WO2023121416A1 - 안전성이 강화된 배터리 모듈 - Google Patents

안전성이 강화된 배터리 모듈 Download PDF

Info

Publication number
WO2023121416A1
WO2023121416A1 PCT/KR2022/021252 KR2022021252W WO2023121416A1 WO 2023121416 A1 WO2023121416 A1 WO 2023121416A1 KR 2022021252 W KR2022021252 W KR 2022021252W WO 2023121416 A1 WO2023121416 A1 WO 2023121416A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
insulating block
battery
slot
separator
Prior art date
Application number
PCT/KR2022/021252
Other languages
English (en)
French (fr)
Inventor
박진우
김태근
이창제
이복건
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220174863A external-priority patent/KR20230098020A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22912049.8A priority Critical patent/EP4287389A1/en
Priority to CN202280014324.3A priority patent/CN116830382A/zh
Priority to JP2023550101A priority patent/JP2024508121A/ja
Publication of WO2023121416A1 publication Critical patent/WO2023121416A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery, and more particularly, to a battery module with enhanced safety, a battery pack including the battery module, and a vehicle.
  • a lithium secondary battery mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with such a positive electrode active material and a negative electrode active material are disposed with a separator therebetween, and an exterior material that seals and houses the electrode assembly together with an electrolyte, that is, a battery case.
  • lithium secondary batteries can be classified into a can-type secondary battery in which an electrode assembly is embedded in a metal can and a pouch-type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of an exterior material.
  • secondary batteries have been widely used for driving or energy storage not only in small devices such as portable electronic devices, but also in medium and large-sized devices such as electric vehicles and energy storage systems (ESSs).
  • a plurality of these secondary batteries may constitute one battery module in a form in which a plurality of them are stored together in a module case in a state in which they are electrically connected.
  • a plurality of battery cells may exist in a dense state in a narrow space to increase energy density inside the battery module.
  • the present invention has been devised to solve the above problems, and provides a battery module that can enhance safety by reducing the influence on adjacent battery cells when a thermal event occurs, a battery pack including the same, and a vehicle. intended to provide
  • a battery module for achieving the above object includes a plurality of battery cells having electrode leads; a module case accommodating the plurality of battery cells in an internal space; a separating member separating spaces between at least some of the plurality of battery cells and having a slot into which the electrode lead is inserted; and an insulating block made of an electrically insulating material and configured to surround an outside of at least a portion of the electrode lead inserted into the slot.
  • the separating member may be made of a metal material.
  • the insulating block may be configured to electrically insulate between the electrode lead and the separation member.
  • the insulating block may be configured to seal the slot in a state in which the electrode lead is inserted.
  • the insulating block may include two or more unit blocks coupled to each other.
  • the separation member may include a first separation portion interposed between adjacent battery cells, and a second separation portion connected to an end of the first separation portion and formed with the slot.
  • At least one of the first separator and the second separator may be formed in a plate shape.
  • first separator and the second separator may be coupled at right angles.
  • the separation member may further include a third separation portion connected to each end of the first separation portion and the second separation portion and covering one side of the plurality of battery cells.
  • the insulating block may be configured to be mounted in a slot of the separating member.
  • the battery module according to the present invention further includes a bus bar assembly electrically connecting electrode leads of the plurality of battery cells, and the bus bar assembly may be located outside the separation member.
  • the bus bar assembly may include a bus bar housing made of an electrically insulating material and provided on the outside of the separation member, and a bus bar terminal made of an electrically conductive material and coupled to the bus bar housing.
  • the insulating block may have a gas collection unit configured to allow the discharged gas to flow in when gas is discharged from the battery cell.
  • the insulating block may be configured to surround at least a portion of the sealing portion of the battery cell.
  • the insulating block may have a buffer pad at an inner end thereof.
  • the insulating block may be configured to come into close contact with the electrode lead or the slot of the separation member when gas is discharged from the battery cell.
  • a battery pack according to another aspect of the present invention for achieving the above object includes a battery module according to the present invention.
  • a vehicle according to another aspect of the present invention for achieving the above object includes a battery module according to the present invention.
  • the safety of the battery module can be improved.
  • a thermal runaway transfer event when a thermal event occurs, a thermal runaway transfer event can be effectively suppressed by removing factors that may affect adjacent battery cells.
  • the present invention may have various other effects, which will be described in each implementation configuration, or descriptions of effects that can be easily inferred by those skilled in the art will be omitted.
  • FIG 1 and 2 are a combined perspective view and an exploded perspective view schematically showing the configuration of a battery module according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of some components of FIG. 2 .
  • Figure 4 is a combined perspective view of the configuration of Figure 3;
  • FIG. 5 is a diagram schematically showing some configurations of a battery module according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view along line A1-A1' in FIG. 5 .
  • FIG. 7 is a view of a form viewed from above of some configurations of a battery module according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view schematically showing the configuration of an insulating block according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically illustrating an assembly configuration of an insulating block to an electrode lead in a battery module according to an embodiment of the present invention.
  • FIG. 10 is a perspective view schematically illustrating a configuration of a separation member included in a battery module according to an embodiment of the present invention.
  • FIG. 11 is a perspective view schematically showing the configuration of a separation member included in a battery module according to another embodiment of the present invention.
  • FIG. 12 is a front cross-sectional view schematically illustrating a configuration in which electrode leads and insulating blocks are inserted into slots formed in the separating member of FIG. 11 .
  • FIG. 13 and 14 are disassembled perspective views schematically showing configurations of a separation member included in a battery module according to still other embodiments of the present invention.
  • FIG. 15 is an exploded perspective view of some components of a battery module according to an embodiment of the present invention.
  • FIG. 16 is a perspective view of the combination of the configuration of FIG. 15;
  • FIG. 17 is a perspective view schematically illustrating the configuration of an insulating block according to another embodiment of the present invention.
  • FIG. 18 is a cross-sectional view schematically illustrating a configuration in which the insulating block of FIG. 17 is mounted in a slot of a separation member.
  • FIG. 19 is a perspective view schematically illustrating the configuration of an insulating block according to another embodiment of the present invention.
  • Fig. 20 is a cross-sectional view schematically illustrating a configuration in which the insulating block of Fig. 19 is mounted in a slot of a separation member.
  • 21 is a top view schematically illustrating some configurations of a battery module according to an embodiment of the present invention.
  • 22 is an exploded perspective view schematically showing the configuration of a bus bar assembly according to an embodiment of the present invention.
  • FIG. 23 is a perspective view schematically showing the configuration of an insulating block according to another embodiment of the present invention.
  • FIG. 24 may be referred to as a top view of a cross-sectional configuration of a portion of the battery module including the insulating block of FIG. 23 .
  • 25 is a perspective view schematically showing the configuration of an insulating block according to another embodiment of the present invention.
  • 26 is a schematic cross-sectional view of some configurations of a battery module including an insulating block according to another embodiment of the present invention.
  • FIG. 1 and 2 are a combined perspective view and an exploded perspective view schematically showing the configuration of a battery module according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of some components of FIG. 2
  • FIG. 4 is a combined perspective view of the components of FIG.
  • the battery module according to the present invention may include a battery cell 100 , a module case 200 , a separating member 300 and an insulating block 400 .
  • the battery cell 100 as a secondary battery, includes an electrode assembly, an electrolyte, and an exterior material, and may be configured to be repeatedly charged and discharged.
  • the battery cell 100 may be a lithium battery, but the present invention is not necessarily limited to a specific type of such battery.
  • the battery cell 100 may be a pouch type battery.
  • the exterior material of the battery cell 100 may be a pouch exterior material in which an aluminum layer is wrapped by a polymer layer.
  • the battery cell 100 of this type may include a housing portion indicated by R and a sealing portion indicated by E.
  • the accommodating portion R represents a portion where the electrode assemblies (anode plate, anode plate, and separator) and the electrolyte are stored
  • the sealing portion E surrounds the periphery of the accommodating portion R, and the pouch exterior material is fused. It can be said to represent a part.
  • the pouch-type cell 100 has four sides (corners) centered on the accommodating part R. At this time, all four side surfaces may be configured in a sealed form, or only three side surfaces may be configured in a sealed form. In this case, a cell sealed on four side surfaces may be referred to as a four-side sealing cell, and a cell sealed on three side surfaces may be referred to as a three-sided sealing cell.
  • the battery cell 100 is configured in an upright shape, and the front, rear, bottom, and top ends of the left pouch and the right pouch may be sealed. In this case, it can be said that the battery cell 100 is sealed on four sides.
  • a plurality of the battery cells 100 may be included in a battery module.
  • each battery cell 100 may include an electrode lead 110 .
  • the electrode lead 110 includes a positive lead and a negative lead, and the positive lead and negative lead may protrude from the same side (corner) or different sides of the battery cell 100 .
  • a unidirectional cell when the anode lead and the cathode lead are located on the same side, it is referred to as a unidirectional cell, and when the anode lead and the cathode lead are located on different sides, particularly opposite sides, it may be referred to as a bidirectional cell.
  • a plurality of battery cells 100 may be included in a battery module in a stacked form. That is, it can be said that the battery module according to the present invention includes a cell stack (cell assembly) stacked in at least one direction.
  • a cell stack cell assembly
  • a plurality of battery cells 100 are arranged side by side in a horizontal direction, such as a left-right direction (Y-axis direction) in a state in which they are erected in a vertical direction (vertical direction, Z-axis direction). It can be.
  • the electrode leads 110 of each battery cell 100 are disposed at both ends in the front-back direction (X-axis direction).
  • the module case 200 has an empty space formed therein, and may be configured to accommodate a plurality of battery cells 100 in this inner space.
  • the module case 200 includes an upper plate 210, a lower plate 220, a left plate 230, a right plate 240, a front plate 250 and a back plate 260 to define an internal space. can do.
  • the cell stack may be positioned in the limited internal space.
  • the module case 200 includes a U-frame body in which a lower plate 220, a left plate 230, and a right plate 240 are integrated with each other,
  • the top plate 210, the front plate 250, and the back plate 260 may be configured to cover or seal the upper, front, and rear parts of the main body.
  • the top plate 210, the front plate 250, and the back plate 260 may be coupled and fixed using various fastening methods such as welding, bonding, bolting, and hooking.
  • the module case 200 may be configured in the form of a tubular monoframe in which the upper plate 210, the lower plate 220, the left plate 230 and the right plate 240 are integrated with each other.
  • the module case 200 may be made of a heat-resistant material, particularly metal and/or plastic material.
  • the module case 200 may include various types of heat-resistant materials, such as clad metal, a metal or plastic material having a heat-resistant coating layer, and a form in which STS (SUS) and Al are bonded. there is.
  • the present invention is not limited to a specific material or shape of the module case 200.
  • the separation member 300 may be configured to separate spaces between at least some battery cells 100 among a plurality of battery cells 100 accommodated in the module case 200 . Moreover, the separation member 300 may divide the inner space of the module case 200 into a plurality of unit spaces. For example, the separation member 300 may be configured to separate storage spaces for each of the plurality of battery cells 100 . In this case, each of the plurality of battery cells 100 may be accommodated in different separation spaces. As another example, the separation member 300 may be configured to separate two or more cell banks. Here, one or more battery cells 100 may be included in the cell bank. As a more specific example, a cell bank may include three battery cells 100 . In this case, the separation member 300 configures the three battery cells 100 as one cell bank so that storage spaces for each different cell bank can be separated.
  • the separation member 300 may be formed with a slot, as indicated by S in FIG. 2 .
  • These slots (S) may be configured so that the electrode lead 110 can be inserted.
  • the slot (S) may be configured such that the electrode lead 110 located inside can protrude outward through the separation member 300 .
  • the slot S may have a shape and size corresponding to the insertion form of the electrode lead 110 so that the electrode lead 110 may be inserted or penetrated in the thickness direction of the separation member 300.
  • the electrode lead 110 may be formed in a substantially erected plate shape.
  • the slot S is the length of the electrode lead 110 in the vertical direction (Z-axis direction) and in the left-right direction (Y-axis direction). It may be configured to have a size greater than or equal to the thickness.
  • the inner direction means a direction toward the center of the corresponding component or battery module
  • the outer direction refers to a direction toward the outside of the corresponding component or battery module.
  • the insulating block 400 may have an electrically insulating material and may be configured to surround the electrode lead 110 .
  • the insulating block 400 may be configured to surround the outer portion of the electrode lead 110 inserted into the slot (S).
  • the electrode leads 110 located at both ends of the battery cell 100 in the front-back direction extend in the front-back direction as indicated by L1, then L2.
  • the ends may be configured to be bent in the left and right directions.
  • at least a part of the front-rear extension part L1 may be a part inserted into the slot S of the separating member 300, and the left and right bent part L2 comes out of the slot S and forms the part of the separating member 300. It may be a part located outside.
  • the left-right bent portion L2 may be in direct contact with an electrode lead of another battery cell 100 or a portion in contact with a bus bar terminal of a bus bar assembly to be described later.
  • the insulating block 400 may be configured to surround a portion of the electrode lead 110 inserted into the slot S, that is, the circumference of the front and rear extension portion L1.
  • the insulating block 400 may be applied in all directions of up, down, left, and right, ie, 360 degrees (°), except for the extension direction, with respect to a portion of the front and rear extension portion L1 of the electrode lead 110. As, it may be configured to surround the electrode lead 110.
  • the insulating block 400 is a material having electrical insulating properties, and may be made of or include various insulating materials known at the time of filing of the present invention.
  • the insulating block 400 may be made of or include a material having heat resistance so as to withstand high temperature or flame to some extent.
  • the insulating block 400 may be made of or include a material such as heat-resistant plastic or heat-resistant (ceramic, etc.) treated elastomer, such as heat-resistant coated silicon, rubber, or polymer.
  • the storage space of the battery cells 100 is separated inside the battery module, so that the transfer of flame, heat, sparks, and other foreign substances between adjacent battery cells 100 can be effectively blocked. there is. Accordingly, even when an event such as thermal runaway occurs in a specific battery cell 100 , propagation of the thermal event to other battery cells 100 may be prevented.
  • the separating member 300 may be made of a metal material.
  • the separation member 300 may be made of a metal material.
  • the separation member 300 may further include a different material together with a metal material.
  • the separating member 300 may be made of steel, more specifically, stainless steel (SUS, STS).
  • the separation member 300 may be formed of a clad metal material, a heat-resistant coated metal material, and/or a material in which aluminum is bonded to an STS material.
  • manufacturing of the separation member 300 is easy, and high structural stability and mechanical strength can be secured.
  • durability against such a flame is stably secured to prevent structural collapse, and excellent flame blocking performance can be secured.
  • the insulating block 400 may be configured to electrically insulate between the electrode lead 110 and the separation member 300 . This will be described in more detail with reference to FIGS. 5 and 6 .
  • FIG. 5 is a diagram schematically showing some configurations of a battery module according to an embodiment of the present invention.
  • 6 is a cross-sectional view along line A1-A1' in FIG. 5 .
  • FIGS. 5 and 6 may be views showing a portion of the front side of one battery cell 100 in a battery module.
  • the insulating block 400 prevents the electrode lead 110 from directly contacting the separation member 300, so that an electrical connection between the electrode lead 110 and the separation member 300 is prevented. It can be configured to be insulated with. In particular, the insulating block 400 may be configured to surround a portion of the electrode lead 110 passing through the slot S of the separating member 300 .
  • the separation member 300 may be made of a metal material having electrical conductivity in order to secure flame stability and structural rigidity.
  • the insulation block 400 blocks direct contact between the electrode lead 110 and the separation member 300, thereby preventing a short circuit from occurring and ensuring electrical safety.
  • the insulating block 400 may be configured to seal the slot (S).
  • the separation member 300 may have a slot S formed so that the electrode lead 110 can be inserted, and the slot S is formed in consideration of tolerance so that the electrode lead 110 can be easily inserted. It may be formed larger than the insertion size (cross-sectional size) of the electrode lead 110 . Thus, in a state where the electrode lead 110 is inserted into the slot S, an empty space may be formed around the electrode lead 110. However, as shown in the portion indicated by A2 in FIG. 6 , the insulating block 400 may be filled around the electrode lead 110 in the slot S.
