WO2017209419A1 - High-entropy alloy - Google Patents

High-entropy alloy Download PDF

Info

Publication number
WO2017209419A1
WO2017209419A1 PCT/KR2017/005179 KR2017005179W WO2017209419A1 WO 2017209419 A1 WO2017209419 A1 WO 2017209419A1 KR 2017005179 W KR2017005179 W KR 2017005179W WO 2017209419 A1 WO2017209419 A1 WO 2017209419A1
Authority
WO
WIPO (PCT)
Prior art keywords
high entropy
entropy alloy
alloy
solid solution
content
Prior art date
Application number
PCT/KR2017/005179
Other languages
French (fr)
Korean (ko)
Inventor
나영상
임가람
이광석
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2017209419A1 publication Critical patent/WO2017209419A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/18Heating by arc discharge

Definitions

  • the present invention relates to a high entropy alloy.
  • the high entropy alloy which is recently attracting attention, is an alloy system in which several metal elements are composed of similar fractions, and all added elements serve as main elements, and high mixing is caused by similar atomic fractions in the alloy. Entropy is induced to form a solid solution of simple structure stable at high temperature instead of intermetallic or intermediate compound.
  • the solid solution has a complex internal stress due to the large radius difference between the members, which causes severe lattice deformation.
  • a plurality of alloying elements all act as solute atoms, they have very slow diffusion rates, thereby maintaining mechanical properties at high temperatures.
  • high-entropy alloys which are easily produced from intermetallic compounds in general multicomponent alloys
  • high-entropy alloys exhibit high strength through solid solution strengthening by forming a solid solution due to high mixed entropy. Indicates.
  • the present invention seeks to provide a novel high entropy alloy.
  • a high entropy alloy includes a body-centered cubic crystal structure, the body-centered cubic crystal structure is Al element; Ti element; And at least one element selected from Cr, Mo, V, Hf, Zr, and Nb as main elements, wherein the difference in content between the main elements is 10 at% or less, and the content of irregular solid solution of the high entropy alloy is 50 It provides a high entropy alloy that is at least%.
  • the high entropy alloy according to one embodiment of the present invention has superior hardness as compared to conventional alloys.
  • the article manufactured using the same may have excellent durability.
  • the high entropy alloy according to another embodiment of the present invention has excellent thermal stability, deformation due to heat can be minimized and excellent high temperature mechanical strength can be obtained.
  • Figure 1 shows the XRD analysis of the high entropy alloy according to Example 1, Example 4 and Example 7.
  • Figure 2 shows the XRD analysis of the high entropy alloy according to Example 2, Example 5 and Example 6.
  • Example 3 is an image of the microstructure analysis of the molten AlMoTiV quaternary high entropy alloy according to Example 6 and then through a transmission electron microscope (TEM).
  • FIG. 4 is an image obtained by melting a five-element high entropy alloy of AlCrMoTiV according to Example 7 and analyzing the microstructure through a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • One embodiment of the present invention is a high entropy alloy
  • the high entropy alloy includes a body centered cubic crystal structure
  • the body centered cubic crystal structure is an Al element; Ti element; And one or more elements selected from Cr, Mo, V, Hf, Zr, and Nb as main elements,
  • the content difference between the main elements is less than 10 at%
  • the content of the irregular solid solution of the high entropy alloy provides a high entropy alloy of 50% or more.
  • the high entropy alloy according to the present invention may be characterized by a mixed entropy of 1 R or more.
  • the mixed entropy when the high entropy alloy is a ternary alloy composed of three main elements, the mixed entropy may be 1 R or more.
  • the mixed entropy when the high entropy alloy is a quaternary alloy composed of four main elements, the mixed entropy may be 1.3 R or more.
  • the high entropy alloy is a five-membered alloy composed of five main elements, the mixed entropy may be 1.6 R or more.
  • traditional alloys have very low mixed entropy values, for example, the mixed entropy of traditional alloys Ti-6Al-4V is only 0.48 R.
  • the high entropy alloy according to the present invention has a content difference of less than or equal to 10 at%, specifically 5 at% It is characterized by the following. As such, the high-entropy alloys having the same content of the main elements have different physical properties from those of the conventional alloys.
  • the content of each main element may be 15 at% or more and 35 at% or less with respect to the high entropy alloy.
  • the high entropy alloy according to the present invention comprises a body centered cubic crystal structure.
  • the high entropy alloy may be made of a body-centered cubic crystal structure.
  • the main element may form the body-centered cubic crystal structure.
  • the high entropy alloy includes at least 50% of an irregular solid solution, and specifically, the content of the irregular solid solution in the high entropy alloy may be greater than 50%.
  • the body centered cubic crystal constituting the high entropy alloy may exist in the form of a regular solid solution and an irregular solid solution, and the irregular solid solution may form a single phase solid solution.
  • the higher the content of the irregular solid solution the better the properties as a high entropy alloy, according to the high entropy alloy according to the present invention, since the content of the irregular solid solution is 50% or more can be better implemented the properties of the high entropy alloy Can be.
  • the body-centered cubic crystal structure of the high entropy alloy according to the present invention can form a single-phase solid solution according to the combination of the main elements, even if it is not electrified employment between the main elements.
  • the content of the irregular solid solution of the high entropy alloy according to the present invention may be 70% or more or 80% or more.
  • the content of the irregular solid solution of the high entropy alloy may be 90% or more or 95% or more, and more specifically, the content of the irregular solid solution of the high entropy alloy may be 100%.
  • the content of the irregular solid solution is measured by X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • the peaks of the regular solid solution and the irregular solid solution appear, and the sum of the peak values minus the peak value of the regular solid solution may be the content of the irregular solid solution.
  • the content of the irregular solid solution of the high entropy alloy may be 50% or more or 80% or more, and more specifically, the content of the irregular solid solution of the high entropy alloy is 90 Or at least 95% or at least 100%.
  • the content of the irregular solid solution may be measured through microstructure analysis through a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the regular solid solution can be observed in a brighter shape than the irregular solid solution in the image through the transmission electron microscope.
  • the content of the regular solid solution When the content of the regular solid solution is very small in the image through the transmission electron microscope, it can be observed brightly in a shape such as a solid line or a scratch, and when the content of the regular solid solution is gradually increased, the bright solid is observed in a larger area such as a plate or a circle. Can be.
  • the regular solid solution when analyzing the microstructure of the surface of the high entropy alloy with a transmission electron microscope, the regular solid solution may be observed brightly in a shape such as a solid line or a scratch.
  • the content of the irregular solid solution can be measured through the ratio of the area excluding the area of the regular solid solution in the image sampled through the transmission electron microscope.
  • the content of the irregular solid solution of the high entropy alloy may be 50% or more or 80% or more, and more specifically, the content of the irregular solid solution of the high entropy alloy is 90% or more. Or 95% or more.
  • the high entropy alloy according to the present invention has a high content of stabilized irregular solid solution crystals, it may have an excellent high entropy effect.
  • the high entropy alloy according to the present invention has a high content of irregular solid solution crystals, lattice distortion may be maximized to have high hardness.
  • the high entropy alloy according to the present invention has a high content of irregular solid solution crystals, it is difficult to diffuse internal atoms, thereby providing excellent stability at high temperatures.
