WO2023121241A1 - Plated steel sheet having excellent plating adhesion and corrosion resistance after hot press forming, preparation method for plated steel sheet, and hot pressed forming member - Google Patents

Plated steel sheet having excellent plating adhesion and corrosion resistance after hot press forming, preparation method for plated steel sheet, and hot pressed forming member Download PDF

Info

Publication number
WO2023121241A1
WO2023121241A1 PCT/KR2022/020870 KR2022020870W WO2023121241A1 WO 2023121241 A1 WO2023121241 A1 WO 2023121241A1 KR 2022020870 W KR2022020870 W KR 2022020870W WO 2023121241 A1 WO2023121241 A1 WO 2023121241A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
plating layer
content
hot press
Prior art date
Application number
PCT/KR2022/020870
Other languages
French (fr)
Korean (ko)
Inventor
오진근
김성우
이세웅
김상헌
박재성
이루리
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023121241A1 publication Critical patent/WO2023121241A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • the present invention relates to a coated steel sheet for hot press forming, a method for manufacturing the coated steel sheet, and a hot press formed member.
  • the hot press forming method is a method of forming a low-temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then rapidly cooling it to a low temperature to increase the strength of the final product.
  • a high temperature suitable for processing
  • a low temperature suitable for processing
  • a low temperature to increase the strength of the final product.
  • Patent Document 1 has been proposed as a method for solving this problem.
  • a steel sheet subjected to aluminum plating is used in a process of heating and rapidly cooling after hot press forming or room temperature forming (briefly, 'post heat treatment'), and since the aluminum plating layer exists on the surface of the steel sheet, the steel sheet is oxidized during heating. It doesn't work.
  • Patent Document 1 US Patent Publication No. 6,296,805
  • a coated steel sheet for hot press forming capable of improving coating adhesion of a hot press formed member and ensuring corrosion resistance, and a method of manufacturing the coated steel sheet.
  • a hot press-formed member excellent in paint adhesion and corrosion resistance is provided.
  • a plated steel sheet includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the total content of Al and Fe in the plated layer is 80% or more by weight, wherein the The average content of Fe in the plating layer may be 20% or more by weight, and the product of Ra and RPc of the surface of the plating layer may be 60 to 150 ⁇ m/cm.
  • Ra means arithmetic average roughness and its unit is ⁇ m
  • RPc means the number of peaks per unit length and its unit is /cm.
  • a coated steel sheet includes a base steel sheet and a plating layer made of an Al-Fe alloy formed on the base steel sheet, wherein the total content of Al and Fe in the plating layer is 80% or more by weight, The average content of Fe in the plating layer is 20% or more by weight, and the number of cracks existing in each region obtained by dividing the surface of the plating layer into 10 equal parts horizontally and vertically when observing the surface of the plating layer at a magnification of 100 times with a scanning electron microscope. is 10 to 200 per 1 mm 2 , and the ratio of the area occupied by the indentation portion on the surface of the plating layer may be 5 to 50%.
  • the indentation means a region having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
  • a method for manufacturing a plated steel sheet according to another aspect of the present invention includes obtaining an Al-Fe alloy plated steel sheet having a plating layer made of an alloy of Al and Fe formed on a base steel sheet; and performing skin pass rolling on the Al-Fe alloy coated steel sheet under the condition that the SPMI expressed by the following relational expression 1 is 5000 to 8500.
  • P is the rolling force during skin pass rolling (unit: ton)
  • the Ra roll is the arithmetic average roughness of the surface of the skin pass rolling roll (unit: ⁇ m)
  • the RPc roll is the number of peaks per unit length of the skin pass rolling roll (unit: /cm).
  • the unit of the SPMI is ⁇ Ton ⁇ m/cm.
  • a hot press-formed member includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the total content of Al and Fe in the plated layer is 70% by weight.
  • the content of Fe in the plating layer may be 30% or more by weight, and the product of Ra and RPc of the surface of the plating layer may be 60 to 150 ⁇ m/cm.
  • Ra means arithmetic average roughness and its unit is ⁇ m
  • RPc means the number of peaks per unit length and its unit is /cm.
  • a hot press-formed member includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the total content of Al and Fe in the plated layer is 70% by weight.
  • the average content of Fe in the plating layer is 30% or more by weight, and present in each region obtained by dividing the field of view obtained when the surface of the plating layer is observed at a magnification of 100 times with a scanning electron microscope into 10 horizontally and vertically.
  • the number of cracks may be 15 to 220 per 1 mm 2 , and the ratio of the area occupied by the indentation portion on the surface of the plating layer may be 5 to 50%.
  • the indentation means a region having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
  • the Ra and RPc of the surface of the coated steel sheet of the present invention are controlled to appropriate levels, it is possible to secure sufficient paint adhesion of the member even if a large increase in roughness does not occur during the hot press forming process.
  • Example 1 is a photograph of the surfaces of aluminum-iron-based coated steel sheets prepared by Comparative Example 1 (a) and Inventive Example 2 (b) observed with a scanning electron microscope (SEM).
  • Figure 2 is a photograph of the image processing result of observing the surface of the aluminum-iron-based coated steel sheet prepared by Comparative Example 1 (a) and Inventive Example 2 (b) with an optical microscope.
  • 3 is a graph showing the relationship between the number of cracks generated on the surface of an aluminum-iron-based coated steel sheet according to skin pass rolling conditions.
  • the steel sheet refers to a coil or sheet state before being processed into a specific shape
  • a member refers to a steel sheet processed into a non-plate shape by a molding process
  • the plating layer referred to in the present invention means a layer of metal, alloy or intermetallic compound formed in contact with the base steel sheet.
  • a pre-alloyed plated steel sheet it may have an alloy layer having a structure in which hydrogen is easily discharged on the surface, thereby reducing the possibility of hydrogen delayed fracture.
  • the plating layer formed on the surface of the hot press-formed member is formed by an alloying reaction between aluminum and iron and is relatively chemically stable. As such, since the surface of the hot press-formed member is chemically stable, it is difficult to improve the roughness any longer even with phosphate treatment.
  • the surface roughness increases in the process of heating the aluminum-coated steel sheet, sufficient roughness can be secured without phosphate treatment, so there may be no major problem in paint adhesion.
  • the aluminum alloy plating layer is not superior in sacrificial corrosion protection performance compared to the zinc-based plating layer, there is a problem in that corrosion occurs along with blisters when the steel sheet is exposed due to cracks or the like.
  • Ra ⁇ RPc of the surface of the plated layer of the coated steel sheet may be 60 ⁇ m / cm or more.
  • Ra is the arithmetic mean roughness and has a unit of ⁇ m
  • RPc is the peak count (Peak Count) and has a unit of the reciprocal of cm (/cm).
  • the lower limit of the Ra ⁇ RPc may be set at 60 ⁇ m/cm.
  • the lower limit of Ra ⁇ RPc may be set to 70 ⁇ m/cm.
  • the higher the value of Ra ⁇ RPc the better.
  • the upper limit of the Ra ⁇ RPc may be set to 150 ⁇ m/cm, and in some cases, the upper limit of the Ra ⁇ RPc may be set to 140 ⁇ m/cm.
  • the coated steel sheet according to another embodiment of the present invention by appropriately adjusting the ratio of the number of cracks formed on the surface and the area ratio of the indentation portion, the coating adhesion and corrosion resistance of the member obtained by the subsequent hot press forming process can be improved.
  • the plated steel sheet according to one embodiment of the present invention may have 10 to 200 cracks per 1 mm 2 of the surface area of the plated layer, and the ratio of the area occupied by the indentation portion on the surface of the plated layer may be 5 to 50%.
  • the cracks can serve as a fixing part in which the coating layer is anchored on the surface of the hot press-formed member, in one embodiment of the present invention, 10 or more cracks per unit area of 1 mm 2 of the plating layer, in some cases There may be more than 15 cracks.
  • the number of cracks is measured by converting the number of cracks observed in 100 areas obtained by dividing the field of view of a microscope (magnification: 100 times) into 10 equal parts horizontally and vertically, respectively, to those observed in an observation area of 1 mm 2 .
  • the microscope may be a ZEISS SUPRA 55VP model scanning electron microscope.
  • the number of cracks may be equal to the number of regions where the cracks are observed.
  • the number of cracks is equal to that number. This is a concept considering the total length of cracks within the observation area, and this is because the total length of cracks affects the fixing effect of the coating layer.
  • the aluminum-based coated steel sheet does not have a sacrificial corrosion protection function unlike the zinc-based coated steel sheet, corrosion may occur through the crack when a crack exists. Therefore, since an excessive number of cracks may impair the corrosion resistance of the steel sheet, the upper limit of the number of cracks per 1 mm 2 calculated in the above-described manner may be limited to 200, and in some cases may be limited to 180.
  • a large number of indentations may be formed on the surface of the coating layer to increase the contact area of the coating layer.
  • Ra and RPc of the surface of the plating layer may increase.
  • the ratio of the indentation portion on the surface of the plating layer may be 5% or more, and in some cases may be 8% or more.
  • the indentation may mean an area having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
  • the result of observing the surface image at 100 times magnification with a Leica DM6000M model optical microscope was divided into 256 color brightness using Clemex Vision PE software.
  • the area ratio can be obtained by specifying a portion having a brightness equal to or higher than 70% of the highest brightness value as the indentation portion. If the ratio of the indentation part is too high, the load applied to the steel sheet to form the indentation part is excessive and surface cracks may increase, so the upper limit of the ratio of the indentation part may be set to 50% or 45%.
  • the indentation portion may be formed by skin pass rolling, but is not necessarily limited thereto.
  • the object of the present invention is an alloy plated steel sheet of aluminum and iron
  • the total content of Al and Fe needs to be 80% or more by weight.
  • the upper limit of the sum of the contents of these elements does not need to be particularly determined, and a plating layer made of only 100% Al and Fe may also correspond.
  • the average content of Fe has a value of 20% or more based on weight. If the content of Fe in the plating layer is less than 20%, it may not be very helpful in solving problems such as melting of the aluminum plating layer or hydrogen embrittlement during heating, so in the present invention, Al-Fe containing 20% or more of Fe by weight Applies to alloy coated steel sheets. In some cases, the Fe content may be 30% or more, and may be 40% or more.
  • the upper limit of the Fe content is not particularly limited, but when considering the Fe content in a conventional alloy coated steel sheet, the upper limit of the Fe content may be set to 90%, and in some cases may be set to 80% or less.
  • the average content of Fe means the average of the Fe content in the entire plating layer, and there may be various measurement methods. After integrating the Fe content curve according to the depth (thickness) that appears when the interface is analyzed, it can be used as a value divided by the thickness of the plating layer (ie, the distance from the surface to the interface of the steel sheet).
  • the point where the Al and Fe content curves intersect is defined as the interface between the coating layer and the steel sheet from the GDS results.
  • the plating layer may further include general elements included in the plating layer in addition to the above-described Al and Fe.
  • these elements include one or two or more selected from among Mg, Zn, Mn, Cr, Mo, Si, and Ti, and they may be included in the plating layer up to 20% by weight or less in total.
  • the Fe content in the surface portion of the aluminum iron alloy plated steel sheet for hot press forming may be 50% or more compared to the average content of Fe in the plating layer. That is, by setting the Fe content on the surface to 50% or more of the average Fe content in the plating layer, a plated steel sheet sufficiently alloyed to the surface of the plating layer can be obtained.
  • the Fe content on the surface may be 15% or more by weight.
  • the surface portion may mean a point having a depth of 1 ⁇ m from the outermost surface.
  • the Fe content of the surface portion can be measured through EDS surface analysis at a site magnified 100 times with a scanning electron microscope.
  • the steel sheet of the present invention is a steel sheet for hot press forming, and the composition is not particularly limited as long as it is used for hot press forming.
  • weight% by weight% (hereinafter, it is necessary to note that the composition of the steel sheet and the plating layer of the present invention is based on weight unless otherwise specifically expressed), C: 0.01 to 0.5%, Si: 2.0% or less (excluding 0%), Mn: 0.1 to 4.0%, P: 0.05% or less, S: 0.02% or less, Al: 0.001 to 1%, Cr: 5.0% or less (excluding 0%), N: 0.02% or less, Ti: 0.1% or less (excluding 0%), B: 0.0001 to 0.01%, the balance may have a composition including Fe and unavoidable impurities.
  • the C is an essential element to increase the strength of the heat treated member and may be added in an appropriate amount. That is, in order to sufficiently secure the strength of the heat treated member, the C may be added in an amount of 0.01% or more. In one embodiment, the lower limit of the C content may be 0.05%. However, if the content is too high, the strength of the hot-rolled material is too high when the hot-rolled material is cold-rolled in the case of producing cold-rolled material, so that not only the cold-rollability is greatly inferior, but also the spot weldability is greatly reduced. It may be added in an amount of 0.5% or less to secure weldability. In addition, the C content may be limited to 0.45% or less and 0.4% or less.
  • Si 2.0% or less (excluding 0%)
  • Si not only needs to be added as a deoxidizer in steelmaking, but also suppresses the formation of carbides, which have the greatest effect on the strength of hot-press-formed parts, and also converts to martensite lath grain boundaries after martensite is formed in hot-press forming. It can be added in steel to enrich the carbon to obtain retained austenite.
  • the upper limit of the Si content may be set at 2% (excluding 0%) in order to secure sufficient plating properties when aluminum plating is performed on the steel sheet.
  • the Si content may be limited to 1.5% or less.
  • the lower limit of the Si content may be set to 0.01%.
  • the Mn may be added in an amount of 0.1% or more to secure a solid solution strengthening effect and to lower a critical cooling rate for securing martensite in a hot press molded member.
  • the Mn content may be 4% or less in terms of securing workability in the hot press forming process by properly maintaining the strength of the steel sheet, reducing manufacturing cost, and improving spot weldability, and one embodiment of the present invention In , it can be 3.5% or less, or 2.5% or less.
  • the P exists as an impurity in steel, and the smaller the content, the more advantageous it is. Accordingly, in one embodiment of the present invention, P may be included in an amount of 0.05% or less. In another embodiment of the present invention, P may be limited to 0.03% or less. Since P is an impurity element that is advantageous the smaller it is, there is no need to specifically set an upper limit on its content. However, in order to excessively lower the P content, there is a concern that the manufacturing cost will increase. In this case, the lower limit may be set to 0.001%.
  • the maximum content is set to 0.02% (preferably 0.01% or less).
  • the lower limit of the content may be 0.0001%.
  • the Al, together with Si, can be added in an amount of 0.001% or more because it can increase the cleanliness of the steel by deoxidizing in steelmaking.
  • the Al content may be 1% or less in order to prevent the temperature of Ac3 from becoming too high so that the heating required during hot press molding can be performed in an appropriate temperature range.
  • the Cr serves to improve the strength of the hot press formed part by improving the hardenability of the steel, it is necessary to add Cr.
  • the lower limit of the Cr content may be set to 0.001%.
  • the upper limit of the Cr content may be set at 5.0%.
  • N is an element included as an impurity in steel, and the lower the content is, the more advantageous it is to reduce the sensitivity to crack generation during continuous casting of slabs and secure impact characteristics, and therefore may be included at 0.02% or less. Although it is necessary to specifically set the lower limit, the N content may be set to 0.001% or more in one embodiment in consideration of the increase in manufacturing cost.
  • the Ti By reacting with nitrogen, the Ti may contribute to improving hardenability by B.
  • fine precipitates are formed to improve the strength of the hot press molded member and refine crystal grains, it is effective in improving impact toughness, so it may be added in an amount of 0.1% or less (excluding 0%).
  • the lower limit of the Ti content may be set to 0.0005%.
  • B is an element capable of improving hardenability even with a small amount of addition and suppressing brittleness of hot press formed parts due to segregation of grain boundaries of P and/or S by being segregated at old austenite grain boundaries. Accordingly, B may be added in an amount of 0.0001% or more. However, if it exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit may be 0.01%, and in one embodiment, the B content may be 0.005% or less.
  • one or two or more elements selected from Nb: 0.1% or less, Mo: 0.5% or less, Ni: 1% or less, Cu: 1% or less, and V: 0.5% or less, if necessary. can include more.
  • Nb is effective in improving the steel sheet of heat treated members by forming fine precipitates, stabilizing retained austenite and improving impact toughness by refining crystal grains, it can be added to steel. However, if the added amount exceeds 0.1%, the effect is saturated and the cost may increase due to the excessive addition of ferroalloy. In one embodiment of the present invention, 0.001% or more of Nb may be added.
  • Mo is an element capable of securing strength and crystal grain refinement through enhancement of hardenability and precipitation strengthening effect. However, when added excessively, weldability may be deteriorated, so it may be added in an amount of 0.5% or less in consideration of this. In one embodiment of the present invention, when the Mo is added, the lower limit of the amount added may be set to 0.001%.
  • the Ni is an element that improves strength by forming fine precipitates. However, if the value exceeds 1.0%, excessive cost increases, so the upper limit is set at 1%. In one embodiment of the present invention, the addition amount of Ni may be 0.005% or more in order to surely obtain the above-mentioned effect.
  • Cu is an element that improves strength by forming fine precipitates. However, if the value exceeds 1.0%, excessive cost increases, so the upper limit is set at 1%. In order to reliably obtain the above-mentioned effect, the addition amount of Cu may be 0.005% or more.
  • the V may be added to steel because it is effective in improving the steel sheet of the heat treated member by forming fine precipitates, stabilizing retained austenite and improving impact toughness by refining crystal grains. However, if the added amount exceeds 0.5%, the effect is saturated and the cost may increase due to excessive addition of ferroalloy. In one embodiment of the present invention, 0.001% or more of V may be added in order to ensure the effect of adding V described above.
  • Iron and unavoidable impurities may be mentioned as the remainder other than the above-mentioned components, and any component that can be included in the steel sheet for hot forming is not particularly limited.
  • the manufacturing method of the steel sheet for hot press forming described below is an example, and the steel sheet for hot press forming of the present invention does not necessarily have to be manufactured by the present manufacturing method, and any manufacturing method is a method that satisfies the scope of the present invention. It should be noted that if it is, there is no problem in using it to implement each implementation example of the present invention.
  • the steel sheet is obtained by obtaining an aluminum-iron (Al-Fe) alloy plated steel sheet having an aluminum-iron alloy plating layer formed on the steel sheet; And it can be manufactured by performing skin pass rolling with respect to the aluminum-iron (Al-Fe) alloy plated steel sheet.
  • the aluminum-iron alloy-coated steel sheet is obtained by obtaining an aluminum-coated steel sheet coated with aluminum or an aluminum alloy; And it can be obtained by a process comprising the step of alloying by heating the aluminum-coated steel sheet.
  • any aluminum-coated steel sheet may be used as long as it is industrially referred to as aluminum-based, and in one embodiment of the present invention, one having an Al content of 70% or more by weight may be used.
  • the remaining elements other than Al in the plating layer one or more components selected from Si, Mg, Zn, Mn, Cr, Mo, Ti, Fe, and/or other impurity elements that may be normally added to the aluminum-based plating layer are selected.
  • Si may be included in an amount of 0.01 to 20%.
  • the Si content included in the plating bath may be limited to 0.01 to 20%.
  • One or two or more elements selected from Mg, Zn, Mn, Cr, Mo, and Ti may be included in the plating layer by 20% by weight or less in total.
  • the above-described aluminum-based plating layer may be formed by a hot-dip aluminum plating method in which a hot-rolled or cold-rolled and annealed steel sheet is immersed in a molten aluminum plating bath.
  • the plating amount during the aluminum plating may be 10 to 100 g / m 2 on a single side basis. If the plating amount is less than 10 g/m 2 , corrosion resistance is reduced, whereas if the plating amount exceeds 100 g/m 2 , a problem of deteriorating weldability occurs. Therefore, in the present invention, it is preferable to limit the coating amount to 10 to 100 g / m 2 on a single side basis during aluminum plating. On the other hand, in another embodiment of the present invention, the plating amount during the aluminum plating may be 20 to 90 g / m 2 on a single side basis.
  • the step of heating and alloying the aluminum-coated steel sheet is directly connected to a line for plating the steel sheet with aluminum or aluminum alloy, and is performed by online heating in which the coated steel sheet is heated while running.
  • the heating temperature range during the alloying may be 670 to 900 ° C, and the holding time may be 1 to 20 seconds.
  • the heating temperature range may be 680 to 880 ° C, and the holding time may be 1 to 10 seconds.
  • the step of heating and alloying the aluminum-coated steel sheet may be performed by upper annealing of heating the coiled coated steel sheet in a box-shaped annealing furnace.
  • the coil cooled to room temperature after aluminum plating may be heated for 0.1 to 100 hours at a temperature in the range of 600 to 800 ° C in an upper annealing furnace in a hydrogen or hydrogen and nitrogen atmosphere having a dew point temperature of less than -10 ° C (the present invention In the above temperature range, the highest temperature at which the furnace atmosphere temperature reaches is set as the heating temperature).
  • the holding time means the time from when the ambient temperature reaches the target temperature until cooling is initiated.
  • the skin pass rolling may be performed under the condition that the SPMI represented by the following relational expression 1 is 5000 to 8500.
  • P is the rolling force during skin pass rolling (unit: ton)
  • the Ra roll is the arithmetic average roughness of the surface of the skin pass rolling roll (unit: ⁇ m)
  • the RPc roll is the number of peaks per unit length of the skin pass rolling roll (unit: /cm).
  • the unit of the SPMI is ⁇ Ton ⁇ m/cm.
  • the SPMI is a condition that can control the surface state of the steel sheet devised by the present inventors, and the Ra and RPc of the steel sheet surface are affected not only by the Ra and RPc of the roll surface but also by the rolling force applied by the roll, and their influence
  • the relationship represented by the above relational expression 1 was shown.
  • the SPMI value needs to be 5000 or more, and in some cases, the SPMI value may be limited to 5500 or more.
  • the value may be limited to 8500 or less, and in some cases may be limited to 8000 or less.
  • a hot press-formed member according to one aspect of the present invention will be described.
  • the method for manufacturing a hot press-formed member is not particularly limited in the present invention because it consists of a process of heating and maintaining a steel sheet at a temperature equal to or higher than the austenitizing temperature, followed by rapid cooling and forming at the same time as is well known in the prior art.
  • a hot press-formed member includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the product of Ra and RPc of the surface of the plated layer is controlled to combine paint adhesion and corrosion resistance.
  • Ra ⁇ RPc of the surface of the plating layer of the member obtained by hot press molding may be 60 ⁇ m/cm or more in order to secure high paint adhesion.
  • Ra is the arithmetic mean roughness and has a unit of ⁇ m
  • RPc is the peak count (Peak Count) and has a unit of the reciprocal of cm (/cm).
  • the lower limit of the Ra ⁇ RPc may be set at 60 ⁇ m/cm. In some cases, the lower limit of Ra ⁇ RPc may be set to 70 ⁇ m/cm.
  • the upper limit of Ra ⁇ RPc may be set to 150 ⁇ m/cm, and in some cases, the upper limit of Ra ⁇ RPc may be set to 140 ⁇ m/cm. there is.
  • the number of cracks formed on the surface of the Al-Fe alloy plating layer and the area ratio of the indentation portion are appropriately adjusted to paint the member obtained by the subsequent hot press forming process. Adhesion and corrosion resistance can be improved.
  • the plated steel sheet according to one embodiment of the present invention may have 15 to 220 cracks per 1 mm 2 of the surface area of the plated layer, and the ratio of the area occupied by the indentation portion on the surface of the plated layer may be 5 to 50%.
  • the cracks can serve as a fixing part in which the coating layer is anchored on the surface of the hot press-formed member, in one embodiment of the present invention, 15 or more cracks per unit area of 1 mm 2 of the plating layer, in some cases More than 20 cracks may be present.
  • the number of cracks is measured by converting the number of cracks observed in 100 areas obtained by dividing the field of view of a microscope (magnification 100 times) into 10 equal parts horizontally and vertically, respectively, to those observed in an observation area of 1 mm 2 .
  • the microscope may be a ZEISS SUPRA 55VP model scanning electron microscope.
  • the number of cracks may be equal to the number of areas in which the cracks are observed.
  • the number of cracks is equal to that number. This is a concept considering the total length of cracks within the observation area, and this is because the total length of cracks affects the fixing effect of the coating layer.
  • the aluminum-based coated steel sheet (member) does not have a sacrificial corrosion protection function unlike the zinc-based coated steel sheet, corrosion may occur through the crack when a crack exists. Therefore, since an excessive number of cracks may impair the corrosion resistance of the member, the upper limit of the number of cracks per 1 mm 2 may be limited to 220, and in some cases may be limited to 200.
  • a large number of indentations may be formed on the surface of the coating layer of the steel sheet in order to increase the contact area of the coating layer, and these indentations may remain on the member to improve paint adhesion.
  • Ra and RPc of the surface of the plating layer may increase.
  • the ratio of the indentation portion on the surface of the plating layer may be 5% or more, and in some cases may be 8% or more.
  • the result of observing the surface image at 100 times magnification with a Leica DM6000M model optical microscope is the highest after classifying the color brightness into 256 using Clemex Vision PE software.
  • a portion of the brightness value corresponding to 70% of the brightness value or more was specified as the indentation portion, and the area ratio thereof was obtained. If the ratio of the indentation part is too high, the load applied to the plating layer to form the indentation part is excessive and surface cracks may increase. Therefore, the upper limit of the ratio of the indentation part may be set to 50% or 45%.
  • the aluminum-iron (Al-Fe) alloy plating layer may include a total of 70% or more of Al and Fe by weight. Since the plating layer may be made of only these elements, there is no need to specifically set an upper limit on the sum of the contents, and the sum of the contents of these elements may be 100%.
  • Fe in the plating layer may diffuse into the plating layer during hot press molding, Fe may be included in an amount of 30% or more by weight. If the content of Fe in the plating layer is less than 30%, it may not be very helpful in solving problems such as hydrogen embrittlement during storage. In some cases, the Fe content may be 35% or more, and may be 40% or more.
  • the upper limit of the Fe content there is no particular limitation on the upper limit of the Fe content, but when considering the Fe content in the plating layer of a conventional hot press-formed member, the upper limit of the Fe content may be set to 90%, and in some cases set to 80% or less.
  • the average content of Fe means the average of the Fe content in the entire plating layer, and there may be various measurement methods. After integrating the Fe content curve according to the depth (thickness) that appears when the interface of is analyzed, it can be used as a value divided by the thickness of the plating layer.
  • the point where the Al and Fe content curves intersect is defined as the interface between the coating layer and the steel sheet.
  • the plating layer of the hot press-formed member may further include common elements included in the plating layer in addition to the above-described Al and Fe.
  • these elements include one or two or more selected from among Mg, Zn, Mn, Cr, Mo, Si, and Ti, and they may be included in the plating layer up to 20% by weight or less in total.
  • the holding steel sheet of the hot press-formed member of the present invention may have various structures for each strength. If the tensile strength is 400 to 800 MPa, it may have a microstructure consisting of one or two or more phases selected from 5 to 50% of martensite and the remaining ferrite, pearlite, bainite, and austenite based on area, and tensile strength When is 800 to 1300 MPa, it may have a microstructure consisting of 90% or more of martensite and one or more phases selected from the remaining ferrite, pearlite, bainite and austenite based on area, and the tensile strength is 1300 MPa or more may have a microstructure consisting of one or more phases selected from 95% or more of martensite and the remaining ferrite, pearlite, bainite, and austenite on an area basis.
  • a cold-rolled steel sheet for hot press forming having a composition shown in Table 1 was prepared as a base steel sheet. After annealing heat treatment of the base steel sheet in a conventional manner, molten aluminum plating was performed.
  • the plating bath was set to have a composition substantially consisting of 9.5% Si and balance Al by weight%, and the plating bath temperature was set to 660°C. After plating, the coating weight was adjusted to 40 g/m 2 based on one side using an air knife.
  • alloying was performed by on-line or phase annealing for each invention example and comparative example to obtain an Al-Fe alloy plated steel sheet.
  • Online alloying was performed by reheating the steel sheet to 720 ° C, holding it for 5 seconds and cooling it to room temperature, and alloying by normal annealing was performed by maintaining the coil in an ordinary annealing furnace at 650 ° C for 10 hours.
  • the coated steel sheet was skin-pass rolled with a rolling force shown in Table 2 using a roll having surface roughness (Ra) and peak number (RPc) shown in Table 2, thereby adjusting the surface state of the alloyed plating layer of the steel sheet.
  • the sum of the contents of Al and Fe in the alloy plating layer obtained by each alloying method and skin pass rolling and the Fe content were 90% and 43%, respectively, and there was no particular difference between examples.
  • the Fe content on the surface of the plating layer was 77% of the average Fe content in the plating layer, and did not show a large difference.
  • the surface of the plating layer means a point having a depth of 1 ⁇ m from the outermost surface of the plating layer.
  • the skin pass-rolled plated steel sheet was heated at 930° C. for 6 minutes in an air atmosphere, and hot press forming and rapid cooling were performed to obtain a hot press formed part. It was confirmed that the internal structure of the obtained hot-press-formed part consisted of substantially 100% martensite, and that the strength was 1500 MPa. However, the structure and strength of the steel material can be changed as needed, and a person skilled in the art will have no difficulty in manufacturing a member having a target structure and strength by changing the manufacturing conditions including the composition of the steel material or cooling conditions. .
  • the sum of Al and Fe contents in the alloy plating layer and the Fe content were 83% and 44%, respectively, and no particular difference was confirmed for each example.
  • the surface roughness (Ra), the number of peaks (RPc), the number of cracks per unit area, and the ratio of indentations were measured for the skin pass-rolled plated steel sheet and the hot press formed member.
  • the surface roughness and number of peaks were obtained by measuring five areas according to the JIS B 0601 (2013) standard and averaging the values.
  • the number of cracks was measured by converting the total number of cracks observed in each of 100 areas obtained by dividing the field of view of a microscope (magnification: 100 times) into 10 equal parts horizontally and vertically, respectively, to those observed in an observation area of 1 mm 2 .
  • a ZEISS SUPRA 55VP model scanning electron microscope was used for the measurement, and the average value of the measurements for five sites was obtained and used for analysis.
  • the ratio of the indentation was 70% of the highest brightness value after observing the surface image at 100 times magnification with a Leica DM6000M model optical microscope and classifying the color brightness into 256 using Clemex Vision PE software. A portion having a brightness corresponding to or greater than that was specified as the indentation portion, and the area ratio thereof was obtained. The area ratio was also set as the average value of the results of observing five locations.
  • those for coated steel sheets are shown in Table 3, and those for hot press formed parts are shown in Table 4.
  • the coating adhesion rating was determined by coating the member obtained according to the GMW14829 method, forming grid scratches at 1 mm intervals, and evaluating the peeling of the tape. If the rating is 1 or less, it can be regarded as good.
  • the Ra ⁇ RPc of the plating layer, the indentation ratio, and the number of cracks may be sufficient to secure the paint adhesion of the member, but the corrosion resistance of the member deteriorates as shown in Table 4 as damage occurs to the plating layer.
  • the plating layer is damaged, corrosion may occur due to exposure of the base steel sheet through the damaged gap in the aluminum alloy-based plating layer that does not provide the anticorrosive performance of the sacrificial anode method. can be bigger
  • Example 1 shows a coated steel sheet (a) manufactured by Comparative Example 1 and a coated steel sheet (b) manufactured by Inventive Example 2.
  • the plated steel sheet manufactured by Comparative Example 1 does not have sufficient surface irregularities, whereas the plated steel sheet manufactured according to Inventive Example 2 has sufficiently formed irregularities on the surface, followed by hot press forming.
  • the surface of the member produced by this can be made suitable for fixing the paint layer.
  • FIG. 2 the surface of the steel sheet manufactured by Comparative Example 1 and Inventive Example 2 was observed with a microscope (DM6000M) at 100 magnification, processed using Clemex Vision PE software, and then the area (indentation part) of 70% or more of the highest brightness was white.
  • Inventive Example 2 in which skin pass rolling was performed by controlling the SPMI to an appropriate range according to the present invention, a much higher indentation was formed than in Comparative Example 1, in which skin pass rolling was performed under low SPMI conditions.
  • the graph of FIG. 3 shows the relationship between the SPMI value and the number of cracks. From the figure, it can be seen that when the SPMI value has a value between 5000 and 8000 ⁇ Ton ⁇ m/cm, the number of cracks can be maintained within an appropriate range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The present invention relates to: a plated steel sheet for hot press forming, having excellent plating adhesion and corrosion resistance after hot press forming; a preparation method for the plated steel sheet; and a hot pressed forming member. The plated steel sheet according to an aspect of the present invention comprises a base steel sheet and a plating layer consisting of Al-Fe alloy formed on the base steel sheet, wherein the total amount of Al and Fe in the plating layer is 80 % or more by weight, the average amount of Fe in the plating layer is 20 % or more by weight, and the product of Ra and RPC of the surface of the plating layer may be 60-150 μm/cm. Here, Ra represents arithmetic mean roughness and the unit thereof is μm, and RPc represents the number of peaks per unit length and the unit thereof is /cm.