  • discharge of flame or spark through the slot (S) can be suppressed. This will be described in more detail with further reference to FIG. 7 .
  • FIG. 7 is a view of a form viewed from above of some configurations of a battery module according to an embodiment of the present invention. For example, it can be said that FIG. 7 shows a cross-sectional configuration along line A2-A2' of FIG. 5 .
  • thermal runaway propagation due to a flame passing through the slot S can be prevented more reliably.
  • propagation of flames, sparks, high-temperature gas, etc. between the battery cells 100 through the space where the electrode leads 110 are located, particularly the front or rear of the battery module can be blocked. . Therefore, in this case, the safety of the battery module can be further improved.
  • the insulating block 400 may include an elastic material in order to secure a sealing force for the slot (S).
  • the insulating block 400 may include a material such as polyurethane, rubber, or silicon.
  • the insulating block 400 may be made of a plastic or polymer material having elasticity of a certain level or higher.
  • the insulating block 400 may include a ceramic coating layer to improve heat resistance.
  • the insulating block 400 may be made of a material such as zirconia or mica. The present invention is not limited to a specific material of the insulating block 400, and various materials having electrical insulation, heat resistance, or elasticity known at the time of filing of the present invention may be employed for the insulating block 400.
  • FIG. 8 is an exploded perspective view schematically showing the configuration of an insulating block 400 according to an embodiment of the present invention.
  • 9 is a cross-sectional view schematically illustrating an assembly configuration of an insulating block 400 to an electrode lead 110 in a battery module according to an embodiment of the present invention.
  • the insulating block 400 may include two or more unit blocks. And, these multiple unit blocks may be configured to be combinable with each other.
  • the insulating block 400 may include a first block 410 and a second block 420 . Also, the first block 410 and the second block 420 may be combined with each other to form one unit block and inserted into one slot (S).
  • a lead insertion portion into which the electrode lead 110 is inserted may be formed in the insulation block 400, as indicated by N in FIGS. 3 and 8.
  • the lead insertion portion N may be formed in a slit shape elongated in the vertical direction (Z-axis direction) corresponding to the shape of the electrode lead 110 .
  • the lead insertion portion (N) may be formed in at least one of the first block 410 and the second block 420 .
  • a first slit N1 and a second slit N2 may be formed in each of the first block 410 and the second block 420 . In this case, when the first block 410 and the second block 420 are coupled, the first slit N1 and the second slit N2 may be coupled to form one lead insertion portion N. .
  • first block 410 and the second block 420 may be coupled to each other in a vertical direction.
  • the second block 420 may be moved from the top of the first block 410 to the bottom and seated on the top of the first block 410.
  • the first slit N1 may be formed to extend from the top of the first block 410 to the bottom by a predetermined distance.
  • the second slit N2 may be formed to extend from the bottom of the second block 420 to the top by a predetermined distance.
  • the lead insertion portion N may be formed in a form cut or cut out of the insulating block 400 .
  • the electrode lead 110 may be first inserted into the first slit N1 of the first block 410 .
  • the second block 420 may be moved downward as indicated by arrow B2 while aligning the upper portion of the electrode lead 110 protruding upward from the first slit N1 with the second slit N2.
  • the second block 420 and the first block 410 may be coupled to each other.
  • the sealing property between the insulating block 400 and the electrode lead 110 can be improved. That is, according to the above embodiment, since the electrode lead 110 can be easily inserted into the lead insertion part N of the insulating block 400, the size of the lead insertion part N can not be increased. Therefore, it is possible to minimize a gap between the electrode lead 110 and the insulating block 400 .
  • the plurality of unit blocks may be coupled to each other by various fastening methods such as adhesion, bolting, welding, fitting, hook coupling, and the like.
  • an adhesive may be applied to the upper surface of the first block 410 and the lower surface of the second block 420 so that the first block 410 and the second block 420 may be bonded to each other.
  • the first block 410 and the second block 420 may be fitted and fastened by fastening protrusions and fastening grooves formed to correspond to each other.
  • a coupling state between a plurality of unit blocks can be stably maintained. Therefore, insulation and sealing performance of the electrode lead 110 by the insulation block 400 can be more stably secured.
  • the insulating block 400 may be configured to be detachable from the electrode lead 110 . That is, the insulating block 400 may be configured to be coupled to and separated from the electrode lead 110 .
  • the insulating block 400 may be mounted on the electrode lead 110 by fitting between the first block 410 and the second block 420 .
  • the insulating block 400 may be separated or separated from the electrode lead 110 by releasing the fitting between the first block 410 and the second block 420 .
  • a process of assembling a battery module as well as a process of separating a specific battery cell 100 from a battery module can be performed more easily. Accordingly, assembly or replacement of the battery module may be further improved.
  • a plurality of the insulating blocks 400 may be included in the battery module.
  • two or more slots S through which two electrode leads 110 protrude may be formed in the battery cell 100 .
  • the battery module includes a plurality of battery cells 100, and slots S corresponding to the electrode leads 110 of each battery cell 100 may also be formed in plurality in the separation member 300.
  • a plurality of insulating blocks 400 may also be included to correspond to each of the plurality of slots S.
  • a plurality of insulation blocks 400 may be included in a one-to-one correspondence to each slot S.
  • FIG. 10 is a perspective view schematically illustrating a configuration of a separation member 300 included in a battery module according to an embodiment of the present invention.
  • the separating member 300 may include a first separating part 310 and a second separating part 320 .
  • the first separator 310 may be interposed between adjacent battery cells 100 .
  • a plurality of battery cells 100 may be arranged side by side in a left-right direction.
  • each of the battery cells 100 may be disposed so that the electrode leads 110 are positioned in the forward and backward directions in a standing state.
  • the first separator 310 may be interposed between two battery cells 100 disposed adjacently in the left and right directions. That is, the first separator 310 may be interposed between the cell stacks to separate the space between the cell stacks.
  • the first separator 310 may form a plurality of separated spaces as indicated by C1. Moreover, a plurality of first separators 310 may be disposed spaced apart from each other by a predetermined distance in a horizontal direction (left and right directions). In addition, one or more battery cells 100 may be accommodated in the spaced space between the first separators 310 .
  • the second separator 320 may be connected to an end of the first separator 310 . Moreover, the second separator 320 may be provided on the side where the electrode lead 110 is located. For example, as shown in FIG. 10 , the second separator 320 may be connected to a front end or a rear end of the first separator 310 where the electrode lead 110 is located. In particular, two or more second separators 320 may be provided, at least one of which is connected to the front end of the first separator 310 and the other is connected to the rear end of the first separator 310. there is.
  • the second separation part 320 may be formed with a slot (S). That is, a slot S may be formed in the second separator 320 to allow the electrode lead 110 to be inserted. At this time, the slot (S) may be formed in a form penetrating the second separator 320 in the thickness direction.
  • the first separator 310 may be configured to separate the two battery cells 100 in the stacking direction of the cell stack, for example, in the left-right direction. Also, the second separator 320 may be configured to separate the cell stack and the front space or the rear space.
  • flame, spark, heat, etc. are directly transferred between cells in the stacking direction of the battery cells 100 by the separation member 300, as well as the front or rear space of the battery cells 100.
  • the detouring of flames and the like through the can be effectively blocked. Therefore, in this case, heat propagation suppression performance between the battery cells 100 may be further improved.
  • the first separator 310 and/or the second separator 320 may be formed in a plate shape.
  • the plurality of first separators 310 and the two second separators 320 may both have a rectangular plate shape.
  • each plate constituting the first separator 310 and the second separator 320 may be configured in a rectangular plate shape.
  • both the first separator 310 and the second separator 320 may be formed in the form of an upright plate.
  • the separation member 300 while reducing the size or thickness of the separation member 300, it is possible to reliably separate the space between the cells in the inner space of the module case 200.
  • the ends of the separation member 300 such as the upper end or the lower end, come into close contact with the inner surface of the module case 200, flame, gas, sparks, Heat can be prevented from escaping.
  • the space occupied by the separation member 300 may be reduced to increase energy density of the battery module, while contributing to weight reduction of the battery module.
  • the first separating part 310 and the second separating part 320 may have a form coupled at right angles.
  • the first separator 310 may be disposed to have a shape elongated in the front-back direction (X-axis direction) as a standing plate.
  • the second separator 320 may be disposed to have a shape elongated in the left-right direction (Y-axis direction) as a raised plate. In this case, it can be said that the first separating part 310 and the second separating part 320 are coupled in a perpendicular direction to each other.
  • the storage space of the battery cell 100 can be secured as much as possible by reducing the volume or weight of the separation member 300 . Therefore, it may be advantageous to improve the energy density of the battery module.
  • not only manufacturing of the separation member 300 but also assembly between the separation member 300 and the battery cell 100 can be easily performed. Accordingly, the manufacturing process of the battery module may be improved.
  • the structural rigidity of the separation member 300 can be secured more stably.
  • first separator 310 and the second separator 320 may be manufactured separately from each other and then assembled.
  • first separator 310 may be repeatedly stacked together with the battery cells 100 in a horizontal direction, for example, in a left-right direction to form a composite laminate.
  • different second separators 320 may be coupled to ends of the first separator 310, for example, to the front and rear ends.
  • the first separator 310 and the second separator 320 may be mutually coupled by various fastening methods.
  • the first separator 310 and the second separator 320 may be coupled and fixed to each other by welding.
  • the first separator 310 and the second separator 320 may be coupled and fixed by a fitting method or the like.
  • the first separator 310 in order to improve fastening properties between the first separator 310 and the second separator 320, is a battery cell. (100) may be disposed to protrude in the front-back direction. Also, the protruding portion of the first separating part 310 may contact and be coupled to the second separating part 320 .
  • a slot S is formed in the second separator 320 so that the electrode lead 110 penetrates when coupled with the first separator 310 .
  • the second separator 320 may be coupled with the first separator 310 by moving in a direction toward the battery cell 100 from the front or rear side of the first separator 310 .
  • the first separation unit 310 and the battery cell 100 are closely adhered to each other as much as possible. can make it Accordingly, as the dead space is reduced, the energy density of the battery module may be further improved.
  • first separating part 310 and the second separating part 320 may be manufactured in a form integrated with each other. That is, the first separating part 310 and the second separating part 320 may be manufactured in an integrated form, rather than being manufactured separately and then combined.
  • first separator 310 and the second separator 320 may be manufactured in the form shown in FIG. 10 from scratch.
  • the separation member 300 is easy to manufacture, productivity and fairness of the battery module can be improved.
  • the first separation unit 310 and the second separation unit 320 are integrated from the beginning and maintain a coupled state, structural rigidity and stability of the separation member 300 can be excellently secured.
  • FIG. 11 is a perspective view schematically illustrating the configuration of a separation member 300 included in a battery module according to another embodiment of the present invention.
  • the slot S may be provided in a form in which a portion of the separation member 300 is cut or incised. More specifically, the slot (S) may be formed in a shape cut by a predetermined distance from the upper end of the second separator 320 in the lower direction. Also, the electrode lead 110 and the insulating block 400 surrounding the electrode lead 110 may be inserted into the slot S formed in the cutout shape. This will be described in more detail with further reference to FIG. 12 .
  • FIG. 12 is a front cross-sectional view schematically showing a configuration in which the electrode lead 110 and the insulating block 400 are inserted into the slot S formed in the separation member 300 of FIG. 11 .
  • (a) of FIG. 12 is a view showing a process of inserting the electrode lead 110 and the insulating block 400 into the slot (S)
  • (b) of FIG. 12 is a view showing the electrode lead 110 into the slot (S). ) and the cross-sectional configuration after the insulating block 400 is inserted.
  • the electrode lead 110 and the insulating block 400 Silver may be drawn downward from the top opening of the slot (S) and inserted into the slot (S).
  • the insulating block 400 may include two unit blocks as described in the embodiments of FIGS. 8 and 9 above.
  • the battery cell 100 moves downward as indicated by arrow B3
  • the electrode lead ( 110 may be inserted into the slot S of the second separator 320 and the first slit N1 of the first block 410 .
  • the second block 420 is indicated by arrow B4.
  • it may descend and be inserted into the slot S of the second separator 320 .
  • the electrode lead 110 of the battery cell 100 may be inserted into the second slit N2 of the second block 420 .
  • the battery cell 100 is moved in one direction, even when the first separator 310 and the second separator 320 are coupled to each other or when they are manufactured in an integrated form. For example, it can be easily accommodated in the storage space C1 by moving it in a downward direction. Therefore, the storage process of the battery cell 100 can be performed more easily.
  • a configuration in which the insulating block 400 is coupled to the slot S of the separating member 300 can be more easily achieved.
  • FIG. 13 and 14 are exploded perspective views schematically illustrating the configuration of a separation member 300 included in a battery module according to still other embodiments of the present invention.
  • the separating member 300 may further include a third separating part 330 .
  • the third separator 330 may be connected to each end of the first separator 310 and the second separator 320 .
  • the third separator 330 may be connected to lower ends of the first separator 310 and the second separator 320 .
  • the third separator 330 may be connected to upper ends of the first separator 310 and the second separator 320 .
  • the third separator 330 may be configured in a plate shape. However, unlike the first separator 310 or the second separator 320, the third separator 330 may be configured in a horizontally laid shape. In particular, the third separator 330 may be configured in a plate shape parallel to the X-Y plane. Moreover, the third separator 330 may be formed in a plate shape orthogonal to the first separator 310 and the second separator 320 . That is, the plane formed by the third separator 330 may have a shape orthogonal to the plane formed by the first separator 310 and the second separator 320 .
  • the structure of the first separator 310 and the second separator 320 can be maintained more stably by the third separator 330 . Accordingly, the structure of the separation member 300 may be stably maintained without being changed even in the event of an external shock or an internal pressure change. In particular, when gas, flame, or spark is generated in the battery cell 100 due to an event such as thermal runaway, strong pressure may be applied toward the separation member 300 . At this time, structural collapse of the separation member 300 is suppressed due to the third separator 330, and the isolation effect between cells by the separation member 300 can be secured more stably.
  • the battery cell 100 can be stably accommodated in the inner space of the separator 300.
  • the battery cell 100 is seated on the upper end of the third separator 330 and is stable. can be stored as
  • the isolation effect of the separation member 300 can be further improved.
  • propagation of flame or heat in a horizontal direction is blocked by the first separator 310 and the second separator 320, and the third separator ( 330), propagation of a flame or the like in the vertical direction may be blocked.
  • the third separator 330 is provided on the upper side of the battery cell 100, it is possible to block flames from moving toward the upper side. Therefore, when the battery module is mounted on the lower side of the vehicle, it is possible to suppress the flame from being directed to the occupant located on the upper side, so that the occupant's safety can be improved.
  • the third separator 330 may be coupled to only one end of the top or bottom of the first separator 310 .
  • it may be more advantageous to implement directional venting that induces flame or venting gas generated in the battery cell 100 in a specific direction.
  • a process of accommodating the battery cell 100 in the accommodating space of the separation member 300 can be performed more easily.
  • FIG. 15 is an exploded perspective view of some components of a battery module according to an embodiment of the present invention.
  • Figure 16 is a combined perspective view of the configuration of Figure 15.
  • FIGS. 15 and 16 show one slot S and one insulating block 400 coupled thereto as a part of the separating member 300 .
  • the insulating block 400 may be configured to be mounted in the slot S of the separating member 300 .
  • the slot S of the separation member 300 may be formed in a hole-like shape, as shown in FIG. , It can be inserted into and coupled to the slot (S) formed in the form of a hole.
  • the insulating block 400 can be separated from the slot S by moving as indicated by arrow B6. That is, the insulating block 400 may be configured to be detachable from the slot S of the separating member 300 .
  • the insulating block 400 may be configured to be fitted into the slot S of the separation member 300.
  • the insulating block 400 may have a structure or size corresponding to the shape of the slot S.
  • a sealing structure can be easily provided with respect to the slot (S) portion of the separation member 300 .
  • the electrode lead 110 can be stably fixed to the slot (S). Accordingly, the bonding portion of the electrode lead 110 is prevented from being damaged or damaged during use of the battery module, and the process of bonding the electrode lead 110 to the bus bar can be performed more easily.
  • FIG. 17 is a perspective view schematically illustrating the configuration of an insulating block 400 according to another embodiment of the present invention.