  • the body-centered cubic crystal structure is Al element; Ti element; And two or three elements selected from Cr, Mo, V, Hf, Zr, and Nb as main elements.
  • the body-centered cubic crystal structure essentially includes Al and Ti as main elements, and two or three elements selected from the group consisting of Cr, Mo, V, Hf, Zr, and Nb as main elements. It may include.
  • the high entropy alloy is Al, Ti and Cr; Al, Ti, and Mo; Or a ternary alloy having Al, Ti and V as main elements.
  • the high entropy alloy is Al, Ti, Cr and Mo; Al, Ti, Cr and V; Al, Ti, Mo and V; Al, Ti, Hf and Zr; Al, Ti, Hf and Nb; Al, Ti, Zr and Nb; Al, Ti, Mo and Nb; Al, Ti, Mo and V; Or a quaternary alloy having Al, Ti, Nb and V as main elements.
  • the high entropy alloy is Al, Ti, Cr, Mo and V; Al, Ti, Hf, Nb and Zr; Or a five-membered alloy having Al, Ti, Mo, Nb and V as main elements.
  • the three-, four- and five-membered high entropy alloys are based on the number of main elements forming the body-centered cubic crystal structure.
  • the high entropy alloy may include a non-metallic element as a sub-element.
  • the secondary element may be an impurity inevitably included in the manufacturing process of the high entropy alloy.
  • the sub-element may be artificially included in the high entropy alloy to improve the properties of the high entropy alloy.
  • the secondary element may exist as an invasive element in the lattice of the body centered cubic crystal structure of the high entropy alloy. Specifically, the secondary element does not exist as a substitutional element that affects the body centered cubic crystal structure of the high entropy alloy.
  • the nonmetallic element may include one or more selected from the group consisting of H, B, C, N, O, P, and S. Specifically, the nonmetallic element may include one or more selected from the group consisting of C, O, N, and B. Specifically, the nonmetallic elements included to improve the properties of the high entropy alloy may be C, O, N or B.
  • the minor element may be less than 5 at% based on the total high entropy alloy.
  • the sub-element may be 0.01 at% or more and less than 5 at% with respect to the entire high entropy alloy. More specifically, the sub-element may be 0.01 at% or more and 3 at% or less, or 0.01 at% or more and 1 at% or less with respect to the entire high entropy alloy.
  • the content of the secondary element When the content of the secondary element is in the above range, it may be included as impurities to the extent that does not affect the crystal structure of the high entropy alloy. In addition, when the content of the secondary element is in the above range, it is possible to improve the physical properties of the high entropy alloy without inhibiting the basic physical properties of the high entropy alloy.
  • the content difference between the main elements may be 5 at% or less. Specifically, the content difference between the main elements may be 2 at% or less. More specifically, the atomic content between one of the main elements and the other of the main elements may be 1: 1.
  • the high entropy alloy has almost no difference in atomic content of main elements, or has the same atomic content (at%) and forms a crystal structure, thereby showing stable physical properties and high hardness.
  • the high entropy alloy includes main elements of Al, Ti, Cr, and Mo; It is composed of Al, Ti, Cr, Mo and V, the single solid solution content of the high entropy alloy may be 100%.
  • the high entropy alloy is composed of main elements Al, Ti, and Cr; Or Al, Ti, and Mo; Al, Ti, Cr and V; It is composed of Al, Ti, Mo and V, the single-phase solid solution content of the high entropy alloy may be 95% or more.
  • Al of 99.99% purity, Cr of 99.99% purity, and Ti of 99.99% purity were prepared in the same molar number, and then melted and cooled by vacuum plasma arc melting to prepare a button-shaped master alloy 60 g.
  • the egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a ternary high entropy alloy of AlCrTi.
  • Al of 99.99% purity, V of 99.99% purity, and Ti of 99.99% purity were prepared in the same mole number, and then melted and cooled by vacuum plasma arc melting to prepare a button-shaped master alloy 60 g.
  • the egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a ternary high entropy alloy of AlVTi.
  • Al of 99.99% purity, Cr of 99.99% purity, Mo of 99.99% purity, and Ti of 99.99% purity were prepared in the same number of moles, and then melted and cooled by vacuum plasma arc melting. g was prepared. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a quaternary high entropy alloy of AlCrMoTi.
  • Al of 99.99% purity, Cr of 99.99% purity, Ti of 99.99% purity and V of 99.99% purity were prepared in the same number of moles, and then melted and cooled by vacuum plasma arc melting. g was prepared.
  • the eggs were divided into four, placed in an alumina crucible, melted by vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a quaternary high entropy alloy of AlCrTiV.
  • Al of 99.99% purity, Mo of 99.99% purity, Ti of 99.99% purity, and V of 99.99% purity were prepared in the same number of moles, and then melted and cooled by vacuum plasma arc melting. g was prepared.
  • the egg was divided into four, placed in an alumina crucible, melted through a vacuum induction melting method at a temperature of 1700 ° C., and poured into a mold to prepare a quaternary high entropy alloy of AlMoTiV.
  • Al of 99.99% purity, Cr of 99.99% purity, Mo of 99.99% purity, Ti of 99.99% purity and V of 99.99% purity were prepared in the same molar number, and then melted and cooled by vacuum plasma arc melting.
  • 60 g of a button-shaped master alloy was prepared. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a 5-membered high entropy alloy of AlCrMoTiV.
  • Figure 1 shows the XRD analysis of the high entropy alloy according to Example 1, Example 4 and Example 7. According to FIG. 1, it can be confirmed that the ternary high entropy alloy of AlCrTi according to Example 1 has very little regular solid solution and most of them are irregular solid solution. In addition, the quaternary high entropy alloy of AlCrMoTi according to Example 4 and the ternary high entropy alloy of AlCrMoTiV according to Example 7 can be confirmed that only irregular solid solutions are detected without regular solid solutions.
  • the x-axis denotes an angle between X-rays incident on the specimen and X-rays reflected from the specimen during XRD analysis.
  • the peaks are observed at specific locations to determine the crystal structure of the specimen.
  • Figure 2 shows the XRD analysis of the high entropy alloy according to Example 2, Example 5 and Example 6.
  • the ternary high entropy alloy of AlMoTi according to Example 2 the quaternary high entropy alloy of AlCrTiV according to Example 5 and the quaternary alloy of AlMoTiV according to Example 6 detect very little regular solid solution, It can be seen that most of them are irregular solid solutions.
  • FIG. 3 is an image of the microstructure analysis of the molten AlMoTiV quaternary high entropy alloy according to Example 6 and then through a transmission electron microscope (TEM). According to FIG. 3, it can be seen that the ternary high entropy alloy of AlMoTiV has only a small portion of a regular solid solution represented by a bright solid line in the form of a scratch, indicated by an arrow, and most of it is made of an irregular solid solution.
  • FIG. 4 is an image obtained by melting a five-element high entropy alloy of AlCrMoTiV according to Example 7 and analyzing the microstructure through a transmission electron microscope (TEM). According to FIG. 4, it can be seen that the ternary high entropy alloy of AlCrMoTiV has only a small portion of the rule solid solution represented by a bright solid line in the form of a scratch, which is indicated by an arrow, and is mostly composed of an irregular solid solution.
  • TEM transmission electron microscope
  • Vickers hardness was measured. Specifically, the Vickers hardness was measured by indenting the high entropy alloy according to Examples 1 to 7 using a diamond indenter having a 0.5 kg load and measuring the diagonal of the recess. The results obtained by measuring the Vickers hardness of 5 parts for each high entropy alloy and obtaining the average value are shown in Table 1 below.
  • Figure 5 is a graph showing the Vickers hardness of the high entropy alloy according to Examples 1 to 7. Specifically, Figure 5 is a graph of the data for Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention provides a novel high-entropy alloy and, specifically, provides a high-entropy alloy comprising a body-centric cubic crystal structure, wherein the body-centric cubic crystal structure comprises, as main elements, Al, Ti, and one or more elements selected from Cr, Mo, V, Hf, Zr and Nb, a difference in amount among the main elements is 10 at% or less, and the amount of an irregular solid solution of the high-entropy alloy is 50% or more.

