-pixels, f(a+u 0 , b+v 0 ) is the compensated sub-pixel value of the defective sub-pixel.
  • the first captured image is obtained when the display panel is set in a non-display state
  • the identification module 102 may specifically be configured to: extract the sub-pixel value of each sub-pixel in the first captured image; When the sub-pixel value of the sub-pixel exceeds the first preset sub-pixel value interval, the sub-pixel is a defective sub-pixel; all defective sub-pixels are determined, and all defective sub-pixels form a defective area.
  • the first captured image is acquired when the display panel is set in the display state
  • the identification module 102 may be specifically configured to: extract the sub-pixel value of each sub-pixel in the first captured image; when If the sub-pixel value of the sub-pixel exceeds the second preset sub-pixel value interval, the sub-pixel is a defective sub-pixel, and the second preset sub-pixel value interval is greater than the first preset sub-pixel value interval; determine all defects Sub-pixels, all defective sub-pixels form a defect area.
  • the device further includes an offset module configured to: determine the deflection angle of the second captured image; convert the coordinate axes of the second captured image based on the deflection angle, and The coordinate values of the sub-pixels in the second captured image are converted to eliminate the deflection angle of the second captured image.
  • the device further includes a judging module and a second compensation module, the judging module may be configured to: judge whether the area of the defect region is smaller than a preset value; the second compensating module may be configured to: when When the area of the defective area is smaller than the preset value, the sub-pixel value of the defective sub-pixel is updated with the sub-pixel value of the normal sub-pixel closest to the defective area.
  • the device further includes a third acquisition module, and the third acquisition module may be configured to: acquire a third captured image when the display panel is in a non-display state; Check whether there are foreign objects; if there are foreign objects on the display panel, clean the display panel.
  • the preset brightness includes a plurality of preset brightness values
  • the compensated sub-pixel value includes a plurality of compensated sub-pixel values corresponding to different preset brightness values
  • the first compensation module 106 may be specifically configured as : Use different compensation pixel values to update the pixel values of the pixel points in the defect area corresponding to the preset brightness value to form different compensation images.
  • the display device includes a display panel and a controller
  • the display panel 3 may be a display panel of a display device or a display device.
  • the display panel 3 can be set in a non-display state or a display state. In the display state, the display panel 3 can be set in a preset brightness, and the preset brightness can include a plurality of different brightness values.
  • the display panel 3 may be a pillar-type liquid crystal display or an organic light emitting diode (English: Organic Light Emitting Diode, OLED) display panel.
  • the display device can be a TV, a mobile phone, a computer monitor, an electronic reader, etc., and the display device can be a liquid crystal display module (Liquid Crystal Display Module, LCM) or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display module group, which is not limited in the embodiments of the present disclosure.
  • LCM Liquid Crystal Display Module
  • OLED Organic Light-Emitting Diode
  • the controller 4 can establish a connection with the compensation device for display defects via a network. As shown in FIG. 11 , the controller 4 includes a sensing data converter 41 , a compensation parameter storage 42 , a compensation algorithm processor 43 , an image processor 44 and a drive controller 45 .
  • the controller 4 may be configured to: obtain the optical compensation parameters generated by the processor 2, call corresponding optical compensation parameters and pre-generated electrical compensation parameters based on the gray scale of the image to be displayed; Image information of the image; receiving the image information; converting the image information into digital information required to light up the corresponding sub-pixel value; outputting the timing required for driving the controller based on the digital information to control the display panel 3 to display the image to be displayed.
  • the compensation parameter storage 42 can be configured to store electrical compensation parameters and optical compensation parameters, both of which are recorded in the compensation parameter storage 42 and provided to the compensation algorithm processor 43 for calling and updating.
  • optical compensation parameters are generated based on the compensation image and the image to be displayed as described in the embodiments of the present disclosure.
  • the electrical compensation parameters are generated by the sensing data converter 41 , and the sensing data converter 41 may be configured to convert the sensing signals sensed by the display panel into digital signals, and generate the electrical compensation parameters based on the digital signals.
  • Digital signals generally use 8bit or 10bit for transmission.
  • the compensation algorithm processor 43 may be configured to receive the first image data of the image to be displayed on the display panel, call the electrical compensation parameters and optical compensation parameters stored in the compensation parameter storage according to the first image data, and perform compensation calculations to generate Compensated second image data to be displayed.
  • the image processor 44 may be configured to receive the second image data, and convert the second image data into digital information required to light up the corresponding sub-pixels.
  • the image processor 44 can also be configured to analyze and convert the second image data, converting the RGB information included in the second image data into RGBW information.
  • the drive controller 45 displays the image to be displayed based on the drive timing required for the digital quantity information output.
  • the compensation parameter storage 42 includes two kinds of compensation parameters, which are electrical compensation parameters and optical compensation parameters, wherein the electrical compensation parameters are calculated by the compensation algorithm processor 43 through each sensing signal, and then performed Electrical compensation parameter update.
  • optical compensation parameters are generated and optical compensation parameters are obtained.
  • the display panel 2000 is an OLED display device
  • the electrical compensation of sub-pixels will be schematically described below.
  • the above-mentioned display device 2000 has a display area A, and a frame area B disposed beside the display area A.
  • side refers to one side, two sides, three sides or surrounding sides of the display area A, that is, the border area B can be located on one side, two sides or three sides of the display area A, or the border Area B may be arranged around display area A.
  • the above-mentioned display device 2000 may include: a substrate 200 , a plurality of sub-pixels P, and a scan driving circuit 1000 .
  • the substrate 200 is used to carry the plurality of sub-pixels and the scan driving circuit 1000 .
  • the scan driving circuit 1000 may be located in the frame area B. Certainly, the scan driving circuit 1000 may also be disposed at other positions, which is not limited in the present disclosure.
  • the scan driving circuit 1000 may be, for example, a light emission control circuit, or may be a gate driving circuit. Wherein, the present disclosure takes the scan driving circuit 1000 as a gate driving circuit as an example for schematic illustration.
  • the above-mentioned plurality of sub-pixels P may be located in the display area A.
  • the plurality of sub-pixels P may be arranged in multiple rows along the first direction X, and arranged in multiple columns along the second direction Y.
  • each row of sub-pixels P may include a plurality of sub-pixels P
  • each column of sub-pixels P may include a plurality of sub-pixels P.
  • first direction X and the second direction Y cross each other.
  • the included angle between the first direction X and the second direction Y can be selected and set according to actual needs.
  • the included angle between the first direction X and the second direction Y may be 85°, 89° or 90° and so on.
  • the above display device 2000 may further include: a plurality of gate lines GL and a plurality of data lines DL disposed on one side of the substrate 200 and located in the display area A.
  • the plurality of gate lines GL extend along the first direction X
  • the plurality of data lines DL extend along the second direction Y.
  • the sub-pixels P arranged in a row along the first direction X may be called sub-pixels P in the same row, and the sub-pixels P arranged in a column along the second direction Y may be called sub-pixels P in the same column.
  • the sub-pixels P in the same row may be electrically connected to at least one gate line GL, and the sub-pixels P in the same column may be electrically connected to one data line DL.
  • each sub-pixel P may include a pixel driving circuit P1 and a light emitting device P2 electrically connected to the pixel driving circuit P1 .
  • the light emitting device may be an OLED.
  • one gate line GL may be electrically connected to multiple pixel driving circuits P1 in the same row of sub-pixels P
  • one data line DL may be electrically connected to multiple pixel driving circuits P1 in the same column of sub-pixels P.
  • the structure of the pixel driving circuit P1 may include structures such as "3T1C”, “6T1C”, “7T1C”, “6T2C” or “7T2C”.
  • T represents a transistor
  • the number before “T” represents the number of transistors
  • C represents a storage capacitor
  • the number before “C” represents the number of storage capacitors.
  • the stability of the transistor in the pixel driving circuit P1 and the light emitting device P2 may decrease (for example, the threshold voltage drift of the driving transistor), which affects the display effect of the display device 2000, so that it is necessary to The sub-pixel P is compensated.
  • a pixel compensation circuit may be provided in the sub-pixel P, so that the sub-pixel P may be internally compensated by the pixel compensation circuit.
  • the transistor inside the sub-pixel P can sense the driving transistor or the light emitting device, and transmit the sensed data to an external sensing circuit, so that the external sensing circuit can be used to calculate the driving voltage value to be compensated and provide feedback , so as to realize the external compensation of the sub-pixel P.
  • the structure and working process of the sub-pixel P are schematically described by taking the external compensation method (sensing the driving transistor) and the pixel driving circuit adopting a “3T1C” structure as an example.
  • the pixel driving circuit P1 may include: a switching transistor T1 , a driving transistor T2 , a sensing transistor T3 and a storage capacitor Cst.
  • the control electrode of the switching transistor T1 is electrically connected to the first gate signal terminal G1
  • the first electrode of the switching transistor T1 is electrically connected to the data signal terminal Data
  • the second electrode of the switching transistor T1 is electrically connected to the first gate signal terminal G1.
  • the node G is electrically connected
  • the first gate signal terminal G1 is connected to a gate line GL
  • the data signal terminal Data is electrically connected to a data line DL.
  • the switch transistor T1 is configured to transmit the data signal received at the data signal terminal Data to the first node G in response to the first scan signal received at the first gate signal terminal G1 .
  • the data signal includes, for example, a detection data signal and a display data signal.
  • the detection data signal is used in the blanking period
  • the display data signal is used in the display period.
  • the display period and the blanking period reference may be made to the descriptions in some embodiments below, and details are not repeated here.
  • the control electrode of the driving transistor T2 is electrically connected to the first node G
  • the first electrode of the driving transistor T2 is electrically connected to the sixth voltage signal terminal ELVDD
  • the second electrode of the driving transistor T2 is electrically connected to the second node G. S electrical connection.
  • the driving transistor T2 is configured to be turned on under the control of the voltage of the first node G, and generate a driving signal according to the voltage of the first node G and the sixth voltage signal received at the sixth voltage signal terminal ELVDD , and transmit the driving signal to the second node S.
  • a first end of the storage capacitor Cst is electrically connected to the first node G, and a second end of the storage capacitor Cst is electrically connected to the second node S.
  • the switching transistor T1 charges the storage capacitor Cst at the same time.
  • the anode of the light emitting device P2 is electrically connected to the second node S, and the cathode of the light emitting device P2 is electrically connected to the seventh voltage signal terminal ELVSS.
  • the light emitting device P2 is configured to emit light under the drive of the driving signal.
  • the control electrode of the sensing transistor T3 is electrically connected to the second gate signal terminal G2, the first electrode of the sensing transistor T3 is electrically connected to the second node S, and the second electrode of the sensing transistor T3 It is electrically connected to the sensing signal terminal Sense, the second gate signal terminal G2 is electrically connected to another gate line GL, and the sensing signal terminal Sense is electrically connected to the other data line DL.
  • the sensing transistor T3 is configured to, in response to the second scan signal received at the second gate signal terminal G2 , detect the electrical characteristics of the driving transistor T2 to achieve external compensation.
  • the electrical characteristics include, for example, the threshold voltage and/or carrier mobility of the drive transistor T2.
  • the sensing signal terminal Sense can provide a reset signal or obtain a sensing signal, wherein the reset signal is used to reset the second node S during the display period, and the sensing signal is used to obtain the threshold of the driving transistor T2 during the blanking period voltage and/or carrier mobility.
  • multiple pixel driving circuits P1 in the same row of sub-pixels P can be electrically connected to two gate lines GL (namely the first gate line and the second gate line).
  • each first gate signal terminal G1 can be electrically connected to the first gate line and receive the first scanning signal transmitted by the first gate line
  • each second gate signal terminal G2 can be electrically connected to the second gate line and receive The second scanning signal transmitted by the second gate line.
  • the display period of one frame may include, for example, a display period and a blanking period in sequence.
  • the working process of the sub-pixel P may include, for example: a reset period t1 , a data writing period t2 and a light emitting period t3 .
  • the level of the first scanning signal is high level
  • the level of the data signal terminal is, for example, low level
  • the level of the second scanning signal is high level
  • the sensing signal terminal Sense provides the reset signal. level is low.