  • FIG. 18 is a cross-sectional view schematically illustrating a configuration in which the insulating block 400 of FIG. 17 is mounted in the slot S of the separation member 300. Referring to FIG. For example, it can be said that FIG. 18 shows a cross-sectional configuration along the line A4-A4' in a state in which the insulating block 400 of FIG. 17 is mounted in the slot S.
  • the insulating block 400 may be configured to have different sizes at both ends located on opposite sides.
  • the insulating block 400 may have different sizes of outer and inner ends.
  • the width of the outer end of the insulating block 400 may be represented by W1.
  • the width of the inner end of the insulating block 400 may be represented by W2.
  • W1 may be formed to have a smaller size than W2.
  • the slot S of the separation member 300 may have a shape and size corresponding to the shape of the insulating block 400 .
  • the slot S of the separation member 300 penetrates the separation member 300 in the front-back direction (Y-axis direction), but conforms to the shape of the insulating block 400. can be formed correspondingly.
  • the size of the outer opening of the slot S is approximately similar to the size W1 of the outer end of the insulating block 400, and the size of the inner opening of the slot S is approximately that of the inner end of the insulating block 400. It may be formed similarly to the size W2. Accordingly, the slot S may have an outer size smaller than an inner size.
  • the insulating block 400 is not separated from the slot S of the separation member 300 in an emergency situation such as thermal runaway, and can stably maintain its position.
  • the insulating block 400 is directed outward. Pressure may be applied.
  • the insulating block 400 is S) in the outward direction (+X-axis direction).
  • the electrode lead 110 wrapped by the insulating block 400 can also stably maintain its position.
  • FIG. 19 is a perspective view schematically illustrating the configuration of an insulating block 400 according to another embodiment of the present invention.
  • FIG. 20 is a cross-sectional view schematically illustrating a configuration in which the insulating block 400 of FIG. 19 is mounted in the slot S of the separation member 300.
  • a stopper may be formed at an inner end of the insulating block 400 located on the receiving part R side of the battery cell 100, as indicated by P.
  • the stopper P is formed to protrude from the insulating block 400 in the left-right direction (Y-axis direction), and may be a portion having the largest width in the left-right direction.
  • the stopper (P) may be configured to be larger than the size of the slot (S). In this case, as shown in FIG. 20, when the insulating block 400 is inserted into the slot S of the separating member 300, the stopper P is not inserted into the slot S and the separating member ( 300) may be seated on the inner surface.
  • the insulating block 400 is inserted into the slot S ) can be reliably prevented from escaping to the outside of the Accordingly, coupling between the insulating block 400 and the separation member 300 is improved, and movement or damage of the electrode lead 110 can be prevented.
  • the battery module according to the present invention may further include a bus bar assembly 500 .
  • the bus bar assembly 500 may be configured to electrically connect the electrode leads 110 of the plurality of battery cells 100 to each other.
  • the bus bar assembly 500 may be located outside the separation member 300 . This will be described in more detail with reference to FIG. 21 .
  • FIG. 21 is a top view schematically illustrating some configurations of a battery module according to an embodiment of the present invention.
  • the separation member 300 and the bus bar assembly 500 are shown.
  • the bus bar assembly 500 may be provided outside the separation member 300 . More specifically, the bus bar assemblies 500 may be respectively disposed on the front side (+X direction side) and the rear side ( ⁇ X direction side) of the separation member 300. In particular, the separation member 300, A second separator 320 may be provided on the front side and the rear side, respectively. In addition, the bus bar assembly 500 may be located on the outside of the second separation unit 320, more specifically, on the front side of the second front separation unit and the rear side of the second rear separation unit. In particular, the bus bar assembly 500 may be attached to the outer surface of the second separator 320 .
  • the bus bar assembly 500 can be safely protected even from flame or gas ejected from the battery cell 100 . That is, the battery cell 100 is located inside the separation member 300, particularly inside the second separation unit 320, and can emit flame or venting gas. At this time, since the bus bar assembly 500 is located outside the separation member 300, particularly the second separation part 320, it can be suppressed from being directly affected by the flame or the like. Accordingly, it is possible to prevent the bus bar assembly 500 from being damaged or structurally collapsed from flame or heat. Therefore, it is possible to ensure electrical safety by protecting components for electrical connection inside the battery module from fire.
  • FIG. 22 is an exploded perspective view schematically showing the configuration of a bus bar assembly 500 according to an embodiment of the present invention.
  • the bus bar assembly 500 may include a bus bar housing 510 and a bus bar terminal 520.
  • the bus bar housing 510 may be made of an electrically insulating material, such as a plastic material. And, the bus bar housing 510 may be located outside the separating member 300 . For example, the bus bar housing 510 may be coupled and fixed to the front side or rear side surface of the separating member 300 . At this time, the bus bar housing 510 and the separating member 300 may be coupled by various fastening methods such as bolting, hook coupling, bonding, and welding.
  • the bus bar terminal 520 may be made of an electrically conductive material, such as a metal material.
  • the bus bar terminal 520 electrically connects two or more electrode leads 110 or is connected to one or more electrode leads 110 to control cell voltage and the like with a control unit such as a BMS (Battery Management System). It may be configured to deliver sensing information.
  • the bus bar terminal 520 may be fixed in contact with the electrode lead 110 by welding or the like.
  • the bus bar terminal 520 may be coupled to the bus bar housing 510.
  • the bus bar housing 510 may be configured such that the bus bar terminal 520 is seated and fixed.
  • the bus bar housing 510 may have a seating groove in which the bus bar terminal 520 is seated.
  • the bus bar terminal 520 may be coupled and fixed to the bus bar housing 510 in various ways such as bolting, rivet, and adhesive.
  • the bus bar terminal 520 can be more reliably protected from flame.
  • direct contact between the bus bar terminal 520 and the separating member 300 is prevented, so that electrical insulation between them can be ensured.
  • the separation member 300 may be made of a metal material having electrical conductivity in order to secure structural stability against flame. According to the above embodiment, the separation member 300 and the bus bar terminal 520 Electrical insulation can be stably secured.
  • the bus bar terminal 520 may be provided on the outside of the bus bar housing 510.
  • the bus bar terminal 520 may be attached to the front side surface of the bus bar housing 510.
  • the bus bar terminal 520 may be attached to the rear side surface of the bus bar housing 510.
  • FIG. 23 is a perspective view schematically illustrating the configuration of an insulating block 400 according to another embodiment of the present invention.
  • FIG. 23 may be referred to as a view of the insulation block 400 viewed from the inside where the accommodating portion R of the battery cell 100 is located.
  • FIG. 24 may be referred to as a view of a cross-sectional configuration of a portion of the battery module including the insulating block 400 of FIG. 23 viewed from the top.
  • the insulating block 400 may have a gas collection unit, as indicated by G.
  • the gas collector G When gas is discharged from the battery cell 100, the gas collector G may be configured to introduce and retain the discharged gas. In particular, when an event such as thermal runaway occurs in the battery cell 100 and internal pressure increases, gas, flame, spark, or the like is often discharged to the outside. At this time, the gas collecting unit (G) may be configured such that the discharged gas, flame, spark, etc. are introduced and retained.
  • the gas collecting part G may be formed in a concave shape toward the outside on the inner surface of the insulating block 400 .
  • the rear end portion may be concave toward the front side.
  • flames or sparks may be collected in such a concave space.
  • the configuration described above it is possible to more reliably prevent heat propagation between cells due to external discharge such as flames or sparks.
  • the ejected flames may flow only in the inner space of the gas collection unit G, as indicated by arrow B8. there is. That is, in the case of the above embodiment, such jets are collected in the gas collection unit G, and discharge of these jets to the outside of the insulating block 400 may be blocked.
  • the venting gas or flame is induced to exist only in a predetermined area, which is more advantageous for directional venting.
  • a small amount of gas may be generated when the battery cell 100 is used even in a normal situation other than an abnormal situation such as thermal runaway. According to the embodiment, such a small amount of gas may be collected. In this case, life of the battery cell 100 may be increased.
  • the insulating block 400 may be configured in various forms to form the gas collecting part (G).
  • the insulation block 400 may have a portion whose thickness decreases toward the inside, which is the direction in which the housing portion R of the battery cell 100 is located. there is.
  • the gas collecting part (G) of the insulating block 400 may have a part in which the left and right width gradually widens toward the inside.
  • the gas collecting part G may be formed in an arch shape inside the insulating block 400 .
  • the insulating block 400 may have an inclined portion or an inclined surface formed on an inner surface of the insulating block 400 to form the gas collecting portion G.
  • the insulating block 400 may be configured to surround at least a portion of the sealing portion E of the battery cell 100 .
  • the battery cell 100 may include a sealing portion E, in particular, a terrace portion T in which the electrode lead 110 protrudes.
  • the insulating block 400 may be configured to surround the sealing portion E, that is, the terrace portion T.
  • the gas collecting part G may be formed in a concave shape in the insulating block 400 .
  • the insulating block 400 may surround the terrace part T with a predetermined distance apart from each other by the gas collecting part G. That is, the gas collecting part G may be configured such that the terrace part T of the battery cell 100 is inserted.
  • the battery cell 100 it may be more advantageous to suppress external discharge of flames or sparks ejected from the battery cell 100 .
  • the internal pressure of the battery cell 100 increases due to thermal runaway or the like, there is a high possibility that flames, sparks, or gases are discharged toward the terrace portion T.
  • the gas collecting part G if the terrace part T is inserted into the gas collecting part G, as soon as the flame or the like is ejected from the terrace part T, the gas collecting part G ) can enter. Therefore, the effect of trapping flames or sparks inside the insulating block 400 is reliably achieved, and heat propagation suppression performance between cells can be further improved.
  • the insulation block 400 may be configured such that an inner end is in contact with the battery cell 100 .
  • an inner end of the insulating block 400 may contact the housing portion R of the battery cell 100 .
  • a gas collection unit (G) may be formed in the insulating block 400, and according to the above embodiment, the internal space of the gas collection unit (G) may be at least partially sealed. Therefore, it is possible to more reliably suppress the outflow of flames, sparks, etc., which have flowed into the gas collecting part G, to the outside of the gas collecting part G.
  • the insulating block 400 may include a buffer pad 430 .
  • the buffer pad 430 may be provided at an inner end of the insulating block 400 where the accommodating portion R of the battery cell 100 is located.
  • the buffer pad 430 may be made of various elastic materials known at the time of filing of the present invention. Furthermore, the buffer pad 430 may be made of a material having a lower hardness or strength or a higher modulus of elasticity than other parts of the insulating block 400, such as the main body of the insulating block 400. For example, the buffer pad 430 may be made of a material such as silicon or rubber.
  • the inner end of the insulating block 400 may be configured to contact the battery cell 100 .
  • the buffer pad 430 may be provided at a portion of the insulating block 400 that directly contacts the battery cell 100 . That is, the buffer pad 430 may be configured to directly contact the battery cell 100 .
  • damage to the battery cell 100 due to the insulating block 400 can be prevented.
  • the outer material of the battery cell 100 such as a cell
  • the risk of damage or breakage of the cell pouch may be reduced due to the buffer pad 430 .
  • FIG. 25 is a perspective view schematically illustrating the configuration of an insulating block 400 according to another embodiment of the present invention.
  • FIG. 25 may be regarded as a modified example of the configuration of FIG. 23 .
  • the insulating block 400 may include an inner blocking portion, as indicated by I.
  • the inner blocking portion (I) may be configured to protrude from the inner surface of the gas collecting portion (G) of the insulating block 400 .
  • the inner blocking portion (I) may be formed in a form elongated in the vertical direction on the inner surface of the gas collection portion (G) of the insulating block 400 .
  • a plurality of inner blocking parts (I) may be formed in the gas collecting part (G) of the insulating block 400 .
  • this embodiment of the present invention it is possible to suppress the movement of flames or sparks introduced into the internal space of the gas collecting unit (G). That is, since flames, sparks, etc. have strong linearity during movement, movement can be suppressed when there is a protruding structure such as the inner blocking portion (I) in the internal space of the gas collecting unit (G). Therefore, in this case, the collecting effect of flames or sparks in the gas collecting part G of the insulating block 400 is improved, and their external discharge can be more effectively suppressed.
  • the insulating block 400 may be configured to come into close contact with the electrode lead 110 or the slot S of the separation member 300 when gas is discharged from the battery cell 100 . This will be described in more detail with reference to FIG. 26 .
  • FIG. 26 is a schematic cross-sectional view of some configurations of a battery module including an insulating block 400 according to another embodiment of the present invention.
  • the configuration of FIG. 26 may be said to have a form similar to that of the insulation block 400 shown in FIG. 23 .
  • the insulation block 400 is provided on the left and right sides of the sealing portion E (terraces T) of the battery cell 100, respectively, on the first side portion and D2 portion as indicated by D1. It may have a second side portion as indicated by .
  • the insulating block 400 may include a connection portion D3 as indicated by D3 to connect the first side portion D1 and the second side portion D2.
  • the connection part D3 may connect the outer ends of the first side part D1 and the second side part D2 to each other.
  • inner ends of the first side portion D1 and the second side portion D2 may extend or protrude toward the receiving portion R of the battery cell 100 .
  • the space defined by the first side portion D1 , the second side portion D2 , and the connection portion D3 may form the gas collecting portion G described above.
  • the internal pressure of the gas collecting part G increases, and the first side part D1 and the second The two sides D2 may be subjected to forces as indicated by B9 and B9'.
  • the outer surfaces of the left and right directions (Y-axis direction) of the first and second side parts D1 and D2, as well as the outer surfaces of the connecting portion D3, are also directed outward as indicated by arrows B10 and B10'. You can get the power to move. Accordingly, the separation space between the insulating block 400 and the slot S of the separation member 300 may be removed or reduced.
  • the lead insertion portion N of the insulating block 400 is based on the principle of leverage. As indicated by the arrows B11 and B11', a force moving in a direction toward the electrode lead 110 may be received. Accordingly, the separation space between the inner surface of the lead insertion portion N and the electrode lead 110 may be eliminated or reduced.
  • sealing force between the insulating block 400 and the separating member 300 and/or between the insulating block 400 and the electrode lead 110 can be further improved.
  • the sealing force in an emergency situation where venting gas or the like is generated from the battery cell 100, the sealing force can be automatically improved only by gas generation without a separate driving source. Therefore, the effect of suppressing propagation of flame or heat by the insulating block 400 can be improved more efficiently.
  • a battery pack according to an aspect of the present invention may include one or more battery modules according to the present invention described above.
  • the battery pack according to the present invention in addition to the battery module, other various components, such as BMS or inter-module busbars, pack cases, relays, current sensors, etc., components of the battery pack known at the time of filing of the present invention etc. may be further included.
  • the battery pack according to another aspect of the present invention may be formed in a form similar to that of the battery module described above.
  • the battery pack according to the present invention in the battery module described above, may be configured in a form in which the module case 200 is replaced by a pack case.
  • the battery pack according to the present invention includes a plurality of battery cells 100 having electrode leads 110, a pack case accommodating the plurality of battery cells 100 in an internal space, and the plurality of battery cells (
  • the slot ( S) may include an insulating block 400 configured to surround the outside of at least a portion of the electrode lead 110 inserted into the electrode.
  • the contents of the 'module case 200' are replaced with the contents of the 'pack case', and the contents of the 'battery module'
  • the term is changed to 'battery pack', and most of the rest of the configuration or features can be applied as is.
  • a battery pack control unit such as a BMS may be accommodated together in the pack case.
  • such a battery pack is more useful in a cell-to-pack (CTP) type configuration in which a plurality of battery cells 100 are not modularized through a module case 200 or the like and are directly housed in a pack case.
  • CTP cell-to-pack
  • a battery module or battery pack according to the present invention can be applied to vehicles such as electric vehicles or hybrid vehicles. That is, the vehicle according to the present invention may include the battery module according to the present invention or the battery pack according to the present invention. In addition, the vehicle according to the present invention may further include various other components included in the vehicle in addition to the battery module or the battery pack. For example, a vehicle according to the present invention may further include a control device such as a vehicle body, a motor, and an electronic control unit (ECU), in addition to the battery module according to the present invention.
  • a control device such as a vehicle body, a motor, and an electronic control unit (ECU), in addition to the battery module according to the present invention.
  • ECU electronice control unit
  • the battery module according to the present invention may be applied to an energy storage system (ESS). That is, the energy storage system according to the present invention may include the battery module according to the present invention or the battery pack according to the present invention.
  • ESS energy storage system
  • 210 upper board
  • 220 lower board
  • 230 left board
  • 240 right board
  • 250 front board
  • 260 back board

