WO2023122867A1 - 储能集装箱组合结构和储能系统的运输方法 - Google Patents

储能集装箱组合结构和储能系统的运输方法 Download PDF

Info

Publication number
WO2023122867A1
WO2023122867A1 PCT/CN2021/141565 CN2021141565W WO2023122867A1 WO 2023122867 A1 WO2023122867 A1 WO 2023122867A1 CN 2021141565 W CN2021141565 W CN 2021141565W WO 2023122867 A1 WO2023122867 A1 WO 2023122867A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage container
container
frame assembly
corner
Prior art date
Application number
PCT/CN2021/141565
Other languages
English (en)
French (fr)
Inventor
郑陈铃
刘越
王增忠
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180094491.9A priority Critical patent/CN116918147A/zh
Priority to PCT/CN2021/141565 priority patent/WO2023122867A1/zh
Publication of WO2023122867A1 publication Critical patent/WO2023122867A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells

Definitions

  • the present application relates to the technical field of batteries, in particular to a combined structure of an energy storage container and a transportation method for an energy storage system.
  • the energy storage system is a device for storing and transferring electric energy. There are batteries placed inside it. It has the characteristics of convenient installation and transportation, high integration, small footprint and good scalability. important part of development.
  • the present application provides a combined structure of an energy storage container and a transportation method for an energy storage system, aiming at increasing the energy density of the energy storage system.
  • the embodiment of the present application proposes an energy storage container composite structure.
  • the energy storage container composite structure includes an energy storage container and a frame assembly.
  • the energy storage container contains batteries inside; the frame assembly connects
  • the frame component is provided with a container corner fitting assembly; wherein, in at least one of the first direction, the second direction or the third direction, the size of the energy storage container combination structure larger than the size of the energy storage container; the first direction, the second direction and the third direction are perpendicular to each other.
  • the energy storage container is directly used as a transport box without installing the energy storage container in a standard container.
  • the energy storage container can expand the number of batteries and increase the energy density of the energy storage container.
  • the size of the energy storage container in at least one of the first direction, the second direction or the third direction does not meet the ISO international standard, and the size is extended by connecting with the frame component to meet the ISO international standard.
  • the frame component itself is light in weight and contributes little to the overall weight of the combined structure of the energy storage container, which is conducive to further expansion of the number of batteries in the energy storage container, thereby further improving the energy density of the energy storage container.
  • the combined structure of the energy storage container in the embodiment of the present application conforms to the ISO international standard and can be directly transported without being limited by the number of existing standard containers.
  • the combined structure of the energy storage container can be produced according to the production demand.
  • one frame assembly which is arranged on one side of the energy storage container in the first direction; or there are two frame assemblies, which are respectively arranged on both sides of the energy storage container in the first direction.
  • one frame assembly facilitates the assembly of the frame assembly and the energy storage container, and can simplify the combined structure of the energy storage container.
  • the two frame components are arranged on both sides of the energy storage container respectively, and the weight distribution of the combined structure of the energy storage container is relatively uniform, which is beneficial to improving the structural stability of the combined structure of the energy storage container.
  • the container corner fitting assembly is disposed on a side of the frame assembly away from the energy storage container in the first direction.
  • the container corner fitting assembly is provided on the frame assembly to facilitate operations such as lifting, transporting, and fixing of the energy storage container composite structure.
  • the container corner fitting assembly includes four container corner fittings, the four container corner fittings include two first corner fittings and two second corner fittings, the first corner fittings and the second corner fittings are in the second direction
  • the top is arranged symmetrically, the two first corner pieces are arranged symmetrically in the third direction, and the two second corner pieces are arranged symmetrically in the third direction.
  • the four ends of the frame assembly are provided with corner fittings, that is, first corner fittings and second corner fittings.
  • the four ends are respectively two tops and two bottoms, and the two tops are respectively provided with a first corner piece and a second corner piece, which is beneficial to the lifting and handling operations of the combined structure of the energy storage container; the two bottoms are respectively A first corner piece and a second corner piece are provided, which is beneficial for fixing the combined structure of the energy storage container and the transport carrier.
  • the dimension between a symmetrical first corner piece and a second corner piece is greater than or equal to the dimension of the energy storage container.
  • the energy storage container is connected to the frame assembly to form a combined structure of the energy storage container, and the size of the energy storage container along the first direction is extended so that the size of the combined structure of the energy storage container in the first direction complies with the ISO international standard.
  • the dimension of the second direction of the combined structure of the container also complies with the ISO international standard.
  • the dimension between the two first corner fittings is greater than or equal to the dimension of the energy storage container; and in the third direction, the dimension between the two second corner fittings is greater than or equal to Equal to the size of the energy storage container.
  • the energy storage container is connected to the frame assembly to form a combined structure of the energy storage container, and the size of the energy storage container along the first direction is extended so that the size of the combined structure of the energy storage container in the first direction complies with the ISO international standard.
  • the dimension of the third direction of the combined structure of the container also complies with the ISO international standard.
  • the frame assembly further includes a plurality of first horizontal bars and a side frame; the plurality of first horizontal bars extend along a first direction, respectively connecting the energy storage container and the side frame; four container corner pieces are arranged on the side frame superior.
  • the structure of the frame assembly is relatively simple, and its own weight is relatively light, which can reduce the contribution of the frame assembly to the overall weight of the combined structure of the energy storage container, thereby increasing the number of batteries in the energy storage container, thereby improving energy storage.
  • the energy density of the container is relatively simple, and its own weight is relatively light, which can reduce the contribution of the frame assembly to the overall weight of the combined structure of the energy storage container, thereby increasing the number of batteries in the energy storage container, thereby improving energy storage.
  • the energy density of the container is relatively simple, and its own weight is relatively light, which can reduce the contribution of the frame assembly to the overall weight of the combined structure of the energy storage container, thereby increasing the number of batteries in the energy storage container, thereby improving energy storage.
  • the energy density of the container is relatively simple
  • the side frame includes two second horizontal bars and two vertical bars; the two second horizontal bars extend along the second direction, the two vertical bars extend along the third direction, and the two horizontal bars connect the two Vertical bar; four container corner fittings are provided on the second horizontal bar and/or vertical bar.
  • the side frame is a frame structure, and its own weight is relatively light.
  • the frame assembly further includes a plurality of slanting bars, and the slanting bars are arranged between the first horizontal bar and the side frame, and/or between the adjacent second horizontal bar and the vertical bar.
  • the oblique rod can play a reinforcing role to increase the strength of the frame assembly and improve the structural stability of the frame assembly.
  • the energy storage container and the frame assembly are detachably connected.
  • the frame assembly of the energy storage container composite structure can be removed, and the energy storage container and the control cabinet can be connected and used to reduce the occupied space.
  • the embodiment of the present application also provides a transportation method for an energy storage system.
  • the energy storage system includes an energy storage container. assembly; connecting the frame assembly to the energy storage container to form an energy storage container composite structure meeting the standard container size; transporting the energy storage container composite structure.
  • the energy storage container and the frame assembly are connected to form an energy storage container composite structure for transportation.
  • the size of the energy storage container composite structure meets the ISO international standard and can be directly transported, and the energy storage container composite structure can significantly improve
  • the number of batteries in the energy storage container can increase the energy density of the energy storage container.
  • the frame assembly and the energy storage container are detachably connected, and after the energy storage container composite structure is transported to the user side, the frame assembly of the energy storage container composite structure can be removed, and the energy storage container and the control cabinet can be connected Use to reduce space.
  • the energy storage system further includes a control cabinet; the method further includes transporting the control cabinet; and connecting the control cabinet and the energy storage container to form the energy storage system.
  • the control cabinet and the energy storage container are transported independently, which can improve the transport efficiency.
  • Fig. 1 is a schematic structural diagram of an energy storage container combined structure provided by some embodiments of the present application
  • Fig. 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Fig. 3 is an exploded schematic diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 4 is a schematic structural diagram of an energy storage container combined structure provided by other embodiments of the present application.
  • Fig. 5 is a structural schematic diagram of the combined structure of the energy storage container shown in Fig. 4 at another angle;
  • Fig. 6 is a schematic structural diagram of an energy storage container combined structure provided by other embodiments of the present application.
  • Fig. 7 is a structural schematic view of the combined structure of the energy storage container shown in Fig. 6 at another angle.
  • Fig. 8 is a schematic block diagram of an energy storage system provided by some embodiments of the present application.
  • Fig. 9 is a schematic flowchart of a transportation method for an energy storage system provided by some embodiments of the present application.
  • Fig. 10 is a schematic flow chart of a transportation method for an energy storage system provided by another embodiment of the present application.
  • Fig. 11 is a schematic flowchart of a transportation method for an energy storage system provided by another embodiment of the present application.
  • Container corner fitting assembly 310. First corner fitting; 320. Second corner fitting;
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the same reference numerals represent the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments. It should be understood that the thickness, length, width and other dimensions of the various components in the embodiments of the application shown in the drawings, as well as the overall thickness, length and width of the integrated device, are for illustrative purposes only, and should not constitute any limitation to the application .
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell primarily relies on the movement of metal ions between the positive and negative plates to function.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector;
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode protrusion protruding from the positive electrode current collector, and the positive electrode current collector part is coated with a positive electrode active material layer, at least part of the positive electrode convex part is not coated with a positive electrode active material layer, and the positive electrode convex part is used as a positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode protrusion protruding from the negative electrode current collector. part is coated with a negative electrode active material layer, at least part of the negative electrode convex part is not coated with a negative electrode active material layer, and the negative electrode convex part is used as a negative electrode tab.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current is passed without fusing, the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the battery mentioned in the embodiments of this application refers to a single physical module that includes one or more battery cells to provide higher voltage and quantity.
