WO2023121281A1 - Method for manufacturing aluminum sputtering target - Google Patents

Method for manufacturing aluminum sputtering target Download PDF

Info

Publication number
WO2023121281A1
WO2023121281A1 PCT/KR2022/020935 KR2022020935W WO2023121281A1 WO 2023121281 A1 WO2023121281 A1 WO 2023121281A1 KR 2022020935 W KR2022020935 W KR 2022020935W WO 2023121281 A1 WO2023121281 A1 WO 2023121281A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
sputtering target
present
manufacturing
aluminum sputtering
Prior art date
Application number
PCT/KR2022/020935
Other languages
French (fr)
Korean (ko)
Inventor
이진규
김선기
박성민
Original Assignee
주식회사 나이스엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나이스엘엠에스 filed Critical 주식회사 나이스엘엠에스
Publication of WO2023121281A1 publication Critical patent/WO2023121281A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a method for manufacturing an aluminum sputtering target, and more particularly, to a method for manufacturing a flat aluminum sputtering target using a high-purity aluminum extruded material.
  • Aluminum (Al) is a group 13 metal element with a melting point of 660.4°C and a density of 2.70 g/cm 3 .
  • Aluminum is silver-white, light, and has high processability and relatively low resistivity, so it is used as a material for sputtering targets that form wires in semiconductor/display devices.
  • a sputtering target for wiring is thinned through a sputtering process and then etched to form wiring.
  • This metal wiring is a key material that determines the yield and reliability of devices as a passage for transmitting electrical signals inside a device formed in an ultra-fine pattern.
  • aluminum sputtering targets for wiring require high density, homogeneous structure and composition, crystal grain refinement, and high purity, and are important factors that influence the performance of thin films.
  • Aluminum sputtering targets can be largely classified into melting/casting methods and powder metallurgy methods according to manufacturing methods. Among them, the melting/casting method is the most common method for manufacturing a metal target. However, there is a limit to high performance due to limitations in grain control and high density. In addition, many alloy targets have recently been developed for high functionality of target materials, but the melting/casting method has limitations in microstructure control, making it difficult to manufacture targets having uniform physical properties.
  • the powder metallurgy method has the advantage of being able to manufacture high-performance and high-functionality targets with a large range of design freedom in composition and ratio.
  • the price of the target increases due to process costs such as powder manufacturing and sintering.
  • the present invention was devised to solve the above requirements, and the purpose is to provide a method for manufacturing a high-purity aluminum sputtering target having a high density and homogeneous structure by using an optimal extrusion process and a rolling process after casting. .
  • these tasks are illustrative, and the scope of the present invention is not limited thereby.
  • a method for manufacturing an aluminum sputtering target includes forming an aluminum billet by casting an aluminum raw material; extruding the aluminum billet; and rolling the extruded aluminum plate.
  • the purity of the aluminum raw material may include 3N to 7N.
  • the rolling may include cold rolling.
  • FIG. 1 is a microstructure photograph after extrusion of an aluminum sputtering target sample according to an experimental example of the present invention.
  • Figure 2 is a graph measuring the hardness of the aluminum sputtering target sample according to the experimental example of the present invention.
  • FIG. 3 is a photograph of a backscattered electron diffraction pattern analyzer (EBSD) analyzing the microstructure after extrusion of an aluminum sputtering target sample according to an experimental example of the present invention.
  • EBSD backscattered electron diffraction pattern analyzer
  • KAM kernel mean direction mismatch confidence index correlation
  • EBSD backscattered electron diffraction pattern analyzer
  • a method of manufacturing a high-purity aluminum sputtering target according to an embodiment of the present invention may include forming an aluminum billet by casting an aluminum raw material, extruding the aluminum billet, and rolling the extruded aluminum plate material.
  • the purity of the aluminum raw material may include 3N to 7N.
  • the size of the aluminum billet may have various shapes as needed.
  • the extrusion ratio during hot extrusion can also be controlled in various ways.
  • the extrusion ratio is 6.4:1, and each thickness can be controlled to 25 mm.
  • a high-purity aluminum sputtering target having a thickness of 20 mm or less may be manufactured by performing cold rolling.
  • An aluminum billet having a diameter of 7 inches and a length of 800 mm was manufactured by casting 4N (99.99%) aluminum (Al) raw material. Thereafter, the billet was hot-extruded at an extrusion ratio of 6.4:1, and high-purity aluminum target samples having a thickness of 20 mm, 15 mm, 10 mm, 5 mm, and 2 mm were prepared, respectively.
  • the microstructure, microhardness, and resistivity of the samples thus prepared were measured using a scanning electron microscope (SEM), a backscattered electron diffraction pattern analyzer (EBSD), and an X-axis diffractometer, respectively.
  • SEM scanning electron microscope
  • EBSD backscattered electron diffraction pattern analyzer
  • X-axis diffractometer X-axis diffractometer
  • FIG. 1 is a microstructure photograph after extrusion of an aluminum sputtering target sample according to an experimental example of the present invention
  • Figure 2 is a graph measuring the hardness of an aluminum sputtering target sample according to an experimental example of the present invention
  • Figure 3 is a graph of the present invention It is a photograph of a backscattered electron diffraction pattern analyzer (EBSD) analyzing the microstructure after extrusion of the aluminum sputtering target sample according to the experimental example.
  • EBSD backscattered electron diffraction pattern analyzer
  • KAM kernel mean direction mismatch confidence index correlation
  • EBSD backscattered electron diffraction pattern analyzer
  • KAM kernel mean direction misalignment confidence index correlation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a method for manufacturing an aluminum sputtering target, and the method may comprise the steps of: casting an aluminum raw material to form an aluminum billet; extruding the aluminum billet into an aluminum sheet; and rolling the extruded aluminum sheet, wherein the purity of the aluminum raw material may range from 3N to 7N.