  • the switch transistor T1 is turned on under the control of the first scan signal, receives a data signal, and transmits the data signal to the first node G, and resets the first node G.
  • the sensing transistor T3 is turned on under the control of the second scan signal, receives a reset signal, and transmits the reset signal to the second node S, and resets the second node S.
  • the level of the first scan signal is high level, and the level of the data signal (that is, the display data signal) is high level.
  • the switch transistor T1 is kept in a conductive state under the control of the first scan signal, receives the display data signal, and transmits the display data signal to the first node G, and charges the storage capacitor Cst at the same time.
  • the level of the first scanning signal is low level
  • the level of the second scanning signal is low level
  • the level of the sixth voltage signal is high level.
  • the switch transistor T1 is turned off under the control of the first scan signal
  • the sensing transistor T3 is turned off under the control of the second scan signal.
  • the storage capacitor Cst starts discharging so that the voltage of the first node G remains at a high level.
  • the driving transistor T2 is turned on under the control of the voltage of the first node G, receives the sixth voltage signal, generates a driving signal, transmits the driving signal to the second node S, and drives the light emitting device P2 to emit light.
  • the working process of the sub-pixel P may include, for example: a first stage and a second stage.
  • the levels of the first scanning signal and the second scanning signal are both high level, and the level of the data signal (that is, the detection data signal) is high level.
  • the switching transistor T1 is turned on under the control of the first scanning signal, receives the detection data signal, and transmits the detection data signal to the first node G, to charge the first node G.
  • the sensing transistor T3 is turned on under the control of the second scan signal, receives a reset signal provided by the sensing signal terminal Sense, and transmits the reset signal to the second node S.
  • the sensing signal terminal Sense is in a suspended state.
  • the driving transistor T2 is turned on under the control of the voltage of the first node G, receives the sixth voltage signal, and transmits the sixth voltage signal to the second node S to charge the second node S, so that the second node S The voltage rises until the drive transistor T2 is turned off. At this time, the voltage difference Vgs between the first node G and the second node S is equal to the threshold voltage Vth of the driving transistor T2.
  • the sensing transistor T3 Since the sensing transistor T3 is in the conducting state and the sensing signal terminal Sense is in the floating state, when the driving transistor T2 charges the second node S, the sensing signal terminal Sense is also charged at the same time.
  • the threshold voltage Vth of the driving transistor T2 can be calculated according to the relationship between the voltage of the sensing signal terminal Sense and the level of the detection data signal .
  • the threshold voltage Vth of the driving transistor T2 After the threshold voltage Vth of the driving transistor T2 is calculated, the threshold voltage Vth can be compensated into the display data signal of the display period in the display period of the next frame to complete the external compensation of the sub-pixel P. It can therefore be understood that the electrical compensation parameter refers to the threshold voltage and/or carrier mobility of the driving transistor T2.
  • the scan driving circuit 1000 and the plurality of sub-pixels P are located on the same side of the substrate 200 .
  • the scan driving circuit 1000 may include a multi-stage cascaded shift register 100 .
  • the one-stage shift register 100 may be electrically connected to at least one row of sub-pixels P (that is, multiple pixel driving circuits P1 in the sub-pixel P).
  • each shift register 100 in the scan driving circuit 1000 can be electrically connected to the first gate signal terminal G1 through the first gate line, and the first scan is transmitted to the first gate signal terminal G1 through the first gate line.
  • the second gate signal is electrically connected to the second gate signal terminal G2 through the second gate line, and the second scan signal is transmitted to the second scan signal terminal G2 through the second gate line.
  • multiple pixel driving circuits P1 in the same row of sub-pixels P may also be electrically connected to the same gate line GL.
  • the above-mentioned first scan signal and the second scan signal are the same.
  • Each shift register 1 in the scanning driving circuit 1000 can be electrically connected to the first gate signal terminal G1 and the second gate signal terminal G2 through the corresponding gate line GL, and can send signals to the first gate signal terminal through the gate line GL.
  • the terminal G1 and the second gate signal terminal G2 transmit scan signals.
  • the optical compensation parameters are generated based on the compensation image and the image to be displayed. Different compensation images and corresponding images to be displayed generate different optical compensation parameters. Different optical compensation parameters can be stored in the compensation algorithm memory for subsequent call .
  • the gray scale of a given input signal is GL
  • g(GL) is an optical compensation map
  • f(GL) is an electrical compensation map.
  • the image acquisition device 1 captures the second photographed image L under the preset brightness value, and performs interpolation calculation on the sub-pixel values of the normal sub-pixels of the second photographed image to determine the compensation sub-pixels of the defective sub-pixels under the preset brightness value.
  • an embodiment of the present disclosure provides a compensation system for display defects.
  • the method includes:
  • Step S10 acquiring a first captured image of the display panel.
  • step S20 based on the first captured image, a defect area and a normal area of the display panel are identified, the defect area includes defective pixels, and the normal area includes normal pixels.
  • Step S30 when the display panel is in the display state, acquire a second captured image of the display panel at a preset brightness.
  • Step S40 performing interpolation calculation on the pixel values of the normal pixels of the second captured image to obtain the compensated pixel values of the defective pixels under the preset brightness;
  • Step S50 repeatedly acquiring the compensated sub-pixel values of all defective sub-pixels
  • Step S60 using the compensated pixel value to update the pixel value of the corresponding defective pixel point under the preset brightness to form a compensated image.
  • this method selects the pixel values of the normal area 32 on the periphery of the defective area 31 to interpolate the defective area 31 to determine the compensated pixel value of the defective area 31 at a preset brightness, and uses the compensated pixel value to update the preset value.
  • the pixel values of the defect region 31 transition smoothly after compensation, which can improve the display quality of the display panel 3 .
  • This method can effectively reduce or eliminate the optical compensation anomaly caused by the defect region 31, and improve the uniformity of optical compensation.
  • step S10 a first captured image of the display panel is acquired.
  • the defective area may include external defects
  • the external defects may specifically include foreign objects located in the display area of the display panel and scratches on the display area of the display panel, and the foreign objects may be dust and stains. These external defects will affect the integrity of the captured image, thereby affecting the effect of optical compensation.
  • the image acquisition device 1 is used to capture the display area of the display panel to acquire one or more third captured images. Based on the third captured image, it is judged whether there is a foreign object in the display area of the display panel. If there are foreign objects in the display area of the display panel, clean it.
  • the light source 5 illuminates from the side to make the foreign matter on the surface of the display panel more obvious.
  • defect area formed by dust and stains that can be cleaned can also be identified as a defect area without cleaning.
  • step S20 a defective area and a normal area of the display panel are identified based on the first captured image, the defective area includes defective pixels, and the normal area includes normal pixels.
  • the resolution of the first captured image is relatively high, and the sub-pixel value of each sub-pixel in the first captured image can be extracted.
  • the first captured image may be obtained when the display panel is set in a non-display state.
  • the sub-pixel values of each sub-pixel in the first captured image fall within a fixed sub-pixel value range, for example, 30-70 nits, so the comparison can be made through the first preset sub-pixel value range.
  • the defective area includes multiple defective sub-pixels, so identifying the defective area of the display panel based on the first captured image needs to determine all the defective sub-pixels.
  • Determining the defective sub-pixel may include the following steps: extracting the sub-pixel value of each sub-pixel in the first captured image; when the sub-pixel value of the sub-pixel exceeds the first preset sub-pixel value interval, the sub-pixel is defective sub-pixel.
  • One defective sub-pixel can be obtained by performing the above steps, and the remaining defective sub-pixels can be determined by repeating the above steps. All defective sub-pixels are determined, and all defective sub-pixels form a defective region.
  • the sub-pixel value of the sub-pixel is within the first preset sub-pixel value interval, it is determined that the sub-pixel is a normal sub-pixel, and all normal sub-pixels form a normal area.
  • the display area of the display panel will be divided into several sub-display areas distributed in an array, and the sub-display area is defined in each sub-display area.
  • Each of the first preset sub-pixel value intervals performs defect discrimination on each sub-display area.
  • the first captured image may also be acquired when the display panel is set in a display state.
  • the sub-pixel values of each sub-pixel in the first captured image fall within a fixed sub-pixel value range, for example, 50-100 nits, so the comparison can be made through the second preset sub-pixel value range. It can be understood that the second preset sub-pixel value range is larger than the first preset sub-pixel value range.
  • Determining the defective sub-pixel may include the following steps including: extracting the sub-pixel value of each sub-pixel in the first captured image; when the sub-pixel value of the sub-pixel exceeds the second preset sub-pixel value interval, the sub-pixel is Defective sub-pixels. The rest of the defective sub-pixels can be determined by repeating the above steps.
  • All defective sub-pixels are determined, and all defective sub-pixels form a defective region.
  • the sub-pixel value of the sub-pixel is within the second preset sub-pixel value interval, it is determined that the sub-pixel is a normal sub-pixel, and all normal sub-pixels form a normal area.
  • the determination of the defective sub-pixel includes determining the position of the defective sub-pixel and the sub-pixel value of the defective sub-pixel.
  • step S30 when the display panel is in a display state, a second captured image of the display panel at a preset brightness is acquired.
  • the display panel is set to a preset brightness, and a second captured image is acquired.
  • the preset brightness includes a plurality of preset brightness values
  • the display panel can be respectively set to different brightness values, and at least one second captured image is obtained at each brightness value.
  • step S40 an interpolation calculation is performed on the pixel values of the normal pixels of the second captured image to obtain the compensated pixel values of the defective pixels under the preset brightness.
  • the pixel includes a plurality of different sub-pixels, and the resolution of the second captured image is relatively high, and the sub-pixel value of each sub-pixel in the second captured image can be extracted.
  • Performing interpolation calculation on the pixel values of the normal pixel points of the second captured image to obtain the compensated pixel values of the defective pixel points under the preset brightness may include: performing interpolation on the sub-pixel values of different defective sub-pixel points of the second captured image Calculate to determine the compensated sub-pixel value of the defective sub-pixel at the preset brightness.
  • Different sub-pixels may generally include red sub-pixels, green sub-pixels and blue sub-pixels, and different sub-pixels may also generally include white sub-pixels.
  • interpolation calculation is performed on the sub-pixel values of different red sub-pixels in the normal area located in the periphery of the defect area in the second captured image, so as to determine the compensation sub-pixel value of the corresponding red sub-pixel in the defect area at the preset brightness , using the compensated sub-pixel value to update the sub-pixel value of the red sub-pixel in the defect area under the preset brightness.
  • the compensation sub-pixel value interpolation calculation and compensation update process of the green sub-pixel, blue sub-pixel and white sub-pixel can refer to the red sub-pixel, which will not be repeated here.
  • step S50 step S40 is repeatedly executed to obtain the compensated sub-pixel values of all defective sub-pixels.
  • step S60 the pixel values of the pixel points in the defect area under the preset brightness are updated by using the compensated pixel values.
  • the pixel compensation value includes compensation sub-pixel values corresponding to a plurality of sub-pixel points. Updating the pixel values of the defective sub-pixels at the preset brightness with the compensated pixel values to form the compensated image may include: updating the sub-pixel values of the defective sub-pixels at the preset brightness with the compensated sub-pixel values to form the compensated image.
  • the method may further include: judging whether the area of the defect area is smaller than a preset value; when the area of the defect area is smaller than the preset value value, the sub-pixel value of the defective sub-pixel is updated with the sub-pixel value of the normal sub-pixel closest to the defect area.
  • the compensation sub-pixel value of the defective sub-pixel can be determined by using bilinear interpolation method.
  • the weighted operation is performed on the sub-pixel values of the four normal sub-pixels to obtain the compensated sub-pixel value of the defective sub-pixel, which specifically includes:
  • the interpolation result of the final defect area is:
  • f( xi ,y j ) is the compensation sub-pixel value of the defective sub-pixel
  • f(x 1 ,y 1 ), f(x 1 ,y n ), f(x m ,y 1 ) and f( x m , y n ) are the sub-pixel values of normal sub-pixel points
  • is the weight of f(x 1 ,y 1 ) is the weight of f(x 1 ,y n )
  • i and m represent the serial numbers of different x
  • j and n represent the serial numbers of different y.