  • a battery is composed of multiple battery cells connected in series and/or in parallel constitute.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the energy storage system is a device that integrates the battery and the control cabinet.
  • the control cabinet and the battery are coupled and connected to manage the battery.
  • the conversion between electric energy and chemical energy is used to store and output electric energy.
  • the battery can be used as a backup power source, or in When the power supply of the power system is uneven, it is used for peak shaving and valley filling, or for frequency regulation when the power system load or power generation is large, or it is applied to the photovoltaic storage power generation system.
  • the transportation of the energy storage system is to transport the energy storage system from the production side (manufacturer) to the user side (consumer).
  • the battery is placed in the battery compartment, and the battery compartment and the control cabinet are integrated to form a prefabricated compartment. in a standard container.
  • the standard container needs to meet the international standard formulated by the International Organization for Standardization ISO, which stipulates the size of the standard container, which includes the length, width and height of the standard container; and limits the rated weight of the standard container.
  • the container itself has a certain weight, and because the weight of the battery is relatively large, the size of the expanded battery compartment may need to be much smaller than The assembly size inside the container, in other words, the expanded battery compartment is still limited by the internal space of a standard container, resulting in that the number of batteries in the battery compartment cannot be significantly increased, and the overall energy density of the energy storage system is low.
  • the inventors made improvements and proposed a combined structure of energy storage containers, which can be applied to the storage of other relatively heavy items in addition to the energy storage of batteries. Loading and transportation, the embodiment of the present application will be further described below.
  • An embodiment of the present application provides an energy storage container composite structure.
  • Figure 1 is a schematic structural view of the combined structure of an energy storage container provided in some embodiments of the present application
  • Figure 2 is a schematic structural view of a battery provided in some embodiments of the present application
  • Figure 3 is a schematic diagram of a battery cell in a battery provided in some embodiments of the present application Breakdown diagram.
  • an energy storage container composite structure 1 provided in the embodiment of the present application includes an energy storage container 10 and a frame assembly 20 .
  • the energy storage container 10 houses a battery 110 inside.
  • the frame assembly 20 is connected to the energy storage container 10 to form the energy storage container composite structure 1 , and the frame assembly 20 is provided with a container corner fitting assembly 30 .
  • the size of the energy storage container composite structure 1 is larger than the size of the energy storage container 10 .
  • the X direction represents the first direction
  • the Y direction represents the second direction
  • the Z direction represents the third direction.
  • the first direction X, the second direction Y and the third direction Z are perpendicular to each other.
  • the three-dimensional coordinate system composed of the first direction X, the second direction Y and the third direction Z is used to describe the three-dimensional dimensions of the energy storage container composite structure 1.
  • the first direction X can represent any one of the length direction, width direction and height direction of the energy storage container composite structure 1.
  • the first direction X, the second direction Y and the third direction Z can respectively represent the energy storage The length direction, width direction and height direction of the combined container structure 1.
  • first direction X, the second direction Y and the third direction Z may also represent the width direction, length direction and height direction of the energy storage container composite structure 1 .
  • the above is only an exemplary description of the directions, and is not intended to limit the specific directions of the first direction X, the second direction Y and the third direction Z of the present application.
  • a battery 110 is arranged inside the energy storage container 10 , and the external structure of the energy storage container 10 is a box structure, in other words, the box structure has a hollow cavity for accommodating the battery 110 .
  • the box structure can be in various shapes, and can be formulated according to the needs of the user side, for example, a cylinder, a cuboid or a cube.
  • the box structure is a cuboid structure, which is relatively close to the shape of a standard container, which is convenient for transportation and assembly.
  • the external dimensions (at least one of length, width, and height) of the energy storage container 10 may not meet the international standards formulated by ISO.
  • the energy storage container 10 The width and height conform to the ISO international standard, but its length does not conform to the ISO international standard.
  • the width of the energy storage container 10 conforms to the ISO international standard, but neither its height nor length conforms to the ISO international standard.
  • the length of the energy storage container 10 conforms to the ISO international standard, but its width and length do not conform to the ISO international standard.
  • the length, width and height of the energy storage container 10 do not comply with ISO international standards. The above is only an illustration of the energy storage container 10, and does not limit the protection scope of the embodiment of the present application.
  • the battery 110 includes a plurality of battery cells 111 , and the plurality of battery cells 111 may be connected in series, in parallel, or in parallel.
  • the mixed connection means that the plurality of battery cells 111 are both connected in series and in parallel.
  • a plurality of battery cells 111 can be directly connected in series, in parallel or mixed together to form the battery 110 .
  • a plurality of battery cells 111 may also be connected in series, parallel or mixed in advance to form a battery module, and then a plurality of battery modules may be connected in series, parallel or mixed to form a whole as the battery 110 .
  • the plurality of battery cells 111 in the battery module can be electrically connected through a busbar, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 111 in the battery module.
  • the battery cell 111 includes an electrode assembly 1111 and a case assembly 1112 , and the electrode assembly 1111 is accommodated in the case assembly 1112 .
  • the electrode assembly 1111 is the core component for charging and discharging the battery cell 111 , which may be a wound electrode assembly, a stacked electrode assembly or other forms of electrode assemblies.
  • the shell assembly 1112 may include a housing 1112a and a cover assembly 1112b.
  • the housing 1112a is a hollow structure with an opening.
  • the cover assembly 1112b covers the opening of the housing 1112a and forms a sealed connection to form a housing for accommodating the electrode assembly 1111. cavity.
  • the housing 1112a can be in various shapes, such as a cylinder, a cuboid, and the like.
  • the shape of the casing 1112a may be determined according to the specific shape of the electrode assembly 1111 . For example, if the electrode assembly 1111 has a cylindrical structure, a cylindrical shell can be selected; if the electrode assembly 1111 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the frame assembly 20 includes a frame structure composed of a plurality of horizontal bars and a plurality of vertical bars. Multiple cross bars and multiple vertical bars can be welded or bolted to form a frame structure.
  • the frame assembly 20 can be flexibly set according to the size difference between the energy storage container 10 and the standard container, and its structure is simple and easy to be manufactured in a standardized manner; The overall weight contribution is small, in other words, it has little impact on the number of batteries 110 in the energy storage container 10, the energy storage container 10 can expand the number of batteries 110 to a large extent, and can significantly increase the energy density of the energy storage system.
  • the width and height of the energy storage container 10 conform to the ISO international standard, but its length is shorter than the length of the ISO international standard, and the length of the energy storage container 10 can be extended by setting the frame assembly 20, so that the combined structure of the energy storage container 1 The length conforms to the ISO international standard.
  • the width, height and length of the energy storage container 10 are all smaller than the size specified in the ISO international standard, and the width, height and length of the energy storage container 10 can be extended through the frame assembly 20, so that the width, height and height of the energy storage container composite structure 1 And length are in line with ISO international standards.
  • the number of frame components 20 is one or more, and the specific number can be determined according to the external size and shape of the energy storage container 10 .
  • the frame assembly 20 may be arranged on only one side of the energy storage container 10 or may be arranged on multiple sides according to the extended size of the energy storage container 10 .
  • the container corner fitting assembly 30 is arranged on the energy storage container composite structure 1 and plays an important role in lifting, transporting, fixing and other operations of the energy storage container composite structure 1 .
  • the container corner fitting assembly 30 is arranged at the bottom of the frame assembly 20, the container corner fitting assembly 30 can bear the overall weight of the energy storage container composite structure 1; and the container corner fitting assembly 30 can fix the energy storage container composite structure 1 and the transportation carrier, which reduces the risk of the energy storage container composite structure 1 deviating from the initial position during transportation, can prevent the energy storage container composite structure 1 from being damaged to a certain extent, and can improve the safety of the transportation process.
  • the transportation carrier may be a sea, land and air transportation carrier such as a ship, a van, a train or an airplane.
  • the container corner fitting assembly 30 can also be arranged on the top of the frame assembly 20, so as to facilitate the lifting and handling of the energy storage container combined structure 1 .
  • the container corner fitting assembly 30 can be disposed on the bottom and the top of the frame assembly 20 at the same time.
  • the container corner fitting assembly 30 can also be arranged on the bottom and/or top of the energy storage container 10 and cooperate with the container corner fitting assembly 30 arranged on the frame assembly 20 .
  • the container corner fitting assembly 30 When the container corner fitting assembly 30 is arranged at the bottom, the cooperation between the energy storage container 10 and the frame assembly 20 can make the four end corners of the bottom of the energy storage container composite structure 1 have container corner fitting assemblies 30 to carry the energy storage container composite structure 1 of the overall weight.
  • the container corner fitting assembly 30 When the container corner fitting assembly 30 is arranged on the top, the energy storage container 10 and the frame assembly 20 cooperate to make the four end corners of the top of the energy storage container composite structure 1 have container corner fitting assemblies 30 for easy lifting and handling operations.
  • the energy storage container 10 is directly used as a transport box without installing the energy storage container 10 in a standard container.
  • the energy storage container 10 can significantly expand the number of batteries 110 , thereby increasing the energy density of the energy storage container 10 .
  • the size of the energy storage container 10 in at least one of the first direction X, the second direction Y or the third direction Z does not comply with the ISO international standard, and the size is extended by connecting with the frame assembly 20 to meet the ISO international standard.
  • the frame assembly 20 is light in weight and contributes little to the overall weight of the energy storage container composite structure 1 , which is conducive to further expansion of the number of batteries 110 in the energy storage container 10 , thereby further increasing the energy density of the energy storage container 10 .
  • the combined energy storage container structure 1 of the embodiment of the present application conforms to the ISO international standard, and can be directly transported without being limited by the existing standard containers.
