WO2023122994A1 - 换热板、电池、用电装置及电池的制造方法 - Google Patents

换热板、电池、用电装置及电池的制造方法 Download PDF

Info

Publication number
WO2023122994A1
WO2023122994A1 PCT/CN2021/142210 CN2021142210W WO2023122994A1 WO 2023122994 A1 WO2023122994 A1 WO 2023122994A1 CN 2021142210 W CN2021142210 W CN 2021142210W WO 2023122994 A1 WO2023122994 A1 WO 2023122994A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange plate
battery
plate
heating film
Prior art date
Application number
PCT/CN2021/142210
Other languages
English (en)
French (fr)
Inventor
王良诣
黄海华
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/142210 priority Critical patent/WO2023122994A1/zh
Priority to EP21969372.8A priority patent/EP4386935A1/en
Priority to CN202180095048.3A priority patent/CN116964827A/zh
Publication of WO2023122994A1 publication Critical patent/WO2023122994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a heat exchange plate for a battery, a battery, an electrical device and a manufacturing method of the battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the present application was made in view of the above-mentioned problems, and an object thereof is to provide a heat exchange plate for a battery, a battery, an electric device including the battery, and a method of manufacturing the battery that can reliably perform heat exchange and have high safety .
  • the first aspect of the present application provides a heat exchange plate for batteries, which is characterized by comprising a heat exchange plate main body and a package plate; the heat exchange plate main body has a cooling area and a heating area; the package The plate is fixedly installed on the heat exchange plate body and forms a receiving cavity between the encapsulation plate and the heat exchange plate main body of the heating area, and a heating film is arranged in the receiving cavity.
  • the heating film is packaged between the main body of the heat exchange plate and the packaging plate fixed to the main body of the heat exchange plate, it is possible to ensure reliable fixation between the heating film and the main body of the heat exchange plate, while avoiding damage caused by the heating film and adjacent battery cells. Problems such as glue opening and dry burning caused by direct contact with the body; and it can also avoid the bad situation that the metal particles in the battery pierce the heating film and cause a short circuit of the battery cell.
  • the main body of the heat exchange plate is divided into a cooling area and a heating area, compared with the case where the cooling plate and the heating film are overlapped in the past, the heat exchange plate can be directly bonded to the battery cell, ensuring the integrity of the heat exchange plate and the battery. The bonding strength of the battery cell is improved, and it is also possible to achieve balanced cooling and heating of the battery cell from the side of the battery cell.
  • the cooling area and the heating area of the heat exchange plate body do not overlap with each other.
  • the heat exchange plate is directly bonded to the battery cell without intervening the heating film, which ensures high bonding strength and cooling efficiency between the heat exchange plate and the battery cell.
  • the battery cell can be thermally managed according to the heating or cooling requirements of different parts of the battery cell, so as to ensure the uniformity of the temperature of the battery cell as a whole.
  • the package plate is welded to the main body of the heat exchange plate in such a manner that the heating film is closely attached to the main body of the heat exchange plate.
  • the packaging plate is fixed to the main body of the heat exchange plate by welding, reliable fixing can be achieved, and the operation is easy and the structure is simple.
  • the heating film can be tightly attached to the main body of the heat exchange plate through welding connection, it can not only ensure the effective heating of the adjacent battery cells by the heating film, but also avoid disadvantages such as glue separation of the heating film.
  • the packaging board is closely attached to the heating film through thermal conductive glue.
  • the thermally conductive adhesive is interposed between the packaging plate and the heating film, the close contact between the heating film and the main body of the heat exchange plate can be further ensured, and efficient heating of the battery cells can be realized. Moreover, the provision of the heat-conducting glue also helps to transfer the heat of the heating film to the packaging board evenly, which can ensure the uniform heating of the battery cells.
  • the heat-conducting glue is heat-conducting silica gel.
  • thermally conductive silica gel Since the thermally conductive silica gel has excellent resistance to alternating cold and heat, aging resistance and electrical insulation, it can improve the reliability and service life of the heat exchange plate and reduce maintenance costs.
  • the package plate is welded to the main body of the heat exchange plate at a position avoiding the heating film.
  • the packaging plate is welded to the main body of the heat exchange plate at a position avoiding the heating film, the heating performance of the heating film will not be reduced due to soldering filler metal, welding position, etc. Moreover, multiple or continuous welding can be performed on the periphery of the heating film at a position avoiding the heating film to increase the pressing force that makes the heating film closely adhere to the heat exchange plate and the packaging plate.
  • the heating film is in the shape of a thin sheet, and the heating film is arranged in a meandering manner in the heating area to form a closed loop or an open shape
  • the packaging board includes a surrounding a welded part and an intermediate welded part, the peripheral welded part is formed around the heating film at the edge part of the heating area, and the intermediate welded part is formed in the heating area different from the surrounding welded part and avoids the The location of the heating film.
  • the heat exchange plate can be formed thin.
  • the heating film can be distributed in the entire heating area as much as possible or the entire heating area can be uniformly heated.
  • the package board includes a peripheral soldering portion formed at an edge portion of the heating area surrounding the heating film and an intermediate soldering portion formed at a position in the heating area that is different from the peripheral soldering portion and avoids the heating film, therefore, Not only can welding be performed on the peripheral part of the heating area (that is, the peripheral part of the packaging board) to apply a pressing force to the heating film, but also can be welded in the middle part of the heating area (the middle part of the packaging board) to apply pressure to the heating film.
  • the pressing force so that the entire heating film can be pressed firmly on the main body of the heat exchange plate and the packaging plate, and the force on the heating film in all places in the heating area is generally uniform.
  • a cooling flow path through which a cooling medium flows is formed in the main body of the heat exchange plate in the cooling area.
  • the cooling region can function as a cooling plate to cool adjacent battery cells.
  • both the main body of the heat exchange plate and the packaging plate are made of aluminum.
  • the second aspect of the present application provides a battery, which is characterized in that it includes at least one battery cell and at least one heat exchange plate, the heat exchange plate is the heat exchange plate described in the first aspect of the application, and the heat exchange plate The plate is disposed near each of the battery cells.
  • the battery cell and even the battery can be cooled and/or heated uniformly and efficiently, and there will be no adverse conditions such as degumming of the heating film, dry heating of the heating film, and short circuit of the heating film, which improves the reliability and use of the battery. safety.
  • the heat exchange plate is arranged at a position close to the first heat exchange surface of each of the battery cells.
  • disposing the heat exchange plate near the large-area heat dissipation surface of the battery cell, or near the heat exchange surface of the battery cell with obvious temperature unevenness, etc. can realize the maintenance of the battery cell and even the Uniform and efficient cooling and/or heating of batteries.
  • the heat exchange plates arranged between adjacent battery cells have a higher heat exchange capacity than the heat exchange plates arranged at the end sides.
  • the heat exchange plates arranged between adjacent battery cells usually exchange heat with the battery cells on both sides, and the heat exchange plates arranged on the end side usually only exchange heat with the battery cells on the end side, Therefore, the heat exchange plates sandwiched between adjacent battery cells have better heat exchange capacity than the heat exchange plates of the battery cells arranged at the end sides, which helps to ensure the temperature uniformity of the battery as a whole.
  • the cooling flow path formed in any one of the heat exchange plate bodies for the cooling medium to flow is connected to the other heat exchange plate body.
  • the cooling channels through which the cooling medium flows formed in the plate main body are connected in parallel.
  • the cooling passages in each heat exchange plate can be cooled independently, so the cooling efficiency of each battery cell can be improved, and the temperature of the battery as a whole can be further ensured. Uniformity.
  • the battery further includes a second heat management plate disposed close to the second heat exchange surface of the battery cell, and the heat exchange plate is such that the cooling area is larger than the heating area It is disposed close to the first heat exchange surface in a manner far from the second heat management plate.
  • the heat exchange plate is arranged near the first heat exchange surface of the battery cell and functions as the first heat management plate, and a second heat exchange plate for cooling may be further arranged near the second heat exchange surface different from the first heat exchange surface. management plate, thereby enabling further improvement of cooling efficiency. Furthermore, the heat exchange plate is arranged such that the cooling area is farther from the second heat management plate than the heating area, which can further improve the cooling efficiency and temperature uniformity of the battery as a whole.
  • the cooling flow path in the second heat management plate is connected in parallel with the cooling flow path in the heat exchange plate.
  • a third aspect of the present application provides an electrical device, which includes the heat exchange plate described in the first aspect, or includes the battery described in the second aspect.
  • the fourth aspect of the present application provides a battery manufacturing method, which is characterized in that it includes the following steps: providing at least one battery cell; providing at least one heat exchange plate, the heat exchange plate is described in the first aspect of the application a heat exchange plate; and positioning the heat exchange plate close to each of the battery cells.
  • the following steps are further included: providing a second heat management plate; and positioning the heat exchange plate close to the first heat exchange surface of the battery and making the second heat management plate The plate is located close to the second heat exchange surface of the battery, wherein the cooling area in the heat exchange plate is farther from the second heat management plate than the heating area.
  • the step of providing at least one heat exchange plate includes: providing a heating film closely attached to the main body of the heat exchange plate and the packaging plate; The position of the heating film and the position avoiding the heating film other than the position surrounding the heating film are welded to the main body of the heat exchange plate.
  • a heat exchange plate having at least one of the following effects, a battery having the heat exchange plate, an electrical device including the battery, and a battery manufacturing method.
  • a battery with reliable and efficient heat exchange performance and uniform heat exchange can be provided, thereby providing a battery with high service reliability and high service safety.
  • FIG. 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • FIG. 2 is an exploded view schematically showing the structure of a battery case according to an embodiment of the present application.
  • FIG. 3 is a perspective view schematically showing a heat exchange plate of a battery according to an embodiment of the present application.
  • FIG. 4 is an exploded perspective view of the heat exchange plate shown in FIG. 3 .
  • FIG. 5 is a front view schematically showing a heat exchange plate of a battery according to an embodiment of the present application.
  • Fig. 6 is an A-A sectional view taken along line A-A shown in Fig. 5 .
  • FIG. 7 is an enlarged schematic diagram of part B of FIG. 6 .
  • FIG. 8 is a schematic view schematically showing an assembled state of a heat exchange plate and a plurality of battery cells according to an embodiment of the present application.
  • FIG. 9 is a schematic view schematically showing an assembly state of a heat exchange plate, a second heat management plate, and a plurality of battery cells according to an embodiment of the present application.
  • FIG. 10 is a flowchart illustrating a battery manufacturing method according to an embodiment of the present application.
  • FIG. 11 is a flowchart illustrating a battery manufacturing method according to an embodiment of the present application.
  • Fig. 12 is a flow chart showing the steps of providing a heat exchange plate according to an embodiment of the present application.
  • the first feature may be in direct contact with the first feature or the second feature "on” or “under” the second feature. Indirect contact through intermediaries.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a cooling plate or the like is generally provided for heat management.
  • thermal management includes not only suppressing temperature rise, but also promoting temperature rise when the battery temperature is too low. Therefore, the related art proposes a technical solution of pasting a heating film layer on the cooling plate, thereby taking into account both the cooling function and the heating function of the battery.
  • the cooling plate with heating function in the related art still has some safety problems in use.
  • the inventors of the present application have found through observation and research that in the related art, there are problems such as glue opening on the heating film layer on the cooling plate with heating function. Under the situation that the heating film layer is unglued, if continue to heat the heating film with power supply, there will be major safety problems such as heating film dry burning or even catching fire. Furthermore, there is a disadvantage that the heating film layer is pierced by metal particles and the like.
  • the reasons for considering the above adverse conditions include at least the following aspects.
  • the battery cell will expand and deform during use, which will cause the adhesive layer between the heating film layer and the cooling plate to crack (also called glue opening).
  • the adhesive force between the heating film layer and the cooling plate is reduced by repeated alternation of cold and heat, which makes the heating film easy to be glued.
  • the cooling plate is pasted on the battery cell through the heating film layer, the ungluing of the heating film leads to poor cooling of the battery cell, which also poses a safety hazard.
  • the heating film is in direct contact with the cooling plate and the battery cells, metal particles in the battery may sometimes pierce the heating film, causing a short circuit of the heating film and causing a fire.