Description

고엔트로피 합금High entropy alloy
본 명세서는 2016년 6월 1일에 한국특허청에 제출된 한국 특허 출원 제 10-2016-0067963호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.This specification claims the benefit of the application date of Korean Patent Application No. 10-2016-0067963 filed to the Korea Intellectual Property Office on June 1, 2016, the entire contents of which are included in the present invention.
본 발명은 고엔트로피 합금에 관한 것이다. The present invention relates to a high entropy alloy.
전통적인 합금 시스템은 주요한 구성 원소, 예를 들면 철, 구리, 알루미늄, 마그네슘, 티타늄, 지르코늄, 크롬, 납, 아연, 금, 은에 의해 분류되었다. 구체적으로, 전통적인 합금은 모두 단일 원소를 주요 합금 원소로 하고, 주요 합금 원소와 다른 종류의 원소는 부합금 원소로 된다. 최근, 급속 응고 합금, 기계 합금, 금속기 복합 재료가 발전하고 있지만, 그 합금 설계 및 합금 선택의 이념은 아직도 1종류의 원소를 주요한 것으로 하는 관념에서 벗어나지 않았다. Traditional alloy systems have been classified by major constituents such as iron, copper, aluminum, magnesium, titanium, zirconium, chromium, lead, zinc, gold and silver. Specifically, all of the conventional alloys use a single element as the main alloy element, and the main alloy element and other kinds of elements are alloy gold alloy elements. In recent years, rapid solidification alloys, mechanical alloys, and metal-based composite materials have been developed, but the idea of alloy design and alloy selection has not yet escaped from the idea of one type of element being the main.
이에 최근 주목받고 있는 고엔트로피 합금(high entropy alloy; HEA)은 여러 개의 금속 원소가 유사한 분율로 구성되어, 첨가된 모든 원소가 주 원소로서 작용하는 합금 시스템으로, 합금 내에 유사한 원자 분율로 인하여 높은 혼합 엔트로피가 유발되고 이에 금속간화합물 혹은 중간체화합물 대신에 고온에서 안정한 간단한 구조의 고용체를 형성한다. 이 고용체는 구성원소간의 큰 반지름 차이로 인해 복잡한 내부응력이 나타나고 이로 인하여 심한 격자 변형을 유발한다. 또한, 복수의 합금 원소가 용질 원자로서 모두 작용하므로 매우 느린 확산 속도를 가지며 이로 인해 고온에서의 기계적 특성이 유지된다.The high entropy alloy (HEA), which is recently attracting attention, is an alloy system in which several metal elements are composed of similar fractions, and all added elements serve as main elements, and high mixing is caused by similar atomic fractions in the alloy. Entropy is induced to form a solid solution of simple structure stable at high temperature instead of intermetallic or intermediate compound. The solid solution has a complex internal stress due to the large radius difference between the members, which causes severe lattice deformation. In addition, since a plurality of alloying elements all act as solute atoms, they have very slow diffusion rates, thereby maintaining mechanical properties at high temperatures.
이러한 고엔트로피 합금은 일반적인 다성분계 합금에서 금속간 화합물이 용이하게 생성되는 것과는 달리 높은 혼합 엔트로피로 인하여 다성분 원소가 단순한 고용체를 형성하여 고용 강화를 통해 우수한 강도를 나타내며, 고온 환경에서도 우수한 기계적 특성을 나타낸다.Unlike high-entropy alloys, which are easily produced from intermetallic compounds in general multicomponent alloys, high-entropy alloys exhibit high strength through solid solution strengthening by forming a solid solution due to high mixed entropy. Indicates.
그러나, 이러한 고엔트로피 합금은 제조가 까다롭고, 고엔트로피 합금의 제조가 가능한 원소의 조합을 찾아내는 것 또한 매우 어려운 실정이다. However, such high entropy alloys are difficult to manufacture, and it is also very difficult to find a combination of elements that can produce high entropy alloys.
[선행기술문헌][Preceding technical literature]
한국공개공보: KR 2013-0160454 AKorean Publication: KR 2013-0160454 A
본 발명은 신규한 고엔트로피 합금을 제공하고자 한다. The present invention seeks to provide a novel high entropy alloy.
본 발명의 일 실시상태는, 고엔트로피 합금으로서, 상기 고엔트로피 합금은 체심입방형 결정 구조를 포함하고, 상기 체심입방형 결정 구조는 Al 원소; Ti 원소; 및 Cr, Mo, V, Hf, Zr 및 Nb 중에서 선택되는 1종 이상의 원소를 주원소로 포함하며, 상기 주원소 간의 함량 차이는 10 at% 이하이고, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 50 % 이상인 것인 고엔트로피 합금을 제공한다. One embodiment of the present invention, a high entropy alloy, the high entropy alloy includes a body-centered cubic crystal structure, the body-centered cubic crystal structure is Al element; Ti element; And at least one element selected from Cr, Mo, V, Hf, Zr, and Nb as main elements, wherein the difference in content between the main elements is 10 at% or less, and the content of irregular solid solution of the high entropy alloy is 50 It provides a high entropy alloy that is at least%.
본 발명의 일 실시상태에 따른 고엔트로피 합금은 전통적인 합금에 비하여 우수한 경도를 가진다. The high entropy alloy according to one embodiment of the present invention has superior hardness as compared to conventional alloys.
본 발명의 다른 실시상태에 따른 고엔트로피 합금은 높은 내식성으로 인하여, 이를 이용하여 제조한 물건은 우수한 내구성을 가질 수 있다. Due to the high corrosion resistance of the high entropy alloy according to another exemplary embodiment of the present invention, the article manufactured using the same may have excellent durability.
본 발명의 다른 실시상태에 따른 고엔트로피 합금은 우수한 열안정성을 가지므로, 열에 의한 변형이 최소화될 수 있으며, 우수한 고온 기계적 강도를 가질 수 있다. Since the high entropy alloy according to another embodiment of the present invention has excellent thermal stability, deformation due to heat can be minimized and excellent high temperature mechanical strength can be obtained.
도 1은 실시예 1, 실시예 4 및 실시예 7에 따른 고엔트로피 합금의 XRD 분석 결과를 나타낸 것이다. Figure 1 shows the XRD analysis of the high entropy alloy according to Example 1, Example 4 and Example 7.
도 2는 실시예 2, 실시예 5 및 실시예 6에 따른 고엔트로피 합금의 XRD 분석 결과를 나타낸 것이다. Figure 2 shows the XRD analysis of the high entropy alloy according to Example 2, Example 5 and Example 6.
도 3은 실시예 6에 따른 AlMoTiV의 4원계 고엔트로피 합금을 용융한 후 투과 전자 현미경(TEM; Transmission Electron Microscope)을 통하여 미세조직 분석을 한 이미지이다.3 is an image of the microstructure analysis of the molten AlMoTiV quaternary high entropy alloy according to Example 6 and then through a transmission electron microscope (TEM).
도 4는 실시예 7에 따른 AlCrMoTiV의 5원계 고엔트로피 합금을 용융한 후 투과 전자 현미경(TEM; Transmission Electron Microscope)을 통하여 미세조직 분석을 한 이미지이다.FIG. 4 is an image obtained by melting a five-element high entropy alloy of AlCrMoTiV according to Example 7 and analyzing the microstructure through a transmission electron microscope (TEM).
도 5는 실시예 1 내지 7에 따른 고엔트로피 합금의 비커스 경도를 나타낸 그래프이다.5 is a graph showing the Vickers hardness of the high entropy alloy according to Examples 1 to 7.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. In the present specification, when a part "contains" a certain component, this means that the component may further include other components, except for the case where there is no contrary description.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.Hereinafter, this specification is demonstrated in detail.
본 발명의 일 실시상태는, 고엔트로피 합금으로서, One embodiment of the present invention is a high entropy alloy,
상기 고엔트로피 합금은 체심입방형 결정 구조를 포함하고, The high entropy alloy includes a body centered cubic crystal structure,
상기 체심입방형 결정 구조는 Al 원소; Ti 원소; 및 Cr, Mo, V, Hf, Zr 및 Nb 중에서 선택되는 1종 이상의 원소를 주원소로 포함하며,The body centered cubic crystal structure is an Al element; Ti element; And one or more elements selected from Cr, Mo, V, Hf, Zr, and Nb as main elements,
상기 주원소 간의 함량 차이는 10 at% 이하이고, The content difference between the main elements is less than 10 at%,
상기 고엔트로피 합금의 불규칙 고용체의 함량은 50 % 이상인 고엔트로피 합금을 제공한다.The content of the irregular solid solution of the high entropy alloy provides a high entropy alloy of 50% or more.
본 발명에 따른 고엔트로피 합금은 전통적인 합금과는 달리, 혼합 엔트로피가 1 R 이상인 것을 특징으로 할 수 있다. 구체적으로, 상기 고엔트로피 합금이 3개의 주원소로 이루어진 3원계 합금인 경우, 혼합 엔트로피는 1 R 이상일 수 있다. 또한, 상기 고엔트로피 합금이 4개의 주원소로 이루어진 4원계 합금인 경우, 혼합 엔트로피는 1.3 R 이상일 수 있다. 나아가, 상기 고엔트로피 합금이 5개의 주원소로 이루어진 5원계 합금인 경우, 혼합 엔트로피는 1.6 R 이상일 수 있다. 이에 반하여, 전통적인 합금은 혼합 엔트로피의 값이 매우 낮으며, 예를 들어, 전통적인 합금인 Ti-6Al-4V의 혼합 엔트로피는 0.48 R에 불과하다. Unlike the conventional alloys, the high entropy alloy according to the present invention may be characterized by a mixed entropy of 1 R or more. Specifically, when the high entropy alloy is a ternary alloy composed of three main elements, the mixed entropy may be 1 R or more. In addition, when the high entropy alloy is a quaternary alloy composed of four main elements, the mixed entropy may be 1.3 R or more. Furthermore, when the high entropy alloy is a five-membered alloy composed of five main elements, the mixed entropy may be 1.6 R or more. In contrast, traditional alloys have very low mixed entropy values, for example, the mixed entropy of traditional alloys Ti-6Al-4V is only 0.48 R.