  • the combined energy storage container structure 1 can be produced according to production requirements.
  • the size of the energy storage container 10 in this direction can be extended by setting the frame assembly 20 .
  • the frame assembly 20 is provided on the side of the energy storage container 10 in the first direction X.
  • one frame assembly 20 which is arranged on one side of the energy storage container 10 in the first direction X.
  • One frame assembly 20 facilitates the assembly of the frame assembly 20 and the energy storage container 10 , and can simplify the combined structure 1 of the energy storage container.
  • Fig. 4 is a schematic structural view of an energy storage container composite structure provided by other embodiments of the present application
  • Fig. 5 is a structural schematic diagram of the energy storage container composite structure shown in Fig. 4 at another angle.
  • the two frame assemblies 20 there are two frame assemblies 20 arranged on both sides of the energy storage container 10 in the first direction X.
  • the two frame assemblies 20 are arranged on both sides of the energy storage container 10 respectively, and the weight distribution of the energy storage container composite structure 1 is relatively uniform, which is beneficial to improving the structural stability of the energy storage container composite structure 1 .
  • the structures of the two frame assemblies 20 may be completely the same, of course, the structures of the two frame assemblies 20 may also be different, for example, the dimensions of the two frame assemblies 20 in the first direction X may be unequal.
  • the container corner fitting assembly 30 is disposed on a side of the frame assembly 20 away from the energy storage container 10 in the first direction X.
  • the side of the frame assembly 20 close to the energy storage container 10 constitutes the internal components of the energy storage container composite structure 1, and the side of the frame assembly 20 away from the energy storage container 10 constitutes the end of the energy storage container composite structure 1, and container corners are arranged at the end.
  • the component assembly 30 is beneficial to operations such as lifting, transporting, and fixing of the energy storage container composite structure 1 .
  • the container corner fitting assembly 30 includes four container corner fittings, the four container corner fittings include two first corner fittings 310 and two second corner fittings 320, the first corner fittings 310 and the second corner fittings 320
  • the two first corner pieces 310 are symmetrically arranged in the second direction Y
  • the two first corner pieces 310 are symmetrically arranged in the third direction Z
  • the two second corner pieces 320 are symmetrically arranged in the third direction Z.
  • the four ends of the frame assembly 20 on the side away from the energy storage container 10 are all provided with corner fittings, that is, first corner fittings 310 and second corner fittings 320 .
  • the four ends are two tops and two bottoms respectively, and the two tops are respectively provided with a first corner fitting 310 and a second corner fitting 320, which is beneficial to the lifting and handling operations of the energy storage container composite structure 1;
  • Each bottom is provided with a first corner piece 310 and a second corner piece 320, which is beneficial to fix the energy storage container composite structure 1 and the transportation carrier.
  • a symmetrical first corner piece 310 and a second The dimension between the corner pieces 320 may be equal to the dimension of the energy storage container 10 in the second direction Y.
  • the energy storage container 10 still needs to extend the size of the second direction Y by connecting the frame assembly 20 to comply with the ISO international standard.
  • the symmetrical dimension between one first corner piece 310 and one second corner piece 320 may be larger than the dimension of the energy storage container 10 in the second direction Y.
  • the energy storage container 10 is connected with the frame assembly 20 to form the energy storage container composite structure 1, and the dimension of the energy storage container 10 along the first direction X is extended so that the dimension of the energy storage container composite structure 1 in the first direction X conforms to According to the ISO international standard, the dimension of the second direction Y of the combined energy storage container structure 1 also complies with the ISO international standard.
  • the extension dimension of the energy storage container 10 through the connection frame assembly 20 complies with the ISO international standard, and the third direction Z of the energy storage container 10
  • the dimension conforms to the ISO international standard in this case, it is not necessary to set the dimension of the frame assembly 20 to extend the third direction Z of the energy storage container 10.
  • the dimension between the two first corner pieces 310 is equal to The size of the energy storage container 10 ; and in the third direction Z, the size between the two second corner pieces 320 is equal to the size of the energy storage container 10 .
  • Fig. 6 is a structural schematic diagram of an energy storage container composite structure provided by other embodiments of the present application
  • Fig. 7 is a structural schematic diagram of the energy storage container composite structure shown in Fig. 6 at another angle.
  • the energy storage container 10 when the size of the energy storage container 10 itself is smaller than the ISO international standard, the energy storage container 10 still needs to extend the size of the third direction Z by connecting the frame assembly 20 to comply with the ISO international standard. Standard, in this case, in the third direction Z, the dimension between the two first corner fittings 310 is greater than the size of the energy storage container 10; and in the third direction Z, the dimension between the two second corner fittings 320 The size is greater than the size of the energy storage container 10.
  • the energy storage container 10 is connected to the frame assembly 20 to form an energy storage container composite structure 1, and the dimension of the energy storage container 10 along the first direction X is extended so that the dimension of the energy storage container composite structure 1 in the first direction X conforms to the ISO international standard, and the energy storage container The dimension of the third direction Z of the combined container structure 1 also conforms to the ISO international standard.
  • the dimension of the energy storage container 10 along the third direction Z conforms to the ISO According to the international standard, in this case, it is not necessary to set the frame assembly 20 to extend the dimension of the third direction Z of the energy storage container 10, and in the third direction Z, the dimension between the two first corner pieces 310 is equal to that of the energy storage container 10 and in the third direction Z, the dimension between the two second corner pieces 320 is equal to the dimension of the energy storage container 10 .
  • the energy storage container 10 still needs to extend the size of the third direction Z by connecting the frame assembly 20 to meet the ISO international standard.
  • the dimension between the two first corner fittings 310 is larger than the size of the energy storage container 10; and in the third direction Z, the dimension between the two second corner fittings 320 is larger than the energy storage container 10 size of.
  • the energy storage container 10 is connected to the frame assembly 20 to form the energy storage container composite structure 1, and the dimensions of the energy storage container 10 along the first direction X and the second direction Y are extended so that the first energy storage container composite structure 1
  • the dimensions of the direction X and the second direction Y conform to the ISO international standard, and the dimension of the third direction Z of the combined energy storage container structure 1 also conforms to the ISO international standard.
  • the frame assembly 20 further includes a plurality of first horizontal bars 21 and side frames 22 .
  • a plurality of first cross bars 21 extend along the first direction X, respectively connecting the energy storage container 10 and the side frame 22 ; four container corner fittings 31 are arranged on the side frame 22 .
  • the structure of the frame assembly 20 is relatively simple, and its own weight is relatively light, which can reduce the contribution of the frame assembly 20 to the overall weight of the energy storage container composite structure 1, thereby increasing the number of batteries in the energy storage container 10, thereby increasing the energy storage container 10. Energy Density.
  • the connection between the first cross bar 21 and the side frame 22 may be a detachable connection or a fixed connection.
  • the first crossbar 21 and the energy storage container 10 may be detachably connected or fixedly connected.
  • the detachable connection can be connected by bolts, etc., and the fixed connection can be welded.
  • the side frame 22 may be a plate structure with a simple structure.
  • the side frame 22 includes two second horizontal bars 221 and two vertical bars 222; the two second horizontal bars 221 extend along the second direction Y, and the two vertical bars 222 extend along the third direction Z,
  • the two second cross bars 221 are connected to the two vertical bars 222 ; the four container corner fittings 31 are arranged on the second cross bars 221 and/or the vertical bars 222 .
  • the second horizontal bar 221 and the vertical bar 222 may be connected by welding or the like.
  • the side frame 22 is a frame structure, and its own weight is relatively light.
  • the frame assembly 20 further includes a plurality of slanting bars 23 , and the slanting bars 23 are arranged between the first horizontal bar 21 and the side frame 22 , and/or between the adjacent second horizontal bar 221 and the vertical bar 222 .
  • the oblique rod 23 can play a reinforcing role to increase the strength of the frame assembly 20 and can improve the structural stability of the frame assembly 20 .
  • the frame assembly 20 can be made of materials such as stainless steel, aluminum alloy, metal aluminum or fiberglass.
  • the above materials have relatively high strength and good weldability, and the fabricated frame structure 30 is relatively stable in structure and light in weight.
  • the energy storage container 10 and the frame assembly 20 are detachably connected. After the energy storage container composite structure 1 is transported to the user side, the frame assembly 20 of the energy storage container composite structure 1 can be removed, and the energy storage container The container 10 is used in connection with the control cabinet to reduce the occupied space.
  • the energy storage container 10 and the frame assembly 20 can also be fixedly connected, and after the energy storage container combined structure 1 is transported to the user side, it can be directly connected with the control cabinet for use.
  • An embodiment of the present application also provides a transportation method for an energy storage system, where the energy storage system includes an energy storage container.
  • Fig. 8 is a schematic block diagram of the energy storage system. As shown in Fig. 8, the energy storage system 2 includes an energy storage container 10 and a control cabinet 200; Control of the battery within 10.
  • Fig. 9 is a schematic flowchart of a transportation method for an energy storage system provided by some embodiments of the present application.
  • the transportation method includes:
  • the energy storage container and the frame assembly are connected to form an energy storage container composite structure for transportation.
  • the size of the energy storage container composite structure meets the ISO international standard and can be directly transported, and the energy storage container composite structure can significantly Increase the number of batteries in the energy storage container and increase the energy density of the energy storage container.
  • Fig. 10 is a schematic flowchart of a transportation method for an energy storage system provided by another embodiment of the present application. As shown in Figure 10, in some embodiments, after step S400, the transportation method further includes:
  • Removing the frame components saves the space occupied by the energy storage system and enables a wider range of applications.
  • Fig. 11 is a schematic flowchart of a transportation method for an energy storage system provided by another embodiment of the present application. As shown in Figure 11, optionally, the transport method also includes,
  • control cabinet and the battery in the energy storage container are electrically connected to control the battery.
  • the size of the control cabinet is small, and when transporting, the control cabinet can be transported as bulk goods.
  • the control cabinet and energy storage container are transported independently, which can improve transportation efficiency.
  • step S500 step S700 is performed.
  • the steps of transporting the control cabinet and the steps of transporting the energy storage container are not in any particular order.
  • step S700 may be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例涉及一种储能集装箱组合结构和储能系统的运输方法,储能集装箱组合结构包括储能集装箱组合结构包括储能集装箱和框架组件,储能集装箱,内部容纳有电池;框架组件,连接于储能集装箱以组成储能集装箱组合结构,框架组件上设有集装箱角件组件;其中,在第一方向、第二方向或第三方向中的至少一个方向上,储能集装箱组合结构的尺寸大于储能集装箱的尺寸;第一方向、第二方向和第三方向相互垂直。本申请实施例的储能集装箱组合结构能够显著提高能量密度。