  • the inventors of the present application found that the above-mentioned problems can be solved by arranging a heat exchange plate with a specific structure in the battery. That is, the present application provides a heat exchange plate with high safety, which can reliably perform heat exchange such as cooling and heating, and does not have disadvantages such as the heating film being glued and dry-burned and being punctured, and a battery using the heat exchange plate. , an electric device including the battery, and a method for manufacturing the battery.
  • the batteries involved in this application can be any batteries, such as battery modules and battery packs, or primary batteries and secondary batteries.
  • secondary batteries include nickel-metal hydride batteries, nickel-cadmium batteries, lead-acid (or lead storage) batteries, lithium Ion batteries, sodium-ion batteries, polymer batteries, etc.
  • This battery is suitable for a variety of electrical equipment that uses batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include aircraft, rockets, aerospace Aircraft and spacecraft, etc.; batteries are used to provide electrical energy for the above-mentioned electrical equipment.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 involved in an embodiment of the present application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the vehicle 1 is equipped with a battery 10 , and the battery 10 can be arranged at the bottom, head or tail of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 can also include a controller 11 and a motor 12 , the controller 11 is used to control the battery 10 to supply power to the motor 12 , for example, it can be used for starting the vehicle 1 , navigating, and working power requirements during driving.
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include a plurality of battery cells 20 , and the battery cells 20 refer to the smallest unit forming a battery module or a battery pack.
  • a plurality of battery cells 20 may be connected in series and/or in parallel via electrode terminals for various applications.
  • the batteries involved in this application may include battery modules or battery packs.
  • the plurality of battery cells 20 may be connected in series, in parallel or in parallel, and the mixed connection refers to a mixture of series and parallel.
  • the battery 10 in the embodiment of the present application may be directly composed of a plurality of battery cells 20 , or may be composed of a battery module first, and then the battery module is composed of a battery.
  • FIG. 2 schematically shows the structure of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a case 30 and at least one battery cell 20 accommodated in the case 30 .
  • the case 30 accommodates the battery cells 20 to prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells 20 .
  • the body 30 may be a simple three-dimensional structure such as a single cuboid, cylinder or sphere, or a complex three-dimensional structure composed of simple three-dimensional structures such as a cuboid, cylinder or sphere, which is not limited in this embodiment of the present application.
  • the material of the box body 30 can be such as alloy materials such as aluminum alloy, iron alloy, also can be as polymer material such as polycarbonate, polyisocyanurate foamed plastics, or be the composite material such as glass fiber plus epoxy resin, The embodiment of the present application does not limit this.
  • the box body 30 may include a first part 301 and a second part 302 , the first part 301 and the second part 302 cover each other, and jointly define a space for accommodating the battery cells 20 .
  • the second part 302 can be a box-shaped structure with one end open, and the first part 301 can be a plate-shaped structure.
  • the space of the battery cell 20 ; the first part 301 and the second part 302 can also be a box-shaped structure with one side open, and the open side of the first part 301 covers the open side of the second part 302 .
  • the battery cell 20 may be a lithium-ion battery, a sodium-ion battery, or a magnesium-ion battery, which is not limited in this embodiment of the present application.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes, which are not limited in this embodiment of the present application.
  • the battery cells 20 are generally divided into three types according to the packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the embodiment of the present application is particularly suitable for a battery whose surface in contact with the heat exchange plate is generally a flat surface.
  • the battery cell 20 in the embodiment of the present application generally includes an end cover, a casing and a battery cell assembly.
  • the end cap refers to a component that covers the opening of the casing to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap can be adapted to the shape of the housing to fit the housing.
  • the end cap can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap is not easy to deform when being squeezed and collided, so that the battery cell 20 can have higher structural strength , safety performance can also be improved.
  • Functional components such as electrode terminals can be provided on the end cap. The electrode terminals can be used for electrical connection with the battery cell assembly for outputting or inputting electric energy of the battery cells 20 .
  • the material of the end cap can also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can also be provided inside the end cover, and the insulator can be used to isolate the electrical connection components in the housing from the end cover, so as to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the housing is an assembly for mating with the end caps to form the internal environment of the battery cell 20 , wherein the internal environment formed can be used to accommodate the cell assembly, electrolyte (not shown in the figure) and other components.
  • the casing and the end cover may be independent parts, and an opening may be provided on the casing, and the internal environment of the battery cell is formed by making the end cover cover the opening at the opening.
  • the end cover and the housing can also be integrated.
  • the end cover and the housing can form a common connection surface before other components enter the housing.
  • the end Cover the housing.
  • the housing can be in various shapes and dimensions, such as cuboid, cylinder, hexagonal prism, etc.
  • the shape of the housing can be determined according to the specific shape and size of the battery cell assembly.
  • the housing can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in this embodiment of the present application. Since the embodiment of the present application is described by taking the cylindrical battery cell 20 as an example, the housing of the battery cell 20 is, for example, cylindrical.
  • the battery cell assembly is a component in the battery cell 20 where electrochemical reactions occur.
  • the casing may contain one or more cell assemblies.
  • the cell assembly is mainly formed by winding or stacking the positive electrode sheet and the negative electrode sheet, and usually a separator is provided between the positive electrode sheet and the negative electrode sheet.
  • the part of the positive electrode sheet and the negative electrode sheet with the active material constitutes the main body of the cell assembly, and the parts of the positive electrode sheet and the negative electrode sheet without the active material each constitute a tab (not shown in the figure).
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • FIG. 3 schematically shows the three-dimensional structure of the heat exchange plate 100 applied in the above battery.
  • Fig. 4 shows an exploded perspective view of the heat exchange plate 100 of the embodiment of the present application.
  • Fig. 5 shows a front view of the heat exchange plate 100 of the embodiment of the present application.
  • Fig. 6 shows A-A sectional view.
  • FIG. 7 shows an enlarged schematic view of part B in FIG. 6 .
  • the heat exchange plate 100 for a battery includes a heat exchange plate body 101 and a package plate 102 ; the heat exchange plate body 101 has a cooling area 101A and a heating area 101B; the package plate 102 is fixedly mounted on the heat exchange plate main body 101 and forms an accommodation cavity 104 (see FIG. 7 ) between the packaging plate 102 and the heat exchange plate main body 101 of the heating area 101A, and a heating film 103 is provided in the accommodation cavity 104 .
  • the heat exchange plate 100 performs cooling and heating functions as a part of the thermal management system in the battery.
  • the heat exchange plate main body 101 of the heat exchange plate 100 includes a cooling area 101A and a heating area 101B.
  • a cooling flow path or the like can be arranged to cool the battery cells;
  • a heating film can be arranged to heat the battery cells.
  • the heat exchange plate main body 101 is flat as a whole, and usually has a connected cavity in the cooling area 101A. Can be welded.
  • the packaging board 102 is generally plate-shaped and has a slightly raised center plate. In this way, when the packaging plate 102 is aligned with the heat exchange plate main body 101 , a flat cavity, that is, the accommodating cavity 104 can be formed between the packaging plate 102 and the heat exchange plate main body 101 .
  • a heating film 103 is accommodated in this accommodation chamber 104 . In other words, the heating film 103 is sandwiched by the heat exchange plate main body 101 (heating region 101B) and the packaging plate 102 to be fixed to the heat exchange plate main body 101 .
  • the heating film 103 has, for example, a resistance wire inside and an insulating material outside, thereby enabling electric heating.
  • the heating film 103 is in the form of a film as a whole, and has a shape that basically matches the inner space of the accommodating chamber 104 .
  • the thickness of the heating film 103 is not particularly limited, and may be, for example, about 0.5 mm.
  • the heat exchange plate main body 101 When the battery cell 20 is cooled by such a heat exchange plate 100 , the heat exchange plate main body 101 , especially the cooling region 101A in the heat exchange plate main body 101 can be directly bonded to the battery cell 20 .
  • the package plate 102 can also be directly bonded to the battery cell 20 .
  • both sides of the heat exchange plate 100 can be bonded to the battery cells.
  • the heating film 103 is packaged between the heat exchange plate main body 101 and the package plate 102 fixed to the heat exchange plate main body 101, reliable fixing between the heating film 103 and the heat exchange plate main body 101 can be ensured, and it is also possible to avoid Because the heating film 103 is in direct contact with the adjacent battery cells 20 , it will be peeled off and fall off. In addition, even if the battery cells are expanded and deformed due to use, the heating film 103 is not easy to be glued and peeled off.
  • the heating film 103 is packaged and protected by the heat exchange plate main body 101 and the packaging plate 102 , it is possible to avoid the short circuit of the battery cells caused by metal particles in the battery piercing the heating film 103 .
  • the heat exchange plate main body 101 is divided into the cooling area 101A and the heating area 101B, compared with the case where the conventional cooling plate and the heating film are overlapped, the heat exchange plate 100 can be directly bonded to the battery cell 20, ensuring The bonding strength between the heat exchange plate 100 and the battery cell 20 can also realize balanced cooling and heating of the battery cell 20 from the side of the battery cell 20 .
  • the cooling area 101A and the heating area 101B of the heat exchange plate body 101 do not overlap with each other.
  • the misalignment includes both partial misalignment and total misalignment.
  • the heat exchange plate 100 is directly bonded to the battery cell 20 without intervening the heating film 103, ensuring high adhesion between the heat exchange plate 100 and the battery cell 20 strength and cooling efficiency.
  • thermal management of the battery cell 20 can be performed according to the heating or cooling requirements of different parts of the battery cell 20 , so as to ensure the uniformity of the temperature of the battery cell 20 as a whole.
  • the temperature of the central part of the battery cell 20 in the height direction up and down direction in FIG. 2
  • the cooling area 101A can be more overlapped with the central part of the battery cell 20 in the height direction
  • the heating area 101B can be mainly located at the end of the battery cell 20 in the height direction, thereby facilitating The temperature uniformity of each battery cell 20 is ensured.
  • the package plate 102 is welded to the heat exchange plate main body 101 in such a manner that the heating film 103 is closely attached to the heat exchange plate main body 101 .
  • the so-called close contact means that the heating film 103 is in close contact with the heat exchange plate main body 101 .
  • the heating film 103 and the heat exchange plate main body 101 are in close contact mainly by the pressing force exerted by the packaging plate 102, and an adhesive can be applied between the heating film 103 and the heat exchange plate main body 101, or No adhesive is applied.
  • the heating film 103 is in close contact with the heat exchange plate main body 101 and the surface of the packaging plate 102, so that the heat of the heating film 103 can be transferred to the battery cell 20 through the two plates as much as possible, thereby improving the heating efficiency.
  • the packaging plate 102 may be welded to the heat exchange plate main body 101 .
  • any suitable welding method may be used.
  • other connection methods capable of firmly fixing the packaging board 102 may also be used.
  • the packaging plate 102 is fixed to the heat exchange plate main body 101 by welding, reliable fixing can be achieved, and the operation is easy and the structure is simple.
  • the heating film 103 can be tightly attached to the heat exchange plate main body 101 by welding, it can not only ensure the effective heating of the adjacent battery cells 20 by the heating film 103 , but also avoid problems such as glue separation of the heating film 103 .
  • the packaging board 102 is closely attached to the heating film 103 through the thermal conductive glue 105 .
  • a compressible thermally conductive material such as thermally conductive silicone rubber 105
  • the thermally conductive adhesive 105 has substantially the same shape as that of the heating film 103 .
  • thermally conductive adhesive 105 is sandwiched between the packaging plate 102 and the heating film 103 , the close contact between the heating film 102 and the heat exchange plate main body 101 can be further ensured, and efficient heating of the battery cells 20 can be achieved. Moreover, disposing the thermally conductive adhesive 105 also helps to transfer the heat of the heating film 103 to the packaging board 102 uniformly, so as to ensure uniform heating of the battery cells 20 .
  • the thermally conductive adhesive 105 is thermally conductive silica gel.
  • the heat-conducting silica gel has excellent resistance to alternating cold and heat, aging resistance and electrical insulation, it can improve the reliability and service life of the heat exchange plate 100 and reduce maintenance costs.
  • the package plate 102 is welded to the heat exchange plate main body 101 at a position avoiding the heating film 103 .
  • the positions on the packaging board 102 avoiding the heating film 103 include the positions on the packaging board 102 corresponding to the positions without the heating film 103 in the accommodating cavity 104 .
  • the heating film 103 is, for example, formed into an annular shape as shown in FIG. Corresponding parts of the enclosed middle position.
  • the positions on the sealing board 102 that avoid the heating film 103 include the portion of the sealing board 102 that surrounds the linear heating film 103 .
  • the positions on the packaging board 102 that avoid the heating film 103 include the edge of the packaging board 102 located around the heating film 103 . Welding includes spot welding, continuous welding, etc.