Description

열간 프레스 성형 후 우수한 도장 밀착성과 내식성을 나타내는 도금강판, 도금강판의 제조방법 및 열간 프레스 성형 부재Plated steel sheet showing excellent paint adhesion and corrosion resistance after hot press forming, manufacturing method of coated steel sheet, and hot press formed member
본 발명은 열간 프레스 성형용 도금강판, 상기 도금강판의 제조방법 및 열간 프레스 성형 부재에 관한 것이다.The present invention relates to a coated steel sheet for hot press forming, a method for manufacturing the coated steel sheet, and a hot press formed member.
최근 석유 에너지 자원의 고갈과 환경에 관한 높은 관심으로 인하여 자동차의 연비 향상에 대한 규제는 날로 강력해지고 있다. 재료적인 측면에서 자동차의 연비를 향상시키기 위한 하나의 방법으로서 사용되는 강판의 두께를 감소시키는 것을 들 수 있으나, 두께를 감소시킬 경우 자동차의 안전성에 문제가 발생할 수 있으므로, 반드시 강판의 강도 향상이 뒷받침되어야 한다. Recently, due to the depletion of petroleum energy resources and high interest in the environment, regulations for improving fuel efficiency of automobiles are becoming stronger day by day. In terms of materials, one way to improve the fuel efficiency of a car is to reduce the thickness of the steel sheet used. However, if the thickness is reduced, problems may arise in the safety of the car, so improvement in the strength of the steel sheet must be supported. It should be.
이와 같은 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였으며, 다양한 종류의 강판이 개발된 바 있다. 그런데 이들 강판은 그 자체로 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다. 즉, 강판의 등급별로 강도와 연신율의 곱이 항상 일정한 값을 가지려는 경향을 가지고 있기 때문에, 강판의 강도가 높아질 경우에는 가공성의 지표가 되는 연신율이 감소하게 된다는 문제가 있었다.For this reason, demand for high-strength steel sheets has been continuously generated, and various types of steel sheets have been developed. However, since these steel sheets themselves have high strength, there is a problem in that workability is poor. That is, since the product of strength and elongation always tends to have a constant value for each grade of steel sheet, when the strength of the steel sheet increases, the elongation rate, which is an indicator of workability, decreases.
이러한 문제를 해결하기 위하여 열간 프레스 성형법이 제안된 바 있다. 열간 프레스 성형법은 강판을 가공하기 좋은 고온에서 가공한 후 이를 낮은 온도로 급냉함으로써 강판 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화할 수 있다는 장점이 있다.In order to solve this problem, a hot press molding method has been proposed. The hot press forming method is a method of forming a low-temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then rapidly cooling it to a low temperature to increase the strength of the final product. In this case, there is an advantage in that workability problems can be minimized when manufacturing a member having high strength.
그런데 상기 열간 프레스 성형법에 의할 경우에는 강판을 고온으로 가열하기 때문에 강판 표면이 산화되고 따라서 프레스 성형 이후에 강판 표면의 산화물을 제거하는 과정이 추가되어야 한다는 문제가 있었다. 이러한 문제점을 해결하기 위한 방법으로 특허문헌 1 이 제안된 바 있다. 상기 특허문헌 1 에서는 알루미늄 도금을 실시한 강판을 열간 프레스 성형 또는 상온 성형 후 가열하고 급냉하는 과정(간략히 '후 열처리')에 이용하고 있고, 알루미늄 도금층이 강판 표면에 존재하기 때문에 가열 시에 강판이 산화되지는 않는다.However, in the case of the hot press forming method, since the steel sheet is heated to a high temperature, the surface of the steel sheet is oxidized, so there is a problem that a process of removing oxides from the surface of the steel sheet must be added after press forming. Patent Document 1 has been proposed as a method for solving this problem. In Patent Document 1, a steel sheet subjected to aluminum plating is used in a process of heating and rapidly cooling after hot press forming or room temperature forming (briefly, 'post heat treatment'), and since the aluminum plating layer exists on the surface of the steel sheet, the steel sheet is oxidized during heating. It doesn't work.
(특허문헌 1) 미국 특허공보 제6,296,805호(Patent Document 1) US Patent Publication No. 6,296,805
본 발명의 한가지 측면에 따르면, 열간 프레스 성형 부재의 도장 밀착성을 개선시킬 수 있을 뿐만 아니라 내식성도 확보 가능한 열간 프레스 성형용 도금강판, 상기 도금강판의 제조방법이 제공된다.According to one aspect of the present invention, there is provided a coated steel sheet for hot press forming capable of improving coating adhesion of a hot press formed member and ensuring corrosion resistance, and a method of manufacturing the coated steel sheet.
본 발명의 다른 한가지 측면에 따르면, 도장 밀착성과 내식성이 우수한 열간 프레스 성형 부재가 제공된다.According to another aspect of the present invention, a hot press-formed member excellent in paint adhesion and corrosion resistance is provided.
본 발명의 과제는 상술한 범위에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 명세서에 기재된 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는 것에 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above range. Anyone skilled in the art to which the present invention pertains will have no difficulty in understanding the additional problems of the present invention from the overall details described in this specification.
본 발명의 한가지 측면에 따른 도금강판은 소지강판 및 상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고, 상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 80% 이상이며, 상기 도금층 중 Fe의 평균 함량은 중량 기준으로 20% 이상이며, 상기 도금층 표면의 Ra와 RPc의 곱이 60~150㎛/cm인 것일 수 있다.A plated steel sheet according to one aspect of the present invention includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the total content of Al and Fe in the plated layer is 80% or more by weight, wherein the The average content of Fe in the plating layer may be 20% or more by weight, and the product of Ra and RPc of the surface of the plating layer may be 60 to 150 μm/cm.
단, Ra는 산술평균거칠기를 의미하며 단위는 ㎛ 이고, RPc는 단위 길이 당 피크수를 의미하며 단위는 /cm 이다.However, Ra means arithmetic average roughness and its unit is μm, and RPc means the number of peaks per unit length and its unit is /cm.
본 발명의 다른 한가지 측면에 따른 도금강판은 소지강판 및 상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고, 상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 80% 이상이며, 상기 도금층 중 Fe의 평균 함량은 중량 기준으로 20% 이상이며, 상기 도금층 표면을 주사전자현미경으로 100배의 배율로 관찰하였을 때 얻어지는 시야를 가로 및 세로 10 등분하여 얻어지는 각 영역 내에 존재하는 크랙의 개수가 1mm2 당 10~200개이며, 상기 도금층 표면에서 압흔부가 차지하는 면적의 비율이 5~50%인 것일 수 있다.A coated steel sheet according to another aspect of the present invention includes a base steel sheet and a plating layer made of an Al-Fe alloy formed on the base steel sheet, wherein the total content of Al and Fe in the plating layer is 80% or more by weight, The average content of Fe in the plating layer is 20% or more by weight, and the number of cracks existing in each region obtained by dividing the surface of the plating layer into 10 equal parts horizontally and vertically when observing the surface of the plating layer at a magnification of 100 times with a scanning electron microscope. is 10 to 200 per 1 mm 2 , and the ratio of the area occupied by the indentation portion on the surface of the plating layer may be 5 to 50%.
여기서, 압흔부라 함은 광학현미경으로 100배의 배율로 관찰한 영역에서 측정되는 가장 높은 명도 대비 70% 이상의 명도를 가지는 영역을 의미한다.Here, the indentation means a region having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
본 발명의 또 다른 한가지 측면에 따른 도금강판의 제조방법은 소지강판 상에 Al과 Fe의 합금으로 이루어진 도금층이 형성된 Al-Fe의 합금 도금강판을 얻는 단계; 및 상기 Al-Fe 합금 도금강판에 대하여 하기 관계식 1로 표현되는 SPMI가 5000 내지 8500이 되는 조건하에서 스킨 패스 압연하는 단계를 포함할 수 있다.A method for manufacturing a plated steel sheet according to another aspect of the present invention includes obtaining an Al-Fe alloy plated steel sheet having a plating layer made of an alloy of Al and Fe formed on a base steel sheet; and performing skin pass rolling on the Al-Fe alloy coated steel sheet under the condition that the SPMI expressed by the following relational expression 1 is 5000 to 8500.
[관계식 1][Relationship 1]
Figure PCTKR2022020870-appb-img-000001
Figure PCTKR2022020870-appb-img-000001
여기서, 상기 P는 스킨 패스 압연시 압하력(단위: ton), 상기 Raroll은 스킨 패스 압연 롤 표면의 산술평균거칠기(단위: ㎛), 상기 RPcroll는 스킨 패스 압연 롤의 단위 길이 당 피크수(단위: /cm)를 의미한다. 또한, 상기 SPMI의 단위는 √Ton·㎛/cm이다.Here, P is the rolling force during skin pass rolling (unit: ton), the Ra roll is the arithmetic average roughness of the surface of the skin pass rolling roll (unit: μm), and the RPc roll is the number of peaks per unit length of the skin pass rolling roll (unit: /cm). In addition, the unit of the SPMI is √Ton·㎛/cm.
본 발명의 또다른 한가지 측면에 따른 열간 프레스 성형 부재는 소지강판 및 상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고, 상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 70% 이상이며, 상기 도금층 중 Fe의 함량은 중량 기준으로 30% 이상이며, 상기 도금층 표면의 Ra와 RPc의 곱이 60~150㎛/cm인 것일 수 있다.A hot press-formed member according to another aspect of the present invention includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the total content of Al and Fe in the plated layer is 70% by weight. In the above, the content of Fe in the plating layer may be 30% or more by weight, and the product of Ra and RPc of the surface of the plating layer may be 60 to 150 μm/cm.
단, Ra는 산술평균거칠기를 의미하며 단위는 ㎛ 이고, RPc는 단위 길이 당 피크수를 의미하며 단위는 /cm 이다.However, Ra means arithmetic average roughness and its unit is μm, and RPc means the number of peaks per unit length and its unit is /cm.
본 발명의 또 다른 한가지 측면에 따른 열간 프레스 성형 부재는 소지강판 및 상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고, 상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 70% 이상이며, 상기 도금층 중 Fe의 평균 함량은 중량 기준으로 30% 이상이며, 상기 도금층 표면을 주사전자현미경으로 100배의 배율로 관찰하였을 때 얻어지는 시야를 가로 및 세로 10 등분하여 얻어지는 각 영역 내에 존재하는 크랙의 개수가 1mm2 당 15~220 개이며, 상기 도금층 표면에서 압흔부가 차지하는 면적의 비율이 5~50%인 것일 수 있다.A hot press-formed member according to another aspect of the present invention includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the total content of Al and Fe in the plated layer is 70% by weight. Above, the average content of Fe in the plating layer is 30% or more by weight, and present in each region obtained by dividing the field of view obtained when the surface of the plating layer is observed at a magnification of 100 times with a scanning electron microscope into 10 horizontally and vertically. The number of cracks may be 15 to 220 per 1 mm 2 , and the ratio of the area occupied by the indentation portion on the surface of the plating layer may be 5 to 50%.
여기서, 압흔부라 함은 광학현미경으로 100배의 배율로 관찰한 영역에서 측정되는 가장 높은 명도 대비 70% 이상의 명도를 가지는 영역을 의미한다.Here, the indentation means a region having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
상술한 바와 같이, 본 발명의 도금강판은 표면의 Ra와 RPc가 적정 수준으로 제어된 것이므로, 열간 프레스 성형 과정에서 큰 폭의 조도 증가가 일어나지 않더라도 부재의 충분한 도장 밀착성을 확보할 수 있다.As described above, since the Ra and RPc of the surface of the coated steel sheet of the present invention are controlled to appropriate levels, it is possible to secure sufficient paint adhesion of the member even if a large increase in roughness does not occur during the hot press forming process.
도 1은 비교예 1(a) 및 발명예 2(b)에 의해 제조된 알루미늄-철계 도금 강판의 표면을 주사전자현미경(SEM)으로 관찰한 사진이다.1 is a photograph of the surfaces of aluminum-iron-based coated steel sheets prepared by Comparative Example 1 (a) and Inventive Example 2 (b) observed with a scanning electron microscope (SEM).
도 2는 비교예 1(a) 및 발명예 2(b)에 의해 제조된 알루미늄-철계 도금 강판의 표면을 광학현미경으로 관찰한 결과를 이미지 처리한 사진이다.Figure 2 is a photograph of the image processing result of observing the surface of the aluminum-iron-based coated steel sheet prepared by Comparative Example 1 (a) and Inventive Example 2 (b) with an optical microscope.
도 3은 스킨 패스 압연 조건에 따른 알루미늄-철계 도금 강판의 표면에 생성된 크랙 수의 관계를 나타내는 그래프이다.3 is a graph showing the relationship between the number of cracks generated on the surface of an aluminum-iron-based coated steel sheet according to skin pass rolling conditions.
여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.The terminology used herein is intended only to refer to specific embodiments and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite.
명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.As used herein, the meaning of "comprising" specifies specific characteristics, regions, integers, steps, operations, elements, and/or components, and other specific characteristics, regions, integers, steps, operations, elements, elements, and/or groups. does not exclude the presence or addition of
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Although not defined differently, all terms including technical terms and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted as having meanings consistent with related technical literature and currently disclosed content, and are not interpreted in ideal or very formal meanings unless defined.
또한, 본 발명에서 강판이라 함은 코일이나 판재(sheet) 상태의 것으로서 아직 특정한 형상으로 가공되기 전의 것을 의미하고, 부재라 함은 성형 과정에 의하여 판상이 아닌 형태로 가공된 것을 의미한다. 또한, 본 발명에서 말하는 도금층은 소지강판과 접하여 형성된 금속, 합금 또는 금속간 화합물의 층을 의미한다.Further, in the present invention, the steel sheet refers to a coil or sheet state before being processed into a specific shape, and a member refers to a steel sheet processed into a non-plate shape by a molding process. In addition, the plating layer referred to in the present invention means a layer of metal, alloy or intermetallic compound formed in contact with the base steel sheet.
본 발명에서 각 원소를 함량을 나타낼 때 특별히 달리 정하지 아니하는 한, 중량을 기준으로 한다는 것에 유의할 필요가 있다. 또한, 결정이나 조직의 비율은 특별히 달리 표현하지 아니하는 한 면적을 기준으로 하며, 또한 가스의 함량은 특별히 달리 표현하지 아니하는 한 부피를 기준으로 한다. It should be noted that in the present invention, when the content of each element is expressed, it is based on weight unless otherwise specified. In addition, the ratio of crystals or structures is based on area unless otherwise specified, and the content of gas is based on volume unless otherwise specified.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
상술한 바와 같이, 열간 프레스 성형을 위하여 알루미늄 도금강판을 가열할 경우에는 가열 속도에 따라 알루미늄 도금층이 용융되어 설비를 오염시키는 등의 문제가 발생할 수 있다. 또한, 강도가 높은 부재의 경우에는 소지강판 내에 트랩된 수소가 집적되어 부품의 파괴에까지 이르게 하는 소위 수소지연파괴의 문제가 발생하는 경우도 있을 수 있다.As described above, when the aluminum-coated steel sheet is heated for hot press forming, problems such as melting of the aluminum plating layer depending on the heating rate and contaminating equipment may occur. In addition, in the case of a high-strength member, there may be a case where hydrogen trapped in the base steel sheet is accumulated and a problem of so-called hydrogen delayed fracture that leads to the destruction of the part may occur.
이러한 문제를 해결하기 위한 한가지 방안으로 가열 전에 알루미늄 도금강판을 가열하여 강판 상에 알루미늄-철 합금층을 형성시킨 후 상기 알루미늄-철 합금 도금층이 형성된 강판을 열간 프레스 성형에 이용하는 방법이 있을 수 있다. 즉, 열간 프레스 성형을 위한 가열 전에 상대적으로 낮은 온도 범위에서 도금층을 합금화 시켜둘 경우 상대적으로 빠른 속도로 가열한다고 하더라도 이미 알루미늄이 합금화 되어 있으므로 알루미늄의 융점 보다 높은 온도로 가열된다고 하더라도 알루미늄의 용융에 의한 문제를 방지할 수 있다. 또한, 사전에 합금화시킨 도금강판의 경우에는 수소가 배출되기 용이한 구조의 합금층을 표면에 가질 수 있어서 수소지연파괴가 발생할 가능성을 감소시킨다는 효과를 가질 수 있다.As one way to solve this problem, there may be a method of heating an aluminum-coated steel sheet before heating to form an aluminum-iron alloy layer on the steel sheet, and then using the steel sheet having the aluminum-iron alloy plating layer formed thereon for hot press forming. That is, if the plating layer is alloyed in a relatively low temperature range before heating for hot press forming, even if it is heated at a relatively high speed, since aluminum is already alloyed, even if it is heated to a temperature higher than the melting point of aluminum, the melting of aluminum problems can be avoided. In addition, in the case of a pre-alloyed plated steel sheet, it may have an alloy layer having a structure in which hydrogen is easily discharged on the surface, thereby reducing the possibility of hydrogen delayed fracture.
한편, 일반적인 도금강판 상에 도장을 실시할 경우 도장(페인트) 층을 고정할 수 있는 앵커가 존재하지 않아서 도장과 강판 표면의 밀착이 충분하지 못하게 되는 문제가 발생할 수 있다. 따라서, 이러한 문제를 해결하기 위하여 통상적으로 인산염 처리를 실시하게 되는데 인산염 처리 후의 강판 표면의 조도가 증가하여 강판과 도장 사이의 밀착성이 높아지게 된다. On the other hand, when painting is performed on a general plated steel sheet, there is no anchor capable of fixing the painting (paint) layer, which may cause insufficient adhesion between the painting and the surface of the steel sheet. Therefore, in order to solve this problem, phosphate treatment is usually performed, and the roughness of the surface of the steel sheet after phosphate treatment increases, thereby increasing the adhesion between the steel sheet and the paint.