Description

储能集装箱组合结构和储能系统的运输方法 技术领域
本申请涉及电池技术领域,特别是涉及一种储能集装箱组合结构和储能系统的运输方法。
背景技术
储能系统为电能储存与转移设备,其内部放置有电池,具有安装运输方便、集成度高、占地面积小以及扩展性好的特点,是储能领域中分布式能源、智能电网、能源互联网发展的重要组成部分。
储能系统中电池的数量越多,其能量密度越高,如何提高可运输的储能系统整体的能量密度是亟待解决的问题。
发明内容
本申请提供一种储能集装箱组合结构和储能系统的运输方法,旨在提高储能系统的能量密度。
第一方面,本申请实施例提出了一种储能集装箱组合结构,储能集装箱组合结构包括储能集装箱组合结构包括储能集装箱和框架组件,储能集装箱,内部容纳有电池;框架组件,连接于储能集装箱以组成储能集装箱组合结构,框架组件上设有集装箱角件组件;其中,在第一方向、第二方向或第三方向中的至少一个方向上,储能集装箱组合结构的尺寸大于储能集装箱的尺寸;第一方向、第二方向和第三方向相互垂直。
在上述技术方案中,储能集装箱直接作为运输箱体,无需将储能集装箱设置于标准集装箱中,储能集装箱能够扩展电池数量,提高储能集装箱的能量密度。储能集装箱在第一方向、第二方向或第三方向中的至少一个方向上的尺寸不符合ISO国际标准,通过与框架组件连接延长尺寸以符合ISO国际标准。框架组件自身重量较轻,对储能集装箱组合结构的整体 重量的贡献较小,有利于储能集装箱内电池数量的进一步扩充,进而进一步提高储能集装箱的能量密度。本申请实施例的储能集装箱组合结构符合ISO国际标准,可以直接进行运输,不受限于现存的标准集装箱的保有量,可以根据生产需求生产储能集装箱组合结构。
在一些实施例中,框架组件为一个,设置在储能集装箱的第一方向的一侧;或者框架组件为两个,分别设置在储能集装箱的第一方向的两侧。在本申请实施例中,一个框架组件有利于框架组件和储能集装箱组装,并能够简化储能集装箱组合结构。两个框架组件分别设置于储能集装箱的两侧,储能集装箱组合结构的重量分布较为均匀,有利于提高储能集装箱组合结构的结构稳定性。
在一些实施例中,集装箱角件组件设置在框架组件的在第一方向上远离储能集装箱的一侧。在本申请实施例中,框架组件上设置集装箱角件组件有利于储能集装箱组合结构的起吊、搬运、固定等操作。
在一些实施例中,集装箱角件组件包括四个集装箱角件,四个集装箱角件包括两个第一角件和两个第二角件,第一角件和第二角件在第二方向上对称设置,两个第一角件在第三方向上对称设置,两个第二角件在第三方向上对称设置。在本申请实施例中,框架组件的四个端部均设置有角件,即第一角件和第二角件。四个端部分别为两个顶部和两个底部,两个顶部分别设置有一个第一角件和一个第二角件,有利于储能集装箱组合结构的起吊和搬运等操作;两个底部分别设置有一个第一角件和一个第二角件,有利于将储能集装箱组合结构和运输载体固定等。
在一些实施例中,在第二方向上,对称的一个第一角件和一个第二角件之间的尺寸,大于或等于储能集装箱的尺寸。在本申请实施例中,储能集装箱连接框架组件形成储能集装箱组合结构,延长储能集装箱沿第一方向的尺寸以使储能集装箱组合结构的第一方向的尺寸符合ISO国际标准,储能集装箱组合结构的第二方向的尺寸也符合ISO国际标准。
在一些实施例中,在第三方向上,两个第一角件之间的尺寸,大于或等于储能集装箱的尺寸;并且在第三方向上,两个第二角件之间的尺寸,大于或等于储能集装箱的尺寸。在本申请实施例中,储能集装箱连接 框架组件形成储能集装箱组合结构,延长储能集装箱沿第一方向的尺寸以使储能集装箱组合结构的第一方向的尺寸符合ISO国际标准,储能集装箱组合结构的第三方向的尺寸也符合ISO国际标准。
在一些实施例中,框架组件还包括多个第一横杠和边框架;多个第一横杆沿第一方向延伸,分别连接储能集装箱和边框架;四个集装箱角件设在边框架上。在本申请实施例中,框架组件的结构相对简单,且其自身重量较轻,能够降低框架组件对储能集装箱组合结构整体重量的贡献,进而提高储能集装箱的电池数量,以此提高储能集装箱的能量密度。
在一些实施例中,边框架包括两个第二横杠和两个竖杆;两个第二横杆沿第二方向延伸,两个竖杆沿第三方向延伸,两个横杆连接两个竖杆;四个集装箱角件设在第二横杆和/或竖杆上。在本申请实施例中,边框架为框架结构,其自身的重量较轻。
在一些实施例中,框架组件还包括多个斜杆,斜杆设置第一横杆和边框架之间、和/或相邻的第二横杆和竖杆之间。在本申请实施例中,斜杆能够起到加强作用,以提高框架组件的强度,并且能够提高框架组件的结构稳定性。
在一些实施例中,储能集装箱和框架组件为可拆卸连接。在本申请实施例中,在储能集装箱组合结构运输到用户侧后,可以将储能集装箱组合结构的框架组件移除,将储能集装箱和控制柜连接使用,以减少占用空间。
第二方面,本申请实施例还提供了一种储能系统的运输方法,储能系统包括储能集装箱,方法包括:提供储能集装箱,储能集装箱内部容纳有多个电池单体;提供框架组件;将框架组件连接于储能集装箱以形成满足标准集装箱尺寸的储能集装箱组合结构;运输储能集装箱组合结构。
在上述技术方案中,将储能集装箱和框架组件连接并形成储能集装箱组合结构进行运输,储能集装箱组合结构的尺寸满足ISO国际标准,能够直接运输,且该储能集装箱组合结构能够显著提升储能集装箱中的电池数量,并能够提高储能集装箱的能量密度。
在一些实施例中,在运输储能集装箱组合结构的步骤后;断开框架 组件和储能集装箱的连接并移除框架组件。在本申请实施例中,框架组件和储能集装箱可拆卸连接,在储能集装箱组合结构运输到用户侧后,可以将储能集装箱组合结构的框架组件移除,将储能集装箱和控制柜连接使用,以减少占用空间。
在一些实施例中,储能系统还包括控制柜;方法还包括,运输控制柜;连接控制柜和储能集装箱以组成储能系统。在本申请实施例中,控制柜和储能集装箱独立运输,能够提高运输效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例提供的储能集装箱组合结构的结构示意图;
图2是本申请一些实施例提供的电池的结构示意图;
图3是本申请一些实施例提供的电池的电池单体的分解示意图;
图4是本申请另一些实施例提供的储能集装箱组合结构的结构示意图;
图5是图4所示的储能集装箱组合结构的在另一角度下的结构示意图;
图6是本申请另一些实施例提供的储能集装箱组合结构的结构示意图;
图7是图6所示的储能集装箱组合结构的在另一角度下的结构示意图。
图8是本申请一些实施例提供的储能系统的示意性框图;
图9是本申请一些实施例提供的储能系统的运输方法的流程示意图;
图10是本申请另一些实施例提供的储能系统的运输方法的流程示 意图;
图11是本申请另一些实施例提供的储能系统的运输方法的流程示意图;
在附图中,附图未必按照实际的比例绘制。
其中,图中各附图标记:
X、第一方向;Y、第二方向;Z、第三方向;
1、储能集装箱组合结构
10、储能集装箱;
110、电池;111、电池单体;
20、框架组件;21、第一横杆;22、边框架;221、第二横杆;222、竖杆;23、斜杆
30、集装箱角件组件;310、第一角件;320、第二角件;
2、储能系统;