  • Determining the compensated sub-pixel value of the defective sub-pixel includes but not limited to bilinear interpolation methods, and other interpolation methods such as cubic interpolation, double wavelet and B-spline can also be used.
  • a cubic interpolation method may be used to determine the compensated sub-pixel value of the defective sub-pixel.
  • the compensated sub-pixel value at the defective sub-pixel (i+u 0 , j+v 0 ) can be obtained from 16 normal sub-pixels in the normal area, that is, the weighted average of these 16 normal sub-pixels.
  • the weight of each compensated sub-pixel value is determined by the distance between the normal sub-pixel and the defective sub-pixel. This distance includes the distance between the defective sub-pixel point and the normal sub-pixel point in the first direction, and the distance between the defective sub-pixel point and the normal sub-pixel point in the second direction.
  • the first direction can be the u direction in the coordinate axis
  • the second The direction may be the v direction in the coordinate axis.
  • the weighted operation is performed on the sub-pixel values of the 16 normal sub-pixels to obtain the compensated sub-pixel value of the defective sub-pixel, including:
  • the weight sum function is:
  • One normal sub-pixel is (a, b), the other normal sub-pixel is (g, h), u 0 and v 0 are the defect sub-pixels in the first direction and the second direction and the normal sub-pixels ( a, b) distance, the distance is normalized and expressed as and
  • A*C is the weight array of all normal sub-pixels, B is the sub-pixel value array of all normal sub-pixels, f(a+u 0 , b+v 0 ) is the compensated sub-pixel value of the defective sub-pixel.
  • the preset brightness includes multiple preset brightness values, and each preset brightness value can respectively acquire a second captured image. Therefore, in the second captured image corresponding to each preset brightness value, it is necessary to interpolate the sub-pixel values of different defective sub-pixels in the second captured image to determine the defective sub-pixels at each preset brightness value
  • Each compensation sub-pixel value under each preset brightness value is used to update the sub-pixel value of the defective sub-pixel to form different compensation images.
  • the positional offset may include offsets in the X direction and the Y direction. Therefore, to perform interpolation calculation on the sub-pixel values of different defective sub-pixels in the second captured image, it is necessary to correct the shooting angle to ensure that the correct sub-pixels are captured.
  • the deflection angle of the second captured image is determined. Due to the offset of the position of the display panel, the deflection angle ⁇ is generated. Generally speaking, the deflection angle ⁇ is -10° ⁇ 10°; select point p as the center point to draw a circle from the second captured image, and circle 9 sub-pixel points inside the circle. A straight line is drawn from point p to the three points on its right, and the angle ⁇ between the line with the most sub-pixel points on the straight line and the coordinate axis u is the deflection angle.
  • the coordinate axis of the second captured image is converted based on the deflection angle, and the coordinate values of the sub-pixels in the second captured image are converted, so as to eliminate the deflection angle of the second captured image.
  • different ⁇ and ⁇ are determined based on the offset lines where different sub-pixel points are located. Based on the coordinate axis conversion between the second captured image and the display panel based on different ⁇ and ⁇ , the positions of the sub-pixels on the display panel corresponding to the second captured image are determined.
  • moiré patterns are mainly periodic brightness patterns generated by optical interference, it is possible to identify the model corresponding to the moiré patterns through optical modeling. Based on the model, the sub-pixels of each sub-pixel point Values are subtracted to obtain the final sub-pixel value of each sub-pixel.
  • Exemplary embodiments of the present disclosure also provide a computer-readable storage medium, which can be realized in the form of a program product, which includes program code.
  • the program product When the program product is run on the electronic device, the program code is used to make the electronic device The steps described in the "Exemplary Methods" section above in this specification according to various exemplary embodiments of the present disclosure are performed.
  • the program product can be implemented as a portable compact disk read only memory (CD-ROM) and include program code, and can run on an electronic device, such as a personal computer.
  • CD-ROM portable compact disk read only memory
  • the program product of the present disclosure is not limited thereto.
  • a readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus or device.
  • a program product may take the form of any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer readable signal medium may include a data signal carrying readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming Language - such as "C" or similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (for example, using an Internet service provider). business to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider
  • Exemplary embodiments of the present disclosure also provide an electronic device, which may be a processor.
  • the electronic device will be described below with reference to FIG. 24 . It should be understood that the electronic device 600 shown in FIG. 24 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • electronic device 600 takes the form of a general-purpose computing device.
  • Components of the electronic device 600 may include but not limited to: at least one processing unit 610 , at least one storage unit 620 , and a bus 630 connecting different system components (including the storage unit 620 and the processing unit 610 ).
  • the storage unit stores program codes, and the program codes can be executed by the processing unit 610, so that the processing unit 610 executes the steps according to various exemplary embodiments of the present invention described in the "Exemplary Methods" section of this specification.