Abstract

본 발명은, 열적 이벤트 발생 시, 인접한 배터리 셀에 영향을 미치는 것을 감소시켜 안전성이 강화될 수 있는 배터리 모듈을 개시한다. 본 발명의 일 측면에 따른 배터리 모듈은, 전극 리드를 구비하는 다수의 배터리 셀; 내부 공간에 상기 다수의 배터리 셀을 수납하는 모듈 케이스; 상기 다수의 배터리 셀 중 적어도 일부 배터리 셀 사이의 공간을 분리시키며, 상기 전극 리드가 삽입될 수 있도록 슬롯이 마련된 분리 부재; 및 전기적 절연 재질을 구비하며 상기 슬롯에 삽입된 상기 전극 리드의 적어도 일부분의 외측을 둘러싸도록 구성된 절연 블록을 포함한다.

Description

안전성이 강화된 배터리 모듈
본 출원은 2021년 12월 24일자로 출원된 한국 특허출원 번호 제10-2021-0187481호 및 2022년 12월 14일자로 출원된 한국 특허출원 번호 제10-2022-0174863호에 대한 우선권 주장 출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리에 관한 것으로, 보다 상세하게는 안전성이 강화된 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 등에 관한 것이다.
스마트폰, 노트북, 웨어러블 기기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 로봇, 전기 자동차 등의 상용화가 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 전기 자동차나 전력저장장치(Energy Storage System; ESS)와 같은 중대형 장치에도 구동용이나 에너지 저장용으로 이차 전지가 널리 이용되고 있다. 이러한 이차 전지는 다수가 전기적으로 연결된 상태에서 모듈 케이스 내부에 함께 수납되는 형태로, 하나의 배터리 모듈을 구성할 수 있다. 이때, 배터리 모듈 내부에는 에너지 밀도를 높이기 위해 좁은 공간에 다수의 배터리 셀(이차 전지)이 밀집된 상태로 존재할 수 있다.
그런데, 이와 같이 다수의 배터리 셀(이차 전지)이 좁은 공간에 밀집된 상태로 존재하는 경우, 화재나 폭발 등의 사고에 취약할 수 있다. 특히, 어느 하나, 또는 일부 배터리 셀에서 온도가 급격히 상승하는 경우, 다른 배터리 셀로 온도 상승이 전파되는 열폭주 전파(thermal runaway propagation) 등과 같은 이벤트가 발생할 수 있다. 이때, 이러한 이벤트가 제대로 제어되지 못하면, 배터리 모듈 내지 배터리 팩의 화재나 폭발로 나아갈 수 있고, 큰 인명 및 재산 피해까지도 야기할 수 있다. 더욱이, 일부 배터리 셀에서 열적 이벤트가 발생하는 경우, 벤팅 가스나 화염, 스파크 등이 분출될 수 있다. 그리고, 이러한 벤팅 가스나 화염 등의 이물질이 인접한 정상 셀로 향하는 경우, 인접 셀에 대하여 열 폭주나 화재 등을 일으킬 수 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열적 이벤트 발생 시, 인접한 배터리 셀에 영향을 미치는 것을 감소시켜 안전성이 강화될 수 있는 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 등을 제공하는 것을 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 배터리 모듈은, 전극 리드를 구비하는 다수의 배터리 셀; 내부 공간에 상기 다수의 배터리 셀을 수납하는 모듈 케이스; 상기 다수의 배터리 셀 중 적어도 일부 배터리 셀 사이의 공간을 분리시키며, 상기 전극 리드가 삽입될 수 있도록 슬롯이 마련된 분리 부재; 및 전기적 절연 재질을 구비하며 상기 슬롯에 삽입된 상기 전극 리드의 적어도 일부분의 외측을 둘러싸도록 구성된 절연 블록을 포함한다.
여기서, 상기 분리 부재는, 금속 재질을 구비할 수 있다.
또한, 상기 절연 블록은, 상기 전극 리드와 상기 분리 부재 사이를 전기적으로 절연시키도록 구성될 수 있다.
또한, 상기 절연 블록은, 상기 전극 리드가 삽입된 상태에서 상기 슬롯을 밀폐시키도록 구성될 수 있다.
또한, 상기 절연 블록은, 서로 결합된 둘 이상의 단위 블록을 구비할 수 있다.
또한, 상기 분리 부재는, 인접하는 배터리 셀 사이에 개재된 제1 분리부, 및 상기 제1 분리부의 단부에 연결되며 상기 슬롯이 형성된 제2 분리부를 구비할 수 있다.
또한, 상기 제1 분리부 및 상기 제2 분리부 중 적어도 하나는, 판상으로 구성될 수 있다.
또한, 상기 제1 분리부 및 상기 제2 분리부는, 직각으로 결합될 수 있다.
또한, 상기 분리 부재는, 상기 제1 분리부 및 상기 제2 분리부의 각 단부와 연결되어, 상기 다수의 배터리 셀의 일측을 커버하는 제3 분리부를 더 구비할 수 있다.
또한, 상기 절연 블록은, 상기 분리 부재의 슬롯에 장착 가능하게 구성될 수 있다.
또한, 본 발명에 따른 배터리 모듈은, 상기 다수의 배터리 셀의 전극 리드 사이를 전기적으로 연결하는 버스바 어셈블리를 더 포함하며, 상기 버스바 어셈블리는, 상기 분리 부재의 외측에 위치할 수 있다.
또한, 상기 버스바 어셈블리는, 전기적 절연성 재질로 구성되며 상기 분리 부재의 외측에 구비된 버스바 하우징, 및 전기적 전도성 재질로 구성되어 상기 버스바 하우징에 결합된 버스바 단자를 구비할 수 있다.
또한, 상기 절연 블록은, 상기 배터리 셀에서 가스 배출 시, 배출된 가스가 유입 가능하도록 구성된 가스 포집부가 형성될 수 있다.
또한, 상기 절연 블록은, 상기 배터리 셀의 실링부 중 적어도 일부를 둘러싸도록 구성될 수 있다.
또한, 상기 절연 블록은, 내측 단부에 완충 패드를 구비할 수 있다.
또한, 상기 절연 블록은, 상기 배터리 셀에서 가스 배출 시, 상기 전극 리드 또는 상기 분리 부재의 슬롯 측으로 밀착되도록 구성될 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함한다.
본 발명의 일 측면에 의하면, 배터리 모듈의 안전성이 향상될 수 있다.
특히, 본 발명의 일 실시 구성에 의하면, 열적 이벤트 발생 시, 인접한 배터리 셀에 영향을 줄 수 있는 인자를 제거함으로써 열폭주 전달 이벤트가 효과적으로 억제될 수 있다.
특히, 본 발명의 일 실시 구성에 의하면, 각 배터리 셀을 별도의 분리된 공간에 수납되도록 함으로써, 화염, 스파크, 열, 이물질 등이 인접한 배터리 셀로 전이되는 것을 효과적으로 억제할 수 있다.
또한, 본 발명의 일 측면에 의하면, 화염이나 열 등으로부터 버스바 어셈블리의 안정적인 보호가 가능하다.
또한, 본 발명의 일 측면에 의하면, 화염 등에 의해 배터리 모듈의 내부 구조가 붕괴되는 것을 방지할 수 있다.
이 밖에도 본 발명은 여러 다른 효과를 가질 수 있으며, 이에 대해서는 각 실시 구성에서 설명하거나, 당업자가 용이하게 유추할 수 있는 효과 등에 대해서는 해당 설명을 생략하도록 한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 및 도 2는, 본 발명의 일 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 결합 사시도 및 분리 사시도이다.
도 3은, 도 2의 일부 구성을 확대하여 나타낸 도면이다.
도 4는, 도 3의 구성에 대한 결합 사시도이다.
도 5는, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성을 개략적으로 나타내는 도면이다.
도 6은, 도 5의 A1-A1'선에 대한 단면도이다.
도 7은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성을 상부에서 바라본 형태의 도면이다.
도 8은, 본 발명의 일 실시예에 따른 절연 블록의 구성을 개략적으로 나타낸 분리 사시도이다.
도 9는, 본 발명의 일 실시예에 따른 배터리 모듈에서, 전극 리드에 대한 절연 블록의 조립 구성을 개략적으로 나타내는 단면도이다.
도 10은, 본 발명의 일 실시예에 따른 배터리 모듈에 포함된 분리 부재의 구성을 개략적으로 나타내는 사시도이다.
도 11은, 본 발명의 다른 실시예에 따른 배터리 모듈에 포함된 분리 부재의 구성을 개략적으로 나타내는 사시도이다.
도 12는, 도 11의 분리 부재에 형성된 슬롯에 전극 리드와 절연 블록 이 삽입되는 구성을 개략적으로 나타내는 정단면도이다.
도 13 및 도 14는, 본 발명의 또 다른 여러 실시예들에 따른 배터리 모듈에 포함된 분리 부재의 구성을 개략적으로 나타내는 분리 사시도이다.
도 15는, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성에 대한 분리 사시도이다.
도 16은, 도 15의 구성에 대한 결합 사시도이다.
도 17은, 본 발명의 다른 실시예에 따른 절연 블록의 구성을 개략적으로 나타내는 사시도이다.
도 18은, 도 17의 절연 블록이 분리 부재의 슬롯에 장착된 구성을 개략적으로 나타내는 단면도이다.
도 19는, 본 발명의 또 다른 실시예에 따른 절연 블록의 구성을 개략적으로 나타내는 사시도이다.
도 20은, 도 19의 절연 블록이 분리 부재의 슬롯에 장착된 구성을 개략적으로 나타내는 단면도이다.
도 21은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성을 개략적으로 나타내는 상면도이다.
도 22는, 본 발명의 일 실시예에 따른 버스바 어셈블리의 구성을 개략적으로 나타내는 분리 사시도이다.
도 23은, 본 발명의 또 다른 실시예에 따른 절연 블록의 구성을 개략적으로 나타내는 사시도이다.
도 24는, 도 23의 절연 블록이 포함된 배터리 모듈의 일부분에 대한 단면 구성을 상부에서 바라본 형태의 도면이라 할 수 있다.
도 25는, 본 발명의 또 다른 실시예에 따른 절연 블록의 구성을 개략적으로 나타내는 사시도이다.
도 26은, 본 발명의 또 다른 실시예에 따른 절연 블록이 포함된 배터리 모듈의 일부 구성을 개략적으로 나타내는 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
한편, 본 명세서에서는 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용될 수 있으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.
또한, 본 명세서에서는, 다양한 실시예가 포함되어 있으며, 각 실시예에 대해서는, 다른 실시예에 대한 설명이 동일 또는 유사하게 적용될 수 있는 경우에는 상세한 설명을 생략하고, 차이점이 있는 부분을 위주로 설명한다.
도 1 및 도 2는, 본 발명의 일 실시예에 따른 배터리 모듈의 구성을 개략적으로 나타내는 결합 사시도 및 분리 사시도이다. 또한, 도 3은 도 2의 일부 구성을 확대하여 나타낸 도면이고, 도 4는 도 3의 구성에 대한 결합 사시도이다.
도 1 내지 도 4를 참조하면, 본 발명에 따른 배터리 모듈은, 배터리 셀(100), 모듈 케이스(200), 분리 부재(300) 및 절연 블록(400)을 포함할 수 있다.
상기 배터리 셀(100)은, 이차 전지로서, 전극 조립체, 전해질 및 외장재를 구비하며, 충방전이 반복적으로 가능하도록 구성될 수 있다. 상기 배터리 셀(100)은, 리튬 전지일 수 있으나, 본 발명이 반드시 이러한 전지의 특정 종류로 한정되는 것은 아니다.
특히, 상기 배터리 셀(100)은, 파우치형 전지일 수 있다. 이 경우, 배터리 셀(100)의 외장재는, 알루미늄층이 폴리머층에 의해 감싸진 형태의 파우치 외장재일 수 있다.
더욱이, 이러한 형태의 배터리 셀(100), 즉 파우치형 배터리 셀(100)은, 도 3 및 도 4에 도시된 바와 같이, R로 표시된 수납부와 E로 표시된 실링부를 구비할 수 있다. 여기서, 수납부(R)는 전극 조립체(양극판, 음극판, 세퍼레이터) 및 전해질이 수납된 부분을 나타내고, 실링부(E)는 이러한 수납부(R)의 주변을 둘러싸는 형태로 파우치 외장재가 융착된 부분을 나타낸다고 할 수 있다.
특히, 파우치형 셀(100)은, 수납부(R)를 중심으로 4개의 측면(모서리)이 존재한다고 할 수 있다. 이때, 4개의 측면이 모두 실링된 형태로 구성될 수도 있고, 3개의 측면만 실링된 형태로 구성될 수도 있다. 이때, 4개의 측면이 실링된 셀을 4면 실링이라 하고, 3개의 측면이 실링된 셀을 3면 실링 셀이라고 할 수 있다. 예를 들어, 도 3 및 도 4에 도시된 실시 구성에서는 배터리 셀(100)이 세워진 형태로 구성되는데, 좌측 파우치와 우측 파우치의 전단, 후단, 하단 및 상단이 실링될 수 있다. 이 경우, 배터리 셀(100)은 4면 실링되었다고 할 수 있다.
상기 배터리 셀(100)은, 배터리 모듈에 다수 포함될 수 있다. 그리고, 각각의 배터리 셀(100)은 전극 리드(110)를 구비할 수 있다. 이러한 전극 리드(110)에는 양극 리드와 음극 리드가 포함되며, 양극 리드와 음극 리드는 배터리 셀(100)의 동일 측면(모서리) 또는 서로 다른 측면에 돌출되게 구비될 수 있다. 이때, 양극 리드와 음극 리드가 동일 측면에 위치하는 경우 단방향 셀이라고 하고, 양극 리드와 음극 리드가 다른 측면, 특히 반대되는 측면에 위치하는 경우 양방향 셀이라고 할 수도 있다.
다수의 배터리 셀(100)은, 서로 적층된 형태로 배터리 모듈에 포함될 수 있다. 즉, 본 발명에 따른 배터리 모듈은, 적어도 일 방향으로 적층된 형태의 셀 적층체(셀 어셈블리)를 구비한다고 할 수 있다. 예를 들어, 도 2에 도시된 바와 같이, 다수의 배터리 셀(100)은, 상하 방향(수직 방향, Z축 방향)으로 세워진 상태에서 수평 방향, 이를테면 좌우 방향(Y축 방향)으로 나란하게 배치될 수 있다. 이때, 각 배터리 셀(100)의 전극 리드(110)는, 전후 방향(X축 방향)으로 양단에 배치된다고 할 수 있다.
상기 모듈 케이스(200)는, 내부에 빈 공간이 형성되며, 이러한 내부 공간에 다수의 배터리 셀(100)을 수납하도록 구성될 수 있다. 예를 들어, 상기 모듈 케이스(200)는, 상판(210), 하판(220), 좌측판(230), 우측판(240), 전판(250) 및 후판(260)을 구비하여 내부 공간을 한정할 수 있다. 그리고, 이와 같이 한정된 내부 공간에 셀 적층체가 위치하도록 할 수 있다.
또한, 모듈 케이스(200)를 구성하는 여러 판상 부재의 적어도 일부는 서로 일체화된 형태로 구성될 수 있다. 예를 들어, 상기 모듈 케이스(200)는, 도 2에 도시된 바와 같이, 하판(220), 좌측판(230) 및 우측판(240)이 서로 일체화된 U-프레임 형태의 본체를 구비하고, 상판(210), 전판(250) 및 후판(260)이 본체의 상부, 전방 및 후방을 커버 내지 밀폐시키도록 구성될 수 있다. 이때, 상판(210), 전판(250) 및 후판(260)과 본체 사이의 결합 고정은, 용접, 접착, 볼팅, 후크 등 다양한 체결 방식이 이용될 수 있다. 또는, 상기 모듈 케이스(200)는, 상판(210), 하판(220), 좌측판(230) 및 우측판(240)이 서로 일체화된 관 형상의 모노 프레임 형태로 구성될 수 있다.
상기 모듈 케이스(200)는, 내열성 재질, 특히 금속 및/또는 플라스틱 재질로 구성될 수 있다. 예를 들어, 상기 모듈 케이스(200)는, 클래드 메탈(Clad metal), 내열 코팅층을 구비하는 금속 내지 플라스틱 재질, STS(SUS)와 Al이 접합된 형태 등, 다양한 종류의 내열성 재질을 포함할 수 있다.
다만, 본 발명은 이러한 모듈 케이스(200)의 특정 재질이나 형태로 한정되지 않는다.
상기 분리 부재(300)는, 모듈 케이스(200)에 수납된 다수의 배터리 셀(100) 중 적어도 일부 배터리 셀(100) 사이의 공간을 분리시키도록 구성될 수 있다. 더욱이, 상기 분리 부재(300)는, 모듈 케이스(200)의 내부 공간을 다수의 단위 공간으로 분할할 수 있다. 예를 들어, 상기 분리 부재(300)는, 다수의 배터리 셀(100) 각각에 대하여 수납 공간을 분리시키도록 구성될 수 있다. 이 경우, 다수의 배터리 셀(100) 각각은 서로 다른 분리 공간에 수납된다고 할 수 있다. 다른 예로, 상기 분리 부재(300)는, 둘 이상의 셀 뱅크를 분리시키도록 구성될 수 있다. 여기서, 셀 뱅크에는 하나 이상의 배터리 셀(100)이 포함될 수 있다. 보다 구체적인 예로서, 셀 뱅크에는 3개의 배터리 셀(100)이 포함될 수 있다. 이 경우, 분리 부재(300)는, 3개의 배터리 셀(100)을 하나의 셀 뱅크로 구성하여, 서로 다른 셀 뱅크마다 수납 공간이 분리되도록 할 수 있다.
상기 분리 부재(300)는, 도 2에서 S로 표시된 부분과 같이, 슬롯이 형성될 수 있다. 이러한 슬롯(S)은, 전극 리드(110)가 삽입될 수 있도록 구성될 수 있다. 특히, 슬롯(S)은, 내측에 위치하는 전극 리드(110)가 분리 부재(300)를 관통하여 외측으로 돌출될 수 있도록 구성될 수 있다. 예를 들어, 슬롯(S)은, 전극 리드(110)가 분리 부재(300)의 두께 방향으로 삽입 내지 관통될 수 있도록, 전극 리드(110)의 삽입 형태에 대응되는 형상 및 크기 등을 가질 수 있다. 보다 구체적으로, 전극 리드(110)는 대략 세워진 판상 형태로 형성될 수 있는데, 이 경우 슬롯(S)은, 전극 리드(110)의 상하 방향(Z축 방향) 길이 및 좌우 방향(Y축 방향) 두께 이상의 크기를 갖도록 구성될 수 있다.
한편, 본 명세서에서 특별한 설명이 없는 한, 특정 구성요소에 대하여, 내측 방향은 해당 구성요소 또는 배터리 모듈의 중심을 향하는 방향을 의미하고, 외측 방향은 해당 구성요소 또는 배터리 모듈의 외측을 향하는 방향을 의미할 수 있다.
상기 절연 블록(400)은, 전기적 절연성 재질을 가지며, 전극 리드(110)를 둘러싸도록 구성될 수 있다. 특히, 절연 블록(400)은, 전극 리드(110) 중 슬롯(S)에 삽입된 부분의 외측을 둘러싸도록 구성될 수 있다.
예를 들어, 도 3에 도시된 바를 참조하면, 배터리 셀(100)의 전후 방향(X축 방향) 양단에 위치하는 전극 리드(110)는, L1으로 표시된 부분과 같이 전후 방향으로 연장되다가, L2로 표시된 바와 같이 단부가 좌우 방향으로 절곡되게 구성될 수 있다. 여기서, 전후 연장부(L1)의 적어도 일부는 분리 부재(300)의 슬롯(S)에 삽입된 부분일 수 있으며, 좌우 절곡부(L2)는 슬롯(S)으로부터 빠져 나와 분리 부재(300)의 외측에 위치하는 부분일 수 있다. 특히, 좌우 절곡부(L2)는, 다른 배터리 셀(100)의 전극 리드와 직접 접촉되거나, 후술하는 버스바 어셈블리의 버스바 단자와 접촉되는 부분일 수 있다.