200、控制柜。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说 明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动 来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极凸部,正极集流部涂覆有正极活性物质层,正极凸部的至少部分未涂覆正极活性物质层,正极凸部作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和凸出于负极集流部的负极凸部,负极集流部涂覆有负极活性物质层,负极凸部的至少部分未涂覆负极活性物质层,负极凸部作为负极极耳。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和数量的单一的物理模块,示例性地,电池由多个电池单体串联和/或并联构成。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
储能系统是一种集成电池和控制柜的装置,控制柜和电池耦合连接,对电池进行管理,利用电能和化学能之间的转换实现电能的存储和输出,电池可以作为备用电源,或者于电力系统供电不均时进行削峰填谷,或者于电力系统负荷或发电较大时进行调频,或者,将其应用于光储发电系统中。
储能系统的运输是将储能系统由生产侧(生产厂家)运输到用户侧(消费者),为了便于运输,将电池置于电池仓中,电池仓和控制柜集成为一体形成预制仓后置于标准集装箱中。标准集装箱需满足国际标准化组织ISO制定的国际标准,在该标准中规定了标准集装箱的尺寸,该尺寸包括标准集装箱的长度、宽度和高度;并对标准集装箱的额定重量进行了限 定。
发明人发现,预制仓受限于标准集装箱的尺寸和额定重量,预制仓内设置的电池数量有限,从而导致电池仓的电池数量相对较低。基于上述问题,发明人考虑将电池仓和控制柜独立设置,进行独立运输,运输至用户侧后进行配合使用。将电池仓和控制柜独立设置后,可扩展电池仓的尺寸和重量,从而能够提高电池仓的电池数量。但是,扩展后的电池仓仍需置于集装箱中,集装箱自身具有一定重量,且由于电池的重量相对较大,扩展后的电池仓在满足标准集装箱额定重量的前提下,其尺寸可能需要远小于集装箱内部的装配尺寸,换言之,扩展后的电池仓仍受限于标准集装箱的内部空间,从而导致电池仓的电池数量不能得到显著提升,储能系统整体的能量密度较低。
基于发明人发现的上述问题,发明人进行了改进,提出了一种储能集装箱组合结构,该储能集装箱组合结构除了应用于电池的储能,还可应用于其他重量相对较大的物品的装载和运输,下面对本申请实施例进行进一步描述。
为了更好地理解本申请,下面结合图1至图11对本申请实施例进行描述。
本申请实施例提供了一种储能集装箱组合结构。
图1是本申请一些实施例提供的储能集装箱组合结构的结构示意图,图2是本申请一些实施例提供的电池的结构示意图,图3是本申请一些实施例提供的电池的电池单体的分解示意图。
如图1至图3所示,本申请实施例提供的储能集装箱组合结构1包括储能集装箱10和框架组件20。储能集装箱10的内部容纳有电池110。框架组件20连接于储能集装箱10以组成储能集装箱组合结构1,框架组件20上设有集装箱角件组件30。在第一方向X、第二方向Y或第三方向Z中的至少一个方向上,储能集装箱组合结构1的尺寸大于储能集装箱10的尺寸。
图1中X方向表示第一方向,Y方向表示第二方向,Z方向表示第三方向,第一方向X、第二方向Y和第三方向Z相互垂直。鉴于标准集装 箱基本为长方体结构,故在本申请中采用第一方向X、第二方向Y和第三方向Z共同构成的三维坐标系来对储能集装箱组合结构1的三维尺寸进行说明。第一方向X可以表示储能集装箱组合结构1的长度方向、宽度方向和高度方向中的任一方向,示例性地,第一方向X、第二方向Y和第三方向Z可以分别表示储能集装箱组合结构1的长度方向、宽度方向和高度方向。当然,第一方向X、第二方向Y和第三方向Z也可表示储能集装箱组合结构1的宽度方向、长度方向和高度方向。上述仅为方向的示例性说明,并不用于限制本申请第一方向X、第二方向Y和第三方向Z的具体方向。
储能集装箱10内设置有电池110,储能集装箱10的外部结构为箱体结构,换言之,箱体结构具有中空的腔体,该腔体用于容纳电池110。
箱体结构可以是多种形状,可以根据用户侧的需求进行制定,比如,圆柱体、长方体或正方体等。示例性地,箱体结构为长方体结构,其与标准集装箱的形状较为接近,有利于运输装配。
储能集装箱10由于受限于标准集装箱的额定重量,储能集装箱10的外部尺寸(长度、宽度和高度中的至少一者)可能不符合ISO制定的国际标准,示例性地,储能集装箱10的宽度和高度符合ISO国际标准,但其长度不符合ISO国际标准。或者,储能集装箱10的宽度符合ISO国际标准,但其高度和长度均不符合ISO国际标准。又或者,储能集装箱10的长度符合ISO国际标准,但其宽度和长度不符合ISO国际标准。再或者,储能集装箱10的长度、宽度和高度均不符合ISO国际标准。上述仅为储能集装箱10的举例说明,并不限制本申请实施例的保护范围。
电池110包括多个电池单体111,多个电池单体111之间可串联或并联或混联,混联是指多个电池单体111中既有串联又有并联。多个电池单体111之间可直接串联或并联或混联在一起形成电池110。当然,也可以是多个电池单体111预先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,作为电池110。电池模块中的多个电池单体111之间可通过汇流部件实现电连接,以实现电池模块中的多个电池单体111的并联或串联或混联。
电池单体111包括电极组件1111和外壳组件1112,电极组件1111容纳于外壳组件1112内。电极组件1111是电池单体111实现充放电的核心部件,其可以是卷绕式电极组件、叠片式电极组件或其它形式的电极组件。外壳组件1112可以包括壳体1112a和盖组件1112b,壳体1112a为具有开口的空心结构,盖组件1112b盖合于壳体1112a的开口处并形成密封连接,以形成用于容纳电极组件1111的容纳腔。壳体1112a可以是多种形状,比如,圆柱体、长方体等。壳体1112a的形状可根据电极组件1111的具体形状来确定。比如,若电极组件1111为圆柱体结构,则可选用为圆柱体壳体;若电极组件1111为长方体结构,则可选用长方体壳体。
框架组件20包括多个横杆和多个竖杆共同组成的框架结构。多个横杆和多个竖杆可采用焊接或螺栓连接为框架结构。框架组件20可以根据储能集装箱10和标准集装箱之间的尺寸差值灵活设置,且其结构形式简单,易于标准化制造;另外,框架组件20自身的重量较轻,对储能集装箱组合结构1的整体重量贡献较小,换言之,对储能集装箱10中的电池110数量影响较小,储能集装箱10可较大程度上扩展电池110数量,能够显著提高储能系统的能量密度。示例性地,储能集装箱10的宽度和高度符合ISO国际标准,但其长度小于ISO国际标准的长度,可通过设置框架组件20延长储能集装箱10的长度,以使储能集装箱组合结构1的长度符合ISO国际标准。或者,储能集装箱10的宽度、高度和长度均小于ISO国际标准规定的尺寸,可通过框架组件20延长储能集装箱10的宽度、高度和长度,以使储能集装箱组合结构1的宽度、高度和长度均符合ISO国际标准。
框架组件20的数量为一个或多个,其具体的数量可根据储能集装箱10的外部尺寸和外部形状等确定。框架组件20根据储能集装箱10需要延长的尺寸,可能仅设置于储能集装箱10的一侧,也可能设置于多侧。
集装箱角件组件30设置于储能集装箱组合结构1,在储能集装箱组合结构1起吊、搬运、固定等作业中起到重要作用。
在一些实施例中,集装箱角件组件30设置于框架组件20的底部,集装箱角件组件30能够承载储能集装箱组合结构1的整体重量;并且集 装箱角件组件30能够固定储能集装箱组合结构1和运输载体,降低了运输过程中储能集装箱组合结构1偏离初始位置的风险,能够在一定程度上防止储能集装箱组合结构1被损坏,且能够提高运输过程的安全性。在本文中,运输载体可以是船舶、厢式车辆、火车或飞机等海陆空运输载体。
在另一些实施例中,集装箱角件组件30还可以设置于框架组件20的顶部,以便于起吊和搬运储能集装箱组合结构1。