  • the heating performance of the heating film 103 will not be reduced due to soldering materials, welding positions and the like. Moreover, multiple or continuous welding can be performed on the periphery of the heating film 103 at positions avoiding the heating film 103 to increase the pressing force for the heating film 103 to be in close contact with the heat exchange plate 100 and the packaging plate 102 .
  • the heating film 103 is in the shape of a sheet, and the heating film 103 is arranged in a meandering manner in the heating area 101B to form a closed loop or an open shape, and the packaging board 102 Including the peripheral welding portion 106 and the intermediate welding portion 107, the peripheral welding portion 106 is formed around the edge portion of the heating area 101B around the heating film 103, and the intermediate welding portion 107 is formed in the heating area 101B different from the surrounding welding portion 106 and avoiding the heating film 103 position.
  • FIG. 4 shows a closed loop shape, but the heating film 103 may also be arranged in an open shape, as long as sufficient heat can be uniformly provided in the containing cavity 104 .
  • the surrounding soldering portion 106 of the package board 102 Closer to the main body 101 of the heat exchange plate.
  • the peripheral soldering portion 106 can be continuously formed around the periphery of the heating film 103, or an outlet can be left at the end of the package board 102 as shown in FIG.
  • the intermediate soldering portion 107 of the package board 102 is formed in a linear shape according to the shape of the heating film 103 as shown in FIGS. 3 to 5 , and fills the intermediate space surrounded by the annular heating film 103 .
  • the middle welding portion 107 is recessed relative to the board surface of the packaging board 102 forming the accommodating cavity 104 and is closer to the heat exchange plate main body 101.
  • the intermediate welding portion 107 may also be formed in a serpentine shape suitable for the shape of the heating film 103 .
  • the heat exchange plate 100 can be formed thinner, and the volume of the battery 10 will not be too large due to the heat exchange plate 100 .
  • the heating film 103 By arranging the heating film 103 in the heating area 101B in a meandering manner to form a closed loop or an open shape, the heating film 103 can be distributed as much as possible in the entire heating area or evenly heated on the entire heating area.
  • the peripheral soldering portion 106 is formed around the edge portion of the heating area 101B around the heating film 103, and the intermediate soldering portion 107 is formed in the heating area 101B differently from the peripheral soldering portion 106 and Avoid the position of the heating film 103, therefore, not only can be welded on the peripheral portion of the heating area 101B (ie, the peripheral portion of the packaging board 102) to apply a pressing force to the heating film 103, but also can be in the middle of the heating area 101B (the middle part of the packaging plate) is welded to apply a pressing force to the heating film 103, so that the entire heating film 103 can be pressed against the heat exchange plate main body 101 and the packaging plate 102 reliably, and the heating everywhere in the heating area Membrane 103 is substantially evenly stressed.
  • a cooling flow path 110 through which a cooling medium flows is formed in the heat exchange plate main body 101 of the cooling area 101A.
  • the connected pipe cavity in the heat exchange plate main body 101 can function as a cooling flow path.
  • a cooling medium inlet 108 and a cooling medium outlet 109 are provided at the end of the heat exchange plate main body 101 .
  • the cooling medium can enter the heat exchange plate main body 101 from the cooling medium inlet 108, and after the internal cooling flow circuit circulates and exchanges heat, it flows out through the cooling medium outlet 109 and flows into the general cooling medium supply.
  • piping (not shown).
  • the cooling passages between the heat exchange plates 100 may be connected in series or in parallel, but from the viewpoint of improving cooling efficiency and ensuring balanced cooling, parallel connection is preferable.
  • the cooling region 101A can function as a cooling plate to cool the adjacent battery cells 20 when the cooling medium flows.
  • both the heat exchange plate main body 101 and the packaging plate 102 are made of aluminum.
  • the second aspect of the application provides a battery, as shown in Figure 8 or Figure 9, the battery includes at least one battery cell 20 and at least one heat exchange plate 100, the heat exchange plate 100 is the same as described in the first aspect of the application
  • the heat exchange plate 100 is arranged at a position close to each battery cell 20 .
  • three battery cells 20 and four heat exchange plates 100 are taken as an example for illustration, but those skilled in the art should know that the number of battery cells and the number of heat exchange plates are different. Limited to this, it can be set arbitrarily as needed.
  • the number of heat exchange plates 100 can be more than the number of battery cells 20, or less than the number of battery cells 20, or equal to the number of battery cells 20, as long as the overall cooling and cooling of the battery 10 can be satisfied. Heating requirements can be set as needed.
  • the heat exchange plate 100 is generally arranged near one or some battery cells 20 , and may also be in contact with the battery cells in order to obtain better heat exchange effect.
  • the heat exchange plate 100 may be arranged in the vicinity of any one of one side, two sides, all sides, and any end surface of the battery cell 20 .
  • the heat exchange plate 100 is arrange
  • battery cell 20a and battery cell 20c are battery cells located at the ends of the battery pack
  • heat exchange plate 100 is also arranged near the side surfaces of the two battery cells.
  • FIG. 8 only shows that the heat exchange plates 100 are disposed near two side surfaces of the battery cells, and the heat exchange plates 100 may also be disposed near other side surfaces of the battery cells.
  • the battery cell 20 and even the battery 10 can be cooled and/or heated evenly and efficiently, and there will be no disadvantages such as debonding of the heating film, dry heating of the heating film, short circuit of the heating film, etc., and the reliability of the battery is improved. and use security.
  • the heat exchange plate 100 is disposed near the first heat exchange surface of each battery cell 20 .
  • the heat exchange plate of the battery cell includes a heat exchange surface facing the arrangement direction of the battery cells, which is called the first heat exchange surface here (sometimes also called the battery cell side); also includes the heat exchange surface facing the box, which is called the second heat exchange surface here.
  • the first heat exchange surface is a heat exchange surface facing the arrangement direction of the battery cells
  • the second heat exchange surface is a heat exchange surface facing the box.
  • the heat exchange plate 100 As the arrangement direction of the heat exchange plate 100, it is arranged so that the heat exchange surface of the heat exchange plate 100 faces the heat exchange surface of the battery cell. In addition, since it is generally believed that the middle part of the battery cell 20 has the most chemical reaction and the temperature rises the most, it is preferable to make the cooling area 101A in the heat exchange plate 100 as similar as possible to the heat exchange surface of the middle part of the battery cell 20. The way the face is configured.
  • the heat exchange plate 100 for example, disposing the heat exchange plate 100 near the large-area heat dissipation surface of the battery cell 20, or near the heat exchange surface of the battery cell 20 with obvious temperature unevenness, etc. Uniform and efficient cooling and/or heating of cells and even batteries.
  • the heat exchange plates 100 arranged between adjacent battery cells 20 have a higher heat exchange capacity than the heat exchange plates 100 arranged at the end sides. .
  • the heat exchange capacity of the heat exchange plate 100 for heat exchange refers to the ability to exchange more heat. For example, it can be realized by increasing the cross section of the cooling flow path, increasing the flow rate of the cooling medium, and increasing the heating power of the heating film.
  • a system in which two heat exchange plates 100 are used in combination may be employed.
  • long arrows show that the flow rate of the cooling medium on the heat exchange plate 100 located in the middle is greater than the flow rate of the cooling medium on the heat exchange plates located on both sides.
  • the heat exchange plates 100 arranged between adjacent battery cells 20 usually exchange heat with the battery cells 20 on both sides, the heat exchange plates 100 arranged at the end sides usually only communicate with the end sides. Therefore, the heat exchange plate 100 sandwiched between the adjacent battery cells 20 has a better heat exchange capacity than the heat exchange plate 100 of the battery cells 20 arranged at the end side, which contributes to Ensure temperature uniformity across the battery.
  • the cooling flow path formed in any heat exchange plate main body 101 for the cooling medium to flow is connected with the other.
  • the cooling channels through which the cooling medium flows formed in the heat exchange plate main body 101 are connected in parallel.
  • the cooling passages in each heat exchange plate can be cooled independently, so the cooling efficiency of each battery cell can be improved, and the battery as a whole can be further ensured. temperature uniformity on the
  • the battery further includes a second heat management plate 200 disposed close to the second heat exchange surface of the battery cell 20, and the heat exchange plate 100 is such that the cooling area 101A is larger than the heating area.
  • 101B is disposed close to the first heat exchange surface in such a way as to be far away from the second heat management plate 200 .
  • heat exchange plates 100 are arranged between adjacent battery cells 20a, 20b, and 20c and on the end sides. near the end surface) is also equipped with a second thermal management board 200 .
  • the second heat management board 200 is constituted by a cooling plate.
  • the cooling plate here can adopt a known cooling plate structure.
  • the heat exchange plate 100 may also be referred to as a first heat management plate. Since the battery cells can be cooled on the side and bottom surfaces of each battery cell, the safety of the battery is further improved.
  • the heat exchange plate 100 as the first heat management plate is arranged such that the heating area 101B is closer to the second heat management plate 200 than the cooling area 101A.
  • the heat exchange plate 101 is arranged near the first heat exchange surface of the battery cell 20 to function as a first heat management plate, and may be further arranged near a second heat exchange surface different from the first heat exchange surface.
  • the second thermal management board 200 for cooling can further improve the cooling efficiency.
  • the heat exchange plate 100 is arranged so that the cooling area 101A is farther from the second thermal management plate 200 than the heating area 101B, so that the cooling efficiency and temperature uniformity of the battery as a whole can be further improved.
  • the cooling flow paths in the second thermal management board 200 are connected in parallel with respect to the cooling flow paths in the heat exchange plate 100 .
  • the specific arrangement of the cooling flow of the heat exchange plate 100, and the arrangement of the cooling flow in the second heat management plate 200 as long as the above-mentioned basic functions can be realized, any known method can be used.
  • the way. the cooling passages between the heat exchange plates 100 and between the heat exchange plates 100 and the second heat management plate 200 are all connected in parallel and circulate independently of each other, so that the cooling effect of each battery cell and even the entire battery cell can be further improved. Cooling efficiency and temperature uniformity of the battery.
  • a third aspect of the present application provides an electrical device, as shown in FIG. 1 , the electrical device includes the heat exchange plate 100 described in the first aspect, or includes the battery 10 described in the second aspect.
  • the fourth aspect of the present application provides a battery manufacturing method, as shown in Figure 10, the manufacturing method includes the following steps: providing at least one battery cell 20 (step S100); providing at least one heat exchange plate 100, heat exchange The plate 100 is the heat exchange plate 100 described in the first aspect of the present application (step S200 ); and the heat exchange plate 100 is positioned close to each battery cell 20 (step S300 ).
  • step S400 providing a second heat management plate 200 (step S400); and positioning the heat exchange plate 100 close to the first heat exchange surface of the battery And make the second heat management plate 200 close to the second heat exchange surface of the battery, wherein the cooling area 101A of the heat exchange plate 100 is farther away from the second heat management plate 200 than the heating area 101B (step S500 ).
  • the step of providing at least one heat exchange plate includes: providing a heating film that is closely attached to the main body of the heat exchange plate and the packaging plate (step S201 ); and welding the encapsulation plate to the heat exchange plate main body at a position surrounding the heating film in the heating region and at a position avoiding the heating film other than the position surrounding the heating film (step S202).
  • FIG. 9 it is an application example of the heat exchange plate 100 of the embodiment of the present application.
  • the battery shown in FIG. The body 20 is directly bonded to the bottom cold plate as the second heat management plate 200, and each battery cell 20 has no side plate design, and is directly bonded to the heat exchange plate 100 as the first heat management plate.
  • the cooling liquid of the heat exchange plate 100 is designed as a parallel structure.
  • the flow ratio of the middle heat exchange plate 100 of the battery cells on both sides is higher than that of the two sides.
  • the flow rate of the heat exchange plate 100 is large, because the middle heat exchange plate 100 simultaneously takes away the heat generated by the battery cells on both sides.
  • the heat exchange plate 100 includes a heat exchange plate main body 101 formed by punching aluminum, a heating film 103, a thermally conductive silica gel 105, and an aluminum packaging plate 102.
  • the heating film 103 is encapsulated in the lower half of the heat exchange plate main body 101 by bonding the packaging plate 102 and the heat exchange plate main body 101, that is, the heating area 101B, and the upper half of the heat exchange plate main body 101, that is, the cooling area 101A plays a cooling role. effect.
  • the upper area of the battery cell farthest from the bottom cold plate of the second thermal management plate 200 can be cooled, and the heating film 103 can heat the battery cell by self-heating of the resistance wire or the like.
  • the packaging board 102 includes a housing cavity 104 for the heating film 103 , a peripheral welding portion 106 for spot welding and connecting edge seals, and an intermediate welding portion formed by spot welding grooves, thereby enabling the welding
  • the heating film 103 is firmly packaged in the heat exchange plate main body 101 by such a high-strength connection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种用于电池的换热板、电池、用电装置及电池的制造方法。本申请实施例提供的用于电池的换热板包括:换热板主体,具有冷却区域和加热区域;和封装板,固定地安装于所述换热板主体且在所述封装板与所述加热区域的所述换热板主体之间形成容纳腔,在所述容纳腔中设有加热膜。本申请提供的电池包括位于靠近各电池单体的位置的上述换热板。由于换热板同时具有冷却区域和加热区域,因此该换热板兼有对电池单体的冷却功能和加热功能;而且由于加热膜设置在封装板与换热板主体之间,因此能够可靠地避免杂质颗粒等刺穿加热膜和加热膜因电芯的变形而脱胶、烧蚀等不良情况。