나아가, 합금의 대부분을 차지하는 주원소와 미량으로 포함되는 부원소로 이루어지는 전통적인 합금과는 달리, 본 발명에 따른 고엔트로피 합금은 복수의 주성분 원소 간의 함량 차이가 10 at% 이하, 구체적으로 5 at% 이하인 것을 특징으로 한다. 이와 같이 주원소 각각의 함량이 동등한 수준으로 이루어진 고엔트로피 합금은 전통적인 합금과는 상이한 물성을 가지게 된다. Furthermore, unlike traditional alloys consisting of a major element that accounts for most of the alloy and minor elements contained in trace amounts, the high entropy alloy according to the present invention has a content difference of less than or equal to 10 at%, specifically 5 at% It is characterized by the following. As such, the high-entropy alloys having the same content of the main elements have different physical properties from those of the conventional alloys.
본 발명의 일 실시상태에 따르면, 상기 각각의 주원소의 함량은 상기 고엔트로피 합금에 대하여 15 at% 이상 35 at% 이하일 수 있다. According to an exemplary embodiment of the present invention, the content of each main element may be 15 at% or more and 35 at% or less with respect to the high entropy alloy.
본 발명에 따른 고엔트로피 합금은 체심입방형 결정 구조를 포함한다. 구체적으로, 본 발명의 일 실시상태에 따르면, 상기 고엔트로피 합금은 체심입방형 결정 구조로 이루어질 수 있다. 본 발명의 다른 실시상태에 따르면, 상기 주원소는 상기 체심입방형 결정 구조를 형성할 수 있다. The high entropy alloy according to the present invention comprises a body centered cubic crystal structure. Specifically, according to one embodiment of the present invention, the high entropy alloy may be made of a body-centered cubic crystal structure. According to another exemplary embodiment of the present invention, the main element may form the body-centered cubic crystal structure.
본 발명의 일 실시상태에 따르면, 상기 고엔트로피 합금은 50 % 이상의 불규칙 고용체를 포함하며, 구체적으로, 상기 고엔트로피 합금에서의 불규칙 고용체의 함량은 50 %를 초과할 수 있다. According to one embodiment of the present invention, the high entropy alloy includes at least 50% of an irregular solid solution, and specifically, the content of the irregular solid solution in the high entropy alloy may be greater than 50%.
상기 고엔트로피 합금을 구성하는 체심입방형 결정은 규칙 고용체와 불규칙 고용체의 형태로 존재할 수 있으며, 상기 불규칙 고용체는 단일상 고용체를 형성할 수 있다. 상기 불규칙 고용체의 함량이 높을수록 고엔트로피 합금으로서의 특성이 잘 구현될 수 있으며, 본 발명에 따른 상기 고엔트로피 합금에 따르면, 불규칙 고용체의 함량이 50 % 이상이므로 고엔트로피 합금의 특성이 보다 잘 구현될 수 있다. The body centered cubic crystal constituting the high entropy alloy may exist in the form of a regular solid solution and an irregular solid solution, and the irregular solid solution may form a single phase solid solution. The higher the content of the irregular solid solution, the better the properties as a high entropy alloy, according to the high entropy alloy according to the present invention, since the content of the irregular solid solution is 50% or more can be better implemented the properties of the high entropy alloy Can be.
본 발명에 따른 고엔트로피 합금의 상기 체심입방형 결정 구조는 주원소 간에 전율고용이 되지 않더라도, 주원소의 조합에 따라 단일상 고용체를 형성할 수 있다. 나아가, 본 발명에 따른 상기 고엔트로피 합금의 불규칙 고용체의 함량은 70 % 이상 또는 80 % 이상일 수 있다. 구체적으로, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 90 % 이상 또는 95 % 이상일 수 있으며, 보다 구체적으로, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 100 % 일 수 있다.The body-centered cubic crystal structure of the high entropy alloy according to the present invention can form a single-phase solid solution according to the combination of the main elements, even if it is not electrified employment between the main elements. Furthermore, the content of the irregular solid solution of the high entropy alloy according to the present invention may be 70% or more or 80% or more. Specifically, the content of the irregular solid solution of the high entropy alloy may be 90% or more or 95% or more, and more specifically, the content of the irregular solid solution of the high entropy alloy may be 100%.
상기 불규칙 고용체의 함량은 X선 회절(XRD; X-ray diffraction) 분석을 통해서 측정된 것이다. 구체적으로, 상기 고엔트로피 합금에 대하여 XRD 분석을 하는 경우, 규칙 고용체와 불규칙 고용체의 피크가 나타나며, 이 피크값의 총합에서 규칙 고용체의 피크값을 뺀 것이 불규칙 고용체의 함량일 수 있다. X선 회절 분석을 통하여 상기 불규칙 고용체의 함량의 측정시, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 50 % 이상 또는 80 % 이상일 수 있으며, 보다 구체적으로, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 90 % 이상, 95 % 이상, 또는 100 % 일 수 있다.The content of the irregular solid solution is measured by X-ray diffraction (XRD) analysis. Specifically, in the XRD analysis of the high entropy alloy, the peaks of the regular solid solution and the irregular solid solution appear, and the sum of the peak values minus the peak value of the regular solid solution may be the content of the irregular solid solution. When measuring the content of the irregular solid solution through X-ray diffraction analysis, the content of the irregular solid solution of the high entropy alloy may be 50% or more or 80% or more, and more specifically, the content of the irregular solid solution of the high entropy alloy is 90 Or at least 95% or at least 100%.
또한, 상기 불규칙 고용체의 함량은 투과 전자 현미경(TEM; Transmission Electron Microscope)을 통한 미세조직 분석을 통하여 측정된 것일 수 있다. 구체적으로, 상기 고엔트로피 합금에 대하여 투과 전자 현미경으로 표면의 미세 조직을 분석하는 경우, 상기 고엔트로피 합금을 용융하여 투과 전자 현미경으로 미세조직을 관찰 할 수 있다. 상기 고엔트로피 합금에 대하여 투과 전자 현미경으로 표면의 미세 조직을 분석하는 경우, 규칙 고용체는 투과 전자 현미경을 통한 이미지에서 불규칙 고용체보다 밝은 형상으로 관찰될 수 있다. 투과 전자 현미경을 통한 이미지에서 규칙 고용체의 함량이 매우 적을 경우에는 실선 또는 스크래치와 같은 형상으로 밝게 관찰될 수 있으며, 규칙 고용체의 함량이 점차 많아지는 경우에는 판상 또는 원형과 같이 보다 넓은 면적에서 밝게 관측될 수 있다. 구체적으로, 본 발명의 일 실시상태에 따르면, 상기 고엔트로피 합금에 대하여 투과 전자 현미경으로 표면의 미세 조직을 분석하는 경우, 규칙 고용체는 실선 또는 스크래치와 같은 형상으로 밝게 관찰될 수 있다. 나아가, 투과 전자 현미경을 통하여 샘플링된 이미지에서의 규칙 고용체의 면적을 제외한 면적의 비율을 통하여 불규칙 고용체의 함량을 측정할 수 있다. 투과 전자 현미경을 통하여 상기 불규칙 고용체의 함량 측정시, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 50 % 이상 또는 80 % 이상일 수 있으며, 보다 구체적으로, 상기 고엔트로피 합금의 불규칙 고용체의 함량은 90 % 이상 또는 95 % 이상일 수 있다. In addition, the content of the irregular solid solution may be measured through microstructure analysis through a transmission electron microscope (TEM). Specifically, when analyzing the microstructure of the surface of the high entropy alloy with a transmission electron microscope, it is possible to melt the high entropy alloy to observe the microstructure with a transmission electron microscope. When analyzing the microstructure of the surface of the high entropy alloy with a transmission electron microscope, the regular solid solution can be observed in a brighter shape than the irregular solid solution in the image through the transmission electron microscope. When the content of the regular solid solution is very small in the image through the transmission electron microscope, it can be observed brightly in a shape such as a solid line or a scratch, and when the content of the regular solid solution is gradually increased, the bright solid is observed in a larger area such as a plate or a circle. Can be. Specifically, according to an exemplary embodiment of the present invention, when analyzing the microstructure of the surface of the high entropy alloy with a transmission electron microscope, the regular solid solution may be observed brightly in a shape such as a solid line or a scratch. Furthermore, the content of the irregular solid solution can be measured through the ratio of the area excluding the area of the regular solid solution in the image sampled through the transmission electron microscope. When measuring the content of the irregular solid solution through a transmission electron microscope, the content of the irregular solid solution of the high entropy alloy may be 50% or more or 80% or more, and more specifically, the content of the irregular solid solution of the high entropy alloy is 90% or more. Or 95% or more.
본 발명에 따른 고엔트로피 합금은 안정화된 불규칙 고용체 결정의 함량이 높으므로, 우수한 고엔트로피 효과를 가질 수 있다. Since the high entropy alloy according to the present invention has a high content of stabilized irregular solid solution crystals, it may have an excellent high entropy effect.
또한, 본 발명에 따른 고엔트로피 합금은 불규칙 고용체 결정의 함량이 높으므로 격자 왜곡(lattice distortion) 현상이 극대화되어 높은 경도를 가질 수 있다. In addition, since the high entropy alloy according to the present invention has a high content of irregular solid solution crystals, lattice distortion may be maximized to have high hardness.