当然,集装箱角件组件30可以同时设置于框架组件20的底部和顶部。
在一些实施例中,集装箱角件组件30还可以同时设置于储能集装箱10的底部和/或顶部,和设置于框架组件20的集装箱角件组件30进行配合。
集装箱角件组件30设置于底部时,储能集装箱10和框架组件20配合能够使得储能集装箱组合结构1的底部的四个端角均具有集装箱角件组件30,以承载储能集装箱组合结构1的整体重量。集装箱角件组件30设置于顶部时,储能集装箱10和框架组件20配合能够使得储能集装箱组合结构1的顶部的四个端角均具有集装箱角件组件30,以便于起吊和搬运等操作。
在本申请实施例中,储能集装箱10直接作为运输箱体,无需将储能集装箱10设置于标准集装箱中,储能集装箱10能够显著扩展电池110数量,进而提高储能集装箱10的能量密度。储能集装箱10在第一方向X、第二方向Y或第三方向Z中的至少一个方向上的尺寸不符合ISO国际标准,通过与框架组件20连接延长尺寸以符合ISO国际标准。框架组件20自身重量较轻,对储能集装箱组合结构1的整体重量的贡献较小,有利于储能集装箱10内电池110数量的进一步扩充,进而进一步提高储能集装箱10的能量密度。本申请实施例的储能集装箱组合结构1符合ISO国际标准,可以直接进行运输,不受限于现存的标准集装箱的保有量,可以根据生产需求生产储能集装箱组合结构1。
当储能集装箱10在第一方向X、第二方向Y和第二方向Y中的任一尺寸不符合ISO国际标准时,可以通过设置框架组件20来延长储能集 装箱10在该方向的尺寸。示例性地,储能集装箱10在第一方向X的尺寸(例如长度)不符合ISO国际标准时,在储能集装箱10的第一方向X的侧部设置框架组件20。
请继续参阅图1至图3,作为一些示例,框架组件20为一个,设置在储能集装箱10的第一方向X的一侧。一个框架组件20有利于框架组件20和储能集装箱10组装,并能够简化储能集装箱组合结构1。
图4是本申请另一些实施例提供的储能集装箱组合结构的结构示意图;图5是图4所示的储能集装箱组合结构的在另一角度下的结构示意图。
如图4和图5所示,作为另一些示例,框架组件20为两个,设置在储能集装箱10的第一方向X的两侧。两个框架组件20分别设置于储能集装箱10的两侧,储能集装箱组合结构1的重量分布较为均匀,有利于提高储能集装箱组合结构1的结构稳定性。两个框架组件20的结构可完全相同,当然两个框架组件20的结构也可不同,例如,两个框架组件20在第一方向X的尺寸可以不等。
请继续参阅图4和图5,可选地,集装箱角件组件30设置在框架组件20的在第一方向X上远离储能集装箱10的一侧。框架组件20靠近储能集装箱10的一侧构成储能集装箱组合结构1的内部部件,框架组件20远离储能集装箱10的一侧构成储能集装箱组合结构1的端部,在端部设置集装箱角件组件30有利于储能集装箱组合结构1的起吊、搬运、固定等操作。
进一步可选地,集装箱角件组件30包括四个集装箱角件,四个集装箱角件包括两个第一角件310和两个第二角件320,第一角件310和第二角件320在第二方向Y上对称设置,两个第一角件310在第三方向Z上对称设置,两个第二角件320在第三方向Z上对称设置。框架组件20的远离储能集装箱10的一侧的四个端部均设置有角件,即第一角件310和第二角件320。四个端部分别为两个顶部和两个底部,两个顶部分别设置有一个第一角件310和一个第二角件320,有利于储能集装箱组合结构1的起吊和搬运等操作;两个底部分别设置有一个第一角件310和一个第二 角件320,有利于将储能集装箱组合结构1和运输载体固定等。
请继续参阅图4和图5,进一步可选地,在第一方向X上,储能集装箱10通过连接框架组件20延长尺寸符合ISO国际标准的基础上,储能集装箱10的沿第二方向Y的尺寸符合ISO国际标准时,此种情况下,不需设置框架组件20延长储能集装箱10的第二方向Y的尺寸,在第二方向Y上,对称的一个第一角件310和一个第二角件320之间的尺寸,可以等于储能集装箱10的在第二方向Y的尺寸。
当然,在第二方向Y上,储能集装箱10的自身尺寸小于ISO国际标准时,储能集装箱10仍然需要通过连接框架组件20延长第二方向Y的尺寸以符合ISO国际标准,在此情况下,在第二方向Y上,对称的一个第一角件310和一个第二角件320之间的尺寸,可以大于储能集装箱10的在第二方向Y的尺寸。
在上述实施例中,储能集装箱10连接框架组件20形成储能集装箱组合结构1,延长储能集装箱10沿第一方向X的尺寸以使储能集装箱组合结构1的第一方向X的尺寸符合ISO国际标准,储能集装箱组合结构1的第二方向Y的尺寸也符合ISO国际标准。
请继续参阅图4和图5,进一步可选地,在第一方向X上,储能集装箱10通过连接框架组件20延长尺寸符合ISO国际标准的基础上,储能集装箱10的沿第三方向Z的尺寸符合ISO国际标准时,此种情况下,不需设置框架组件20延长储能集装箱10的第三方向Z的尺寸,在第三方向Z上,两个第一角件310之间的尺寸等于储能集装箱10的尺寸;并且在第三方向Z上,两个第二角件320之间的尺寸等于储能集装箱10的尺寸。
图6是本申请另一些实施例提供的储能集装箱组合结构的结构示意图;图7是图6所示的储能集装箱组合结构的在另一角度下的结构示意图。
如图6和图7所示,在第三方向Z上,储能集装箱10的自身尺寸小于ISO国际标准时,储能集装箱10仍然需要通过连接框架组件20延长第三方向Z的尺寸以符合ISO国际标准,在此情况下,在第三方向Z上,两个第一角件310之间的尺寸大于储能集装箱10的尺寸;并且在第三方 向Z上,两个第二角件320之间的尺寸大于储能集装箱10的尺寸。
储能集装箱10连接框架组件20形成储能集装箱组合结构1,延长储能集装箱10沿第一方向X的尺寸以使储能集装箱组合结构1的第一方向X的尺寸符合ISO国际标准,储能集装箱组合结构1的第三方向Z的尺寸也符合ISO国际标准。
进一步可选地,在第一方向X和第二方向Y上,储能集装箱10通过连接框架组件20延长尺寸符合ISO国际标准的基础上,储能集装箱10的沿第三方向Z的尺寸符合ISO国际标准时,此种情况下,不需设置框架组件20延长储能集装箱10的第三方向Z的尺寸,在第三方向Z上,两个第一角件310之间的尺寸等于储能集装箱10的尺寸;并且在第三方向Z上,两个第二角件320之间的尺寸等于储能集装箱10的尺寸。
当然,在第三方向Z上,储能集装箱10的自身尺寸小于ISO国际标准时,储能集装箱10仍然需要通过连接框架组件20延长第三方向Z的尺寸以符合ISO国际标准,在此情况下,在第三方向Z上,两个第一角件310之间的尺寸大于储能集装箱10的尺寸;并且在第三方向Z上,两个第二角件320之间的尺寸大于储能集装箱10的尺寸。
在上述实施例中,储能集装箱10连接框架组件20形成储能集装箱组合结构1,延长储能集装箱10沿第一方向X和第二方向Y的尺寸以使储能集装箱组合结构1的第一方向X和第二方向Y的尺寸符合ISO国际标准,储能集装箱组合结构1的第三方向Z的尺寸也符合ISO国际标准。
请继续参阅图6和图7,在一些实施例中,框架组件20还包括多个第一横杠21和边框架22。多个第一横杆21沿第一方向X延伸,分别连接储能集装箱10和边框架22;四个集装箱角件31设在边框架22上。框架组件20的结构相对简单,且其自身重量较轻,能够降低框架组件20对储能集装箱组合结构1整体重量的贡献,进而提高储能集装箱10的电池数量,以此提高储能集装箱10的能量密度。在本申请实施例中,第一横杆21和边框架22之间可以为可拆卸连接或固定连接。第一横杆21和储能集装箱10之间可以为可拆卸连接或固定连接。可拆卸连接可以通过螺栓等连接,固定连接可以为焊接等方式。
在一些示例中,边框架22可以为板状结构,其结构形式简单。