  • the processing unit 610 may execute the method steps shown in FIG. 17 and the like.
  • the storage unit 620 may include a volatile storage unit, such as a random access storage unit (RAM) 621 and/or a cache storage unit 622 , and may further include a read-only storage unit (ROM) 623 .
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 620 may also include a program/utility 624 having a set (at least one) of program modules 625, such program modules 625 including but not limited to: an operating system, one or more application programs, other program modules, and program data, Implementations of networked environments may be included in each or some combination of these examples.
  • Bus 630 may include a data bus, an address bus, and a control bus.
  • the electronic device 600 can also communicate with one or more external devices 700 (eg, keyboards, pointing devices, Bluetooth devices, etc.), and such communication can be performed through an input/output (I/O) interface 640 .
  • the electronic device 600 can also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 650 .
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • the network adapter 650 communicates with other modules of the electronic device 600 through the bus 630 .
  • other hardware and/or software modules may be used in conjunction with electronic device 600, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示缺陷的补偿方法、装置、介质、电子设备及显示装置,方法选取缺陷区域(31)外围正常区域(32)的像素值对缺陷区域(31)进行插值,以确定预设亮度下缺陷区域(31)的补偿像素值,采用补偿像素值更新预设亮度下缺陷区域(31)的像素值。补偿后缺陷区域(31)的像素值平滑过渡,能够改善显示面板(3)的显示质量。方法能够有效减小或消除缺陷区域(31)造成的光学补偿异常现象,提高光学补偿均一性。

Description

显示缺陷的补偿方法、装置、介质、电子设备及显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示缺陷的补偿方法、装置、介质、电子设备及显示装置。
背景技术
现今显示面板的尺寸做得越来越大,显示分辨率也越来越高。目前显示面板的显示亮度不均匀,影响显示效果。
目前可以通过补偿方法来解决亮度不均匀问题。当缺陷区域周围的像素值变化较大时,使用正常区域的像素值更新缺陷区域的像素值会使得缺陷区域的补偿不均。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于克服上述现有技术的不足,提供一种显示缺陷的补偿方法、装置、介质、电子设备及显示装置。
根据本公开的一个方面,提供一种显示缺陷的补偿方法,包括:获取显示面板的第一拍摄图像;基于第一拍摄图像识别显示面板的缺陷区域和正常区域,缺陷区域包括缺陷像素点,正常区域包括正常像素点;当显示面板处于显示状态时,获取预设亮度下显示面板的第二拍摄图像;对第二拍摄图像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值;重复获取所有缺陷子像素点的补偿子像素值;采用补偿像素值更新预设亮度下对应的缺陷像素点的像素值,以形成补偿图像。
在本公开的一个实施例中,像素点包括多个不同的子像素点,像素补偿值包括对应于多个子像素点的补偿子像素值,对第二拍摄图像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值,包括:对第二拍摄图像的不同缺陷子像素点的子像素值进行插 值计算,以确定预设亮度下缺陷子像素点的补偿子像素值;采用补偿像素值更新预设亮度下缺陷区域的像素点的像素值,以形成补偿图像,包括:采用补偿子像素值更新预设亮度下缺陷子像素点的子像素值,以形成补偿图像。
在本公开的一个实施例中,对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,以确定预设亮度下缺陷子像素点的补偿子像素值,包括:选定缺陷区域中的一个缺陷子像素点;提取第二拍摄图像中多个子像素点的子像素值;在至少四个不同方向上,从正常区域寻找距缺陷子像素点最近的正常子像素点,并记录至少四个正常子像素点的子像素值;以缺陷子像素点与正常子像素点之间的距离作为权重,对至少四个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值。
在本公开的一个实施例中,以缺陷子像素点与正常子像素点之间的距离作为权重,对至少四个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值,包括:
Figure PCTCN2021142720-appb-000001
其中,f(x i,y j)为缺陷子像素点的补偿子像素值,f(x 1,y 1)、f(x 1,y n)、f(x m,y 1)和f(x m,y n)均为正常子像素点的子像素值,
Figure PCTCN2021142720-appb-000002
为f(x 1,y 1)的权重,
Figure PCTCN2021142720-appb-000003
为f(x 1,y n)的权重,
Figure PCTCN2021142720-appb-000004
为f(x m,y 1)的权重,
Figure PCTCN2021142720-appb-000005
为f(x m,y n)的权重,i、m表示不同x的序号,j、n表示不同y的序号。
在本公开的一个实施例中,以缺陷子像素点与正常子像素点之间的距离作为权重,对至少四个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值,包括:
f(a+u 0,b+v 0)=A*B*C
其中,
A=[w(1+u) w(u) w(1-u) w(2-u)]
C=[w(1+v) w(v) w(1-v) w(2-v)]
Figure PCTCN2021142720-appb-000006
权重和函数为:
Figure PCTCN2021142720-appb-000007
一个正常子像素点为(a,b),另一个正常子像素点为(g,h),u 0和v 0分别是缺陷子像素点在第一方向和第二方向与正常子像素点(a,b)的距离,将距离归一化表示为
Figure PCTCN2021142720-appb-000008
Figure PCTCN2021142720-appb-000009
正常子像素点(a,b)的权重为w=w(u)*w(v);A*C为所有正常子像素点的权重阵列,B为所有正常子像素点的子像素值阵列,f(a+u 0,b+v 0)为缺陷子像素点的补偿子像素值。
在本公开的一个实施例中,第一拍摄图像是显示面板设于非显示状态时获取的,基于第一拍摄图像识别显示面板的缺陷区域,包括:提取第一拍摄图像中每个子像素点的子像素值;当子像素点的子像素值超出第一预设子像素值区间,则该子像素点为缺陷子像素点;确定所有的缺陷子像素点,所有的缺陷子像素点形成缺陷区域。
在本公开的一个实施例中,第一拍摄图像是显示面板设于显示状态时获取的,基于第一拍摄图像识别显示面板的缺陷区域,包括:提取第一拍摄图像中每个子像素点的子像素值;当子像素点的子像素值超出第二预设子像素值区间,则该子像素点为缺陷子像素点,第二预设子像素值区间大于第一预设子像素值区间;确定所有的缺陷子像素点,所有的缺陷子像素点形成缺陷区域。
在本公开的一个实施例中,对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算前,所述方法还包括:确定第二拍摄图像的偏转角度;基于偏转角度对第二拍摄图像的坐标轴转换,且对第二拍摄图像内子像素点的坐标值转换,以消除第二拍摄图像的偏转角度。
在本公开的一个实施例中,对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算前,所述方法还包括:判断缺陷区域的面积是否小于预设值;当缺陷区域的面积小于预设值时,采用距离缺陷区域最近的正常子像素点的子像素值更新缺陷子像素点的子像素值。
在本公开的一个实施例中,获取显示面板的第一拍摄图像前,所述方法还包括:在显示面板处于非显示状态时,获取第三拍摄图像;基于第三拍摄图像判别显示面板是否存在异物;若显示面板上存在异物,则对显示面板进行清洗。
在本公开的一个实施例中,预设亮度包括多个预设亮度值,补偿子像素值包括多个对应不同预设亮度值的补偿子像素值;采用不同补偿像素值分别更新对应预设亮度值下缺陷像素点的像素值,以形成不同的补偿图像。
根据本公开的另一个方面,提供一种显示缺陷的补偿装置,包括第一获取模块、识别模块、第二获取模块、计算模块、循环模块和补偿模块,第一获取模块被配置为获取显示面板的第一拍摄图像;识别模块被配置为基于第一拍摄图像识别显示面板的缺陷区域和正常区域,缺陷区域包括缺陷像素点,正常区域包括正常像素点;第二获取模块被配置为当显示面板处于显示状态时,获取预设亮度下的第二拍摄图像;计算模块被配置为对第二拍摄图像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值;循环模块被配置为重复获取所有缺陷子像素点的补偿子像素值;补偿模块被配置为采用补偿像素值更新预设亮度下对应的缺陷像素点的像素值,以形成补偿图像。
根据本公开的又一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本公开的一个方面所述的方法。
根据本公开的再一个方面,提供一种电子设备,包括处理器和存储器,存储器用于存储处理器的可执行指令;其中,处理器配置为经由执行可执行指令来执行本公开的一个方面所述的方法。
根据本公开的又一个方面,提供一种显示装置,包括显示面板和控制器,控制器包括补偿算法处理器和补偿参数储存器,补偿参数储存器 被配置为存储电学补偿参数和光学补偿参数,补偿算法处理器被配置为接收显示面板待显示图像的第一图像数据,根据待显示图像的第一图像数据调用补偿参数储存器存储的电学补偿参数和光学补偿参数并进行补偿计算,生成待显示的补偿后的第二图像数据,光学补偿参数基于如本公开的一个方面任一项的补偿图像和待显示图像生成。
在本公开的一个实施例中,控制器还包括图像处理器,驱动控制器和感测数据转换器;感测数据转换器被配置为将显示面板感测到的感测信号转换成数字信号,并基于数字信号生成电学补偿参数;图像处理器被配置为接收第二图像数据,将第二图像数据转换成点亮对应子像素所需的数字量信息;驱动控制器被配置为基于数字量信息输出所需要的驱动时序,显示待显示图像。
在本公开的一个实施例中,所述显示装置包括:衬底和位于显示区内的多个子像素,多个所述子像素沿第一方向排列为多行,沿第二方向排列为多列,每行子像素包括多个子像素,每列子像素包括多个子像素,所述第一方向与所述第二方向相互交叉。
在本公开的一个实施例中,所述显示装置还包括:设置在所述衬底的一侧、且位于所述显示区的多条栅线以及多条数据线,其中,多条所述栅线沿第一方向延伸,多条所述数据线沿第二方向延伸,同一行所述子像素与至少一条所述栅线电连接,同一列所述子像素与一条所述数据线电连接。
在本公开的一个实施例中,每个所述子像素包括像素驱动电路及与所述像素驱动电路电连接的发光器件,一条所述栅线与同一行所述子像素中的多个所述像素驱动电路电连接,一条所述数据线与同一列所述子像素中的多个所述像素驱动电路电连接。
在本公开的一个实施例中,所述像素驱动电路包括:开关晶体管、驱动晶体管、感测晶体管和存储电容器;所述开关晶体管的控制极与第一栅极信号端电连接,所述开关晶体管的第一极与数据信号端电连接,所述开关晶体管的第二极与第一节点电连接,所述第一栅极信号端与一条所述栅线电连接,所述数据信号端与一条所述数据线电连接;所述开关晶体管被配置为,响应于在所述第一栅极信号端处接收的第一扫描信 号,将在所述数据信号端接收的数据信号传输至所述第一节点;所述驱动晶体管的控制极与所述第一节点电连接,所述驱动晶体管的第一极与第六电压信号端电连接,所述驱动晶体管的第二极与第二节点电连接;所述驱动晶体管被配置为,在所述第一节点的电压的控制下导通,根据所述第一节点的电压及在所述第六电压信号端接收的第六电压信号,生成驱动信号,并将所述驱动信号传输至所述第二节点;所述存储电容器的第一端与所述第一节点电连接,所述存储电容器的第二端与所述第二节点电连接,所述开关晶体管在对所述第一节点进行充电的过程中,同时对所述存储电容器进行充电;所述发光器件的阳极与所述第二节点电连接,所述发光器件的阴极与第七电压信号端电连接;发光器件被配置为,在所述驱动信号的驱动下,进行发光;所述感测晶体管的控制极与第二栅极信号端电连接,所述感测晶体管的第一极与所述第二节点电连接,所述感测晶体管的第二极与感测信号端电连接,所述第二栅极信号端与另一条所述栅线电连接,所述感测信号端与另一条所述数据线电连接;所述感测晶体管被配置为,响应于在所述第二栅极信号端接收的第二扫描信号,检测所述驱动晶体管的阈值电压和/或载流子迁移率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术涉及的补偿系统的结构示意图。