Description

알루미늄 스퍼터링 타겟 제조 방법Method of manufacturing an aluminum sputtering target
본 발명은 알루미늄 스퍼터링 타겟 제조 방법에 관한 것으로서, 더 상세하게는 고순도 알루미늄 압출 소재를 적용한 평판형 알루미늄 스퍼터링 타겟 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing an aluminum sputtering target, and more particularly, to a method for manufacturing a flat aluminum sputtering target using a high-purity aluminum extruded material.
알루미늄(Al)은 융점이 660.4℃, 밀도 2.70g/cm3인 13족 금속원소이다. 알루미늄은 은백색의 가볍고 높은 가공성과 비교적 낮은 비저항을 갖고 있어 반도체/디스플레이 소자의 배선을 형성하는 스퍼터링 타겟용 소재로서 사용되고 있다. Aluminum (Al) is a group 13 metal element with a melting point of 660.4°C and a density of 2.70 g/cm 3 . Aluminum is silver-white, light, and has high processability and relatively low resistivity, so it is used as a material for sputtering targets that form wires in semiconductor/display devices.
배선용 스퍼터링 타겟은 스퍼터링 공정을 통해 박막화시킨 후 식각을 통해 배선을 형성하며, 이러한 금속 배선은 극미세 패턴으로 형성된 소자 내부에서 전기적 신호를 전달하는 통로로써 디바이스의 수율 및 신뢰성을 좌우하는 핵심 소재이다. 이와 같이 배선용 알루미늄 스퍼터링 타겟은 고밀도, 균질한 조직 및 조성, 결정립 미세화, 고순도 등이 요구되고 있으며, 박막의 성능을 좌우하는 중요한 요소이다.A sputtering target for wiring is thinned through a sputtering process and then etched to form wiring. This metal wiring is a key material that determines the yield and reliability of devices as a passage for transmitting electrical signals inside a device formed in an ultra-fine pattern. As described above, aluminum sputtering targets for wiring require high density, homogeneous structure and composition, crystal grain refinement, and high purity, and are important factors that influence the performance of thin films.
알루미늄 스퍼터링 타겟은 제조방법에 따라 크게 용해/주조법과 분말야금법으로 구분이 가능하다. 그 중 용해/주조법은 금속타겟을 제조하기 위한 가장 일반적인 방법이다. 하지만, 결정립 제어 및 고밀도화에 한계를 갖고 있어 고성능화하기에는 한계가 있다. 또, 최근 타겟재의 고기능화를 위해 많은 합금 타겟이 개발되고 있으나, 용해/주조법은 미세조직 제어의 한계가 있어 균일한 물성을 갖는 타겟 제조가 어렵다.Aluminum sputtering targets can be largely classified into melting/casting methods and powder metallurgy methods according to manufacturing methods. Among them, the melting/casting method is the most common method for manufacturing a metal target. However, there is a limit to high performance due to limitations in grain control and high density. In addition, many alloy targets have recently been developed for high functionality of target materials, but the melting/casting method has limitations in microstructure control, making it difficult to manufacture targets having uniform physical properties.
반면, 분말야금법을 이용할 경우, 균질한 상 분포와 미세한 결정립 제어, 고순도화나 고융점 소재 제조가 용이하다. 또, 분말야금법은 조성 및 성분비의 설계 자유도 범위가 커서 고성능, 고기능성 타겟을 제조할 수 있는 장점이 있다. 그러나 분말제조, 소결 등의 공정비용으로 타겟의 가격이 높아지는 단점이 있다. On the other hand, when powder metallurgy is used, homogeneous phase distribution, fine crystal grain control, and high purity or high melting point material manufacturing are easy. In addition, the powder metallurgy method has the advantage of being able to manufacture high-performance and high-functionality targets with a large range of design freedom in composition and ratio. However, there is a disadvantage in that the price of the target increases due to process costs such as powder manufacturing and sintering.
상기와 같은 방법들이 알려져 있으나, 국내에서는 고순도의 알루미늄 스퍼터링 타겟을 제조하기 위한 설비가 갖추어지지 않아 제조가 어렵고, 제조하더라도 랩 스케일 수준에서 사용 가능한 크기만 제조가 가능했다. Although the above methods are known, manufacturing is difficult because facilities for manufacturing high-purity aluminum sputtering targets are not equipped in Korea, and even if manufactured, only sizes usable at the lab scale level can be manufactured.