Description

换热板、电池、用电装置及电池的制造方法 技术领域
本申请涉及电池技术领域,尤其涉及用于电池的换热板、电池、用电装置及电池的制造方法。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的能量密度外,电池的热管理由于与电池的使用安全性密切相关,因此也是研发的重要课题。
发明内容
本申请是鉴于上述课题而完成的,其目的在于提供一种能够可靠地进行换热且安全性高的用于电池的换热板、电池、包括该电池的用电装置、以及电池的制造方法。
为了实现上述目的,本申请的第一方面提供一种用于电池的换热板,其特征在于包括换热板主体和封装板;所述换热板主体具有冷却区域和加热区域;所述封装板固定地安装于所述换热板主体且在所述封装板与所述加热区域的所述换热板主体之间形成容纳腔,在所述容纳腔中设有加热膜。
由于加热膜被封装在换热板主体与固定于换热板主体的封装板之间,因此能够在确保加热膜与换热板主体间的可靠固定的同时,避免因加热膜与邻近的电池单体直接接触而导致的开胶、干烧等问题;而且还能够避免电池中的金属颗粒等刺穿加热膜而引发电池单体短路的不良情况。另外,由于将换热板主体分成冷却区域和加热区域,与以往的冷却板与加热膜重叠设置的情况相比,能够将换热板直接粘接于电池单体,确保了换热板与电池单体的粘接强度,而且还能够实现从电池单体的侧面对电池单体进行均衡的冷却和加热。
在本申请的一些实施例中,所述换热板主体的所述冷却区域和所述加 热区域彼此不重合。
由于冷却区域与加热区域彼此不重合,因此,换热板无需隔着加热膜而是直接粘接于电池单体,确保了换热板与电池单体的高粘接强度和冷却效率,而且还能够根据电池单体的不同部位的加热或冷却需要对电池单体进行热管理,从而确保电池单体整体上温度的均匀性。
在本申请的一些实施例中,所述封装板以使加热膜紧贴于所述换热板主体的方式焊接于所述换热板主体。
由于封装板通过焊接固定于换热板主体,因此能够实现可靠的固定,而且操作容易、结构简单。而且,由于能够通过焊接连接使加热膜紧贴于换热板主体,因此不仅能够确保加热膜对邻近电池单体的有效加热,还能够避免加热膜开胶等不良情况。
在本申请的一些实施例中,所述封装板隔着导热胶紧贴于所述加热膜。
由于在封装板与加热膜之间夹置了导热胶,因此能够进一步确保加热膜与换热板主体的紧密接触,能够实现对电池单体的高效率的加热。而且,设置导热胶还有助于使加热膜的热量均匀地传递至封装板,能够确保对电池单体的均匀加热。
在本申请的一些实施例中,所述导热胶为导热硅胶。
由于导热硅胶具有卓越的抗冷热交变性能、耐老化性能和电绝缘性能,因此能够提高换热板的使用可靠性和使用寿命,降低维护成本。
在本申请的一些实施例中,所述封装板在避开所述加热膜的位置焊接于所述换热板主体。
由于封装板在避开加热膜的位置焊接于换热板主体,因此加热膜的加热性能不会因焊接钎料、焊接位置等而降低。而且,可以在避开加热膜的位置对加热膜的周边进行多处或是连续的焊接来提高使加热膜紧贴于换热板和封装板的压紧力。
在本申请的一些实施例中,所述加热膜为薄片状,并且,所述加热膜在所述加热区域以形成闭合环状或是形成不闭合形状的方式迂回布置,所述封装板包括周围焊接部和中间焊接部,所述周围焊接部围绕着所述加热膜形成在所述加热区域的边缘部,所述中间焊接部形成在加热区域中不同于所述周围焊接部且避开所述加热膜的位置。
由于采用薄片状的加热膜,因此能够将换热板形成得较薄。通过将加热膜在加热区域以形成闭合环状或是形成不闭合形状的方式迂回布置,能够使加热膜尽可能地分布在整个加热区域或是对整个加热区域进行均匀的加热。由于封装板包括周围焊接部和中间焊接部,周围焊接部围绕着加热膜形成在加热区域的边缘部,中间焊接部形成在加热区域中不同于周围焊接部且避开加热膜的位置,因此,不仅能够在加热区域的周边部(即封装板的周边部)进行焊接而施加对加热膜的压紧力,还能够在加热区域的中间部分(封装板的中间部分)进行焊接而施加对加热膜的压紧力,从而能够确实地将整个加热膜压紧于换热板主体和封装板,且加热区域中各处的加热膜受力大体均匀。
在本申请的一些实施例中,在冷却区域的换热板主体中形成有供冷却介质流过的冷却流路。
由于形成有供冷却介质流过的冷却流路,因此,当有冷却介质流通时,冷却区域可以作为冷却板发挥作用,对邻近的电池单体进行冷却。
在本申请的一些实施例中,换热板主体和封装板均为铝制件。
采用传热性好的铝制件,能够实现良好的换热效果。
本申请的第二方面提供一种电池,其特征在于,包括至少一个电池单体和至少一个换热板,所述换热板为本申请第一方面所述的换热板,所述换热板配置于靠近各所述电池单体的位置。
由此能够对电池单体乃至电池进行均匀且高效率的冷却和/或加热,而且不会发生加热膜脱胶、加热膜干烧、加热膜短路等不良情况,提高了电池的使用可靠性和使用安全性。
在本申请的一些实施例中,所述换热板配置于靠近各所述电池单体的第一换热面的位置。
由此,例如将换热板配置于电池单体的面积较大的散热面附近、或是配置于电池单体的存在明显的温度不均的换热面附近等,能够实现对电池单体乃至电池的均匀且高效率的冷却和/或加热。
在本申请的一些实施例中,配置相邻的所述电池单体之间的所述换热板与配置于端侧的所述换热板相比具有更高的换热能力。
由于配置相邻的电池单体之间的换热板通常会与两侧的电池单体均 进行换热,而配置于端侧的换热板通常仅与端侧的电池单体进行换热,因此夹在相邻电池单体之间的换热板比配置在端侧的电池单体的换热板具有更好的换热能力有助于确保电池整体上的温度均匀性。
在本申请的一些实施例中,在所述换热板为2个以上的情况下,任一所述换热板主体中形成的供冷却介质流过的冷却流路与另一所述换热板主体中形成的供冷却介质流过的冷却流路并联连接。
通过使换热板各自的冷却流路并联连接,能够使各换热板中的冷却流路独立地进行冷却,因此能够提高对各电池单体的冷却效率,而且能够进一步确保电池整体上的温度均匀性。
在本申请的一些实施例中,所述电池还包括靠近所述电池单体的第二换热面配置的第二热管理板,所述换热板以使得所述冷却区域比所述加热区域离所述第二热管理板远的方式靠近所述第一换热面配置。
换热板配置在电池单体的第一换热面附近,作为第一热管理板发挥作用,还可以在不同于第一换热面的第二换热面附近进一步配置冷却用的第二热管理板,由此能够进一步提高冷却效率。而且,换热板以使得冷却区域比加热区域离所述第二热管理板远的方式配置,能够进一步提高电池整体上的冷却效率和温度均匀性。
在本申请的一些实施例中,所述第二热管理板中的冷却流路相对于所述换热板中的冷却流路并联连接。
通过使各热管理板的冷却流路并联连接,能够进一步提高对各电池单体乃至整个电池的冷却效率和温度均匀性。
本申请的第三方面提供一种用电装置,其包括第一方面所述的换热板,或者,包括第二方面所述的电池。
由此能够提供电池的使用可靠性和使用安全性高的用电装置,进而提高了用电装置的使用安全性,降低了用电装置的维护成本。
本申请的第四方面提供一种电池的制造方法,其特征在于,包括下述步骤:提供至少一个电池单体;提供至少一个换热板,所述换热板为本申请第一方面所述的换热板;和使所述换热板位于靠近各所述电池单体的位置。
由此能够制造出具有如下优点的电池,即:各个电池单体乃至整个电 池得到均匀且高效率的冷却和/或加热,不会发生加热膜脱胶、加热膜干烧、加热膜短路等不良情况,具有高使用可靠性和高使用安全性。
在本申请的一些实施例中,还包括下述步骤:提供第二热管理板;和使所述换热板位于靠近所述电池的第一换热面的位置且使所述第二热管理板位于靠近所述电池的第二换热面的位置,其中,所述换热板中的所述冷却区域比所述加热区域离所述第二热管理板远。
由此能够制造出电池单体的冷却效率和温度均匀性乃至电池整体上的冷却效率和温度均匀性进一步提高的电池。
在本申请的一些实施例中,所述提供至少一个换热板的步骤包括:提供紧贴于所述换热板主体和所述封装板的加热膜;和在所述加热区域中的围绕着所述加热膜的位置以及围绕着所述加热膜的位置以外的避开所述加热膜的位置将所述封装板焊接于所述换热板主体。
由此能够制造出不会出现加热膜脱胶、加热膜干烧、加热膜短路等不良情况的电池。
通过以上本申请,能够实现至少具有下述效果之一换热板、具有该换热板的电池、包括该电池的用电装置、以及电池的制造方法。
能够提供确保了加热膜与换热板主体间的可靠固定且不存在加热膜开胶、加热膜干烧、加热膜被刺穿而引发电池单体短路等不良情况的、能够可靠地进行换热且安全性高的换热板。而且,还能够提供确保了换热板与电池单体的粘接强度且能够对电池单体进行均衡的冷却和加热的换热板。
能够提供换热性能可靠且高效、换热均匀的电池,进而能够提供具有高使用可靠性和高使用安全性的电池。
能够提供具有高使用可靠性和高使用安全性且电池维护成本低的用电装置。
附图说明
图1为示意性示出本申请一实施例的车辆的结构示意图。
图2为示意性示出本申请一实施例的电池箱体的结构的分解示意图。
图3为示意性示出本申请一实施例的电池的换热板的立体示意图。
图4为图3所示换热板的分解立体图。
图5为示意性示出本申请一实施例的电池的换热板的主视图。
图6为沿图5所示的A-A线得A-A剖视图。
图7为图6的B部放大示意图。
图8为示意性示出本申请一实施例的换热板与多个电池单体的组装状态的示意图。
图9为示意性示出本申请一实施例的换热板、第二热管理板与多个电池单体的组装状态的示意图。
图10为示出本申请一实施例的电池制造方法的流程图。
图11为示出本申请一实施例的电池制造方法的流程图。
图12为示出本申请一实施例的提供换热板的步骤的流程图。
附图标记说明:
1-车辆;10-电池;11-控制器;12-马达;20、20a、20b、20c-电池单体;30-箱体;301-第一部分;302-第二部分;100-换热板;101-换热板主体;101A-冷却区域;101B-加热区域;102-封装板;103-加热膜;104-容纳腔;105-导热胶;106-周围焊接部;107-中间焊接部;108-冷却介质入口;109-冷却介质出口;110-冷却介质流路;200-第二热管理板。
具体实施方式
以下,参照附图详细说明本申请的具体实施方式。附图仅用于示出本申请的优选实施例,而不应被认为是对本申请的限制。在整个附图中,用相同的附图标记表示相同的部件或要素。
通过阅读下文关于实施方式的详细描述,本申请的优点和益处对于本领域普通技术人员将变得清楚明了。以下实施例仅用于更加清楚地说明本申请的技术方案,因此是示例性的,并不对本申请要求保护的范围构成限定。
需要注意的是,除非另有说明,本文中使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底” “内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请的实施例中,除非另有明确的规定和限定,“第一”、“第二”等术语仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的要素具有特定的顺序或重要程度。
在本申请实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在诸如二次电池的电池中,通常配置有冷却板等用于进行热管理。随着二次电池的广泛使用,也存在需要对电池进行加热的情况,也就是说,热管理不仅包括抑制温升,还包括在电池温度过低时促进温升。因此,相关技术提出了在冷却板上粘贴加热膜层等的技术方案,从而兼顾了对电池的冷却功能和加热功能。但是,相关技术中的具有加热功能的冷却板仍然存在一些使用安全问题。
本申请的发明人经过观察研究发现,相关技术中,具有加热功能的冷却板上的加热膜层存在开胶等问题。在加热膜层开胶的情况下,若继续对 加热膜供电进行加热,则存在加热膜干烧甚至起火等重大安全问题。而且,还存在加热膜层被金属颗粒等刺破的不良情况。
经过分析研究,考虑上述不良情况的原因至少包括下述几个方面。其一,电池单体在使用过程中会出现膨胀胀气进而变形等情况,导致加热膜层与冷却板之间的粘接层开裂(也称为开胶)。其二,加热膜层与冷却板之间的粘接力而反复的冷热交替而降低,导致加热膜易于发生开胶。其三,由于冷却板隔着加热膜层而粘贴于电池单体,因此加热膜的开胶导致对电池单体的冷却不良,也存在安全隐患。其四,由于加热膜直接接触冷却板和电池单体,电池中的金属颗粒等有时会刺穿加热膜导致加热膜短路而引发起火。
基于上述诸多问题,本申请的发明人研究发现,通过在电池中设置具有特定结构的换热板可以解决上述问题。即,本申请提供一种既能够可靠地进行冷却和加热等换热、又不存在加热膜开胶干烧被刺破等不良情况的安全性高的换热板、采用了该换热板的电池、包括该电池的用电装置、以及电池的制造方法。