在另一些示例中,边框架22包括两个第二横杠221和两个竖杆222;两个第二横杆221沿第二方向Y延伸,两个竖杆222沿第三方向Z延伸,两个第二横杆221连接两个竖杆222;四个集装箱角件31设在第二横杆221和/或竖杆222上。第二横杆221和竖杆222之间可以焊接等方式连接。边框架22为框架结构,其自身的重量较轻。
可选地,框架组件20还包括多个斜杆23,斜杆23设置在第一横杆21和边框架22之间、和/或相邻的第二横杆221和竖杆222之间。斜杆23能够起到加强作用,以提高框架组件20的强度,并且能够提高框架组件20的结构稳定性。
框架组件20可采用不锈钢、铝合金、金属铝或玻璃钢等材质制成。上述材质的强度相对较高,可焊接性好,制作的框架结构30结构相对稳定,且自身重量较轻。
在一些实施例中,储能集装箱10和框架组件20为可拆卸连接,在储能集装箱组合结构1运输到用户侧后,可以将储能集装箱组合结构1的框架组件20移除,将储能集装箱10和控制柜连接使用,以减少占用空间。
当然,储能集装箱10和框架组件20也可以固定连接,在储能集装箱组合结构1运输到用户侧后,能够直接和控制柜连接使用。
本申请实施例还提供了一种储能系统的运输方法,储能系统包括储能集装箱。
图8是储能系统的示意性框图,如图8所示,储能系统2包括储能集装箱10和控制柜200;控制柜200用于与储能集装箱10电连接,以实现对储能集装箱10内的电池的管控。
图9是本申请一些实施例提供的储能系统的运输方法的流程示意图。
如图9所示,该运输方法包括:
S100,提供储能集装箱,储能集装箱内部容纳有电池;
S200,提供框架组件;
S300,将框架组件连接于储能集装箱以形成满足标准集装箱尺寸的储能集装箱组合结构;
S400,运输储能集装箱组合结构。
在本申请实施例中,将储能集装箱和框架组件连接并形成储能集装箱组合结构进行运输,储能集装箱组合结构的尺寸满足ISO国际标准,能够直接运输,且该储能集装箱组合结构能够显著提升储能集装箱中的电池数量,并能够提高储能集装箱的能量密度。
图10是本申请另一些实施例提供的储能系统的运输方法的流程示意图。如图10所示,在一些实施例中,在步骤S400之后,该运输方法还包括:
S500,断开框架组件和储能集装箱的连接并移除框架组件。
移除框架组件可节省储能系统的占用空间,适用范围更宽。
图11是本申请另一些实施例提供的储能系统的运输方法的流程示意图。如图11所示,可选地,该运输方法还包括,
S600,运输控制柜;
S700,连接控制柜和储能集装箱以组成储能系统。
控制柜和储能集装箱中的电池电连接,以对电池进行管控。控制柜的尺寸较小,在运输时,可以将控制柜作为散装货物进行运输。控制柜和储能集装箱独立运输,能够提高运输效率。
框架组件和储能集装箱可拆卸连接时,在储能集装箱组合结构运输到用户侧后,可以将储能集装箱组合结构的框架组件移除,将储能集装箱和控制柜连接使用,以减少占用空间。换言之,在步骤S500之后,执行步骤S700。在本文中,运输控制柜的步骤和运输储能集装箱的步骤不分先后。
当然,框架组件和储能集装箱固定连接时,不需移除框架组件,可以直接将控制柜和储能集装箱电连接,能够节省操作流程。换言之,在步骤S400之后,可以执行步骤S700。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的 部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种储能集装箱组合结构,包括:
    储能集装箱,内部容纳有电池;以及
    框架组件,连接于所述储能集装箱以组成所述储能集装箱组合结构,所述框架组件上设有集装箱角件组件,
    其中,在第一方向、第二方向和第三方向中的至少一个方向上,所述储能集装箱组合结构的尺寸大于所述储能集装箱的尺寸;所述第一方向、所述第二方向和所述第三方向相互垂直。
  2. 根据权利要求1所述的储能集装箱组合结构,其中,
    所述框架组件为一个,设置在所述储能集装箱的所述第一方向的一侧;或者
    所述框架组件为两个,分别设置在所述储能集装箱的所述第一方向的两侧。
  3. 根据权利要求2所述的储能集装箱组合结构,其中,所述集装箱角件组件设置在所述框架组件的在所述第一方向上远离所述储能集装箱的一侧。
  4. 根据权利要求3所述的储能集装箱组合结构,其中,所述集装箱角件组件包括四个集装箱角件,所述四个集装箱角件包括两个第一角件和两个第二角件,所述第一角件和所述第二角件在所述第二方向上对称设置,两个所述第一角件在所述第三方向上对称设置,两个所述第二角件在所述第三方向上对称设置。
  5. 根据权利要求4所述的储能集装箱组合结构,其中,在所述第二方向上,对称的一个所述第一角件和一个所述第二角件之间的尺寸,大于或等于所述储能集装箱的尺寸。
  6. 根据权利要求4或5所述的储能集装箱组合结构,其中,在所述第三方向上,两个所述第一角件之间的尺寸,大于或等于所述储能集装箱的尺寸;并且在所述第三方向上,两个所述第二角件之间的尺寸,大于或等于所述储能集装箱的尺寸。
  7. 根据权利要求4至6任一项所述的储能集装箱组合结构,其中,
    所述框架组件包括多个第一横杠和边框架;
    所述多个第一横杆沿第一方向延伸,分别连接所述储能集装箱和所述边框架;
    所述四个集装箱角件设在所述边框架上。
  8. 根据权利要求7所述的储能集装箱组合结构,其中,所述边框架包括两个第二横杠和两个竖杆;所述两个第二横杆沿第二方向延伸,所述两个竖杆沿第三方向延伸,所述两个横杆连接所述两个竖杆;所述四个集装箱角件设在所述第二横杆和/或所述竖杆上。
  9. 根据权利要求8所述的储能集装箱组合结构,其中,
    所述框架组件还包括多个斜杆,所述斜杆设置所述第一横杆和所述边框架之间、和/或相邻的所述第二横杆和竖杆之间。
  10. 根据权利要求1至9任一项所述的储能集装箱组合结构,其中,
    所述储能集装箱和所述框架组件为可拆卸连接。
  11. 一种储能系统的运输方法,所述储能系统包括储能集装箱,所述方法包括:
    提供储能集装箱,所述储能集装箱内部容纳有电池;
    提供框架组件;
    将所述框架组件连接于所述储能集装箱以形成满足标准集装箱尺寸的 储能集装箱组合结构;
    运输所述储能集装箱组合结构。
  12. 根据权利要求11所述的方法,其中,
    在所述运输所述储能集装箱组合结构的步骤后,所述方法还包括,
    断开所述框架组件和所述储能集装箱的连接并移除所述框架组件。
  13. 根据权利要求11或12所述的方法,所述储能系统还包括控制柜;所述方法还包括,
    运输所述控制柜;
    连接所述控制柜和所述储能集装箱以组成所述储能系统。
PCT/CN2021/141565 2021-12-27 2021-12-27 储能集装箱组合结构和储能系统的运输方法 WO2023122867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180094491.9A CN116918147A (zh) 2021-12-27 2021-12-27 储能集装箱组合结构和储能系统的运输方法
PCT/CN2021/141565 WO2023122867A1 (zh) 2021-12-27 2021-12-27 储能集装箱组合结构和储能系统的运输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141565 WO2023122867A1 (zh) 2021-12-27 2021-12-27 储能集装箱组合结构和储能系统的运输方法