본 발명은 상기와 같은 요구사항을 해결하기 위하여 고안된 것으로서, 주조 후 최적의 압출공정 및 압연공정을 이용하여 고밀도 및 균질한 조직을 갖는 고순도의 알루미늄 스퍼터링 타겟을 제조하는 방법을 제공하는데 그 목적이 있다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention was devised to solve the above requirements, and the purpose is to provide a method for manufacturing a high-purity aluminum sputtering target having a high density and homogeneous structure by using an optimal extrusion process and a rolling process after casting. . However, these tasks are illustrative, and the scope of the present invention is not limited thereby.
본 발명의 일 실시예에 따르면, 알루미늄 스퍼터링 타겟 제조 방법을 제공한다. 상기 알루미늄 스퍼터링 타겟 제조 방법은 알루미늄 원재료를 주조하여 알루미늄 빌렛을 형성하는 단계; 상기 알루미늄 빌렛을 압출하는 단계; 및 압출된 알루미늄 판재를 압연하는 단계;를 포함할 수 있다.According to one embodiment of the present invention, a method for manufacturing an aluminum sputtering target is provided. The aluminum sputtering target manufacturing method includes forming an aluminum billet by casting an aluminum raw material; extruding the aluminum billet; and rolling the extruded aluminum plate.
상기 알루미늄 스퍼터링 타겟 제조 방법에 있어서, 상기 알루미늄 원재료의 순도는 3N 내지 7N을 포함할 수 있다.In the aluminum sputtering target manufacturing method, the purity of the aluminum raw material may include 3N to 7N.
상기 알루미늄 스퍼터링 타겟 제조 방법에 있어서, 상기 압연하는 단계는 냉간 압연하는 단계를 포함할 수 있다.In the aluminum sputtering target manufacturing method, the rolling may include cold rolling.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 고밀도 및 균질한 조직을 갖는 고순도의 알루미늄 스퍼터링 타겟을 제조하는 방법을 이용하여 제조된 고순도 알루미늄 스퍼터링 타겟을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention made as described above, it is possible to implement a high-purity aluminum sputtering target manufactured using a method for manufacturing a high-purity aluminum sputtering target having a high-density and homogeneous structure. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 압출 후 미세조직 사진이다.1 is a microstructure photograph after extrusion of an aluminum sputtering target sample according to an experimental example of the present invention.
도 2는 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 경도를 측정한 그래프이다.Figure 2 is a graph measuring the hardness of the aluminum sputtering target sample according to the experimental example of the present invention.
도 3은 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 압출 후 미세조직을 후방산란전자 회절패턴 분석기(EBSD)로 분석한 사진이다.3 is a photograph of a backscattered electron diffraction pattern analyzer (EBSD) analyzing the microstructure after extrusion of an aluminum sputtering target sample according to an experimental example of the present invention.
도 4 및 도 5는 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 극점도(pole figure) 및 결정질의 방위분포 함수(ODF)를 분석한 결과이다.4 and 5 are results of analyzing pole figures and crystalline orientation distribution functions (ODF) of aluminum sputtering target samples according to experimental examples of the present invention.
도 6 및 도 7은 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 압출 후 미세조직을 후방산란전자 회절패턴 분석기(EBSD)의 커널 평균방향 불일치 신뢰지수 상관관계(KAM)를 분석한 결과이다.6 and 7 are the results of analyzing the kernel mean direction mismatch confidence index correlation (KAM) of the backscattered electron diffraction pattern analyzer (EBSD) of the microstructure after extrusion of the aluminum sputtering target sample according to the experimental example of the present invention.
도 8 및 도 9는 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 X선 회절 분석 결과이다.8 and 9 are X-ray diffraction analysis results of aluminum sputtering target samples according to experimental examples of the present invention.