이때, 절연 블록(400)은, 전극 리드(110)에서 슬롯(S)에 삽입된 부분, 즉 전후 연장부(L1)의 둘레를 감싸도록 구성될 수 있다. 예를 들어, 절연 블록(400)은, 전극 리드(110)의 전후 방향 연장부(L1)의 일부분에 대하여, 연장 방향을 제외한 상, 하, 좌, 우의 전체 방향, 즉 360도(°) 방향으로, 전극 리드(110)를 감싸도록 구성될 수 있다.
상기 절연 블록(400)은, 전기적 절연성 재질을 갖는 물질로서, 본 발명의 출원 시점에 공지된 다양한 절연 물질로 이루어지거나 이러한 절연 물질을 포함할 수 있다. 또한, 상기 절연 블록(400)은, 고온이나 화염 등에도 어느 정도까지는 견딜 수 있도록 내열성을 갖는 물질로 이루어지거나 이러한 물질을 포함할 수 있다. 보다 구체적인 예로서, 상기 절연 블록(400)은, 내열 플라스틱이나 내열(세라믹 등) 처리된 탄성체, 이를테면 내열 코팅된 실리콘이나 고무, 폴리머 등의 재질로 이루어지거나 이러한 물질을 포함할 수 있다.
본 발명의 상기 실시 구성에 의하면, 배터리 모듈 내부에서 배터리 셀(100)들의 수납 공간이 분리되어, 인접하는 배터리 셀(100) 간, 화염이나 열, 스파크, 기타 이물질 등의 전달이 효과적으로 차단될 수 있다. 따라서, 특정 배터리 셀(100)에서 열 폭주(thermal runaway) 등의 이벤트가 발생하더라도, 다른 배터리 셀(100)로 이러한 열적 이벤트가 전파(propatation)되는 것을 방지할 수 있다.
상기 분리 부재(300)는, 금속 재질을 구비할 수 있다. 예를 들어, 상기 분리 부재(300)는, 금속 재질로 이루어질 수 있다. 또는 상기 분리 부재(300)는, 금속 재질과 함께 다른 재질을 더 구비할 수 있다.
보다 구체적인 예로서, 상기 분리 부재(300)는, 스틸, 보다 구체적으로는 스테인리스강(SUS, STS) 재질을 구비할 수 있다. 다른 예로, 상기 분리 부재(300)는, 클래드 메탈(clad metal) 재질, 내열 코팅된 금속 재질, 및/또는 STS 재질에 알루미늄이 접합된 재질 등의 형태로 구성될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 분리 부재(300)의 제조가 용이하고, 구조적 안정성 내지 기계적 강도가 높게 확보될 수 있다. 특히, 상기 실시 구성에 의하면, 배터리 모듈 내부에서 화염 등이 발생하더라도, 이러한 화염에 대한 내구성이 안정적으로 확보되어 구조 붕괴가 방지될 수 있을 뿐 아니라, 화염에 대한 차단 성능이 우수하게 확보될 수 있다.
상기 절연 블록(400)은, 전극 리드(110)와 분리 부재(300) 사이를 전기적으로 절연시키도록 구성될 수 있다. 이에 대해서는, 도 5 및 도 6을 참조하여 보다 구체적으로 설명한다.
도 5는, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성을 개략적으로 나타내는 도면이다. 또한, 도 6은, 도 5의 A1-A1'선에 대한 단면도이다. 예를 들어, 도 5 및 도 6은, 배터리 모듈에서 하나의 배터리 셀(100)의 전방 측 일부를 나타낸 도면이라 할 수 있다.
도 5 및 도 6을 참조하면, 상기 절연 블록(400)은, 전극 리드(110)가 분리 부재(300)와 직접적으로 접촉하지 않도록 하여, 전극 리드(110)와 분리 부재(300) 사이가 전기적으로 절연되도록 구성될 수 있다. 특히, 절연 블록(400)은, 전극 리드(110)에서 분리 부재(300)의 슬롯(S)을 통과하는 부분에 대하여, 그 주변을 둘러싸도록 구성될 수 있다.
본 발명의 이러한 실시 구성에서는, 전극 리드(110)가 분리 부재(300), 특히 분리 부재(300)의 슬롯(S) 부분과 접촉하는 것을 방지할 수 있다. 따라서, 전극 리드(110)와 분리 부재(300) 사이에 통전이 일어나는 것을 방지할 수 있다. 특히, 분리 부재(300)는, 화염에 대한 안정성 및 구조적 강성 등을 확보하기 위해, 전기적 전도성을 갖는 금속 재질로 구성될 수 있다. 이때, 상기 실시 구성과 같이 절연 블록(400)이 전극 리드(110)와 분리 부재(300)의 직접적인 접촉을 차단하여, 쇼트 등이 발생하는 것을 방지하고 전기적인 안전성을 확보할 수 있다.
또한, 상기 절연 블록(400)은, 슬롯(S)을 밀폐시키도록 구성될 수 있다. 분리 부재(300)는 전극 리드(110)가 삽입 가능하도록 슬롯(S)이 형성될 수 있는데, 이러한 슬롯(S)은, 전극 리드(110)의 삽입 공정이 용이하게 이루어지도록, 공차를 고려하여 전극 리드(110)의 삽입 크기(단면 크기)보다 크게 형성될 수 있다. 따라서, 전극 리드(110)가 슬롯(S)에 삽입된 상태에서, 전극 리드(110)의 주변으로는 빈 공간이 형성될 수 있다. 하지만, 도 6에서 A2로 표시된 부분과 같이, 슬롯(S)에서 전극 리드(110)의 주변에는 절연 블록(400)이 채워질 수 있다.
본 발명의 이러한 실시 구성에 의하면, 슬롯(S)을 통한 화염이나 스파크 등의 배출이 억제될 수 있다. 이에 대해서는, 도 7을 추가로 참조하여 보다 구체적으로 설명한다.
도 7은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성을 상부에서 바라본 형태의 도면이다. 예를 들어, 도 7은, 도 5의 A2-A2'선에 대한 단면 구성을 나타낸다고 할 수 있다.
도 7을 참조하면, 배터리 셀(100)의 파우치 외장재, 특히 실링부(E) 측에서 화염이나 스파크, 벤팅 가스 등이 발생한 경우, 이러한 화염 등은, 화살표 B1로 표시된 바와 같이, 분리 부재(300)의 내측에서 슬롯(S)을 향해 이동할 수 있다. 하지만, 분리 부재(300)의 슬롯(S)에는 전극 리드(110)가 삽입된 부분 이외의 공간이 절연 블록(400)에 의해 밀폐될 수 있다. 특히, 절연 블록(400)은, 분리 부재(300)의 슬롯(S)에서 전극 리드(110)를 제외한 슬롯(S)의 빈 공간을 완전히 막도록 구성될 수 있다. 따라서, 화염이나 스파크 등은 슬롯(S)을 통과하지 못하고, 분리 부재(300)의 내측 공간, 즉 해당 배터리 셀(100)이 수납된 공간에만 머무를 수 있다.
따라서, 상기 실시 구성에 의하면, 슬롯(S)을 통과한 화염 등으로 인해, 열 폭주 전파가 일어나는 것이 보다 확실하게 방지될 수 있다. 예를 들어, 상기 실시 구성의 경우, 전극 리드(110)가 위치하는 공간, 특히 배터리 모듈의 전방 내지 후방을 통해 배터리 셀(100) 간 화염이나 스파크, 고온의 가스 등이 전파되는 것을 차단할 수 있다. 그러므로, 이 경우, 배터리 모듈의 안전성이 더욱 향상될 수 있다.
더욱이, 상기 절연 블록(400)은, 슬롯(S)에 대한 밀폐력 확보를 위해, 탄성체 재질을 포함할 수 있다. 예를 들어, 상기 절연 블록(400)은, 폴리우레탄이나 고무, 실리콘 등의 재질을 포함할 수 있다. 또한, 절연 블록(400)은, 일정 수준 이상의 탄성을 갖는 플라스틱 내지 폴리머 재질을 구비할 수 있다. 더욱이, 절연 블록(400)은, 내열성 향상을 위해, 세라믹 코팅층을 구비할 수 있다. 예를 들어, 절연 블록(400)은, 지르코니아나 mica 등의 재질을 구비할 수 있다. 본 발명은, 절연 블록(400)의 특정 재질로 한정되지 않으며, 절연 블록(400)에는 본 발명의 출원 시점에 공지된 전기적 절연성, 내열성 또는 탄성을 갖는 다양한 물질이 채용될 수 있다.
도 8은, 본 발명의 일 실시예에 따른 절연 블록(400)의 구성을 개략적으로 나타낸 분리 사시도이다. 도 9는, 본 발명의 일 실시예에 따른 배터리 모듈에서, 전극 리드(110)에 대한 절연 블록(400)의 조립 구성을 개략적으로 나타내는 단면도이다.
도 8 및 도 9를 참조하면, 절연 블록(400)은, 둘 이상의 단위 블록을 구비할 수 있다. 그리고, 이러한 다수의 단위 블록은 서로 결합 가능하도록 구성될 수 있다. 예를 들어, 도 8 및 도 9에 도시된 바와 같이, 절연 블록(400)은, 제1 블록(410) 및 제2 블록(420)을 구비할 수 있다. 그리고, 이러한 제1 블록(410)과 제2 블록(420)은, 서로 결합되어 하나의 단위 블록을 구성하여, 하나의 슬롯(S)에 삽입될 수 있다.
절연 블록(400)에는, 도 3 및 도 8 등에서 N으로 표시된 부분과 같이, 전극 리드(110)가 삽입되기 위한 리드 삽입부가 형성될 수 있다. 특히, 이러한 리드 삽입부(N)는, 전극 리드(110)의 형상에 대응하여, 상하 방향(Z축 방향)으로 길게 연장된 슬릿 형태로 형성될 수 있다. 특히, 이러한 리드 삽입부(N)는, 제1 블록(410)과 제2 블록(420) 중 적어도 하나에 형성될 수 있다. 예를 들어, 도 8에 도시된 바와 같이, 제1 블록(410)과 제2 블록(420) 각각에 제1 슬릿(N1)과 제2 슬릿(N2)이 형성될 수 있다. 이 경우, 제1 블록(410)과 제2 블록(420)이 결합할 때, 제1 슬릿(N1)과 제2 슬릿(N2)이 결합하여 하나의 리드 삽입부(N)를 형성할 수 있다.
보다 구체적으로, 제1 블록(410)과 제2 블록(420)은, 서로 상하 방향으로 결합될 수 있다. 예를 들어, 제2 블록(420)은, 화살표 B2로 표시된 바와 같이, 제1 블록(410)의 상부에서 하부 방향으로 이동하여, 제1 블록(410)의 상단에 안착될 수 있다. 여기서, 제1 슬릿(N1)은, 제1 블록(410)의 상단에서 하부 방향으로 소정 거리만큼 길게 연장된 형태로 형성될 수 있다. 또한, 제2 슬릿(N2)은, 제2 블록(420)의 하단에서 상부 방향으로 소정 거리만큼 길게 연장된 형태로 형성될 수 있다. 더욱이, 이러한 리드 삽입부(N)는, 절연 블록(400)에서 절개 내지 절취된 형태로 형성될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 절연 블록(400)과 전극 리드(110) 사이의 조립성이 향상될 수 있다. 예를 들어, 상기 실시 구성에 의하면, 도 9의 (a)에 도시된 도면과 같이, 전극 리드(110)를 먼저 제1 블록(410)의 제1 슬릿(N1)에 삽입시킬 수 있다. 그리고, 제1 슬릿(N1)에서 상부 방향으로 돌출된 전극 리드(110)의 상부를 제2 슬릿(N2)에 맞추면서, 제2 블록(420)을 화살표 B2와 같이 하부 방향으로 이동시킬 수 있다. 그러면, 도 9의 (b)로 표시된 부분과 같이, 제2 블록(420)과 제1 블록(410)은 서로 결합될 수 있다. 따라서, 절연 블록(400)에 의해 전극 리드(110)의 주변을 감싸는 구성이 용이하게 달성될 수 있다. 또한, 이러한 실시 구성에 의하면, 절연 블록(400)과 전극 리드(110) 사이의 밀폐성이 향상될 수 있다. 즉, 상기 실시 구성에 의하면, 전극 리드(110)를 절연 블록(400)의 리드 삽입부(N)에 용이하게 삽입할 수 있으므로, 리드 삽입부(N)의 크기를 크게 하지 않을 수 있다. 그러므로, 전극 리드(110)와 절연 블록(400) 사이에서 틈이 생기는 것을 최소화할 수 있다.
상기 실시 구성에서, 다수의 단위 블록은, 접착, 볼팅, 용접, 끼움 결합, 후크 결합 등 다양한 체결 방식에 의해 상호 결합될 수 있다. 예를 들어, 제1 블록(410)의 상단 표면과 제2 블록(420)의 하단 표면에는 접착제가 도포되어, 제1 블록(410)과 제2 블록(420)은 서로 접착 고정될 수 있다. 다른 예로, 상기 제1 블록(410)과 상기 제2 블록(420)은, 서로 대응되게 형성된 체결 돌기와 체결 홈에 의해 끼움 결합되어 체결 고정될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 다수의 단위 블록 간 결합 상태가 안정적으로 유지될 수 있다. 따라서, 절연 블록(400)에 의한 전극 리드(110)의 절연 및 밀폐 성능이 보다 안정적으로 확보될 수 있다.
또한, 상기 절연 블록(400)은, 전극 리드(110)에 대하여 탈착 가능하게 구성될 수 있다. 즉, 절연 블록(400)은, 전극 리드(110)와 결합 및 분리 가능하게 구성될 수 있다. 예를 들어, 절연 블록(400)은, 제1 블록(410)과 제2 블록(420) 사이의 끼움 결합에 의해 전극 리드(110)에 장착될 수 있다. 그리고, 절연 블록(400)은, 제1 블록(410)과 제2 블록(420) 사이의 끼움 결합이 해제되어 전극 리드(110)로부터 분리 내지 이탈될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 배터리 모듈의 조립 공정은 물론이고, 배터리 모듈에서 특정 배터리 셀(100)을 분리시키는 공정 등이 보다 용이하게 이루어질 수 있다. 따라서, 배터리 모듈의 조립성이나 교체 용이성이 보다 개선될 수 있다.
상기 절연 블록(400)은, 배터리 모듈에 다수 포함될 수 있다. 예를 들어, 배터리 셀(100)에는 2개의 전극 리드(110)가 돌출되기 위한 슬롯(S)이 2개 이상 형성될 수 있다. 더욱이, 배터리 모듈에는 다수의 배터리 셀(100)이 포함되며, 각 배터리 셀(100)의 전극 리드(110)에 대응되는 슬롯(S) 역시 분리 부재(300)에 복수 형성될 수 있다. 이때, 복수의 슬롯(S) 각각에 대응되도록, 절연 블록(400) 역시 복수 포함될 수 있다. 예를 들어, 하나의 배터리 모듈에 포함된 분리 부재(300)에 여러 슬롯(S)이 형성된 경우, 절연 블록(400)은 각 슬롯(S)에 일대일 대응되도록 복수 포함될 수 있다.
도 10은, 본 발명의 일 실시예에 따른 배터리 모듈에 포함된 분리 부재(300)의 구성을 개략적으로 나타내는 사시도이다.
도 10을 참조하면, 상기 분리 부재(300)는, 제1 분리부(310) 및 제2 분리부(320)를 구비할 수 있다.
제1 분리부(310)는, 인접하는 배터리 셀(100) 사이에 개재되도록 구성될 수 있다. 예를 들어, 도 10과 함께 도 2를 참조하면, 다수의 배터리 셀(100)이 좌우 방향으로 나란하게 배열될 수 있다. 이때, 각각의 배터리 셀(100)은, 세워진 상태에서 전후 방향으로 전극 리드(110)가 위치하도록 배치될 수 있다. 이때, 제1 분리부(310)는, 좌우 방향으로 인접하여 배치된 2개의 배터리 셀(100) 사이에 개재될 수 있다. 즉, 제1 분리부(310)는, 셀 적층체 사이에 개재되어 셀 적층체 사이 공간을 분리시킬 수 있다.
보다 구체적으로, 제1 분리부(310)는 C1으로 표시된 바와 같이 다수의 분리된 공간을 형성할 수 있다. 더욱이, 제1 분리부(310)는, 수평 방향(좌우 방향)으로 서로 소정 거리 이격되게 다수 배치될 수 있다. 그리고, 이러한 제1 분리부(310) 사이의 이격 공간에 하나 이상의 배터리 셀(100)이 수납될 수 있다.
제2 분리부(320)는, 제1 분리부(310)의 단부에 연결될 수 있다. 더욱이, 제2 분리부(320)는, 전극 리드(110)가 위치하는 측에 구비될 수 있다. 예를 들어, 도 10에 도시된 바와 같이, 제2 분리부(320)는, 전극 리드(110)가 위치하는 제1 분리부(310)의 전단 또는 후단에 연결될 수 있다. 특히, 제2 분리부(320)는, 2개 이상 구비되어, 적어도 1개는 제1 분리부(310)의 전단에 연결되고, 다른 1개는 제1 분리부(310)의 후단에 연결될 수 있다.
또한, 상기 제2 분리부(320)는, 슬롯(S)이 형성될 수 있다. 즉, 제2 분리부(320)는, 전극 리드(110)가 삽입될 수 있도록 슬롯(S)이 형성될 수 있다. 이때, 슬롯(S)은, 제2 분리부(320)에 대하여 두께 방향으로 관통된 형태로 형성될 수 있다.
제1 분리부(310)는 셀 적층체의 적층 방향, 이를테면 좌우 방향으로, 2개의 배터리 셀(100) 사이를 분리키도록 구성될 수 있다. 그리고, 제2 분리부(320)는, 셀 적층체와 전방 측 공간 또는 후방 측 공간을 분리시키도록 구성될 수 있다.
이러한 실시 구성에 의하면, 분리 부재(300)에 의해, 배터리 셀(100)의 적층 방향으로 셀 간 화염이나 스파크, 열 등이 직접 전달되는 것은 물론이고, 배터리 셀(100)의 전방이나 후방 측 공간을 통해 화염 등이 우회하여 전달되는 것도 효과적으로 차단될 수 있다. 그러므로, 이 경우, 배터리 셀(100) 간 열전파 억제 성능이 더욱 향상될 수 있다.
상기 제1 분리부(310) 및/또는 상기 제2 분리부(320)는, 판상으로 구성될 수 있다. 예를 들어, 도 10에 도시된 바와 같이, 다수의 제1 분리부(310)와 2개의 제2 분리부(320)는 모두 사각 플레이트 형태로 구성될 수 있다. 그리고, 제1 분리부(310)와 제2 분리부(320)를 구성하는 각각의 플레이트는, 사각 플레이트 형태로 구성될 수 있다. 더욱이, 제1 분리부(310)와 제2 분리부(320)는, 모두 세워진 플레이트 형태로 형성될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 분리 부재(300)의 크기나 두께를 작게 하면서도 모듈 케이스(200)의 내부 공간에서 셀 사이의 공간이 확실하게 분리되도록 할 수 있다. 특히, 분리 부재(300)의 단부, 이를테면 상단 내지 하단이 모듈 케이스(200)의 내면에 확실하게 밀착되도록 함으로써, 분리 부재(300)와 모듈 케이스(200) 사이의 틈으로 화염이나 가스, 스파크, 열 등이 유출되는 것을 방지할 수 있다. 또한, 이 경우, 분리 부재(300)가 차지하는 공간을 줄여 배터리 모듈의 에너지 밀도를 높이는 한편, 배터리 모듈의 경량화에도 기여할 수 있다.
제1 분리부(310)와 제2 분리부(320)는, 직각으로 결합된 형태를 가질 수 있다. 예를 들어, 제1 분리부(310)는, 세워진 플레이트로서 전후 방향(X축 방향)으로 길게 연장된 형상을 갖도록 배치될 수 있다. 그리고, 제2 분리부(320)는, 세워진 플레이트로서 좌우 방향(Y축 방향)으로 길게 연장된 형상을 갖도록 배치될 수 있다. 이 경우, 제1 분리부(310)와 제2 분리부(320)는 연장 방향이 서로 수직하게 결합되어 있다고 할 수 있다.