나아가, 본 발명에 따른 고엔트로피 합금은 불규칙 고용체 결정의 함량이 높으므로 내부 원자의 확산이 어렵게 되어, 고온에서의 안정성이 우수한 장점이 있다. Furthermore, since the high entropy alloy according to the present invention has a high content of irregular solid solution crystals, it is difficult to diffuse internal atoms, thereby providing excellent stability at high temperatures.
본 발명의 일 실시상태에 따르면, 상기 체심입방형 결정 구조는 Al 원소; Ti 원소; 및 Cr, Mo, V, Hf, Zr 및 Nb 중에서 선택되는 2종 또는 3종의 원소를 주원소로 포함할 수 있다. 구체적으로, 상기 체심입방형 결정구조는 Al 및 Ti을 주원소로 필수적으로 포함하고, Cr, Mo, V, Hf, Zr 및 Nb로 이루어진 군에서 선택되는 2종 또는 3종의 원소를 주원소로 포함할 수 있다. According to an exemplary embodiment of the present invention, the body-centered cubic crystal structure is Al element; Ti element; And two or three elements selected from Cr, Mo, V, Hf, Zr, and Nb as main elements. Specifically, the body-centered cubic crystal structure essentially includes Al and Ti as main elements, and two or three elements selected from the group consisting of Cr, Mo, V, Hf, Zr, and Nb as main elements. It may include.
본 발명의 일 실시상태에 따르면, 상기 고엔트로피 합금은 Al, Ti 및 Cr; Al, Ti, 및 Mo; 또는 Al, Ti 및 V를 주원소로 하는 3원계 합금일 수 있다. According to one embodiment of the invention, the high entropy alloy is Al, Ti and Cr; Al, Ti, and Mo; Or a ternary alloy having Al, Ti and V as main elements.
또한, 본 발명의 다른 실시상태에 따르면, 상기 고엔트로피 합금은 Al, Ti, Cr 및 Mo; Al, Ti, Cr 및 V; Al, Ti, Mo 및 V; Al, Ti, Hf 및 Zr; Al, Ti, Hf 및 Nb; Al, Ti, Zr 및 Nb; Al, Ti, Mo 및 Nb; Al, Ti, Mo 및 V; 또는 Al, Ti, Nb 및 V를 주원소로 하는 4원계 합금일 수 있다. In addition, according to another embodiment of the present invention, the high entropy alloy is Al, Ti, Cr and Mo; Al, Ti, Cr and V; Al, Ti, Mo and V; Al, Ti, Hf and Zr; Al, Ti, Hf and Nb; Al, Ti, Zr and Nb; Al, Ti, Mo and Nb; Al, Ti, Mo and V; Or a quaternary alloy having Al, Ti, Nb and V as main elements.
또한, 본 발명의 다른 실시상태에 따르면, 상기 고엔트로피 합금은 Al, Ti, Cr, Mo 및 V; Al, Ti, Hf, Nb 및 Zr; 또는 Al, Ti, Mo, Nb 및 V를 주원소로 하는 5원계 합금일 수 있다. In addition, according to another embodiment of the present invention, the high entropy alloy is Al, Ti, Cr, Mo and V; Al, Ti, Hf, Nb and Zr; Or a five-membered alloy having Al, Ti, Mo, Nb and V as main elements.
상기 3원계, 4원계 및 5원계 고엔트로피 합금은 상기 체심입방형 결정 구조를 형성하는 주원소의 개수에 따른 것이다. The three-, four- and five-membered high entropy alloys are based on the number of main elements forming the body-centered cubic crystal structure.
본 발명의 일 실시상태에 따르면, 상기 고엔트로피 합금은 비금속 원소를 부원소로 포함할 수 있다. According to one embodiment of the present invention, the high entropy alloy may include a non-metallic element as a sub-element.
상기 부원소는 상기 고엔트로피 합금의 제조과정에서 불가피하게 포함되는 불순물일 수 있다. 또한, 상기 부원소는 상기 고엔트로피 합금의 특성을 개선하기 위하여 상기 고엔트로피 합금에 인위적으로 포함될 수 있다. The secondary element may be an impurity inevitably included in the manufacturing process of the high entropy alloy. In addition, the sub-element may be artificially included in the high entropy alloy to improve the properties of the high entropy alloy.
상기 부원소는 상기 고엔트로피 합금의 체심입방형 결정 구조의 격자 내에 침입형 원소로 존재할 수 있다. 구체적으로, 상기 부원소는 상기 고엔트로피 합금의 체심입방형 결정 구조에 영향을 미치는 치환형 원소로서 존재하는 것이 아니다. The secondary element may exist as an invasive element in the lattice of the body centered cubic crystal structure of the high entropy alloy. Specifically, the secondary element does not exist as a substitutional element that affects the body centered cubic crystal structure of the high entropy alloy.
본 발명의 다른 실시상태에 따르면, 상기 비금속 원소는 H, B, C, N, O, P 및 S 로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 구체적으로, 상기 비금속 원소는 C, O, N 및 B로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 구체적으로, 상기 고엔트로피 합금의 특성을 개선하기 위하여 포함시키는 비금속 원소는 C, O, N 또는 B 일 수 있다. According to another exemplary embodiment of the present invention, the nonmetallic element may include one or more selected from the group consisting of H, B, C, N, O, P, and S. Specifically, the nonmetallic element may include one or more selected from the group consisting of C, O, N, and B. Specifically, the nonmetallic elements included to improve the properties of the high entropy alloy may be C, O, N or B.
본 발명의 다른 실시상태에 따르면, 상기 부원소는 전체 고엔트로피 합금에 대하여 5 at% 미만일 수 있다. 구체적으로, 상기 부원소는 전체 고엔트로피 합금에 대하여, 0.01 at% 이상 5 at% 미만일 수 있다. 보다 구체적으로, 상기 부원소는 전체 고엔트로피 합금에 대하여, 0.01 at% 이상 3 at% 이하, 또는 0.01 at% 이상 1 at% 이하일 수 있다. According to another exemplary embodiment of the present invention, the minor element may be less than 5 at% based on the total high entropy alloy. Specifically, the sub-element may be 0.01 at% or more and less than 5 at% with respect to the entire high entropy alloy. More specifically, the sub-element may be 0.01 at% or more and 3 at% or less, or 0.01 at% or more and 1 at% or less with respect to the entire high entropy alloy.
상기 부원소의 함량이 상기 범위 내인 경우, 상기 고엔트로피 합금의 결정 구조에 영향을 주지 않을 정도의 불순물로서 포함될 수 있다. 또한, 상기 부원소의 함량이 상기 범위 내인 경우, 상기 고엔트로피 합금의 기본 물성을 저해하지 않으면서 상기 고엔트로피 합금의 물성을 개선시킬 수 있다. When the content of the secondary element is in the above range, it may be included as impurities to the extent that does not affect the crystal structure of the high entropy alloy. In addition, when the content of the secondary element is in the above range, it is possible to improve the physical properties of the high entropy alloy without inhibiting the basic physical properties of the high entropy alloy.
본 발명의 다른 실시상태에 따르면, 상기 주원소 간의 함량 차이는 5 at% 이하일 수 있다. 구체적으로, 상기 주원소 간의 함량 차이는 2 at% 이하일 수 있다. 보다 구체적으로, 어느 하나의 상기 주원소와 다른 하나의 상기 주원소 간의 원자 함량은 1:1일 수 있다. 상기 고엔트로피 합금은 주원소의 원자 함량 차이가 거의 없거나, 동일한 원자 함량(at%)을 가지며 결정 구조를 이룸으로써 안정적인 물성을 나타내고, 높은 경도를 구현할 수 있다. According to another exemplary embodiment of the present invention, the content difference between the main elements may be 5 at% or less. Specifically, the content difference between the main elements may be 2 at% or less. More specifically, the atomic content between one of the main elements and the other of the main elements may be 1: 1. The high entropy alloy has almost no difference in atomic content of main elements, or has the same atomic content (at%) and forms a crystal structure, thereby showing stable physical properties and high hardness.
본 발명의 다른 실시상태에 따르면, 상기 고엔트로피 합금은 주원소가 Al, Ti, Cr 및 Mo로 이루어지거나; Al, Ti, Cr, Mo 및 V로 이루어지며, 상기 고엔트로피 합금의 단일상 고용체 함량은 100 %일 수 있다. According to another exemplary embodiment of the present invention, the high entropy alloy includes main elements of Al, Ti, Cr, and Mo; It is composed of Al, Ti, Cr, Mo and V, the single solid solution content of the high entropy alloy may be 100%.
본 발명의 다른 실시상태에 따르면, 상기 고엔트로피 합금은 주원소가 Al, Ti 및 Cr로 이루어지거나; Al, Ti, 및 Mo로 이루어지거나; Al, Ti, Cr 및 V로 이루어지거나; Al, Ti, Mo 및 V로 이루어지며, 상기 고엔트로피 합금의 단일상 고용체 함량은 95 % 이상일 수 있다. According to another exemplary embodiment of the present invention, the high entropy alloy is composed of main elements Al, Ti, and Cr; Or Al, Ti, and Mo; Al, Ti, Cr and V; It is composed of Al, Ti, Mo and V, the single-phase solid solution content of the high entropy alloy may be 95% or more.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the embodiments according to the present invention may be modified in various other forms, and the scope of the present invention is not interpreted to be limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present invention to those skilled in the art.
[[ 실시예Example 1]  One] AlCrTiAlCrTi 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 Cr 및 99.99 % 순도의 Ti을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlCrTi의 3원계 고엔트로피 합금을 제조하였다.Al of 99.99% purity, Cr of 99.99% purity, and Ti of 99.99% purity were prepared in the same molar number, and then melted and cooled by vacuum plasma arc melting to prepare a button-shaped master alloy 60 g. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a ternary high entropy alloy of AlCrTi.
[[ 실시예Example 2]  2] AlMoTiAlMoTi 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 Mo 및 99.99 % 순도의 Ti을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlMoTi의 3원계 고엔트로피 합금을 제조하였다.99.99% pure Al, 99.99% pure Mo, and 99.99% pure Ti were prepared in the same number of moles, and then melted using a vacuum plasma arc melting method and cooled to prepare 60 g of a button-shaped master alloy. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a ternary high entropy alloy of AlMoTi.
[[ 실시예Example 3]  3] AlVTiAlVTi 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 V 및 99.99 % 순도의 Ti을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlVTi의 3원계 고엔트로피 합금을 제조하였다.Al of 99.99% purity, V of 99.99% purity, and Ti of 99.99% purity were prepared in the same mole number, and then melted and cooled by vacuum plasma arc melting to prepare a button-shaped master alloy 60 g. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a ternary high entropy alloy of AlVTi.
[[ 실시예Example 4]  4] AlCrMoTiAlCrMoTi 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 Cr, 99.99 % 순도의 Mo 및 99.99 % 순도의 Ti을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlCrMoTi의 4원계 고엔트로피 합금을 제조하였다.Al of 99.99% purity, Cr of 99.99% purity, Mo of 99.99% purity, and Ti of 99.99% purity were prepared in the same number of moles, and then melted and cooled by vacuum plasma arc melting. g was prepared. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a quaternary high entropy alloy of AlCrMoTi.
[[ 실시예Example 5]  5] AlCrTiVAlCrTiV 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 Cr, 99.99 % 순도의 Ti 및 99.99 % 순도의 V을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlCrTiV의 4원계 고엔트로피 합금을 제조하였다.Al of 99.99% purity, Cr of 99.99% purity, Ti of 99.99% purity and V of 99.99% purity were prepared in the same number of moles, and then melted and cooled by vacuum plasma arc melting. g was prepared. In addition, the eggs were divided into four, placed in an alumina crucible, melted by vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a quaternary high entropy alloy of AlCrTiV.
[[ 실시예Example 6]  6] AlMoTiVAlMoTiV 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 Mo, 99.99 % 순도의 Ti 및 99.99 % 순도의 V을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlMoTiV의 4원계 고엔트로피 합금을 제조하였다.Al of 99.99% purity, Mo of 99.99% purity, Ti of 99.99% purity, and V of 99.99% purity were prepared in the same number of moles, and then melted and cooled by vacuum plasma arc melting. g was prepared. The egg was divided into four, placed in an alumina crucible, melted through a vacuum induction melting method at a temperature of 1700 ° C., and poured into a mold to prepare a quaternary high entropy alloy of AlMoTiV.
[[ 실시예Example 7]  7] AlCrMoTiVAlCrMoTiV 고엔트로피High entropy 합금의 제조 Manufacture of alloys
99.99 % 순도의 Al, 99.99 % 순도의 Cr, 99.99 % 순도의 Mo, 99.99 % 순도의 Ti 및 99.99 % 순도의 V을 동일한 몰수로 준비한 후, 이를 진공 플라즈마 아크 용융법을 이용하여 용융한 후 냉각하여 버튼 형상의 모합금 60 g을 제조하였다. 그리고, 상기 에그를 4등분하여 알루미나 도가니에 넣고, 1700 ℃의 온도에서 진공 유도 용해법을 통하여 용융시킨 후 몰드에 부어 AlCrMoTiV의 5원계 고엔트로피 합금을 제조하였다.Al of 99.99% purity, Cr of 99.99% purity, Mo of 99.99% purity, Ti of 99.99% purity and V of 99.99% purity were prepared in the same molar number, and then melted and cooled by vacuum plasma arc melting. 60 g of a button-shaped master alloy was prepared. The egg was divided into four, placed in an alumina crucible, melted through vacuum induction melting at a temperature of 1700 ° C., and poured into a mold to prepare a 5-membered high entropy alloy of AlCrMoTiV.
도 1은 실시예 1, 실시예 4 및 실시예 7에 따른 고엔트로피 합금의 XRD 분석 결과를 나타낸 것이다. 도 1에 따르면, 실시예 1에 따른 AlCrTi의 3원계 고엔트로피 합금은 규칙 고용체가 매우 적게 검출되고, 대부분이 불규칙 고용체인 것을 확인할 수 있다. 그리고, 실시예 4에 따른 AlCrMoTi의 4원계 고엔트로피 합금 및 실시예 7에 따른 AlCrMoTiV의 5원계 고엔트로피 합금은 규칙 고용체가 검출되지 않고 불규칙 고용체만이 검출된 것을 확인할 수 있다. Figure 1 shows the XRD analysis of the high entropy alloy according to Example 1, Example 4 and Example 7. According to FIG. 1, it can be confirmed that the ternary high entropy alloy of AlCrTi according to Example 1 has very little regular solid solution and most of them are irregular solid solution. In addition, the quaternary high entropy alloy of AlCrMoTi according to Example 4 and the ternary high entropy alloy of AlCrMoTiV according to Example 7 can be confirmed that only irregular solid solutions are detected without regular solid solutions.
도 1에서의 x축은 XRD 분석시 시편에 입사되는 X선과 시편에서 반사되어 나오는 X선의 각도를 의미한다. XRD 분석시, 특정 위치에서 피크가 관찰되는 것을 통하여 시편의 결정 구조를 파악할 수 있다. In FIG. 1, the x-axis denotes an angle between X-rays incident on the specimen and X-rays reflected from the specimen during XRD analysis. In XRD analysis, the peaks are observed at specific locations to determine the crystal structure of the specimen.
도 2는 실시예 2, 실시예 5 및 실시예 6에 따른 고엔트로피 합금의 XRD 분석 결과를 나타낸 것이다. 도 2에 따르면, 실시예 2에 따른 AlMoTi의 3원계 고엔트로피 합금, 실시예 5에 따른 AlCrTiV의 4원계 고엔트로피 합금 및 실시예 6에 따른 AlMoTiV의 4원계 합금은 규칙 고용체가 매우 적게 검출되고, 대부분이 불규칙 고용체인 것을 확인할 수 있다.Figure 2 shows the XRD analysis of the high entropy alloy according to Example 2, Example 5 and Example 6. According to Figure 2, the ternary high entropy alloy of AlMoTi according to Example 2, the quaternary high entropy alloy of AlCrTiV according to Example 5 and the quaternary alloy of AlMoTiV according to Example 6 detect very little regular solid solution, It can be seen that most of them are irregular solid solutions.
도 3은 실시예 6에 따른 AlMoTiV의 4원계 고엔트로피 합금을 용융한 후 투과 전자 현미경(TEM; Transmission Electron Microscope)을 통하여 미세조직 분석을 한 이미지이다. 도 3에 따르면, AlMoTiV의 4원계 고엔트로피 합금은 화살표로 표시된 스크래치 형태의 밝은 실선으로 나타나는 규칙 고용체는 극히 일부분에 불과하고, 대부분이 불규칙 고용체로 이루어져 있음을 알 수 있다. 3 is an image of the microstructure analysis of the molten AlMoTiV quaternary high entropy alloy according to Example 6 and then through a transmission electron microscope (TEM). According to FIG. 3, it can be seen that the ternary high entropy alloy of AlMoTiV has only a small portion of a regular solid solution represented by a bright solid line in the form of a scratch, indicated by an arrow, and most of it is made of an irregular solid solution.
도 4는 실시예 7에 따른 AlCrMoTiV의 5원계 고엔트로피 합금을 용융한 후 투과 전자 현미경(TEM; Transmission Electron Microscope)을 통하여 미세조직 분석을 한 이미지이다. 도 4에 따르며, AlCrMoTiV의 5원계 고엔트로피 합금은 화살표로 표시된 스크래치 형태의 밝은 실선으로 나타나는 규칙 고용체는 극히 일부분에 불과하고, 대부분이 불규칙 고용체로 이루어져 있음을 알 수 있다.FIG. 4 is an image obtained by melting a five-element high entropy alloy of AlCrMoTiV according to Example 7 and analyzing the microstructure through a transmission electron microscope (TEM). According to FIG. 4, it can be seen that the ternary high entropy alloy of AlCrMoTiV has only a small portion of the rule solid solution represented by a bright solid line in the form of a scratch, which is indicated by an arrow, and is mostly composed of an irregular solid solution.
[경도 테스트][Hardness test]
실시예 1 내지 실시예 7에 따른 고엔트로피 합금의 물성을 파악하기 위하여, 비커스 경도(Vickers hardness)를 측정하였다. 구체적으로, 0.5 kg 하중의 다이아몬드 압입자를 이용하여 실시예 1 내지 7에 따른 고엔트로피 합금을 압입하여 오목부의 대각선을 측정하는 방법으로 비커스 경도를 측정하였다. 각 고엔트로피 합금에 대하여 5 부분의 비커스 경도를 측정하여 평균값을 낸 결과는 하기 표 1과 같다. In order to understand the physical properties of the high entropy alloy according to Examples 1 to 7, Vickers hardness was measured. Specifically, the Vickers hardness was measured by indenting the high entropy alloy according to Examples 1 to 7 using a diamond indenter having a 0.5 kg load and measuring the diagonal of the recess. The results obtained by measuring the Vickers hardness of 5 parts for each high entropy alloy and obtaining the average value are shown in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2017005179-appb-I000001
Figure PCTKR2017005179-appb-I000001
나아가, 도 5는 실시예 1 내지 7에 따른 고엔트로피 합금의 비커스 경도를 나타낸 그래프이다. 구체적으로, 도 5는 상기 표 1에 대한 데이터를 그래프화한 것이다. 5 is a graph showing the Vickers hardness of the high entropy alloy according to Examples 1 to 7. Specifically, Figure 5 is a graph of the data for Table 1.
참고로, 전통적인 합금인 Ti-6Al-4V의 비커스 경도는 350 Hv 내지 450 Hv인 점에 비추어, 실시예 1 내지 7에 따른 고엔트로피 합금은 우수한 경도를 가지는 것을 알 수 있다. For reference, in view of the Vickers hardness of the traditional alloy Ti-6Al-4V is 350 Hv to 450 Hv, it can be seen that the high entropy alloys according to Examples 1 to 7 have excellent hardness.

Claims (9)

  1. 고엔트로피 합금으로서, As a high entropy alloy,
    상기 고엔트로피 합금은 체심입방형 결정 구조를 포함하고, The high entropy alloy includes a body centered cubic crystal structure,
    상기 체심입방형 결정 구조는 Al 원소; Ti 원소; 및 Cr, Mo, V, Hf, Zr 및 Nb 중에서 선택되는 1종 이상의 원소를 주원소로 포함하며,The body centered cubic crystal structure is an Al element; Ti element; And one or more elements selected from Cr, Mo, V, Hf, Zr, and Nb as main elements,
    상기 주원소 간의 함량 차이는 10 at% 이하이고, The content difference between the main elements is less than 10 at%,
    상기 고엔트로피 합금의 불규칙 고용체의 함량은 50 % 이상인 것인 고엔트로피 합금.The high entropy alloy content of the irregular solid solution of the high entropy alloy is 50% or more.
  2. 청구항 1 에 있어서, The method according to claim 1,
    상기 체심입방형 결정 구조는 Al 원소; Ti 원소; 및 Cr, Mo, V, Hf, Zr 및 Nb 중에서 선택되는 2종 또는 3종의 원소를 주원소로 포함하는 것인 고엔트로피 합금.The body centered cubic crystal structure is an Al element; Ti element; And high entropy alloy comprising two or three elements selected from Cr, Mo, V, Hf, Zr and Nb as a main element.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 고엔트로피 합금은 비금속 원소를 부원소로 포함하는 것인 고엔트로피 합금. The high entropy alloy is a high entropy alloy containing a non-metal element as a secondary element.
  4. 청구항 3에 있어서, The method according to claim 3,
    상기 부원소는 전체 고엔트로피 합금에 대하여 5 at% 미만인 것인 고엔트로피 합금. The minor element is a high entropy alloy that is less than 5 at% relative to the total high entropy alloy.
  5. 청구항 3에 있어서, The method according to claim 3,
    상기 비금속 원소는 H, B, C, N, O, P 및 S 로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 고엔트로피 합금. The non-metal element is a high entropy alloy containing at least one selected from the group consisting of H, B, C, N, O, P and S.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 주원소 간의 함량 차이는 5 at% 이하인 것인 고엔트로피 합금. The content difference between the main element is high entropy alloy that is 5 at% or less.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 고엔트로피 합금은 Al, Ti 및 Cr; Al, Ti, 및 Mo; 또는 Al, Ti 및 V를 주원소로 하는 3원계 합금인 것인 고엔트로피 합금. The high entropy alloy is Al, Ti and Cr; Al, Ti, and Mo; Or a ternary alloy having Al, Ti, and V as main elements.
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 고엔트로피 합금은 Al, Ti, Cr 및 Mo; Al, Ti, Cr 및 V; Al, Ti, Mo 및 V; Al, Ti, Hf 및 Zr; Al, Ti, Hf 및 Nb; Al, Ti, Zr 및 Nb; Al, Ti, Mo 및 Nb; Al, Ti, Mo 및 V; 또는 Al, Ti, Nb 및 V를 주원소로 하는 4원계 합금인 것인 고엔트로피 합금. The high entropy alloy is Al, Ti, Cr and Mo; Al, Ti, Cr and V; Al, Ti, Mo and V; Al, Ti, Hf and Zr; Al, Ti, Hf and Nb; Al, Ti, Zr and Nb; Al, Ti, Mo and Nb; Al, Ti, Mo and V; Or a high entropy alloy that is a quaternary alloy having Al, Ti, Nb and V as the main element.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 고엔트로피 합금은 Al, Ti, Cr, Mo 및 V; Al, Ti, Hf, Nb 및 Zr; 또는 Al, Ti, Mo, Nb 및 V를 주원소로 하는 5원계 합금인 것인 고엔트로피 합금. The high entropy alloys include Al, Ti, Cr, Mo and V; Al, Ti, Hf, Nb and Zr; Or a five-membered alloy having Al, Ti, Mo, Nb, and V as main elements.
PCT/KR2017/005179 2016-06-01 2017-05-18 High-entropy alloy WO2017209419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0067963 2016-06-01
KR1020160067963A KR101831056B1 (en) 2016-06-01 2016-06-01 High entropy alloy

Publications (1)

Publication Number Publication Date
WO2017209419A1 true WO2017209419A1 (en) 2017-12-07

Family

ID=60478716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005179 WO2017209419A1 (en) 2016-06-01 2017-05-18 High-entropy alloy

Country Status (2)

Country Link
KR (1) KR101831056B1 (en)
WO (1) WO2017209419A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257682A (en) * 2019-07-05 2019-09-20 昆明理工大学 A kind of preparation method of high entropy alloy material and its coating
CN110548869A (en) * 2018-06-04 2019-12-10 中南大学 nitrogen-containing high-entropy alloy composite material and preparation method thereof
CN111088490A (en) * 2020-01-11 2020-05-01 贵州大学 High-entropy alloy coating with high hardness and high wear resistance and preparation method thereof
CN111206175A (en) * 2020-03-24 2020-05-29 贵州航天新力铸锻有限责任公司 Preparation method of ultrahigh-strength light Al-Ti-V medium-entropy alloy with high purity and high homogeneity
CN111235457A (en) * 2020-03-24 2020-06-05 贵州航天新力铸锻有限责任公司 Ultrahigh-strength light Al-Ti-V intermediate entropy alloy
CN111676408A (en) * 2020-05-25 2020-09-18 北京理工大学 Tungsten-energetic high-entropy alloy composite material and preparation method thereof
CN112030053A (en) * 2020-09-02 2020-12-04 中国航发北京航空材料研究院 Light multi-principal-element alloy applied to high-temperature environment
CN112680647A (en) * 2020-11-30 2021-04-20 攀钢集团钒钛资源股份有限公司 Production method of vanadium-molybdenum-chromium-iron aluminum alloy
CN112725677A (en) * 2019-10-15 2021-04-30 有研资源环境技术研究院(北京)有限公司 High-strength high-toughness TiZrHfNbSc refractory high-entropy alloy and preparation method thereof
CN112921267A (en) * 2020-06-08 2021-06-08 自贡市量子金属制造有限公司 TiVZrCrAl high-entropy alloy coating on round-head surface of ball valve and preparation method thereof
CN113151725A (en) * 2020-12-02 2021-07-23 西北工业大学 Method for enhancing wear resistance of refractory high-entropy alloy
CN113621958A (en) * 2021-07-20 2021-11-09 燕山大学 Method for laser cladding of high-entropy alloy coating on copper surface
CN113996780A (en) * 2021-11-02 2022-02-01 南京国重新金属材料研究院有限公司 Mixing method of high-entropy alloy powder containing ultralow-atomic-ratio elements
CN114672715A (en) * 2022-03-04 2022-06-28 太原理工大学 Preparation method of high-temperature high-entropy alloy surface carbide/diamond particle coating
WO2023091169A1 (en) * 2021-11-22 2023-05-25 Iowa State University Research Foundation, Inc. Ultra-high strength multiphase high-entropy alloys

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3543368B1 (en) * 2018-03-20 2020-08-05 The Swatch Group Research and Development Ltd High-entropy alloys for covering components
KR102220219B1 (en) * 2019-01-29 2021-02-24 서울대학교산학협력단 Refractory high entropy superalloy with bcc dual phase and manufacturing method for the same
US11512371B2 (en) * 2020-03-27 2022-11-29 Seoul National University R&Db Foundation BCC dual phase refractory superalloy with high phase stability and manufacturing method therefore
CN112553488B (en) * 2020-12-16 2022-05-31 湘潭大学 CrAlNbTiVZr high-entropy alloy material and preparation method thereof
KR102585589B1 (en) * 2021-08-24 2023-10-05 공주대학교 산학협력단 High- strength and heat-resisting hierarchical high entropy alloy and method of manufacturing the same
CN114350989A (en) * 2021-12-01 2022-04-15 江苏大学 Refractory Al-Cr-Ti-V-Nb light high-entropy alloy and preparation method thereof
CN114606421A (en) * 2022-03-01 2022-06-10 有研工程技术研究院有限公司 Refractory high-entropy alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280020A (en) * 1990-03-29 1991-12-11 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
KR20150073270A (en) * 2013-12-20 2015-07-01 서울대학교산학협력단 Rare earth element based high entropy bulk metallic glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684856B1 (en) 2016-01-29 2016-12-09 서울대학교 산학협력단 High-entropy-alloy foam and manufacturing method for the foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280020A (en) * 1990-03-29 1991-12-11 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
KR20150073270A (en) * 2013-12-20 2015-07-01 서울대학교산학협력단 Rare earth element based high entropy bulk metallic glass

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STEPANOV, N. D. ET AL.: "Structure and Mmechanical Properties of a Light-weight AINbTiV High Entropy Alloy", MATERIALS LETTERS, vol. 142, 9 December 2014 (2014-12-09), pages 153 - 155, XP029191158 *
ZHANG, Y. ET AL.: "Alloy Design and Properties Optimization of High-Entropy Alloys", JOM, vol. 64, no. 7, 10 July 2012 (2012-07-10), pages 830 - 838, XP035089603 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548869A (en) * 2018-06-04 2019-12-10 中南大学 nitrogen-containing high-entropy alloy composite material and preparation method thereof
CN110548869B (en) * 2018-06-04 2022-03-04 中南大学 Nitrogen-containing high-entropy alloy composite material and preparation method thereof
CN110257682A (en) * 2019-07-05 2019-09-20 昆明理工大学 A kind of preparation method of high entropy alloy material and its coating
CN112725677A (en) * 2019-10-15 2021-04-30 有研资源环境技术研究院(北京)有限公司 High-strength high-toughness TiZrHfNbSc refractory high-entropy alloy and preparation method thereof
CN111088490A (en) * 2020-01-11 2020-05-01 贵州大学 High-entropy alloy coating with high hardness and high wear resistance and preparation method thereof
CN111088490B (en) * 2020-01-11 2022-05-17 贵州大学 High-entropy alloy coating with high hardness and high wear resistance and preparation method thereof
CN111235457A (en) * 2020-03-24 2020-06-05 贵州航天新力铸锻有限责任公司 Ultrahigh-strength light Al-Ti-V intermediate entropy alloy
CN111206175A (en) * 2020-03-24 2020-05-29 贵州航天新力铸锻有限责任公司 Preparation method of ultrahigh-strength light Al-Ti-V medium-entropy alloy with high purity and high homogeneity
CN111676408A (en) * 2020-05-25 2020-09-18 北京理工大学 Tungsten-energetic high-entropy alloy composite material and preparation method thereof
CN112921267A (en) * 2020-06-08 2021-06-08 自贡市量子金属制造有限公司 TiVZrCrAl high-entropy alloy coating on round-head surface of ball valve and preparation method thereof
CN112030053A (en) * 2020-09-02 2020-12-04 中国航发北京航空材料研究院 Light multi-principal-element alloy applied to high-temperature environment
CN112680647A (en) * 2020-11-30 2021-04-20 攀钢集团钒钛资源股份有限公司 Production method of vanadium-molybdenum-chromium-iron aluminum alloy
CN113151725A (en) * 2020-12-02 2021-07-23 西北工业大学 Method for enhancing wear resistance of refractory high-entropy alloy
CN113621958A (en) * 2021-07-20 2021-11-09 燕山大学 Method for laser cladding of high-entropy alloy coating on copper surface
CN113996780A (en) * 2021-11-02 2022-02-01 南京国重新金属材料研究院有限公司 Mixing method of high-entropy alloy powder containing ultralow-atomic-ratio elements
CN113996780B (en) * 2021-11-02 2023-08-22 南京国重新金属材料研究院有限公司 Mixing method of high-entropy alloy powder containing ultralow atomic ratio elements
WO2023091169A1 (en) * 2021-11-22 2023-05-25 Iowa State University Research Foundation, Inc. Ultra-high strength multiphase high-entropy alloys
CN114672715A (en) * 2022-03-04 2022-06-28 太原理工大学 Preparation method of high-temperature high-entropy alloy surface carbide/diamond particle coating
CN114672715B (en) * 2022-03-04 2022-11-25 太原理工大学 Preparation method of high-temperature high-entropy alloy surface carbide/diamond particle coating

Also Published As

Publication number Publication date
KR101831056B1 (en) 2018-02-21
KR20170136197A (en) 2017-12-11

Similar Documents

Publication Publication Date Title
WO2017209419A1 (en) High-entropy alloy
Wang et al. On the understanding of aluminum grain refinement by Al-Ti-B type master alloys
Wang et al. Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite
WO2019022283A1 (en) Medium-entropy alloy having excellent cryogenic characteristics
US20210108290A1 (en) Thermally conductive aluminum alloy and application thereof
WO2016015488A1 (en) Aluminum alloy and preparation method therefor and application thereof
CN106086486B (en) A kind of obdurability matches good high-entropy alloy and preparation method thereof
WO2013180338A1 (en) Beta titanium alloy with low elasticity and high strength
CN105755324B (en) A kind of high-entropy alloy for having intensity and toughness concurrently and preparation method thereof
WO2017164709A1 (en) Metal composite
WO2020080660A1 (en) Medium-entropy alloy and manufacturing method therefor
CN112391562B (en) Aluminum alloy and preparation method thereof
WO2019039743A1 (en) V-cr-fe-ni based high-strength high-entropy alloy
WO2011021777A2 (en) Aluminum base alloy with high thermal conductivity for die casting
WO2020085586A1 (en) Titanium alloy with high strength and high ductility comprising elements with melting points of 1,900℃ or lower
WO2021029788A1 (en) Aluminium casting alloy
Gui et al. On some discrepancies in the literature about the formation of icosahedral quasi-crystal in Al–Cu–Fe alloys
CN102066593B (en) Aluminium-based grain refiner
CN101652489A (en) Heat-resistant magnesium alloy
CN103361526B (en) A kind of aldural and production method thereof
Udoh et al. Structural aspects of AuCu I or AuCu II and a cuboidal block configuration of fcc disordered phase in AuCu Pt and AuCu Ag pseudobinary alloys
CN114480925A (en) Die-casting aluminum alloy with ultrahigh thermal conductivity
US20230062077A1 (en) Aluminum alloy and preparation method thereof, and aluminum alloy structural member
CN113122759A (en) Creep-resistant high-temperature-resistant cast aluminum alloy and manufacturing method thereof
WO2022225178A1 (en) Fine grained pure titanium and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806912

Country of ref document: EP

Kind code of ref document: A1