图2为相关技术涉及的临近插值方法的示意图。
图3为相关技术涉及的一种缺陷区域结构示意图。
图4为相关技术涉及的另一种缺陷区域结构示意图。
图5为相关技术涉及的又一种缺陷区域结构示意图。
图6为相关技术涉及的较小缺陷区域的补偿示意图。
图7为相关技术涉及的较大缺陷区域补偿前的示意图。
图8为相关技术涉及的较大缺陷区域补偿后的示意图。
图9为本公开实施例涉及的补偿系统的结构示意图。
图10为本公开实施例涉及的显示缺陷的补偿装置的结构示意图。
图11为本公开实施例涉及的控制器的结构示意图。
图12为本公开实施例涉及的控制器中数据传输的流程图。
图13为相关技术涉及的显示面板的电路示意图。
图14为相关技术涉及的子像素的电路示意图。
图15为相关技术涉及的子像素工作过程中不同信号端及节点的波形图。
图16为本公开实施例涉及的光学补偿参数生成过程的流程图。
图17为本公开实施例涉及的补偿方法的流程图。
图18为本公开实施例涉及的较大缺陷区域补偿前的示意图。
图19为本公开实施例涉及的较大缺陷区域补偿后的示意图。
图20为本公开实施例涉及的线性插值方法的示意图。
图21为本公开实施例涉及的三次插值方法的示意图。
图22为本公开实施例涉及的子像素点偏转角度确定方式的示意图。
图23为本公开实施例涉及的各子像素点坐标转换的位置图。
图24为本公开实施例涉及的电子设备的结构示意图。
附图标记说明:
1、图像采集装置;2、处理器;3、显示面板,31、缺陷区域,32、正常区域;4、控制器,41、感测数据转换器,42、补偿参数储存器,43、补偿算法处理器,44、图像处理器,45、驱动控制器;5、光源;6、电源。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反, 提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
如图1所示,相关技术中补偿系统的结构示意图。补偿系统包括图像采集装置1、处理器2、显示面板3、控制器4(TCON)、光源5和电源6,显示面板3和控制器4组成显示装置,电源6通过控制器4给显示装置供电,通过光源5照亮显示面板3,使用图像采集装置1拍摄显示面板3不同亮度值的画面,显示缺陷的补偿装置2根据不同亮度值的拍摄图像产生光学补偿参数,控制器4结合相应的光学补偿参数和相应的电学补偿参数对待显示图像的第一图像数据进行补偿,生成待显示的补偿后的第二图像数据,基于第二图像数据对待显示图像进行显示。
需要说明的是,由于显示面板3上的油污颗粒等因素,需要事先清除显示面板3的显示区域上的干扰物并且滤除拍摄图像的缺陷区域31。常规的流程是清洗显示面板3后拍摄不同子像素不同亮度值的图像,然后检测缺陷区域31并进行缺陷区域31补偿,将缺陷区域31的子像素值替换为临近的正常区域32的子像素值。临近插值方案如下图2所示,使用最近位置的子像素值代替缺陷区域31的子像素值,Q 1、Q 2、Q 3、Q 4 是P点周围4个正常子像素点,Q 1与P离的最近,因此P点的值等于Q 1的值。
使用图像检测算法检测缺陷区域31,常见的缺陷类型有如图3至图5所示的三种类型。其中,图3为面积较小的点状缺陷区域,图4为面积较大的圆形缺陷区域,图5为面积较大的不规则缺陷区域。如图6所示,针对较小区域的缺陷区域31使用临近区域替换的方法,将缺陷区域31的子像素值替换为临近的正常区域32的子像素值。如图7和图8所示,针对较大面积的缺陷区域31,同样将缺陷区域31的子像素值替换为周围的正常区域32。但是当大面积缺陷区域31周围的子像素值的变化较大时,使用周围子像素值替代的时候会使得缺陷补偿不均。
鉴于上述问题,本公开的示例性实施方式提供一种显示缺陷的补偿方法。该补偿方法的应用场景包括但不限于:在显示缺陷的补偿过程中,显示面板3设于不同预设亮度值,图像采集装置1在不同预设亮度值下获取拍摄图像,显示缺陷的补偿装置2根据拍摄图像识别缺陷区域31,并对缺陷区域31进行补偿。
为了实现上述方法,本公开的示例性实施方式提供一种显示缺陷的补偿系统。图9示出了该显示缺陷的补偿系统的结构示意图。如图所示,补偿系统可以包括补偿系统包括图像采集装置1、显示缺陷的补偿装置2、显示面板3、控制器4(TCON)、电源6和设于显示面板3边缘四个不同侧面的光源5。显示面板3和控制器4组成显示装置,电源6通过控制器4给显示装置供电,通过光源5照亮显示面板3,使用图像采集装置1拍摄显示面板3不同亮度值的画面,显示缺陷的补偿装置2根据不同亮度值的拍摄图像产生光学补偿参数,控制器4结合光学补偿参数和电学补偿参数显示待显示图像。
图像采集装置1可以被配置为在显示面板3处于非显示状态时,采集第一拍摄图像,及将显示面板3设于预设亮度时,采集第二拍摄图像备。该图像采集装置1可以是具有拍摄功能的照相机、摄像机、智能手机或电脑等。本公开实施方式使用的图像采集装置1就是CCD相机,CCD相机的图像分辨率至少要高于显示面板3的分辨率三倍以上,才能有效区分每个像素的准确像素值。
处理器2可以与图像采集装置1通过网络建立连接,处理器2可以为具有图像显示与处理功能的智能手机、个人电脑、平板电脑等。处理器2可以包括显示缺陷的补偿装置。
如图10所示,显示缺陷的补偿装置100包括第一获取模块101、识别模块102、第二获取模块103、计算模块104、循环模块105和第一补偿模块106,第一获取模块101被配置为获取显示面板的第一拍摄图像;识别模块102被配置为基于第一拍摄图像识别显示面板的缺陷区域和正常区域,缺陷区域包括缺陷像素点,正常区域包括正常像素点;第二获取模块103被配置为当显示面板处于显示状态时,获取预设亮度下的第二拍摄图像;计算模块104被配置为对第二拍摄图像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值;循环模块105被配置为重复获取所有缺陷子像素点的补偿子像素值;补偿模块被配置为采用补偿像素值更新预设亮度下对应的缺陷像素点的像素值,以形成补偿图像。
在本公开的一种实施方式中,像素点包括多个不同的子像素点,像素补偿值包括对应于多个子像素点的补偿子像素值,计算模块104具体可以被配置为:对第二拍摄图像的正常子像素点的子像素值进行插值计算,以确定预设亮度下缺陷子像素点的补偿子像素值;补偿模块具体可以被配置为:采用补偿子像素值更新预设亮度下缺陷子像素点的子像素值,以形成补偿图像。
在本公开的一种实施方式中,计算模块104具体可以被配置为:选定缺陷区域中的一个缺陷子像素点;提取第二拍摄图像中多个子像素点的子像素值;在至少四个不同方向上,从正常区域寻找距缺陷子像素点最近的正常子像素点,并记录至少四个正常子像素点的子像素值;以缺陷子像素点与正常子像素点之间的距离作为权重,对至少四个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值。
在本公开的一种实施方式中,计算模块104具体可以被配置执行以下公式:
Figure PCTCN2021142720-appb-000010
Figure PCTCN2021142720-appb-000011
其中,f(x i,y j)为缺陷子像素点的补偿子像素值,f(x 1,y 1)、f(x 1,y n)、f(x m,y 1)和f(x m,y n)均为正常子像素点的子像素值,
Figure PCTCN2021142720-appb-000012
为f(x 1,y 1)的权重,
Figure PCTCN2021142720-appb-000013
为f(x 1,y n)的权重,
Figure PCTCN2021142720-appb-000014
为f(x m,y 1)的权重,
Figure PCTCN2021142720-appb-000015
为f(x m,y n)的权重,i、m表示不同x的序号,j、n表示不同y的序号。
在本公开的一种实施方式中,计算模块104具体可以被配置执行以下公式:
f(a+u 0,b+v 0)=A*B*C
其中,
A=[w(1+u) w(u) w(1-u) w(2-u)]
C=[w(1+v) w(v) w(1-v) w(2-v)]
Figure PCTCN2021142720-appb-000016
权重和函数为:
Figure PCTCN2021142720-appb-000017
一个正常子像素点为(a,b),另一个正常子像素点为(g,h),u 0和v 0分别是缺陷子像素点在第一方向和第二方向与正常子像素点(a,b)的距离,将距离归一化表示为
Figure PCTCN2021142720-appb-000018
Figure PCTCN2021142720-appb-000019
正常子像素点(a,b)的权重为w=w(u)*w(v);A*C为所有正常子像素点的权重阵列,B为所有正常子像素点的子像素值阵列,f(a+u 0,b+v 0)为缺陷子像素点的补偿子像素值。
在本公开的一种实施方式中,第一拍摄图像是显示面板设于非显示状态时获取的,识别模块102具体可以被配置为:提取第一拍摄图像中每个子像素点的子像素值;当子像素点的子像素值超出第一预设子像素值区间,则该子像素点为缺陷子像素点;确定所有的缺陷子像素点,所 有的缺陷子像素点形成缺陷区域。
在本公开的一种实施方式中,第一拍摄图像是显示面板设于显示状态时获取的,识别模块102具体可以被配置为:提取第一拍摄图像中每个子像素点的子像素值;当子像素点的子像素值超出第二预设子像素值区间,则该子像素点为缺陷子像素点,第二预设子像素值区间大于第一预设子像素值区间;确定所有的缺陷子像素点,所有的缺陷子像素点形成缺陷区域。
在本公开的一种实施方式中,该装置还包括偏移模块,偏移模块被配置为:确定第二拍摄图像的偏转角度;基于偏转角度对第二拍摄图像的坐标轴转换,且对第二拍摄图像内子像素点的坐标值转换,以消除第二拍摄图像的偏转角度。
在本公开的一种实施方式中,该装置还包括判断模块和第二补偿模块,判断模块可以被配置为:判断缺陷区域的面积是否小于预设值;第二补偿模块可以被配置为:当缺陷区域的面积小于预设值时,采用距离缺陷区域最近的正常子像素点的子像素值更新缺陷子像素点的子像素值。
在本公开的一种实施方式中,该装置还包括第三获取模块,第三获取模块可以配置为:在显示面板处于非显示状态时,获取第三拍摄图像;基于第三拍摄图像判别显示面板是否存在异物;若显示面板上存在异物,则对显示面板进行清洗。
在本公开的一种实施方式中,预设亮度包括多个预设亮度值,补偿子像素值包括多个对应不同预设亮度值的补偿子像素值;第一补偿模块106具体可以被配置为:采用不同补偿像素值分别更新对应预设亮度值下缺陷区域的像素点的像素值,以形成不同的补偿图像。
前面提到显示装置包括显示面板和控制器,显示面板3可以是显示装置的显示面板或显示器件的显示面板。显示面板3可以设于非显示状态或显示状态,在显示状态,显示面板3可以设于预设亮度,预设亮度可以包括多个不同的亮度值。显示面板3可以是支柱型液晶显示屏,有机发光二极管(英文:Organic Light Emitting Diode,OLED)显示面板。该显示装置可以是电视机、手机、电脑显示器、电子阅读器等,该显示 器件可以为液晶显示模组(Liquid Crystal Display Module,LCM)或有机发光二极管(Organic Light-Emitting Diode,OLED)显示模组,本公开实施方式对此不作限定。
控制器4可以与显示缺陷的补偿装置通过网络建立连接。如图11所示,控制器4包括感测数据转换器41、补偿参数储存器42、补偿算法处理器43、图像处理器44和驱动控制器45。
控制器4可以被配置为:获取处理器2生成的光学补偿参数,基于待显示图像的灰阶调用对应的光学补偿参数和预先生成的电学补偿参数;基于光学补偿参数和电学补偿参数生成待显示图像的图像信息;接收图像信息;将图像信息转换成点亮对应子像素值所需的数字量信息;基于数字量信息输出驱动控制器所需的时序,以控制显示面板3显示待显示图像。
所述补偿参数储存器42可以被配置为存储电学补偿参数和光学补偿参数,电学补偿参数和光学补偿参数均记录于补偿参数储存器42,提供给补偿算法处理器43进行调用与更新。
所述光学补偿参数基于如本公开实施方式所述的补偿图像和所述待显示图像生成。
电学补偿参数通过感测数据转换器41生成,感测数据转换器41可以被配置为将显示面板感测到的感测信号转换成数字信号,基于数字信号生成电学补偿参数。数字信号一般采用8bit或是10bit进行传输。
补偿算法处理器43可以被配置为接收显示面板待显示图像的第一图像数据,根据所述第一图像数据调用所述补偿参数储存器存储的电学补偿参数和光学补偿参数并进行补偿计算,生成待显示的补偿后的第二图像数据。
图像处理器44可以被配置为接收所述第二图像数据,将所述第二图像数据转换成点亮对应子像素所需的数字量信息。图像处理器44还可以被配置为进行第二图像数据分析与转换,将第二图像数据包括的RGB资讯转换成RGBW资讯。
驱动控制器45基于数字量信息输出所需要的驱动时序,显示待显示图像。
如图12所示,补偿参数储存器42包含两种补偿参数,分别为电学补偿参数以及光学补偿参数,其中电学补偿参数则是经由每次的感测信号经由补偿算法处理器43计算后,进行电学补偿参数更新。根据本公开实施方式的补偿方法生成光学补偿参数,获取光学补偿参数。
下面以上述显示面板为OLED显示面板(也即显示装置2000为OLED显示装置)为例,对子像素的电学补偿进行示意性说明。
在一些实施例中,如图13所示,上述显示装置2000具有显示区A,以及设置在显示区A旁侧的边框区B。其中,“旁侧”指的是显示区A的一侧、两侧、三侧或者周侧等,也即,边框区B可以位于显示区A的一侧、两侧或三侧,或者,边框区B可以围绕显示区A设置。
在一些实施例中,如图13所示,上述显示装置2000可以包括:衬底200、多个子像素P及扫描驱动电路1000。该衬底200用于承载该多个子像素和扫描驱动电路1000。
示例性的,如图13所示,扫描驱动电路1000可以位于边框区B。当然,扫描驱动电路1000也可以设置在其他位置,本公开对此不做限定。