本申请涉及的电池可以是任何电池,例如电池模组和电池包,或者一次电池和二次电池,例如,二次电池包括镍氢电池、镍镉电池、铅酸(或铅蓄)电池、锂离子电池、钠离子电池、聚合物电池等。这种电池适用于各种使用电池的用电设备,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等;电池用于为上述用电设备提供电能。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的电池和用电设备,还可以适用于所有电池以及使用电池的用电设备,但为描述简洁,下述实施例均以电动车辆为例进行说明,但是很显然,本申请实施例涉及的电池的适用场景以及本申请实施例涉及的用电设备均不限于电动汽车。
图1为本申请实施例涉及的车辆1的结构示意图。如图1所示,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1搭载有电池10,电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如, 电池10可以作为车辆1的操作电源。车辆1还可以包括控制器11和马达12,控制器11用来控制电池10为马达12供电,例如可用于车辆1的启动、导航和行驶时的工作用电需求等。
在本申请一些实施例中,电池10不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体20,电池单体20是指组成电池模组或电池包的最小单元。多个电池单体20可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。本申请中所涉及的电池可以包括电池模组或电池包。其中,多个电池单体20之间可以串联或并联或混联,混联是指串联和并联的混合。本申请的实施例中的电池10可以由多个电池单体20直接组成,也可以先组成电池模组,电池模组再组成电池。
图2示意性地示出了本申请一实施例的电池10的结构。如图2所示,电池10可以包括箱体30和容纳于箱体30的至少一个电池单体20。箱体30容纳电池单体20,以避免液体或其他异物影响电池单体20的充电或放电。体30可以是单独的长方体或者圆柱体或球体等简单立体结构,也可以是由长方体或者圆柱体或球体等简单立体结构组合而成的复杂立体结构,本申请实施例对此并不限定。箱体30的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料,本申请实施例对此也并不限定。
在一些实施例中,箱体30可以包括第一部分301和第二部分302,第一部分301与第二部分302相互盖合,共同限定出用于容纳电池单体20的空间。第二部分302可以为一端开口的箱型结构,第一部分301可以为板状结构,第一部分301盖合于第二部分302的开口侧,以使第一部分301与第二部分302共同限定出容纳电池单体20的空间;第一部分301和第二部分302也可以是均为一侧开口的箱型结构,第一部分301的开口侧盖合于第二部分302的开口侧。
在一些实施例中,电池单体20可以为锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体20可呈圆柱体、扁平 体、长方体或其它形状等,本申请实施例对此也不限定。电池单体20一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。但是,从确保粘接强度、冷却效果等方面考虑,本申请实施例特别适合与换热板相接触的面大体为平坦面的电池。
另外,虽然未特别图示,但是本申请实施例的电池单体20通常包括端盖、壳体和电芯组件。
端盖是指盖合于壳体的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖的形状可以与壳体的形状相适应以配合壳体。可选地,端盖可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖上可以设置有如电极端子等功能性部件。电极端子可以用于与电芯组件电连接,以用于输出或输入电池单体20的电能。端盖的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体内的电连接部件与端盖,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体是用于配合端盖以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件、电解液(在图中未示出)以及其他部件。壳体和端盖可以是独立的部件,可以在壳体上设置开口,通过在开口处使端盖盖合开口以形成电池单体的内部环境。不限地,也可以使端盖和壳体一体化,具体地,端盖和壳体可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体的内部时,再使端盖盖合壳体。壳体可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体的形状可以根据电芯组件的具体形状和尺寸大小来确定。壳体的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。由于在本申请实施例以圆柱形电池单体20为例进行说明,因此,电池单体20的壳体例如为圆柱体形。
电芯组件是电池单体20中发生电化学反应的部件。壳体内可以包含一个或多个电芯组件。电芯组件主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性 物质的部分构成电芯组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳(在图中未示出)。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子而形成电流回路。
图3示意性地示出了应用于上述的电池中的换热板100的立体结构。图4示出了本申请实施例的换热板100的分解立体图。图5示出了本申请实施例的换热板100的主视图。图6示出了A-A剖视图。图7示出了图6中的B部的放大示意图。
如图3至图7所示,本申请的实施例的用于电池的换热板100包括换热板主体101和封装板102;换热板主体101具有冷却区域101A和加热区域101B;封装板102固定地安装于换热板主体101且在封装板102与加热区域101A的换热板主体101之间形成容纳腔104(参见图7),在容纳腔104中设有加热膜103。
此处,换热板100在电池中作为热管理系统的一部分发挥冷却和加热的功能。该换热板100的换热板主体101包括冷却区域101A和加热区域101B。在冷却区域101A,可以配置冷却流路等使之发挥对电池单体的冷却作用;在加热区域101B,可以配置加热膜等使之发挥对电池单体的加热作用。
如图3和图4所示,换热板主体101整体上呈扁平板状,通常在冷却区域101A具有连通的空腔,因此换热板主体101例如可通过冲压、吹胀等成型工艺,也可以焊接而成。
封装板102,如图4和图7所示,整体上呈板状且在中央板体微微隆起。这样,在将封装板102对合于换热板主体101时,能够在封装板102与换热板主体101之间形成扁平空腔,即容纳腔104。在该容纳腔104中容纳有加热膜103。换言之,加热膜103被换热板主体101(加热区域101B)与封装板102夹着而固定于换热板主体101。
加热膜103例如在内部具有电阻丝,在外部设有绝缘的材质,由此能够进行电加热。加热膜103整体上呈膜片状,并且具有基本上与容纳腔104的内部空间相匹配的形状。对加热膜103的厚度没有特别限定,例如可为 0.5mm左右。
在利用这样的换热板100对电池单体20进行冷却时,可以将换热板主体101、特别是换热板主体101中的冷却区域101A直接粘接于电池单体20。封装板102也可以直接粘接于电池单体20。在换热板100如图8所示那样位于相邻两电池之间时,换热板100的两面可均粘接于电池电池。
这样,由于加热膜103被封装在换热板主体101与固定于换热板主体101的封装板102之间,因此能够确保加热膜103与换热板主体101间的可靠固定,而且还能够避免因加热膜103与邻近的电池单体20直接接触开骄傲、脱落的情况,另外,即使电池单体因使用而膨胀变形也不易引发加热膜103开胶脱落的情况。
此外,由于加热膜103被换热板主体101和封装板102封装保护,因此能够避免电池中的金属颗粒等刺穿加热膜103而引发电池单体短路的不良情况。
另外,由于将换热板主体101分成冷却区域101A和加热区域101B,与以往的冷却板与加热膜重叠设置的情况相比,能够将换热板100直接粘接于电池单体20,确保了换热板100与电池单体20的粘接强度,而且还能够实现从电池单体20的侧面对电池单体20进行均衡的冷却和加热。
在本申请的一些实施例中,如图3至图6所示,换热板主体101的冷却区域101A和加热区域101B彼此不重合。
此处,所谓不重合,包括部分不重合和全部不重合中的任意的情况。
由于冷却区域101A与加热区域101B彼此不重合,因此,换热板100无需隔着加热膜103而是直接粘接于电池单体20,确保了换热板100与电池单体20的高粘接强度和冷却效率。
而且还能够根据电池单体20的不同部位的加热或冷却需要对电池单体20进行热管理,从而确保电池单体20整体上温度的均匀性。例如,在图2所示的电池中,通常认为电池单体20的高度方向(图2中的上下方向)上的中央部位温度较高,因此在将本申请实施例的换热板100往电池单体20粘接时,可以使冷却区域101A与电池单体20的高度方向中央部位更多地重合而使加热区域101B主要位于电池单体20的高度方向上的端部,由此有助于确保各电池单体20的温度均匀性。
在本申请的一些实施例中,如图6和图7所示封装板102以使加热膜103紧贴于换热板主体101的方式焊接于换热板主体101。
所谓紧贴,是指加热膜103与换热板主体101紧密接触。另外,加热膜103与换热板主体101之间主要靠封装板102所施加的压紧力而紧密接触,在加热膜103与换热板主体101之间既可以涂敷粘接剂,也可以不涂敷粘接剂。加热膜103与换热板主体101及封装板102的板面紧密接触,可以使加热膜103的热量尽可能多地经由两板体传递给电池单体20,提高加热效率。
关于封装板102的焊接方式,可以采用点焊的方式进行焊接,也可以采用激光穿透焊接等方式,只要能够将封装板102焊接于换热板主体101,可以采用任何合适的焊接方式。当然,也可以采用其他能够将封装板102牢固固定的连接方式。
如前所示,由于封装板102通过焊接固定于换热板主体101,因此能够实现可靠的固定,而且操作容易、结构简单。而且,由于能够通过焊接连接使加热膜103紧贴于换热板主体101,因此不仅能够确保加热膜103对邻近电池单体20的有效加热,还能够避免加热膜103开胶等不良情况。
在本申请的一些实施例中,如图4所示,封装板102隔着导热胶105紧贴于加热膜103。
具体而言,为了进一步使加热膜103紧贴于换热板主体101及封装板102,在加热膜103与封装板102之间夹置具有压缩性的导热材料,例如导热硅胶等的导热胶105。另外,为了确保加热膜103均匀受力,优选导热胶105具有与加热膜103的形状基本相同的形状。
由于在封装板102与加热膜103之间夹置了导热胶105,因此能够进一步确保加热膜102与换热板主体101的紧密接触,能够实现对电池单体20的高效率的加热。而且,设置导热胶105还有助于使加热膜103的热量均匀地传递至封装板102,能够确保对电池单体20的均匀加热。
在本申请的一些实施例中,导热胶105为导热硅胶。
由于导热硅胶具有卓越的抗冷热交变性能、耐老化性能和电绝缘性能,因此能够提高换热板100的使用可靠性和使用寿命,降低维护成本。
在本申请的一些实施例中,如图3、图4和图7所示,封装板102在 避开加热膜103的位置焊接于换热板主体101。
具体而言,封装板102上的避开加热膜103的位置包括封装板102上的与容纳腔104中没有加热膜103的位置相对应的位置。在加热膜103例如形成为图4所示那样的环形的情况下,封装板102上的避开加热膜103的位置包括封装板102的位于加热膜103周边位置的边缘部和与环形加热膜103围成的中间位置相对应的部位。在加热膜103例如形成为直线型的情况下,封装板102上的避开加热膜103的位置包括封装板102的将直线型加热膜103围起来的部位。在加热膜103例如形成为填充整个容纳腔104的片状的情况下,封装板102上的避开加热膜103的位置包括封装板102的位于加热膜103周边位置的边缘部。焊接包括点焊、连续焊接等。
由于封装板102在避开加热膜103的位置焊接于换热板主体101,因此加热膜103的加热性能不会因焊接钎料、焊接位置等而降低。而且,可以在避开加热膜103的位置对加热膜103的周边进行多处或是连续的焊接来提高使加热膜103紧贴于换热板100和封装板102的压紧力。