그런데, 이와 같이 표면에 알루미늄-철 도금층이 형성된 도금강판을 열간 프레스 성형할 경우 부재의 표면 조도가 더이상 증가하기 어렵다는 문제가 있다. 열간 프레스 성형 부재의 표면에 형성된 도금층은 알루미늄과 철의 합금화 반응에 의하여 형성된 것으로 상대적으로 화학적으로 안정하다. 이와 같이 열간 프레스 성형 부재의 표면이 화학적으로 안정하기 때문에 인산염 처리를 하더라도 더이상 조도가 개선되기 어렵다. 그러나, 통상의 알루미늄 도금강판을 가열하여 열간 프레스 성형하는 경우에는 알루미늄 도금강판을 가열하는 과정에서 표면의 조도가 증가하기 때문에 인산염 처리 없이도 충분한 조도 확보가 가능하므로 도장 밀착성에 큰 문제는 없을 수 있다.However, there is a problem that it is difficult to increase the surface roughness of the member any longer when hot press forming the plated steel sheet having the aluminum-iron plating layer formed on the surface thereof. The plating layer formed on the surface of the hot press-formed member is formed by an alloying reaction between aluminum and iron and is relatively chemically stable. As such, since the surface of the hot press-formed member is chemically stable, it is difficult to improve the roughness any longer even with phosphate treatment. However, in the case of hot press forming by heating a conventional aluminum-coated steel sheet, since the surface roughness increases in the process of heating the aluminum-coated steel sheet, sufficient roughness can be secured without phosphate treatment, so there may be no major problem in paint adhesion.
반면, 사전에 합금화 처리가 이루어져 알루미늄-철 합금층이 형성된 알루미늄-철 합금 도금강판의 경우에는 후속하는 열간 프레스 성형을 위한 가열시에 조도의 증가폭이 크지 않다. 따라서, 비록 사전 합금화 열처리 과정에서 조도가 일부 증가하기는 하나 후속되는 열간 프레스 성형 과정에서의 조도 증가가 크지 않으므로 알루미늄-철 합금 도금강판을 열간 프레스 성형하여 얻은 부재의 표면 조도는 알루미늄 도금강판을 합금화 열처리 없이 바로 열간 프레스 성형하여 얻은 부재의 표면 조도에 비하여 충분하지 못하고, 따라서 도장 밀착성이 충분하지 못하다는 문제가 있을 수 있다.On the other hand, in the case of an aluminum-iron alloy coated steel sheet in which an aluminum-iron alloy layer is formed by prior alloying treatment, the increase in roughness is not large during subsequent heating for hot press forming. Therefore, although the roughness is partially increased in the pre-alloying heat treatment process, the increase in roughness in the subsequent hot press forming process is not large, so the surface roughness of the member obtained by hot press forming the aluminum-iron alloy coated steel sheet is obtained by alloying the aluminum coated steel sheet. Compared to the surface roughness of a member obtained by direct hot press molding without heat treatment, there may be a problem that the paint adhesion is not sufficient.
또한, 알루미늄 합금 도금층은 아연계 도금층에 비하여 희생방식 성능이 뛰어나지 않아서 크랙 등에 의하여 강판이 노출될 경우에는 블리스트와 함께 부식이 발생하는 문제가 있다.In addition, since the aluminum alloy plating layer is not superior in sacrificial corrosion protection performance compared to the zinc-based plating layer, there is a problem in that corrosion occurs along with blisters when the steel sheet is exposed due to cracks or the like.
통상, 표면의 조도(Ra)를 높일 경우에는 도장 밀착성이 향상되고 그로 인하여 도장 후 내식성도 향상된다는 것이 일반적이었으나, 본 발명자들은 따르면 단순히 표면 조도를 높이는 것 뿐만 아니라 단위 길이당 피크 수(RPc)와 조도(Ra)의 곱(Ra×RPc)의 값을 높이는 것이 도장 밀착성과 내식성을 향상시키는데 효과적이라는 것을 연구 결과 확인할 수 있었다.In general, when the surface roughness (Ra) is increased, it is common that the coating adhesion is improved, and thus the corrosion resistance after coating is also improved. However, according to the present inventors, not only the surface roughness is simply increased, but also the As a result of the study, it was confirmed that increasing the value of the product of roughness (Ra) (Ra×RPc) is effective in improving paint adhesion and corrosion resistance.
또한, 본 발명의 발명자들은 열간 프레스 성형 전에 이미 합금화된 소위 알루미늄-철 합금 도금강판을 이용하여 제조된 열간 프레스 성형 부재의 도장성을 파악하던 중 상술한 바와 같이 합금 도금강판의 경우에는 이미 상당한 양의 철이 도금층에 확산되어 있었기 때문에 추가적인 철 확산에 의한 표면 조도(Ra)와 단위 길이당 피크 수(RPc)의 증가량이 크지 않아, 결국 열간 프레스 성형 전의 도금강판의 조도(Ra) 또는 단위 길이당 피크 수(RPc)를 증가시켜 결과적으로 Ra×RPc 값을 증가시키는 것이 열간 프레스 성형 부재의 Ra×RPc 값을 높이는데 효과적이라는 것을 발견하였다.In addition, while the inventors of the present invention grasped the paintability of a hot press formed member manufactured using a so-called aluminum-iron alloy plated steel sheet already alloyed before hot press forming, as described above, in the case of an alloy plated steel sheet, a considerable amount has already been obtained. Since iron was diffused into the plating layer, the increase in surface roughness (Ra) and number of peaks per unit length (RPc) due to additional iron diffusion was not large. It has been found that increasing the number (RPc) and consequently increasing the Ra x RPc value is effective in increasing the Ra x RPc value of the hot press formed part.
따라서, 본 발명의 한가지 구현례에서는 높은 도장 밀착성을 확보하기 위하여 열간 프레스 성형에 의하여 얻어진 부재의 표면 Ra×RPc를 고려하여 도금강판의 도금층 표면의 Ra×RPc는 60㎛/cm 이상일 수 있다. 수식에서 Ra는 산술 평균 조도로서 ㎛의 단위를 가지며 RPc는 피크 수(Peak Count)로서 cm의 역수(/cm)의 단위를 가진다. 상기 Ra×RPc가 충분하지 않을 경우에는 충분한 도장 밀착성을 기대하기 어려울 수 있으므로, 상기 Ra×RPc의 하한을 60㎛/cm로 정할 수 있다. 경우에 따라서는 상기 Ra×RPc의 하한을 70㎛/cm으로 정할 수도 있다. 도장 밀착성의 개선을 위해서 Ra×RPc의 수치가 높을 수록 유리하나, 상기 수치가 너무 높을 경우에는 Ra와 RPc를 높이기 위한 가공 과정에서 도금층 표면에 과다한 크랙이 도입되어 내식성이 저하될 수 있으므로, 본 발명의 한가지 구현례에서는 상기 RaХRPc의 상한을 150㎛/cm으로 정할 수 있으며, 경우에 따라서는 상기 Ra×RPc의 상한을 140㎛/cm으로 정할 수도 있다.Therefore, in one embodiment of the present invention, in consideration of the surface Ra × RPc of the member obtained by hot press molding in order to secure high paint adhesion, Ra × RPc of the surface of the plated layer of the coated steel sheet may be 60 μm / cm or more. In the formula, Ra is the arithmetic mean roughness and has a unit of μm, and RPc is the peak count (Peak Count) and has a unit of the reciprocal of cm (/cm). When the Ra×RPc is not sufficient, it may be difficult to expect sufficient paint adhesion, so the lower limit of the Ra×RPc may be set at 60 μm/cm. In some cases, the lower limit of Ra×RPc may be set to 70 μm/cm. In order to improve the coating adhesion, the higher the value of Ra × RPc, the better. However, if the value is too high, excessive cracks may be introduced to the surface of the plating layer during the processing process to increase Ra and RPc, and corrosion resistance may be lowered. Therefore, the present invention In one implementation example, the upper limit of the RaХRPc may be set to 150 μm/cm, and in some cases, the upper limit of the Ra×RPc may be set to 140 μm/cm.
또한, 본 발명의 다른 한가지 구현례에 따른 도금강판은 표면에 형성된 크랙의 개수와 압흔부의 면적 비율을 적절히 조절함으로써, 이후의 열간 프레스 성형 공정에 의해 얻어진 부재의 도장 밀착성과 내식성을 향상시킬 수 있다. 이를 위해서 본 발명의 한가지 구현례에 따른 도금강판은 도금층 표면적 1mm2 당 크랙이 10~200개 존재하며, 상기 도금층 표면에서 압흔부가 차지하는 면적의 비율이 5~50%인 것일 수 있다. In addition, in the coated steel sheet according to another embodiment of the present invention, by appropriately adjusting the ratio of the number of cracks formed on the surface and the area ratio of the indentation portion, the coating adhesion and corrosion resistance of the member obtained by the subsequent hot press forming process can be improved. . To this end, the plated steel sheet according to one embodiment of the present invention may have 10 to 200 cracks per 1 mm 2 of the surface area of the plated layer, and the ratio of the area occupied by the indentation portion on the surface of the plated layer may be 5 to 50%.
상기 크랙은 열간 프레스 성형 부재의 표면에서 도장층이 고정(anchoring)되는 고정부의 역할을 수행할 수 있으므로, 본 발명의 한가지 구현례에서 도금층의 단위면적 1mm2 당 10 개 이상, 경우에 따라서는 15개 이상의 크랙이 존재할 수 있다. 크랙의 개수는 현미경(배율: 100배)의 시야를 가로 세로 각각 10등분하여 얻어지는 100개의 영역 내에서 관찰되는 크랙의 개수를 관찰 면적 1mm2에서 관찰되는 것으로 환산하여 측정한다. 본 발명의 한가지 구현례에서 상기 현미경은 ZEISS SUPRA 55VP 모델 주사전자현미경일 수 있다. 이때, 하나의 크랙이라고 하더라도 관찰되는 영역이 복수개 존재한다면 크랙의 개수는 그 크랙이 관찰된 영역의 수만큼으로 될 수 있다. 하나의 영역 내에 복수개의 크랙이 관찰된다면 크랙의 개수가 그 수만큼으로 되는 것은 물론이다. 이는 관찰 면적 내의 크랙의 전체 길이를 고려한 개념으로서, 크랙의 전체 길이가 도장층의 고정 효과에 영향을 미치기 때문이다. 다만, 알루미늄계 도금강판은 아연계 도금강판과 달리 희생 방식 기능이 없으므로 크랙이 존재할 경우 크랙을 통하여 부식이 발생할 수 있다. 따라서 과다한 크랙의 개수는 강판의 내식성을 해칠 수 있으므로 상술한 방식으로 계산한 1mm2 당 크랙 개수의 상한은 200개로 제한할 수 있으며, 경우에 따라서는 180개로 제한할 수도 있다.Since the cracks can serve as a fixing part in which the coating layer is anchored on the surface of the hot press-formed member, in one embodiment of the present invention, 10 or more cracks per unit area of 1 mm 2 of the plating layer, in some cases There may be more than 15 cracks. The number of cracks is measured by converting the number of cracks observed in 100 areas obtained by dividing the field of view of a microscope (magnification: 100 times) into 10 equal parts horizontally and vertically, respectively, to those observed in an observation area of 1 mm 2 . In one embodiment of the present invention, the microscope may be a ZEISS SUPRA 55VP model scanning electron microscope. In this case, even if there is one crack, if there are a plurality of observed regions, the number of cracks may be equal to the number of regions where the cracks are observed. Of course, if a plurality of cracks are observed in one area, the number of cracks is equal to that number. This is a concept considering the total length of cracks within the observation area, and this is because the total length of cracks affects the fixing effect of the coating layer. However, since the aluminum-based coated steel sheet does not have a sacrificial corrosion protection function unlike the zinc-based coated steel sheet, corrosion may occur through the crack when a crack exists. Therefore, since an excessive number of cracks may impair the corrosion resistance of the steel sheet, the upper limit of the number of cracks per 1 mm 2 calculated in the above-described manner may be limited to 200, and in some cases may be limited to 180.
또한, 본 발명의 한가지 구현례에서는 도장층의 접촉면적을 증가시키기 위하여 도금층 표면에 다량의 압흔부를 형성시킬 수 있다. 상기 압흔부가 존재할 경우에는 도금층 표면의 Ra와 RPc가 증가할 수 있는데, 이를 위하여 본 발명의 한가지 구현례에서는 도금층 표면에서 압흔부의 비율이 5% 이상일 수 있으며, 경우에 따라서는 8% 이상일 수도 있다. 본 발명의 한가지 구현례에서 상기 압흔부라 함은 광학현미경으로 100배의 배율로 관찰한 영역에서 측정되는 가장 높은 명도 대비 70% 이상의 명도를 가지는 영역을 의미할 수 있다. 또한, 반드시 이로 제한하는 것은 아니나 본 발명의 한가지 구현례에서 라이카(Leica) DM6000M 모델 광학 현미경으로 배율 100배에서 표면 이미지를 관찰한 결과를 Clemex Vision PE 소프트웨어를 이용하여 색의 명도를 256개로 구분한 후 가장 높은 명도 값의 70% 값에 해당하는 명도 이상의 부분을 상기 압흔부로 특정하여 그 면적 비율을 구할 수 있다. 상기 압흔부의 비율이 너무 높을 경우에는 상기 압흔부를 형성시키기 위하여 강판에 가해지는 부하가 과다하여 표면 크랙이 증가할 수 있으므로 상기 압흔부의 비율의 상한은 50%로 정할 수 있으며, 45%로 정할 수도 있다. 본 발명의 한가지 구현례에서 상기 압흔부를 스킨 패스 압연에 의해 형성시킬 수 있으나, 반드시 이로 한정하지는 아니한다.In addition, in one embodiment of the present invention, a large number of indentations may be formed on the surface of the coating layer to increase the contact area of the coating layer. When the indentation portion exists, Ra and RPc of the surface of the plating layer may increase. To this end, in one embodiment of the present invention, the ratio of the indentation portion on the surface of the plating layer may be 5% or more, and in some cases may be 8% or more. In one embodiment of the present invention, the indentation may mean an area having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope. In addition, although not necessarily limited to this, in one embodiment of the present invention, the result of observing the surface image at 100 times magnification with a Leica DM6000M model optical microscope was divided into 256 color brightness using Clemex Vision PE software. After that, the area ratio can be obtained by specifying a portion having a brightness equal to or higher than 70% of the highest brightness value as the indentation portion. If the ratio of the indentation part is too high, the load applied to the steel sheet to form the indentation part is excessive and surface cracks may increase, so the upper limit of the ratio of the indentation part may be set to 50% or 45%. . In one embodiment of the present invention, the indentation portion may be formed by skin pass rolling, but is not necessarily limited thereto.
또한, 본 발명에서 대상으로 하는 것은 알루미늄과 철의 합금 도금강판이므로 Al과 Fe의 함량의 합계가 중량 기준으로 80% 이상일 필요가 있다. 이들 원소들의 함량 합계의 상한은 특별히 정할 필요 없으며 100% Al과 Fe로만 이루어진 도금층도 해당할 수 있다.In addition, since the object of the present invention is an alloy plated steel sheet of aluminum and iron, the total content of Al and Fe needs to be 80% or more by weight. The upper limit of the sum of the contents of these elements does not need to be particularly determined, and a plating layer made of only 100% Al and Fe may also correspond.
또한, 본 발명의 한가지 구현례에서는 충분히 합금화 된 도금강판을 대상으로 하는 것이므로 Fe의 평균 함량이 중량 기준으로 20% 이상의 값을 가진다. 만일 도금층 중 Fe의 함량이 20% 미만일 경우에는 가열시 알루미늄 도금층의 용융이나 수소취화 등의 문제 해결에 큰 도움이 되지 않을 수 있으므로, 본 발명에서는 Fe가 중량 기준으로 20% 이상 포함된 Al-Fe 합금 도금강판을 대상으로 한다. 경우에 따라서는 상기 Fe 함량은 30% 이상일 수 있으며, 40% 이상일 수도 있다.In addition, in one embodiment of the present invention, since the target is a sufficiently alloyed plated steel sheet, the average content of Fe has a value of 20% or more based on weight. If the content of Fe in the plating layer is less than 20%, it may not be very helpful in solving problems such as melting of the aluminum plating layer or hydrogen embrittlement during heating, so in the present invention, Al-Fe containing 20% or more of Fe by weight Applies to alloy coated steel sheets. In some cases, the Fe content may be 30% or more, and may be 40% or more.
Fe 함량의 상한에는 특별한 제한이 없으나, 통상의 합금 도금강판 내의 Fe 함량을 고려할 경우 Fe 함량의 상한을 90%로 정할 수도 있으며, 경우에 따라서는 80% 이하로 정할 수도 있다. 여기서 Fe의 평균 함량은 전체 도금층 중의 Fe 함량의 평균을 의미하는 것으로서 측정 방법이 여러가지가 있을 수 있으나, 본 구현례에서는 글로우 방전 분광분석(Glow Discharge emission Spectrometry; 간략히 GDS)법으로 도금층의 표면부터 강판의 계면까지 분석하였을 때 나타나는 깊이(두께)에 따른 Fe의 함량 곡선을 적분한 후 이를 도금층 두께(즉, 표면부터 강판의 계면까지의 거리)로 나눈 값으로 사용할 수 있다. 도금층과 강판의 계면을 판단하는 기준에는 여러가지가 있을 수 있으나, 본 구현례에서는 GDS 결과로부터 Al과 Fe함량 곡선이 교차하는, 즉 두 원소의 함량이 같아지는 지점을 도금층과 강판의 계면으로 규정할 수 있다.The upper limit of the Fe content is not particularly limited, but when considering the Fe content in a conventional alloy coated steel sheet, the upper limit of the Fe content may be set to 90%, and in some cases may be set to 80% or less. Here, the average content of Fe means the average of the Fe content in the entire plating layer, and there may be various measurement methods. After integrating the Fe content curve according to the depth (thickness) that appears when the interface is analyzed, it can be used as a value divided by the thickness of the plating layer (ie, the distance from the surface to the interface of the steel sheet). There may be various standards for determining the interface between the coating layer and the steel sheet, but in this embodiment, the point where the Al and Fe content curves intersect, that is, the content of the two elements is equal, is defined as the interface between the coating layer and the steel sheet from the GDS results. can
본 발명의 한가지 구현례에 따르면 도금층은 상술한 Al과 Fe 이외에도 도금층에 포함되는 일반적인 원소들을 더 포함할 수 있다. 이러한 원소들의 예로서는 Mg, Zn, Mn, Cr, Mo, Si, Ti 중에서 선택되는 1종 또는 2종 이상을 들 수 있으며, 이들은 합계로 20 중량% 이하까지 도금층에 포함될 수 있다.According to one embodiment of the present invention, the plating layer may further include general elements included in the plating layer in addition to the above-described Al and Fe. Examples of these elements include one or two or more selected from among Mg, Zn, Mn, Cr, Mo, Si, and Ti, and they may be included in the plating layer up to 20% by weight or less in total.
또한, 본 발명의 한가지 구현례에 따르면 상기 열간 프레스 성형용 알루미늄철 합금 도금강판의 표면부에서의 Fe 함량은 상기 도금층 중 Fe의 평균 함량 대비 50% 이상일 수 있다. 즉, 표면에서의 Fe 함량을 도금층 중 Fe의 평균 함량 대비 50% 이상으로 함으로써 도금층의 표면까지 충분히 합금화된 도금강판을 얻을 수 있다. 본 발명의 한가지 구현례에서는 상기 표면에서의 Fe 함량은 중량 기준으로 15% 이상일 수 있다. 본 발명의 한가지 구현례에서 상기 표면부라 함은 최표면으로부터 깊이 1㎛의 지점을 의미할 수 있다. 또한, 본 발명의 한가지 구현례에서 표면부의 Fe 함량은 주사전자현미경으로 100배 확대한 부위에서 EDS 면분석을 통하여 측정할 수 있다.In addition, according to one embodiment of the present invention, the Fe content in the surface portion of the aluminum iron alloy plated steel sheet for hot press forming may be 50% or more compared to the average content of Fe in the plating layer. That is, by setting the Fe content on the surface to 50% or more of the average Fe content in the plating layer, a plated steel sheet sufficiently alloyed to the surface of the plating layer can be obtained. In one embodiment of the present invention, the Fe content on the surface may be 15% or more by weight. In one embodiment of the present invention, the surface portion may mean a point having a depth of 1 μm from the outermost surface. In addition, in one embodiment of the present invention, the Fe content of the surface portion can be measured through EDS surface analysis at a site magnified 100 times with a scanning electron microscope.