본 발명의 이러한 실시 구성에 의하면, 분리 부재(300)의 부피나 무게를 감소시켜, 배터리 셀(100)의 수납 공간을 최대한 확보할 수 있다. 따라서, 배터리 모듈의 에너지 밀도 향상에 유리할 수 있다. 또한, 상기 실시 구성에 의하면, 분리 부재(300)의 제조는 물론이고, 분리 부재(300)와 배터리 셀(100) 사이의 조립이 쉽게 이루어질 수 있다. 따라서, 배터리 모듈의 제조 공정성이 향상될 수 있다. 또한, 상기 실시 구성에 의하면, 분리 부재(300)의 구조적 강성이 보다 안정적으로 확보될 수 있다.
일례로, 제1 분리부(310)와 제2 분리부(320)는, 서로 별도로 제조된 후 조립된 형태로 구성될 수 있다. 이 경우, 제1 분리부(310)는 배터리 셀(100)과 함께 수평 방향, 이를테면 좌우 방향으로 반복 적층되어 복합 적층체를 형성할 수 있다. 그리고, 복합 적층체가 형성된 이후 제1 분리부(310)의 단부, 이를테면 전단과 후단에 각각 서로 다른 제2 분리부(320)가 결합될 수 있다.
이때, 제1 분리부(310)와 제2 분리부(320)는, 다양한 체결 방식에 의해 상호 결합될 수 있다. 예를 들어, 제1 분리부(310)와 제2 분리부(320)는, 용접에 의해 서로 결합 고정될 수 있다. 또는, 제1 분리부(310)와 제2 분리부(320)는 끼움 결합 방식 등에 의해 결합 고정될 수도 있다. 특히, 제1 분리부(310)와 제2 분리부(320)의 체결성 향상을 위해, 제1 분리부(310)는, 배터리 셀(100)과 복합 적층체를 형성한 상태에서, 배터리 셀(100)보다 전후 방향으로 돌출되게 배치될 수 있다. 그리고, 제1 분리부(310)의 이러한 돌출 부분이 제2 분리부(320)와 접촉되어 결합될 수 있다.
한편, 제2 분리부(320)에는 슬롯(S)이 형성되어, 제1 분리부(310)와 결합 시 전극 리드(110)가 관통되도록 할 수 있다. 이때, 제2 분리부(320)는, 제1 분리부(310)의 전방 또는 후방 측에서 배터리 셀(100)을 향하는 방향으로 이동하여 제1 분리부(310)와 결합될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 제1 분리부(310)와 배터리 셀(100)을 적층하여 복합 적층체를 형성할 때, 제1 분리부(310)와 배터리 셀(100) 사이를 최대한 밀착시킬 수 있다. 따라서, 데드 스페이스가 감소됨으로써, 배터리 모듈의 에너지 밀도가 보다 향상될 수 있다.
다른 예로, 제1 분리부(310)와 제2 분리부(320)는, 서로 일체화된 형태로 제조될 수 있다. 즉, 제1 분리부(310)와 제2 분리부(320)는 서로 별도로 제조된 후 결합되는 것이 아니라, 일체화된 형태로 제조될 수도 있다. 예를 들어, 제1 분리부(310)와 제2 분리부(320)는, 처음부터 도 10에 도시된 바와 같은 형태로 제조될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 분리 부재(300)의 제조가 용이하므로, 배터리 모듈의 생산성 내지 공정성이 향상될 수 있다. 또한, 이 경우, 제1 분리부(310)와 제2 분리부(320)가 처음부터 일체화되어 결합 상태를 유지하므로, 분리 부재(300)의 구조적 강성 내지 안정성이 우수하게 확보될 수 있다.
도 11은, 본 발명의 다른 실시예에 따른 배터리 모듈에 포함된 분리 부재(300)의 구성을 개략적으로 나타내는 사시도이다.
도 11을 참조하면, 슬롯(S)은 분리 부재(300)에서 일부가 절취 내지 절개된 형태로 마련될 수 있다. 보다 구체적으로, 슬롯(S)은, 제2 분리부(320)의 상단부터 하부 방향으로 소정 거리만큼 절취된 형태로 형성될 수 있다. 그리고, 이와 같이 절취 형태로 형성된 슬롯(S)에는, 전극 리드(110)와 이를 감싸는 절연 블록(400)이 삽입될 수 있다. 이에 대해서는, 도 12를 추가로 참조하여 보다 구체적으로 설명한다.
도 12는, 도 11의 분리 부재(300)에 형성된 슬롯(S)에 전극 리드(110)와 절연 블록(400)이 삽입되는 구성을 개략적으로 나타내는 정단면도이다. 특히, 도 12의 (a)는 슬롯(S)에 전극 리드(110)와 절연 블록(400)이 삽입되는 과정을 나타내는 도면이고, 도 12의 (b)는 슬롯(S)에 전극 리드(110)와 절연 블록(400)이 삽입된 이후의 단면 구성을 개략적으로 나타내는 도면이다.
도 11과 함께 도 12의 (a)를 참조하면, 슬롯(S)이, 분리 부재(300)의 상단에서 하부 방향으로 절취된 형태로 형성되어 있으므로, 전극 리드(110)와 절연 블록(400)은, 슬롯(S)의 상단 개구부에서 하부 방향으로 인입되어 슬롯(S)의 내부에 삽입될 수 있다.
이와 같은 실시 구성에서, 절연 블록(400)은, 앞서 도 8 및 도 9의 실시예에서 설명한 바와 같이, 2개의 단위 블록을 구비할 수 있다. 이 경우, 제1 블록(410)이 제2 분리부(320)의 슬롯(S)에 먼저 삽입된 상태에서, 배터리 셀(100)이 화살표 B3로 표시된 바와 같이 하부 방향으로 이동하여, 전극 리드(110)가 제2 분리부(320)의 슬롯(S) 및 제1 블록(410)의 제1 슬릿(N1)에 삽입될 수 있다. 그리고, 배터리 셀(100)이 분리 부재(300)의 내부 분리 공간에 수납되어 전극 리드(110)가 슬롯(S) 및 제1 슬릿(N1)에 삽입되면, 제2 블록(420)이 화살표 B4로 표시된 바와 같이 하강하여 제2 분리부(320)의 슬롯(S)에 삽입될 수 있다. 이때, 제2 블록(420)의 제2 슬릿(N2)에는, 배터리 셀(100)의 전극 리드(110)가 삽입될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 배터리 모듈의 조립성 내지 공정성이 더욱 개선될 수 있다. 특히, 상기 실시 구성에 의하면, 제1 분리부(310)와 제2 분리부(320)가 서로 결합된 상태, 또는 이들이 서로 일체화된 형태로 제조된 경우에도, 배터리 셀(100)을 일 방향, 이를테면 하부 방향으로 이동시켜 수납 공간(C1)에 용이하게 수납되도록 할 수 있다. 그러므로, 배터리 셀(100)의 수납 공정이 보다 용이하게 이루어질 수 있다. 또한, 상기 실시 구성에 의하면, 절연 블록(400)을 분리 부재(300)의 슬롯(S)에 결합시키는 구성이 보다 용이하게 달성될 수 있다.
도 13 및 도 14는, 본 발명의 또 다른 여러 실시예들에 따른 배터리 모듈에 포함된 분리 부재(300)의 구성을 개략적으로 나타내는 분리 사시도이다.
도 13 및 도 14를 참조하면, 상기 분리 부재(300)는, 제3 분리부(330)를 더 구비할 수 있다. 여기서, 제3 분리부(330)는, 제1 분리부(310) 및 제2 분리부(320)의 각 단부와 연결될 수 있다. 예를 들어, 도 13에 도시된 바와 같이, 제3 분리부(330)는, 제1 분리부(310)와 제2 분리부(320)의 하단에 연결될 수 있다. 다른 예로, 도 14에 도시된 바와 같이, 제3 분리부(330)는, 제1 분리부(310) 및 제2 분리부(320)의 상단에 연결될 수 있다.
제3 분리부(330)는, 제1 분리부(310) 및 제2 분리부(320)와 마찬가지로 플레이트 형태로 구성될 수 있다. 다만, 제3 분리부(330)는, 제1 분리부(310)나 제2 분리부(320)와 다르게 수평 방향으로 눕혀진 형태로 구성될 수 있다. 특히, 제3 분리부(330)는, X-Y 평면에 평행한 플레이트 형태로 구성될 수 있다. 더욱이, 제3 분리부(330)는, 제1 분리부(310) 및 제2 분리부(320)에 직교하는 플레이트 형태로 구성될 수 있다. 즉, 제3 분리부(330)가 이루는 평면은, 제1 분리부(310) 및 제2 분리부(320)가 이루는 평면과 직교하는 형태를 가질 수 있다.
본 발명의 이러한 실시 구성에 의하면, 제3 분리부(330)에 의해 제1 분리부(310) 및 제2 분리부(320)의 구조가 보다 안정적으로 유지될 수 있다. 따라서, 외부의 충격이나 내부의 압력 변화 등에도 분리 부재(300)의 구조가 변하지 않고 안정적으로 유지될 수 있다. 특히, 배터리 셀(100)에서 열 폭주 등의 이벤트로 인해 가스나 화염, 스파크 등이 발생하는 경우, 분리 부재(300) 측으로 강한 압력이 인가될 수 있다. 이때, 제3 분리부(330)로 인해, 분리 부재(300)의 구조 붕괴가 억제되고, 분리 부재(300)에 의한 셀 간 격리 효과가 더욱 안정적으로 확보될 수 있다.
또한, 상기 실시 구성에 의하면, 배터리 셀(100)의 하단이나 상단이 제3 분리부(330)에 안착될 수 있으므로, 분리 부재(300)의 내부 공간에서 배터리 셀(100)이 안정적으로 수납될 수 있다. 특히, 도 13의 실시예와 같이, 배터리 셀(100)의 하단에 제3 분리부(330)가 구비되는 경우, 배터리 셀(100)은 제3 분리부(330)의 상단에 안착되어, 안정적으로 수납될 수 있다.
또한, 상기 실시 구성에 의하면, 분리 부재(300)의 격리 효과가 더욱 향상될 수 있다. 예를 들어, 각 배터리 셀(100)은, 제1 분리부(310) 및 제2 분리부(320)에 의해 수평 방향으로 화염이나 열 등이 전파되는 것이 차단될 뿐 아니라, 제3 분리부(330)에 의해 상하 방향(수직 방향)으로 화염 등의 전파가 차단될 수 있다. 특히, 도 14의 실시예와 같이, 배터리 셀(100)의 상부 측에 제3 분리부(330)가 구비되는 경우, 상부 측으로 화염 등이 향하는 것을 차단할 수 있다. 따라서, 배터리 모듈이 자동차의 하부 측에 탑재된 경우, 상부 측에 위치하는 탑승자에 대하여 화염이 향하는 것을 억제하여, 탑승자의 안전성이 향상되도록 할 수 있다.
한편, 도 13 및 도 14에 도시된 바와 같이, 제3 분리부(330)는 제1 분리부(310)의 상단이나 하단 중 어느 한 단부에만 결합될 수 있다. 이 경우, 배터리 셀(100)에서 발생하는 화염이나 벤팅 가스 등을 특정 방향으로 유도하는 디렉셔널 벤팅(directional venting)의 구현에 보다 유리할 수 있다. 또한, 이 경우, 분리 부재(300)의 수납 공간에 배터리 셀(100)을 수납시키는 공정이 보다 쉽게 이루어질 수 있다.
도 15는, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성에 대한 분리 사시도이다. 그리고, 도 16은, 도 15의 구성에 대한 결합 사시도이다. 특히, 도 15 및 도 16에는, 분리 부재(300)의 일부분으로서, 하나의 슬롯(S)과 그에 결합되는 하나의 절연 블록(400)이 도시되어 있다.
도 15 및 도 16을 참조하면, 절연 블록(400)은, 분리 부재(300)의 슬롯(S)에 장착 가능하게 구성될 수 있다. 예를 들어, 분리 부재(300)의 슬롯(S)은, 도 15에 도시된 바와 같이, 홀과 같은 형태로 형성될 수 있으며, 이때 절연 블록(400)은, 화살표 B5로 표시된 바와 같이 이동하여, 홀 형태로 형성된 슬롯(S)에 삽입 결합될 수 있다. 반대로, 절연 블록(400)은, 화살표 B6로 표시된 바와 같이 이동하여, 슬롯(S)으로부터 분리될 수 있다. 즉, 절연 블록(400)은, 분리 부재(300)의 슬롯(S)에 탈착 가능하게 구성될 수 있다.
상기 실시 구성에서, 절연 블록(400)은, 분리 부재(300)의 슬롯(S)에 끼움 결합 가능하도록 구성될 수 있다. 예를 들어, 절연 블록(400)은, 슬롯(S)의 형태에 대응되는 구조 내지 크기를 가질 수 있다.
본 발명의 이러한 실시 구성에 의하면, 분리 부재(300)의 슬롯(S) 부분에 대하여 밀폐 구조가 용이하게 마련될 수 있다. 또한, 상기 실시 구성에 의하면, 전극 리드(110)가 슬롯(S)에 안정적으로 고정될 수 있다. 따라서, 배터리 모듈의 사용 중에 전극 리드(110)의 접합 부분이 파손되거나 손상되는 것을 방지하고, 전극 리드(110)의 버스바에 대한 접합 공정이 보다 용이하게 수행될 수 있다.
도 17은, 본 발명의 다른 실시예에 따른 절연 블록(400)의 구성을 개략적으로 나타내는 사시도이다. 도 18은, 도 17의 절연 블록(400)이 분리 부재(300)의 슬롯(S)에 장착된 구성을 개략적으로 나타내는 단면도이다. 예를 들어, 도 18은, 도 17의 절연 블록(400)이 슬롯(S)에 장착된 상태에서, A4-A4'선에 대한 단면 구성을 나타낸다고 할 수 있다.
먼저, 도 17을 참조하면, 절연 블록(400)은 반대 측에 위치하는 양단의 크기가 다르게 구성될 수 있다. 특히, 절연 블록(400)은, 외측 단부와 내측 단부의 크기가 다르게 구성될 수 있다. 예를 들어, 도 17에 도시된 절연 블록(400)이, 배터리 셀(100)의 전방 측에 위치하는 전극 리드(110)와 결합되는 구성일 때, 다시 말해 전방 측 절연 블록(400)일 때, 절연 블록(400)의 외측 단부의 폭은 W1으로 나타낼 수 있다. 그리고, 절연 블록(400)의 내측 단부의 폭은 W2로 나타낼 수 있다. 이 경우, W1은 W2보다 작은 크기로 형성될 수 있다.
그리고, 분리 부재(300)의 슬롯(S) 역시, 이러한 절연 블록(400)의 형상에 대응되는 형태 및 크기를 가질 수 있다. 예를 들어, 도 18의 실시 구성을 참조하면, 분리 부재(300)의 슬롯(S)은, 전후 방향(Y축 방향)으로 분리 부재(300)를 관통하되, 절연 블록(400)의 형상에 대응되게 형성될 수 있다. 특히, 슬롯(S)의 외측 개구부 크기는 대략 절연 블록(400)의 외측 단부의 크기(W1)와 유사하게 형성되고, 슬롯(S)의 내측 개구부 크기는 대략 절연 블록(400)의 내측 단부의 크기(W2)와 유사하게 형성될 수 있다. 따라서, 슬롯(S)은, 외측 크기가 내측 크기보다 작게 형성될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 열폭주 등의 비상 상황에서 절연 블록(400)이 분리 부재(300)의 슬롯(S)으로부터 이탈되지 않고, 그 위치를 안정적으로 유지하도록 할 수 있다. 예를 들어, 절연 블록(400)의 내측에 위치하는 배터리 셀(100)로부터 화염이나 벤팅 가스 등이 분출된 경우, 도 18의 화살표 B7으로 표시된 바와 같이, 절연 블록(400)을 향해 외측 방향으로 압력이 인가될 수 있다. 이때, 슬롯(S)의 내측 단부의 크기(폭)는 절연 블록(400)의 외측 단부의 크기(폭)보다 작게 형성되므로, 화살표 B7과 같이 인가되는 힘에도, 절연 블록(400)은 슬롯(S)으로부터 외측 방향(+X축 방향)으로 쉽게 이탈되지 않을 수 있다. 또한, 이 경우, 절연 블록(400)과 분리 부재(300) 사이의 결합이 안정적으로 이루어지므로, 절연 블록(400)에 의해 감싸진 전극 리드(110) 역시 그 위치를 안정적으로 유지할 수 있다.
도 19는, 본 발명의 또 다른 실시예에 따른 절연 블록(400)의 구성을 개략적으로 나타내는 사시도이다. 도 20은, 도 19의 절연 블록(400)이 분리 부재(300)의 슬롯(S)에 장착된 구성을 개략적으로 나타내는 단면도이다.
도 19 및 도 20을 참조하면, 절연 블록(400)은, 배터리 셀(100)의 수납부(R) 측에 위치하는 내측 단부에, P로 표시된 부분과 같이, 스톱퍼가 형성될 수 있다. 상기 스톱퍼(P)는, 절연 블록(400)에서 좌우 방향(Y축 방향)으로 돌출되게 형성되어, 좌우 방향 폭이 가장 크게 형성된 부분일 수 있다. 더욱이, 상기 스톱퍼(P)는, 슬롯(S)의 크기보다 크게 구성될 수 있다. 이 경우, 상기 스톱퍼(P)는, 도 20에 도시된 바와 같이, 절연 블록(400)이 분리 부재(300)의 슬롯(S)에 삽입될 때, 슬롯(S)에 삽입되지 않고 분리 부재(300)의 내측 표면에 안착될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 열 폭주 등의 상황에서 배터리 셀(100)로부터 화염이나 가스 등이 발생하여, 화살표 B7'으로 표시된 바와 같이 압력이 인가되더라도, 절연 블록(400)이 슬롯(S)의 외측으로 빠져 나가는 것을 확실하게 방지할 수 있다. 따라서, 절연 블록(400)과 분리 부재(300) 사이의 결합성이 향상되고, 전극 리드(110)의 유동이나 손상이 방지될 수 있다.
본 발명에 따른 배터리 모듈은, 도 2에 도시된 바와 같이, 버스바 어셈블리(500)를 더 포함할 수 있다.
상기 버스바 어셈블리(500)는, 다수의 배터리 셀(100)의 전극 리드(110) 사이를 전기적으로 연결하도록 구성될 수 있다. 특히, 상기 버스바 어셈블리(500)는, 분리 부재(300)의 외측에 위치할 수 있다. 이에 대해서는, 도 21을 참조하여 보다 구체적으로 설명한다.
도 21은, 본 발명의 일 실시예에 따른 배터리 모듈의 일부 구성을 개략적으로 나타내는 상면도이다. 특히, 도 21에는, 분리 부재(300)와 버스바 어셈블리(500)가 도시되어 있다.
도 21을 참조하면, 버스바 어셈블리(500)는, 분리 부재(300)의 외측에 구비될 수 있다. 보다 구체적으로, 분리 부재(300)의 전방 측(+X 방향 측)과 후방 측(-X 방향 측)에 각각 버스바 어셈블리(500)가 배치될 수 있다 .특히, 분리 부재(300)는, 전방 측과 후방 측에 각각 제2 분리부(320)를 구비할 수 있다. 그리고, 이러한 제2 분리부(320)의 외측, 보다 구체적으로는, 제2 전방 분리부의 전방 측과 제2 후방 분리부의 후방 측에 각각 버스바 어셈블리(500)가 위치할 수 있다. 특히, 버스바 어셈블리(500)는, 제2 분리부(320)의 외측 표면에 부착될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 배터리 셀(100)로부터 분출되는 화염이나 가스 등에도 버스바 어셈블리(500)가 안전하게 보호될 수 있다. 즉, 배터리 셀(100)은 분리 부재(300)의 내측, 특히 제2 분리부(320)의 내측에 위치하여, 화염이나 벤팅 가스 등을 분출시킬 수 있다. 이때, 버스바 어셈블리(500)는 분리 부재(300), 특히 제2 분리부(320)의 외측에 위치하므로, 화염 등으로부터 직접적으로 영향을 받는 것이 억제될 수 있다. 따라서, 화염이나 열 등으로부터, 버스바 어셈블리(500)가 손상되거나 구조적으로 붕괴되는 것을 방지할 수 있다. 그러므로, 배터리 모듈 내부의 전기적 연결을 위한 구성을 화염 등으로부터 보호하여 전기적 안전성이 확보되도록 할 수 있다.
도 22는, 본 발명의 일 실시예에 따른 버스바 어셈블리(500)의 구성을 개략적으로 나타내는 분리 사시도이다.
도 22를 참조하면, 상기 버스바 어셈블리(500)는, 버스바 하우징(510) 및 버스바 단자(520)를 구비할 수 있다.