Publications (1)

Publication Number Publication Date
WO2023122867A1 true WO2023122867A1 (zh) 2023-07-06

Family

ID=86996769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141565 WO2023122867A1 (zh) 2021-12-27 2021-12-27 储能集装箱组合结构和储能系统的运输方法

Country Status (2)

Country Link
CN (1) CN116918147A (zh)
WO (1) WO2023122867A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201012826Y (zh) * 2006-06-23 2008-01-30 中国国际海运集装箱(集团)股份有限公司 一种大型箱体运输框架
EP2050693A2 (de) * 2007-10-17 2009-04-22 CHS Spezialcontainer- Shelter and Engineering GmbH Container zum Lagern und/oder Transportieren von Gegenständen
CN109066889A (zh) * 2018-09-07 2018-12-21 深圳市科陆电子科技股份有限公司 一种集装箱式储能系统
CN109720749A (zh) * 2017-10-31 2019-05-07 比亚迪股份有限公司 储能集装箱系统
CN111430633A (zh) * 2020-05-12 2020-07-17 湖北亿纬动力有限公司 一种储能集装箱的温控系统及储能集装箱
CN215206477U (zh) * 2021-07-19 2021-12-17 南通中集特种运输设备制造有限公司 储能装置运输组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201012826Y (zh) * 2006-06-23 2008-01-30 中国国际海运集装箱(集团)股份有限公司 一种大型箱体运输框架
EP2050693A2 (de) * 2007-10-17 2009-04-22 CHS Spezialcontainer- Shelter and Engineering GmbH Container zum Lagern und/oder Transportieren von Gegenständen
CN109720749A (zh) * 2017-10-31 2019-05-07 比亚迪股份有限公司 储能集装箱系统
CN109066889A (zh) * 2018-09-07 2018-12-21 深圳市科陆电子科技股份有限公司 一种集装箱式储能系统
CN111430633A (zh) * 2020-05-12 2020-07-17 湖北亿纬动力有限公司 一种储能集装箱的温控系统及储能集装箱
CN215206477U (zh) * 2021-07-19 2021-12-17 南通中集特种运输设备制造有限公司 储能装置运输组件

Also Published As

Publication number Publication date
CN116918147A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
KR102670099B1 (ko) 배터리 팩 및 전기 차량
EP2685519B1 (en) Battery container, sub-battery container used therein, and battery pack using the same
WO2022134055A1 (zh) 电池的箱体、电池、用电装置、制备箱体的方法和装置
US20230335837A1 (en) Battery cell, battery and device using battery cell as power source
EP3712980B1 (en) Battery module and battery pack
CN111668398A (zh) 一种电池模块及电池包
WO2023122867A1 (zh) 储能集装箱组合结构和储能系统的运输方法
WO2020177738A1 (zh) 一种电池模块及电池包
CN209993632U (zh) 一种电池模块及电池包
EP4391163A1 (en) Battery cell, battery, and powered device
CN216720120U (zh) 储能集装箱组合结构
CN116830368A (zh) 电池、用电设备、制造电池的方法和设备
US20240222764A1 (en) Battery pack and electric vehicle
US20240222767A1 (en) Battery pack and electric vehicle
US20240222762A1 (en) Battery pack and electric vehicle
CN209963120U (zh) 一种可拓展的锂电池承载箱
US20240222761A1 (en) Battery pack and electric vehicle
US20240234903A1 (en) Cabinet of energy storage apparatus, energy storage apparatus, and manufacturing method and device thereof
US20240222763A1 (en) Battery pack and electric vehicle
US20240222760A1 (en) Cell, power battery pack, and electric vehicle
WO2024065205A1 (zh) 电池单体、电池及用电装置
WO2024031348A1 (zh) 电极组件、电池单体、电池及用电设备
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230116169A1 (en) Battery, manufacturing method and manufacturing system thereof, and electric apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094491.9

Country of ref document: CN