본 발명의 강판은 열간 프레스 성형용 강판으로서, 열간 프레스 성형에 사용된다면 그 조성을 특별히 제한하지 않는다. 다만, 본 발명의 한가지 측면에 따를 경우 중량%로(이하, 특별히 다르게 표현하지 않는 한 본 발명의 강판과 도금층의 조성은 중량을 기준으로 한다는 것에 유의할 필요가 있다), C: 0.01~0.5%, Si: 2.0% 이하(0% 제외), Mn: 0.1~4.0%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.001~1%, Cr: 5.0% 이하(0% 제외), N: 0.02% 이하, Ti: 0.1% 이하(0% 제외), B: 0.0001~0.01%, 잔부 Fe 및 불가피한 불순물을 포함하는 조성을 가질 수 있다. The steel sheet of the present invention is a steel sheet for hot press forming, and the composition is not particularly limited as long as it is used for hot press forming. However, in accordance with one aspect of the present invention, by weight% (hereinafter, it is necessary to note that the composition of the steel sheet and the plating layer of the present invention is based on weight unless otherwise specifically expressed), C: 0.01 to 0.5%, Si: 2.0% or less (excluding 0%), Mn: 0.1 to 4.0%, P: 0.05% or less, S: 0.02% or less, Al: 0.001 to 1%, Cr: 5.0% or less (excluding 0%), N: 0.02% or less, Ti: 0.1% or less (excluding 0%), B: 0.0001 to 0.01%, the balance may have a composition including Fe and unavoidable impurities.
C: 0.01~0.5%C: 0.01 to 0.5%
상기 C는 열처리 부재의 강도를 상향시키기 위해 필수적인 원소로서 적정한 양으로 첨가될 수 있다. 즉, 열처리 부재의 강도를 충분하기 확보하기 위해서 상기 C는 0.01% 이상 첨가될 수 있다. 한가지 구현례에서는 상기 C 함량의 하한은 0.05%일 수 있다. 다만, 그 함량이 너무 높으면 냉연재를 생산하는 경우 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에, 충분한 냉간압연성과 점용접성을 확보하기 위해 0.5% 이하로 첨가될 수 있다. 또한, 상기 C 함량은 0.45% 이하 또한 0.4% 이하로 그 함량을 제한할 수도 있다.C is an essential element to increase the strength of the heat treated member and may be added in an appropriate amount. That is, in order to sufficiently secure the strength of the heat treated member, the C may be added in an amount of 0.01% or more. In one embodiment, the lower limit of the C content may be 0.05%. However, if the content is too high, the strength of the hot-rolled material is too high when the hot-rolled material is cold-rolled in the case of producing cold-rolled material, so that not only the cold-rollability is greatly inferior, but also the spot weldability is greatly reduced. It may be added in an amount of 0.5% or less to secure weldability. In addition, the C content may be limited to 0.45% or less and 0.4% or less.
Si: 2.0% 이하(0%는 제외)Si: 2.0% or less (excluding 0%)
상기 Si는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 열간 프레스 성형 부재의 강도에 가장 크게 영향을 미치는 탄화물 생성을 억제할 뿐만 아니라, 열간 프레스 성형에 있어서 마르텐사이트 생성 후 마르텐사이트 래쓰(lath) 입계로 탄소를 농화시켜 잔류오스테나이트를 확보하기 위하여 강 중에 첨가될 수 있다. 다만, 강판에 알루미늄 도금을 행할 때 충분한 도금성을 확보하기 위해서는 상기 Si의 함량의 상한을 2%로 정할 수 있다(0%는 제외함). 본 발명의 한가지 구현례에서는 상기 Si 함량을 1.5% 이하로 제한할 수도 있다. 또한 본 발명의 다른 한가지 구현례에서는 상기 Si 함량의 하한을 0.01%로 정할 수도 있다.Si not only needs to be added as a deoxidizer in steelmaking, but also suppresses the formation of carbides, which have the greatest effect on the strength of hot-press-formed parts, and also converts to martensite lath grain boundaries after martensite is formed in hot-press forming. It can be added in steel to enrich the carbon to obtain retained austenite. However, the upper limit of the Si content may be set at 2% (excluding 0%) in order to secure sufficient plating properties when aluminum plating is performed on the steel sheet. In one embodiment of the present invention, the Si content may be limited to 1.5% or less. In addition, in another embodiment of the present invention, the lower limit of the Si content may be set to 0.01%.
Mn: 0.1~4.0%Mn: 0.1 to 4.0%
상기 Mn은 고용강화 효과를 확보할 수 있을 뿐만 아니라 열간 프레스 성형 부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 0.1% 이상의 함량으로 첨가될 수 있다. 또한, 강판의 강도를 적절하게 유지함으로써 열간 프레스 성형 공정 작업성을 확보하고, 제조원가를 절감하며, 점용접성을 향상시킨다는 점에서 상기 Mn 함량은 4% 이하로 할 수 있으며, 본 발명의 한가지 구현례에서는 3.5% 이하, 또는 2.5% 이하로 할 수 있다.The Mn may be added in an amount of 0.1% or more to secure a solid solution strengthening effect and to lower a critical cooling rate for securing martensite in a hot press molded member. In addition, the Mn content may be 4% or less in terms of securing workability in the hot press forming process by properly maintaining the strength of the steel sheet, reducing manufacturing cost, and improving spot weldability, and one embodiment of the present invention In , it can be 3.5% or less, or 2.5% or less.
P: 0.05% 이하P: 0.05% or less
상기 P는 강내에 불순물로서 존재하며, 가급적 그 함량이 적을수록 유리하다. 따라서, 본 발명의 한가지 구현례에서 P는 0.05% 이하의 함량으로 포함될 수 있다. 본 발명의 다른 한가지 구현례에서 P는 0.03% 이하로 제한될 수도 있다. P는 적으면 적을수록 유리한 불순물 원소이기 때문에 그 함량의 상한을 특별히 정할 필요는 없다. 다만, P 함량을 과도하게 낮추기 위해서는 제조비용이 상승할 우려가 있으므로, 이를 고려할 경우에는 그 하한을 0.001%로 할 수도 있다.The P exists as an impurity in steel, and the smaller the content, the more advantageous it is. Accordingly, in one embodiment of the present invention, P may be included in an amount of 0.05% or less. In another embodiment of the present invention, P may be limited to 0.03% or less. Since P is an impurity element that is advantageous the smaller it is, there is no need to specifically set an upper limit on its content. However, in order to excessively lower the P content, there is a concern that the manufacturing cost will increase. In this case, the lower limit may be set to 0.001%.
S: 0.02% 이하S: 0.02% or less
상기 S는 강 중에 불순물로서, 부재의 연성, 충격특성 및 용접성을 저해하는 원소이기 때문에 최대함량을 0.02%로 한다(바람직하게는 0.01% 이하). 또한 그 최소함량이 0.0001% 미만에서는 제조비용이 상승될 수 있으므로, 본 발명의 한가지 구현례에서는 그 함량의 하한을 0.0001%로 할 수 있다.S is an impurity in steel, and since it is an element that impairs the ductility, impact properties and weldability of members, the maximum content is set to 0.02% (preferably 0.01% or less). In addition, since the manufacturing cost may increase if the minimum content is less than 0.0001%, in one embodiment of the present invention, the lower limit of the content may be 0.0001%.
Al: 0.001~1% Al: 0.001~1%
상기 Al은 Si과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있으므로 0.001% 이상의 함량으로 첨가될 수 있다. 또한, Ac3 온도가 너무 높아지지 않도록 하여 열간 프레스 성형시 필요한 가열을 적절한 온도범위에서 할 수 있도록 하기 위하여 상기 Al의 함량은 1% 이하로 할 수 있다.The Al, together with Si, can be added in an amount of 0.001% or more because it can increase the cleanliness of the steel by deoxidizing in steelmaking. In addition, the Al content may be 1% or less in order to prevent the temperature of Ac3 from becoming too high so that the heating required during hot press molding can be performed in an appropriate temperature range.
Cr: 5.0% 이하 (0% 제외)Cr: 5.0% or less (excluding 0%)
상기 Cr은 강의 경화능을 향상시켜서 열간 프레스 성형 부재의 강도를 향상시키는 역할하므로, 첨가가 필요하다. 경우에 따라서는 상기 Cr 함량의 하한은 0.001%로 정할 수도 있다. 다만, 그 함량이 5.0%를 초과할 경우에는 더 이상의 효과 상승을 기대하기 어려울 뿐만 아니라 비용도 증가할 수 있으므로, Cr 함량의 상한은 5.0%로 정할 수 있다.Since the Cr serves to improve the strength of the hot press formed part by improving the hardenability of the steel, it is necessary to add Cr. In some cases, the lower limit of the Cr content may be set to 0.001%. However, if the content exceeds 5.0%, it is difficult to expect a further increase in effect and costs may increase, so the upper limit of the Cr content may be set at 5.0%.
N: 0.02% 이하N: 0.02% or less
상기 N은 강 중에 불순물로 포함되는 원소로서, 슬라브 연속주조시에 크랙 발생에 대한 민감도를 감소시키고, 충격특성을 확보하기 위해서는 그 함량이 낮을 수록 유리하며, 따라서 0.02% 이하로 포함할 수 있다. 하한을 특별히 정할 필요가 있으나, 제조비용의 상승 등을 고려하여 한가지 구현례에서 N 함량을 0.001% 이상으로 정할 수도 있다.N is an element included as an impurity in steel, and the lower the content is, the more advantageous it is to reduce the sensitivity to crack generation during continuous casting of slabs and secure impact characteristics, and therefore may be included at 0.02% or less. Although it is necessary to specifically set the lower limit, the N content may be set to 0.001% or more in one embodiment in consideration of the increase in manufacturing cost.
Ti: 0.1% 이하(0% 제외)Ti: 0.1% or less (excluding 0%)
상기 Ti는 질소와 반응함으로써 B에 의한 경화능 향상에 이바지할 수 있다. 또한, 미세 석출물을 형성함으로써 열간 프레스 성형 부재의 강도를 향상시키고 결정립을 미세화하여 충격인성 향상에 효과가 있으므로 0.1% 이하의 양으로 첨가할 수 있다(0%는 제외함). 상술한 효과를 더욱 확실하게 얻기 위하여 본 발명의 한가지 구현례에서는 상기 Ti의 함량의 하한을 0.0005%로 정할 수도 있다.By reacting with nitrogen, the Ti may contribute to improving hardenability by B. In addition, since fine precipitates are formed to improve the strength of the hot press molded member and refine crystal grains, it is effective in improving impact toughness, so it may be added in an amount of 0.1% or less (excluding 0%). In order to obtain the above-mentioned effect more reliably, in one embodiment of the present invention, the lower limit of the Ti content may be set to 0.0005%.
B: 0.0001~0.01%B: 0.0001 to 0.01%
상기 B은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 및/또는 S의 입계 편석에 의한 열간 프레스 성형 부재의 취성을 억제할 수 있는 원소이다. 따라서 B는 0.0001% 이상 첨가될 수 있다. 다만, 0.01%를 초과하면 그 효과가 포화될 뿐만 아니라, 열간압연에서 취성을 초래하므로 그 상한을 0.01%로 할 수 있으며, 한가지 구현례에서는 상기 B 함량을 0.005% 이하로 할 수 있다.B is an element capable of improving hardenability even with a small amount of addition and suppressing brittleness of hot press formed parts due to segregation of grain boundaries of P and/or S by being segregated at old austenite grain boundaries. Accordingly, B may be added in an amount of 0.0001% or more. However, if it exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit may be 0.01%, and in one embodiment, the B content may be 0.005% or less.
본 발명의 한가지 구현례에서는 필요에 따라, Nb: 0.1% 이하, Mo: 0.5% 이하, Ni: 1% 이하, Cu: 1% 이하 및 V: 0.5% 이하 중에서 선택된 1종 또는 2종 이상의 원소를 더 포함할 수 있다. In one embodiment of the present invention, one or two or more elements selected from Nb: 0.1% or less, Mo: 0.5% or less, Ni: 1% or less, Cu: 1% or less, and V: 0.5% or less, if necessary. can include more.
Nb: 0.1% 이하Nb: 0.1% or less
상기 Nb는 미세 석출물 형성으로 열처리 부재의 강판 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화와 충격인성 향상에 효과가 있으므로 강중에 첨가할 수 있다. 다만, 그 첨가량이 0.1%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가로 비용 상승을 초래할 수 있다. 본 발명의 한가지 구현례에서는 상기 Nb는 0.001% 이상 첨가할 수도 있다. Since Nb is effective in improving the steel sheet of heat treated members by forming fine precipitates, stabilizing retained austenite and improving impact toughness by refining crystal grains, it can be added to steel. However, if the added amount exceeds 0.1%, the effect is saturated and the cost may increase due to the excessive addition of ferroalloy. In one embodiment of the present invention, 0.001% or more of Nb may be added.
Mo: 0.5% 이하Mo: 0.5% or less
Mo는 경화능 향상과, 석출강화 효과를 통한 강도 및 결정립 미세화를 확보할 수 있는 원소이다. 다만, 과다하게 첨가할 경우에는 용접성이 나빠질 수 있으므로, 이를 고려하여 0.5% 이하로 첨가할 수 있다. 본 발명의 한가지 구현례에서는 상기 Mo를 첨가하는 경우 첨가량의 하한을 0.001%로 정할 수도 있다.Mo is an element capable of securing strength and crystal grain refinement through enhancement of hardenability and precipitation strengthening effect. However, when added excessively, weldability may be deteriorated, so it may be added in an amount of 0.5% or less in consideration of this. In one embodiment of the present invention, when the Mo is added, the lower limit of the amount added may be set to 0.001%.
Ni: 1% 이하Ni: 1% or less
상기 Ni는 미세 석출물을 형성시켜 강도를 향상시키는 원소이다. 다만, 그 값이 1.0%를 초과하면 과다한 비용 증가가 되기 때문에 그 상한을 1%로 한다. 본 발명의 한가지 구현례에서는 상술한 효과를 확실하게 얻기 위해서 Ni의 첨가량을 0.005% 이상으로 할 수 있다. The Ni is an element that improves strength by forming fine precipitates. However, if the value exceeds 1.0%, excessive cost increases, so the upper limit is set at 1%. In one embodiment of the present invention, the addition amount of Ni may be 0.005% or more in order to surely obtain the above-mentioned effect.
Cu: 1% 이하Cu: 1% or less
상기 Cu는 Ni와 마찬가지로 미세 석출물을 형성시켜 강도를 향상시키는 원소이다. 다만, 그 값이 1.0%를 초과하면 과다한 비용 증가가 되기 때문에 그 상한을 1%로 한다. 상술한 효과를 확실하게 얻기 위해서는 Cu의 첨가량을 0.005% 이상으로 할 수 있다. Like Ni, Cu is an element that improves strength by forming fine precipitates. However, if the value exceeds 1.0%, excessive cost increases, so the upper limit is set at 1%. In order to reliably obtain the above-mentioned effect, the addition amount of Cu may be 0.005% or more.
V: 0.5% 이하V: 0.5% or less
상기 V는 미세 석출물 형성으로 열처리 부재의 강판 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화와 충격인성 향상에 효과가 있으므로 강 중에 첨가될 수 있다. 다만, 그 첨가량이 0.5%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가로 비용 상승을 초래할 수 있다. 본 발명의 한가지 구현례에서는 상술한 V 첨가의 효과를 확실하게 하기 위하여 V를 0.001% 이상 첨가할 수 있다. The V may be added to steel because it is effective in improving the steel sheet of the heat treated member by forming fine precipitates, stabilizing retained austenite and improving impact toughness by refining crystal grains. However, if the added amount exceeds 0.5%, the effect is saturated and the cost may increase due to excessive addition of ferroalloy. In one embodiment of the present invention, 0.001% or more of V may be added in order to ensure the effect of adding V described above.
상술한 성분 이외의 잔부로서는 철 및 불가피한 불순물을 들 수 있으며, 열간 성형용 강판에 포함될 수 있는 성분이라면 특별히 제한하지 않는다.Iron and unavoidable impurities may be mentioned as the remainder other than the above-mentioned components, and any component that can be included in the steel sheet for hot forming is not particularly limited.
이하, 본 발명의 일측면에 따른 열간 프레스 성형용 강판의 제조방법의 한가지 예를 설명하면 아래와 같다. 다만, 하기하는 열간 프레스 성형용 강판의 제조방법은 한가지 예시로서 본 발명의 열간 프레스 성형용 강판이 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니며, 어떠한 제조방법이라도 본 발명의 청구범위를 충족하는 방법이라면 본 발명의 각 구현례를 구현하는데 사용함에 아무런 문제가 없다는 것에 유의할 필요가 있다.Hereinafter, one example of a method for manufacturing a steel sheet for hot press forming according to an aspect of the present invention is described below. However, the manufacturing method of the steel sheet for hot press forming described below is an example, and the steel sheet for hot press forming of the present invention does not necessarily have to be manufactured by the present manufacturing method, and any manufacturing method is a method that satisfies the scope of the present invention. It should be noted that if it is, there is no problem in using it to implement each implementation example of the present invention.
본 발명의 하나의 구현례에 따를 경우, 강판은 소지강판 상에 알루미늄-철 합금 도금층이 형성된 알루미늄-철(Al-Fe) 합금 도금강판을 얻는 단계; 및 상기 알루미늄-철(Al-Fe) 합금 도금강판에 대하여 스킨 패스 압연을 실시함으로써 제조될 수 있다.According to one embodiment of the present invention, the steel sheet is obtained by obtaining an aluminum-iron (Al-Fe) alloy plated steel sheet having an aluminum-iron alloy plating layer formed on the steel sheet; And it can be manufactured by performing skin pass rolling with respect to the aluminum-iron (Al-Fe) alloy plated steel sheet.
본 발명의 한가지 구현례에서 상기 알루미늄-철 합금 도금강판은 알루미늄 또는 알루미늄 합금이 도금된 알루미늄 도금강판을 얻는 단계; 및 상기 알루미늄 도금강판을 가열하여 합금화하는 단계를 포함하는 과정에 의해 얻어질 수 있다.In one embodiment of the present invention, the aluminum-iron alloy-coated steel sheet is obtained by obtaining an aluminum-coated steel sheet coated with aluminum or an aluminum alloy; And it can be obtained by a process comprising the step of alloying by heating the aluminum-coated steel sheet.
이때, 알루미늄 도금강판은 공업적으로 알루미늄계로 지칭되는 것이라면 어떠한 것이라도 사용가능하며, 본 발명의 한가지 구현례에서는 Al 함량이 중량 기준으로 70% 이상인 것을 사용할 수 있다. 도금층에서 Al 외의 나머지 원소들로서는 알루미늄계 도금층에 통상 첨가될 수 있는 Si와 Mg, Zn, Mn, Cr, Mo, Ti, Fe 중에서 선택되는 1종 또는 2종 이상의 성분 및/또는 기타의 불순물 원소를 들 수 있다. 그 중 Si는 0.01~20%의 비율로 포함될 수 있다. Si 함량이 0.01% 이하를 제어하기 위해서는 고순도의 원재료가 필요하여 제조비용 상승이 너무 크며 20%를 초과하게 되면 도금욕 녹는 온도 증가에 따른 설비유지에 어려움이 있고, 합금화 속도가 저하되어 충분한 합금화를 얻기 어렵다. 따라서 본 발명에서 도금욕에 포함되는 Si 함량은 0.01~20%로 제한할 수 있다. 상기 Mg, Zn, Mn, Cr, Mo, Ti 중에서 선택되는 1종 또는 2종 이상의 원소는 함량의 합계로 20중량% 이하 만큼 도금층에 포함될 수 있다.At this time, any aluminum-coated steel sheet may be used as long as it is industrially referred to as aluminum-based, and in one embodiment of the present invention, one having an Al content of 70% or more by weight may be used. As the remaining elements other than Al in the plating layer, one or more components selected from Si, Mg, Zn, Mn, Cr, Mo, Ti, Fe, and/or other impurity elements that may be normally added to the aluminum-based plating layer are selected. can be heard Among them, Si may be included in an amount of 0.01 to 20%. In order to control the Si content below 0.01%, high purity raw materials are required, so the manufacturing cost rises too much. hard to get Therefore, in the present invention, the Si content included in the plating bath may be limited to 0.01 to 20%. One or two or more elements selected from Mg, Zn, Mn, Cr, Mo, and Ti may be included in the plating layer by 20% by weight or less in total.
상술한 알루미늄계 도금층은 열간 압연 또는 냉간 압연 및 소둔 열처리된 강판을 용융 알루미늄 도금욕에 침지하는 도금하는 용융 알루미늄 도금 방식에 의해 형성될 수 있다. The above-described aluminum-based plating layer may be formed by a hot-dip aluminum plating method in which a hot-rolled or cold-rolled and annealed steel sheet is immersed in a molten aluminum plating bath.