버스바 하우징(510)은, 전기적 절연성 재질, 이를테면 플라스틱 재질로 구성될 수 있다. 그리고, 버스바 하우징(510)은, 분리 부재(300)의 외측에 위치할 수 있다. 예를 들어, 버스바 하우징(510)은, 분리 부재(300)의 전방 측 또는 후방 측 표면에 결합 고정될 수 있다. 이때, 버스바 하우징(510)과 분리 부재(300)는, 볼팅, 후크 결합, 접착, 용접 등 다양한 체결 방식에 의해 결합될 수 있다.
버스바 단자(520)는, 전기적 전도성 재질, 이를테면 금속 재질로 구성될 수 있다. 그리고, 버스바 단자(520)는, 둘 이상의 전극 리드(110) 사이를 전기적으로 연결시키거나, 하나 이상의 전극 리드(110)에 연결되어 BMS(Battery Management System)와 같은 제어 유닛으로 셀 전압 등의 센싱 정보를 전달하도록 구성될 수 있다. 이를 위해, 버스바 단자(520)는, 전극 리드(110)와 용접 등의 방식으로 접촉 고정될 수 있다.
상기 버스바 단자(520)는, 버스바 하우징(510)에 결합될 수 있다. 이를 위해, 버스바 하우징(510)은, 이러한 버스바 단자(520)가 안착되어 고정되도록 구성될 수 있다. 예를 들어, 버스바 하우징(510)은, 버스바 단자(520)가 안착될 수 있는 안착홈이 형성될 수 있다. 버스바 단자(520)는, 볼팅, 리벳, 접착 등 다양한 방식으로, 버스바 하우징(510)에 결합 고정될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 버스바 단자(520)를 화염으로부터 보다 확실하게 보호할 수 있다. 또한, 상기 실시 구성에 의하면, 버스바 단자(520)와 분리 부재(300) 사이의 직접적인 접촉을 방지하여, 이들 사이의 전기적 절연성이 확보되도록 할 수 있다. 특히, 분리 부재(300)는, 화염에 대한 구조적 안정성 확보 등을 위해, 전기적 전도성을 갖는 금속 재질로 이루어질 수 있는데, 상기 실시 구성에 의하면, 분리 부재(300)와 버스바 단자(520) 사이의 전기적 절연성이 안정적으로 확보될 수 있다.
또한, 상기 실시 구성에 의하면, 분리 부재(300)의 내측에서 인가되는 열이 버스바 단자(520) 측으로 전달되는 것이 억제될 수 있다. 따라서, 버스바 단자(520)를 통해 셀 간 열전달이 이루어지는 것을 방지할 수 있다.
특히, 상기 버스바 단자(520)는, 버스바 하우징(510)의 외측에 구비될 수 있다. 예를 들어, 전방 측 버스바 하우징(510)의 경우, 버스바 단자(520)는, 버스바 하우징(510)의 전방 측 표면에 부착될 수 있다. 다른 예로, 후방 측 버스바 하우징(510)의 경우, 버스바 단자(520)는, 버스바 하우징(510)의 후방 측 표면에 부착될 수 있다.
이 경우, 버스바 단자(520)와 분리 부재(300) 사이를 확실하게 분리시키고, 버스바 단자(520)와 분리 부재(300) 사이의 직접적인 접촉을 방지하여, 전기적 안전성이 강화되도록 할 수 있다.
도 23은, 본 발명의 또 다른 실시예에 따른 절연 블록(400)의 구성을 개략적으로 나타내는 사시도이다. 특히, 도 23은, 절연 블록(400)을 배터리 셀(100)의 수납부(R)가 위치하는 내측에서 바라본 형태의 도면이라 할 수 있다. 또한, 도 24는, 도 23의 절연 블록(400)이 포함된 배터리 모듈의 일부분에 대한 단면 구성을 상부에서 바라본 형태의 도면이라 할 수 있다.
도 23 및 도 24를 참조하면, 상기 절연 블록(400)은, G로 표시된 부분과 같이, 가스 포집부가 형성될 수 있다. 가스 포집부(G)는, 배터리 셀(100)에서 가스 배출 시, 배출된 가스가 유입되어 보유되도록 구성될 수 있다. 특히, 배터리 셀(100)에서 열 폭주 등의 이벤트가 발생하여 내압이 증가하는 경우, 가스나 화염, 스파크 등이 외부로 배출되는 경우가 많다. 이때, 가스 포집부(G)는, 이와 같이 배출된 가스나 화염, 스파크 등이 유입되어 보유되도록 구성될 수 있다.
이를 위해, 가스 포집부(G)는, 절연 블록(400)의 내측 표면에서, 외측을 향하여 오목한 형태로 형성될 수 있다. 예를 들어, 배터리 셀(100)의 전방 측에 위치하는 절연 블록(400)의 경우, 후방 측 단부가 전방 측으로 오목하게 형성될 수 있다. 그리고, 이러한 오목한 공간에, 화염이나 스파크 등이 포집될 수 있다.
상기 실시 구성에 의하면, 화염이나 스파크 등의 외부 배출로 인한 셀 간 열 전파 등이 일어나는 것을 더욱 확실하게 방지할 수 있다. 예를 들어, 도 24를 참조하면, 배터리 셀(100)로부터 화염이나 스파크 등이 분출되더라도, 분출된 화염 등은, 화살표 B8로 표시된 바와 같이, 가스 포집부(G)의 내부 공간에서만 유동할 수 있다. 즉, 상기 실시 구성의 경우, 가스 포집부(G)에 이러한 분출물이 포집되며, 절연 블록(400)의 외측으로 이러한 분출물이 배출되는 것이 차단될 수 있다.
또한, 상기 실시 구성에 의하면, 벤팅 가스나 화염 등이 정해진 영역에만 존재하도록 유도되어, 디렉셔널 벤팅에 보다 유리할 수 있다.
또한, 열폭주 등의 비정상 상황이 아닌, 정상적인 상황에서도, 배터리 셀(100)의 사용 시 소량의 가스가 발생할 수 있는데, 상기 실시 구성에 의하면, 이러한 소량의 가스 등을 포집할 수도 있다. 이 경우, 배터리 셀(100)의 수명 증가에 기여할 수 있다.
절연 블록(400)은, 상기 가스 포집부(G)의 형성을 위해, 다양한 형태로 구성될 수 있다. 예를 들어, 절연 블록(400)은, 도 23 및 도 24에 도시된 바와 같이, 배터리 셀(100)의 수납부(R)가 위치하는 방향인 내측으로 갈수록 두께가 얇아지는 부분을 구비할 수 있다. 또한, 절연 블록(400)의 가스 포집부(G)는, 내측으로 갈수록 좌우 폭이 점점 넓어지는 부분을 구비할 수 있다. 예를 들어, 가스 포집부(G)는, 절연 블록(400)의 내측에서 아치 형상으로 형성될 수 있다. 또한, 절연 블록(400)은, 가스 포집부(G)의 형성을 위해, 내측 표면에 경사부 내지 경사면이 형성될 수 있다.
또한, 상기 절연 블록(400)은, 배터리 셀(100)의 실링부(E) 중 적어도 일부를 둘러싸도록 구성될 수 있다.
예를 들어, 도 24에 도시된 바를 참조하면, 배터리 셀(100)에는 실링부(E), 특히 전극 리드(110)가 돌출된 테라스부(T)가 구비될 수 있다. 이때, 절연 블록(400)은, 이러한 실링부(E), 즉 테라스부(T)를 감싸도록 구성될 수 있다. 더욱이, 절연 블록(400)에는, 앞서 설명한 바와 같이, 가스 포집부(G)가 오목한 형태로 형성될 수 있다. 그리고, 이러한 가스 포집부(G)에 의해, 절연 블록(400)은, 테라스부(T)를 소정 거리 이격된 채로 감쌀 수 있다. 즉, 가스 포집부(G)는, 배터리 셀(100)의 테라스부(T)가 삽입되도록 구성될 수 있다.
이와 같은 실시 구성에 의하면, 배터리 셀(100)로부터 분출되는 화염이나 스파크 등의 외부 배출 억제에 보다 유리할 수 있다. 특히, 배터리 셀(100)에서 열폭주 등으로 인해 내압이 증가하는 경우, 테라스부(T) 측으로 화염이나 스파크, 가스 등이 배출될 가능성이 많다. 이때, 도 24에 도시된 바와 같이, 테라스부(T)가 가스 포집부(G)의 내측에 삽입된 형태로 존재하면, 테라스부(T)로부터 화염 등이 분출되자마자 곧바로 가스 포집부(G)로 유입될 수 있다. 따라서, 화염이나 스파크 등이 절연 블록(400)의 내측에 포집되는 효과가 확실하게 달성되어, 셀 간 열 전파 억제 성능이 더욱 향상될 수 있다.
상기 절연 블록(400)은, 내측 단부가 배터리 셀(100)에 접촉되도록 구성될 수 있다. 예를 들어, 도 24의 A5 및 A5'으로 표시된 부분과 같이, 절연 블록(400)의 내측 단부는, 배터리 셀(100)의 수납부(R)에 접촉될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 절연 블록(400)과 배터리 셀(100)이 폐쇄된 공간을 형성하여, 폐쇄된 공간에 화염이나 스파크 등이 포집되도록 하는데 유리할 수 있다. 특히, 앞서 설명한 바와 같이, 절연 블록(400)에는 가스 포집부(G)가 형성될 수 있는데, 상기 실시 구성에 의하면, 이러한 가스 포집부(G)의 내부 공간이 적어도 부분적으로 밀폐될 수 있다. 따라서, 가스 포집부(G)의 내부로 유입된 화염이나 스파크 등이 가스 포집부(G)의 외부로 유출되는 것을 보다 확실하게 억제할 수 있다.
상기 절연 블록(400)은, 도 23 및 도 24에 도시된 바와 같이, 완충 패드(430)를 구비할 수 있다. 특히, 상기 완충 패드(430)는, 절연 블록(400)에서, 배터리 셀(100)의 수납부(R)가 위치하는 내측 단부에 구비될 수 있다.
완충 패드(430)는, 본 발명의 출원 시점에 공지된 다양한 탄성체 재질을 구비할 수 있다. 더욱이, 완충 패드(430)는, 절연 블록(400)의 다른 부분, 이를테면 절연 블록(400)의 본체보다 경도 내지 강도가 낮거나, 탄성 계수가 높은 재질로 이루어질 수 있다. 예를 들어, 완충 패드(430)는, 실리콘이나 고무 등의 재질을 구비할 수 있다.
특히, 앞서 도 24의 실시예와 같이, 절연 블록(400)의 내측 단부가 배터리 셀(100)에 접촉되게 구성될 수 있다. 이때, 완충 패드(430)는, 절연 블록(400)에서 배터리 셀(100)과 직접 접촉하는 부분에 마련될 수 있다. 즉, 완충 패드(430)는, 배터리 셀(100)과 직접 접촉되게 구성될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 절연 블록(400)에 의한 배터리 셀(100)의 손상 등이 방지될 수 있다. 특히, 절연 블록(400)의 단부가 배터리 셀(100)과 접촉되게 구성된 경우, 외부에서 충격이나 진동이 발생하면, 절연 블록(400)의 접촉 부분으로 인해 배터리 셀(100)의 외장재, 이를테면 셀 파우치가 손상되거나 파손될 위험이 있다. 하지만, 상기 실시 구성에 의할 경우, 완충 패드(430)로 인해, 이러한 셀 파우치의 손상이나 파손 위험성을 낮출 수 있다.
도 25는, 본 발명의 또 다른 실시예에 따른 절연 블록(400)의 구성을 개략적으로 나타내는 사시도이다. 예를 들어, 도 25는, 도 23의 구성에 대한 변형예라 할 수 있다.
도 25를 참조하면, 절연 블록(400)은, I로 표시된 부분과 같이, 내측 차단부를 구비할 수 있다. 특히, 내측 차단부(I)는, 절연 블록(400)의 가스 포집부(G)의 내측 표면에서 돌출된 형태로 구성될 수 있다. 예를 들어, 내측 차단부(I)는, 절연 블록(400)의 가스 포집부(G)의 내면에서, 상하 방향으로 길게 연장된 형태로 형성될 수 있다. 또한, 내측 차단부(I)는, 절연 블록(400)의 가스 포집부(G)에 다수 형성될 수 있다.
본 발명의 이러한 실시 구성에 의하면, 가스 포집부(G)의 내부 공간에 유입된 화염이나 스파크 등에 대하여 이동을 억제할 수 있다. 즉, 화염이나 스파크 등은 이동 시 직진성이 강하므로, 가스 포집부(G)의 내부 공간에서, 내측 차단부(I)와 같이 돌출된 형태의 구조물이 존재하면 이동이 억제될 수 있다. 그러므로, 이 경우, 절연 블록(400)의 가스 포집부(G)에서 화염이나 스파크 등의 포집 효과를 향상시키며, 이들의 외부 배출이 보다 효과적으로 억제될 수 있다.
한편, 도 25의 실시예에서는, 내측 차단부(I)라는 돌출된 구조물을 통해, 절연 블록(400)의 가스 포집부(G)에서 화염이나 스파크 등의 이동을 억제하는 구성이 설명되었으나, 홈이나 다른 형태의 요철 구조를 통해 화염이나 스파크 등의 이동을 억제하는 구성도 구현 가능하다.
상기 절연 블록(400)은, 배터리 셀(100)에서 가스 배출 시, 전극 리드(110) 또는 분리 부재(300)의 슬롯(S) 측으로 밀착되도록 구성될 수 있다. 이에 대해서는, 도 26을 참조하여 보다 구체적으로 설명한다.
도 26은, 본 발명의 또 다른 실시예에 따른 절연 블록(400)이 포함된 배터리 모듈의 일부 구성을 개략적으로 나타내는 단면도이다. 도 26의 구성은, 도 23에 도시된 절연 블록(400)의 구성과 유사한 형태를 가진다고 할 수도 있다.
도 26을 참조하면, 절연 블록(400)은, 배터리 셀(100)의 실링부(E)(테라스부(T))를 중심으로 좌측과 우측에 각각, D1으로 표시된 바와 같은 제1 측부와 D2로 표시된 바와 같은 제2 측부를 구비할 수 있다. 그리고, 절연 블록(400)은, 이러한 제1 측부(D1)와 제2 측부(D2)를 연결하도록, D3로 표시된 바와 같은 연결부(D3)를 구비할 수 있다. 특히, 연결부(D3)는, 제1 측부(D1)와 제2 측부(D2)의 외측 단부를 서로 연결시킬 수 있다. 그리고, 제1 측부(D1)와 제2 측부(D2)의 내측 단부는, 배터리 셀(100)의 수납부(R) 측으로 향해 연장 내지 돌출될 수 있다. 더욱이, 이러한 제1 측부(D1), 제2 측부(D2) 및 연결부(D3)에 의해 한정되는 공간이, 앞서 설명한 가스 포집부(G)를 형성할 수 있다.
이러한 실시 구성에서, 배터리 셀(100)로부터 화염이나 가스 등이 발생하여 가스 포집부(G)에 포집된 경우, 가스 포집부(G)의 내부 압력이 증가하여, 제1 측부(D1)와 제2 측부(D2)는 B9 및 B9'으로 표시된 바와 같이 힘을 받을 수 있다. 이 경우, 제1 측부(D1)와 제2 측부(D2)의 좌우 방향(Y축 방향) 외측 표면은 물론이고, 연결부(D3)의 외측 표면도 화살표 B10 및 B10'으로 표시된 바와 같이 외측 방향으로 이동하는 힘을 받을 수 있다. 따라서, 절연 블록(400)과 분리 부재(300)의 슬롯(S) 사이의 이격 공간이 제거되거나 감소될 수 있다.
또한, 상기 실시 구성에서, 제1 측부(D1)와 제2 측부(D2)는 B9 및 B9'으로 표시된 바와 같이 힘을 받는 경우, 절연 블록(400)의 리드 삽입부(N)는, 지렛대 원리에 의해, 화살표 B11 및 B11'으로 표시된 바와 같이, 전극 리드(110)를 향하는 방향으로 이동하는 힘을 받을 수 있다. 따라서, 리드 삽입부(N)의 내면과 전극 리드(110) 사이의 이격 공간이 제거되거나 감소될 수 있다.
그러므로, 상기 실시 구성에 의하면, 절연 블록(400)과 분리 부재(300) 사이 및/또는 절연 블록(400)과 전극 리드(110) 사이의 밀폐력이 더욱 향상될 수 있다. 특히, 상기 실시 구성에 의하면, 배터리 셀(100)로부터 벤팅 가스 등이 발생하는 비상 상황에서, 별도의 구동원 없이 가스의 발생 만으로도 밀폐력이 자동 향상될 수 있다. 따라서, 절연 블록(400)에 의한 화염 내지 열 등의 전파 억제 효과가 보다 효율적으로 개선될 수 있다.
본 발명의 일 측면에 따른 배터리 팩은, 상술한 본 발명에 따른 배터리 모듈을 하나 이상 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩은, 이러한 배터리 모듈 이외에 다른 다양한 구성요소, 이를테면, BMS나 모듈 간 버스바, 팩 케이스, 릴레이, 전류 센서 등과 같은 본 발명의 출원 시점에 공지된 배터리 팩의 구성요소 등을 더 포함할 수 있다.
또한, 본 발명의 다른 측면에 따른 배터리 팩은, 앞서 설명된 배터리 모듈과 유사한 형태로 형성될 수 있다. 특히, 본 발명에 따른 배터리 팩은, 앞서 설명된 배터리 모듈에 있어서, 모듈 케이스(200)가 팩 케이스로 대체되는 형태로 구성될 수 있다.
이 경우, 본 발명에 따른 배터리 팩은, 전극 리드(110)를 구비하는 다수의 배터리 셀(100), 내부 공간에 상기 다수의 배터리 셀(100)을 수납하는 팩 케이스, 상기 다수의 배터리 셀(100) 중 적어도 일부 배터리 셀(100) 사이의 공간을 분리시키며, 상기 전극 리드(110)가 삽입될 수 있도록 슬롯(S)이 마련된 분리 부재(300), 및 전기적 절연 재질을 구비하며 상기 슬롯(S)에 삽입된 상기 전극 리드(110)의 적어도 일부분의 외측을 둘러싸도록 구성된 절연 블록(400)을 포함할 수 있다. 이러한, 배터리 팩의 경우, 앞서 여러 실시예를 바탕으로 설명된 배터리 모듈에 대한 내용에서, '모듈 케이스(200)'에 대한 내용은 '팩 케이스'에 대한 내용으로 대체되고, '배터리 모듈'이라는 용어는 '배터리 팩'으로 변경되며, 나머지 구성이나 특징 등은 대부분 그대로 적용될 수 있다. 따라서, 이러한 측면의 배터리 팩에 대해서는 보다 상세한 설명을 생략한다. 다만, 이때, 팩 케이스에는, 배터리 셀(100), 분리 부재(300) 및 절연 블록(400) 이외에, BMS와 같은 배터리 팩의 제어 유닛 등이 함께 수납될 수 있다.
특히, 이러한 배터리 팩은, 다수의 배터리 셀(100)이 모듈 케이스(200) 등을 통해 모듈화되지 않고, 직접 팩 케이스에 수납되는 셀투팩(Cell To Pack; CTP) 형태의 구성에 있어서, 보다 유용하게 채용될 수 있다.
본 발명에 따른 배터리 모듈이나 배터리 팩은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 즉, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈 또는 본 발명에 따른 배터리 팩을 포함할 수 있다. 또한, 본 발명에 따른 자동차는, 이러한 배터리 모듈이나 배터리 팩 이외에 자동차에 포함되는 다른 다양한 구성요소 등을 더 포함할 수 있다. 예를 들어, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈 이외에, 차체나 모터, ECU(electronic control unit) 등의 제어 장치 등을 더 포함할 수 있다.
또한, 본 발명에 따른 배터리 모듈은, 에너지 저장 시스템(ESS)에 적용될 수 있다. 즉, 본 발명에 따른 에너지 저장 시스템은, 본 발명에 따른 배터리 모듈 또는 본 발명에 따른 배터리 팩을 포함할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
100: 배터리 셀
110: 전극 리드
200: 모듈 케이스
210: 상판, 220: 하판, 230: 좌측판, 240: 우측판, 250: 전판, 260: 후판
300: 분리 부재
310: 제1 분리부, 320: 제2 분리부, 330: 제3 분리부
400: 절연 블록
410: 제1 블록, 420: 제2 블록, 430: 완충 패드
500: 버스바 어셈블리
510: 버스바 하우징, 520: 버스바 단자
S: 슬롯
N: 리드 삽입부
R: 수납부
E: 실링부
T: 테라스부
P: 스톱퍼
G: 가스 포집부