在本申请的一些实施例中,如图4所示,加热膜103为薄片状,并且,加热膜103在加热区域101B以形成闭合环状或是形成不闭合形状的方式迂回布置,封装板102包括周围焊接部106和中间焊接部107,周围焊接部106围绕着加热膜103形成在加热区域101B的边缘部,中间焊接部107形成在加热区域101B中不同于周围焊接部106且避开加热膜103的位置。
关于加热膜103的具体形状,作为示例,图4示出了闭合环状,但是加热膜103也可以以不闭合形状迂回布置,只要能够在容纳腔104内均匀地提供足够的热量即可。
封装板102的周围焊接部106,如图3至图5所示,围绕着加热膜103形成在加热区域101B的边缘部,并且与封装板102的用于形成容纳腔104的中间部位相比,更贴近换热板主体101。周围焊接部106可以围绕着加热膜103的周边连续地形成,也可以如图5所示在封装板102的端部留有一出口,供加热膜103的一部分伸出而与供电线等连接。
封装板102的中间焊接部107,如图3至图5所示,配合着加热膜103的形状而形成为直线形状,填充于环状的加热膜103所围成的中间空间。在封装板102,中间焊接部107相对于封装板102的形成容纳腔104的板 面凹陷而更靠近换热板主体101。当然,在加热膜103形成为迂回形状时,中间焊接部107也可以形成与加热膜103的形状相适应的迂回形状。
通过上述的周围焊接部106与中间焊接部107的协同配合,能够对加热膜103的整体都施加大的压紧力使之紧贴于换热板主体101和封装板102,不容易发生局部脱开的情况。即使换热板100形成得较大,加热区域101B随之形成得较大,需要在加大的区域内布置加热膜103,而且封装板102也变大,也能过可靠地确保加热膜103整体受到均匀的压紧力而整面紧贴于换热板主体101和封装板102,对电池单体20均匀地加热。
如上所述,由于采用薄片状的加热膜103,因此能够将换热板100形成得较薄,进而不会因为换热板100而导致电池10体积过大。通过将加热膜103在加热区域101B以形成闭合环状或是形成不闭合形状的方式迂回布置,能够使加热膜103尽可能地分布在整个加热区域或是对整个加热区域进行均匀的加热。
由于封装板102包括周围焊接部106和中间焊接部107,周围焊接部106围绕着加热膜103形成在加热区域101B的边缘部,中间焊接部107形成在加热区域101B中不同于周围焊接部106且避开加热膜103的位置,因此,不仅能够在加热区域101B的周边部(即封装板102的周边部)进行焊接而施加对加热膜103的压紧力,还能够在加热区域101B的中间部分(封装板的中间部分)进行焊接而施加对加热膜103的压紧力,从而能够确实地将整个加热膜103压紧于换热板主体101和封装板102,且加热区域中各处的加热膜103受力大体均匀。
在本申请的一些实施例中,如图3至图6所示,在冷却区域101A的换热板主体101中形成有供冷却介质流过的冷却流路110。
具体而言,可以通过换热板主体101(冷却区域101A)中的连通的管路腔体来作为冷却流路发挥作用。另外,如图3至图5所示,在换热板主体101的端部设有冷却介质入口108和冷却介质出口109。在每个换热板100中,冷却介质可以从冷却介质入口108进入换热板主体101,在其内部的冷却流路循环换热后,经由冷却介质出口109流出而汇流到总的冷却介质供给管路(未图示)。换热板100彼此间的冷却流路可以串联连接也可以并联连接,从提高冷却效率、确保均衡冷却的角度考虑,优选并联连接。
由于形成有供冷却介质流过的冷却流路,因此,当有冷却介质流通时,冷却区域101A可以作为冷却板发挥作用,对邻近的电池单体20进行冷却。
在本申请的一些实施例中,换热板主体101和封装板102均为铝制件。
采用传热性好的铝制件,能够实现良好的换热效果。
本申请的第二方面提供一种电池,如图8或图9所示,该电池包括至少一个电池单体20和至少一个换热板100,换热板100为本申请第一方面所述的换热板100,换热板100配置于靠近各电池单体20的位置。
具体而言,在图8中,以设有三个电池单体20和四个换热板100为例进行说明,但是本领域技术人员应当知晓,电池单体的数量和换热板的数量均不限于此,可以根据需要任意设定。另外,换热板100的数量可以多于电池单体20的数量,也可以少于电池单体20的数量,还可以等于电池单体20的数量,只要能够对满足电池10整体上的冷却和加热要求,可以根据需要设定。
关于换热板100与电池单体20的位置,通常换热板100配置在一个或一些电池单体20的附近,为了获得更好的换热效果,也可以与电池单体接触。另外,换热板100可以配置于电池单体20的一个侧面、两个侧面、所有侧面、任意端面中的任何一个面的附近。
在图8所示的例子中,换热板100配置于相邻的电池单体20a与电池单体20b之间以及电池单体20b与电池单体20c之间。在电池单体20a和电池单体20c为电池组中的位于端部的电池单体时,在这两个电池单体的端侧的侧面附近也配置换热板100。另外,图8中只示出了在电池单体的两个侧面附近配置换热板100,在电池单体的其他侧面附近也可以设置换热板100。
由此能够对电池单体20乃至电池10进行均匀且高效率的冷却和/或加热,而且不会发生加热膜脱胶、加热膜干烧、加热膜短路等不良情况,提高了电池的使用可靠性和使用安全性。
在本申请的一些实施例中,如图8所示,换热板100配置于靠近各电池单体20的第一换热面的位置。
以图2所示的方形电池单体为例,电池单体的换热板包括面向电池单体的排列方向的换热面,此处称为第一换热面(有时也称为电池单体的侧 面);还包括面向箱体的换热面,此处称为第二换热面。在第一换热面的面积大于第二换热面时,至少在第一换热面附近配置换热板100。
另外,作为换热板100的配置方向,以使得换热板100的换热面面向着电池单体的换热面的方式进行配置。另外,由于通常认为电池单体20的中间部位化学反应最充分,温度升高最多,因此优选使换热板100中的冷却区域101A尽可能地与电池单体20的中间部位的换热面像面对的方式配置。
由此,例如将换热板100配置于电池单体20的面积较大的散热面附近、或是配置于电池单体20的存在明显的温度不均的换热面附近等,能够实现对电池单体乃至电池的均匀且高效率的冷却和/或加热。
在本申请的一些实施例中,如图8所示,配置于相邻的电池单体20之间的换热板100与配置于端侧的换热板100相比具有更高的换热能力。
由于配置相邻的电池单体20之间的换热板100通常与其两侧的电池单体20都进行换热,因此从确保对电池整体的换热均匀性的角度考虑,增大要进行两面换热的换热板100的换热能力。此处所谓的换热能力,是指能够进行更多热量的交换,例如可以通过增大冷却流路的横截面、增加冷却介质的流速、增大加热膜的加热功率等方式来实现,当然也可以采用并用两块换热板100的方式。在图8中,作为一个例子,用较长的箭头示出了位于中间的换热板100的冷却介质的流量比位于两侧的换热板的冷却介质的流量大的方式。
如上所述,由于配置相邻的电池单体20之间的换热板100通常会与两侧的电池单体20均进行换热,而配置于端侧的换热板100通常仅与端侧的电池单体20进行换热,因此夹在相邻电池单体20之间的换热板100比配置在端侧的电池单体20的换热板100具有更好的换热能力有助于确保电池整体上的温度均匀性。
在本申请的一些实施例中,如图8所示,在换热板100为2个以上的情况下,任一换热板主体101中形成的供冷却介质流过的冷却流路与另一换热板主体101中形成的供冷却介质流过的冷却流路并联连接。
通过使换热板100彼此之间的冷却流路并联连接,能够使各换热板中的冷却流路独立地进行冷却,因此能够提高对各电池单体的冷却效率,而 且能够进一步确保电池整体上的温度均匀性。
在本申请的一些实施例中,如图9所示,电池还包括靠近电池单体20的第二换热面配置的第二热管理板200,换热板100以使得冷却区域101A比加热区域101B离第二热管理板200远的方式靠近所述第一换热面配置。
在图9所示的例子中,在相邻的电池单体20a、20b、20c之间以及端侧均配置了换热板100,另外,在电池单体的端面附近(例如图9中的底部端面附近)还配置第二热管理板200。此处,作为一例,第二热管理板200由冷却板构成。此处的冷却板,可以采用已知的冷却板结构。另外,也可以将换热板100称为第一热管理板。由于在各电池单体的侧面和底面均可以对电池单体进行冷却,因此进一步提高了电池的安全性。
另外,从电池单体的温度均匀性的角度考虑,将作为第一热管理板的换热板100配置成加热区域101B比冷却区域101A接近第二热管理板200。
如上所述,换热板101配置在电池单体20的第一换热面附近,作为第一热管理板发挥作用,还可以在不同于第一换热面的第二换热面附近进一步配置冷却用的第二热管理板200,由此能够进一步提高冷却效率。而且,换热板100以使得冷却区域101A比加热区域101B离第二热管理板200远的方式配置,能够进一步提高电池整体上的冷却效率和温度均匀性。
在本申请的一些实施例中,如图9所示,第二热管理板200中的冷却流路相对于换热板100中的冷却流路并联连接。
关于电池的冷却流路系统的设置以及换热板100的冷却流路的具体设置方式、第二热管理板200中的冷却流路设置方式,只要能够实现上述的基本功能,可以采用任何已知的方式。这样,各换热板100彼此之间、以及换热板100与第二热管理板200之间的冷却流路均并联连接,彼此间独立地循环,因此能够进一步提高对各电池单体乃至整个电池的冷却效率和温度均匀性。
本申请的第三方面提供一种用电装置,如图1所示,该用电装置包括第一方面所述的换热板100,或者,包括第二方面所述的电池10。
由此能够提供电池的使用可靠性和使用安全性高的用电装置,进而提高了用电装置的使用安全性,降低了用电装置的维护成本。
本申请的第四方面提供一种电池的制造方法,如图10所示,该制造 方法包括下述步骤:提供至少一个电池单体20(步骤S100);提供至少一个换热板100,换热板100为本申请第一方面所述的换热板100(步骤S200);和使换热板100位于靠近各电池单体20的位置(步骤S300)。
由此能够制造出具有如下优点的电池,即:各个电池单体乃至整个电池得到均匀且高效率的冷却和/或加热,不会发生加热膜脱胶、加热膜干烧、加热膜短路等不良情况,具有高使用可靠性和高使用安全性。
在本申请的一些实施例中,如图11所示,还包括下述步骤:提供第二热管理板200(步骤S400);和使换热板100位于靠近电池的第一换热面的位置且使第二热管理板200位于靠近电池的第二换热面的位置,其中,换热板100中的冷却区域101A比加热区域101B离第二热管理板200远(步骤S500)。
由此能够制造出电池单体的冷却效率和温度均匀性乃至电池整体上的冷却效率和温度均匀性进一步提高的电池。
在本申请的一些实施例中,如图12所示,提供至少一个换热板的步骤(步骤S200)包括:提供紧贴于所述换热板主体和所述封装板的加热膜(步骤S201);和在所述加热区域中的围绕着所述加热膜的位置以及围绕着所述加热膜的位置以外的避开所述加热膜的位置将所述封装板焊接于所述换热板主体(步骤S202)。
由此能够制造出不会出现加热膜脱胶、加热膜干烧、加热膜短路等不良情况的电池。
下面,作为示例,对本申请的具体实施例进行说明。
如图9所示,为应用了本申请实施例的换热板100的应用示例,图9所示的电池例如为CTP(Cell To Package;无模组电池包)方案的电池包,各电池单体20直接与作为第二热管理板200的底部冷板粘接,各电池单体20无侧板设计,直接与作为第一热管理板的换热板100粘接。一般为保证冷却效果,换热板100的冷却液设计为并联结构,同时为保证三排电池单体的温度一致性,两侧均设有电池单体的中间换热板100的流量比两侧的换热板100的流量大,因为中间换热板100同时带走其两侧的电池单体产生的热量。
如图4所示,为换热板100的分解立体图。换热板100包括铝冲压而 成的换热板主体101、加热膜103、导热硅胶105、铝制的封装板102。加热膜103通过封装板102与换热板主体101的接合而被封装在换热板主体101的下半部,即加热区域101B,换热板主体101的上半部,即冷却区域101A发挥冷却作用。由此能够实现对距第二热管理板200的底部冷板最远端的电池单体上部区域进行冷却,同时加热膜103通过利用电阻丝等的自发热来实现对电池单体的加热。
如图4至图7所示,封装板102包括加热膜103的容纳腔104、用于点焊连接封边的周围焊接部106和由点焊连接槽构成的中间焊接部,由此能够通过焊接等高强度的连接方式将加热膜103稳固地封装于换热板主体101。
上述实施例是示例性的,本领域技术人员知晓上述各构成要素之间可以组合、替换或省略。
以上对本申请的实施方式进行了说明,但是本领域技术人员应当知晓,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (19)

  1. 一种用于电池的换热板,其特征在于,包括:
    换热板主体,具有冷却区域和加热区域;和
    封装板,固定地安装于所述换热板主体且在所述封装板与所述加热区域的所述换热板主体之间形成容纳腔,
    在所述容纳腔中设有加热膜。
  2. 根据权利要求1所述的换热板,其特征在于,
    所述换热板主体的所述冷却区域和所述加热区域彼此不重合。
  3. 根据权利要求1或2所述的换热板,其特征在于,
    所述封装板以使加热膜紧贴于所述换热板主体的方式焊接于所述换热板主体。
  4. 根据权利要求1至3中任一项所述的换热板,其特征在于,
    所述封装板隔着导热胶紧贴于所述加热膜。
  5. 根据权利要求4所述的换热板,其特征在于,
    所述导热胶为导热硅胶。
  6. 根据权利要求1至5中任一项所述的换热板,其特征在于,
    所述封装板在避开所述加热膜的位置焊接于所述换热板主体。
  7. 根据权利要求1至6中任一项所述的换热板,其特征在于,
    所述加热膜为薄片状,并且,所述加热膜在所述加热区域以形成闭合环状或是形成不闭合形状的方式迂回布置,
    所述封装板包括周围焊接部和中间焊接部,所述周围焊接部围绕着所述加热膜形成在所述加热区域的边缘部,所述中间焊接部形成在加热区域中不同于所述周围焊接部且避开所述加热膜的位置。
  8. 根据权利要求1至7中任一项所述的换热板,其特征在于,
    在所述冷却区域的所述换热板主体中形成有供冷却介质流过的冷却流路。
  9. 根据权利要求1所述的换热板,其特征在于,
    所述换热板主体和所述封装板均为铝制件。
  10. 一种电池,其特征在于,包括至少一个电池单体和至少一个换热板,所述换热板为权利要求1至9中任一项所述的换热板,所述换热板配 置于靠近各所述电池单体的位置。
  11. 根据权利要求10所述的电池,其特征在于,
    所述换热板配置于靠近各所述电池单体的第一换热面的位置。
  12. 根据权利要求10或11所示的电池,其特征在于,
    配置于相邻的所述电池单体之间的所述换热板与配置于端侧的所述换热板相比具有更高的换热能力。
  13. 根据权利要求10至12中任一项所述的电池,其特征在于,
    在所述换热板为2个以上的情况下,任一所述换热板主体中形成的供冷却介质流过的冷却流路与另一所述换热板主体中形成的供冷却介质流过的冷却流路并联连接。
  14. 根据权利要求11至13中任一项所述的电池,其特征在于,
    所述电池还包括靠近所述电池单体的第二换热面配置的第二热管理板,
    所述换热板以使得所述冷却区域比所述加热区域离所述第二热管理板远的方式靠近所述第一换热面配置。
  15. 根据权利要求14所述的电池,其特征在于,
    所述第二热管理板中的冷却流路相对于所述换热板中的冷却流路并联连接。
  16. 一种用电装置,其特征在于,包括权利要求1至9中任一项所述的换热板,或者,包括权利要求10至15中任一项所述的电池。
  17. 一种电池的制造方法,其特征在于,包括下述步骤:
    提供至少一个电池单体;
    提供至少一个换热板,所述换热板为权利要求1至9中任一项所述的换热板;和
    使所述换热板位于靠近各所述电池单体的位置。
  18. 根据权利要求17所述的制造方法,其特征在于,还包括下述步骤:
    提供第二热管理板;和
    使所述换热板位于靠近所述电池的第一换热面的位置且使所述第二热管理板位于靠近所述电池的第二换热面的位置,其中,所述换热板中的所述冷却区域比所述加热区域离所述第二热管理板远。
  19. 根据权利要求17或18所述的制造方法,其特征在于,
    所述提供至少一个换热板的步骤包括:
    提供紧贴于所述换热板主体和所述封装板的加热膜;和
    在所述加热区域中的围绕着所述加热膜的位置以及围绕着所述加热膜的位置以外的避开所述加热膜的位置将所述封装板焊接于所述换热板主体。
PCT/CN2021/142210 2021-12-28 2021-12-28 换热板、电池、用电装置及电池的制造方法 WO2023122994A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/142210 WO2023122994A1 (zh) 2021-12-28 2021-12-28 换热板、电池、用电装置及电池的制造方法
EP21969372.8A EP4386935A1 (en) 2021-12-28 2021-12-28 Heat exchange plate, battery, electric apparatus, and fabrication method for battery
CN202180095048.3A CN116964827A (zh) 2021-12-28 2021-12-28 换热板、电池、用电装置及电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142210 WO2023122994A1 (zh) 2021-12-28 2021-12-28 换热板、电池、用电装置及电池的制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/615,724 Continuation US20240234863A1 (en) 2024-03-25 Heat exchange plate, battery, electric apparatus, and manufacturing method of battery

Publications (1)

Publication Number Publication Date
WO2023122994A1 true WO2023122994A1 (zh) 2023-07-06

Family

ID=86996956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142210 WO2023122994A1 (zh) 2021-12-28 2021-12-28 换热板、电池、用电装置及电池的制造方法

Country Status (3)

Country Link
EP (1) EP4386935A1 (zh)
CN (1) CN116964827A (zh)
WO (1) WO2023122994A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204947033U (zh) * 2015-07-21 2016-01-06 宁德时代新能源科技有限公司 锂二次电池模组
CN106654442A (zh) * 2016-11-14 2017-05-10 深圳市赛尔盈电子有限公司 一种动力电池冷却和加热集成系统及电池
CN206301914U (zh) * 2016-11-25 2017-07-04 江西迪比科股份有限公司 一种集水冷散热与加热一体的新能源动力电池
CN208889811U (zh) * 2018-10-24 2019-05-21 深圳市赛尔盈电子有限公司 液冷板及安装其的电池模组
CN112490534A (zh) * 2020-12-02 2021-03-12 芜湖汇展新能源科技有限公司 冷热一体式液冷板
CN212988110U (zh) * 2020-07-06 2021-04-16 南京创源天地动力科技有限公司 一种集成加热与液冷的换热板总成
CN113571796A (zh) * 2020-04-29 2021-10-29 比亚迪股份有限公司 温控组件及电池包

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204947033U (zh) * 2015-07-21 2016-01-06 宁德时代新能源科技有限公司 锂二次电池模组
CN106654442A (zh) * 2016-11-14 2017-05-10 深圳市赛尔盈电子有限公司 一种动力电池冷却和加热集成系统及电池
CN206301914U (zh) * 2016-11-25 2017-07-04 江西迪比科股份有限公司 一种集水冷散热与加热一体的新能源动力电池
CN208889811U (zh) * 2018-10-24 2019-05-21 深圳市赛尔盈电子有限公司 液冷板及安装其的电池模组
CN113571796A (zh) * 2020-04-29 2021-10-29 比亚迪股份有限公司 温控组件及电池包
CN212988110U (zh) * 2020-07-06 2021-04-16 南京创源天地动力科技有限公司 一种集成加热与液冷的换热板总成
CN112490534A (zh) * 2020-12-02 2021-03-12 芜湖汇展新能源科技有限公司 冷热一体式液冷板

Also Published As

Publication number Publication date
CN116964827A (zh) 2023-10-27
EP4386935A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
JP7422789B2 (ja) 電池、その関連装置、製造方法及び製造機器
JP5541250B2 (ja) 二次電池
KR101307992B1 (ko) 높은 효율성의 냉각 구조를 포함하는 전지모듈
JP6564949B2 (ja) バッテリーモジュール及びこれを含むバッテリーパック、自動車
CN216872114U (zh) 电池和用电设备
CN108352588B (zh) 电池模块、具有该电池模块的电池组和车辆
EP4228059A1 (en) Electrical apparatus, battery, heating film and manufacturing method therefor and manufacturing device therefor
WO2023078187A1 (zh) 电池组、电池的热管理系统以及用电装置
US20240213573A1 (en) Battery and electrical device
US20230411746A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
CN115885412A (zh) 电池、用电装置以及电池的制造方法和制造系统
CN219123423U (zh) 电池单体、电池及用电装置
WO2023122994A1 (zh) 换热板、电池、用电装置及电池的制造方法
EP4040577A1 (en) Battery pack and device including same
US20240234863A1 (en) Heat exchange plate, battery, electric apparatus, and manufacturing method of battery
KR20220131782A (ko) 전지 모듈 및 이를 포함하는 전지팩
EP4270597A1 (en) Battery, electric device, and method for manufacturing battery
US20240222740A1 (en) Battery, electric apparatus, and manufacturing method of battery
JP7470136B2 (ja) 熱交換部材及びその製造方法、並びに製造システム、電池及び電気装置
CN216389577U (zh) 电池的热管理系统以及用电装置
CN221102217U (zh) 电池单体、电池及用电设备
EP4106087B1 (en) Battery cell, battery and power-consuming device
WO2023133803A1 (zh) 电池及其制造方法和用电装置
CN220774512U (zh) 换热板组件、电池及用电设备
CN219393497U (zh) 圆柱形电池电芯及包括其的电池组以及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095048.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021969372

Country of ref document: EP

Effective date: 20240312