此处,扫描驱动电路1000例如可以为发光控制电路,也可以为栅极驱动电路。其中,本公开以扫描驱动电路1000为栅极驱动电路为例进行示意性说明。
示例性的,如图13所示,上述多个子像素P可以位于显示区A内。其中,该多个子像素P例如可以沿第一方向X排列为多行,沿第二方向Y排列为多列。其中,每行子像素P可以包括多个子像素P,每列子像素P可以包括多个子像素P。
此处,第一方向X和第二方向Y相互交叉。第一方向X和第二方向Y之间的夹角可以根据实际需要选择设置。示例性的,第一方向X和第二方向Y之间的夹角可以为85°、89°或90°等。
在一些示例中,如图13所示,上述显示装置2000还可以包括:设置在衬底200的一侧、且位于显示区A的多条栅线GL以及多条数据线DL。其中,该多条栅线GL沿第一方向X延伸,该多条数据线DL沿第二方向Y延伸。
示例性的,可以将沿第一方向X排列成一行的子像素P称为同一行 子像素P,将沿第二方向Y排列成一列的子像素P称为同一列子像素P。同一行子像素P可以与至少一条栅线GL电连接,同一列子像素P可以与一条数据线DL电连接。
在一些示例中,如图14所示,上述多个子像素P中,每个子像素P可以包括像素驱动电路P1及与该像素驱动电路P1电连接的发光器件P2。该发光器件可以为OLED。
示例性的,一条栅线GL可以与同一行子像素P中的多个像素驱动电路P1电连接,一条数据线DL可以与同一列子像素P中的多个像素驱动电路P1电连接。
上述像素驱动电路P1的结构包括多种,可以根据实际需要选择设置。例如,像素驱动电路P1的结构可以包括“3T1C”、“6T1C”、“7T1C”、“6T2C”或“7T2C”等结构。其中,“T”表示为晶体管,位于“T”前面的数字表示为晶体管的数量,“C”表示为存储电容器,位于“C”前面的数字表示为存储电容器的数量。
此处,在显示装置2000使用的过程中,像素驱动电路P1中的晶体管及发光器件P2的稳定性可能会下降(例如驱动晶体管的阈值电压漂移),影响显示装置2000的显示效果,这样便需要对子像素P进行补偿。
对子像素P进行补偿的方式可以包括多种,可以根据实际需要选择设置。例如,可以在子像素P中设置像素补偿电路,以利用该像素补偿电路对子像素P进行内部补偿。又如,可以通过子像素P内部的晶体管对驱动晶体管或发光器件进行感测,并将感测到的数据传输到外部感应电路,以利用该外部感应电路计算需要补偿的驱动电压值并进行反馈,从而实现对子像素P的外部补偿。
本公开以采用外部补偿的方式(对驱动晶体管进行感测),且像素驱动电路采用“3T1C”的结构为例,对子像素P的结构及工作过程进行示意性说明。
示例性的,如图14所示,像素驱动电路P1可以包括:开关晶体管T1、驱动晶体管T2、感测晶体管T3和存储电容器Cst。
例如,如图14所示,开关晶体管T1的控制极与第一栅极信号端G1电连接,开关晶体管T1的第一极与数据信号端Data电连接,开关晶体 管T1的第二极与第一节点G电连接,第一栅极信号端G1与一条栅线GL连接,数据信号端Data与一条数据线DL电连接。其中,开关晶体管T1被配置为,响应于在第一栅极信号端G1处接收的第一扫描信号,将在数据信号端Data处接收的数据信号传输至第一节点G。
此处,数据信号例如包括检测数据信号和显示数据信号。其中,检测数据信号用在消隐时段,显示数据信号用在显示时段。关于显示时段和消隐时段,可以参照下面一些实施例中的说明,此处不再赘述。
例如,如图14所示,驱动晶体管T2的控制极与第一节点G电连接,驱动晶体管T2的第一极与第六电压信号端ELVDD电连接,驱动晶体管T2的第二极与第二节点S电连接。其中,驱动晶体管T2被配置为,在第一节点G的电压的控制下导通,根据所述第一节点G的电压及在第六电压信号端ELVDD处接收的第六电压信号,生成驱动信号,并将所述驱动信号传输至第二节点S。
例如,如图14所示,存储电容器Cst的第一端与第一节点G电连接,存储电容器Cst的第二端与第二节点S电连接。其中,开关晶体管T1在对第一节点G进行充电的过程中,同时对存储电容器Cst进行充电。
例如,如图14所示,发光器件P2的阳极与第二节点S电连接,发光器件P2的阴极与第七电压信号端ELVSS电连接。发光器件P2被配置为,在所述驱动信号的驱动下,进行发光。
例如,如图14所示,感测晶体管T3的控制极与第二栅极信号端G2电连接,感测晶体管T3的第一极与第二节点S电连接,感测晶体管T3的第二极与感测信号端Sense电连接,第二栅极信号端G2与另一条栅线GL电连接,所述感测信号端Sense与另一条所述数据线DL电连接。其中,感测晶体管T3被配置为,响应于在第二栅极信号端G2处接收的第二扫描信号,检测驱动晶体管T2的电特性以实现外部补偿。该电特性例如包括驱动晶体管T2的阈值电压和/或载流子迁移率。
此处,感测信号端Sense可以提供复位信号或获取感测信号,其中,复位信号用于在显示时段对第二节点S进行复位,感测信号用于在消隐时段获取驱动晶体管T2的阈值电压和/或载流子迁移率。
基于像素驱动电路P1的结构,如图13所示,同一行子像素P中的 多个像素驱动电路P1可以与两条栅线GL(也即第一栅线和第二栅线)电连接。例如,各第一栅极信号端G1可以与第一栅线电连接并接收第一栅线传输的第一扫描信号;各第二栅极信号端G2可以与第二栅线电连接,并接收第二栅线传输的第二扫描信号。
需要说明的是,一帧的显示阶段例如可以包括依次进行的显示时段和消隐时段。
在一帧显示阶段中的显示时段,如图15所示,子像素P的工作过程例如可以包括:复位阶段t1、数据写入阶段t2和发光阶段t3。
在复位阶段t1中,第一扫描信号的电平为高电平,数据信号端的电平例如为低电平,第二扫描信号的电平为高电平,感测信号端Sense提供复位信号的电平为低电平。开关晶体管T1在第一扫描信号的控制下导通,接收数据信号,并将该数据信号传输至第一节点G,对第一节点G进行复位。感测晶体管T3在第二扫描信号的控制下导通,接收复位信号,并将该复位信号传输至第二节点S,对第二节点S进行复位。
在数据写入阶段t2中,第一扫描信号的电平为高电平,数据信号(也即显示数据信号)的电平为高电平。开关晶体管T1在第一扫描信号的控制下保持导通状态,接收显示数据信号,并将该显示数据信号传输至第一节点G,同时对存储电容器Cst进行充电。
在发光阶段t3中,第一扫描信号的电平为低电平,第二扫描信号的电平为低电平,第六电压信号的电平为高电平。开关晶体管T1在第一扫描信号的控制下关断,感测晶体管T3在第二扫描信号的控制下关断。存储电容器Cst开始放电,使得第一节点G的电压保持为高电平。驱动晶体管T2在第一节点G的电压的控制下导通,接收第六电压信号,并生成驱动信号,将该驱动信号传输至第二节点S,驱动发光器件P2进行发光。
在一帧显示阶段中的消隐时段,子像素P的工作过程例如可以包括:第一阶段和第二阶段。
在第一阶段中,第一扫描信号的电平和第二扫描信号的电平均为高电平,数据信号(也即检测数据信号)的电平为高电平。开关晶体管T1在第一扫描信号的控制下导通,接收检测数据信号,并将该检测数据信 号传输至第一节点G,对第一节点G进行充电。感测晶体管T3在第二扫描信号的控制下导通,接收感测信号端Sense提供复位信号,并将该复位信号传输至第二节点S。
在第二阶段中,感测信号端Sense处于悬浮状态。驱动晶体管T2在第一节点G的电压的控制下导通,接收第六电压信号,并将该第六电压信号传输至第二节点S,对第二节点S进行充电,使得第二节点S的电压升高,直至驱动晶体管T2截止。此时,第一节点G和第二节点S之间的电压差Vgs等于驱动晶体管T2的阈值电压Vth。
由于感测晶体管T3处于导通状态、且感测信号端Sense处于悬浮状态,因此,在驱动晶体管T2对第二节点S进行充电的过程中,同时还会对感测信号端Sense进行充电。通过对感测信号端Sense进行电压取样(也即获取感测信号),便可以根据感测信号端Sense的电压和检测数据信号的电平之间的关系,计算得到驱动晶体管T2的阈值电压Vth。
在计算得到驱动晶体管T2的阈值电压Vth之后,便可以将该阈值电压Vth补偿进下一帧显示阶段中显示时段的显示数据信号中,完成对子像素P的外部补偿。因此可以理解的是,电学补偿参数指的是驱动晶体管T2的阈值电压和/或载流子迁移率。
在一些示例中,上述扫描驱动电路1000与上述多个子像素P位于衬底200的同一侧。该扫描驱动电路1000可以包括多级级联的移位寄存器100。一级移位寄存器100例如可以与至少一行子像素P(也即子像素P中的多个像素驱动电路P1)电连接。
需要说明的是,在一帧的显示阶段中,第一栅极信号端G1所传输的第一扫描信号和第二栅极信号端G2所传输的第二扫描信号均由扫描驱动电路1000提供。也即,扫描驱动电路1000中的每个移位寄存器100可以通过第一栅线与第一栅极信号端G1电连接,通过该第一栅线向第一栅极信号端G1传输第一扫描信号,并通过第二栅线与第二栅极信号端G2电连接,通过该第二栅线向第二扫描信号端G2传输第二扫描信号。
当然,同一行子像素P中的多个像素驱动电路P1也可以与同一条栅线GL电连接。在此情况下,上述第一扫描信号和第二扫描信号相同。扫描驱动电路1000中的每个移位寄存器1可以通过相应的栅线GL与第 一栅极信号端G1及第二栅极信号端G2电连接,并通过该栅线GL向第一栅极信号端G1及第二栅极信号端G2传输扫描信号。
所述光学补偿参数基于补偿图像和所述待显示图像生成,不同补偿图像与对应的待显示图像生成不同的光学补偿参数,可以将不同的光学补偿参数存储于补偿算法存储器中,以便后续进行调用。
如图16所示,假定给定输入信号的灰阶为GL,g(GL)为光学补偿映射,f(GL)为电学补偿映射。图像采集装置1拍摄得到预设亮度值下的第二拍摄图像L,对该第二拍摄图像正常子像素点的子像素值进行插值计算,以确定预设亮度值下缺陷子像素点的补偿子像素值;采用补偿子像素值更新预设亮度值下缺陷子像素点的子像素值,以形成补偿图像A,建立补偿图像A的子像素值与待显示图像B的子像素值的映射关系:B=g(A),该映射关系即为光学补偿参数,将光学补偿参数存储在补偿参数储存器中。
下面从处理器的角度对显示缺陷的补偿方法进行说明。如图17所示,本公开实施方式提供了一种显示缺陷的补偿系统。该方法包括:
步骤S10,获取显示面板的第一拍摄图像。
步骤S20,基于第一拍摄图像识别显示面板的缺陷区域和正常区域,缺陷区域包括缺陷像素点,正常区域包括正常像素点。
步骤S30,当显示面板处于显示状态时,获取预设亮度下显示面板的第二拍摄图像。
步骤S40,对第二拍摄图像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值;
步骤S50,重复获取所有缺陷子像素点的补偿子像素值;
步骤S60,采用补偿像素值更新预设亮度下对应的缺陷像素点的像素值,以形成补偿图像。
如图18和图19所示,该方法选取缺陷区域31外围正常区域32的像素值对缺陷区域31进行插值,以确定预设亮度下缺陷区域31的补偿像素值,采用补偿像素值更新预设亮度下缺陷区域31的像素值。补偿后缺陷区域31的像素值平滑过渡,能够改善显示面板3的显示质量。该方法能够有效减小或消除缺陷区域31造成的光学补偿异常现象,提高光学 补偿均一性。
下面分别对图17中的各个步骤进行具体说明。
在步骤S10中,获取显示面板的第一拍摄图像。
其中,缺陷区域可以包括外部缺陷,外部缺陷具体可以包括位于显示面板显示区域的异物和显示面板显示区域的划痕,异物可以为灰尘和污渍。这些外部缺陷都会影响拍摄图像的完整性,进而影响光学补偿的效果。
通常,获取第一拍摄图像前,在非显示状态下,使用图像采集装置1拍摄显示面板的显示区域,获取一张或多张第三拍摄图像。基于第三拍摄图像判别显示面板的显示区域是否存在异物。若显示面板的显示区域存在异物,则进行清洗。
其中,使用图像采集装置1拍摄显示面板的显示区域,获取第三拍摄图像时,光源5从侧面给的光照可以使显示面板表面的异物更加明显。
但是通常清洗并不能去除所有的外部缺陷,例如位于显示面板显示区域的顽固污渍和显示面板显示区域的划痕,因此需要对这些类型的外部缺陷所形成的缺陷区域进行识别,即在显示面板处于非显示状态时,获取第一拍摄图像。
当然,也可以把能清理掉的灰尘和污渍形成的缺陷区域不进行清理,也作为缺陷区域进行一并识别。
在步骤S20中,基于第一拍摄图像识别显示面板的缺陷区域和正常区域,缺陷区域包括缺陷像素点,正常区域包括正常像素点。
第一拍摄图像的分辨率较高,可以提取第一拍摄图像中每个子像素点的子像素值。
其中,第一拍摄图像可以是将显示面板设于非显示状态时获取的。第一拍摄图像中各子像素点的子像素值会落在固定的子像素值区间,例如30~70nits,因此可以通过第一预设子像素值区间进行比较。通常缺陷区域包括多个缺陷子像素点,因此基于第一拍摄图像识别显示面板的缺陷区域需要确定所有的缺陷子像素点。
确定缺陷子像素点可以包括以下步骤:提取第一拍摄图像中每个子像素点的子像素值;当子像素点的子像素值超出第一预设子像素值区间, 则该子像素点为缺陷子像素点。通过执行上述步骤可获取一个缺陷子像素点,重复执行上述步骤可确定其余缺陷子像素点。确定所有的缺陷子像素点,所有的缺陷子像素点形成缺陷区域。当子像素点的子像素值处于第一预设子像素值区间内时,则确定该子像素点为正常子像素点,所有的正常子像素点形成正常区域。
另外,为了避免显示面板的尺寸较大时,亮度均匀性差异导致预设子像素值区间不准确,会将显示面板的显示区域分成若干个阵列分布的子显示区域,在各子显示区域内定义各自的第一预设子像素值区间,分别对各子显示区域进行缺陷判别。
其中,第一拍摄图像也可以是显示面板设于显示状态时获取的。第一拍摄图像中各子像素点的子像素值会落在固定的子像素值区间,例如50~100nits,因此可以通过第二预设子像素值区间进行比较。可以理解的是,第二预设子像素值区间大于第一预设子像素值区间。确定缺陷子像素点可以包括以下步骤包括:提取第一拍摄图像中每个子像素点的子像素值;当子像素点的子像素值超出第二预设子像素值区间,则该子像素点为缺陷子像素点。重复执行上述步骤可确定其余缺陷子像素点。确定所有的缺陷子像素点,所有的缺陷子像素点形成缺陷区域。当子像素点的子像素值处于第二预设子像素值区间内时,则确定该子像素点为正常子像素点,所有的正常子像素点形成正常区域。
需要说明的是,缺陷子像素点的确定包括确定缺陷子像素点的位置以及缺陷子像素点的子像素值。
在步骤S30中,当显示面板处于显示状态时,获取预设亮度下显示面板的第二拍摄图像。
将显示面板设于预设亮度,通过获取第二拍摄图像。
其中,预设亮度包括多个预设亮度值,可以将显示面板分别设于不同亮度值,在每个亮度值分别获取至少一张第二拍摄图像。
在步骤S40中,对第二拍摄图像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值。
其中,像素点包括多个不同的子像素点,第二拍摄图像的分辨率较高,可以提取第二拍摄图像中每个子像素点的子像素值。对第二拍摄图 像的正常像素点的像素值进行插值计算,以得到预设亮度下缺陷像素点的补偿像素值,可以包括:对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,以确定预设亮度下缺陷子像素点的补偿子像素值。
不同的子像素通常可以包括红色子像素、绿色子像素和蓝色子像素,不同的子像素通常还可以包括白色子像素。以红色子像素为例,对第二拍摄图像位于缺陷区域外围的正常区域的不同红色子像素的子像素值进行插值计算,以确定预设亮度下缺陷区域的相应红色子像素的补偿子像素值,采用补偿子像素值更新预设亮度下缺陷区域的红色子像素的子像素值。绿色子像素、蓝色子像素及白色子像素的补偿子像素值插值计算和补偿更新过程可以参考红色子像素,在此不再进行赘述。
在步骤S50中,重复执行步骤S40,可以获取所有缺陷子像素点的补偿子像素值。
在步骤S60中,采用补偿像素值更新预设亮度下缺陷区域的像素点的像素值。
像素补偿值包括对应于多个子像素点的补偿子像素值。采用补偿像素值更新预设亮度下缺陷区域的像素点的像素值,以形成补偿图像,可以包括:采用补偿子像素值更新预设亮度下缺陷子像素点的子像素值,以形成补偿图像。
对第二拍摄图像位于缺陷区域外围的正常区域的不同子像素点的子像素值进行插值计算前,方法还可以包括:判断缺陷区域的面积是否小于预设值;当缺陷区域的面积小于预设值时,采用距离缺陷区域最近的正常子像素点的子像素值更新缺陷子像素点的子像素值。
对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,以确定预设亮度下缺陷子像素点的补偿子像素值,包括:选定缺陷区域中的一个缺陷子像素点;提取第二拍摄图像中多个子像素点的子像素值;在至少四个不同方向上,从正常区域寻找距缺陷子像素点最近的正常子像素点,并记录至少四个正常子像素点的子像素值;以缺陷子像素点与正常子像素点之间的距离作为权重,对至少四个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值。
如图20所示,可以采用双线性插值的方法确定缺陷子像素点的补偿 子像素值。
以缺陷子像素点与正常子像素点之间的距离作为权重,对四个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值,具体包括:
首先对四个正常子像素点在X方向进行线性插值,得到:
Figure PCTCN2021142720-appb-000020
Figure PCTCN2021142720-appb-000021
然后对四个正常子像素点在Y方向进行线性插值,得到:
Figure PCTCN2021142720-appb-000022
Figure PCTCN2021142720-appb-000023
最后缺陷区域的插值结果为:
Figure PCTCN2021142720-appb-000024
其中,f(x i,y j)为缺陷子像素点的补偿子像素值,f(x 1,y 1)、f(x 1,y n)、f(x m,y 1)和f(x m,y n)均为正常子像素点的子像素值,
Figure PCTCN2021142720-appb-000025
为f(x 1,y 1)的权重,
Figure PCTCN2021142720-appb-000026
为f(x 1,y n)的权重,
Figure PCTCN2021142720-appb-000027
为f(x m,y 1)的权重,
Figure PCTCN2021142720-appb-000028
为f(x m,y n)的权重,i、m表示不同x的序号,j、n表示不同y的序号。
确定缺陷子像素点的补偿子像素值包括但不限定双线性插值的方法,还可以采用如三次插值、双小波及B样条等其他插值方法。
如图21所示,可以采用三次插值的方法确定缺陷子像素点的补偿子像素值。
缺陷子像素点(i+u 0,j+v 0)处的补偿子像素值可由正常区域的16个正常子像素点求得,即这16个正常子像素点的加权平均。每个补偿子像素值的权重由正常子像素点与缺陷子像素点的距离确定。这个距离包括缺陷子像素点在第一方向与正常子像素点的距离,以及缺陷子像素点 在第二方向与正常子像素点的距离,第一方向可以为坐标轴中的u方向,第二方向可以为坐标轴中的v方向。
以缺陷子像素点与正常子像素点之间的距离作为权重,对16个正常子像素点的子像素值做加权运算,得到缺陷子像素点的补偿子像素值,包括:
f(a+u 0,b+v 0)=A*B*C
其中,
A=[w(1+u) w(u) w(1-u) w(2-u)]
C=[w(1+v) w(v) w(1-v) w(2-v)]
Figure PCTCN2021142720-appb-000029
权重和函数为:
Figure PCTCN2021142720-appb-000030
一个正常子像素点为(a,b),另一个正常子像素点为(g,h),u 0和v 0分别是缺陷子像素点在第一方向和第二方向与正常子像素点(a,b)的距离,将距离归一化表示为
Figure PCTCN2021142720-appb-000031
Figure PCTCN2021142720-appb-000032
正常子像素点(a,b)的权重为w=w(u)*w(v);A*C为所有正常子像素点的权重阵列,B为所有正常子像素点的子像素值阵列,f(a+u 0,b+v 0)为缺陷子像素点的补偿子像素值。
前面提到,预设亮度包括多个预设亮度值,每个预设亮度值可以分别获取一张第二拍摄图像。因此,需要对每一预设亮度值对应的第二拍摄图像中,对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,以确定每一个预设亮度值下缺陷子像素点的补偿子像素值。采用每一预设亮度值下的各个补偿子像素值更新缺陷子像素点的子像素值,以形成不同的补偿图像。
需要说明的是,拍摄第二拍摄图像时,因为图像采集装置通常无法与显示面板的显示区域完全正对,会产生位置偏移,位置偏移可以包括 X方向和Y方向偏移。因此,对第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,需要对拍摄角度进行校正,确保抓取到正确的子像素点。
如图22所示,首先确定第二拍摄图像的偏转角度。由于显示面板摆设的位置偏移,产生偏转角度θ,一般来说偏转角度θ为-10°~10°;从第二拍摄图像选取p点为中心点画圆,圆内圈出9个子像素点,由p点向其右侧的三个点分别作直线,直线上子像素点最多的线与坐标轴u之间的夹角θ为偏转角度。
其次,基于偏转角度对第二拍摄图像的坐标轴转换,且对第二拍摄图像内子像素点的坐标值转换,以消除第二拍摄图像的偏转角度。定义该直线上的点与p点之间的连线为ρ,则x=ρ cos θ,y=ρ sin θ。
如图23所示,基于不同子像素点所在的偏移直线,确定不同的ρ和θ。基于不同ρ和θ对第二拍摄图像与显示面板的坐标轴转换,确定显示面板与第二拍摄图像对应的各子像素点的位置。例如:x 1=ρ 1 cos θ 1,y 1=ρ 1 sin θ 1,从而确定校正后的点(x 1,y 1),x 2=ρ 2 cos θ 2,y 2=ρ 2 sin θ 2,从而确定校正后的点(x 2,y 2),x=ρ cos θ,y=ρ sin θ,从而确定校正后的点(x,y)。
通常第二拍摄图像存在摩尔纹,由于摩尔纹主要是由光学干涉产生周期性的亮度纹路,因此可以透过光学建模,判别此摩尔纹对应的模型,基于模型对各子像素点的子像素值相减,得到最终各子像素点的子像素值。
本公开的示例性实施方式还提供了一种计算机可读存储介质,可以实现为一种程序产品的形式,其包括程序代码,当程序产品在电子设备上运行时,程序代码用于使电子设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。在一种实施方式中,该程序产品可以实现为便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在电子设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
本公开的示例性实施方式还提供了一种电子设备,可以是处理器。下面参考图24对该电子设备进行说明。应当理解,图24显示的电子设备600仅仅是一个示例,不应对本公开实施方式的功能和使用范围带来任何限制。
如图24所示,电子设备600以通用计算设备的形式表现。电子设备600的组件可以包括但不限于:至少一个处理单元610、至少一个存储单元620、连接不同系统组件(包括存储单元620和处理单元610)的总线630。
其中,存储单元存储有程序代码,程序代码可以被处理单元610执行,使得处理单元610执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。例如,处理单元610可以执行如图17所示的方法步骤等。
存储单元620可以包括易失性存储单元,例如随机存取存储单元(RAM)621和/或高速缓存存储单元622,还可以进一步包括只读存储单元(ROM)623。
存储单元620还可以包括具有一组(至少一个)程序模块625的程序/实用工具624,这样的程序模块625包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线630可以包括数据总线、地址总线和控制总线。
电子设备600也可以与一个或多个外部设备700(例如键盘、指向设备、蓝牙设备等)通信,这种通信可以通过输入/输出(I/O)接口640进行。电子设备600还可以通过网络适配器650与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器650通过总线630与电子设备600的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备600使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的示例性实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为 系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施方式。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施方式仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (20)

  1. 一种显示缺陷的补偿方法,其中,包括:
    获取显示面板的第一拍摄图像;
    基于所述第一拍摄图像识别所述显示面板的缺陷区域和正常区域,所述缺陷区域包括缺陷像素点,所述正常区域包括正常像素点;
    当所述显示面板处于显示状态时,获取预设亮度下所述显示面板的第二拍摄图像;
    对所述第二拍摄图像的所述正常像素点的像素值进行插值计算,以得到所述预设亮度下所述缺陷像素点的补偿像素值;
    重复获取所有所述缺陷子像素点的补偿子像素值;
    采用所述补偿像素值更新所述预设亮度下对应的所述缺陷像素点的像素值,以形成补偿图像。
  2. 根据权利要求1所述的显示缺陷的补偿方法,其中,所述像素点包括多个不同的子像素点,所述像素补偿值包括对应于多个所述子像素点的补偿子像素值,
    对所述第二拍摄图像的所述正常像素点的像素值进行插值计算,以得到所述预设亮度下所述缺陷像素点的补偿像素值,包括:对所述第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,以确定预设亮度下所述缺陷子像素点的补偿子像素值;
    采用所述补偿像素值更新预设亮度下所述缺陷区域的像素点的像素值,以形成补偿图像,包括:采用所述补偿子像素值更新预设亮度下所述缺陷子像素点的子像素值,以形成补偿图像。
  3. 根据权利要求2所述的显示缺陷的补偿方法,其中,
    对所述第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算,以确定预设亮度下所述缺陷子像素点的补偿子像素值,包括:
    选定所述缺陷区域中的一个缺陷子像素点;
    提取所述第二拍摄图像中多个子像素点的子像素值;
    在至少四个不同方向上,从所述正常区域寻找距所述缺陷子像素点最近的正常子像素点,并记录至少四个所述正常子像素点的子像素值;
    以所述缺陷子像素点与所述正常子像素点之间的距离作为权重,对 至少四个所述正常子像素点的子像素值做加权运算,得到所述缺陷子像素点的补偿子像素值。
  4. 根据权利要求3所述的显示缺陷的补偿方法,其中,以所述缺陷子像素点与所述正常子像素点之间的距离作为权重,对至少四个所述正常子像素点的子像素值做加权运算,得到所述缺陷子像素点的补偿子像素值,包括:
    Figure PCTCN2021142720-appb-100001
    其中,f(x i,y j)为所述缺陷子像素点的补偿子像素值,所述f(x 1,y 1)、所述f(x 1,y n)、所述f(x m,y 1)和所述f(x m,y n)均为所述正常子像素点的子像素值,
    Figure PCTCN2021142720-appb-100002
    为f(x 1,y 1)的权重,
    Figure PCTCN2021142720-appb-100003
    为f(x 1,y n)的权重,
    Figure PCTCN2021142720-appb-100004
    为f(x m,y 1)的权重,
    Figure PCTCN2021142720-appb-100005
    为f(x m,y n)的权重,i、m表示不同x的序号,j、n表示不同y的序号。
  5. 根据权利要求3所述的显示缺陷的补偿方法,其中,以所述缺陷子像素点与所述正常子像素点之间的距离作为权重,对至少四个所述正常子像素点的子像素值做加权运算,得到所述缺陷子像素点的补偿子像素值,包括:
    f(a+u 0,b+v 0)=A*B*C
    其中,
    A=[w(1+u) w(u) w(1-u) w(2-u)]
    C=[w(1+v) w(v) w(1-v) w(2-v)]
    Figure PCTCN2021142720-appb-100006