Claims (18)

  1. 전극 리드를 구비하는 다수의 배터리 셀;
    내부 공간에 상기 다수의 배터리 셀을 수납하는 모듈 케이스;
    상기 다수의 배터리 셀 중 적어도 일부 배터리 셀 사이의 공간을 분리시키며, 상기 전극 리드가 삽입될 수 있도록 슬롯이 마련된 분리 부재; 및
    전기적 절연 재질을 구비하며 상기 슬롯에 삽입된 상기 전극 리드의 적어도 일부분의 외측을 둘러싸도록 구성된 절연 블록
    을 포함하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 분리 부재는, 금속 재질을 구비하는 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 절연 블록은, 상기 전극 리드와 상기 분리 부재 사이를 전기적으로 절연시키도록 구성된 것을 특징으로 하는 배터리 모듈.
  4. 제1항에 있어서,
    상기 절연 블록은, 상기 전극 리드가 삽입된 상태에서 상기 슬롯을 밀폐시키도록 구성된 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 절연 블록은, 서로 결합된 둘 이상의 단위 블록을 구비하는 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 분리 부재는, 인접하는 배터리 셀 사이에 개재된 제1 분리부, 및 상기 제1 분리부의 단부에 연결되며 상기 슬롯이 형성된 제2 분리부를 구비하는 것을 특징으로 하는 배터리 모듈.
  7. 제6항에 있어서,
    상기 제1 분리부 및 상기 제2 분리부 중 적어도 하나는, 판상으로 구성된 것을 특징으로 하는 배터리 모듈.
  8. 제6항에 있어서,
    상기 제1 분리부 및 상기 제2 분리부는, 직각으로 결합된 것을 특징으로 하는 배터리 모듈.
  9. 제6항에 있어서,
    상기 분리 부재는, 상기 제1 분리부 및 상기 제2 분리부의 각 단부와 연결되어, 상기 다수의 배터리 셀의 일측을 커버하는 제3 분리부를 더 구비하는 것을 특징으로 하는 배터리 모듈.
  10. 제1항에 있어서,
    상기 절연 블록은, 상기 분리 부재의 슬롯에 장착 가능하게 구성된 것을 특징으로 하는 배터리 모듈.
  11. 제1항에 있어서,
    상기 다수의 배터리 셀의 전극 리드 사이를 전기적으로 연결하는 버스바 어셈블리를 더 포함하며,
    상기 버스바 어셈블리는, 상기 분리 부재의 외측에 위치하는 것을 특징으로 하는 배터리 모듈.
  12. 제11항에 있어서,
    상기 버스바 어셈블리는, 전기적 절연성 재질로 구성되며 상기 분리 부재의 외측에 구비된 버스바 하우징, 및 전기적 전도성 재질로 구성되어 상기 버스바 하우징에 결합된 버스바 단자를 구비하는 것을 특징으로 하는 배터리 모듈.
  13. 제1항에 있어서,
    상기 절연 블록은, 상기 배터리 셀에서 가스 배출 시, 배출된 가스가 유입 가능하도록 구성된 가스 포집부가 형성된 것을 특징으로 하는 배터리 모듈.
  14. 제1항에 있어서,
    상기 절연 블록은, 상기 배터리 셀의 실링부 중 적어도 일부를 둘러싸도록 구성된 것을 특징으로 하는 배터리 모듈.
  15. 제1항에 있어서,
    상기 절연 블록은, 내측 단부에 완충 패드를 구비하는 것을 특징으로 하는 배터리 모듈.
  16. 제1항에 있어서,
    상기 절연 블록은, 상기 배터리 셀에서 가스 배출 시, 상기 전극 리드 또는 상기 분리 부재의 슬롯 측으로 밀착되도록 구성된 것을 특징으로 하는 배터리 모듈.
  17. 제1항 내지 제16항 중 어느 한 항에 따른 배터리 모듈을 포함하는 배터리 팩.
  18. 제1항 내지 제16항 중 어느 한 항에 따른 배터리 모듈을 포함하는 자동차.
PCT/KR2022/021252 2021-12-24 2022-12-23 안전성이 강화된 배터리 모듈 WO2023121416A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22912049.8A EP4287389A1 (en) 2021-12-24 2022-12-23 Battery module with reinforced safety
CN202280014324.3A CN116830382A (zh) 2021-12-24 2022-12-23 具有增强的安全性的电池模块
JP2023550101A JP2024508121A (ja) 2021-12-24 2022-12-23 安全性が強化されたバッテリーモジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210187481 2021-12-24
KR10-2021-0187481 2021-12-24
KR10-2022-0174863 2022-12-14
KR1020220174863A KR20230098020A (ko) 2021-12-24 2022-12-14 안전성이 강화된 배터리 모듈

Publications (1)

Publication Number Publication Date
WO2023121416A1 true WO2023121416A1 (ko) 2023-06-29

Family

ID=86903865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021252 WO2023121416A1 (ko) 2021-12-24 2022-12-23 안전성이 강화된 배터리 모듈

Country Status (3)

Country Link
EP (1) EP4287389A1 (ko)
JP (1) JP2024508121A (ko)
WO (1) WO2023121416A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180135604A (ko) * 2017-06-13 2018-12-21 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩 및 전력 저장 장치
KR20180135701A (ko) * 2017-06-13 2018-12-21 주식회사 엘지화학 배터리 모듈
KR20190126608A (ko) * 2018-05-02 2019-11-12 에스케이이노베이션 주식회사 배터리 모듈
KR20210011641A (ko) * 2019-07-23 2021-02-02 에스케이이노베이션 주식회사 배터리 모듈 및 이를 포함하는 배터리 팩
KR20210019891A (ko) * 2019-08-13 2021-02-23 에스케이이노베이션 주식회사 배터리 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180135604A (ko) * 2017-06-13 2018-12-21 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩 및 전력 저장 장치
KR20180135701A (ko) * 2017-06-13 2018-12-21 주식회사 엘지화학 배터리 모듈
KR20190126608A (ko) * 2018-05-02 2019-11-12 에스케이이노베이션 주식회사 배터리 모듈
KR20210011641A (ko) * 2019-07-23 2021-02-02 에스케이이노베이션 주식회사 배터리 모듈 및 이를 포함하는 배터리 팩
KR20210019891A (ko) * 2019-08-13 2021-02-23 에스케이이노베이션 주식회사 배터리 모듈

Also Published As

Publication number Publication date
JP2024508121A (ja) 2024-02-22
EP4287389A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2019139385A1 (ko) 가스 배출 구조가 형성된 배터리 모듈
WO2020096221A1 (ko) 탑재 구조물을 포함하는 배터리 팩
WO2019098588A1 (ko) 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
WO2018194296A1 (ko) 배터리 모듈
WO2018230857A1 (ko) 배터리 모듈
WO2019059538A1 (ko) 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩
WO2016182170A1 (ko) 배터리 모듈
WO2013042948A2 (ko) 다공성 구조의 전극조립체 및 이를 포함하는 이차전지
WO2013180541A1 (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
WO2021141345A1 (ko) 안전성이 향상된 배터리 팩
WO2019045447A1 (ko) 이차전지 및 그 제조방법과, 이차전지 제조용 가압블록
WO2023033553A1 (ko) 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2023121416A1 (ko) 안전성이 강화된 배터리 모듈
WO2022191683A1 (ko) 버스바 어셈블리, 이러한 버스바 어셈블리를 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2022220654A1 (ko) 이차전지
WO2020262806A1 (ko) 커버 구조물을 포함하는 배터리 팩 및 전자 디바이스 및 자동차
WO2023121102A1 (ko) 안전성이 강화된 배터리 어셈블리
WO2023014125A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2018080183A1 (ko) 전지시스템 및 이를 포함하는 전기자동차
WO2023171866A1 (ko) 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2023121415A1 (ko) 안전성이 강화된 배터리 모듈
WO2022235096A1 (ko) 버스바 어셈블리, 이를 포함하는 배터리 팩 및 자동차
WO2022186663A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2019132155A1 (ko) 전지 모듈
WO2023191467A1 (ko) 안전성이 강화된 배터리 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014324.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023550101

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022912049

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022912049

Country of ref document: EP

Effective date: 20230828

WWE Wipo information: entry into national phase

Ref document number: 18285436

Country of ref document: US