본 발명의 한가지 구현례에서 상기 알루미늄 도금 시에 도금량은 편면기준 10~100g/㎡일 수 있다. 도금량이 10g/㎡ 미만이면 내식성이 감소되고, 반면 도금량이 100g/㎡을 초과하면 용접성이 저하되는 문제가 발생한다. 따라서 본 발명에서 알루미늄 도금 시 도금량은 편면기준 10~100g/㎡으로 제한하는 것이 바람직하다. 한편, 본 발명의 다른 한가지 구현례에서는 상기 알루미늄 도금 시 도금량은 편면기준 20~90 g/㎡일 수도 있다.In one embodiment of the present invention, the plating amount during the aluminum plating may be 10 to 100 g / m 2 on a single side basis. If the plating amount is less than 10 g/m 2 , corrosion resistance is reduced, whereas if the plating amount exceeds 100 g/m 2 , a problem of deteriorating weldability occurs. Therefore, in the present invention, it is preferable to limit the coating amount to 10 to 100 g / m 2 on a single side basis during aluminum plating. On the other hand, in another embodiment of the present invention, the plating amount during the aluminum plating may be 20 to 90 g / m 2 on a single side basis.
또한, 본 발명의 한가지 구현례에서는 상기 알루미늄 도금강판을 가열하여 합금화하는 단계는 강판을 알루미늄 또는 알루미늄 합금으로 도금하는 라인에 직접 연결되고, 상기 도금강판이 주행하는 상태에서 가열하는 온라인 가열에 의해 이루어질 수 있다. 본 발명의 한가지 구현례에서 상기 합금화시의 가열 온도 범위는 670~900℃일 수 있으며, 유지시간은 1~20초 일 수 있다. 또한, 본 발명의 다른 한가지 구현례에서는 상기 가열 온도 범위는 680~880℃일 수 있고, 상기 유지시간은 1~10초일 수 있다.In addition, in one embodiment of the present invention, the step of heating and alloying the aluminum-coated steel sheet is directly connected to a line for plating the steel sheet with aluminum or aluminum alloy, and is performed by online heating in which the coated steel sheet is heated while running. can In one embodiment of the present invention, the heating temperature range during the alloying may be 670 to 900 ° C, and the holding time may be 1 to 20 seconds. In addition, in another embodiment of the present invention, the heating temperature range may be 680 to 880 ° C, and the holding time may be 1 to 10 seconds.
본 발명의 다른 한가지 구현례에서는 상기 알루미늄 도금강판을 가열하여 합금화하는 단계는 권취된 도금강판을 상자형 소둔로에서 가열하는 상소둔에 의해 수행될 수도 있다. 이때, 알루미늄 도금 후 상온까지 냉각된 코일을 이슬점온도 -10℃ 미만인 수소 또는 수소와 질소 분위기의 상소둔 로에서 600~800℃ 범위의 온도에서 0.1~100시간 가열하여 합금화 열처리할 수 있다 (본 발명에서는 상기 온도 범위에서 로 분위기 온도가 도달하는 최고 온도를 가열 온도로 한다). In another embodiment of the present invention, the step of heating and alloying the aluminum-coated steel sheet may be performed by upper annealing of heating the coiled coated steel sheet in a box-shaped annealing furnace. At this time, the coil cooled to room temperature after aluminum plating may be heated for 0.1 to 100 hours at a temperature in the range of 600 to 800 ° C in an upper annealing furnace in a hydrogen or hydrogen and nitrogen atmosphere having a dew point temperature of less than -10 ° C (the present invention In the above temperature range, the highest temperature at which the furnace atmosphere temperature reaches is set as the heating temperature).
각 구현례에서, 유지시간은 분위기 온도가 목표 온도에 도달한 후 냉각을 개시할 때까지의 시간을 의미한다.In each embodiment, the holding time means the time from when the ambient temperature reaches the target temperature until cooling is initiated.
본 발명의 한가지 구현례에서 상기 스킨 패스 압연은 하기 관계식 1로 표현되는 SPMI가 5000 내지 8500이 되는 조건하에서 실시될 수 있다. In one embodiment of the present invention, the skin pass rolling may be performed under the condition that the SPMI represented by the following relational expression 1 is 5000 to 8500.
[관계식 1] [Relationship 1]
Figure PCTKR2022020870-appb-img-000002
Figure PCTKR2022020870-appb-img-000002
여기서, 상기 P는 스킨 패스 압연시 압하력(단위: ton), 상기 Raroll은 스킨 패스 압연 롤 표면의 산술평균거칠기(단위: ㎛), 상기 RPcroll는 스킨 패스 압연 롤의 단위 길이 당 피크수(단위: /cm)를 의미한다. 또한, 상기 SPMI의 단위는 √Ton·㎛/cm이다.Here, P is the rolling force during skin pass rolling (unit: ton), the Ra roll is the arithmetic average roughness of the surface of the skin pass rolling roll (unit: μm), and the RPc roll is the number of peaks per unit length of the skin pass rolling roll (unit: /cm). In addition, the unit of the SPMI is √Ton·㎛/cm.
즉, 상기 SPMI는 본 발명자가 고안한 강판 표면 상태를 제어할 수 있는 조건으로서, 강판 표면의 Ra와 RPc는 롤 표면의 Ra와 RPc는 물론이고 롤이 가하는 압하력에 의해서도 영향을 받으며 이들의 영향도를 정량적으로 분석한 결과 상기 관계식 1에 의해 표현되는 관계를 나타내고 있다는 것을 연구 결과 알 수 있었다. 강판 표면의 Ra와 RPc의 곱이 충분한 값을 가질 수 있도록 하기 위해서는 상기 SPMI 값은 5000 이상일 필요가 있으며, 경우에 따라서는 상기 SPMI 값을 5500 이상으로 제한할 수도 있다. 다만, SPMI 값이 너무 높을 경우에는 열간 프레스 성형 후 얻어지는 부재의 내식성이 저하할 수 있으므로, 그 값을 8500 이하로 제한할 수 있으며, 경우에 따라서는 8000 이하로 제한할 수도 있다. That is, the SPMI is a condition that can control the surface state of the steel sheet devised by the present inventors, and the Ra and RPc of the steel sheet surface are affected not only by the Ra and RPc of the roll surface but also by the rolling force applied by the roll, and their influence As a result of quantitatively analyzing the figure, it was found as a result of the study that the relationship represented by the above relational expression 1 was shown. In order for the product of Ra and RPc of the surface of the steel sheet to have a sufficient value, the SPMI value needs to be 5000 or more, and in some cases, the SPMI value may be limited to 5500 or more. However, if the SPMI value is too high, the corrosion resistance of the member obtained after hot press molding may be deteriorated, so the value may be limited to 8500 or less, and in some cases may be limited to 8000 or less.
이하에서는, 본 발명의 한가지 측면에 따른 열간 프레스 성형 부재에 대하여 설명한다. 단, 열간 프레스 성형 부재를 제조하는 방법은 종래 널리 알려진 바와 같이 강판을 오스테나이트화 온도 이상의 온도로 가열하고 유지한 후 급냉과 동시에 성형하는 과정으로 이루어지는 것이므로 본 발명에서 특별히 제한하지 아니한다.Hereinafter, a hot press-formed member according to one aspect of the present invention will be described. However, the method for manufacturing a hot press-formed member is not particularly limited in the present invention because it consists of a process of heating and maintaining a steel sheet at a temperature equal to or higher than the austenitizing temperature, followed by rapid cooling and forming at the same time as is well known in the prior art.
본 발명의 한가지 측면에 따른 열간 프레스 성형 부재는 소지강판 및 상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하는 것으로서, 도금층 표면의 Ra와 RPc의 곱이 조절되어 도장 밀착성과 내식성을 겸비한 것일 수 있다.A hot press-formed member according to one aspect of the present invention includes a base steel plate and a plating layer made of an Al-Fe alloy formed on the base steel plate, and the product of Ra and RPc of the surface of the plated layer is controlled to combine paint adhesion and corrosion resistance. can
본 발명의 한가지 구현례에서는 높은 도장 밀착성을 확보하기 위하여 열간 프레스 성형에 의하여 얻어진 부재의 도금층 표면의 Ra×RPc는 60㎛/cm 이상일 수 있다. 수식에서 Ra는 산술 평균 조도로서 ㎛의 단위를 가지며 RPc는 피크 수(Peak Count)로서 cm의 역수(/cm)의 단위를 가진다. 상기 Ra×RPc가 충분하지 않을 경우에는 충분한 도장 밀착성을 기대하기 어려울 수 있으므로, 상기 Ra×RPc의 하한을 60㎛/cm로 정할 수 있다. 경우에 따라서는 상기 Ra×RPc의 하한을 70㎛/cm으로 정할 수도 있다. 도장 밀착성의 개선을 위해서 Ra×RPc의 수치가 높을 수록 유리하나, 상기 수치가 너무 높을 경우에는 본 발명의 한가지 구현례에 따라 부재의 Ra와 RPc를 높이기 위한 도금강판의 가공 과정에서 도금층 표면에 과다한 크랙이 도입되어 내식성이 저하될 수 있으므로, 본 발명의 한가지 구현례에서는 상기 Ra×RPc의 상한을 150㎛/cm으로 정할 수 있으며, 경우에 따라서는 상기 RaХRPc의 상한을 140㎛/cm으로 정할 수도 있다.In one embodiment of the present invention, Ra×RPc of the surface of the plating layer of the member obtained by hot press molding may be 60 μm/cm or more in order to secure high paint adhesion. In the formula, Ra is the arithmetic mean roughness and has a unit of μm, and RPc is the peak count (Peak Count) and has a unit of the reciprocal of cm (/cm). When the Ra×RPc is not sufficient, it may be difficult to expect sufficient paint adhesion, so the lower limit of the Ra×RPc may be set at 60 μm/cm. In some cases, the lower limit of Ra×RPc may be set to 70 μm/cm. In order to improve paint adhesion, the higher the value of Ra × RPc, the better, but if the value is too high, according to one embodiment of the present invention, in the process of processing the plated steel sheet to increase the Ra and RPc of the member, the surface of the plated layer is excessively Since cracks may be introduced and corrosion resistance may be deteriorated, in one embodiment of the present invention, the upper limit of Ra×RPc may be set to 150 μm/cm, and in some cases, the upper limit of RaХRPc may be set to 140 μm/cm. there is.
또한, 본 발명의 다른 한가지 구현례에 따른 열간 프레스 성형 부재는 Al-Fe 합금 도금층의 표면에 형성된 크랙의 개수와 압흔부의 면적 비율을 적절히 조절함으로써, 이후의 열간 프레스 성형 공정에 의해 얻어진 부재의 도장 밀착성과 내식성을 향상시킬 수 있다. 이를 위해서 본 발명의 한가지 구현례에 따른 도금강판은 도금층 표면적 1mm2 당 크랙이 15~220개 존재하며, 상기 도금층 표면에서 압흔부가 차지하는 면적의 비율이 5~50%인 것일 수 있다. In addition, in the hot press formed member according to another embodiment of the present invention, the number of cracks formed on the surface of the Al-Fe alloy plating layer and the area ratio of the indentation portion are appropriately adjusted to paint the member obtained by the subsequent hot press forming process. Adhesion and corrosion resistance can be improved. To this end, the plated steel sheet according to one embodiment of the present invention may have 15 to 220 cracks per 1 mm 2 of the surface area of the plated layer, and the ratio of the area occupied by the indentation portion on the surface of the plated layer may be 5 to 50%.
상기 크랙은 열간 프레스 성형 부재의 표면에서 도장층이 고정(anchoring)되는 고정부의 역할을 수행할 수 있으므로, 본 발명의 한가지 구현례에서 도금층의 단위면적 1mm2 당 15 개 이상, 경우에 따라서는 20개 이상의 크랙이 존재할 수 있다. 크랙의 개수는 현미경(배율 100배)의 시야를 가로 세로 각각 10등분하여 얻어지는 100개의 영역 내에서 관찰되는 크랙의 개수를 관찰 면적 1mm2에서 관찰되는 것으로 환산하여 측정한다. 본 발명의 한가지 구현례에서 상기 현미경은 ZEISS SUPRA 55VP 모델 주사전자현미경일 수 있다. 이때, 이때, 하나의 크랙이라고 하더라도 관찰되는 영역이 복수개 존재한다면 크랙의 개수는 그 크랙이 관찰된 영역의 수만큼으로 될 수 있다. 하나의 영역 내에 복수개의 크랙이 관찰된다면 크랙의 개수가 그 수만큼으로 되는 것은 물론이다. 이는 관찰 면적 내의 크랙의 전체 길이를 고려한 개념으로서, 크랙의 전체 길이가 도장층의 고정 효과에 영향을 미치기 때문이다. 다만, 알루미늄계 도금강판(부재)은 아연계 도금강판과 달리 희생 방식 기능이 없으므로 크랙이 존재할 경우 크랙을 통하여 부식이 발생할 수 있다. 따라서 과다한 크랙의 개수는 부재의 내식성을 해칠 수 있으므로 1mm2 당 크랙 개수의 상한은 220개로 제한할 수 있으며, 경우에 따라서는 200개로 제한할 수도 있다.Since the cracks can serve as a fixing part in which the coating layer is anchored on the surface of the hot press-formed member, in one embodiment of the present invention, 15 or more cracks per unit area of 1 mm 2 of the plating layer, in some cases More than 20 cracks may be present. The number of cracks is measured by converting the number of cracks observed in 100 areas obtained by dividing the field of view of a microscope (magnification 100 times) into 10 equal parts horizontally and vertically, respectively, to those observed in an observation area of 1 mm 2 . In one embodiment of the present invention, the microscope may be a ZEISS SUPRA 55VP model scanning electron microscope. In this case, even if there is one crack, if there are a plurality of areas to be observed, the number of cracks may be equal to the number of areas in which the cracks are observed. Of course, if a plurality of cracks are observed in one area, the number of cracks is equal to that number. This is a concept considering the total length of cracks within the observation area, and this is because the total length of cracks affects the fixing effect of the coating layer. However, since the aluminum-based coated steel sheet (member) does not have a sacrificial corrosion protection function unlike the zinc-based coated steel sheet, corrosion may occur through the crack when a crack exists. Therefore, since an excessive number of cracks may impair the corrosion resistance of the member, the upper limit of the number of cracks per 1 mm 2 may be limited to 220, and in some cases may be limited to 200.
또한, 본 발명의 한가지 구현례에서는 도장층의 접촉면적을 증가시키기 위하여 강판의 도금층 표면에 다량의 압흔부를 형성시킬 수 있으며, 이러한 압흔부는 부재에까지 잔류하여 도장 밀착성을 향상시킬 수 있다. 상기 압흔부가 존재할 경우에는 도금층 표면의 Ra와 RPc가 증가할 수 있는데, 이를 위하여 본 발명의 한가지 구현례에서는 도금층 표면에서 압흔부의 비율이 5% 이상일 수 있으며, 경우에 따라서는 8% 이상일 수도 있다. 반드시 이로 제한하는 것은 아니나 본 발명의 한가지 구현례에서는 라이카(Leica) DM6000M 모델 광학 현미경으로 배율 100배에서 표면 이미지를 관찰한 결과를 Clemex Vision PE 소프트웨어를 이용하여 색의 명도를 256개로 구분후 가장 높은 명도 값의 70% 값에 해당하는 명도 이상의 부분을 상기 압흔부로 특정하여 그 면적 비율을 구하였다. 상기 압흔부 비율이 너무 높을 경우에는 압흔부를 형성시키기 위하여 도금층에 가해지는 부하가 과다하여 표면 크랙이 증가할 수 있으므로 상기 압흔부의 비율의 상한은 50%로 정할 수 있으며, 45%로 정할 수도 있다.In addition, in one embodiment of the present invention, a large number of indentations may be formed on the surface of the coating layer of the steel sheet in order to increase the contact area of the coating layer, and these indentations may remain on the member to improve paint adhesion. When the indentation portion exists, Ra and RPc of the surface of the plating layer may increase. To this end, in one embodiment of the present invention, the ratio of the indentation portion on the surface of the plating layer may be 5% or more, and in some cases may be 8% or more. Although not necessarily limited to this, in one embodiment of the present invention, the result of observing the surface image at 100 times magnification with a Leica DM6000M model optical microscope is the highest after classifying the color brightness into 256 using Clemex Vision PE software. A portion of the brightness value corresponding to 70% of the brightness value or more was specified as the indentation portion, and the area ratio thereof was obtained. If the ratio of the indentation part is too high, the load applied to the plating layer to form the indentation part is excessive and surface cracks may increase. Therefore, the upper limit of the ratio of the indentation part may be set to 50% or 45%.
본 발명의 한가지 구현례에 따르면 상기 알루미늄-철(Al-Fe) 합금 도금층은 Al과 Fe를 중량 기준으로 합계 70% 이상 포함할 수 있다. 이들 원소만으로 도금층이 이루어질 수도 있으므로 함량 합계의 상한을 특별히 정할 필요는 없으며, 이들 원소의 함량 합계는 100%가 되는 것도 가능하다.According to one embodiment of the present invention, the aluminum-iron (Al-Fe) alloy plating layer may include a total of 70% or more of Al and Fe by weight. Since the plating layer may be made of only these elements, there is no need to specifically set an upper limit on the sum of the contents, and the sum of the contents of these elements may be 100%.
도금층 중 Fe는 열간 프레스 성형 중에 도금층으로 확산될 수 있으므로 중량 기준으로 30% 이상 포함될 수 있다. 만일 도금층 중 Fe의 함량이 30% 미만일 경우에는 보관시 수소취화 등의 문제 해결에 큰 도움이 되지 않을 수 있으므로, 본 발명에서는 부재의 도금층 중에 Fe가 중량 기준으로 30% 이상 포함될 수 있으며. 경우에 따라서는 상기 Fe 함량은 35% 이상일 수 있으며, 40% 이상일 수도 있다.Since Fe in the plating layer may diffuse into the plating layer during hot press molding, Fe may be included in an amount of 30% or more by weight. If the content of Fe in the plating layer is less than 30%, it may not be very helpful in solving problems such as hydrogen embrittlement during storage. In some cases, the Fe content may be 35% or more, and may be 40% or more.
Fe 함량의 상한에는 특별한 제한이 없으나, 통상의 열간 프레스 성형 부재의 도금층 내의 Fe 함량을 고려할 경우 Fe 함량의 상한을 90%로 정할 수도 있으며, 경우에 따라서는 80% 이하로 정할 수도 있다. 여기서 Fe의 평균 함량은 전체 도금층 중의 Fe 함량의 평균을 의미하는 것으로서 측정 방법이 여러가지가 있을 수 있으나, 본 구현례에서는 글로우 방전 분광분석(Glow Discharge emission Spectrometry; 간략히 GDS)법으로 도금층의 표면부터 강판의 계면까지 분석하였을 때 나타나는 깊이(두께)에 따른 Fe의 함량 곡선을 적분한 후 이를 도금층 두께로 나눈 값으로 사용할 수 있다. 도금층과 강판의 계면을 판단하는 기준에는 여러가지가 있을 수 있으나, 본 구현례에서는 GDS 결과에서 Al과 Fe함량 곡선이 교차하는, 즉 두 원소의 함량이 같아지는 지점을 도금층과 강판의 계면으로 규정할 수 있다.There is no particular limitation on the upper limit of the Fe content, but when considering the Fe content in the plating layer of a conventional hot press-formed member, the upper limit of the Fe content may be set to 90%, and in some cases set to 80% or less. Here, the average content of Fe means the average of the Fe content in the entire plating layer, and there may be various measurement methods. After integrating the Fe content curve according to the depth (thickness) that appears when the interface of is analyzed, it can be used as a value divided by the thickness of the plating layer. There may be various criteria for determining the interface between the coating layer and the steel sheet, but in this implementation example, the point where the Al and Fe content curves intersect, that is, the content of the two elements becomes equal in the GDS results, is defined as the interface between the coating layer and the steel sheet. can
본 발명의 한가지 구현례에 따르면 열간 프레스 성형 부재의 도금층은 상술한 Al과 Fe 이외에도 도금층에 포함되는 일반적인 원소들을 더 포함할 수 있다. 이러한 원소들의 예로서는 Mg, Zn, Mn, Cr, Mo, Si, Ti 중에서 선택되는 1종 또는 2종 이상을 들 수 있으며, 이들은 합계로 20 중량% 이하까지 도금층에 포함될 수 있다.According to one embodiment of the present invention, the plating layer of the hot press-formed member may further include common elements included in the plating layer in addition to the above-described Al and Fe. Examples of these elements include one or two or more selected from among Mg, Zn, Mn, Cr, Mo, Si, and Ti, and they may be included in the plating layer up to 20% by weight or less in total.
본 발명의 열간 프레스 성형 부재의 소지강판은 강도별로 다양한 조직을 가질 수 있다. 만일 인장강도가 400~800MPa일 경우에는 면적 기준으로 마르텐사이트 5~50%와 나머지 페라이트, 펄라이트, 베이나이트 및 오스테나이트 중에서 선택된 1종 또는 2종 이상의 상으로 이루어지는 미세조직을 가질 수 있으며, 인장강도가 800~1300MPa일 경우에는 면적 기준으로 마르텐사이트 90% 이상과 나머지 페라이트, 펄라이트, 베이나이트 및 오스테나이트 중에서 선택된 1종 또는 2종 이상의 상으로 이루어지는 미세조직을 가질 수 있고, 인장강도가 1300MPa 이상일 경우에는 면적 기준으로 마르텐사이트 95% 이상과 나머지 페라이트, 펄라이트, 베이나이트 및 오스테나이트 중에서 선택된 1종 또는 2종 이상의 상으로 이루어지는 미세조직을 가질 수 있다.The holding steel sheet of the hot press-formed member of the present invention may have various structures for each strength. If the tensile strength is 400 to 800 MPa, it may have a microstructure consisting of one or two or more phases selected from 5 to 50% of martensite and the remaining ferrite, pearlite, bainite, and austenite based on area, and tensile strength When is 800 to 1300 MPa, it may have a microstructure consisting of 90% or more of martensite and one or more phases selected from the remaining ferrite, pearlite, bainite and austenite based on area, and the tensile strength is 1300 MPa or more may have a microstructure consisting of one or more phases selected from 95% or more of martensite and the remaining ferrite, pearlite, bainite, and austenite on an area basis.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 정해지는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for exemplifying and specifying the present invention, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예) (Example)
소지강판으로 하기 표 1 의 조성을 가지는 열간 프레스 성형용 냉간압연 강판을 준비하였다. 상기 소지강판을 통상의 방법으로 소둔 열처리한 후 용융 알루미늄 도금을 실시하였다. 도금욕은 실질적으로 중량%로 9.5%Si와 잔부 Al로 이루어지는 조성을 가지는 것으로 하였으며, 도금욕 온도는 660℃로 하였다. 도금 이후 에어 나이프(air knife)를 이용하여 도금 부착량을 편면 기준 40g/m2로 조절하였다.A cold-rolled steel sheet for hot press forming having a composition shown in Table 1 was prepared as a base steel sheet. After annealing heat treatment of the base steel sheet in a conventional manner, molten aluminum plating was performed. The plating bath was set to have a composition substantially consisting of 9.5% Si and balance Al by weight%, and the plating bath temperature was set to 660°C. After plating, the coating weight was adjusted to 40 g/m 2 based on one side using an air knife.
이후, 각 발명예 및 비교예 별로 온라인 또는 상소둔에 의하여 합금화를 실시하여 Al-Fe의 합금 도금강판을 얻었다. 온라인 합금화는 720℃까지 강판을 재가열 후 5초간 유지 및 상온까지 냉각하는 방식으로 이루어졌으며, 상소둔에 의한 합금화는 코일을 650℃의 상소둔 로에서 10시간 유지하는 방식으로 이루어졌다.Thereafter, alloying was performed by on-line or phase annealing for each invention example and comparative example to obtain an Al-Fe alloy plated steel sheet. Online alloying was performed by reheating the steel sheet to 720 ° C, holding it for 5 seconds and cooling it to room temperature, and alloying by normal annealing was performed by maintaining the coil in an ordinary annealing furnace at 650 ° C for 10 hours.
합금화 이후, 표 2에 나타낸 표면조도(Ra)와 피크수(RPc)를 가지는 롤을 이용하여 표 2에 나타낸 압하력으로 도금 강판을 스킨 패스 압연함으로써 강판의 합금화된 도금층 표면의 상태를 조절하였다. After alloying, the coated steel sheet was skin-pass rolled with a rolling force shown in Table 2 using a roll having surface roughness (Ra) and peak number (RPc) shown in Table 2, thereby adjusting the surface state of the alloyed plating layer of the steel sheet.
모든 발명예와 비교예에서 각각의 합금화 방식 및 스킨 패스 압연에 의해 얻은 합금 도금층 내의 Al과 Fe의 함량의 합과 Fe 함량은 각각 90% 및 43%인 것으로 실시예별 차이는 특별히 확인되지 않았다. 또한, 모든 발명예와 비교예에서 도금층의 표면에서의 Fe 함량이 도금층 중 Fe의 평균 함량 대비 77% 수준으로서 큰 차이를 나타내지 않았다. 이 때 도금층의 표면은 도금층의 최표면에서 깊이 1㎛인 지점을 의미한다.In all inventive examples and comparative examples, the sum of the contents of Al and Fe in the alloy plating layer obtained by each alloying method and skin pass rolling and the Fe content were 90% and 43%, respectively, and there was no particular difference between examples. In addition, in all inventive examples and comparative examples, the Fe content on the surface of the plating layer was 77% of the average Fe content in the plating layer, and did not show a large difference. At this time, the surface of the plating layer means a point having a depth of 1 μm from the outermost surface of the plating layer.
상기 스킨 패스 압연된 도금 강판에 대해 대기 분위기에서 930℃에서 6분간 강판을 가열한 후 열간에서 프레스 성형과 급냉을 실시하여 열간 프레스 성형 부재를 얻었다. 얻어진 열간 프레스 성형 부재의 내부 조직은 실질적으로 100% 마르텐사이트로 이루어졌으며, 강도가 1500MPa인 것을 확인할 수 있었다. 다만, 강재의 조직과 강도는 필요에 따라서 변경할 수 있는 것으로서, 통상의 기술자라면 강재의 조성이나 냉각 조건 등을 비롯한 제조 조건을 변경시킴으로써 목표하는 조직과 강도를 가진 부재를 제조하는데 아무런 어려움이 없을 것이다.The skin pass-rolled plated steel sheet was heated at 930° C. for 6 minutes in an air atmosphere, and hot press forming and rapid cooling were performed to obtain a hot press formed part. It was confirmed that the internal structure of the obtained hot-press-formed part consisted of substantially 100% martensite, and that the strength was 1500 MPa. However, the structure and strength of the steel material can be changed as needed, and a person skilled in the art will have no difficulty in manufacturing a member having a target structure and strength by changing the manufacturing conditions including the composition of the steel material or cooling conditions. .
또한, 모든 발명예와 비교예에 의하여 얻은 열간 프레스 성형 부재에서 합금 도금층 내의 Al과 Fe의 함량의 합과 Fe 함량은 각각 83% 및 44% 수준으로서 실시예 별로 특별한 차이는 확인되지 않았다.In addition, in the hot press formed members obtained by all the inventive examples and the comparative examples, the sum of Al and Fe contents in the alloy plating layer and the Fe content were 83% and 44%, respectively, and no particular difference was confirmed for each example.
스킨 패스 압연된 도금 강판 및 열간 프레스 성형 부재의 표면조도(Ra), 피크수(RPc), 단위면적당 크랙의 개수 및 압흔부의 비율을 측정하였다. 표면조도와 피크수는 JIS B 0601(2013) 규격에 따라 다섯 부위를 측정하고 그 값을 평균하여 구하였다. 크랙의 개수는 현미경(배율: 100배)의 시야를 가로 세로 각각 10등분하여 얻어지는 100개의 영역 각각에서 관찰되는 크랙의 총 개수를 관찰 면적 1mm2에서 관찰되는 것으로 환산하여 측정하였다. 측정에는 ZEISS SUPRA 55VP 모델 주사전자현미경을 사용하였으며, 다섯 부위에 대하여 측정한 것의 평균치를 구하여 해석에 사용하였다. 또한, 압흔부의 비율은 라이카(Leica) DM6000M 모델 광학 현미경으로 배율 100배에서 표면 이미지를 관찰한 결과를 Clemex Vision PE 소프트웨어를 이용하여 색의 명도를 256개로 구분한 후 가장 높은 명도 값의 70% 값에 해당하는 명도 이상의 부분을 상기 압흔부로 특정하여 그 면적 비율을 구하였다. 상기 면적 비율 역시 다섯 군데를 관찰한 결과의 평균 값으로 하였다. 상기 측정 결과들 중 도금 강판에 대한 것들은 표 3에 나타내었으며, 열간 프레스 성형 부재에 대한 것들은 표 4에 나타내었다.The surface roughness (Ra), the number of peaks (RPc), the number of cracks per unit area, and the ratio of indentations were measured for the skin pass-rolled plated steel sheet and the hot press formed member. The surface roughness and number of peaks were obtained by measuring five areas according to the JIS B 0601 (2013) standard and averaging the values. The number of cracks was measured by converting the total number of cracks observed in each of 100 areas obtained by dividing the field of view of a microscope (magnification: 100 times) into 10 equal parts horizontally and vertically, respectively, to those observed in an observation area of 1 mm 2 . A ZEISS SUPRA 55VP model scanning electron microscope was used for the measurement, and the average value of the measurements for five sites was obtained and used for analysis. In addition, the ratio of the indentation was 70% of the highest brightness value after observing the surface image at 100 times magnification with a Leica DM6000M model optical microscope and classifying the color brightness into 256 using Clemex Vision PE software. A portion having a brightness corresponding to or greater than that was specified as the indentation portion, and the area ratio thereof was obtained. The area ratio was also set as the average value of the results of observing five locations. Among the above measurement results, those for coated steel sheets are shown in Table 3, and those for hot press formed parts are shown in Table 4.
또한, 얻어진 열간 프레스 성형 부재의 도장 밀착성과 내식성을 다음과 같은 방법에 의하여 평가하였으며, 그 결과를 표 4에 나타내었다.In addition, the coating adhesion and corrosion resistance of the obtained hot press-formed parts were evaluated by the following methods, and the results are shown in Table 4.
우선 도장 밀착성 등급은 GMW14829 방법에 따라 얻어진 부재에 도장을 실시한 후 1mm 간격의 격자 스크래치(scratch)를 형성하고, 이에 대하여 테이프 박리 평가를 통해 등급을 정하였다. 상기 등급이 1 이하인 경우 양호한 것으로 볼 수 있다.First, the coating adhesion rating was determined by coating the member obtained according to the GMW14829 method, forming grid scratches at 1 mm intervals, and evaluating the peeling of the tape. If the rating is 1 or less, it can be regarded as good.
내식성은 GMW14872 규격에 따라 상기 부재에 인산염 처리 및 도장을 실시한 후 크로스컷(crosscut)을 낸 후 염수 분위기에서 Cyclic corrosion test를 52회 실시한 후 블리스터(blister) 폭을 측정하였다. 본 실시예에서는 폭이 2mm 이하인 것을 양호한 것으로 판단하였다.For corrosion resistance, after phosphate treatment and painting were performed on the member according to GMW14872 standard, a cyclic corrosion test was performed 52 times in a saline atmosphere after crosscutting, and then the blister width was measured. In this embodiment, it was judged that the width was 2 mm or less as good.
원소element CC SiSi MnMn PP SS AlAl CrCr NN TiTi BB
함량(중량%)Content (% by weight) 0.210.21 0.250.25 1.11.1 0.0110.011 0.0030.003 0.0250.025 0.20.2 0.0050.005 0.0250.025 0.00250.0025
구분division 합금화 방법alloying method Ra(㎛)Ra(μm) RPc(/cm)RPc(/cm) 압하력(톤)Pressing force (ton) SPMISPMI
비교예 1Comparative Example 1 온라인online 1One 200200 400400 40004000
비교예 2Comparative Example 2 상소둔upper annealing 1One 200200 500500 44724472
비교예 3Comparative Example 3 온라인online 1One 200200 600600 48994899
발명예 1Invention Example 1 상소둔upper annealing 44 9090 200200 50915091
발명예 2Invention example 2 상소둔upper annealing 44 9090 300300 62356235
발명예 3Inventive example 3 온라인online 44 9090 400400 72007200
발명예 4Inventive Example 4 상소둔upper annealing 44 9090 500500 80508050
발명예 5Inventive Example 5 온라인online 88 5050 200200 56575657
발명예 6Inventive example 6 온라인online 88 5050 300300 69286928
발명예 7Inventive Example 7 상소둔upper annealing 88 5050 400400 80008000
비교예 4Comparative Example 4 상소둔upper annealing 88 5050 500500 89448944
비교예 5Comparative Example 5 온라인online 88 5050 600600 97989798
비교예 6Comparative Example 6 상소둔upper annealing 88 5050 700700 1058310583
구분division Ra(㎛)Ra(μm) RPc(/cm)RPc(/cm) Ra×RPc (㎛/cm)Ra×RPc (μm/cm) 크랙수 (개/mm2)Number of cracks (pcs/mm 2 ) 압흔부 비율 (면적%)Percentage of indentation (area %)
비교예 1Comparative Example 1 0.220.22 175175 38.538.5 6.16.1 1One
비교예 2Comparative Example 2 0.250.25 164164 41.041.0 7.37.3 22
비교예 3Comparative Example 3 0.270.27 165165 44.644.6 9.49.4 44
발명예 1Invention example 1 0.80.8 7676 60.860.8 15.815.8 66
발명예 2Invention example 2 1.21.2 8888 105.6105.6 89.589.5 2020
발명예 3Inventive example 3 1.61.6 7575 120.0120.0 93.693.6 3333
발명예 4Inventive example 4 1.91.9 7070 133.0133.0 145.4145.4 4545
발명예 5Inventive Example 5 2.42.4 4141 98.498.4 62.362.3 1616
발명예 6Inventive Example 6 3.13.1 4343 133.3133.3 120.4120.4 3232
발명예 7Inventive Example 7 3.53.5 4040 140.0140.0 181.2181.2 4848
비교예 4Comparative Example 4 3.73.7 4949 181.3181.3 215.9215.9 5353
비교예 5Comparative Example 5 3.83.8 4848 182.4182.4 257.6257.6 6161
비교예 6Comparative Example 6 44 4747 188.0188.0 274.1274.1 6969
구분division Ra(㎛)Ra(μm) RPc(/cm)RPc(/cm) Ra×RPc (㎛/cm)Ra×RPc (μm/cm) 크랙수 (개/mm2)Number of cracks (pcs/mm 2 ) 압흔부 비율 (면적%)Percentage of indentation (area %) 도장밀착성 등급Paint Adhesion Grade Blister 폭 (mm)Blister width (mm)
비교예 1Comparative Example 1 0.250.25 172172 43.043.0 7.57.5 1One 22 4.14.1
비교예 2Comparative Example 2 0.260.26 160160 41.641.6 9.49.4 33 33 4.34.3
비교예 3Comparative Example 3 0.280.28 163163 45.645.6 12.612.6 44 22 4.24.2
발명예 1Invention Example 1 0.820.82 7575 61.561.5 16.216.2 77 00 0.80.8
발명예 2Invention example 2 1.31.3 8484 109.2109.2 93.493.4 2121 00 0.70.7
발명예 3Inventive example 3 1.71.7 7373 124.1124.1 98.498.4 3232 00 0.60.6
발명예 4Inventive Example 4 22 6868 136.0136.0 155.1155.1 4646 00 0.50.5
발명예 5Inventive Example 5 2.52.5 4040 100.0100.0 70.470.4 1717 00 0.70.7
발명예 6Inventive example 6 3.23.2 4242 134.4134.4 148.3148.3 3333 00 0.50.5
발명예 7Inventive Example 7 3.63.6 3838 136.8136.8 218.1218.1 4747 00 1.21.2
비교예 4Comparative Example 4 3.83.8 4646 174.8174.8 235235 5454 00 4.54.5
비교예 5Comparative Example 5 3.93.9 4545 175.5175.5 271.5271.5 6060 00 4.74.7
비교예 6Comparative Example 6 4.24.2 4545 189.0189.0 278.1278.1 6868 00 4.94.9
비교예 1 내지 3은 스킨 패스 압연시 SPMI가 5000 미만이었던 경우로서, 그 결과 합금화된 도금 강판 표면의 Ra×RPc가 충분하게 확보되지 않거나 압흔부 비율과 크랙의 개수가 충분하게 형성되지 않았다. 이러한 강판을 열간 프레스 성형하여 얻어진 열간 프레스 성형 부재 역시 충분한 Ra×RPc이 낮거나 크랙의 개수 또는 압흔부 비율이 충분하지 못하였다. 이러한 경우, 앵커링 효과가 부족하여 도장층이 부재 표면에 강고하게 결합하게 어려울 수 있으며, 그 결과 도장 밀착성 등급이 모두 2 이상으로 좋지 않은 것을 확인할 수 있었다.반면 비교예 4 내지 6의 경우는 SPMI 값이 너무 높았던 경우이다. 이러할 경우에는 도금층의 Ra×RPc나 압흔부 비율과 크랙의 개수 등은 부재의 도장 밀착성을 확보하기에는 충분할 수 있으나, 오히려 도금층에 손상이 발생하면서 표 4에 나타난 바와 같이 부재의 내식성이 나빠진 결과를 나타내었다. 즉, 도금층이 손상될 경우에는 희생양극방식의 방식 성능을 제공하지 못하는 알루미늄 합금계 도금층의 손상된 틈으로 소지강판이 노출되어 부식이 발생할 수 있으며, 그 결과 내식성의 지표인 블리스터의 폭이 허용 한계치보다 커질 수 있다.In Comparative Examples 1 to 3, the SPMI was less than 5000 during skin pass rolling, and as a result, Ra × RPc on the surface of the alloyed plated steel sheet was not sufficiently secured or the indentation ratio and the number of cracks were not sufficiently formed. The hot press formed part obtained by hot press forming such a steel sheet also had a sufficiently low Ra x RPc, or had an insufficient number of cracks or an insufficient indentation ratio. In this case, it may be difficult for the paint layer to firmly bind to the surface of the member due to the lack of anchoring effect, and as a result, it was confirmed that all paint adhesion grades were not good at 2 or higher. On the other hand, in Comparative Examples 4 to 6, the SPMI values if this is too high. In this case, the Ra × RPc of the plating layer, the indentation ratio, and the number of cracks may be sufficient to secure the paint adhesion of the member, but the corrosion resistance of the member deteriorates as shown in Table 4 as damage occurs to the plating layer. was That is, if the plating layer is damaged, corrosion may occur due to exposure of the base steel sheet through the damaged gap in the aluminum alloy-based plating layer that does not provide the anticorrosive performance of the sacrificial anode method. can be bigger
반면에 본 발명의 조건을 충족하는 발명예 1 내지 7은 스킨 패스 압연 조건을 적절하게 제어하여 도금 강판의 표면 특성을 확보한 결과 최종적으로 얻어지는 부재의 도장 밀착성과 내식성을 동시에 확보할 수 있었다.On the other hand, in Inventive Examples 1 to 7 satisfying the conditions of the present invention, skin pass rolling conditions were appropriately controlled to secure the surface characteristics of the plated steel sheet, and as a result, paint adhesion and corrosion resistance of the finally obtained member could be secured at the same time.
도 1에 비교예 1에 의하여 제조된 도금강판(a)과 발명예 2에 의해 제조된 도금강판(b)를 나타내었다. 도면에서 볼 수 있듯이 비교예 1에 의해 제조된 도금강판의 경우에는 표면의 요철이 충분하지 않은 반면, 발명예 2에 의해 제조된 도금강판의 경우에는 표면에 요철이 충분히 형성되어, 이후 열간 프레스 성형에 의해 제조된 부재의 표면이 도장층을 고정하기에 적합하게 될 수 있다. 1 shows a coated steel sheet (a) manufactured by Comparative Example 1 and a coated steel sheet (b) manufactured by Inventive Example 2. As can be seen in the figure, the plated steel sheet manufactured by Comparative Example 1 does not have sufficient surface irregularities, whereas the plated steel sheet manufactured according to Inventive Example 2 has sufficiently formed irregularities on the surface, followed by hot press forming. The surface of the member produced by this can be made suitable for fixing the paint layer.
도 2에 비교예 1과 발명예 2에 의해 제조된 강판의 표면을 100배율 현미경(DM6000M)으로 관찰하고 Clemex Vision PE 소프트웨어를 이용하여 처리 한 후 최고 명도의 70% 이상의 영역(압흔부)을 흰색으로 표시한 결과를 나타내었다. 도면에서 확인할 수 있듯이, 본 발명에 따라 SPMI를 적정 범위로 제어하여 스킨 패스 압연을 실시한 발명예 2의 경우가 낮은 SPMI 조건으로 스킨 패스 압연한 비교예 1에 비하여 훨씬 높은 압흔부를 형성시킬 수 있었다.In FIG. 2, the surface of the steel sheet manufactured by Comparative Example 1 and Inventive Example 2 was observed with a microscope (DM6000M) at 100 magnification, processed using Clemex Vision PE software, and then the area (indentation part) of 70% or more of the highest brightness was white. The results indicated by . As can be seen from the figure, in the case of Inventive Example 2, in which skin pass rolling was performed by controlling the SPMI to an appropriate range according to the present invention, a much higher indentation was formed than in Comparative Example 1, in which skin pass rolling was performed under low SPMI conditions.
도 3의 그래프에 SPMI 값과 크랙 수 사이의 관계를 나타내었다. 도면에서 SPMI 값이 5000 내지 8000 √Ton·㎛/cm 사이의 값을 가질 때, 크랙의 개수가 적절한 범위 내로 유지될 수 있다는 것을 확인할 수 있다.The graph of FIG. 3 shows the relationship between the SPMI value and the number of cracks. From the figure, it can be seen that when the SPMI value has a value between 5000 and 8000 √Ton·μm/cm, the number of cracks can be maintained within an appropriate range.
따라서, 본 발명의 유리한 효과를 확인할 수 있었다.Thus, the advantageous effects of the present invention could be confirmed.

Claims (23)

  1. 소지강판 및base steel plate and
    상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고,A plating layer made of an Al-Fe alloy formed on the base steel sheet,
    상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 80% 이상이며,The total content of Al and Fe in the plating layer is 80% or more by weight,
    상기 도금층 중 Fe의 평균 함량은 중량 기준으로 20% 이상이며,The average content of Fe in the plating layer is 20% or more by weight,
    상기 도금층 표면의 Ra와 RPc의 곱이 60~150㎛/cm인The product of Ra and RPc of the surface of the plating layer is 60 to 150 μm / cm
    열간 프레스 성형용 도금 강판.Plated steel sheet for hot press forming.
    단, Ra는 산술평균거칠기를 의미하며 단위는 ㎛ 이고, RPc는 단위 길이 당 피크수를 의미하며 단위는 /cm 이다.However, Ra means arithmetic average roughness and its unit is μm, and RPc means the number of peaks per unit length and its unit is /cm.
  2. 소지강판 및base steel plate and
    상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고,A plating layer made of an Al-Fe alloy formed on the base steel sheet,
    상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 80% 이상이며,The total content of Al and Fe in the plating layer is 80% or more by weight,
    상기 도금층 중 Fe의 평균 함량은 중량 기준으로 20% 이상이며,The average content of Fe in the plating layer is 20% or more by weight,
    상기 도금층 표면을 주사전자현미경으로 100배의 배율로 관찰하였을 때 얻어지는 시야를 가로 및 세로 10 등분하여 얻어지는 각 영역 내에 존재하는 크랙의 개수가 1mm2 당 10~200개이며,The number of cracks present in each region obtained by dividing the field of view obtained when the surface of the plating layer is observed at a magnification of 100 times with a scanning electron microscope into 10 horizontally and vertically is 10 to 200 per 1mm 2 ,
    상기 도금층 표면에서 압흔부가 차지하는 면적의 비율이 5~50%인The ratio of the area occupied by the indentation on the surface of the plating layer is 5 to 50%
    열간 프레스 성형용 도금강판.Coated steel sheet for hot press forming.
    여기서, 압흔부라 함은 광학현미경으로 100배의 배율로 관찰한 영역에서 측정되는 가장 높은 명도 대비 70% 이상의 명도를 가지는 영역을 의미한다.Here, the indentation means a region having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
  3. 제 1 항에 있어서, According to claim 1,
    상기 도금층의 표면부의 Fe의 함량이 상기 도금층 중 Fe의 평균 함량 대비 50% 이상인 열간 프레스 성형용 도금강판.The coated steel sheet for hot press forming, wherein the Fe content of the surface portion of the plating layer is 50% or more relative to the average Fe content in the plating layer.
    여기서, 표면부의 Fe함량은 주사전자현미경(SEM)으로 100배 확대한 부위에서 EDS 면분석을 통하여 측정한 값이고, Fe의 평균 함량은 GDS 분석을 통해 얻어지는 표층부터 Fe와 Al함량이 교차하는 깊이까지의 Fe 함량 곡선을 적분한 후 이를 표층부터 Fe와 Al 함량이 교차하는 깊이까지의 거리로 나눈 값을 의미한다.Here, the Fe content of the surface portion is a value measured through EDS surface analysis at a site magnified 100 times with a scanning electron microscope (SEM), and the average Fe content is the depth at which Fe and Al content intersect from the surface layer obtained through GDS analysis. It means the value obtained by integrating the Fe content curve up to and dividing it by the distance from the surface layer to the depth where the Fe and Al content intersect.
  4. 제 3 항에 있어서,According to claim 3,
    상기 도금층의 표면부의 Fe의 함량이 중량 기준으로 15% 이상인 열간 프레스 성형용 도금강판.A coated steel sheet for hot press forming wherein the Fe content of the surface portion of the plating layer is 15% or more by weight.
  5. 제 2 항에 있어서, According to claim 2,
    상기 도금층의 표면부의 Fe의 함량이 상기 도금층 중 Fe의 평균 함량 대비 50% 이상인 열간성형용 도금강판.A coated steel sheet for hot forming, wherein the Fe content of the surface portion of the plating layer is 50% or more compared to the average Fe content in the plating layer.
    여기서, 표면부의 Fe함량은 주사전자현미경(SEM)으로 100배 확대한 부위에서 EDS 면분석을 통하여 측정한 값이고, Fe의 평균함량은 GDS 분석을 통해 얻어지는 표층부터 Fe와 Al함량이 교차하는 깊이까지의 Fe 함량 곡선을 적분한 후 이를 표층부터 Fe와 Al 함량이 교차하는 깊이까지의 거리로 나눈 값을 의미한다.Here, the Fe content of the surface portion is a value measured through EDS surface analysis at a site magnified 100 times with a scanning electron microscope (SEM), and the average content of Fe is the depth at which Fe and Al content intersect from the surface layer obtained through GDS analysis. It means the value obtained by integrating the Fe content curve up to and dividing it by the distance from the surface layer to the depth where the Fe and Al content intersect.
  6. 제 5 항에 있어서,According to claim 5,
    상기 도금층의 표면부의 Fe의 함량이 중량 기준으로 15% 이상인 열간 프레스 성형용 도금강판.A coated steel sheet for hot press forming wherein the Fe content of the surface portion of the plating layer is 15% or more by weight.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, 상기 도금층 중 Fe의 평균 함량은 90% 이하인 열간 프레스 성형용 도금강판.The coated steel sheet for hot press forming according to any one of claims 1 to 6, wherein the average content of Fe in the plating layer is 90% or less.
  8. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,According to any one of claims 1 to 6,
    상기 도금층은 Mg, Zn, Mn, Cr, Mo, Si, Ti 중에서 선택되는 1종 또는 2종 이상의 원소를 함량의 합계로 20중량% 이하 포함하는 열간 프레스 성형용 도금강판.The plating layer is a coated steel sheet for hot press forming containing one or more elements selected from Mg, Zn, Mn, Cr, Mo, Si, and Ti in a total amount of 20% by weight or less.
  9. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, According to any one of claims 1 to 6,
    상기 소지강판은 중량 기준으로, C: 0.01~0.5%, Si: 2.0 % 이하(0% 제외), Mn: 0.1~4.0%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.001~1%, Cr: 5.0 %(0% 제외), N: 0.02% 이하, Ti: 0.1% 이하(0% 제외), B: 0.0001~0.01%, 잔부 Fe 및 불가피한 불순물을 포함하는 조성을 가지는 열간 프레스 성형용 도금강판.The base steel sheet contains, by weight, C: 0.01 to 0.5%, Si: 2.0% or less (excluding 0%), Mn: 0.1 to 4.0%, P: 0.05% or less, S: 0.02% or less, Al: 0.001 to 1 %, Cr: 5.0% (excluding 0%), N: 0.02% or less, Ti: 0.1% or less (excluding 0%), B: 0.0001 to 0.01%, balance for hot press molding with a composition containing Fe and unavoidable impurities plated steel.
  10. 제 9 항에 있어서, 상기 소지강판은 Nb: 0.1% 이하, Mo: 0.5% 이하, Ni: 1% 이하, Cu: 1% 이하 및 V: 0.5% 이하 중에서 선택된 1종 또는 2종 이상의 원소를 더 포함하는 열간 프레스 성형용 도금강판.10. The method of claim 9, wherein the base steel sheet further contains one or more elements selected from Nb: 0.1% or less, Mo: 0.5% or less, Ni: 1% or less, Cu: 1% or less, and V: 0.5% or less. Plated steel sheet for hot press forming comprising.
  11. 소지강판 상에 Al과 Fe의 합금으로 이루어진 도금층이 형성된 Al-Fe의 합금 도금강판을 얻는 단계; 및Obtaining an Al-Fe alloy-coated steel sheet having a plating layer made of an alloy of Al and Fe formed on the base steel sheet; and
    상기 Al-Fe 합금 도금강판에 대하여 하기 관계식 1로 표현되는 SPMI가 5000 내지 8500이 되는 조건하에서 스킨 패스 압연하는 단계Skin pass rolling of the Al-Fe alloy coated steel sheet under the condition that the SPMI expressed by the following relational expression 1 is 5000 to 8500
    를 포함하는 열간 프레스 성형용 도금강판의 제조방법.Method for manufacturing a coated steel sheet for hot press forming comprising a.
    [관계식 1][Relationship 1]
    Figure PCTKR2022020870-appb-img-000003
    Figure PCTKR2022020870-appb-img-000003
    여기서, 상기 P는 스킨 패스 압연시 압하력(단위: ton), 상기 Raroll은 스킨 패스 압연 롤 표면의 산술평균거칠기(단위: ㎛), 상기 RPcroll는 스킨 패스 압연 롤의 단위 길이 당 피크수(단위: /cm)를 의미한다. 또한, 상기 SPMI의 단위는 √Ton·㎛/cm이다.Here, P is the rolling force during skin pass rolling (unit: ton), the Ra roll is the arithmetic average roughness of the surface of the skin pass rolling roll (unit: μm), and the RPc roll is the number of peaks per unit length of the skin pass rolling roll (unit: /cm). In addition, the unit of the SPMI is √Ton·㎛/cm.
  12. 제 11 항에 있어서, 상기 Al-Fe 합금 도금강판은The method of claim 11, wherein the Al-Fe alloy plated steel sheet
    알루미늄 또는 알루미늄 합금이 도금된 알루미늄 도금강판을 얻는 단계; 및Obtaining an aluminum-coated steel sheet coated with aluminum or aluminum alloy; and
    상기 알루미늄 도금강판을 가열하여 합금화하는 단계를 포함하는 과정에 의하여 얻어지는 열간 프레스 성형용 도금강판의 제조방법.A method of manufacturing a coated steel sheet for hot press forming obtained by a process comprising the step of heating and alloying the aluminum-coated steel sheet.
  13. 제 12 항에 있어서, 상기 알루미늄 도금강판을 가열하여 합금화하는 단계는 강판을 알루미늄 또는 알루미늄 합금으로 도금하는 라인에 직접 연결되고, 상기 도금강판이 주행하는 상태에서 가열하는 온라인 가열에 의해 수행되는 열간 프레스 성형용 도금강판의 제조방법.13. The method of claim 12, wherein the step of heating and alloying the aluminum-coated steel sheet is performed by online heating, which is directly connected to a line for plating the steel sheet with aluminum or an aluminum alloy, and the coated steel sheet is heated in a running state. Manufacturing method of galvanized steel sheet for molding.
  14. 제 12 항에 있어서, 상기 알루미늄 도금강판을 가열하여 합금화하는 단계는 권취된 도금강판을 상자형 소둔로에서 가열하는 상소둔에 의해 수행되는 열간 프레스 성형용 도금강판의 제조방법.[Claim 13] The method of claim 12, wherein the step of heating and alloying the aluminum-coated steel sheet is performed by upper annealing by heating the rolled-up coated steel sheet in a box-shaped annealing furnace.
  15. 제 11 항 내지 제 14 항 중 어느 한 항에 있어서, According to any one of claims 11 to 14,
    상기 소지강판은 중량 기준으로, C: 0.01~0.5%, Si: 2.0 % 이하(0% 제외), Mn: 0.1~4.0%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.001~1%, Cr: 5.0 % 이하(0% 제외), N: 0.02% 이하, Ti: 0.1% 이하(0% 제외), B: 0.0001~0.01%, 잔부 Fe 및 불가피한 불순물을 포함하는 조성을 가지는 열간 프레스 성형용 도금강판의 제조방법.The base steel sheet contains, by weight, C: 0.01 to 0.5%, Si: 2.0% or less (excluding 0%), Mn: 0.1 to 4.0%, P: 0.05% or less, S: 0.02% or less, Al: 0.001 to 1 %, Cr: 5.0% or less (excluding 0%), N: 0.02% or less, Ti: 0.1% or less (excluding 0%), B: 0.0001 to 0.01%, the balance being hot press molding having a composition containing Fe and unavoidable impurities Manufacturing method of galvanized steel sheet.
  16. 제 15 항에 있어서, 상기 소지강판은 Nb: 0.1% 이하, Mo: 0.5% 이하, Ni: 1% 이하, Cu: 1% 이하 및 V: 0.5% 이하 중에서 선택된 1종 또는 2종 이상의 원소를 더 포함하는 열간 프레스 성형용 도금강판의 제조방법.The method of claim 15, wherein the base steel sheet further contains one or two or more elements selected from Nb: 0.1% or less, Mo: 0.5% or less, Ni: 1% or less, Cu: 1% or less, and V: 0.5% or less. Method for manufacturing a plated steel sheet for hot press forming comprising.
  17. 소지강판 및base steel plate and
    상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고,A plating layer made of an Al-Fe alloy formed on the base steel sheet,
    상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 70% 이상이며,The total content of Al and Fe in the plating layer is 70% or more by weight,
    상기 도금층 중 Fe의 함량은 중량 기준으로 30% 이상이며,The content of Fe in the plating layer is 30% or more by weight,
    상기 도금층 표면의 Ra와 RPc의 곱이 60~150㎛/cm인The product of Ra and RPc of the surface of the plating layer is 60 to 150 μm / cm
    열간 프레스 성형 부재.Hot press forming part.
    단, Ra는 산술평균거칠기를 의미하며 단위는 ㎛ 이고, RPc는 단위 길이 당 피크수를 의미하며 단위는 /cm 이다.However, Ra means arithmetic average roughness and its unit is μm, and RPc means the number of peaks per unit length and its unit is /cm.
  18. 소지강판 및base steel plate and
    상기 소지강판 상에 형성된 Al-Fe 합금으로 이루어진 도금층을 포함하고,A plating layer made of an Al-Fe alloy formed on the base steel sheet,
    상기 도금층 중 Al과 Fe의 함량의 합계는 중량 기준으로 70% 이상이며,The total content of Al and Fe in the plating layer is 70% or more by weight,
    상기 도금층 중 Fe의 평균 함량은 중량 기준으로 30% 이상이며, The average content of Fe in the plating layer is 30% or more by weight,
    상기 도금층 표면을 주사전자현미경으로 100배의 배율로 관찰하였을 때 얻어지는 시야를 가로 및 세로 10 등분하여 얻어지는 각 영역 내에 존재하는 크랙의 개수가 1mm2 당 15~220개이며,The number of cracks present in each region obtained by dividing the field of view obtained when the surface of the plating layer is observed at a magnification of 100 times with a scanning electron microscope into 10 horizontally and vertically is 15 to 220 per 1mm 2 ,
    상기 도금층 표면에서 압흔부가 차지하는 면적의 비율이 5~50%인The ratio of the area occupied by the indentation on the surface of the plating layer is 5 to 50%
    열간 프레스 성형 부재.Hot press forming part.
    여기서, 압흔부라 함은 광학현미경으로 100배의 배율로 관찰한 영역에서 측정되는 가장 높은 명도 대비 70% 이상의 명도를 가지는 영역을 의미한다.Here, the indentation means a region having a brightness of 70% or more compared to the highest brightness measured in an area observed at a magnification of 100 times with an optical microscope.
  19. 제 17 항 또는 제 18 항에 있어서,According to claim 17 or 18,
    상기 소지강판은 중량 기준으로, C: 0.01~0.5%, Si: 2.0 % 이하(0% 제외), Mn: 0.1~4.0%, P: 0.05% 이하, S: 0.02% 이하, Al: 0.001~1%, Cr: 5.0 % 이하(0% 제외), N: 0.02% 이하, Ti: 0.1% 이하(0% 제외), B: 0.0001~0.01%, 잔부 Fe 및 불가피한 불순물을 포함하는 조성을 가지는 열간 프레스 성형 부재.The base steel sheet contains, by weight, C: 0.01 to 0.5%, Si: 2.0% or less (excluding 0%), Mn: 0.1 to 4.0%, P: 0.05% or less, S: 0.02% or less, Al: 0.001 to 1 %, Cr: 5.0% or less (excluding 0%), N: 0.02% or less, Ti: 0.1% or less (excluding 0%), B: 0.0001 to 0.01%, the balance being hot press molding having a composition containing Fe and unavoidable impurities absence.
  20. 제 19 항에 있어서, 상기 소지강판은 Nb: 0.1% 이하, Mo: 0.5% 이하, Ni: 1% 이하, Cu: 1% 이하 및 V: 0.5% 이하 중에서 선택된 1종 또는 2종 이상의 원소를 더 포함하는 열간 프레스 성형 부재.The method of claim 19, wherein the base steel sheet further contains one or more elements selected from Nb: 0.1% or less, Mo: 0.5% or less, Ni: 1% or less, Cu: 1% or less, and V: 0.5% or less. A hot press-formed member comprising:
  21. 제 17 항 또는 제 18 항에 있어서, 상기 소지강판은 면적 기준으로 마르텐사이트 5~50%와 나머지 페라이트, 펄라이트, 베이나이트 및 오스테나이트 중에서 선택된 1종 또는 2종 이상의 상으로 이루어지는 미세조직을 가지며, 인장강도가 400~800MPa인 열간 프레스 성형 부재.The method of claim 17 or 18, wherein the base steel sheet has a microstructure composed of 5 to 50% of martensite and one or more phases selected from ferrite, pearlite, bainite, and austenite on the basis of area, A hot press-formed member with a tensile strength of 400 to 800 MPa.
  22. 제 17 항 또는 제 18 항에 있어서, 상기 소지강판은 면적 기준으로 마르텐사이트 90% 이상과 나머지 페라이트, 펄라이트, 베이나이트 및 오스테나이트 중에서 선택된 1종 또는 2종 이상의 상으로 이루어지는 미세조직을 가지며, 인장강도가 800~1300MPa인 열간 프레스 성형 부재.The method of claim 17 or 18, wherein the base steel sheet has a microstructure consisting of 90% or more of martensite and the remaining one or two or more phases selected from ferrite, pearlite, bainite and austenite based on area, and tensile A hot press-formed member with a strength of 800 to 1300 MPa.
  23. 제 17 항 또는 제 18 항에 있어서, 상기 소지강판은 면적 기준으로 마르텐사이트 95% 이상과 나머지 페라이트, 펄라이트, 베이나이트 및 오스테나이트 중에서 선택된 1종 또는 2종 이상의 상으로 이루어지는 미세조직을 가지며, 인장강도가 1300MPa 이상인 열간 프레스 성형 부재.The method of claim 17 or 18, wherein the base steel sheet has a microstructure consisting of 95% or more of martensite and the remaining one or two or more phases selected from ferrite, pearlite, bainite and austenite on an area basis, and tensile A hot press-formed member having a strength of 1300 MPa or more.
PCT/KR2022/020870 2021-12-23 2022-12-20 Plated steel sheet having excellent plating adhesion and corrosion resistance after hot press forming, preparation method for plated steel sheet, and hot pressed forming member WO2023121241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210185822A KR20230096381A (en) 2021-12-23 2021-12-23 A plated steel sheet having superior paint adhesion and corrosion resistance after hot press forming, a method for producing the same and a hot press formed member
KR10-2021-0185822 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023121241A1 true WO2023121241A1 (en) 2023-06-29

Family

ID=86903050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020870 WO2023121241A1 (en) 2021-12-23 2022-12-20 Plated steel sheet having excellent plating adhesion and corrosion resistance after hot press forming, preparation method for plated steel sheet, and hot pressed forming member

Country Status (2)

Country Link
KR (1) KR20230096381A (en)
WO (1) WO2023121241A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
JP2002317258A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Hot dip aluminum plated steel sheet having excellent corrosion resistance after working and production method therefor
JP2011137210A (en) * 2009-12-28 2011-07-14 Nippon Steel Corp Steel sheet for hot stamp and method of producing the same
KR20130110532A (en) * 2012-03-29 2013-10-10 현대제철 주식회사 Method for producing galvanized steel sheet and galvanized steel sheet produced using the same
KR20190078013A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Steel sheet plated with fe-al alloy having improved resistance against hydrogen delayed fracture, manufacturing method thereof and hot press formed part manufactured therefrom
CN112877592A (en) * 2019-11-29 2021-06-01 宝山钢铁股份有限公司 Hot-formed part with excellent paint film adhesion and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
JP2002317258A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Hot dip aluminum plated steel sheet having excellent corrosion resistance after working and production method therefor
JP2011137210A (en) * 2009-12-28 2011-07-14 Nippon Steel Corp Steel sheet for hot stamp and method of producing the same
KR20130110532A (en) * 2012-03-29 2013-10-10 현대제철 주식회사 Method for producing galvanized steel sheet and galvanized steel sheet produced using the same
KR20190078013A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Steel sheet plated with fe-al alloy having improved resistance against hydrogen delayed fracture, manufacturing method thereof and hot press formed part manufactured therefrom
CN112877592A (en) * 2019-11-29 2021-06-01 宝山钢铁股份有限公司 Hot-formed part with excellent paint film adhesion and manufacturing method thereof

Also Published As

Publication number Publication date
KR20230096381A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2017111525A1 (en) Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same
WO2018117543A1 (en) Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof
WO2017105064A1 (en) High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability, and manufacturing method therefor
WO2015099221A1 (en) Steel sheet having high strength and low density and method of manufacturing same
WO2016098964A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
WO2015023012A1 (en) Ultrahigh-strength steel sheet and manufacturing method therefor
WO2018009041A1 (en) Hot forming member having excellent crack propagation resistance and ductility, and method for producing same
WO2017222189A1 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
WO2019124688A1 (en) High-strength steel sheet having excellent impact properties and formability and method for manufacturing same
WO2016104881A1 (en) Hot press-formed (hpf) member having excellent bending characteristics and method for manufacturing same
WO2016098963A1 (en) Hot dipped galvanized steel sheet with excellent hole expansibility, hot dipped galvannealed steel sheet, and manufacturing method therefor
WO2019231023A1 (en) Al-fe-alloy plated steel sheet for hot forming, having excellent twb welding characteristics, hot forming member, and manufacturing methods therefor
WO2018117724A1 (en) High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2020130675A1 (en) High-strength cold-rolled steel sheet having excellent bending workability and manufacturing method therefor
WO2019124781A1 (en) Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same
WO2019124807A1 (en) Steel sheet with excellent bake hardening properties and corrosion resistance and method for manufacturing same
WO2020226301A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
WO2017111428A1 (en) High strength cold-rolled steel sheet excellent in ductility, hole-forming property and surface treatment property, molten galvanized steel sheet, and method for manufacturing same
WO2022097965A1 (en) Plated steel sheets for hot press forming having excellent hydrogen brittleness resistance and impact resistance, hot press formed parts, and manufacturing methods thereof
WO2023121241A1 (en) Plated steel sheet having excellent plating adhesion and corrosion resistance after hot press forming, preparation method for plated steel sheet, and hot pressed forming member
WO2018117500A1 (en) High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
WO2022086050A1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911874

Country of ref document: EP

Kind code of ref document: A1