    权重和函数为:
    Figure PCTCN2021142720-appb-100007
    一个正常子像素点为(a,b),另一个正常子像素点为(g,h),u 0和v 0分别是缺陷子像素点在第一方向和第二方向与正常子像素点(a,b)的距离,将距离归一化表示为
    Figure PCTCN2021142720-appb-100008
    Figure PCTCN2021142720-appb-100009
    正常子像素点(a,b)的权重为w=w(u)*w(v);A*C为所有正常子像素点的权重阵列,B为所有正常子像素点的子像素值阵列,f(a+u 0,b+v 0)为缺陷子像素点的补偿子像素值。
  6. 根据权利要求2所述的显示缺陷的补偿方法,其中,所述第一拍摄图像是显示面板设于非显示状态时获取的,基于所述第一拍摄图像识别所述显示面板的缺陷区域,包括:
    提取所述第一拍摄图像中每个子像素点的子像素值;
    当所述子像素点的子像素值超出第一预设子像素值区间,则该子像素点为缺陷子像素点;
    确定所有的所述缺陷子像素点,所有的所述缺陷子像素点形成所述缺陷区域。
  7. 根据权利要求2所述的显示缺陷的补偿方法,其中,所述第一拍摄图像是显示面板设于显示状态时获取的,基于所述第一拍摄图像识别所述显示面板的缺陷区域,包括:
    提取所述第一拍摄图像中每个子像素点的子像素值;
    当所述子像素点的子像素值超出第二预设子像素值区间,则该子像素点为缺陷子像素点,所述第二预设子像素值区间大于所述第一预设子像素值区间;
    确定所有的所述缺陷子像素点,所有的所述缺陷子像素点形成所述缺陷区域。
  8. 根据权利要求2所述的显示缺陷的补偿方法,其中,对所述第二拍摄图像的不同缺陷子像素点的子像素值进行插值计算前,所述方法还包括:
    确定所述第二拍摄图像的偏转角度;
    基于所述偏转角度对所述第二拍摄图像的坐标轴转换,且对第二拍摄图像内子像素点的坐标值转换,以消除所述第二拍摄图像的偏转角度。
  9. 根据权利要求2所述的显示缺陷的补偿方法,其中,对所述第二 拍摄图像的不同缺陷子像素点的子像素值进行插值计算前,所述方法还包括:
    判断所述缺陷区域的面积是否小于预设值;
    当所述缺陷区域的面积小于预设值时,采用距离所述缺陷区域最近的正常子像素点的子像素值更新所述缺陷子像素点的子像素值。
  10. 根据权利要求1所述的显示缺陷的补偿方法,其中,获取显示面板的第一拍摄图像前,所述方法还包括:
    在显示面板处于非显示状态时,获取第三拍摄图像;
    基于所述第三拍摄图像判别所述显示面板是否存在异物;
    若显示面板上存在异物,则对所述显示面板进行清洗。
  11. 根据权利要求2所述的显示缺陷的补偿方法,其中,所述预设亮度包括多个预设亮度值,所述补偿子像素值包括多个对应不同所述预设亮度值的补偿子像素值;
    采用不同所述补偿像素值分别更新对应预设亮度值下所述缺陷像素点的像素值,以形成不同的补偿图像。
  12. 一种显示缺陷的补偿装置,其中,包括:
    第一获取模块,被配置为获取显示面板的第一拍摄图像;
    识别模块,被配置为基于所述第一拍摄图像识别所述显示面板的缺陷区域和正常区域,所述缺陷区域包括缺陷像素点,所述正常区域包括正常像素点;
    第二获取模块,被配置为当显示面板处于显示状态时,获取所述预设亮度下的第二拍摄图像;
    计算模块,被配置为对所述第二拍摄图像的所述正常像素点的像素值进行插值计算,以得到所述预设亮度下所述缺陷像素点的补偿像素值;
    循环模块,被配置为重复获取所有所述缺陷子像素点的补偿子像素值;
    第一补偿模块,被配置为采用所述补偿像素值更新预设亮度下对应的所述缺陷像素点的像素值,以形成补偿图像。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至11任一项所述的方法。
  14. 一种电子设备,其中,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至11任一项所述的方法。
  15. 一种显示装置,包括显示面板和控制器,所述控制器包括补偿算法处理器和补偿参数储存器,所述补偿参数储存器被配置为存储电学补偿参数和光学补偿参数,所述补偿算法处理器被配置为接收显示面板待显示图像的第一图像数据,根据所述第一图像数据调用所述补偿参数储存器存储的电学补偿参数和光学补偿参数并进行补偿计算,生成待显示的补偿后的第二图像数据,其中,
    所述光学补偿参数基于如权利要求1至11任一项所述的补偿图像和所述待显示图像生成。
  16. 根据权利要求15所述的显示装置,其中,所述控制器还包括图像处理器,驱动控制器和感测数据转换器;所述感测数据转换器被配置为将显示面板感测到的感测信号转换成数字信号,并基于所述数字信号生成所述电学补偿参数;所述图像处理器被配置为接收所述第二图像数据,将所述第二图像数据转换成点亮对应子像素所需的数字量信息;所述驱动控制器被配置为基于所述数字量信息输出所需要的驱动时序,显示待显示图像。
  17. 根据权利要求15所述的显示装置,其中,所述显示装置包括:衬底和位于显示区内的多个子像素,多个所述子像素沿第一方向排列为多行,沿第二方向排列为多列,每行子像素包括多个子像素,每列子像素包括多个子像素,所述第一方向与所述第二方向相互交叉。
  18. 根据权利要求17所述的显示装置,其中,所述显示装置还包括:设置在所述衬底的一侧、且位于所述显示区的多条栅线以及多条数据线,其中,多条所述栅线沿第一方向延伸,多条所述数据线沿第二方向延伸,同一行所述子像素与至少一条所述栅线电连接,同一列所述子像素与一条所述数据线电连接。
  19. 根据权利要求18所述的显示装置,其中,每个所述子像素包括 像素驱动电路及与所述像素驱动电路电连接的发光器件,一条所述栅线与同一行所述子像素中的多个所述像素驱动电路电连接,一条所述数据线与同一列所述子像素中的多个所述像素驱动电路电连接。
  20. 根据权利要求19所述的显示装置,其中,所述像素驱动电路包括:开关晶体管、驱动晶体管、感测晶体管和存储电容器;
    所述开关晶体管的控制极与第一栅极信号端电连接,所述开关晶体管的第一极与数据信号端电连接,所述开关晶体管的第二极与第一节点电连接,所述第一栅极信号端与一条所述栅线电连接,所述数据信号端与一条所述数据线电连接;
    所述开关晶体管被配置为,响应于在所述第一栅极信号端处接收的第一扫描信号,将在所述数据信号端接收的数据信号传输至所述第一节点;
    所述驱动晶体管的控制极与所述第一节点电连接,所述驱动晶体管的第一极与第六电压信号端电连接,所述驱动晶体管的第二极与第二节点电连接;
    所述驱动晶体管被配置为,在所述第一节点的电压的控制下导通,根据所述第一节点的电压及在所述第六电压信号端接收的第六电压信号,生成驱动信号,并将所述驱动信号传输至所述第二节点;
    所述存储电容器的第一端与所述第一节点电连接,所述存储电容器的第二端与所述第二节点电连接;
    所述开关晶体管在对所述第一节点进行充电的过程中,同时对所述存储电容器进行充电;
    所述发光器件的阳极与所述第二节点电连接,所述发光器件的阴极与第七电压信号端电连接;
    发光器件被配置为,在所述驱动信号的驱动下,进行发光;
    所述感测晶体管的控制极与第二栅极信号端电连接,所述感测晶体管的第一极与所述第二节点电连接,所述感测晶体管的第二极与感测信号端电连接,所述第二栅极信号端与另一条所述栅线电连接,所述感测信号端与另一条所述数据线电连接;
    所述感测晶体管被配置为,响应于在所述第二栅极信号端接收的第 二扫描信号,检测所述驱动晶体管的阈值电压和/或载流子迁移率。
PCT/CN2021/142720 2021-12-29 2021-12-29 显示缺陷的补偿方法、装置、介质、电子设备及显示装置 WO2023123137A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/142720 WO2023123137A1 (zh) 2021-12-29 2021-12-29 显示缺陷的补偿方法、装置、介质、电子设备及显示装置
CN202180004310.9A CN116897385A (zh) 2021-12-29 2021-12-29 显示缺陷的补偿方法、装置、介质、电子设备及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142720 WO2023123137A1 (zh) 2021-12-29 2021-12-29 显示缺陷的补偿方法、装置、介质、电子设备及显示装置

Publications (1)

Publication Number Publication Date
WO2023123137A1 true WO2023123137A1 (zh) 2023-07-06

Family

ID=86997065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142720 WO2023123137A1 (zh) 2021-12-29 2021-12-29 显示缺陷的补偿方法、装置、介质、电子设备及显示装置

Country Status (2)

Country Link
CN (1) CN116897385A (zh)
WO (1) WO2023123137A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054127A (ja) * 1999-08-05 2001-02-23 Fuji Photo Film Co Ltd 固体撮像装置および画素欠陥補償方法
JP2011196685A (ja) * 2010-03-17 2011-10-06 Sharp Corp 欠陥検出装置、欠陥修復装置、表示パネル、表示装置、欠陥検出方法、プログラム
CN107799558A (zh) * 2016-08-30 2018-03-13 乐金显示有限公司 有机发光显示装置和控制器
CN112950657A (zh) * 2021-03-29 2021-06-11 合肥京东方显示技术有限公司 伽马值校正方法及其装置、电子装置和可读存储介质
CN113496688A (zh) * 2020-04-01 2021-10-12 乐金显示有限公司 用于补偿亮度偏差的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054127A (ja) * 1999-08-05 2001-02-23 Fuji Photo Film Co Ltd 固体撮像装置および画素欠陥補償方法
JP2011196685A (ja) * 2010-03-17 2011-10-06 Sharp Corp 欠陥検出装置、欠陥修復装置、表示パネル、表示装置、欠陥検出方法、プログラム
CN107799558A (zh) * 2016-08-30 2018-03-13 乐金显示有限公司 有机发光显示装置和控制器
CN113496688A (zh) * 2020-04-01 2021-10-12 乐金显示有限公司 用于补偿亮度偏差的方法和装置
CN112950657A (zh) * 2021-03-29 2021-06-11 合肥京东方显示技术有限公司 伽马值校正方法及其装置、电子装置和可读存储介质

Also Published As

Publication number Publication date
CN116897385A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
US11263948B2 (en) Display apparatus and control method
CN107799063B (zh) 有机发光显示装置及其驱动方法
CN108257555A (zh) 电致发光显示器及其驱动装置
CN109285498B (zh) 一种显示处理方法、显示处理装置及其显示装置
US20210134242A1 (en) Display method of display panel, display panel and display device
JP6714131B2 (ja) プログラム及び情報処理装置
CN110235193B (zh) 像素电路及其驱动方法、显示装置及其驱动方法
TWI404019B (zh) 資料轉換之裝置與方法、使用此裝置與方法以驅動影像顯示裝置之裝置與方法
KR20190052195A (ko) 휘도 불균일 보상 방법 및 이를 채용한 표시 장치
CN110176210A (zh) 显示驱动、压缩解压缩方法及装置、显示装置、存储介质
KR102149480B1 (ko) 표시장치의 얼룩 보상 방법 및 및 장치
KR20210122607A (ko) 휘도 편차 보상 방법 및 장치
CN110364119A (zh) 像素电路及其驱动方法、显示面板
US20100272321A1 (en) Measuring apparatus, method, and program
CN105139790B (zh) Oled显示老化侦测方法及显示设备
WO2021164493A1 (zh) 显示基板、有机发光显示面板及显示装置
CN109036277A (zh) 补偿方法及补偿装置、显示装置、显示方法及存储介质
CN113889023A (zh) 显示面板的驱动方法和显示面板
CN113516939A (zh) 亮度校正方法、装置、显示设备、计算设备及存储介质
CN108172155A (zh) 一种检测装置及检测方法
KR20160046606A (ko) 표시장치의 영상데이터 보상장치
KR102239895B1 (ko) 입력 영상의 업 스케일링을 위한 데이터 변환부와 데이터 변환 방법
KR101955904B1 (ko) 휘도 보정 데이터 생성 장치 및 방법, 데이터 보정 장치와 데이터 보정 방법 및 평판 표시 장치
CN109658320B (zh) 一种异形显示屏子像素辉度采集方法
WO2023123137A1 (zh) 显示缺陷的补偿方法、装置、介质、电子设备及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004310.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE