WO2023123127A1 - 波束管理信息交互方法、装置、终端及介质 - Google Patents

波束管理信息交互方法、装置、终端及介质 Download PDF

Info

Publication number
WO2023123127A1
WO2023123127A1 PCT/CN2021/142700 CN2021142700W WO2023123127A1 WO 2023123127 A1 WO2023123127 A1 WO 2023123127A1 CN 2021142700 W CN2021142700 W CN 2021142700W WO 2023123127 A1 WO2023123127 A1 WO 2023123127A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
base station
terminal
base stations
output
Prior art date
Application number
PCT/CN2021/142700
Other languages
English (en)
French (fr)
Inventor
田文强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/142700 priority Critical patent/WO2023123127A1/zh
Publication of WO2023123127A1 publication Critical patent/WO2023123127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular to a beam management information interaction method, device, terminal and medium.
  • Beam management is used for communication equipment to select the best beam from multiple beams to complete better data transmission.
  • the base station will transmit different reference signals to reflect the quality of different beams, and the UE (User Equipment, user equipment) will receive different reference signals to reflect the corresponding different beam qualities on the UE side. Then, the UE can report information such as the beam identifier and beam quality it has obtained, and the base station determines the best beam according to the information reported by the UE.
  • the UE User Equipment, user equipment
  • the wireless communication system needs to use a large number of beams, and the beam width is also narrow. Related technologies need to use more reference signals to indicate more beam quality information, which in turn causes a greater workload and implementation difficulty for the wireless communication system. .
  • Embodiments of the present application provide a beam management information interaction method, device, terminal, and medium, and provide a method for implementing beam management information interaction based on a beam management model, which reduces the workload of a wireless communication system.
  • a method for exchanging beam management information is provided, the method is executed by a terminal, and the method includes:
  • a beam management information interaction device includes:
  • the first sending module is configured to provide the beam information of the first beam set to the first base station, and the beam information of the first beam set is used for the first base station to determine the beam information of the output beam set based on the beam management model.
  • a beam management information interaction method is provided, the method is executed by a terminal, and the method includes:
  • the beam information of the first beam set is processed to obtain the beam information of the output beam set.
  • a beam management information interaction device includes:
  • a second receiving module configured to acquire beam information of the first beam set
  • the second processing module is configured to process the beam information of the first beam set based on the beam management model to obtain the beam information of the output beam set.
  • a terminal is provided, and the terminal includes:
  • transceiver connected to the processor
  • memory for storing processor-executable instructions
  • the processor is configured to load and execute executable instructions to implement any one of the beam management information interaction methods described above.
  • a chip is provided, and the chip is used to implement any one of the beam management information interaction methods described above.
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set, or an instruction set, and the at least one instruction, all The at least one program, the code set or the instruction set is loaded and executed by the processor to implement any of the beam management information interaction methods described above.
  • the beam information of the output beam set corresponding to the beam information of the first beam set is determined through the beam management model. Only need the base station to provide a small number of reference signals, the beam management model can generate a more comprehensive and fine beam set, or a more optimal beam set, and realize the prediction and acquisition of multi-base station and multi-band beam information based on the generated beam set , which can reduce the burden of transmission and beam management.
  • Fig. 1 is a schematic diagram of a communication system according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a method for implementing a beam management model according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 6 is a schematic diagram showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 8 is a schematic diagram showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 9 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 10 is a schematic diagram showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 11 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 12 is a schematic diagram showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 13 is a flowchart showing a type of wireless channel transmission according to an exemplary embodiment
  • Fig. 14 is a schematic diagram showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 15 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 16 is a schematic diagram of a beam management information interaction method according to an exemplary embodiment
  • Fig. 17 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 18 is a schematic diagram of a beam management information interaction method according to an exemplary embodiment
  • Fig. 19 is a flow chart showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 20 is a schematic diagram showing a beam management information interaction method according to an exemplary embodiment
  • Fig. 21 is a block diagram of a device for exchanging beam management information according to an exemplary embodiment
  • Fig. 22 is a block diagram of a device for exchanging beam management information according to an exemplary embodiment
  • Fig. 23 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 24 is a schematic structural diagram of a network device according to an exemplary embodiment.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • Fig. 1 shows a schematic diagram of a mobile communication system provided by an embodiment of the present application.
  • the mobile communication system may include: a terminal 10 and a network device 20 .
  • the terminal 10 may include various handheld devices with mobile communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile station ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the network device 20 is a device deployed in an access network for providing a mobile communication function for the terminal 10 .
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, location management function entities (Location Management Function, LMF) and so on.
  • LMF Location Management Function
  • the network device 20 may be a base station in the serving cell of the terminal 10 , or a base station in a candidate serving cell of the terminal 10 .
  • the names of devices with access network device functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB. This designation may change as communications technology evolves.
  • a connection can be established between the network device 20 and the terminal 10 through an air interface, so as to communicate through the connection, including signaling and data interaction. Communication between two adjacent network devices 20 may also be performed in a wired or wireless manner.
  • the terminal 10 can switch between different network devices 20 , that is, establish connections with different network devices 20 .
  • the "5G NR system" in the embodiments of the present disclosure may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solution described in the embodiments of the present disclosure can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system.
  • Fig. 2 shows a schematic diagram of a method for implementing a beam management model provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system as shown in FIG. 1 as an example, and the beam management model can be deployed on the terminal or on the base station.
  • the beam management model is used to restore the known beam information of the first beam set to obtain the beam information of the output beam set.
  • the beam management model is used to perform beam selection on known beam information of the first beam set to obtain an output beam set.
  • the first beam set is a subset of the full set of beams
  • the full set of beams includes complete beams used for beam management
  • the output beam model can restore the full set of beams according to the first set of beams.
  • the base station can only provide 512 sets of reference signals.
  • the input of the beam management model includes 512
  • the beam management model can recover the beam information of the first beam set, and restore an output beam set including 1024 beams.
  • the first beam set includes beams of multiple frequencies, beams of different frequencies correspond to different beam information, and the beam management model can determine the beam information corresponding to the beam of the target frequency from the first beam set.
  • the input to the beam management model is the beam information of the first set of beams.
  • the beam information of the first beam set includes at least one of beam information of different beams belonging to the same base station, beam information of different beams belonging to different base stations, beam information of different beams belonging to the same frequency, and beam information of different beams belonging to different frequencies A sort of.
  • the beam information includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the representation of the beam refers to a beam ID (Identity Document, identity identification number).
  • the quality of the beam includes measurement quality RSRP (Reference Signal Received Power, reference signal received power), RSRQ (Reference Signal Received Quality, reference signal received quality), RSSI (Received Signal Strength Indication, receiver signal field strength indication) at least one of the Exemplarily, the frequency band of the beam refers to the frequency of the frequency band where the beam hides.
  • the base station information of the beam refers to the home base station ID of the beam.
  • the output of the beam management model is the beam information of the set of output beams.
  • the output beam set is the second beam set obtained after restoring the beam information of the first beam set based on the beam management model, or the output beam set is the third beam set obtained after beam selection based on the beam management model.
  • the second beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the second beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the third beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the third beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the base station is the training device for the beam management model
  • the training samples include N beams and the beam information of the N beams, and extract the information of a part of the beams from the training samples
  • the beam information is used as the training input of the beam management model.
  • the beam management model will output the predicted beam information of the N beams, and calculate the error between the beam information of the N beams and the predicted beam information of the N beams. According to the error, the beam Manage the model for training.
  • the base station is the training device of the beam management model
  • the training samples include the beam information of N beams and the identification of the preferred beam, and the N beams in the training samples
  • the beam information of is used as the training input of the beam management model, and the beam management model will output the predicted preferred beam identifier, calculate the error between the preferred beam identifier and the predicted preferred beam identifier, and train the beam management model according to the error.
  • the method for training the beam management model can also be used in the terminal, which is only described here as an example, and is not used to limit the method for training the beam management model.
  • Fig. 3 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system as shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the first base station. The method includes:
  • step 301 beam information of a first beam set is provided to a first base station, and the beam information of the first beam set is used by the first base station to determine beam information of an output beam set based on a beam management model.
  • the first beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the first beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the first beam set is a beam set with different beam qualities provided by the same base station.
  • the first beam set is a beam set of different frequencies provided by different base stations.
  • At least one base station that has an interactive relationship with the terminal passes broadcast, DCI (Downlink Control Information, downlink control information), MAC CE (Media Access Control Control Element, media access layer control unit), RRC (Radio Resource Control, Radio resource control) message, downlink data channel, downlink control channel, or downlink artificial intelligence data transmission channel, or downlink multicast channel, uplink broadcast channel to provide the first beam set to the terminal.
  • DCI Downlink Control Information, downlink control information
  • MAC CE Media Access Control Control Element, media access layer control unit
  • RRC Radio Resource Control, Radio resource control
  • downlink data channel downlink control channel
  • downlink artificial intelligence data transmission channel or downlink multicast channel
  • the beam management model is used to implement beam management between the terminal and the base station.
  • the beam management model is an AI (Artificial Intelligence, artificial intelligence)-based beam management model or an AI-based beam management algorithm.
  • the output beam set is the second beam set obtained after restoring the beam information of the first beam set based on the beam management model, or the output beam set is the third beam set obtained after beam selection based on the beam management model.
  • the second beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the second beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the third beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the third beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the output beam set belongs to the first base station.
  • the multiple base stations are base stations in the serving cell of the terminal, or the multiple base stations are base stations in the candidate serving cell of the terminal.
  • the output beam set belongs to multiple base stations.
  • the output beam set belongs to the first base station.
  • the output beam set belongs to multiple base stations.
  • the terminal transmits the first beam set to the first base station through at least one of an uplink data channel, an uplink control channel, an uplink artificial intelligence data transmission channel, an uplink multicast channel, and an uplink broadcast channel.
  • the beam information of the output beam set corresponding to the beam information of the first beam set is determined through the beam management model. Only need the base station to provide a small number of reference signals, the beam management model can generate a finer beam set, or a more preferred beam set, and realize the prediction and acquisition of beam information of multiple base stations and multiple frequency bands according to the generated beam set, which can Reduce transmission burden and beam management burden.
  • Fig. 4 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the terminal 10. The method includes:
  • step 401 beam information of a first beam set is acquired.
  • the first beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the first beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the beam information of the first beam set is provided by multiple base stations that have an interactive relationship with the terminal.
  • the beam information of the first beam set is provided by a base station that has an interactive relationship with the terminal.
  • At least one base station that has an interactive relationship with the terminal broadcasts, DCI, MAC CE, RRC message, downlink data channel, downlink control channel, or downlink artificial intelligence type data transmission channel, or downlink multicast channel, uplink broadcast channel At least one of the manners provides the terminal with the first beam set.
  • step 402 based on the beam management model, the beam information of the first beam set is processed to obtain the beam information of the output beam set.
  • the beam management model is used to implement beam management between the terminal and the base station.
  • the beam management model is an AI-based beam management model or an AI-based beam management algorithm.
  • the output beam set is the second beam set obtained after restoring the beam information of the first beam set based on the beam management model, or the output beam set is the third beam set obtained after beam selection based on the beam management model.
  • the second beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the second beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the third beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the third beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the output beam set belongs to the first base station.
  • the foregoing multiple base stations are base stations in a serving cell of the terminal, or the multiple base stations are base stations in a candidate serving cell of the terminal.
  • the output beam set belongs to multiple base stations.
  • the output beam set belongs to the first base station.
  • the output beam set belongs to multiple base stations.
  • the terminal reports the beam information of the output beam set to multiple base stations that have an interactive relationship with the terminal.
  • the terminal reports the beam information of the output beam set to a base station that has an interactive relationship with the terminal.
  • the terminal transmits the first beam set to the first base station through at least one of an uplink data channel, an uplink control channel, an uplink artificial intelligence data transmission channel, an uplink multicast channel, and an uplink broadcast channel.
  • the beam information of the output beam set corresponding to the beam information of the first beam set is determined through the beam management model. Only need the base station to provide a small number of reference signals, the beam management model can generate a more refined and complete beam set, or a more optimal beam set, and realize the prediction and acquisition of multi-base station and multi-band beam information based on the generated beam set , which can reduce the burden of transmission and beam management.
  • multiple base stations provide reference signals to the terminal, and after the terminal determines the beam information of the first beam set, it provides the first beam set to the first base station beam information, so that the first base station determines the beam information of the output beam set.
  • Fig. 5 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system as shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the first base station. The method includes:
  • the first base station sends beam information of a reference signal set corresponding to the first base station to a terminal.
  • the reference signal set is used to provide reference signals in beam management.
  • the first base station sends beam information of the reference signal set corresponding to the first base station to the terminal, for example, the beam information of the reference signal set corresponding to the first base station includes the ID of the first base station, Alternatively, the beam information of the reference signal set corresponding to the first base station includes the ID of the first base station.
  • different base stations will send reference signals of different frequency bands to the terminal.
  • the reference signals in the reference signal set sent by the first base station to the terminal belong to the frequency band corresponding to the first base station.
  • the first base station uses at least one of broadcast, DCI, MAC CE, RRC message, downlink data channel, downlink control channel, or downlink artificial intelligence data transmission channel, or downlink multicast channel, uplink broadcast channel
  • the beam information of the reference signal set is provided to the terminal.
  • the second base station sends beam information of a reference signal set corresponding to the second base station to the terminal.
  • the second base station sends beam information of the reference signal set corresponding to the second base station to the terminal, for example, the beam information of the reference signal set corresponding to the second base station includes the ID of the second base station, Or, the beam information of the reference signal set corresponding to the second base station includes the ID of the second base station.
  • the third base station sends beam information of the reference signal set corresponding to the third base station to the terminal.
  • the third base station sends beam information of the reference signal set corresponding to the third base station to the terminal, for example, the beam information of the reference signal set corresponding to the third base station includes the ID of the third base station, Alternatively, the beam information of the reference signal set corresponding to the first base station includes the ID of the third base station.
  • the first base station, the second base station and the third base station are base stations in the serving cell of the terminal, or are base stations in a candidate serving cell of the terminal.
  • step 504 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • the terminal performs beam measurement on each reference signal in the reference signal set to generate beam information of the first beam set.
  • the beam information of the first beam set includes at least one of beam identifiers, beam quality, beam frequency bands, and beam base station information.
  • At least one of the first base station, the second base station, and the third base station provides a set of beam sets to the terminal; the terminal acquires a set of beam sets configured by the base station; and determines the first set of beams according to the set of beam sets A collection of beams.
  • the terminal uses a group of beam sets as the first beam set.
  • the terminal uses a subset of a group of beam sets as the first beam set.
  • the base station can provide X (X is a positive integer greater than 2) beams to the base station, and the UE can report Y beams among the X beams, and the Y beams can be Y beams that meet the conditions, and the conditions here can be It is a condition about beam quality, for example, only report beams whose beam quality is better than a given threshold.
  • the above conditions and thresholds can be configured to the terminal through the base station, or can be agreed upon through a 3GPP (3rd Generation Partnership Project, third generation partnership project) agreement.
  • the terminal uses a beam set that meets requirements in a group of beam sets as the first beam set.
  • the requirement here may be a condition on beam quality, for example, only report beams whose beam quality is better than a given threshold.
  • the above conditions and thresholds can be configured to the terminal through the base station, or agreed upon through the 3GPP protocol.
  • step 505 the terminal sends beam information of the first beam set to the first base station.
  • the terminal broadcasts, DCI, MAC CE, RRC message, downlink data channel, downlink control channel, downlink artificial intelligence data transmission channel, downlink multicast channel, uplink broadcast channel to the first base station Send beam information of a first beam set.
  • the first base station determines beam information of the output beam set based on the beam management model.
  • the beam management model is used to implement beam management between the terminal and the base station.
  • the beam management model is an AI-based beam management model or an AI-based beam management algorithm.
  • the output beam set is the second beam set obtained after restoring the beam information of the first beam set based on the beam management model, or the output beam set is the third beam set obtained after beam selection based on the beam management model.
  • the second beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the second beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the third beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the third beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the first The base station may only send 512 groups of reference signals to the terminal, and the terminal determines a first beam set including 512 beams according to the reference signal sent by the first base station, and provides beam information of the first beam set to the first base station, and the first base station may be based on The beam management model performs beam restoration on the beam information of the first beam set to obtain an output beam set including 1024 beams.
  • multiple base stations provide reference signals to the terminal, and the first base station determines the beam information of the output beam set. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce transmission burden and beam management burden.
  • the beam management model when the beam management model is set on the first base station, multiple base stations provide reference signals to the terminal, and after the terminal determines the beam information of the first beam set, it provides the first beam to multiple base stations respectively. For the beam information of the subset, each base station forwards the beam information of the first beam subset to the first base station, so that the first base station determines the beam information of the output beam set.
  • Fig. 7 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system as shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the first base station. The method includes:
  • the first base station sends beam information of a reference signal set corresponding to the first base station to a terminal.
  • the second base station sends beam information of a reference signal set corresponding to the second base station to the terminal.
  • step 703 the third base station sends beam information of the reference signal set corresponding to the third base station to the terminal.
  • step 704 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • the first base station, the second base station and the third base station are base stations in the serving cell of the terminal, or are base stations in a candidate serving cell of the terminal.
  • step 705 the terminal sends beam information of the first subset of beams to the first base station.
  • the first subset of beams is a subset of the first set of beams.
  • the terminal sends beam information of the first beam subset belonging to the first base station to the first base station.
  • the first beam set includes beam information belonging to the first base station, beam information belonging to the second base station, and beam information belonging to the third base station, and beam information belonging to different base stations corresponds to different first beam subsets, and the terminal sends The first base station sends beam information belonging to the first base station, and does not send beam information belonging to the second base station and beam information belonging to the third base station.
  • the terminal may send all beam information of the first beam set to the first base station, or may send partial beam information of the first beam set to the first base station.
  • step 706 the terminal sends beam information of the first subset of beams to the second base station.
  • the terminal may send all beam information of the first beam set to the second base station, and may also send partial beam information of the first beam set to the second base station.
  • the terminal sends beam information of the first beam subset belonging to the second base station to the second base station.
  • step 707 the terminal sends beam information of the first subset of beams to the third base station.
  • the terminal may send all beam information of the first beam set to the third base station, or may send partial beam information of the first beam set to the third base station.
  • the terminal sends beam information of the first beam subset belonging to the third base station to the third base station.
  • step 708 the second base station forwards the beam information of the first subset of beams to the first base station.
  • the second base station forwards beam information of the first subset of beams belonging to the second base station to the first base station.
  • the beam information of the first beam set includes the beam information belonging to the first base station, the beam information belonging to the second base station and the beam information belonging to the third base station, and the second base station only provides the beam information belonging to the second base station to the first base station .
  • the beam information is transmitted between the base stations through at least one of an inter-base station interface, an inter-base station artificial intelligence data transmission channel, and an inter-base station multicast and broadcast channel.
  • the interface between base stations refers to an Xn interface (a network interface between NG-RAN nodes).
  • the second base station forwards the beam information of the first beam subset to the first base station.
  • step 709 the third base station forwards the beam information of the first subset of beams to the first base station.
  • the third base station forwards beam information of the first subset of beams belonging to the third base station to the first base station.
  • the beam information is transmitted between the base stations through at least one of the inter-base station interface, the inter-base station artificial intelligence data transmission channel, the inter-base station multicast and broadcast channel.
  • the first base station determines beam information of the output beam set based on the beam management model.
  • step 506 in the embodiment shown in FIG. 5 , which will not be repeated here.
  • multiple base stations provide reference signals to the terminal, and the terminal provides the beam information of the first beam subset to the multiple base stations respectively, and then the multiple base stations forward the information of the first beam subset to the first base station.
  • the beam information is determined by the first base station to output the beam information of the beam set. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce transmission burden and beam management burden.
  • multiple base stations when the beam management model is set on multiple base stations, multiple base stations provide reference signals to the terminal, and after the terminal determines the beam information of the first beam set, it provides the first beam to multiple base stations respectively.
  • the aggregated beam information so that multiple base stations determine the beam information of their respective output beam sets.
  • Fig. 9 shows a flowchart of a method for implementing beam management information interaction provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system as shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on multiple base stations. The method includes:
  • the first base station sends beam information of a reference signal set corresponding to the first base station to a terminal.
  • the second base station sends beam information of a reference signal set corresponding to the second base station to the terminal.
  • step 903 the third base station sends beam information of the reference signal set corresponding to the third base station to the terminal.
  • step 904 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • step 504 in the embodiment shown in FIG. 5 which will not be repeated here.
  • step 905 the terminal sends beam information of the first beam set to the first base station.
  • the terminal may send all beam information of the first beam set to the first base station, or may send partial beam information of the first beam set to the first base station.
  • the terminal sends beam information belonging to the first base station in the first beam set to the first base station.
  • step 906 the terminal sends beam information of the first beam set to the second base station.
  • the terminal may send all beam information of the first beam set to the second base station, or may send partial beam information of the first beam set to the second base station.
  • the terminal sends beam information belonging to the second base station in the first beam set to the second base station.
  • step 907 the terminal sends beam information of the first beam set to the third base station.
  • the terminal sends all beam information of the first beam set to the third base station, and may also send partial beam information of the first beam set to the third base station.
  • the terminal sends beam information belonging to the third base station in the first beam set to the third base station.
  • the beam information sent by the terminal to the first base station, the second base station and the third base station may be the same or different.
  • the terminal sends all beam information of the first beam set to the first base station and the second base station, and sends beam information belonging to the third base station to the third base station.
  • the first base station determines beam information of an output beam set corresponding to the first base station based on the beam management model.
  • the first base station may also determine the beam information of the output beam set corresponding to the second base station and/or the third base station based on the beam management model.
  • the first base station receives all beam information of the first beam set.
  • the first base station sends the beam information of the output beam set to the second base station and/or the third base station.
  • the first base station provides beam information of the output beam set corresponding to the first base station to other base stations.
  • the beam information is transmitted between the base stations through at least one of an inter-base station interface, an inter-base station artificial intelligence data transmission channel, and an inter-base station multicast and broadcast channel.
  • the second base station determines beam information of an output beam set corresponding to the second base station based on the beam management model.
  • the second base station may also determine the beam information of the output beam set corresponding to the first base station and/or the third base station based on the beam management model.
  • the second base station sends beam information of the output beam set to the first base station and/or the third base station.
  • the second base station provides beam information of the output beam set corresponding to the second base station to other base stations.
  • the third base station determines beam information of an output beam set corresponding to the third base station based on the beam management model.
  • the third base station may also determine the beam information of the output beam set corresponding to the first base station and/or the second base station based on the beam management model.
  • the third base station sends beam information of the output beam set to the first base station and/or the second base station.
  • the third base station provides beam information of the output beam set corresponding to the third base station to other base stations.
  • multiple base stations provide reference signals to the terminal
  • the terminal respectively provides the beam information of the first beam set to the multiple base stations
  • the multiple base stations determine the beam information of their respective output beam sets. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce the burden of transmission and beam management.
  • multiple base stations provide reference signals to the terminal, and the terminal determines the beam information of the first beam set and generates the beam information of the output beam set, and sends the first The base station provides beam information for the set of output beams.
  • Fig. 11 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the terminal. The method includes:
  • the first base station sends beam information of a reference signal set corresponding to the first base station to a terminal.
  • the second base station sends beam information of a reference signal set corresponding to the second base station to the terminal.
  • the third base station sends beam information of the reference signal set corresponding to the third base station to the terminal.
  • step 1104 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • step 504 in the embodiment shown in FIG. 5 which will not be repeated here.
  • step 1105 the terminal determines the beam information of the output beam set based on the beam management model.
  • the beam management model is used to implement beam management between the terminal and the base station.
  • the beam management model is an AI-based beam management model or an AI-based beam management algorithm.
  • the output beam set is the second beam set obtained after restoring the beam information of the first beam set based on the beam management model, or the output beam set is the third beam set obtained after beam selection based on the beam management model.
  • the second beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the second beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the third beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the third beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the beam information of the output beam set includes at least one of beam identifier, beam quality, beam frequency band, and beam base station information.
  • the beam information of the output beam set obtained in this step belongs to the first base station.
  • step 1106 the terminal reports the beam information of the output beam set to the first base station.
  • the terminal may report all beam information of the output beam set to the first base station, or may report partial beam information of the output beam set to the first base station.
  • the terminal reports beam information belonging to the output beam set of the first base station to the first base station.
  • the output beam set obtained by the terminal includes beam information belonging to the first base station, beam information belonging to the second base station, and beam information belonging to the third base station, and the terminal only reports the beam information belonging to the first base station to the first base station, The beam information belonging to the second base station and the beam information belonging to the third base station are not reported to the first base station.
  • multiple base stations provide reference signals to the terminal
  • the terminal determines the beam information of the output beam set, and reports the beam information of the output beam set to the first base station. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce transmission burden and beam management burden.
  • a plurality of base stations provide reference signals to the terminal, and the terminal determines the beam information of the first beam set and generates the beam information of the output beam set, and sends the reference signals to multiple The base station provides beam information for the set of output beams.
  • Fig. 13 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the terminal. The method includes:
  • the first base station sends beam information of a reference signal set corresponding to the first base station to the terminal.
  • the second base station sends beam information of the reference signal set corresponding to the second base station to the terminal.
  • the third base station sends beam information of the reference signal set corresponding to the third base station to the terminal.
  • step 1304 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • step 504 in the embodiment shown in FIG. 5 which will not be repeated here.
  • step 1305 the terminal determines the beam information of the output beam set based on the beam management model.
  • step 1105 in the embodiment shown in FIG. 11 , which will not be repeated here.
  • the beam information of the output beam set obtained in this step belongs to the first base station, the second base station and the third base station.
  • step 1306 the terminal reports the beam information of the output beam set to the first base station.
  • the terminal may report all beam information of the output beam set to the first base station, or may report partial beam information of the output beam set to the first base station.
  • the terminal reports beam information belonging to the output beam set of the first base station to the first base station.
  • the output beam set obtained by the terminal includes beam information belonging to the first base station, beam information belonging to the second base station, and beam information belonging to the third base station, and the terminal only reports the beam information belonging to the first base station to the first base station, The beam information belonging to the second base station and the beam information belonging to the third base station are not reported to the first base station.
  • step 1307 the terminal reports the beam information of the output beam set to the second base station.
  • the terminal may report all beam information of the output beam set to the second base station, or may report partial beam information of the output beam set to the second base station.
  • the terminal reports beam information belonging to the output beam set of the second base station to the second base station.
  • step 1308 the terminal reports the beam information of the output beam set to the third base station.
  • the terminal may report all beam information of the output beam set to the third base station, or may report partial beam information of the output beam set to the third base station.
  • the terminal reports beam information belonging to the output beam set of the third base station to the third base station.
  • multiple base stations provide reference signals to the terminal, and the terminal determines the beam information of the output beam set, and reports the beam information of the output beam set to the multiple base stations. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce transmission burden and beam management burden.
  • the first base station when the beam management model is set on the terminal, the first base station provides a reference signal to the terminal, and the terminal determines the beam information of the first beam set and generates the beam information of the output beam set, and sends the first The base station provides beam information for the set of output beams.
  • Fig. 15 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the terminal. The method includes:
  • step 1501 the first base station sends beam information of a reference signal set corresponding to the first base station to the terminal.
  • step 1502 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • step 504 in the embodiment shown in FIG. 5 which will not be repeated here.
  • step 1503 the terminal determines the beam information of the output beam set based on the beam management model.
  • step 1105 in the embodiment shown in FIG. 11 , which will not be repeated here.
  • the beam information of the output beam set obtained in this step belongs to the first base station.
  • step 1504 the terminal reports the beam information of the output beam set to the first base station.
  • multiple base stations provide reference signals to the terminal
  • the terminal determines the beam information of the output beam set, and reports the beam information of the output beam set to the first base station. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce transmission burden and beam management burden.
  • the first base station when the beam management model is set on the terminal, the first base station provides a reference signal to the terminal, and the terminal determines the beam information of the first beam set and generates the beam information of the output beam set, and sends the information to multiple The base station provides beam information for the set of output beams.
  • Fig. 17 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system shown in FIG. 1 as an example. The method is executed by the terminal 10, and the beam management model is deployed on the terminal. The method includes:
  • the first base station sends beam information of a reference signal set corresponding to the first base station to the terminal.
  • step 1702 the terminal determines the beam information of the first beam set according to the beam information of the reference signal set.
  • step 504 in the embodiment shown in FIG. 5 which will not be repeated here.
  • step 1703 the terminal determines the beam information of the output beam set based on the beam management model.
  • step 1105 in the embodiment shown in FIG. 11 , which will not be repeated here.
  • the beam information of the output beam set obtained in this step belongs to the first base station, the second base station and the third base station.
  • step 1704 the terminal reports the beam information of the output beam set to the first base station.
  • the terminal may report all beam information of the output beam set to the first base station, or may report partial beam information of the output beam set to the first base station.
  • the terminal reports beam information belonging to the output beam set of the first base station to the first base station.
  • the beams in the output beam set include the ID of the home base station, and the terminal reports the beam information of the output beam set to the first base station according to the ID of the home base station.
  • step 1705 the terminal reports the beam information of the output beam set to the second base station.
  • the terminal may report all beam information of the output beam set to the second base station, or may report partial beam information of the output beam set to the second base station.
  • the terminal reports beam information belonging to the output beam set of the second base station to the second base station.
  • step 1706 the terminal reports the beam information of the output beam set to the third base station.
  • the terminal may report all beam information of the output beam set to the third base station, or may report partial beam information of the output beam set to the third base station.
  • the terminal reports beam information belonging to the output beam set of the third base station to the third base station.
  • the first base station provides the reference signal to the terminal
  • the terminal determines the beam information of the output beam set, and reports the beam information of the output beam set to multiple base stations. Since the beam management model does not need to provide reference signals for each beam in all beams, multiple base stations do not need to provide complete reference signals to the terminal, which can reduce transmission burden and beam management burden.
  • the base station configures measurement configuration information and/or reports configuration information to the terminal in advance, so that the terminal can determine the first beam information.
  • Fig. 19 shows a flowchart of a beam management information interaction method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the application in the communication system shown in Figure 1 as an example, and the method includes:
  • step 1901 the base station pre-configures measurement configuration information and/or reports configuration information to the terminal.
  • the base station in this embodiment refers to at least one base station that has an interactive relationship with the terminal.
  • the base station is a base station in a serving cell of the terminal, or is a base station in a candidate serving cell of the terminal.
  • the way for the base station to pre-configure measurement configuration information and/or report configuration information to the terminal is through broadcast, DCI, MAC CE, RRC message, downlink data channel, downlink control channel, downlink artificial intelligence data transmission channel, downlink multicast channel, uplink Implemented by at least one of the broadcast channels.
  • the pre-configured content includes the identification information of the beam, the reference signal corresponding to the beam, the measurement configuration corresponding to the beam measurement, the quality information of the beam to be measured, the frequency band information of the beam, the base station information of the beam, and the method of reporting the first beam set at least one of the Exemplarily, the identification information of a beam refers to a beam ID.
  • the reference signal corresponding to the beam is CSI-RS, DMRS and so on.
  • the measurement configuration corresponding to the beam measurement includes, but is not limited to, at least one of a reference signal pattern, a measurement period, a time position, a time window, and a frequency domain position.
  • the quality information of the beam that needs to be measured includes, but is not limited to, at least one of RSRP, RSRQ, and RSSI.
  • the frequency band information of the beam refers to the frequency of the frequency band where the beam is located.
  • the base station information of the beam refers to the home ID of the beam.
  • the manner of reporting the first beam set includes but not limited to at least one of reporting period, reporting time, and encoding manner of reporting the above information.
  • the base station pre-configures measurement configuration information and/or reports configuration information to the terminal.
  • step 1902 the terminal acquires beam information of the first beam set.
  • the first beam set includes at least one of different beams belonging to the same base station, different beams belonging to different base stations, different beams belonging to the same frequency, and different beams belonging to different frequencies.
  • the beam information of the first beam set includes at least one of the identifier of the beam, the quality of the beam, the frequency band of the beam, and the base station information of the beam.
  • the beam information of the first beam set is provided by multiple base stations that have an interactive relationship with the terminal.
  • the beam information of the first beam set is provided by a base station that has an interactive relationship with the terminal.
  • At least one base station that has an interactive relationship with the terminal broadcasts, DCI, MAC CE, RRC message, downlink data channel, downlink control channel, or downlink artificial intelligence type data transmission channel, or downlink multicast channel, uplink broadcast channel At least one of the manners provides the terminal with the first beam set.
  • step 1903 the terminal reports beam information of the first beam set to the base station.
  • the base station pre-configures measurement configuration information and/or reports configuration information to the terminal, so that the terminal can determine the beam information of the first beam set in time and complete beam management information exchange.
  • Fig. 21 shows a block diagram of an apparatus for exchanging beam management information provided by an exemplary embodiment of the present application.
  • the device 210 includes:
  • the first sending module 211 is configured to provide the beam information of the first beam set to the first base station, and the beam information of the first beam set is used for the first base station to determine the beam information of the output beam set based on the beam management model.
  • the output beam set includes at least one of the following: a second beam set obtained after restoring the beam information based on the beam management model; The third set of beams obtained after selection.
  • the first beam set, the second beam set, and the third beam set include at least one of the following situations: different beams belonging to the same base station; or, belonging to different base stations or, different beams belonging to the same frequency; or, different beams belonging to different frequencies.
  • the beam information includes at least one of an identifier of the beam, a quality of the beam, a frequency band of the beam, and base station information of the beam.
  • the output beam set belongs to the first base station; or, when the first beam set is In the case of belonging to the plurality of base stations, the set of output beams belongs to the plurality of base stations; or, in the case of the first set of beams belonging to the first base station, the set of output beams is belonging to the first base station; or, where the first set of beams belongs to the first base station, the set of output beams belongs to the plurality of base stations.
  • the first sending module 211 is further configured to send beam information of the first beam set to the first base station.
  • the first sending module 211 is further configured to send the beam information of the first beam subset to multiple base stations that have an interactive relationship with the terminal, except for A base station other than the first base station is configured to forward beam information of the first beam subset to the first base station, where the first beam subset is a subset of the first beam set.
  • the first sending module 211 is further configured to respectively send beam information of the first beam subset belonging to each base station to the multiple base stations.
  • the multiple base stations transmit the beam information through at least one of inter-base station interfaces, inter-base station artificial intelligence data transmission channels, inter-base station multicast and broadcast channels.
  • the first sending module 211 is further configured to send beam information of the first beam set to multiple base stations that have an interactive relationship with the terminal, and the first beam set The plurality of base stations are used to determine beam information corresponding to the set of output beams.
  • the first receiving module 212 is configured to receive beam information of a reference signal set provided by at least one base station that has an interactive relationship with the terminal;
  • the first processing module 213 is configured to determine the first beam set according to the beam information of the reference signal set.
  • the first receiving module 212 is configured to obtain a set of beam sets configured by at least one base station that has an interactive relationship with the terminal;
  • the first processing module 213 is configured to determine the first beam set according to the group of beam sets.
  • the first processing module 213 is further configured to use the set of beam sets as the first beam set; or, the first processing module 213 is also configured to use A subset of the set of beam sets is used as the first set of beams; or, the first processing module 213 is further configured to use a set of beams that meet the requirements in the set of beam sets as the first set of beams .
  • the first receiving module 212 is configured to receive measurement configuration information preconfigured by at least one base station that has an interactive relationship with the terminal.
  • the first receiving module 212 is configured to receive pre-configured reported configuration information of at least one base station that has an interactive relationship with the terminal.
  • the preconfiguration method is through broadcast, downlink control information DCI, media access layer control unit MAC CE, radio resource control RRC message, downlink data channel, downlink control channel, downlink manual It is realized by at least one of intelligent data transmission channel, downlink multicast channel, and uplink broadcast channel.
  • the pre-configured content includes the identification information of the beam, the reference signal corresponding to the beam, the measurement configuration corresponding to the beam measurement, the quality information of the beam to be measured, the frequency band information of the beam, the At least one of base station information and a manner of reporting the first beam set.
  • the terminal transmits the first beam through at least one of an uplink data channel, an uplink control channel, an uplink artificial intelligence data transmission channel, an uplink multicast channel, and an uplink broadcast channel gather.
  • the beam management model is an AI-based beam management model or an AI-based beam management algorithm.
  • Fig. 22 shows a block diagram of an apparatus for exchanging beam management information provided by an exemplary embodiment of the present application.
  • the device 220 includes:
  • the second receiving module 221 is configured to acquire beam information of the first beam set
  • the second processing module 222 is configured to process the beam information of the first beam set based on the beam management model to obtain the beam information of the output beam set.
  • the output beam set includes at least one of the following: a second beam set obtained after restoring the beam information based on the beam management model; A third beam set obtained after beam selection.
  • the first beam set, the second beam set, and the third beam set include at least one of the following situations: different beams belonging to the same base station; or, belonging to different base stations or, different beams belonging to the same frequency; or, different beams belonging to different frequencies.
  • the beam information includes at least one of an identifier of the beam, a quality of the beam, a frequency band of the beam, and base station information of the beam.
  • the second receiving module 221 is further configured to receive beam information of reference signal sets provided by multiple base stations that have an interactive relationship with the terminal; determine the set of reference signals according to the set of reference signals beam information of the first beam set.
  • the beam information of the output beam set belongs to the first base station among the plurality of base stations; the second sending module 223 is configured to report the output beam set to the first base station beam information.
  • the beam information of the output beam set belongs to the multiple base stations; the second sending module 223 is configured to report the beam information of the output beam set to the multiple base stations.
  • the second receiving module 221 is further configured to receive beam information of a reference signal set provided by a first base station that has an interactive relationship with the terminal; determine the set of reference signals according to the reference signal set beam information of the first beam set.
  • the beam information of the output beam set belongs to the first base station; the second sending module 223 is configured to report the beam information of the output beam set to the first base station.
  • the beam information of the output beam set belongs to multiple base stations that have an interactive relationship with the terminal; the second sending module 223 is configured to report the output beam to the multiple base stations Aggregated beam information.
  • the second receiving module 221 is also configured to obtain a set of beam sets configured by at least one base station that has an interactive relationship with the terminal;
  • the second processing module 222 is further configured to determine the first beam set according to the group of beam sets.
  • the second processing module 222 is also used to use the set of beams as the first set of beams; or, the second processing module 222 is also used to use the set of beams as the first set of beams; A subset of the beam sets is used as the first beam set; or, the second processing module 222 is further configured to use a qualified beam set in the set of beam sets as the first beam set.
  • the second receiving module 221 is further configured to receive measurement configuration information preconfigured by at least one base station that has an interactive relationship with the terminal.
  • the second receiving module 221 is further configured to receive pre-configured reported configuration information of at least one base station that has an interactive relationship with the terminal.
  • the preconfiguration method is through broadcast, downlink control information DCI, media access layer control unit MAC CE, radio resource control RRC message, downlink data channel, downlink control channel, or downlink It is realized by at least one of artificial intelligence-type data transmission channels, or downlink multicast channels, and uplink broadcast channels.
  • the pre-configured content includes the identification information of the beam, the reference signal corresponding to the beam, the measurement configuration corresponding to the beam measurement, the quality information of the beam to be measured, the frequency band information of the beam, the At least one of base station information and a manner of reporting the first beam set.
  • the terminal transmits the first beam through at least one of an uplink data channel, an uplink control channel, an uplink artificial intelligence data transmission channel, an uplink multicast channel, and an uplink broadcast channel gather.
  • the beam management model is an AI-based beam management model or an AI-based beam management algorithm.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 23 shows a schematic structural diagram of a terminal 2300 provided by an embodiment of the present application.
  • the terminal 2300 may include: a processor 2301 , a transceiver 2302 and a memory 2303 .
  • the processor 2301 includes one or more processing cores, and the processor 2301 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 2302 may include a receiver and a transmitter.
  • the receiver and the transmitter may be implemented as the same wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • the memory 2303 may be connected to the processor 2301 and the transceiver 2302 .
  • the memory 2303 may be used to store a computer program executed by the processor, and the processor 2301 is used to execute the computer program, so as to implement various steps performed by the terminal in the wireless communication system in the foregoing method embodiments.
  • the memory 2303 can be implemented by any type of volatile or non-volatile storage device or their combination.
  • the volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • the transceiver 2302 is configured to send a first service access request to a relay terminal in a relay sidelink scenario; wherein the first service access request is used to trigger The relay terminal sends a PDU session modification request to the network side device, where the PDU session modification request is used to request the non-relay terminal to access the first broadcast/multicast service.
  • the transceiver 2302 is configured to send a second service access request to the network side device; wherein the second service access request is used to request that the non-relay terminal access the first broadcast/multicast business.
  • the process performed by the transceiver 2302 can refer to the process performed by the terminal in the methods shown in Figure 3, Figure 4, Figure 5, Figure 7, Figure 9, Figure 11, Figure 13, Figure 15, Figure 17 and Figure 19. various steps.
  • the transceiver is configured to receive a first service access request sent by a non-relay terminal in a relay sidelink scenario
  • the transceiver is further configured to send a PDU session modification request to the network side device according to the first service access request, where the PDU session modification request is used to request the terminal to access the first broadcast/multicast service.
  • the process performed by the transceiver 2302 can refer to the process performed by the terminal in the methods shown in Figure 3, Figure 4, Figure 5, Figure 7, Figure 9, Figure 11, Figure 13, Figure 15, Figure 17 and Figure 19. various steps.
  • FIG. 24 shows a schematic structural diagram of a network device 2400 provided by an embodiment of the present application.
  • the network device 2400 may include: a processor 2401 , a transceiver 2402 and a memory 2403 .
  • the processor 2401 includes one or more processing cores, and the processor 2401 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 2402 may include a receiver and a transmitter.
  • the transceiver 2402 may include a wired communication component, and the wired communication component may include a wired communication chip and a wired interface (such as an optical fiber interface).
  • the transceiver 2402 may also include a wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • the memory 2403 may be connected to the processor 2401 and the transceiver 2402 .
  • the memory 2403 may be used to store a computer program executed by the processor, and the processor 2401 is used to execute the computer program, so as to implement various steps performed by the non-relay terminal or the relay terminal in the wireless communication system in the above method embodiments.
  • the memory 2403 can be implemented by any type of volatile or non-volatile storage device or their combination.
  • the volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • the transceiver 2402 is configured to receive a second service access request sent by a non-relay terminal in a relay side link scenario; the second service access request is used to request Accessing the non-relay terminal to the first broadcast/multicast service.
  • the process performed by the transceiver 2402 and the processor 2401 in the network device 2400 can refer to the above-mentioned Figure 3, Figure 4, Figure 5, Figure 7, Figure 9, Figure 11, Figure 13, Figure 15, Figure 17 and Figure 19 In the shown method, various steps are performed by the UPF unit in the base station.
  • the transceiver 2402 is configured to receive a service access trigger request, and the service access trigger request is used to request that a terminal in a relay sidelink scenario access the first broadcast /multicast service;
  • the processor 2401 is configured to, after verifying that the terminal has the right to access the first broadcast/multicast service according to the service access trigger request, access the terminal to the first broadcast/multicast service broadcast business.
  • the process performed by the transceiver 2402 and the processor 2401 in the network device 2400 can refer to the above-mentioned Figure 3, Figure 4, Figure 5, Figure 7, Figure 9, Figure 11, Figure 13, Figure 15, Figure 17 and Figure 19 In the shown method, various steps are performed by the SMF unit in the base station.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to realize the above-mentioned FIG. 3 , FIG. 4 , FIG. 5 , and FIG. 7 .
  • each step is performed by the terminal or the base station.
  • the present application also provides a computer program product including computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the above-mentioned Fig. 3, Fig. 4, Fig. 5, Fig. 7, Fig. 9, Fig. 11, Fig. 13 , in the methods shown in FIG. 15 , FIG. 17 and FIG. 19 , various steps performed by the terminal or the base station.
  • the present application also provides a chip, which is used to run in a computer device, so that the computer device executes the above-mentioned Fig. 3, Fig. 4, Fig. 5, Fig. 7, Fig. 9, Fig. 11, Fig. 13, Fig. 15 , in the methods shown in FIG. 17 and FIG. 19 , various steps performed by the terminal or the base station.
  • the present application also provides a computer program, the computer program is executed by the processor of the computer device, so as to realize the 17 and the methods shown in FIG. 19 , various steps performed by the terminal or the base station.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束管理信息交互方法、装置、终端及介质,属于通信技术领域。该方法由终端执行,所述方法包括:向第一基站提供第一波束集合的波束信息,所述第一波束集合的波束信息用于所述第一基站基于波束管理模型确定输出波束集合的波束信息。本申请可以通过波束管理模型生成更加精细的波束集合,实现对多基站、多频段的波束信息的预测和获取,可以降低传输负担以及波束管理负担。

Description

波束管理信息交互方法、装置、终端及介质 技术领域
本申请涉及通信技术领域,特别涉及一种波束管理信息交互方法、装置、终端及介质。
背景技术
波束管理用于通信设备从多个波束中选取最佳波束来完成更好的数据传输。
相关技术中,基站会传输不同的参考信号用来反映不同波束的质量,UE(User Equipment,用户设备)会接收不同的参考信号用来反映UE侧对应的不同波束质量。继而,UE可以上报其获得的波束标识、波束质量等信息,基站根据UE上报的信息确定最佳波束。
无线通信系统所需要使用的波束数目较多,波束宽度也较窄,相关技术需要使用更多的参考信号来指示更多的波束质量信息,进而对无线通信系统造成较大的工作负担和实现难度。
发明内容
本申请实施例提供了一种波束管理信息交互方法、装置、终端及介质,提供了一种基于波束管理模型来实现波束管理信息交互的方法,降低了无线通信系统的工作负担。
根据本申请实施例的一方面,提供了一种波束管理信息交互方法,该方法由终端执行,该方法包括:
向第一基站提供第一波束集合的波束信息,所述第一波束集合的波束信息用于所述第一基站基于波束管理模型确定输出波束集合的波束信息。
根据本申请实施例的另一方面,提供了一种波束管理信息交互装置,该装置包括:
第一发送模块,用于向第一基站提供第一波束集合的波束信息,所述第一波束集合的波束信息用于所述第一基站基于波束管理模型确定输出波束集合的波束信息。
根据本申请实施例的另一方面,提供了一种波束管理信息交互方法,该方法由终端执行,该方法包括:
获取第一波束集合的波束信息;
基于波束管理模型,对所述第一波束集合的波束信息进行处理,得到输出波束集合的波束信息。
根据本申请实施例的另一方面,提供了一种波束管理信息交互装置,该装置包括:
第二接收模块,用于获取第一波束集合的波束信息;
第二处理模块,用于基于波束管理模型,对所述第一波束集合的波束信息进行处理,得到输出波束集合的波束信息。
根据本申请实施例的另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为加载并执行可执行指令以实现上述任一所述的波束管理信息交互方法。
根据本申请实施例的另一方面,提供了一种芯片,该芯片用于实现上述任一所述的波束管理信息交互方法。
根据本申请实施例的另一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述任一所述的波束管理信息交互方法。
本申请实施例提供的技术方案包括以下有益效果:
通过波束管理模型确定与第一波束集合的波束信息对应的输出波束集合的波束信息。只需要基站提供少量的参考信号,波束管理模型可以生成更加全面、精细的波束集合,或者,更加优选的波束集合,并根据生成的波束集合实现对多基站、多频段的波束信息的预测和获取,可以降低传输负担以及波束管理负担。
附图说明
图1是根据一示例性实施例示出的一种通信系统的示意图;
图2是根据一示例性实施例示出的一种波束管理模型的实现方法的示意图;
图3是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图4是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图5是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图6是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图7是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图8是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图9是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图10是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图11是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图12是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图13是根据一示例性实施例示出的一种传输无线信道的类型的流程图;
图14是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图15是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图16是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图17是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图18是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图19是根据一示例性实施例示出的一种波束管理信息交互方法的流程图;
图20是根据一示例性实施例示出的一种波束管理信息交互方法的示意图;
图21是根据一示例性实施例示出的一种波束管理信息交互装置的框图;
图22是根据一示例性实施例示出的一种波束管理信息交互装置的框图;
图23是根据一示例性实施例示出的一种终端的结构示意图;
图24是根据一示例性实施例示出的一种网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
图1示出了本申请一个实施例提供的移动通信系统的示意图。该移动通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有移动通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
网络设备20的数量有一个或多个。网络设备20是一种部署在接入网中用于为终端10提供移动通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点,定位管理功能实体(Location Management Function,LMF)等等。网络设备20可以是终端10的服务小区内的基站,或者,是终端10的候选服务小区内的基站。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供移动通信功能的装置统称为基站。网络设备20与终端10之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。两个邻近的网络设备20之间也可以通过有线或者无线的方式进行通信。终端10可以在不同的网络设备20之间进行切换,也即与不同的网络设备20建立连接。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
图2示出了本申请一个示例性实施例提供的波束管理模型的实现方法的示意图。该实施例以应用在如图1所示的通信系统中进行举例说明,波束管理模型可以部署在终端上,也可以部署在基站上。
波束管理模型用于对已知的第一波束集合的波束信息进行恢复,以得到输出波束集合的波束信息。或者,波束管理模型用于对已知的第一波束集合的波束信息进行波束选择,以得到输出波束集合。示例性的,第一波束集合是全集波束集合的子集,全集波束集合包括完整的用于波束管理的波束,输出波束模型可以根据第一波束集合还原出全集波束集合。在一个具体的例子中,若实现波束管理需要基站使用1024组参考信号来实现,则在本申请实施例中,基站可以只提供512组参考信号,此时,波束管理模型的输入为包括512个波束的第一波束集合,波束管理模型可以对第一波束集合的波束信息进行恢复,恢复出包括1024个波束的输出波束集合。示例性的,第一波束集合包括多个频率的波束,不同频率的波束对应有不同的波束信息,波束管理模型可以从第一波束集合中确定出目标频率的波束对应的波束信息。
波束管理模型的输入是第一波束集合的波束信息。第一波束集合的波束信息包括属于同一基站的不同波束的波束信息、属于不同基站的不同波束的波束信息、属于同一频率的不同波束的波束信息和属于不同频率的不同波束的波束信息中的至少一种。其中,波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。示例性的,波束的表示指波束ID(Identity Document,身份标识号)。示例性的,波束的质量包括测量质量RSRP(Reference Signal Received Power,参考信号接收功率)、RSRQ(Reference Signal Received Quality,参考信号接收质量)、RSSI(Received Signal Strength Indication,接收机信号场强指示)中的至少一种。示例性的,波束的频段指波束躲在的频段频率。示例性的,波束的基站信息指波束的归属基站ID。
波束管理模型的输出是输出波束集合的波束信息。输出波束集合是基于波束管理模型对第一波束集合的波束信息进行恢复后得到的第二波束集合,或者,输出波束集合是基于波束管理模型进行波束选择后得到的第三波束集合。
可选地,第二波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第二波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。类似的,第三波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第三波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
示例性的,若以基站是波束管理模型的训练设备,在训练波束管理模型时,预先准备训练样本,训练样本包括N个波束和N个波束的波束信息,从训练样本中抽取出一部分波束的波束信息作为波束管理模型的训练输入,波束管理模型会输出预测的N个波束的波束信息,计算N个波束的波束信息与预测的N个波束的波束信息之间的误差,根据该误差对波束管理模型进行训练。
示例性的,若以基站是波束管理模型的训练设备,在训练波束管理模型时,预先准备训练样本,训练样本包括N个波束的波束信息和优选波束的标识,将训练样本中的N个波束的波束信息作为波束管理模型的训练输入,波束管理模型会输出预测的优选波束的标识,计算优选波束的标识与预测的优选波束的标识之间的误差,根据该误差对波束管理模型进行训练。
需要说明的是,上述提供的训练波束管理模型的方法同样可用在终端中,这里仅做示例性说明,不用于对训练波束管理模型的方法的限定。
图3示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在第一基站上,该方法包括:
在步骤301中,向第一基站提供第一波束集合的波束信息,第一波束集合的波束信息用于第一基站基于波束管理模型确定输出波束集合的波束信息。
第一波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第一波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。示例性的,第一波束集合是同一基站提供的具有不同波束质量的波束集合。示例性的,第一波束集合是不同基站提供的不同频率的波束集合。
可选地,与终端具有交互关系的至少一个基站通过广播、DCI(Downlink Control Information,下行控制信息)、MAC CE(Media Access Control Control Element,媒体接入层控制单元)、RRC(Radio Resource Control,无线资源控制)消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种方式向终端提供第一波束集合。
波束管理模型用于实现终端和基站之间的波束管理。可选地,波束管理模型是基于AI(Artificial Intelligence,人工智能)的波束管理模型或基于AI的波束管理算法。
输出波束集合是基于波束管理模型对第一波束集合的波束信息进行恢复后得到的第二波束集合,或者,输出波束集合是基于波束管理模型进行波束选择后得到的第三波束集合。
可选地,第二波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第二波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。类似的,第三波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第三波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
可选地,在第一波束集合是属于多个基站的情况下,输出波束集合是属于第一基站的。其中,多个基站与终端之间存在交互关系。示例性的,多个基站是终端的服务小区中的基站,或者多个基站是终端的候选服务小区中的基站。
可选地,在第一波束集合是属于多个基站的情况下,输出波束集合是属于多个基站的。
可选地,在第一波束集合是属于第一基站的情况下,输出波束集合是属于第一基站的。
可选地,在第一波束集合是属于第一基站的情况下,输出波束集合是属于多个基站的。
可选地,终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式向第一基站传输第一波束集合。
综上所述,本实施例通过波束管理模型确定与第一波束集合的波束信息对应的输出波束集合的波束信息。只需要基站提供少量的参考信号,波束管理模型可以生成更加精细的波束集合,或者,更加优选的波束集合,并根据生成的波束集合实现对多基站、多频段的波束信息的预测和获取,可以降低传输负担以及波束管理负担。
图4示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在终端10上,该方法包括:
在步骤401中,获取第一波束集合的波束信息。
第一波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第一波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
可选地,第一波束集合的波束信息是与终端存在交互关系的多个基站提供的。或者,第一波束集合的波束信息是与终端存在交互关系的一个基站提供的。
可选地,与终端具有交互关系的至少一个基站通过广播、DCI、MAC CE、RRC消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种方式向终端提供第一波束集合。
在步骤402中,基于波束管理模型,对第一波束集合的波束信息进行处理,得到输出波束集合的波束信息。
波束管理模型用于实现终端和基站之间的波束管理。可选地,波束管理模型是基于AI的波束管理模型或基于AI的波束管理算法。
输出波束集合是基于波束管理模型对第一波束集合的波束信息进行恢复后得到的第二波束集合,或者,输出波束集合是基于波束管理模型进行波束选择后得到的第三波束集合。
可选地,第二波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第二波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。类似的,第三波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第三波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
可选地,在第一波束集合是属于多个基站的情况下,输出波束集合是属于第一基站的。其中,多个基站与终端之间存在交互关系。示例性的,上述多个基站是终端的服务小区中的基站,或者多个基站是终端的候选服务小区中的基站。
可选地,在第一波束集合是属于多个基站的情况下,输出波束集合是属于多个基站的。
可选地,在第一波束集合是属于第一基站的情况下,输出波束集合是属于第一基站的。
可选地,在第一波束集合是属于第一基站的情况下,输出波束集合是属于多个基站的。
可选地,终端向与终端具有交互关系的多个基站上报输出波束集合的波束信息。或者,终端向与终端具有交互关系的一个基站上报输出波束集合的波束信息。
可选地,终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式向第一基站传输第一波束集合。
综上所述,本实施例通过波束管理模型确定与第一波束集合的波束信息对应的输出波束集合的波束信息。只需要基站提供少量的参考信号,波束管理模型可以生成更加精细、完整的波束集合,或者,更加优选的波束集合,并根据生成的波束集合实现对多基站、多频段的波束信息的预测和获取,可以降低传输负担以及波束管理负担。
在接下来的实施例中,当波束管理模型设置在第一基站上时,由多个基站向终端提供参考信号,终端确定第一波束集合的波束信息后,向第一基站提供第一波束集合的波束信息,以便第一基站确定输出波束集合的波束信息。
图5示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在第一基站上,该方法包括:
在步骤501中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
参考信号集合用于在波束管理中提供参考的信号。示例性的,如图6所示,第一基站向终端发送与第一基站对应的参考信号集合的波束信息,例如,与第一基站对应的参考信号集合的波束信息包括第一基站的ID,或者,与第一基站对应的参考信号集合的波束信息包括第一基站的ID。
示例性的,不同基站会向终端发送不同频段的参考信号。第一基站向终端发送的参考信号集合中的参考信号属于第一基站对应的频段。
可选地,第一基站通过广播、DCI、MAC CE、RRC消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种方式向终端提供参考信号集合的波束信息。
在步骤502中,第二基站向终端发送与第二基站对应的参考信号集合的波束信息。
示例性的,如图6所示,第二基站向终端发送与第二基站对应的参考信号集合的波束信息,例如,与第二基站对应的参考信号集合的波束信息包括第二基站的ID,或者,与第二基站对应的参考信号集合的波束信息包括第二基站的ID。
在步骤503中,第三基站向终端发送与第三基站对应的参考信号集合的波束信息。
示例性的,如图6所示,第三基站向终端发送与第三基站对应的参考信号集合的波束信息,例如,与第三基站对应的参考信号集合的波束信息包括第三基站的ID,或者,与第一基站对应的参考信号集合的波束信息包括第三基站的ID。其中,第一基站、第二基站和第三基站是终端的服务小区中的基站,或者,是终端的候选服务小区中的基站。
在步骤504中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
示例性的,终端对参考信号集合中各个参考信号做波束测量,生成第一波束集合的波束信息。
可选地,第一波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
在一种可选实施方式中,第一基站、第二基站和第三基站中的至少一个基站向终端提供一组波束集合;终端获取基站配置的一组波束集合;根据一组波束集合确定第一波束集合。可选的,终端将一组波束集合作为第一波束集合。
可选地,终端将一组波束集合的子集作为第一波束集合。示例性的,基站可以向基站提供X(X为大于2的正整数)个波束,UE可以上报X个波束中的Y个波束,Y个波束可以是满足条件的Y个波束,这里的条件可以是关于波束质量的条件,例如,只上报波束质量好于给定门限的波束。上述条件和门限可以通过基站配置给终端,也可以通过3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)协议进行约定。
可选地,终端将一组波束集合中符合要求的波束集合作为第一波束集合。示例性的,这里的要求可以是关于波束质量的条件,例如,只上报波束质量好于给定门限的波束。上述条件和门限可以通过基站配置给终端,也可以通过3GPP协议进行约定。
在步骤505中,终端向第一基站发送第一波束集合的波束信息。
可选地,终端通过广播、DCI、MAC CE、RRC消息、下行数据信道、下行控制信道、下行人工智能类数据传输信道、下行组播信道、上行广播信道中的至少一种方式向第一基站发送第一波束集合的波束信息。
在步骤506中,第一基站基于波束管理模型确定输出波束集合的波束信息。
波束管理模型用于实现终端和基站之间的波束管理。可选地,波束管理模型是基于AI的波束管理模型或基于AI的波束管理算法。
输出波束集合是基于波束管理模型对第一波束集合的波束信息进行恢复后得到的第二波束集合,或者,输出波束集合是基于波束管理模型进行波束选择后得到的第三波束集合。
可选地,第二波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第二波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。类似的,第三波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第三波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
示例性的,若采用1024个波束来完成完整的波束扫描,则需要1024组参考信号的设计、传输、检测,在本申请实施例中,以第一基站发送的参考信号集合为例,第一基站可以只向终端发送512组参考信号,终端根据第一基站发送的参考信号确定包括512个波束的第一波束集合,并向第一基站提供第一波束集合的波束信息,第一基站可以基于波束管理模型对,第一波束集合的波束信息进行波束恢复,得到包括1024个波束的输出波束集合。
综上所述,本实施例由多个基站向终端提供参考信号,由第一基站确定输出波束集合的波束信息。由于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负担。
在接下来的实施例中,当波束管理模型设置在第一基站上时,由多个基站向终端提供参考信号,终端确定第一波束集合的波束信息后,分别向多个基站提供第一波束子集合的波束信息,各个基站向第一基站转发第一波束子集合的波束信息,以便第一基站确定输出波束集合的波束信息。
图7示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在第一基站上,该方法包括:
在步骤701中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
在步骤702中,第二基站向终端发送与第二基站对应的参考信号集合的波束信息。
在步骤703中,第三基站向终端发送与第三基站对应的参考信号集合的波束信息。
在步骤704中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤504,此处不再赘述。其中,第一基站、第二基站和第三基站是终端的服务小区中的基站,或者,是终端的候选服务小区中的基站。
在步骤705中,终端向第一基站发送第一波束子集合的波束信息。
第一波束子集合是第一波束集合的子集。可选地,终端向第一基站发送属于第一基站的第一波束子集合的波束信息。示例性的,第一波束集合包括属于第一基站的波束信息、属于第二基站的波束信息和属于第三基站的波束信息,属于不同基站的波束信息对应不同的第一波束子集合,终端向第一基站发送属于第一基站的波束信息,不发送属于第二基站的波束信息和属于第三基站的波束信息。
可选地,终端可以向第一基站发送第一波束集合的全部波束信息,也可以向第一基站发送第一波束集合的部分波束信息。
在步骤706中,终端向第二基站发送第一波束子集合的波束信息。
可选地,终端可以向二基站发送第一波束集合的全部波束信息,也可以向第二基站发送第一波束集合的部分波束信息。
可选地,终端向第二基站发送属于第二基站的第一波束子集合的波束信息。
在步骤707中,终端向第三基站发送第一波束子集合的波束信息。
终端可以向第三基站发送第一波束集合的全部波束信息,也可以向第三基站发送第一波束集合的部分波束信息。
可选地,终端向第三基站发送属于第三基站的第一波束子集合的波束信息。
在步骤708中,第二基站向第一基站转发第一波束子集合的波束信息。
可选地,在终端向第二基站发送全部第一波束集合的波束信息的情况下,第二基站将属于第二基站的第一波束子集合的波束信息转发给第一基站。例如,第一波束集合的波束信息包括属于第一基站的波束信息、属于第二基站的波束信息和属于第三基站的波束信息,第二基站只向第一基站提供属于第二基站的波束信息。
可选地,基站之间通过基站间接口、基站间人工智能类数据传输信道、基站间组播和广播信道中的至少一种方式传输波束信息。示例性的,基站间接口指Xn接口(NG-RAN节点之间的网络接口)。
示例性的,如图8所示,第二基站向第一基站转发第一波束子集合的波束信息。
在步骤709中,第三基站向第一基站转发第一波束子集合的波束信息。
可选地,在终端向第三基站发送全部第一波束集合的波束信息的情况下,第三基站将属于第三基站的第一波束子集合的波束信息转发给第一基站。
可选地,基站之间通过基站间接口、基站间人工智能类数据传输信道、基站间组播和广播信道中的 至少一种方式传输波束信息。
在步骤710中,第一基站基于波束管理模型确定输出波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤506,此处不再赘述。
综上所述,本实施例由多个基站向终端提供参考信号,终端向多个基站分别提供第一波束子集合的波束信息,再由多个基站向第一基站转发第一波束子集合的波束信息,由第一基站确定输出波束集合的波束信息。由于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负担。
在接下来的实施例中,当波束管理模型设置在多个基站上时,由多个基站向终端提供参考信号,终端确定第一波束集合的波束信息后,分别向多个基站提供第一波束集合的波束信息,以便多个基站确定各自的输出波束集合的波束信息。
图9示出了本申请一个示例性实施例提供的波束管理信息交互的实现方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在多个基站上,该方法包括:
在步骤901中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
在步骤902中,第二基站向终端发送与第二基站对应的参考信号集合的波束信息。
在步骤903中,第三基站向终端发送与第三基站对应的参考信号集合的波束信息。
在步骤904中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤504,此处不再赘述。
在步骤905中,终端向第一基站发送第一波束集合的波束信息。
可选地,终端可以向第一基站发送第一波束集合的全部波束信息,也可以向第一基站发送第一波束集合的部分波束信息。
可选地,终端向第一基站发送第一波束集合中属于第一基站的波束信息。
在步骤906中,终端向第二基站发送第一波束集合的波束信息。
可选地,终端可以向第二基站发送第一波束集合的全部波束信息,也可以向第二基站发送第一波束集合的部分波束信息。
可选地,终端向第二基站发送第一波束集合中属于第二基站的波束信息。
在步骤907中,终端向第三基站发送第一波束集合的波束信息。
可选地,终端向第三基站发送第一波束集合的全部波束信息,也可以向第三基站发送第一波束集合的部分波束信息。
可选地,终端向第三基站发送第一波束集合中属于第三基站的波束信息。
其中,终端向第一基站、第二基站和第三基站发送的波束信息可以是一样的,也可以是不一样的。比如,终端向第一基站和第二基站发送第一波束集合的全部波束信息,向第三基站发送属于第三基站的波束信息。
在步骤908中,第一基站基于波束管理模型确定第一基站对应的输出波束集合的波束信息。
可选地,第一基站还可以基于波束管理模型确定第二基站和/或第三基站对应的输出波束集合的波束信息。示例性的,第一基站接收到第一波束集合的全部波束信息。可选地,在得到第二基站和/或第三基站对应的输出波束集合的波束信息后,第一基站向第二基站和/或第三基站发送输出波束集合的波束信息。
可选地,第一基站向其他基站提供第一基站对应的输出波束集合的波束信息。
可选地,基站之间通过基站间接口、基站间人工智能类数据传输信道、基站间组播和广播信道中的至少一种方式传输波束信息。
在步骤909中,第二基站基于波束管理模型确定第二基站对应的输出波束集合的波束信息。
可选地,第二基站还可以基于波束管理模型确定第一基站和/或第三基站对应的输出波束集合的波束信息。可选地,第二基站向第一基站和/或第三基站发送输出波束集合的波束信息。
可选地,第二基站向其他基站提供第二基站对应的输出波束集合的波束信息。
在步骤910中,第三基站基于波束管理模型确定第三基站对应的输出波束集合的波束信息。
可选地,第三基站还可以基于波束管理模型确定第一基站和/或第二基站对应的输出波束集合的波束信息。可选地,第三基站向第一基站和/或第二基站发送输出波束集合的波束信息。
可选地,第三基站向其他基站提供第三基站对应的输出波束集合的波束信息。
综上所述,本实施例由多个基站向终端提供参考信号,终端向多个基站分别提供第一波束集合的波束信息,由多个基站确定各自的输出波束集合的波束信息。由于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负 担。
在接下来的实施例中,当波束管理模型设置在终端上时,由多个基站向终端提供参考信号,终端确定第一波束集合的波束信息并生成输出波束集合的波束信息后,向第一基站提供输出波束集合的波束信息。
图11示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在终端上,该方法包括:
在步骤1101中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
在步骤1102中,第二基站向终端发送与第二基站对应的参考信号集合的波束信息。
在步骤1103中,第三基站向终端发送与第三基站对应的参考信号集合的波束信息。
在步骤1104中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤504,此处不再赘述。
在步骤1105中,终端基于波束管理模型确定输出波束集合的波束信息。
波束管理模型用于实现终端和基站之间的波束管理。可选地,波束管理模型是基于AI的波束管理模型或基于AI的波束管理算法。
输出波束集合是基于波束管理模型对第一波束集合的波束信息进行恢复后得到的第二波束集合,或者,输出波束集合是基于波束管理模型进行波束选择后得到的第三波束集合。
可选地,第二波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第二波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。类似的,第三波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第三波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
输出波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
需要说明的是,该步骤得到的输出波束集合的波束信息是属于第一基站的。
在步骤1106中,终端向第一基站上报输出波束集合的波束信息。
可选地,终端可以向第一基站上报输出波束集合的全部波束信息,也可以向第一基站上报输出波束集合的部分波束信息。
可选地,终端向第一基站上报属于第一基站的输出波束集合的波束信息。示例性的,终端得到的输出波束集合包括属于第一基站的波束信息、属于第二基站的波束信息和属于第三基站的波束信息,终端只向第一基站上报属于第一基站的波束信息,不向第一基站上报属于第二基站的波束信息和属于第三基站的波束信息。
综上所述,本实施例由多个基站向终端提供参考信号,终端确定输出波束集合的波束信息,向第一基站上报输出波束集合的波束信息。由于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负担。
在接下来的实施例中,当波束管理模型设置在终端上时,由多个基站向终端提供参考信号,终端确定第一波束集合的波束信息并生成输出波束集合的波束信息后,向多个基站提供输出波束集合的波束信息。
图13示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在终端上,该方法包括:
在步骤1301中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
在步骤1302中,第二基站向终端发送与第二基站对应的参考信号集合的波束信息。
在步骤1303中,第三基站向终端发送与第三基站对应的参考信号集合的波束信息。
在步骤1304中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤504,此处不再赘述。
在步骤1305中,终端基于波束管理模型确定输出波束集合的波束信息。
具体内容请参考图11所示的实施例中的步骤1105,此处不再赘述。
需要说明的是,该步骤得到的输出波束集合的波束信息是属于第一基站、第二基站和第三基站的。
在步骤1306中,终端向第一基站上报输出波束集合的波束信息。
可选地,终端可以向第一基站上报输出波束集合的全部波束信息,也可以向第一基站上报输出波束集合的部分波束信息。
可选地,终端向第一基站上报属于第一基站的输出波束集合的波束信息。示例性的,终端得到的输出波束集合包括属于第一基站的波束信息、属于第二基站的波束信息和属于第三基站的波束信息,终端只向第一基站上报属于第一基站的波束信息,不向第一基站上报属于第二基站的波束信息和属于第三基站的波束信息。
在步骤1307中,终端向第二基站上报输出波束集合的波束信息。
可选地,终端可以向第二基站上报输出波束集合的全部波束信息,也可以向第二基站上报输出波束集合的部分波束信息。
可选地,终端向第二基站上报属于第二基站的输出波束集合的波束信息。
在步骤1308中,终端向第三基站上报输出波束集合的波束信息。
可选地,终端可以向第三基站上报输出波束集合的全部波束信息,也可以向第三基站上报输出波束集合的部分波束信息。
可选地,终端向第三基站上报属于第三基站的输出波束集合的波束信息。
综上所述,本实施例由多个基站向终端提供参考信号,终端确定输出波束集合的波束信息,向多个基站上报输出波束集合的波束信息。于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负担。
在接下来的实施例中,当波束管理模型设置在终端上时,由第一基站向终端提供参考信号,终端确定第一波束集合的波束信息并生成输出波束集合的波束信息后,向第一基站提供输出波束集合的波束信息。
图15示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在终端上,该方法包括:
在步骤1501中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
在步骤1502中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤504,此处不再赘述。
在步骤1503中,终端基于波束管理模型确定输出波束集合的波束信息。
具体内容请参考图11所示的实施例中的步骤1105,此处不再赘述。
需要说明的是,该步骤得到的输出波束集合的波束信息是属于第一基站。
在步骤1504中,终端向第一基站上报输出波束集合的波束信息。
综上所述,本实施例由多个基站向终端提供参考信号,终端确定输出波束集合的波束信息,向第一基站上报输出波束集合的波束信息。由于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负担。
在接下来的实施例中,当波束管理模型设置在终端上时,由第一基站向终端提供参考信号,终端确定第一波束集合的波束信息并生成输出波束集合的波束信息后,向多个基站提供输出波束集合的波束信息。
图17示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法由终端10执行,波束管理模型部署在终端上,该方法包括:
在步骤1701中,第一基站向终端发送与第一基站对应的参考信号集合的波束信息。
在步骤1702中,终端根据参考信号集合的波束信息确定第一波束集合的波束信息。
具体内容请参考图5所示的实施例中的步骤504,此处不再赘述。
在步骤1703中,终端基于波束管理模型确定输出波束集合的波束信息。
具体内容请参考图11所示的实施例中的步骤1105,此处不再赘述。
需要说明的是,该步骤得到的输出波束集合的波束信息是属于第一基站、第二基站和第三基站的。
在步骤1704中,终端向第一基站上报输出波束集合的波束信息。
可选地,终端可以向第一基站上报输出波束集合的全部波束信息,也可以向第一基站上报输出波束集合的部分波束信息。
可选地,终端向第一基站上报属于第一基站的输出波束集合的波束信息。示例性的,输出波束集合中的波束包括归属基站的ID,终端根据归属基站的ID向第一基站上报输出波束集合的波束信息。
在步骤1705中,终端向第二基站上报输出波束集合的波束信息。
可选地,终端可以向第二基站上报输出波束集合的全部波束信息,也可以向第二基站上报输出波束集合的部分波束信息。
可选地,终端向第二基站上报属于第二基站的输出波束集合的波束信息。
在步骤1706中,终端向第三基站上报输出波束集合的波束信息。
可选地,终端可以向第三基站上报输出波束集合的全部波束信息,也可以向第三基站上报输出波束集合的部分波束信息。可选地,终端向第三基站上报属于第三基站的输出波束集合的波束信息。
综上所述,本实施例由第一基站向终端提供参考信号,终端确定输出波束集合的波束信息,向多个基站上报输出波束集合的波束信息。由于波束管理模型不需要提供所有波束中每个波束的参考信号,故不需要多个基站向终端提供完整的参考信号,可以降低传输负担以及波束管理负担。
在接下来的实施例中,基站会预先向终端配置测量配置信息和/或上报配置信息,以便终端确定第一波束信息。
图19示出了本申请一个示例性实施例提供的波束管理信息交互方法的流程图。该实施例以应用在如图1所示的通信系统中进行举例说明,该方法包括:
在步骤1901中,基站向终端预配置测量配置信息和/或上报配置信息。
本实施例中的基站指与终端存在交互关系的至少一个基站。示例性的,其中,该基站是终端的服务小区中的基站,或者,是终端的候选服务小区中的基站。
基站向终端预配置测量配置信息和/或上报配置信息的方式是通过广播、DCI、MAC CE、RRC消息、下行数据信道、下行控制信道、下行人工智能类数据传输信道、下行组播信道、上行广播信道中的至少一种实现的。
预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。示例性的,波束的标识信息指波束ID。示例性的,波束对应的参考信号是CSI-RS,DMRS等。示例性的,波束测量对应的测量配置包括但不限于参考信号的图样、测量的周期、时间位置、时间窗口、频域位置等中的至少一种。示例性的,波束的需要测量的质量信息包括但不限于RSRP、RSRQ、RSSI中的至少一种。示例性的,波束的频段信息指波束所在的频段频率。示例性的,波束的基站信息指波束的归属ID。示例性的,上报所述第一波束集合的方式包括但不限于上报的周期、上报的时间、上报上述信息的编码方式中的至少一种。
示例性的,如图20所示,基站向终端预配置测量配置信息和/或上报配置信息。
在步骤1902中,终端获取第一波束集合的波束信息。
第一波束集合包括属于同一基站的不同波束、属于不同基站的不同波束、属于同一频率的不同波束、属于不同频率的不同波束中的至少一种。第一波束集合的波束信息包括波束的标识、波束的质量、波束的频段、波束的基站信息中的至少一种。
可选地,第一波束集合的波束信息是与终端存在交互关系的多个基站提供的。或者,第一波束集合的波束信息是与终端存在交互关系的一个基站提供的。
可选地,与终端具有交互关系的至少一个基站通过广播、DCI、MAC CE、RRC消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种方式向终端提供第一波束集合。
在步骤1903中,终端向基站上报第一波束集合的波束信息。
综上所述,本实施例由基站向终端预配置测量配置信息和/或上报配置信息,以便终端能够及时确定第一波束集合的波束信息,完成波束管理信息交互。
图21示出了本申请一个示例性实施例提供的一种波束管理信息交互装置的框图。该装置210包括:
第一发送模块211,用于向第一基站提供第一波束集合的波束信息,所述第一波束集合的波束信息用于所述第一基站基于波束管理模型确定输出波束集合的波束信息。
在本申请的一个可选设计中,所述输出波束集合包括如下至少一种:基于所述波束管理模型对所述波束信息进行恢复后得到的第二波束集合;基于所述波束管理模型进行波束选择后得到的第三波束集合。
在本申请的一个可选设计中,所述第一波束集合、所述第二波束集合和所述第三波束集合包括以下情况的至少一种:属于同一基站的不同波束;或,属于不同基站的不同波束;或,属于同一频率的不同波束;或,属于不同频率的不同波束。
在本申请的一个可选设计中,所述波束信息包括所述波束的标识、所述波束的质量、所述波束的频段、所述波束的基站信息中的至少一种。
在本申请的一个可选设计中,在所述第一波束集合是属于多个基站的情况下,所述输出波束集合是属于所述第一基站的;或,在所述第一波束集合是属于所述多个基站的情况下,所述输出波束集合是属于所述多个基站的;或,在所述第一波束集合是属于所述第一基站的情况下,所述输出波束集合是属于 所述第一基站的;或,在所述第一波束集合是属于所述第一基站的情况下,所述输出波束集合是属于所述多个基站的。
在本申请的一个可选设计中,所述第一发送模块211,还用于向所述第一基站发送所述第一波束集合的波束信息。
在本申请的一个可选设计中,所述第一发送模块211,还用于向与所述终端具有交互关系的多个基站发送第一波束子集合的波束信息,所述多个基站中除所述第一基站以外的基站用于向所述第一基站转发所述第一波束子集合的波束信息,所述第一波束子集合是所述第一波束集合的子集。
在本申请的一个可选设计中,所述第一发送模块211,还用于向所述多个基站分别发送属于各个基站的所述第一波束子集合的波束信息。
在本申请的一个可选设计中,所述多个基站之间通过基站间接口、基站间人工智能类数据传输信道、基站间组播和广播信道中的至少一种方式传输所述波束信息。
在本申请的一个可选设计中,所述第一发送模块211,还用于向与所述终端具有交互关系的多个基站发送所述第一波束集合的波束信息,所述第一波束集合用于所述多个基站确定各自对应的所述输出波束集合的波束信息。
在本申请的一个可选设计中,第一接收模块212,用于接收与所述终端具有交互关系的至少一个基站提供的参考信号集合的波束信息;
第一处理模块213,用于根据所述参考信号集合的波束信息确定所述第一波束集合。
在本申请的一个可选设计中,第一接收模块212,用于获取与所述终端具有交互关系的至少一个基站配置的一组波束集合;
第一处理模块213,用于根据所述一组波束集合确定所述第一波束集合。
在本申请的一个可选设计中,所述第一处理模块213,还用于将所述一组波束集合作为所述第一波束集合;或,所述第一处理模块213,还用于将所述一组波束集合的子集作为所述第一波束集合;或,所述第一处理模块213,还用于将所述一组波束集合中符合要求的波束集合作为所述第一波束集合。
在本申请的一个可选设计中,第一接收模块212,用于接收与所述终端具有交互关系的至少一个基站预配置的测量配置信息。
在本申请的一个可选设计中,第一接收模块212,用于接收与所述终端具有交互关系的至少一个基站预配置的上报配置信息。
在本申请的一个可选设计中,所述预配置的方式是通过广播、下行控制信息DCI、媒体接入层控制单元MAC CE、无线资源控制RRC消息、下行数据信道、下行控制信道、下行人工智能类数据传输信道、下行组播信道、上行广播信道中的至少一种实现的。
在本申请的一个可选设计中,所述预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。
在本申请的一个可选设计中,所述终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式传输所述第一波束集合。
在本申请的一个可选设计中,所述波束管理模型是基于人工智能AI的波束管理模型或基于AI的波束管理算法。
图22示出了本申请一个示例性实施例提供的一种波束管理信息交互装置的框图。该装置220包括:
第二接收模块221,用于获取第一波束集合的波束信息;
第二处理模块222,用于基于波束管理模型,对所述第一波束集合的波束信息进行处理,得到输出波束集合的波束信息。
在本申请的一个可选设计中,所述输出波束集合包括如下的至少一种:基于所述波束管理模型对对所述波束信息进行恢复后得到的第二波束集合;基于所述波束管理模型进行波束选择后得到的第三波束集合。
在本申请的一个可选设计中,所述第一波束集合、所述第二波束集合和所述第三波束集合包括以下情况的至少一种:属于同一基站的不同波束;或,属于不同基站的不同波束;或,属于同一频率的不同波束;或,属于不同频率的不同波束。
在本申请的一个可选设计中,所述波束信息包括所述波束的标识、所述波束的质量、所述波束的频段、所述波束的基站信息中的至少一种。
在本申请的一个可选设计中,所述第二接收模块221,还用于接收与所述终端存在交互关系的多个基站提供的参考信号集合的波束信息;根据所述参考信号集合确定所述第一波束集合的波束信息。
在本申请的一个可选设计中,所述输出波束集合的波束信息属于所述多个基站中的第一基站;第二 发送模块223,用于向所述第一基站上报所述输出波束集合的波束信息。
在本申请的一个可选设计中,所述输出波束集合的波束信息属于所述多个基站;第二发送模块223,用于向所述多个基站上报所述输出波束集合的波束信息。
在本申请的一个可选设计中,所述第二接收模块221,还用于接收与所述终端存在交互关系的第一基站提供的参考信号集合的波束信息;根据所述参考信号集合确定所述第一波束集合的波束信息。
在本申请的一个可选设计中,所述输出波束集合的波束信息属于所述第一基站;第二发送模块223,用于向所述第一基站上报所述输出波束集合的波束信息。
在本申请的一个可选设计中,所述输出波束集合的波束信息属于与所述终端存在交互关系的多个基站;第二发送模块223,用于向所述多个基站上报所述输出波束集合的波束信息。
在本申请的一个可选设计中,第二接收模块221,还用于获取与所述终端具有交互关系的至少一个基站配置的一组波束集合;
第二处理模块222,还用于根据所述一组波束集合确定所述第一波束集合。
在本申请的一个可选设计中,第二处理模块222,还用于将所述一组波束集合作为所述第一波束集合;或,第二处理模块222,还用于将所述一组波束集合的子集作为所述第一波束集合;或,第二处理模块222,还用于将所述一组波束集合中符合要求的波束集合作为所述第一波束集合。
在本申请的一个可选设计中,第二接收模块221,还用于接收与所述终端具有交互关系的至少一个基站预配置的测量配置信息。
在本申请的一个可选设计中,第二接收模块221,还用于接收与所述终端具有交互关系的至少一个基站预配置的上报配置信息。
在本申请的一个可选设计中,所述预配置的方式是通过广播、下行控制信息DCI、媒体接入层控制单元MAC CE、无线资源控制RRC消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种实现的。
在本申请的一个可选设计中,所述预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。
在本申请的一个可选设计中,所述终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式传输所述第一波束集合。
在本申请的一个可选设计中,所述波束管理模型是基于AI的波束管理模型或基于AI的波束管理算法。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图23,其示出了本申请一个实施例提供的终端2300的结构示意图。该终端2300可以包括:处理器2301、收发器2302以及存储器2303。
处理器2301包括一个或者一个以上处理核心,处理器2301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器2302可以包括接收器和发射器,比如,该接收器和发射器可以实现为同一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。
存储器2303可以与处理器2301以及收发器2302相连。
存储器2303可用于存储处理器执行的计算机程序,处理器2301用于执行该计算机程序,以实现上述方法实施例中的无线通信系统中的终端执行的各个步骤。
此外,存储器2303可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一个示例性的方案中,所述收发器2302,用于向中继侧行链路场景中的中继终端发送第一业务接入请求;其中,所述第一业务接入请求用于触发所述中继终端向网络侧设备发送分组数据单元PDU会话修改请求,所述PDU会话修改请求用于请求将所述非中继终端接入第一广播/多播业务。
或者,所述收发器2302,用于向网络侧设备发送第二业务接入请求;其中,所述第二业务接入请求用于请求将所述非中继终端接入第一广播/多播业务。
其中,收发器2302执行的过程可以参考上述图3、图4、图5、图7、图9、图11、图13、图15、 图17以及图19所示的方法中,由终端执行的各个步骤。
在另一个示例性的方案中,所述收发器,用于接收中继侧行链路场景中的非中继终端发送的第一业务接入请求;
所述收发器,还用于根据所述第一业务接入请求向网络侧设备发送PDU会话修改请求,所述PDU会话修改请求用于请求将终端接入第一广播/多播业务。
其中,收发器2302执行的过程可以参考上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由终端执行的各个步骤。
请参考图24,其示出了本申请一个实施例提供的网络设备2400的结构示意图。该网络设备2400可以包括:处理器2401、收发器2402以及存储器2403。
处理器2401包括一个或者一个以上处理核心,处理器2401通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器2402可以包括接收器和发射器。比如,该收发器2402可以包括一个有线通信组件,该有线通信组件可以包括一块有线通信芯片以及有线接口(比如光纤接口)。可选的,该收发器2402还可以包括一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。
存储器2403可以与处理器2401以及收发器2402相连。
存储器2403可用于存储处理器执行的计算机程序,处理器2401用于执行该计算机程序,以实现上述方法实施例中的无线通信系统中的非中继终端或者中继终端执行的各个步骤。
此外,存储器2403可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一个示例性的方案中,所述收发器2402,用于接收中继侧行链路场景中的非中继终端发送的第二业务接入请求;所述第二业务接入请求用于请求将所述非中继终端接入第一广播/多播业务。
其中,上述网络设备2400中的收发器2402和处理器2401执行的过程可以参考上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由基站中的UPF单元执行的各个步骤。
在另一个示例性的方案中,所述收发器2402,用于接收业务接入触发请求,所述业务接入触发请求用于请求将中继侧行链路场景中的终端接入第一广播/多播业务;
所述处理器2401,用于在根据所述业务接入触发请求验证所述终端具有接入所述第一广播/多播业务的权限后,将所述终端接入所述第一广播/多播业务。
其中,上述网络设备2400中的收发器2402和处理器2401执行的过程可以参考上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由基站中的SMF单元执行的各个步骤。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由终端或者基站执行的各个步骤。
本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由终端或者基站执行的各个步骤。
本申请还提供了一种芯片,该芯片用于在计算机设备中运行,以使得所述计算机设备执行上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由终端或者基站执行的各个步骤。
本申请还提供了一种计算机程序,该计算机程序由计算机设备的处理器执行,以实现如上述图3、图4、图5、图7、图9、图11、图13、图15、图17以及图19所示的方法中,由终端或者基站执行的各个步骤。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (76)

  1. 一种波束管理信息交互方法,其特征在于,所述方法由终端执行,所述方法包括:
    向第一基站提供第一波束集合的波束信息,所述第一波束集合的波束信息用于所述第一基站基于波束管理模型确定输出波束集合的波束信息。
  2. 根据权利要求1所述的方法,其特征在于,所述输出波束集合包括如下至少一种:
    基于所述波束管理模型对所述波束信息进行恢复后得到的第二波束集合;
    基于所述波束管理模型进行波束选择后得到的第三波束集合。
  3. 根据权利要求1所述的方法,其特征在于,所述第一波束集合、所述第二波束集合和所述第三波束集合包括以下情况的至少一种:
    属于同一基站的不同波束;
    或,属于不同基站的不同波束;
    或,属于同一频率的不同波束;
    或,属于不同频率的不同波束。
  4. 根据权利要求1所述的方法,其特征在于,所述波束信息包括所述波束的标识、所述波束的质量、所述波束的频段、所述波束的基站信息中的至少一种。
  5. 根据权利要求3所述的方法,其特征在于,
    在所述第一波束集合是属于多个基站的情况下,所述输出波束集合是属于所述第一基站的;
    或,在所述第一波束集合是属于所述多个基站的情况下,所述输出波束集合是属于所述多个基站的;
    或,在所述第一波束集合是属于所述第一基站的情况下,所述输出波束集合是属于所述第一基站的;
    或,在所述第一波束集合是属于所述第一基站的情况下,所述输出波束集合是属于所述多个基站的。
  6. 根据权利要求1所述的方法,其特征在于,所述向所述第一基站提供第一波束集合的波束信息,包括:
    向所述第一基站发送所述第一波束集合的波束信息。
  7. 根据权利要求1所述的方法,其特征在于,所述向所述第一基站提供第一波束集合的波束信息,包括:
    向与所述终端具有交互关系的多个基站发送第一波束子集合的波束信息,所述多个基站中除所述第一基站以外的基站用于向所述第一基站转发所述第一波束子集合的波束信息,所述第一波束子集合是所述第一波束集合的子集。
  8. 根据权利要求7所述的方法,其特征在于,所述向与所述终端具有交互关系的多个基站发送第一波束子集合的波束信息,包括:
    向所述多个基站分别发送属于各个基站的所述第一波束子集合的波束信息。
  9. 根据权利要求7所述的方法,其特征在于,所述多个基站之间通过基站间接口、基站间人工智能类数据传输信道、基站间组播和广播信道中的至少一种方式传输所述波束信息。
  10. 根据权利要求1所述的方法,其特征在于,所述向所述第一基站提供第一波束集合,包括:
    向与所述终端具有交互关系的多个基站发送所述第一波束集合的波束信息,所述第一波束集合用于所述多个基站确定各自对应的所述输出波束集合的波束信息。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    接收与所述终端具有交互关系的至少一个基站提供的参考信号集合的波束信息;
    根据所述参考信号集合的波束信息确定所述第一波束集合。
  12. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    获取与所述终端具有交互关系的至少一个基站配置的一组波束集合;
    根据所述一组波束集合确定所述第一波束集合。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述一组波束集合确定所述第一波束集合,包括:
    将所述一组波束集合作为所述第一波束集合;或,将所述一组波束集合的子集作为所述第一波束集合;或,将所述一组波束集合中符合要求的波束集合作为所述第一波束集合。
  14. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    接收与所述终端具有交互关系的至少一个基站预配置的测量配置信息。
  15. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    接收与所述终端具有交互关系的至少一个基站预配置的上报配置信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述预配置的方式是通过广播、下行控制信息DCI、媒体接入层控制单元MAC CE、无线资源控制RRC消息、下行数据信道、下行控制信道、下行人工智能类数据传输信道、下行组播信道、上行广播信道中的至少一种实现的。
  17. 根据权利要求14或15所述的方法,其特征在于,所述预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。
  18. 根据权利要求1至10任一项所述的方法,其特征在于,所述终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式传输所述第一波束集合。
  19. 根据权利要求1至10任一项所述的方法,其特征在于,所述波束管理模型是基于人工智能AI的波束管理模型或基于AI的波束管理算法。
  20. 一种波束管理信息交互方法,其特征在于,所述方法由所述终端执行,所述方法包括:
    获取第一波束集合的波束信息;
    基于波束管理模型,对所述第一波束集合的波束信息进行处理,得到输出波束集合的波束信息。
  21. 根据权利要求20所述的方法,其特征在于,所述输出波束集合包括如下的至少一种:基于所述波束管理模型对对所述波束信息进行恢复后得到的第二波束集合;
    基于所述波束管理模型进行波束选择后得到的第三波束集合。
  22. 根据权利要求20所述的方法,其特征在于,所述第一波束集合、所述第二波束集合和所述第三波束集合包括以下情况的至少一种:属于同一基站的不同波束;或,属于不同基站的不同波束;或,属于同一频率的不同波束;或,属于不同频率的不同波束。
  23. 根据权利要求22所述的方法,其特征在于,所述波束信息包括所述波束的标识、所述波束的质量、所述波束的频段、所述波束的基站信息中的至少一种。
  24. 根据权利要求20所述的方法,其特征在于,所述获取第一波束集合的波束信息,包括:
    接收与所述终端存在交互关系的多个基站提供的参考信号集合的波束信息;
    根据所述参考信号集合确定所述第一波束集合的波束信息。
  25. 根据权利要求24所述的方法,其特征在于,所述输出波束集合的波束信息属于所述多个基站中的第一基站;
    所述方法还包括:
    向所述第一基站上报所述输出波束集合的波束信息。
  26. 根据权利要求24所述的方法,其特征在于,所述输出波束集合的波束信息属于所述多个基站;
    所述方法还包括:
    向所述多个基站上报所述输出波束集合的波束信息。
  27. 根据权利要求20所述的方法,其特征在于,所述获取第一波束集合的波束信息,包括:
    接收与所述终端存在交互关系的第一基站提供的参考信号集合的波束信息;
    根据所述参考信号集合确定所述第一波束集合的波束信息。
  28. 根据权利要求27所述的方法,其特征在于,所述输出波束集合的波束信息属于所述第一基站;
    所述方法还包括:
    向所述第一基站上报所述输出波束集合的波束信息。
  29. 根据权利要求27所述的方法,其特征在于,所述输出波束集合的波束信息属于与所述终端存在交互关系的多个基站;
    所述方法还包括:
    向所述多个基站上报所述输出波束集合的波束信息。
  30. 根据权利要求20至29任一项所述的方法,其特征在于,所述方法还包括:
    获取与所述终端具有交互关系的至少一个基站配置的一组波束集合;
    根据所述一组波束集合确定所述第一波束集合。
  31. 根据权利要求30所述的方法,其特征在于,所述根据所述一组波束集合确定所述第一波束集合,包括:
    将所述一组波束集合作为所述第一波束集合;或,将所述一组波束集合的子集作为所述第一波束集合;或,将所述一组波束集合中符合要求的波束集合作为所述第一波束集合。
  32. 根据权利要求20至29任一项所述的方法,其特征在于,所述方法还包括:
    接收与所述终端具有交互关系的至少一个基站预配置的测量配置信息。
  33. 根据权利要求20至29任一项所述的方法,其特征在于,所述方法还包括:
    接收与所述终端具有交互关系的至少一个基站预配置的上报配置信息。
  34. 根据权利要求32或33所述的方法,其特征在于,所述预配置的方式是通过广播、下行控制信息DCI、媒体接入层控制单元MAC CE、无线资源控制RRC消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种实现的。
  35. 根据权利要求32或33所述的方法,其特征在于,所述预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。
  36. 根据权利要求20至29任一项所述的方法,其特征在于,所述终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式传输所述第一波束集合。
  37. 根据权利要求19至28任一项所述的方法,其特征在于,所述波束管理模型是基于AI的波束管理模型或基于AI的波束管理算法。
  38. 一种波束管理信息交互装置,其特征在于,所述装置包括:
    第一发送模块,用于向第一基站提供第一波束集合的波束信息,所述第一波束集合的波束信息用于所述第一基站基于波束管理模型确定输出波束集合的波束信息。
  39. 根据权利要求38所述的装置,其特征在于,所述输出波束集合包括如下至少一种:
    基于所述波束管理模型对所述波束信息进行恢复后得到的第二波束集合;
    基于所述波束管理模型进行波束选择后得到的第三波束集合。
  40. 根据权利要求39所述的装置,其特征在于,所述第一波束集合、所述第二波束集合和所述第三波束集合包括以下情况的至少一种:属于同一基站的不同波束;或,属于不同基站的不同波束;或,属于同一频率的不同波束;或,属于不同频率的不同波束。
  41. 根据权利要求38所述的装置,其特征在于,所述波束信息包括所述波束的标识、所述波束的质量、所述波束的频段、所述波束的基站信息中的至少一种。
  42. 根据权利要求40所述的装置,其特征在于,
    在所述第一波束集合是属于多个基站的情况下,所述输出波束集合是属于所述第一基站的;
    或,在所述第一波束集合是属于所述多个基站的情况下,所述输出波束集合是属于所述多个基站的;
    或,在所述第一波束集合是属于所述第一基站的情况下,所述输出波束集合是属于所述第一基站的;
    或,在所述第一波束集合是属于所述第一基站的情况下,所述输出波束集合是属于所述多个基站的。
  43. 根据权利要求38所述的装置,其特征在于,
    所述第一发送模块,还用于向所述第一基站发送所述第一波束集合的波束信息。
  44. 根据权利要求38所述的装置,其特征在于,
    所述第一发送模块,还用于向与所述终端具有交互关系的多个基站发送第一波束子集合的波束信息,所述多个基站中除所述第一基站以外的基站用于向所述第一基站转发所述第一波束子集合的波束信息,所述第一波束子集合是所述第一波束集合的子集。
  45. 根据权利要求44所述的装置,其特征在于,所述第一发送模块,还用于向所述多个基站分别发送属于各个基站的所述第一波束子集合的波束信息。
  46. 根据权利要求44所述的装置,其特征在于,所述多个基站之间通过基站间接口、基站间人工智能类数据传输信道、基站间组播和广播信道中的至少一种方式传输所述波束信息。
  47. 根据权利要求38所述的装置,其特征在于,
    所述第一发送模块,还用于向与所述终端具有交互关系的多个基站发送所述第一波束集合的波束信息,所述第一波束集合用于所述多个基站确定各自对应的所述输出波束集合的波束信息。
  48. 根据权利要求38至47任一项所述的装置,其特征在于,
    第一接收模块,用于接收与所述终端具有交互关系的至少一个基站提供的参考信号集合的波束信息;
    第一处理模块,用于根据所述参考信号集合的波束信息确定所述第一波束集合。
  49. 根据权利要求38至47任一项所述的装置,其特征在于,所述方法还包括:
    第一接收模块,用于获取与所述终端具有交互关系的至少一个基站配置的一组波束集合;
    第一处理模块,用于根据所述一组波束集合确定所述第一波束集合。
  50. 根据权利要求49所述的装置,其特征在于,
    所述第一处理模块,还用于将所述一组波束集合作为所述第一波束集合;或,所述第一处理模块,还用于将所述一组波束集合的子集作为所述第一波束集合;或,所述第一处理模块,还用于将所述一组 波束集合中符合要求的波束集合作为所述第一波束集合。
  51. 根据权利要求38至47任一项所述的装置,其特征在于,
    第一接收模块,用于接收与所述终端具有交互关系的至少一个基站预配置的测量配置信息。
  52. 根据权利要求38至47任一项所述的装置,其特征在于,
    第一接收模块,用于接收与所述终端具有交互关系的至少一个基站预配置的上报配置信息。
  53. 根据权利要求51或52所述的装置,其特征在于,所述预配置的方式是通过广播、下行控制信息DCI、媒体接入层控制单元MAC CE、无线资源控制RRC消息、下行数据信道、下行控制信道、下行人工智能类数据传输信道、下行组播信道、上行广播信道中的至少一种实现的。
  54. 根据权利要求51或52所述的装置,其特征在于,所述预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。
  55. 根据权利要求38至47任一项所述的装置,其特征在于,所述终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式传输所述第一波束集合。
  56. 根据权利要求38至47任一项所述的装置,其特征在于,所述波束管理模型是基于人工智能AI的波束管理模型或基于AI的波束管理算法。
  57. 一种波束管理信息交互装置,其特征在于,所述装置包括:
    第二接收模块,用于获取第一波束集合的波束信息;
    第二处理模块,用于基于波束管理模型,对所述第一波束集合的波束信息进行处理,得到输出波束集合的波束信息。
  58. 根据权利要求57所述的装置,其特征在于,所述输出波束集合包括如下的至少一种:
    基于所述波束管理模型对对所述波束信息进行恢复后得到的第二波束集合;
    基于所述波束管理模型进行波束选择后得到的第三波束集合。
  59. 根据权利要求57所述的装置,其特征在于,所述第一波束集合、所述第二波束集合和所述第三波束集合包括以下情况的至少一种:属于同一基站的不同波束;或,属于不同基站的不同波束;或,属于同一频率的不同波束;或,属于不同频率的不同波束。
  60. 根据权利要求59所述的装置,其特征在于,所述波束信息包括所述波束的标识、所述波束的质量、所述波束的频段、所述波束的基站信息中的至少一种。
  61. 根据权利要求59所述的装置,其特征在于,
    所述第二接收模块,还用于接收与所述终端存在交互关系的多个基站提供的参考信号集合的波束信息;根据所述参考信号集合确定所述第一波束集合的波束信息。
  62. 根据权利要求61所述的装置,其特征在于,所述输出波束集合的波束信息属于所述多个基站中的第一基站;
    第二发送模块,用于向所述第一基站上报所述输出波束集合的波束信息。
  63. 根据权利要求61所述的装置,其特征在于,所述输出波束集合的波束信息属于所述多个基站;
    第二发送模块,用于向所述多个基站上报所述输出波束集合的波束信息。
  64. 根据权利要求57所述的装置,其特征在于,所述第二接收模块,还用于接收与所述终端存在交互关系的第一基站提供的参考信号集合的波束信息;根据所述参考信号集合确定所述第一波束集合的波束信息。
  65. 根据权利要求64所述的装置,其特征在于,所述输出波束集合的波束信息属于所述第一基站;
    第二发送模块,用于向所述第一基站上报所述输出波束集合的波束信息。
  66. 根据权利要求64所述的装置,其特征在于,所述输出波束集合的波束信息属于与所述终端存在交互关系的多个基站;
    第二发送模块,用于向所述多个基站上报所述输出波束集合的波束信息。
  67. 根据权利要求57至66任一项所述的装置,其特征在于,
    第二接收模块,还用于获取与所述终端具有交互关系的至少一个基站配置的一组波束集合;
    第二处理模块,还用于根据所述一组波束集合确定所述第一波束集合。
  68. 根据权利要求67所述的装置,其特征在于,
    第二处理模块,还用于将所述一组波束集合作为所述第一波束集合;
    或,第二处理模块,还用于将所述一组波束集合的子集作为所述第一波束集合;
    或,第二处理模块,还用于将所述一组波束集合中符合要求的波束集合作为所述第一波束集合。
  69. 根据权利要求57至66任一项所述的装置,其特征在于,
    第二接收模块,还用于接收与所述终端具有交互关系的至少一个基站预配置的测量配置信息。
  70. 根据权利要求57至66任一项所述的装置,其特征在于,
    第二接收模块,还用于接收与所述终端具有交互关系的至少一个基站预配置的上报配置信息。
  71. 根据权利要求69或70所述的装置,其特征在于,所述预配置的方式是通过广播、下行控制信息DCI、媒体接入层控制单元MAC CE、无线资源控制RRC消息、下行数据信道、下行控制信道、或者下行人工智能类数据传输信道、或者下行组播信道、上行广播信道中的至少一种实现的。
  72. 根据权利要求69或70所述的装置,其特征在于,所述预配置的内容包括波束的标识信息、波束对应的参考信号、波束测量对应的测量配置、波束的需要测量的质量信息、波束的频段信息、波束的基站信息、上报所述第一波束集合的方式中的至少一种。
  73. 根据权利要求57至66任一项所述的装置,其特征在于,所述终端通过上行数据信道、上行控制信道、上行人工智能类数据传输信道、上行组播信道、上行广播信道中的至少一种方式传输所述第一波束集合。
  74. 根据权利要求57至66任一项所述的装置,其特征在于,所述波束管理模型是基于AI的波束管理模型或基于AI的波束管理算法。
  75. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至19任一所述的波束管理信息交互方法,或,实现如权利要求20至37任一所述的波束管理信息交互方法。
  76. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求1至19任一所述的波束管理信息交互方法,或,实现如权利要求20至37任一所述的波束管理信息交互方法。
PCT/CN2021/142700 2021-12-29 2021-12-29 波束管理信息交互方法、装置、终端及介质 WO2023123127A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142700 WO2023123127A1 (zh) 2021-12-29 2021-12-29 波束管理信息交互方法、装置、终端及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142700 WO2023123127A1 (zh) 2021-12-29 2021-12-29 波束管理信息交互方法、装置、终端及介质

Publications (1)

Publication Number Publication Date
WO2023123127A1 true WO2023123127A1 (zh) 2023-07-06

Family

ID=86996947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142700 WO2023123127A1 (zh) 2021-12-29 2021-12-29 波束管理信息交互方法、装置、终端及介质

Country Status (1)

Country Link
WO (1) WO2023123127A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190368A1 (en) * 2018-03-28 2019-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and computer programs for performing and enabling beam management in a communication network
CN111954228A (zh) * 2019-05-16 2020-11-17 北京三星通信技术研究有限公司 波束管理方法、装置、电子设备及计算机可读存储介质
CN113545119A (zh) * 2019-04-30 2021-10-22 联发科技股份有限公司 具有功率节省功能的波束管理电子设备和方法
US20210336683A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Reporting beam measurements for proposed beams and other beams for beam selection
CN113785503A (zh) * 2019-05-01 2021-12-10 高通股份有限公司 使用自适应学习的波束管理
US20210400651A1 (en) * 2018-08-15 2021-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses, devices and methods for performing beam management

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190368A1 (en) * 2018-03-28 2019-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and computer programs for performing and enabling beam management in a communication network
US20210400651A1 (en) * 2018-08-15 2021-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses, devices and methods for performing beam management
CN113545119A (zh) * 2019-04-30 2021-10-22 联发科技股份有限公司 具有功率节省功能的波束管理电子设备和方法
CN113785503A (zh) * 2019-05-01 2021-12-10 高通股份有限公司 使用自适应学习的波束管理
CN111954228A (zh) * 2019-05-16 2020-11-17 北京三星通信技术研究有限公司 波束管理方法、装置、电子设备及计算机可读存储介质
US20210336683A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Reporting beam measurements for proposed beams and other beams for beam selection

Similar Documents

Publication Publication Date Title
US12003283B2 (en) Method and apparatus for measuring and reporting cross-link interference in next-generation mobile communication system
EP4054244A1 (en) Device and method for performing handover in wireless communication system
CN107135055B (zh) 测量方法,csi-rs资源共享方法和装置
CN111726808B (zh) 通信方法和装置
CN110769458B (zh) 通信方法、接入网设备和终端设备
CN109788517B (zh) 一种Pcell或PScell管理方法及装置
CN110505714B (zh) 多链接通信方法、设备和终端
WO2015196563A1 (zh) 小区测量处理方法、装置、终端及基站
CN103391632A (zh) 网络接入方法及装置
CN113647127B (zh) 基于ssb的测量方法及装置
US20230422065A1 (en) Apparatus and method for measurement in wireless communication system
WO2020164069A1 (en) Mobility enhancement in a connected state
US20220264343A1 (en) Communication method and device
CN111434071B (zh) 信号接收装置及方法、通信系统
WO2017164057A1 (ja) 基地局及び送信方法
CN111757545B (zh) 通信方法和通信装置
US20120252472A1 (en) Wireless communication system, user terminal, base station, and communication method
CN104521261A (zh) 用于使得在电信网络中能够合法侦听的方法、用户装置、基站收发台、程序与计算机程序产品
WO2023123127A1 (zh) 波束管理信息交互方法、装置、终端及介质
US10263742B2 (en) Coordinated communication method and system and apparatus
WO2024130602A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023236143A1 (zh) 信息收发方法与装置
WO2023115301A1 (zh) 数据传输方法、装置、计算机设备及存储介质
WO2023207026A1 (zh) 信息指示和处理方法以及装置
WO2022027633A1 (zh) 测量上报方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969495

Country of ref document: EP

Kind code of ref document: A1