도 10은 본 발명의 비교예 2 및 실험예 6 샘플의 비저항값을 측정하여 비교한 그래프이다.10 is a graph comparing the measured resistivity values of samples of Comparative Example 2 and Experimental Example 6 of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, several preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified in many different forms, and the scope of the present invention is as follows It is not limited to the examples. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art. Hereinafter, embodiments of the present invention will be described with reference to drawings schematically showing ideal embodiments of the present invention.
본 발명의 일 실시예에 따른 고순도 알루미늄 스퍼터링 타겟의 제조방법은 알루미늄 원재료를 주조하여 알루미늄 빌렛을 형성하는 단계, 상기 알루미늄 빌렛을 압출하는 단계 및 압출된 알루미늄 판재를 압연하는 단계를 포함할 수 있다.A method of manufacturing a high-purity aluminum sputtering target according to an embodiment of the present invention may include forming an aluminum billet by casting an aluminum raw material, extruding the aluminum billet, and rolling the extruded aluminum plate material.
상기 알루미늄 원재료의 순도는 3N 내지 7N을 포함할 수 있다. 상기 알루미늄 빌렛의 크기는 필요에 따라 다양한 형태의 크기를 가질 수 있다. The purity of the aluminum raw material may include 3N to 7N. The size of the aluminum billet may have various shapes as needed.
여기서, 열간 압출시 압출비도 다양하게 제어 가능하다. 일 예로, 압출비는 6.4:1이며, 각각의 두께는 25mm로 제어할 수 있다. 이후에 냉간압연을 수행하여 두께 20mm 이하의 고순도 알루미늄 스퍼터링 타겟을 제조할 수 있다.Here, the extrusion ratio during hot extrusion can also be controlled in various ways. For example, the extrusion ratio is 6.4:1, and each thickness can be controlled to 25 mm. Thereafter, a high-purity aluminum sputtering target having a thickness of 20 mm or less may be manufactured by performing cold rolling.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention and cannot be construed as limiting the present invention by this in any sense.
4N(99.99%) 알루미늄(Al) 원재료를 주조하여 직경 7inch 800mm의 길이의 알루미늄 빌렛(billet)을 제조하였다. 이후 상기 빌렛을 압출비 6.4:1로 열간압출하고, 두께 20mm, 15mm, 10mm, 5mm, 2mm의 고순도 알루미늄 타겟 샘플을 각각 제조하였다. 이렇게 제조된 샘플들의 미세조직, 미소경도, 비저항 등을 주사전자현미경(SEM), 후방산란전자 회절패턴 분석기(EBSD), X설 회절분석기를 이용하여 각각 측정하였다. An aluminum billet having a diameter of 7 inches and a length of 800 mm was manufactured by casting 4N (99.99%) aluminum (Al) raw material. Thereafter, the billet was hot-extruded at an extrusion ratio of 6.4:1, and high-purity aluminum target samples having a thickness of 20 mm, 15 mm, 10 mm, 5 mm, and 2 mm were prepared, respectively. The microstructure, microhardness, and resistivity of the samples thus prepared were measured using a scanning electron microscope (SEM), a backscattered electron diffraction pattern analyzer (EBSD), and an X-axis diffractometer, respectively.
도 1은 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 압출 후 미세조직 사진이고, 도 2는 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 경도를 측정한 그래프이며, 도 3은 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 압출 후 미세조직을 후방산란전자 회절패턴 분석기(EBSD)로 분석한 사진이다.1 is a microstructure photograph after extrusion of an aluminum sputtering target sample according to an experimental example of the present invention, Figure 2 is a graph measuring the hardness of an aluminum sputtering target sample according to an experimental example of the present invention, Figure 3 is a graph of the present invention It is a photograph of a backscattered electron diffraction pattern analyzer (EBSD) analyzing the microstructure after extrusion of the aluminum sputtering target sample according to the experimental example.
도 1 내지 도 4를 참조하면, 냉간압연 이후에 모든 샘플의 미세조직이 더 미세화된 것으로 나타났다. Referring to FIGS. 1 to 4 , it was found that the microstructures of all samples were further refined after cold rolling.
도 4 및 도 5는 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 극점도(pole figure) 및 결정질의 방위분포 함수(ODF)를 분석한 결과이다.4 and 5 are results of analyzing pole figures and crystalline orientation distribution functions (ODF) of aluminum sputtering target samples according to experimental examples of the present invention.
도 4 및 도 5를 참조하면, 압연이 진행됨에 따라 큐브 집합조직이 계속적으로 발달하며, 결정 성장 방향은 [001], [110] 방향으로 진행되는 것을 확인할 수 있었다.Referring to FIGS. 4 and 5, it was confirmed that the cube texture continued to develop as rolling progressed, and the crystal growth direction progressed in the [001] and [110] directions.
도 6 및 도 7은 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 압출 후 미세조직을 후방산란전자 회절패턴 분석기(EBSD)의 커널 평균방향 불일치 신뢰지수 상관관계(KAM)를 분석한 결과이다.6 and 7 are the results of analyzing the kernel mean direction mismatch confidence index correlation (KAM) of the backscattered electron diffraction pattern analyzer (EBSD) of the microstructure after extrusion of the aluminum sputtering target sample according to the experimental example of the present invention.
도 6 및 도 7을 참조하면, 각 샘플들의 커널 평균방향 불일치 신뢰지수 상관관계(KAM) 확인결과, 압연이 진행됨에 따라 불일치 정렬(misorientation) 분율이 증가하는 것을 확인할 수 있었다.Referring to FIGS. 6 and 7 , as a result of checking the kernel mean direction misalignment confidence index correlation (KAM) of each sample, it was confirmed that the misorientation fraction increased as rolling progressed.
도 8 및 도 9는 본 발명의 실험예에 따른 알루미늄 스퍼터링 타겟 샘플의 X선 회절 분석 결과이다.8 and 9 are X-ray diffraction analysis results of aluminum sputtering target samples according to experimental examples of the present invention.
도 8 및 도 9를 참조하면, 각 샘플들에 대한 XRD 확인결과, 실험예 2 및 실험예 3 샘플에서 (200), (220), (400), (420)면에 대한 피크(peak)가 확인되었다. 또, 각 피크에 대한 강도(intensity)를 확인한 결과, (220)피크가 가장 높은 강도를 나타내었다. 또한, 압하율이 증가하면서 (200)피크가 증가하는 것을 확인할 수 있었다. 스퍼터링 타겟의 효율을 높이기 위해서는 (200)피크와 (220)피크 분율이 높은 것이 적절하므로 고순도의 알루미늄 타겟이 적절하게 제조된 것을 확인할 수 있었다. Referring to FIGS. 8 and 9, as a result of XRD confirmation of each sample, the peaks on the (200), (220), (400), and (420) planes in Experimental Example 2 and Experimental Example 3 samples Confirmed. In addition, as a result of confirming the intensity of each peak, the (220) peak showed the highest intensity. In addition, it was confirmed that the (200) peak increased as the reduction ratio increased. In order to increase the efficiency of the sputtering target, it was confirmed that the high-purity aluminum target was properly manufactured because it was appropriate to have a high (200) peak and (220) peak fraction.
도 10은 본 발명의 비교예 2 및 실험예 6 샘플의 비저항값을 측정하여 비교한 그래프이다.10 is a graph comparing the measured resistivity values of samples of Comparative Example 2 and Experimental Example 6 of the present invention.
도 10의 (a) 및 (b)를 참조하면, 본 발명의 실시예를 통해 제조된 4N급 알루미늄 평판 스퍼터 타겟(실험예 6 샘플)의 스퍼터 특성 평가 결과, 종래기술을 이용한 상용 타겟(비교예 2 샘플) 대비 비저항의 값이 전체적으로 동등하거나 그 이상의 특성을 갖는 것을 확인할 수 있었다.Referring to (a) and (b) of FIG. 10, as a result of evaluating the sputter characteristics of a 4N-class aluminum flat sputter target (sample of Experimental Example 6) manufactured through an embodiment of the present invention, a commercial target using the prior art (comparative example) 2 sample), it was confirmed that the value of the specific resistance was equal to or better than the overall value.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (3)

  1. 알루미늄 원재료를 주조하여 알루미늄 빌렛을 형성하는 단계;casting an aluminum raw material to form an aluminum billet;
    상기 알루미늄 빌렛을 압출하는 단계; 및extruding the aluminum billet; and
    압출된 알루미늄 판재를 압연하는 단계;를 포함하는,Including; rolling an extruded aluminum plate;
    알루미늄 스퍼터링 타겟 제조 방법.A method for manufacturing an aluminum sputtering target.
  2. 제 1 항에 있어서, According to claim 1,
    상기 알루미늄 원재료의 순도는 3N 내지 7N을 포함하는,The purity of the aluminum raw material includes 3N to 7N,
    알루미늄 스퍼터링 타겟 제조 방법.A method for manufacturing an aluminum sputtering target.
  3. 제 1 항에 있어서, According to claim 1,
    상기 압연하는 단계는 냉간 압연하는 단계를 포함하는,The rolling step includes cold rolling,
    알루미늄 스퍼터링 타겟 제조 방법.A method for manufacturing an aluminum sputtering target.
PCT/KR2022/020935 2021-12-22 2022-12-21 Method for manufacturing aluminum sputtering target WO2023121281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0185331 2021-12-22
KR1020210185331A KR20230095655A (en) 2021-12-22 2021-12-22 manufacturing method of Al sputtering target

Publications (1)

Publication Number Publication Date
WO2023121281A1 true WO2023121281A1 (en) 2023-06-29

Family

ID=86903403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020935 WO2023121281A1 (en) 2021-12-22 2022-12-21 Method for manufacturing aluminum sputtering target

Country Status (2)

Country Link
KR (1) KR20230095655A (en)
WO (1) WO2023121281A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335826A (en) * 1998-05-27 1999-12-07 Ryoka Matthey Kk Production of sputtering target material made of al alloy
US20010047838A1 (en) * 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
JP2005509741A (en) * 2001-11-13 2005-04-14 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド High purity aluminum sputtering target
JP2007063621A (en) * 2005-08-31 2007-03-15 Showa Denko Kk Sputtering target material, method for producing aluminum material for sputtering target material, and aluminum material for sputtering target material
KR20080100445A (en) * 2006-03-06 2008-11-18 토소우 에스엠디, 인크 Sputtering target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335826A (en) * 1998-05-27 1999-12-07 Ryoka Matthey Kk Production of sputtering target material made of al alloy
US20010047838A1 (en) * 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
JP2005509741A (en) * 2001-11-13 2005-04-14 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド High purity aluminum sputtering target
JP2007063621A (en) * 2005-08-31 2007-03-15 Showa Denko Kk Sputtering target material, method for producing aluminum material for sputtering target material, and aluminum material for sputtering target material
KR20080100445A (en) * 2006-03-06 2008-11-18 토소우 에스엠디, 인크 Sputtering target

Also Published As

Publication number Publication date
KR20230095655A (en) 2023-06-29

Similar Documents

Publication Publication Date Title
Liu et al. Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg–Zn–Zr–Ce alloys
KR101615830B1 (en) Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
WO2017209419A1 (en) High-entropy alloy
Egusa et al. Micro-kinking of the long-period stacking/order (LPSO) phase in a hot-extruded Mg97Zn1Y2 alloy
US11505857B2 (en) High strength/highly conductive copper alloy plate material and manufacturing method therefor
KR101590242B1 (en) Cu-Ni-Si ALLOY WIRE HAVING EXCELLENT BENDABILITY
EP3279346B1 (en) Use of a rectangular rolled copper foil
WO2008089188A1 (en) High density refractory metals & alloys sputtering targets
CN114855026B (en) High-performance precipitation strengthening type copper alloy and preparation method thereof
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
WO2023121281A1 (en) Method for manufacturing aluminum sputtering target
TW201736615A (en) Copper foil for electronic material having suitable 0.2% yielding strength and conductivity and capable of enhancing dimensional stability during stamping processing
Vinogradov et al. Acoustic emission during cyclic deformation of ultrafine-grain copper processed by severe plastic deformation
WO2023121280A1 (en) Method for manufacturing aluminum sputtering target
JP2010202946A (en) Copper alloy material and method for producing copper alloy material
Vandenberg et al. An in situ X-ray study of phase formation in Cu Al thin film couples
CN103343304A (en) Deformation heat-treatment method for improving tensile properties of 6000-series aluminum alloy thin plate
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
CN112251692B (en) High-purity tantalum plate and heat treatment method thereof
CN116497330B (en) High-strength and high-toughness titanium alloy and magnetron sputtering-based titanium alloy component screening method
JP5995421B2 (en) Copper alloy strip and method for producing the same
Mega et al. Auger Electron Spectroscopy of Boron Nitride in Hot‐rolled Graphitized Steel Sheet
Lee et al. Improved mechanical properties of sputtered and evaporated Zn films deposited on a flexible substrate with an adhesive layer of amorphous ZrCu film
Al-Araji et al. The Role of Cold Drawing on Electrical and Mechanical Properties of Copper Cables
Sun et al. Effect of Annealing Treatment on the Properties of Cold Rolled Copper Foil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE