WO2018117724A1 - High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor - Google Patents

High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor Download PDF

Info

Publication number
WO2018117724A1
WO2018117724A1 PCT/KR2017/015313 KR2017015313W WO2018117724A1 WO 2018117724 A1 WO2018117724 A1 WO 2018117724A1 KR 2017015313 W KR2017015313 W KR 2017015313W WO 2018117724 A1 WO2018117724 A1 WO 2018117724A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
less
high strength
hot
Prior art date
Application number
PCT/KR2017/015313
Other languages
French (fr)
Korean (ko)
Inventor
김명수
강기철
박일정
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2019533551A priority Critical patent/JP6893990B2/en
Priority to CN201780080336.5A priority patent/CN110100031B/en
Publication of WO2018117724A1 publication Critical patent/WO2018117724A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a high strength hot rolled steel sheet and a cold rolled steel sheet having excellent continuous productivity, and a high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion and a method of manufacturing the same.
  • Mn, Si, Al, Cr, Ti, etc. are added to steel in order to secure both strength and ductility of automotive steel sheets at the same time.
  • a steel sheet having ductility can be produced.
  • the steel sheet used in the automobile for extending the life of the vehicle needs to improve the corrosion resistance, for which hot-dip galvanized steel sheet is used.
  • high strength steel sheets for automobiles having a strength of 950 MPa or more components such as Si, Mn, and Al are added to steel to secure a target strength and elongation.
  • high strength steel sheets containing Mn, Si and / or Al which are easily oxidized in steel, react with trace amounts of oxygen or water vapor in the annealing furnace to form Mn, Si, Al alone or composite oxides on the surface of the steel sheet, and melt It hinders the wettability of zinc, so that uncoated, which is not attached to zinc locally or entirely on the surface of the plated steel, occurs, which greatly reduces the surface quality of the plated steel sheet.
  • Mn, Si, and Al are mainly composed of Fe, Si, Mn, Al, etc.
  • the oxide present in the grain boundary of the steel sheet surface is destroyed by rolling, so that the grain is weakened and it is easy to fall off, and then in the annealing and plating process
  • the structure of the hot rolled steel sheet includes bainite or martensite structure, which causes an increase in the strength of the hot rolled steel sheet, which makes it difficult to cold roll.
  • the dents (Dent) generated in the steel sheet is a problem because it is a concave defect of the stamped form is clearly revealed in the coating process after processing to automotive parts.
  • a high strength steel sheet having a high tensile strength of 950 MPa or more which is used for automobile body structural members, can be stably produced continuously without occurrence of dent defects, but is manufactured to produce hot-dip galvanized steel sheet having excellent surface quality and plating adhesion.
  • the invention was proposed.
  • Patent Literature 1 controls air and fuel at an air-fuel ratio of 0.80 to 0.95 during annealing to oxidize the steel sheet in a direct flame furnace of an oxidizing atmosphere, so that Si, Mn, or Al alone to a certain depth inside the steel sheet.
  • the present invention provides a technique of forming iron oxide including a composite oxide, reducing annealing in a reducing atmosphere, and then reducing the iron oxide and performing hot dip galvanizing.
  • components having a high affinity for oxygen such as Si, Mn, and Al are internally oxidized at a predetermined depth from the surface of the steel sheet, and diffusion into the surface is suppressed.
  • the single or composite oxide is reduced, the wettability with zinc in the plating bath is improved, thereby reducing the unplating.
  • iron when heated under a high oxygen partial pressure where iron can be oxidized, iron is oxidized to a certain depth of the surface layer to form an iron oxide layer. Elements that are easier to oxidize than iron can no longer diffuse to the surface because they oxidize under the iron oxide layer and are present as oxides.
  • the iron oxide is easily reduced to iron in an atmosphere containing a certain amount of hydrogen and is present as a reduced iron layer in the surface layer, so that the wettability with zinc improves and the plating property is improved.
  • the plating property is improved by the post-oxidation reduction method of the high strength steel sheet, it is not possible to prevent liquefied brittle cracks during spot welding in the assembling process after forming the structural member using the steel sheet.
  • Patent Document 2 maintains the dew point in the annealing furnace to maintain a high dew point in the annealing furnace to oxidize components such as Mn, Si, Al, etc.
  • the present invention provides a technique for improving plating property by reducing oxides that are externally oxidized. Internal oxidation of the oxidizing component by this method reduces the external oxidation and improves the plating property, but like the internal oxide in the hot rolling process, the internal oxide formed at the grain boundary of the steel sheet during the annealing is attached to various rolls in the annealing furnace. There is a problem that a dent defect occurs.
  • the present invention suppresses the generation of internal oxides in the steel plate surface layer after hot rolling and winding high-strength steel containing a large amount of Mn, Si, and / or Al in the steel, thereby suppressing the occurrence of steel sheet dent during subsequent annealing, thereby continuously producing
  • the purpose of the present invention is to provide a high-strength hot-dip galvanized steel sheet having excellent surface quality and adhesion by suppressing the formation of Mn, Si, Al, etc. alone or composite oxide on the surface of the steel sheet during annealing.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2010-0030627
  • Patent Document 2 Korean Unexamined Patent Publication No. 10-2009-0006881
  • One of the various objects of the present invention is to provide a high strength hot rolled steel sheet and a cold rolled steel sheet having excellent continuous productivity, a high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and a method of manufacturing the same.
  • C 0.14 to 0.3%
  • Si 1 to 2.0%
  • Mn 2.6 to 5%
  • sol.Al 0.001 to 2%
  • An internal oxide containing an element is present, and the maximum depth of the internal oxide is 0.3 ⁇ m or less (excluding 0 ⁇ m) to provide a high strength hot dip galvanized steel sheet.
  • Another aspect of the invention is, in weight percent, C: 0.14-0.3%, Si: 1-2.0%, Mn: 2.6-5%, sol.Al: 0.001-2%, Ti: (48/14) * [N]-0.1%, P: 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), Sb, Bi, Sn, or Zn Or more: reheating the slab containing a total of 0.08 to 0.2%, balance Fe and unavoidable impurities, and then hot rolling to obtain a hot rolled steel sheet under a condition of a finish hot rolling temperature Ar3 ° C. or higher, and the hot rolled steel sheet at a temperature of 600 to 800 ° C. Winding at, provides a method for producing a high strength hot rolled steel sheet comprising the step of cooling the wound hot rolled steel sheet to a temperature of 550 °C or less at an average cooling rate of 2 °C / min or more.
  • Another aspect of the invention is, in weight percent, C: 0.14-0.3%, Si: 1-2.0%, Mn: 2.6-5%, sol.Al: 0.001-2%, Ti: (48/14) * [N]-0.1%, P: 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), Sb, Bi, Sn, or Zn Or more: reheating the slab containing a total of 0.08 to 0.2%, balance Fe and unavoidable impurities, and then hot rolling to obtain a hot rolled steel sheet under a condition of a finish hot rolling temperature Ar3 ° C. or higher, and the hot rolled steel sheet at a temperature of 600 to 800 ° C.
  • Winding in the step cooling the wound hot rolled steel sheet to an average cooling rate of 2 ° C./min or more to a temperature of 550 ° C. or less, cold rolling the cooled hot rolled steel sheet to obtain a cold rolled steel sheet, and dew point the cold rolled steel sheet.
  • the recrystallized annealing cold rolled steel sheet After heating to a temperature of 820 ⁇ 870 °C under a temperature of -60 ⁇ -30 °C, and holding for 5 ⁇ 120 seconds to recrystallize annealing, the recrystallized annealing cold rolled steel sheet at a rate of 20 °C / sec or more 250 ⁇ 350 Up to a temperature of °C After cooling, holding for 50 to 150 seconds, and heating the cooled and held cold rolled steel sheet to a temperature of 460 ⁇ 500 °C at a rate of 30 °C / sec or more, and then plated by plating in a zinc plating bath within 7 seconds It provides a method of manufacturing a high strength hot dip galvanized steel sheet comprising a step.
  • the high strength hot rolled steel sheet according to the present invention has an advantage of excellent continuous productivity.
  • the high strength hot-dip galvanized steel sheet according to the present invention has an advantage of excellent surface quality and plating adhesion.
  • Figure 1 shows the results of analyzing the cold rolled steel sheet according to Inventive Example 9 by 3D-AP.
  • Figure 2 (a) is an SEM image of the cross section of the cold rolled steel sheet according to Comparative Example 31,
  • Figure 2 (b) is an SEM image of the cross section of the invention example 33.
  • alloy component and the preferred content range of the high strength hot rolled steel sheet of the present invention will be described in detail. It is noted that the content of each component described below is based on weight unless otherwise specified.
  • C is an essential element for securing martensite strength, and in order to obtain such an effect in the present invention, it is preferably included 0.14% or more. However, if the content is excessive, the ductility, bending workability and weldability is reduced, the press formability and roll workability is deteriorated, the upper limit is preferably limited to 0.3%.
  • Si improves the yield strength of the steel and at the same time stabilizes ferrite and residual austenite at room temperature.
  • TRIP Tranformation Induced Plasticity
  • it inhibits cementite precipitation from austenite during cooling and inhibits the growth of carbides. Thereby stabilizing residual austenite. Therefore, it is an essential element for producing a steel sheet excellent in ductility with a tensile strength of 950 MPa or more as in the present invention.
  • it is preferably included 1% or more, more preferably 1.1% or more.
  • the upper limit of the Si content is preferably limited to 2.0%.
  • Mn is well known as a hardenability increasing element that inhibits ferrite formation and stabilizes austenite.
  • Mn is preferably contained at 2.6% or more.
  • the upper limit is preferably limited to 5%.
  • sol.Al is an element added for deoxidation in the steelmaking process.
  • sol.Al also helps to form carbonitrides and reduces the annealing cost by expanding the ferrite region and lowering the Ac1 transformation point.
  • the upper limit is preferably limited to 2%.
  • Ti is a nitride forming element, lowers the content of solid solution N in steel, and serves to suppress AlN formation, which is a cause of hot rolling cracks. In order to obtain such an effect in the present invention, it is necessary to add chemically equivalent (48/14) * [N] or more. However, if the content is excessive, the carbon concentration and strength of martensite may be reduced by additional carbide precipitation in addition to the removal of solid solution N, so the upper limit is preferably limited to 0.1%.
  • P is an inevitable impurity contained in steel.
  • the content thereof is excessive, weldability is lowered, brittleness of steel is more likely to occur, and dent defects are more likely to occur.
  • the upper limit of the P content is preferably limited to 0.04%.
  • S is an inevitable impurity contained in steel.
  • the upper limit of the S content is preferably limited to 0.015%.
  • N is an inevitable impurity contained in steel, and if the content is excessive, the risk of cracking during playing due to AlN formation is greatly increased.
  • the upper limit of the N content is preferably limited to 0.02%.
  • At least one of Sb, Bi, Sn, and Zn 0.08 to 0.2% in total
  • Sb, Sn, Bi, Zn components are first concentrated in the steel plate surface and surface layer to prevent the diffusion of oxidizing components such as Si, Mn, Al in the steel plate surface.
  • oxidizing components such as Si, Mn, Al
  • zinc serves to facilitate adhesion in the galvanizing bath.
  • One or two or more of the Sb, Sn, Bi, and Zn components suppress the formation of oxides of Si, Mn, and Al on the surface of the annealing steel sheet even when the addition amount is less than 0.08%, thereby facilitating adhesion of zinc in the galvanizing bath, thereby facilitating the plating quality. And it is possible to manufacture a high strength hot-dip galvanized steel sheet excellent in adhesion. However, since the internal oxidation of the hot rolled steel sheet is not sufficiently suppressed, this causes the surface iron crystals attached to various rolls in the annealing furnace, which causes dent defects in the steel sheet, which become more severe as steel sheet production increases. Therefore, even if the first 1 to 2 coils are manufactured with high-strength hot-dip galvanized steel sheet having excellent plating quality and adhesion, the product cannot be produced due to the occurrence of dent defects.
  • At least one or more of Sb, Sn, Bi, and Zn components to be added to steel to suppress internal oxidation must be at least 0.08% or more, and the internal oxidation depth of the hot-rolled steel sheet defined in the present invention is 1 ⁇ m or less, and then pickling.
  • the minimum addition amount to secure the plating quality by inhibiting the formation of annealing oxide on the surface of the steel sheet is limited to 0.08%. It is preferable to.
  • an alloying inhibiting layer containing 0.001 to 0.05% by weight of the total content of one or more of Sb, Bi and Sn, as described later, one or more of the elements of Sb, Sn, Bi It may include the sum of the content of more than 0.08%.
  • an effective component other than the composition may further include one or more selected from the group consisting of Cr, Mo, Nb, B.
  • the Cr is an effective hardening element to increase the strength of steel, but there is no major problem in securing physical properties even without adding Cr. On the other hand, when the Cr content is excessive, the manufacturing cost increases rapidly, which is not preferable. In consideration of this, the upper limit of the Cr content is preferably limited to 1.0%.
  • Mo is an effective ingredient for improving the strength of the steel without deteriorating the molten zinc wettability, but even without adding it, there is no major problem in securing the physical properties.
  • the Mo content is excessive, it is not preferable that the manufacturing cost increases rapidly.
  • the upper limit of the Mo content is preferably limited to 0.2%.
  • Nb segregates in the form of carbides in the austenite grain boundary, thereby suppressing grain coarsening of austenite during annealing heat treatment, thereby improving the strength of the steel, but there is no major problem in securing the physical properties even if Nb is not added.
  • the Nb content is excessive, the manufacturing cost increases rapidly, which is not preferable.
  • the upper limit of the Nb content is preferably limited to 0.1%.
  • B is an effective component for securing the strength of the steel, but there is no major problem in terms of securing physical properties even without adding B. However, when the B content is excessive, it may be concentrated on the annealing surface and greatly degrade the plating property.
  • the upper limit of the content is preferably limited to 0.005%.
  • an internal oxide containing at least one element of Si, Mn, Al, Fe characterized in that the maximum depth of the internal oxide is 1 ⁇ m or less (including 0 ⁇ m).
  • the maximum depth of the internal oxide exceeds a certain range, a dent defect is caused in the annealing process after cold rolling, thereby lowering the continuous productivity.
  • the maximum depth of the internal oxide includes 0 ⁇ m, which means that the internal oxide does not exist at all.
  • the maximum depth of the internal oxide may be 0.8 ⁇ m or less (including 0 ⁇ m).
  • the microstructure of the hot rolled steel sheet is not particularly limited.
  • the microstructure of the hot rolled steel sheet may include at least one of ferrite, pearlite, and bainite at an appropriate ratio.
  • the strength of the hot rolled steel sheet is excessively increased, which may cause cracks in the steel sheet during the cold rolling process.
  • the upper limit of the area fraction of bainite is preferably controlled to 50%, and more preferably, the upper limit may be set to 40%.
  • the high strength cold rolled steel sheet according to another aspect of the present invention has the aforementioned component system, and an internal oxide containing at least one element of Si, Mn, Al, and Fe is present in the surface layer portion of the cold rolled steel sheet, and the maximum depth of the internal oxide is It is characterized by being 0.3 ⁇ m or less (excluding 0 ⁇ m). If the maximum depth of the internal oxide of the cold rolled steel sheet exceeds 0.3 ⁇ m, a dent defect is caused during the annealing process, and thus continuous productivity may be lowered. According to one example of the present invention, the maximum depth of the internal oxide may be 0.2 ⁇ m or less (excluding 0 ⁇ m).
  • Another aspect of the present invention is a high strength hot-dip galvanized steel sheet, comprising a cold-rolled steel sheet having the above-described component system and a hot-dip galvanized layer formed on the surface of the cold-rolled steel sheet, wherein the surface layer portion of the cold-rolled steel sheet has one of Si, Mn, Al, and Fe.
  • Internal oxides containing more than one element are present, and the maximum depth of the internal oxides is 0.3 ⁇ m or less (excluding 0 ⁇ m). If the maximum depth of the internal oxide of the cold rolled steel sheet exceeds 0.3 ⁇ m, a dent defect is caused during the annealing process, and thus continuous productivity may be lowered.
  • the maximum depth of the internal oxide may be 0.2 ⁇ m or less (excluding 0 ⁇ m).
  • the sum of the contents of at least one of Sb, Bi, Sn, Zn in the thickness direction 0.001 ⁇ m from the surface of the cold rolled steel sheet Sb, Bi, Sn in the thickness direction 0.02 ⁇ m from the surface of the cold rolled steel sheet , Zn may be 3 to 15 times the sum of one or more contents of Zn.
  • the concentration of Sb, Bi, Sn and Zn components in the surface layer of cold rolled steel sheet has the effect of suppressing the surface diffusion of Mn, Si and / or Al during the high temperature annealing process, so the higher the concentration of these components, the higher the surface of Mn, Si, Al.
  • the effect of suppressing diffusion is great, and in order to secure plating quality and adhesion, at least 0.001 ⁇ m in the thickness direction of the base iron from the interface of the plating layer and the base iron is 0.02 ⁇ m in the thickness direction of the base iron from the base iron interface. It needs to be concentrated at least three times as much.
  • the upper limit is limited to 15 times because the adhesion decreases by preventing the formation of the alloying inhibitory layer composed of Fe-Al-Zn in the plating bath.
  • the content at the 0.001 ⁇ m point and the content of the 0.02 ⁇ m point in the thickness direction of the base iron may be determined as an average of five measurements each.
  • the microstructure of the cold rolled steel sheet is not particularly limited.
  • the microstructure of the cold rolled steel sheet may include at least one of ferrite, pearlite, bainite, martensite, and retained austenite in an appropriate ratio.
  • the area fraction of the double retained austenite is preferably controlled to 5 to 50%.
  • the high-strength hot-dip galvanized steel sheet of the present invention may further include an alloying suppression layer formed at the interface between the cold-rolled steel sheet and the hot-dip galvanized layer, in this case, the alloying inhibitory layer is one of Sb, Bi and Sn
  • the alloying inhibitory layer is one of Sb, Bi and Sn
  • the alloying inhibitory layer is one of Sb, Bi and Sn
  • the alloying inhibitory layer is one of Sb, Bi and Sn
  • the alloying inhibitory layer is one of Sb, Bi and Sn
  • the alloying suppression layer may be coarse, and plating adhesion may be reduced, thereby controlling the sum of the content to 0.05 wt% or less.
  • High strength hot-dip galvanized steel sheet of the present invention has the advantages of excellent strength and ductility, according to one embodiment, the high-strength hot-dip galvanized steel sheet of the present invention is a tensile strength of 950Mpa or more, the product of tensile strength and elongation is 16000Mpa ⁇ % or more Can be.
  • the high strength hot rolled steel sheet, the high strength cold rolled steel sheet, and the high strength hot dip galvanized steel sheet of the present invention described above may be manufactured by various methods, and the manufacturing method thereof is not particularly limited. However, as a preferred example, it may be prepared by the following method.
  • reheating temperature is 1100-1300 degreeC. If the reheating temperature is less than 1100 ° C., the hot rolling load may increase rapidly. On the other hand, if the reheating temperature is higher than 1300 ° C., the reheating cost may increase and the amount of surface scale may be excessively increased.
  • hot rolling is carried out under the condition of the finish hot rolling temperature Ar3 ° C or higher to obtain a hot rolled steel sheet. If the finish rolling temperature is less than Ar3 °C, two-phase or ferritic rolling of ferrite and austenite is carried out to create a hybrid structure and because of the possibility of malfunction due to fluctuation of the hot rolling load, limit to the temperature of Ar3 °C or more.
  • the hot rolled steel sheet is wound at a temperature of 600 to 800 ° C. If the coiling temperature is less than 600 °C the strength of the hot rolled steel sheet is too high may cause the fracture of the rolling roll during cold rolling process, and also the material variation in the width direction of the steel sheet is prone to bend bending easily occurs after cold rolling. On the other hand, if the coiling temperature exceeds 800 °C, the maximum depth of the internal oxide in the hot-rolled steel sheet exceeds 1 ⁇ m, the oxidation depth inside the surface layer of the cold-rolled steel sheet exceeds 0.3 ⁇ m during the subsequent annealing process, resulting in a dent The defect can be severe.
  • the wound hot rolled steel sheet is cooled to an average cooling rate of 2 ° C / min or more to a temperature of 550 ° C or lower.
  • natural cooling that is, air cooling is performed in air at room temperature.
  • the cooling rate is slow, so that it takes a long time until the internal oxidation ends up to 550 ° C. or lower, so that the internal oxidation occurs even after winding. Further progress will be made. Therefore, it is necessary to perform forced cooling until at least the surface temperature of the wound hot rolled steel sheet reaches a temperature of 550 ° C. or lower, and in the case of the present invention, it is necessary to cool at an average cooling rate of 2 ° C./min or more.
  • the present invention is not particularly limited to the upper limit, but if the cooling rate is too fast, the strength of the hot rolled steel sheet may increase to increase the cold rolling load. Therefore, since cold rolling may become difficult, when considering this, the upper limit may be limited to 10 degrees C / min.
  • the cooled hot-rolled steel sheet may be washed after pickling, in this case, pickling may be performed for 15 to 20% by volume of hydrochloric acid aqueous solution having a temperature of 60 to 80 °C for 30 to 60 seconds.
  • the pickling process removes the oxidation scale present on the hot rolled steel sheet and also dissolves a portion of the surface layer portion of the hot rolled steel sheet, thereby partially dissolving internal oxides that may be present in the surface layer portion of 1 ⁇ m or less. Therefore, the higher the acid concentration, the higher the temperature, and the longer the time, the greater the amount of dissolution of the surface layer of the iron, which may reduce the internal oxidation depth after pickling.
  • the pickling time requires at least 30 seconds to remove the surface oxidation scale, and if it is too long, productivity is limited to 60 seconds.
  • the cold rolled hot rolled steel sheet is cold rolled to obtain a cold rolled steel sheet.
  • the cold reduction rate may be 30 to 60%. If the cold rolling reduction is less than 30%, hot rolling may be difficult because the thickness of the hot rolled sheet needs to be made too thin. On the other hand, if the cold rolling rate exceeds 60%, the load on the cold rolling roll may increase significantly, resulting in breakage of the rolling roll. Can be.
  • a lead gold layer made of at least one element among Fe, Ni, Co, and Sn may be formed on the surface of the cold rolled steel sheet.
  • the amount of the lead gold layer deposited may be 0.01-2 g / m 2 per side. Can be controlled. As described above, when the lead is applied, it is very effective in controlling the dew point in the target range in the subsequent recrystallization annealing process.
  • the cold rolled steel sheet is heated to a temperature of 820 ⁇ 870 °C under a dew point temperature of -60 ⁇ -30 °C, then maintained for 5 to 120 seconds and recrystallized annealing.
  • the annealing temperature is heated to the austenite single phase in order to obtain the target material.
  • one or two or more Sb, Bi, Sn, and Zn are added to improve the hot rolling internal oxidation and plating property, and these additions cause a decrease in elongation. Therefore, in the present invention, in order to increase the elongation, it is important to maximize the residual austenite after annealing and cooling, and then temper some of the austenite through reheating to secure the elongation. Therefore, it is necessary to heat it to at least 820 degreeC which is austenite single phase.
  • the annealing temperature is preferably limited to 820 ⁇ 870 °C.
  • the annealing time requires at least 5 seconds to obtain a uniform recrystallized structure, and if it is too long, productivity is reduced, so it is limited to 120 seconds.
  • the dew point temperature is lower than -60 ° C, the diffusion rate of Si and Al in the steel is faster than the diffusion rate of Mn, so that Si and Al of the composite oxides containing Si, Mn, and Al formed on the surface of the steel sheet as main components Since the content is significantly increased compared to Mn, and the Si or Al content of the surface complex oxide is higher than that of Mn, the plating property is inferior, which is insufficient to ensure the wettability of zinc even in the composition and manufacturing conditions of the present invention, and the dew point is -30 ° C. In case of exceeding, during the annealing process, some of the Si, Mn and Al components are oxidized in the grain boundary and the inside of the sheet steel of the steel sheet and present as internal oxides.
  • the recrystallization annealing may be carried out under 3 to 70 volume% H 2 -N 2 gas atmosphere conditions. If the hydrogen content is less than 3% by volume, the reduction of the iron oxide present on the surface of the steel sheet may be insufficient, and as the hydrogen content is increased, it is advantageous in terms of the reduction effect, but the economical efficiency is lowered and the productivity decreases, so the upper limit is 70% by volume. It is limited to.
  • the recrystallized annealed cold rolled steel sheet is cooled to a temperature of 250 ⁇ 350 °C at a rate of 20 °C / sec or more, and then maintained for 50 to 150 seconds.
  • the cooling process after recrystallization annealing is also a very important process for securing the strength and ductility of the material.
  • the cooling rate is better, the average cooling rate of at least 20 °C / sec or more It is necessary to cool to 250 ⁇ 350 °C. If the average cooling rate is less than 20 °C / sec, the ferrite transformation during cooling increases the target strength and ductility cannot be secured.
  • the cooling end temperature is required at least 250 ° C to maximize the residual austenite, and when the cooling temperature is less than 250 ° C some martensite phase is formed to increase the strength, but there is a problem that the elongation is greatly reduced. If the cooling temperature exceeds 350 °C, the amount of austenite transformation to bainite increases, which is disadvantageous to secure the target strength and ductility.
  • the cooled steel plate needs a maintenance process for 50 to 150 seconds. Maintain austenite stabilization and transformation of some austenite to bainite while maintaining at a cooling temperature for at least 50 seconds. However, if the holding time exceeds 150 seconds, the bainite transformation amount may increase, thereby reducing the ductility of the final product.
  • the cooled and held cold rolled steel sheet is heated to a temperature of 460 to 500 ° C. at a rate of 30 ° C./sec or more, and then plated by plating in a zinc plating bath within 7 seconds.
  • the steel plate maintained at the cooling temperature requires an elevated temperature to be immersed in the plating bath, which is the next process.
  • this temperature raising process some of the retained austenite is tempered, so that the tensile strength is slightly decreased, but the elongation that is decreased by the addition of Sb, Bi, Sn, Zn and the like can be ensured.
  • the heating rate is less than 30 °C per second, it takes a long time to heat, so the tempering is excessively proceeded and the tensile strength drop occurs, so it should be at least 30 °C / sec.
  • after heating to 460 ⁇ 500 °C it needs to be immersed in the plating bath within 7 seconds.
  • the tempering increases, causing a drop in strength.
  • the zinc plating bath may comprise 0.12 to 0.3% by weight of Al. If the alloyed hot-dip galvanized steel sheet is manufactured, it is better to manage the Al content of 0.12 to 0.15%, and when manufacturing the hot-dip galvanized steel sheet, it is better to manage it to 0.15% to 0.3%.
  • the temperature of the zinc plating bath may be 450 ⁇ 500 °C. It is not preferable because the viscosity of zinc increases below 450 ° C., so that the driveability of the roll in the zinc plating bath is lowered, and when the temperature exceeds 500 ° C., evaporation of zinc increases.
  • the alloying heat treatment may optionally be performed for 1 second or more at a temperature of 480 to 600 ° C.
  • the alloyed hot-dip galvanized layer may contain 7 to 13% by weight of Fe.
  • the steel slabs having the compositions of Tables 1 and 2 below were reheated at a temperature of 1200 ° C. for 1 hour, finish-rolled at 900 ° C. higher than Ar 3 of all steel slabs, and then cooled to the winding temperatures of Table 3, followed by 550 After forced cooling to an average cooling rate of 3 °C / min to a temperature of °C, Furnace cooling was carried out.
  • the cold-rolled hot rolled steel sheet was observed by scanning electron microscopy to observe the steel sheet internal oxide. At this time, the maximum depth of the internal oxide of the hot-rolled steel sheet was measured five times at 5000 times to take the maximum depth of these.
  • the cooled hot rolled steel sheet was pickled with 60 ° C. and 17% by volume of HCl solution for 40 seconds to dissolve iron oxide on the surface, and then cold-rolled at a rolling reduction of 45%. Then, the cross section of the steel sheet was observed by scanning electron microscopy to observe the cold rolled oxide. At this time, the maximum depth of the internal oxide of the cold rolled steel sheet was measured five times at 5000 times to take the maximum depth of these. In addition, it was observed whether the crack of the cold rolled steel sheet, the results are shown in Table 3 below.
  • the plating bath temperature 460 °C, Al content 0.13wt% (for GA) or 0.22wt% (GI) After plating under the conditions of ()), using an air knife was adjusted to 60g / m 2 single-side reference plating deposition amount and cooled to obtain a plated steel sheet. At this time, some of the specimens were not plated to observe the surface and the base iron surface thickening after annealing. Subsequently, some of the specimens were additionally subjected to alloying heat treatment for 25 seconds at 550 ° C. In Table 4, the specimens subjected to the alloying heat treatment were shown as GA, GI for the specimens that had not been alloyed.
  • the surface of the plated steel sheet is visually checked for the presence of unplated parts and degree for surface quality evaluation, and the automotive structural adhesive is applied to the surface of the steel sheet to evaluate plating adhesion, and then dried. After bending the road was confirmed whether the plating layer is buried in the adhesive, and after evaluating the surface quality and plating adhesion on the basis of the following criteria, the results are shown in Table 5 together.
  • the tensile test was carried out in JIS No. 5 to measure the tensile strength and elongation of the plated steel sheet, the results are shown in Table 5 together.
  • the maximum depth of the internal oxide of the plated steel sheet was measured five times at 5000 times, and the maximum depth was selected among them.
  • Examples 1 to 2, 4 to 6, 9, 14 to 15, 20, and 22 to 24, which are examples of the present invention, are limited in the present invention using steel grades having a component range defined in the present invention.
  • a hot rolled steel sheet, a cold rolled steel sheet, and a hot dip galvanized steel sheet were manufactured by one manufacturing method, and the maximum internal oxide depth of the hot rolled steel sheet was 1 ⁇ m or less, the internal oxide maximum depth of the cold rolled steel sheet was 0.3 ⁇ m or less, and after annealing, The maximum internal oxide depth was 0.3 ⁇ m or less.
  • the surface concentration of Sb, Bi, Sn, and Zn is 3 to 15, and one or two or more of the Sb, Bi, Sn components in the galvanized layer and the cold-rolled steel interface Fe-Al alloy suppression layer contain 0.001 to 0.05%.
  • Tensile strength of more than 950mpa, Tensile strength (Mpa) x Elongation (%) 16000, excellent surface quality and plating adhesion.
  • Comparative Examples 3 and 13 are cases in which the steel sheet winding temperature is wound at a temperature lower than 550 ° C. defined in the present invention in the hot rolling process, and the area fraction of bainite is 74% and 69%, respectively, and the strength of the hot rolled steel sheet is too high. Cracks occurred in the steel sheet during cold rolling.
  • Comparative Example 5-1 the cold rolled steel sheet of Specimen No. 5 in Table 3 was used, but the annealing temperature was higher than the range defined in the present invention during the hot dip plating process. After annealing, the surface concentration of Sb, Bi, Sn, and Zn was observed. The surface quality and plating adhesion after plating were inferior in excess of 15 times the range defined in the present invention.
  • the annealing temperature was higher than the range defined in the present invention, and the surface layer thickening degree of Sb, Bi, Sn, and Zn exceeded the range defined in the present invention, and partial plating peeling occurred.
  • the hot-rolled coiling temperature is higher than the range defined in the present invention, and the content of the internal oxidation inhibiting components Sb, Bi, Sn, and Zn is within the hot-rolled internal oxidation depth even if the content defined in the present invention is satisfied.
  • the cold rolled steel sheet and the annealing depth after annealing exceeded the range defined in the present invention.
  • Comparative Example 16 is a steel component, hot rolling conditions satisfy the range defined in the present invention, but the average cooling rate in the annealing process is lower than the range defined in the present invention, respectively, austenite is transformed into ferrite during the cooling process remaining The austenite content was reduced so that TSxEL was lower than the range defined in the present invention.
  • Comparative Example 17 is a steel component, the hot rolling conditions satisfy the range defined in the present invention, but when the holding time at the cooling temperature is outside the limited range of the present invention, austenite stabilization does not occur, the amount of tempering increases after reheating TSxEL Was low.
  • Comparative Example 20-1 the cold rolled steel sheet of Specimen No. 20 of Table 3 was used, but the reheating rate during the hot dip plating process was lower than the range defined in the present invention, and tempering occurred during reheating for a long time. Significantly decreased, TsxEl was less than the range defined in the present invention.
  • the annealing temperature was lower than the range defined in the present invention.
  • the annealing temperature was lowered in the ferrite and austenite abnormal zone, and then the residual austenite content was reduced through cooling, maintenance, and reheating, thereby lowering TSxEL.
  • Comparative Example 26 is a case in which the annealing temperature is higher than the range defined in the present invention after the annealing in the anomaly zone other than the austenite single-phase zone defined in the present invention, the residual austenite content is low TSxEL is limited in the present invention Lower than the range.
  • Comparative Example 29 is a case where the Si content of the steel component exceeds the range defined in the present invention, the abnormal reverse rolling is carried out in the hot rolling process, whereby a large amount of work hardened ferrite and cementite in which recrystallization does not occur in the hot rolled steel sheet As a result, the strength of the hot rolled steel sheet was greatly increased, which caused plate breakage during cold rolling.
  • Comparative Example 30 is a case in which the Mn content in the steel component exceeds the range defined in the present invention, even if the addition amount of the Sb, Bi, Sn, and Zn components satisfies the scope of the present invention, Si, Mn, Due to the large amount of annealing oxides, such as Al, unplated spots of less than 2 mm occurred in the steel sheet, and partial peeling occurred.
  • Figure 1 shows the results of the analysis of the cold rolled steel sheet according to Inventive Example 9 by 3D-AP.
  • the cross section of the steel sheet was observed with a scanning electron microscope to observe the hot rolled oxide.
  • the maximum depth of the internal oxide of the steel sheet was measured five times at 5000 times, and the maximum depth was selected.
  • the pickling of the hot rolled steel sheet was performed at 70 ° C. and 17 Vol% HCl solution for 30 to 50 seconds, followed by cold rolling immediately.
  • Cold rolled steel sheet was observed by scanning electron microscopy to observe the cross-sectional internal oxidation depth. In this case, the maximum depth of the internal oxide of the steel sheet was measured five times at 5000 times, and the maximum depth was selected.
  • the cold rolled steel sheet is subjected to annealing under the heating and cooling conditions of the following Table 8 after removing foreign substances on the surface through pretreatment, and then plated under the conditions of the plating bath temperature of 456 ° C and the Al content of 0.22wt% in the plating bath. It was used to adjust the coating weight of coating on one side of 60g / m 2 and cooled to prepare a plated steel sheet.
  • the same steel is continuously produced for 15 coils under the same conditions, and the number of dent generating start coils is measured. It is shown in Table 9 below.
  • Comparative Example 31 there is no component that can inhibit the hot rolling internal oxidation in steel, so it is internally oxidized to the depth of 12 ⁇ m from the base iron surface of the hot rolled steel sheet, and then to the depth of 5.2 ⁇ m from the high iron surface of the cold rolled steel sheet even after pickling and cold rolling. After internal oxidation, the internally oxidized grains of the surface layer were dropped during the annealing process, and the Dent defects were observed from the second coil after being attached to the roll in the annealing furnace.
  • Figure 2 (a) is an SEM image observed the cross section of the cold rolled steel sheet according to Comparative Example 31
  • Figure 2 (b) is an SEM image observed the cross section according to the invention example 33.

Abstract

Disclosed are a high strength hot rolled steel sheet and the like, the hot rolled steel sheet comprising: by wt%, 0.14-0.3% of C, 1-2.0% of Si, 2.6-5% of Mn, 0.001-2% of sol.Al, (48/14)*[N]-0.1% of Ti, 0.04% or less (excluding 0%) of P, 0.015% or less (excluding 0%) of S, 0.02% or less (excluding 0%) of N, 0.08-0.2% of a sum of one or more types among Sb, Bi, Sn, and Zn, and the balance of Fe and inevitable impurities, wherein an internal oxide containing one or more types of elements among Si, Mn, Al, and Fe is present in the surface layer part of the hot rolled steel sheet, and a maximum depth of the internal oxide is 1 μm or less (including 0 μm).

Description

연속 생산성이 우수한 고강도 열연강판 및 냉연강판 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이들의 제조방법High strength hot rolled steel sheet and cold rolled steel sheet with excellent continuous productivity and high strength hot dip galvanized steel sheet with excellent surface quality and plating adhesion and manufacturing method thereof
본 발명은 연속 생산성이 우수한 고강도 열연강판 및 냉연강판 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이들의 제조방법에 관한 것이다.The present invention relates to a high strength hot rolled steel sheet and a cold rolled steel sheet having excellent continuous productivity, and a high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion and a method of manufacturing the same.
최근 지구환경 보전을 위한 이산화탄소의 규제에 따른 자동차의 경량화 및 자동차의 충돌 안정성을 향상하기 위한 자동차용 강판의 고강도화가 지속적으로 요구되고 있다. Recently, there is a continuous demand for increasing the strength of automobile steel plates to reduce the weight of automobiles and to improve the stability of collisions due to the regulation of carbon dioxide for the preservation of the global environment.
이러한 요구를 만족시키기 위해서 최근 950MPa 이상의 고강도강판이 개발되어 자동차에 적용되고 있다.In order to satisfy these demands, high strength steel sheets of 950 MPa or more have been recently developed and applied to automobiles.
강판의 강도를 높이는 방법으로는 탄소를 비롯한 강의 강화성분들의 첨가 량을 증가시키는 방법으로 쉽게 높은 강도의 강판을 제조할 수 있지만, 자동차 차체용 강판의 경우 차체로 성형하는 과정에서 크랙이 발생하지 않아야 하므로 강판의 연신율도 동시에 확보되어야 한다.As a method of increasing the strength of the steel sheet, it is easy to manufacture a high strength steel sheet by increasing the amount of reinforcing components of carbon and other steels, but in the case of steel sheet for automobile body, cracks should not occur during forming into the vehicle body. Therefore, the elongation of the steel sheet must also be secured at the same time.
자동차용 강판의 강도와 연성을 동시에 확보하기 위해서 강중에 주로 첨가하는 성분들로 Mn, Si, Al, Cr, Ti 등을 첨가하고 있으며, 이들의 첨가량을 적절히 조절하고 제조공정 조건을 제어하면 높은 강도와 연성을 갖는 강판을 제조할 수 있다.Mn, Si, Al, Cr, Ti, etc. are added to steel in order to secure both strength and ductility of automotive steel sheets at the same time. A steel sheet having ductility can be produced.
일반적으로 자동차의 수명연장을 위해 자동차에 사용되는 강판은 내식성을 향상시킬 필요가 있고 이를 위해 용융아연도금강판이 사용되고 있다.In general, the steel sheet used in the automobile for extending the life of the vehicle needs to improve the corrosion resistance, for which hot-dip galvanized steel sheet is used.
950MPa 이상의 강도를 갖는 자동차용 고강도강판의 경우 강중에 Si, Mn, Al 등의 성분을 첨가하여 목표로 한 강도와 연신율을 확보하고 있다. 그러나 강중에 산화하기 쉬운 Mn, Si 및/또는 Al이 포함된 고강도 강판은 소둔로 중에 존재하는 미량의 산소 혹은 수증기와 반응하여 강판 표면에 Mn, Si, Al 단독 혹은 복합산화물을 형성하며, 이에 용융 아연의 젖음성을 방해하여 도금강판 표면에 국부적 혹은 전체적으로 아연이 부착되지 않은 일명 미도금이 발생하여 도금강판 표면품질을 크게 떨어뜨린다.In the case of high strength steel sheets for automobiles having a strength of 950 MPa or more, components such as Si, Mn, and Al are added to steel to secure a target strength and elongation. However, high strength steel sheets containing Mn, Si and / or Al, which are easily oxidized in steel, react with trace amounts of oxygen or water vapor in the annealing furnace to form Mn, Si, Al alone or composite oxides on the surface of the steel sheet, and melt It hinders the wettability of zinc, so that uncoated, which is not attached to zinc locally or entirely on the surface of the plated steel, occurs, which greatly reduces the surface quality of the plated steel sheet.
이러한 고강도 아연도금강판을 제조하기 위한 통상적인 연속공정은 용강을 제조한 후 연속주조를 통해 슬라브를 만들고 슬라브를 고온으로 가열하여 열간압연을 실시하고 이후 산세공정에서 열연강판 표면의 산화철을 제거한 후 냉간압연을 실시하여 강판을 만들고 이후 용융도금설비에서 소둔을 거쳐 용융도금을 실시하여 제조된다.Conventional continuous process for manufacturing such high strength galvanized steel sheet is made of molten steel and then made slab through continuous casting and hot rolling by heating the slab to high temperature and then removing iron oxide from the surface of hot rolled steel sheet in the pickling process The steel sheet is made by rolling, and then manufactured by performing hot dip plating through annealing in a hot dip plating facility.
강중에 Si, Mn 및/또는 Al이 다량 포함된 고강도강의 경우에는 열간압연 후 강판을 권취하는 권취온도가 높을 경우 Mn, Si, Al이 소지철 표층부 결정립계에 Fe, Si, Mn, Al 등을 주성분으로 하는 내부산화물이 형성되어 이후 산세공정에서 완전히 제거되지 못하고 냉간압연을 실시하게 되면 압연에 의해 강판 표층부 결정립계에 존재하는 산화물이 파괴되면서 결정립의 약화가 일어나 탈락하기 쉽게 되고 이후 소둔 및 도금공정에서 강판표면에서 탈락된 결정립은 각종 롤(roll)에 달라붙게 되고 이후 강판에 찍힘 형태로 전사되어 일명 덴트(Dent)로 불리는 결함을 유발한다.In the case of high-strength steel containing a large amount of Si, Mn and / or Al in the steel, Mn, Si, and Al are mainly composed of Fe, Si, Mn, Al, etc. When the internal oxide is formed and is not completely removed in the pickling process and cold rolling is carried out, the oxide present in the grain boundary of the steel sheet surface is destroyed by rolling, so that the grain is weakened and it is easy to fall off, and then in the annealing and plating process The crystal grains dropped from the surface stick to various rolls and are then transferred to the steel sheet to cause defects called dents.
이러한 열연공정에서 내부산화를 방지하기 위해서는 권취온도를 내부산화가 일어나지 않도록 550℃ 이하의 저온으로 하면 가능하다. 그러나 고강도강에서는 권취온도가 낮을 경우 열연강판의 조직이 베이나이트 혹은 마르텐사이트 조직을 포함하게 되고 이는 열연강판의 강도 상승을 유발하게 되어 이후 냉간압연이 어려워지는 문제가 발생하기 때문에 고강도강의 권취온도는 통상 600℃ 이상으로 높게 해야 하며 열연강판의 강도가 높을수록 권취온도는 높게 해야 냉간압연시 롤에 걸리는 하중을 줄일수 있어 냉간압연이 가능해진다. 그러나 권취온도가 높을수록 내부산화 깊이는 증가하는 문제가 발생하며, 동일한 권취온도에서도 강중의 Mn, Si, Al 등의 산화성 성분의 함량이 높을수록 내부산화가 깊이가 증가하게 되며, 특히 Si 함량이 크게 영향을 미친다.In order to prevent internal oxidation in such a hot rolling process, it is possible to make winding temperature low temperature below 550 degreeC so that internal oxidation does not occur. However, in high strength steels, when the coiling temperature is low, the structure of the hot rolled steel sheet includes bainite or martensite structure, which causes an increase in the strength of the hot rolled steel sheet, which makes it difficult to cold roll. Normally, it should be higher than 600 ℃, and the higher the strength of the hot rolled steel sheet, the higher the coiling temperature can reduce the load on the roll during cold rolling, thus making it cold rolled. However, the higher the coiling temperature, the higher the internal oxidation depth, and the higher the content of oxidizing components such as Mn, Si, and Al in the steel at the same coiling temperature, the deeper the internal oxidation, especially the Si content. Greatly affects
한편 강중에 Mn, Si, Al 등의 함량 특히 Si 함량이 낮을 경우에는 권취온도를 높여도 내부산화가 거의 발생하지 않지만, 인장강도 950Mpa급 이상의 제품에서 목적하는 강도와 연신율을 확보하기 위해서는 이들 성분의 첨가가 필수적이다. On the other hand, if the content of Mn, Si, Al, etc., in the steel is low, the internal oxidation hardly occurs even if the coiling temperature is increased, but in order to secure the desired strength and elongation of products with tensile strength of 950Mpa or higher, Addition is essential.
내부산화가 발생한 강판은 이후 산세과정에서 결정립계에 존재하는 내부산화물도 일부 산에 의해 용해되어 결정립계의 약화가 일어나고 이후 냉간압연과정에서는 내부산화가 일어난 결정립계는 파괴가 일어나 결정립이 들뜬상태가 되어 이후 소둔로내에서 각종 롤에 의해 결정립이 탈락하여 롤에 부착된 다음 강판에 찍힘 형태의 덴트(Dent) 결함을 유발한다.In the steel plate where internal oxidation occurs, internal oxides present in the grain boundary are also dissolved by some acid in the pickling process, and the grain boundary is weakened. Afterwards, in the cold rolling process, the grain boundary in which the internal oxidation occurred is destroyed and the crystal grains are excited and then annealed. In the furnace, grains are dropped by various rolls, which are attached to the rolls, and then cause dent defects in the form of stamping on the steel sheet.
따라서 강판을 처음 생산할때는 덴트(Dent) 결함이 발생하지 않지만, 생산이 계속될수록 강판에 덴트(Dent) 개수는 늘어나게 되어 더 이상 생산이 어려워진다. 한편 강판에 생성된 덴트(Dent)는 찍힘 형태의 오목 결함으로서 자동차용 부품으로 가공후 도장과정에서 선명하게 드러나기 때문에 문제가 된다.Therefore, when the steel sheet is first produced, no dent defects occur, but as the production continues, the number of dents on the steel sheet increases, making production difficult. On the other hand, the dents (Dent) generated in the steel sheet is a problem because it is a concave defect of the stamped form is clearly revealed in the coating process after processing to automotive parts.
결국 자동차 차체 구조용 부재 등에 사용되는 인장 강도가 950MPa 이상의 높은 강도를 갖는 고강도 강판을 덴트(Dent) 결함 발생없이 안정적으로 연속생산이 가능하면서도 표면 품질 및 도금 밀착성이 우수한 용융아연도금강판을 제조하기 위해 본 발명을 제안하게 되었다.As a result, a high strength steel sheet having a high tensile strength of 950 MPa or more, which is used for automobile body structural members, can be stably produced continuously without occurrence of dent defects, but is manufactured to produce hot-dip galvanized steel sheet having excellent surface quality and plating adhesion. The invention was proposed.
고강고강 도금품질을 향상시키기 위하여, 여러가지 기술이 제안되었다. 그 중 특허문헌 1은 소둔과정에서 공기와 연료를 공연비 0.80~0.95로 제어하여, 산화성 분위기의 직접 화염로(direct flame furnace)내에서 강판을 산화시켜, 강판 내부 일정한 깊이까지 Si, Mn 또는 Al 단독 혹은 복합산화물을 포함한 철 산화물을 형성시킨 다음, 환원성 분위기에서 환원 소둔시켜 철 산화물을 환원시킨 다음 용융아연도금을 실시하는 기술을 제공한다. 이와 같이 소둔공정에서 산화후 환원 방법을 사용하면, 강판 표층에서부터 일정 깊이에 Si, Mn, Al등 산소와 친화력이 큰 성분들이 내부산화되어 표층으로 확산이 억제되어 상대적으로 표층에는 Si, Mn 또는 Al 단독 혹은 복합산화물이 줄어들게 되어 도금욕 중에서 아연과의 젖음성이 개선되어 미도금을 감소시킬 수 있다. 즉 철이 산화될 수 있는 높은 산소 분압하에서 가열하면 표층부 일정 깊이까지 철이 산화되어 철산화물 층을 형성한다. 철보다 산화가 쉬운 원소들은 철산화층 아래에서 산화되어 산화물로 존재하기 때문에 더 이상 표면으로 확산하지 못한다. 이후 이어지는 환원공정에서 철산화물은 일정량의 수소가 포함된 분위기 중에서 쉽게 철로 환원되어 표층에는 환원된 철층으로 존재하기 때문에 아연과의 젖음성이 좋아 도금성이 개선된다. 그러나 고강도강판의 산화후 환원법에 의해서 도금성은 개선되더라도 강판을 사용하여 구조부재로 성형후 조립과정에서 스폿(Spot) 용접시 액화취성 크랙을 막을 수는 없다.In order to improve the plating quality, various techniques have been proposed. Among them, Patent Literature 1 controls air and fuel at an air-fuel ratio of 0.80 to 0.95 during annealing to oxidize the steel sheet in a direct flame furnace of an oxidizing atmosphere, so that Si, Mn, or Al alone to a certain depth inside the steel sheet. Alternatively, the present invention provides a technique of forming iron oxide including a composite oxide, reducing annealing in a reducing atmosphere, and then reducing the iron oxide and performing hot dip galvanizing. When the reduction method after oxidation is used in the annealing process as described above, components having a high affinity for oxygen such as Si, Mn, and Al are internally oxidized at a predetermined depth from the surface of the steel sheet, and diffusion into the surface is suppressed. As the single or composite oxide is reduced, the wettability with zinc in the plating bath is improved, thereby reducing the unplating. In other words, when heated under a high oxygen partial pressure where iron can be oxidized, iron is oxidized to a certain depth of the surface layer to form an iron oxide layer. Elements that are easier to oxidize than iron can no longer diffuse to the surface because they oxidize under the iron oxide layer and are present as oxides. In the subsequent reduction process, the iron oxide is easily reduced to iron in an atmosphere containing a certain amount of hydrogen and is present as a reduced iron layer in the surface layer, so that the wettability with zinc improves and the plating property is improved. However, even if the plating property is improved by the post-oxidation reduction method of the high strength steel sheet, it is not possible to prevent liquefied brittle cracks during spot welding in the assembling process after forming the structural member using the steel sheet.
고강도강 도금성 향상을 위한 또다른 방법으로 특허문헌 2는 소둔로내의 이슬점(Dew Point)을 높게 유지하여 산화가 용이한 Mn, Si, Al 등의 성분을 강내부에 내부산화시킴으로서 소둔후 강판 표면에 외부 산화되는 산화물을 감소시켜 도금성을 향상시키는 기술을 제공한다. 이 방법에 의해서 산화성 성분을 내부산화시키면 외부산화가 감소하여 도금성을 개선하는 특징이 있지만, 열연공정에서의 내부산화물과 마찬가지로 소둔중에 강판 표층부 결정립계에 형성된 내부산화물도 소둔로 내 각종 롤에 부착하여 덴트(Dent) 결함이 발생하는 문제가 있다.As another method for improving the high-strength steel plating property, Patent Document 2 maintains the dew point in the annealing furnace to maintain a high dew point in the annealing furnace to oxidize components such as Mn, Si, Al, etc. The present invention provides a technique for improving plating property by reducing oxides that are externally oxidized. Internal oxidation of the oxidizing component by this method reduces the external oxidation and improves the plating property, but like the internal oxide in the hot rolling process, the internal oxide formed at the grain boundary of the steel sheet during the annealing is attached to various rolls in the annealing furnace. There is a problem that a dent defect occurs.
따라서 본 발명은 강중에 Mn, Si 및/또는 Al이 다량 포함된 고강도강을 열간압연 및 권취후 강판 표층부에 내부산화물을 생성을 억제하여 이후 소둔과정에서 강판 덴트(Dent) 발생을 억제하여 연속생산성을 향상시키고 또한 소둔과정에서 강판 표면에 Mn, Si, Al 등의 단독 혹은 복합산화물 형성을 억제하여 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention suppresses the generation of internal oxides in the steel plate surface layer after hot rolling and winding high-strength steel containing a large amount of Mn, Si, and / or Al in the steel, thereby suppressing the occurrence of steel sheet dent during subsequent annealing, thereby continuously producing The purpose of the present invention is to provide a high-strength hot-dip galvanized steel sheet having excellent surface quality and adhesion by suppressing the formation of Mn, Si, Al, etc. alone or composite oxide on the surface of the steel sheet during annealing.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 한국 공개특허공보 제10-2010-0030627호(Patent Document 1) Korean Unexamined Patent Publication No. 10-2010-0030627
(특허문헌 2) 한국 공개특허공보 제10-2009-0006881호(Patent Document 2) Korean Unexamined Patent Publication No. 10-2009-0006881
본 발명의 여러 목적 중 하나는, 연속 생산성이 우수한 고강도 열연강판 및 냉연강판, 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이들의 제조방법을 제공하는 것이다.One of the various objects of the present invention is to provide a high strength hot rolled steel sheet and a cold rolled steel sheet having excellent continuous productivity, a high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and a method of manufacturing the same.
본 발명의 일 측면은, 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 열연강판으로서, 상기 열연강판 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하고, 상기 내부 산화물의 최대 깊이는 1μm 이하(0μm 포함)인 고강도 열연강판을 제공한다.In one aspect of the present invention, in weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [ N] ~ 0.1%, P: 0.04% or less (except 0%), S: 0.015% or less (except 0%), N: 0.02% or less (except 0%), at least one of Sb, Bi, Sn, Zn : A hot rolled steel sheet containing 0.08 to 0.2% in total, balance Fe and unavoidable impurities, wherein an internal oxide containing at least one element of Si, Mn, Al, and Fe is present in the hot rolled steel sheet surface layer, and the maximum of the internal oxide is present. Provide a high strength hot rolled steel sheet with a depth of 1 μm or less (including 0 μm).
본 발명의 다른 측면은, 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 냉연강판, 및 상기 냉연강판의 표면에 형성된 용융아연도금층을 포함하고, 상기 냉연강판의 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하고, 상기 내부 산화물의 최대 깊이는 0.3μm 이하(0μm 제외)인 고강도 용융아연도금강판을 제공한다.According to another aspect of the present invention, in weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [ N] ~ 0.1%, P: 0.04% or less (except 0%), S: 0.015% or less (except 0%), N: 0.02% or less (except 0%), at least one of Sb, Bi, Sn, Zn : A cold rolled steel sheet containing 0.08 to 0.2% in total, balance Fe and unavoidable impurities, and a hot dip galvanized layer formed on the surface of the cold rolled steel sheet, wherein the surface layer portion of the cold rolled steel sheet includes at least one of Si, Mn, Al, and Fe. An internal oxide containing an element is present, and the maximum depth of the internal oxide is 0.3 μm or less (excluding 0 μm) to provide a high strength hot dip galvanized steel sheet.
본 발명의 또 다른 측면은, 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열한 후, 마무리 열간압연 온도 Ar3℃ 이상의 조건 하 열간압연하여 열연강판을 얻는 단계, 상기 열연강판을 600~800℃의 온도에서 권취하는 단계, 상기 권취된 열연강판을 550℃ 이하의 온도까지 2℃/min 이상의 평균 냉각 속도로 냉각하는 단계를 포함하는 고강도 열연강판의 제조방법을 제공한다.Another aspect of the invention is, in weight percent, C: 0.14-0.3%, Si: 1-2.0%, Mn: 2.6-5%, sol.Al: 0.001-2%, Ti: (48/14) * [N]-0.1%, P: 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), Sb, Bi, Sn, or Zn Or more: reheating the slab containing a total of 0.08 to 0.2%, balance Fe and unavoidable impurities, and then hot rolling to obtain a hot rolled steel sheet under a condition of a finish hot rolling temperature Ar3 ° C. or higher, and the hot rolled steel sheet at a temperature of 600 to 800 ° C. Winding at, provides a method for producing a high strength hot rolled steel sheet comprising the step of cooling the wound hot rolled steel sheet to a temperature of 550 ℃ or less at an average cooling rate of 2 ℃ / min or more.
본 발명의 또 다른 측면은, 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열한 후, 마무리 열간압연 온도 Ar3℃ 이상의 조건 하 열간압연하여 열연강판을 얻는 단계, 상기 열연강판을 600~800℃의 온도에서 권취하는 단계, 상기 권취된 열연강판을 550℃ 이하의 온도까지 2℃/min 이상의 평균 냉각 속도로 냉각하는 단계, 상기 냉각된 열연강판을 냉간압연하여 냉연강판을 얻는 단계, 상기 냉연강판을 이슬점 온도 -60~-30℃의 조건 하 820~870℃의 온도까지 가열한 후, 5~120초 동안 유지하여 재결정 소둔하는 단계, 상기 재결정 소둔된 냉연강판을 20℃/sec 이상의 속도로 250~350℃의 온도까지 냉각한 후, 50~150초 동안 유지하는 단계, 및 상기 냉각 및 유지된 냉연강판을 30℃/sec 이상의 속도로 460~500℃의 온도까지 가열한 후, 7초 이내에 아연 도금욕에 침적하여 도금하는 단계를 포함하는 고강도 용융아연도금강판의 제조방법을 제공한다.Another aspect of the invention is, in weight percent, C: 0.14-0.3%, Si: 1-2.0%, Mn: 2.6-5%, sol.Al: 0.001-2%, Ti: (48/14) * [N]-0.1%, P: 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), Sb, Bi, Sn, or Zn Or more: reheating the slab containing a total of 0.08 to 0.2%, balance Fe and unavoidable impurities, and then hot rolling to obtain a hot rolled steel sheet under a condition of a finish hot rolling temperature Ar3 ° C. or higher, and the hot rolled steel sheet at a temperature of 600 to 800 ° C. Winding in the step, cooling the wound hot rolled steel sheet to an average cooling rate of 2 ° C./min or more to a temperature of 550 ° C. or less, cold rolling the cooled hot rolled steel sheet to obtain a cold rolled steel sheet, and dew point the cold rolled steel sheet. After heating to a temperature of 820 ~ 870 ℃ under a temperature of -60 ~ -30 ℃, and holding for 5 ~ 120 seconds to recrystallize annealing, the recrystallized annealing cold rolled steel sheet at a rate of 20 ℃ / sec or more 250 ~ 350 Up to a temperature of ℃ After cooling, holding for 50 to 150 seconds, and heating the cooled and held cold rolled steel sheet to a temperature of 460 ~ 500 ℃ at a rate of 30 ℃ / sec or more, and then plated by plating in a zinc plating bath within 7 seconds It provides a method of manufacturing a high strength hot dip galvanized steel sheet comprising a step.
본 발명의 여러 효과 중 하나로서, 본 발명에 따른 고강도 열연강판은 연속 생산성이 우수한 장점이 있다.As one of the effects of the present invention, the high strength hot rolled steel sheet according to the present invention has an advantage of excellent continuous productivity.
또한, 본 발명에 따른 고강도 용융아연도금강판은 표면 품질 및 도금 밀착성이 우수한 장점이 있다.In addition, the high strength hot-dip galvanized steel sheet according to the present invention has an advantage of excellent surface quality and plating adhesion.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and advantageous advantages and effects of the present invention is not limited to the above description, it will be more readily understood in the course of describing specific embodiments of the present invention.
도 1은 발명예 9에 따른 냉연강판을 3D-AP로 분석한 결과를 시각적으로 나타낸 것이다.Figure 1 shows the results of analyzing the cold rolled steel sheet according to Inventive Example 9 by 3D-AP.
도 2의 (a)는 비교예 31에 따른 냉연강판의 단면을 관찰한 SEM 이미지이고, 도 2의 (b)는 발명예 33에 따른 단면을 관찰한 SEM 이미지이다. 2 (a) is an SEM image of the cross section of the cold rolled steel sheet according to Comparative Example 31, Figure 2 (b) is an SEM image of the cross section of the invention example 33.
이하, 본 발명의 일 측면인 연속 생산성이 우수한 고강도 열연강판에 대하여 상세히 설명한다.Hereinafter, a high strength hot rolled steel sheet having excellent continuous productivity, which is an aspect of the present invention, will be described in detail.
먼저, 본 발명의 고강도 열연강판의 합금 성분 및 바람직한 함량 범위에 대해 상세히 설명한다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량 기준임을 미리 밝혀둔다.First, the alloy component and the preferred content range of the high strength hot rolled steel sheet of the present invention will be described in detail. It is noted that the content of each component described below is based on weight unless otherwise specified.
C: 0.14~0.3%C: 0.14 ~ 0.3%
C는 마르텐사이트 강도 확보를 위한 필수적인 원소로서, 본 발명에서 이러한 효과를 얻기 위해서는 0.14% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 연성, 굽힘가공성 및 용접성이 감소하여 프레스 성형성 및 롤 가공성이 열화되는 바, 그 상한은 0.3%로 한정함이 바람직하다.C is an essential element for securing martensite strength, and in order to obtain such an effect in the present invention, it is preferably included 0.14% or more. However, if the content is excessive, the ductility, bending workability and weldability is reduced, the press formability and roll workability is deteriorated, the upper limit is preferably limited to 0.3%.
Si: 1~2.0%Si: 1 ~ 2.0%
Si은 강의 항복강도를 향상시킴과 동시에 실온에서 페라이트 및 잔류 오스테나이트를 안정화시키는 역할을 하며, 특히 TRIP (Tranformation Induced Plasticity) 강의 경우 냉각 중 오스테나이트로부터 시멘타이트의 석출을 억제하고, 탄화물의 성장을 저지하여 잔류 오스테나이트를 안정화시키는데 기여한다. 따라서, 본 발명과 같이 인장강도 950MPa급 이상이면서 연성이 우수한 강판을 제조하는데 필수적인 원소이다. 본 발명에서 이러한 효과를 얻기 위해서는 1% 이상 포함되는 것이 바람직하고, 1.1% 이상 포함되는 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우 열연강판의 표층부 입계 및 입내에 Si를 다량 포함하는 내부 산화물이 형성되고, 이러한 내부 산화물로 인해 냉간 압연 후 소둔 과정에서 표층부 결정이 탈락되어 롤에 부착되어 강판에 찍힘형 결함이 야기된다. 또한, 열간압연시 Ar3 변태 온도가 크게 상승하여 오스테나이트와 페라이트 이상역에서 압연이 되기 때문에 열연강판의 강도가 크게 증가하여 냉간안연시 크랙을 유발할 수 있다. 이를 고려할 때, Si 함량의 상한은 2.0%로 한정함이 바람직하다.Si improves the yield strength of the steel and at the same time stabilizes ferrite and residual austenite at room temperature. Especially, in the case of TRIP (Tranformation Induced Plasticity) steel, it inhibits cementite precipitation from austenite during cooling and inhibits the growth of carbides. Thereby stabilizing residual austenite. Therefore, it is an essential element for producing a steel sheet excellent in ductility with a tensile strength of 950 MPa or more as in the present invention. In order to obtain such an effect in the present invention, it is preferably included 1% or more, more preferably 1.1% or more. However, if the content is excessive, internal oxides containing a large amount of Si are formed in the grain boundary of the hot-rolled steel sheet and in the mouth, and due to such internal oxides, the crystals of the surface layer are eliminated during cold annealing and adhered to the rolls to be taken on the steel sheet. Mold defects are caused. In addition, since the Ar3 transformation temperature is greatly increased during hot rolling and is rolled in an austenite and ferrite abnormal region, the strength of the hot rolled steel sheet is greatly increased, which may cause cracking during cold rolling. In consideration of this, the upper limit of the Si content is preferably limited to 2.0%.
Mn: 2.6~5%Mn: 2.6 ~ 5%
Mn은 페라이트 형성을 억제하고 오스테나이트를 안정화하는 경화능 증가 원소로 잘 알려져 있다. 특히, 본 발명에서 목적하는 강도 및 연성을 확보하기 위해서는 Mn이 2.6% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 과다할 경우 소둔 과정에서 Mn의 표면 산화량 증가에 의해 도금성 확보가 어려우므로, 그 상한은 5%로 한정하는 것이 바람직하다.Mn is well known as a hardenability increasing element that inhibits ferrite formation and stabilizes austenite. In particular, in order to ensure the strength and ductility desired in the present invention, Mn is preferably contained at 2.6% or more. However, if the content is excessive, it is difficult to secure the plating property by increasing the amount of surface oxidation of Mn during annealing, so the upper limit is preferably limited to 5%.
sol.Al: 0.001~2%sol.Al: 0.001 ~ 2%
sol.Al은 제강 공정에서 탈산을 위해 첨가되는 원소이다. 또한, sol.Al은 탄질화물 형성에도 도움을 주며, 페라이트역을 확대하여 Ac1 변태점을 낮춤으로써 소둔 비용을 저감하는데도 도움을 준다. 본 발명에서 이러한 효과를 얻기 위해서는 0.001% 이상 포함되는 것이 바람직하다. 다만, 그 함량이 과다할 경우 소둔 과정에서 sol.Al의 표면 산화량 증가에 의해 도금성 확보가 어려우므로 그 상한은 2%로 한정하는 것이 바람직하다.sol.Al is an element added for deoxidation in the steelmaking process. In addition, sol.Al also helps to form carbonitrides and reduces the annealing cost by expanding the ferrite region and lowering the Ac1 transformation point. In order to obtain such an effect in the present invention, it is preferable to include 0.001% or more. However, if the content is excessive, it is difficult to secure the plating property by increasing the surface oxidation amount of sol.Al during annealing, so the upper limit is preferably limited to 2%.
Ti: (48/14)*[N]~0.1%Ti: (48/14) * [N]-0.1%
Ti는 질화물 형성 원소로써, 강중 고용 N의 함량을 낮추고, 열간 압연성 크랙의 원인이 되는 AlN 형성을 억제하는 역할을 한다. 본 발명에서 이러한 효과를 얻기 위해서는 화학당량적으로 (48/14)*[N] 이상 첨가할 필요가 있다. 다만, 그 함량이 과다할 경우 고용 N의 제거 외 추가적인 탄화물 석출에 의한 마르텐사이트의 탄소 농도 및 강도 감소가 이뤄질 수 있으므로, 그 상한은 0.1%로 한정하는 것이 바람직하다.Ti is a nitride forming element, lowers the content of solid solution N in steel, and serves to suppress AlN formation, which is a cause of hot rolling cracks. In order to obtain such an effect in the present invention, it is necessary to add chemically equivalent (48/14) * [N] or more. However, if the content is excessive, the carbon concentration and strength of martensite may be reduced by additional carbide precipitation in addition to the removal of solid solution N, so the upper limit is preferably limited to 0.1%.
P: 0.04% 이하(0% 제외)P: 0.04% or less (except 0%)
P은 강 중 불가피하게 함유되는 불순물로써, 그 함량이 과다할 경우 용접성이 저하되고, 강의 취성이 발생할 가능성이 높아지며, 덴트 결함 유발 가능성이 높아진다. 이를 방지하기 위한 측면에서 P 함량의 상한은 0.04%로 한정함이 바람직하다.P is an inevitable impurity contained in steel. When the content thereof is excessive, weldability is lowered, brittleness of steel is more likely to occur, and dent defects are more likely to occur. In order to prevent this, the upper limit of the P content is preferably limited to 0.04%.
S: 0.015% 이하(0% 제외)S: 0.015% or less (excluding 0%)
S는 P와 마찬가지로 강 중 불가피하게 함유되는 불순물로써, 그 함량이 과다할 경우 강의 연성 및 용접성이 열화된다. 이를 방지하기 위한 측면에서 S 함량의 상한은 0.015%로 한정함이 바람직하다.S, like P, is an inevitable impurity contained in steel. When the content thereof is excessive, ductility and weldability of steel are deteriorated. In view of preventing this, the upper limit of the S content is preferably limited to 0.015%.
N: 0.02% 이하(0% 제외)N: 0.02% or less (except 0%)
N은 강 중 불가피하게 함유되는 불순물로써, 그 함량이 과다할 경우 AlN 형성에 의해 연주시 크랙이 발생할 위험이 크게 증가한다. 이를 방지하기 위한 측면에서 N 함량의 상한은 0.02%로 한정함이 바람직하다.N is an inevitable impurity contained in steel, and if the content is excessive, the risk of cracking during playing due to AlN formation is greatly increased. In view of preventing this, the upper limit of the N content is preferably limited to 0.02%.
Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%At least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total
본 발명에서 Sb, Sn, Bi, Zn을 첨가하는 이유는 2가지이다.There are two reasons for adding Sb, Sn, Bi, and Zn in the present invention.
첫째는 이들 성분이 강중에 첨가되면 열간압연후 높은 권취온도에서 열연강판 표면 및 표층부에 농화되어 산소가 강 내부로 확산하는 것을 막아 강 내부 결정립계 및 결정립내에 Si, Mn, Al, Fe 등으로 구성된 내부 산화물의 형성을 억제하는 효과가 있다.First, when these components are added to steel, they are concentrated at the surface and surface layer of hot rolled steel sheet at high coiling temperature after hot rolling to prevent oxygen from diffusing into the steel, so that the internal grain boundary and the inside of Si, Mn, Al, Fe, etc. It is effective in suppressing the formation of oxides.
둘째는 열연강판을 산세 및 냉간압연후 고온의 소둔과정에서 Sb, Sn, Bi, Zn 성분이 먼저 강판 표면 및 표층부에 농화되어 강중의 Si, Mn, Al 등 산화성 성분이 강판 표면으로 확산하는 것을 막아 소둔강판 표면에 Si, Mn, Al로 구성된 산화물을 형성을 억제함으로서 아연도금욕에서 아연이 부착을 용이하게 하는 역할을 한다.Second, in the process of pickling and cold rolling the hot rolled steel sheet, Sb, Sn, Bi, Zn components are first concentrated in the steel plate surface and surface layer to prevent the diffusion of oxidizing components such as Si, Mn, Al in the steel plate surface. By inhibiting the formation of oxides consisting of Si, Mn, Al on the surface of the annealed steel sheet, zinc serves to facilitate adhesion in the galvanizing bath.
Sb, Sn, Bi, Zn 성분의 하나 혹은 둘 이상이 첨가량이 0.08% 미만에서도 소둔강판 표면에 Si, Mn, Al로 구성된 산화물을 형성을 억제하여 아연도금욕에서 아연이 부착을 용이하게 하여 도금품질 및 밀착성이 우수한 고강도 용융아연도금강판의 제조가 가능하다. 그러나 열연강판의 내부산화를 충분히 억제하지 못해 이로 인해 소둔로 내에서 각종 롤(Roll)에 소지철 표층부 결정이 부착되어 강판에 덴트(Dent) 결함이 발생 유발하고 이는 강판 생산량이 증가할수록 점점 심해지기 때문에 처음 1~2 코일(Coil)은 도금품질 및 밀착성이 우수한 고강도 용융아연도금강판이 제조되더라도 이후에는 덴트(Dent) 결함 발생으로 인해 제품 생산을 할 수 없다. One or two or more of the Sb, Sn, Bi, and Zn components suppress the formation of oxides of Si, Mn, and Al on the surface of the annealing steel sheet even when the addition amount is less than 0.08%, thereby facilitating adhesion of zinc in the galvanizing bath, thereby facilitating the plating quality. And it is possible to manufacture a high strength hot-dip galvanized steel sheet excellent in adhesion. However, since the internal oxidation of the hot rolled steel sheet is not sufficiently suppressed, this causes the surface iron crystals attached to various rolls in the annealing furnace, which causes dent defects in the steel sheet, which become more severe as steel sheet production increases. Therefore, even if the first 1 to 2 coils are manufactured with high-strength hot-dip galvanized steel sheet having excellent plating quality and adhesion, the product cannot be produced due to the occurrence of dent defects.
따라서 내부산화를 억제하기 위해 강중에 첨가해야 할 Sb, Sn, Bi, Zn 성분의 하나 혹은 둘 이상이 최소 0.08% 이상이 되어야만 본 발명에서 한정한 열연강판의 내부산화깊이가 1μm 이하가 되어 이후 산세, 냉연 후 소둔과정에서 덴트(Dent) 결함을 방지할 수 있다. 결국 열연 내부산화를 억제하여 이후 소둔과정에서 덴트(Dent) 발생이 없이 연속생산이 가능하고 동시에 소둔과정에서 강판 표면에 소둔산화물 형성을 억제하여 도금품질을 확보하기 위한 최소한의 첨가량은 0.08%로 제한함이 바람직하다. 또한, 만일 후술하는 바와 같이 Sb, Bi 및 Sn 중 1종 이상을 함량의 합계로 0.001~0.05중량% 포함하는 합금화 억제층을 형성시킬 경우에는 상기 원소 중 Sb, Sn, Bi 중 하나 또는 둘 이상의 원소의 함량의 합계를 0.08% 이상으로 포함할 수 있다.Therefore, at least one or more of Sb, Sn, Bi, and Zn components to be added to steel to suppress internal oxidation must be at least 0.08% or more, and the internal oxidation depth of the hot-rolled steel sheet defined in the present invention is 1 μm or less, and then pickling. In the annealing process after cold rolling, dent defects can be prevented. As a result, it is possible to continuously produce without inhibiting hot rolling internal oxidation without generating dents in the subsequent annealing process, and at the same time, the minimum addition amount to secure the plating quality by inhibiting the formation of annealing oxide on the surface of the steel sheet is limited to 0.08%. It is preferable to. In addition, when forming an alloying inhibiting layer containing 0.001 to 0.05% by weight of the total content of one or more of Sb, Bi and Sn, as described later, one or more of the elements of Sb, Sn, Bi It may include the sum of the content of more than 0.08%.
다만, 강중 Sb, Sn, Bi, Zn 등의 함량이 과다할 경우 내부산화 억제 효과는 우수하나, 연성이 저하하는 문제가 있다. 본 발명에서는 이들 성분 첨가에 따라 연성이 저하되는 것을 방지하기 위해 특수한 열처리를 실시하나, 이들 성분의 함량 합이 0.2%를 초과한 경우에는 본 발명에서 제안하는 열처리를 적용하더라도 목표로 한 연신율을 확보할 수가 없기 때문에 Sb, Sn, Bi, Zn 중 1종 이상의 함량의 합의 상한은 0.2%로 제한함이 바람직하다.However, when the content of Sb, Sn, Bi, Zn, etc. in the steel is excessive, the internal oxidation inhibitory effect is excellent, but there is a problem that the ductility is lowered. In the present invention, a special heat treatment is carried out to prevent ductility deterioration with the addition of these components, but if the sum of the contents of these components exceeds 0.2%, even if the heat treatment proposed in the present invention is applied, the target elongation is secured. Since it is impossible to do so, the upper limit of the sum of one or more contents among Sb, Sn, Bi, and Zn is preferably limited to 0.2%.
상기 조성 이외에 나머지는 Fe이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불가피한 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않으나, 예를 들어, Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb 및 Cd 중 1종 이상일 수 있으며, 이들의 함량이 각각 0.1% 미만인 경우 본 발명의 효과를 떨어뜨리지 않는다.In addition to the above composition, the rest is Fe. However, in the usual manufacturing process, unavoidable impurities that are not intended from the raw materials or the surrounding environment may be inevitably mixed, and thus, this cannot be excluded. Since these impurities are known to those of ordinary skill in the art, not all of them are specifically mentioned herein, but for example, Cu, Mg, Co, Ca, Na, V, Ga At least one of Ge, As, Se, In, Ag, W, Pb, and Cd may be used. When the content thereof is less than 0.1%, the effect of the present invention is not impaired.
한편, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니며, 예를 들어, Cr, Mo, Nb, B로 이루어진 군으로부터 선택된 1종 이상을 더 포함할 수 있다.On the other hand, addition of an effective component other than the composition is not excluded, for example, may further include one or more selected from the group consisting of Cr, Mo, Nb, B.
Cr: 1.0% 이하Cr: 1.0% or less
Cr은 경화능 증가원소로서 강의 강도를 확보하는데 효과적인 성분이나, Cr을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, Cr 함량이 과다할 경우 제조 원가가 급격히 증가하는 바 바람직하지 않다. 이를 고려할 때, Cr 함량의 상한은 1.0%로 한정함이 바람직하다.Cr is an effective hardening element to increase the strength of steel, but there is no major problem in securing physical properties even without adding Cr. On the other hand, when the Cr content is excessive, the manufacturing cost increases rapidly, which is not preferable. In consideration of this, the upper limit of the Cr content is preferably limited to 1.0%.
Mo: 0.2% 이하Mo: 0.2% or less
Mo은 용융 아연 젖음성을 열화시키지 않으면서도 강의 강도를 개선하는데 유효한 성분이나, 이를 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, Mo 함량이 과다할 경우 제조 원가가 급격히 증가하는 바 바람직하지 않다. 이를 고려할 때, Mo 함량의 상한은 0.2%로 한정함이 바람직하다.Mo is an effective ingredient for improving the strength of the steel without deteriorating the molten zinc wettability, but even without adding it, there is no major problem in securing the physical properties. On the other hand, when the Mo content is excessive, it is not preferable that the manufacturing cost increases rapidly. In consideration of this, the upper limit of the Mo content is preferably limited to 0.2%.
Nb: 0.1% 이하Nb: 0.1% or less
Nb은 오스테나이트 입계에 탄화물 형태로 편석되어 소둔 열처리시 오스테나이트의 결정립 조대화를 억제하여 강의 강도를 향상시키는 역할을 하나, Nb를 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 한편, Nb 함량이 과다할 경우 제조 원가가 급격히 증가하는 바 바람직하지 않다. 이를 고려할 때, Nb 함량의 상한은 0.1%로 한정함이 바람직하다.Nb segregates in the form of carbides in the austenite grain boundary, thereby suppressing grain coarsening of austenite during annealing heat treatment, thereby improving the strength of the steel, but there is no major problem in securing the physical properties even if Nb is not added. On the other hand, when the Nb content is excessive, the manufacturing cost increases rapidly, which is not preferable. In consideration of this, the upper limit of the Nb content is preferably limited to 0.1%.
B: 0.005% 이하B: 0.005% or less
B은 강의 강도를 확보하는데 효과적인 성분이나, B을 첨가하지 않더라도 물성 확보 측면에서 큰 지장은 없다. 다만, B 함량이 과다할 경우 소둔 표면에 농화되어 도금성이 크게 열화될 수 있는 바, 그 함량의 상한은 0.005%로 한정함이 바람직하다.B is an effective component for securing the strength of the steel, but there is no major problem in terms of securing physical properties even without adding B. However, when the B content is excessive, it may be concentrated on the annealing surface and greatly degrade the plating property. The upper limit of the content is preferably limited to 0.005%.
이하, 본 발명의 고강도 열연강판의 미세 조직 등에 대하여 상세히 설명한다.Hereinafter, the microstructure of the high strength hot rolled steel sheet according to the present invention will be described in detail.
본 발명의 열연강판의 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하며, 상기 내부 산화물의 최대 깊이는 1μm 이하(0μm 포함)인 것을 특징으로 한다.In the surface layer portion of the hot-rolled steel sheet of the present invention there is an internal oxide containing at least one element of Si, Mn, Al, Fe, characterized in that the maximum depth of the internal oxide is 1μm or less (including 0μm).
본 발명의 열연강판의 경우 표면 농화 원소인 Si, Mn, Al 등이 다량 첨가되어 있기 때문에, 그 표층부에는 내부 산화물이 불가피하게 형성된다. 그런데, 본 발명자들의 연구 결과, 내부 산화물의 최대 깊이가 일정 범위를 초과할 경우 냉연 후 소둔 과정에서 덴트(dent) 결함이 유발되며, 이에 따라 연속 생산성이 저하된다. 이를 방지하기 위해서는 상기 내부 산화물의 최대 깊이를 1μm 이하(0μm 포함)로 억제할 필요가 있다. 여기서 내부 산화물의 최대 깊이가 0μm를 포함한다는 의미는 내부 산화물이 전혀 존재하지 않는 경우를 포함한다는 의미이다. 본 발명의 한가지 예에서는 상기 내부 산화물의 최대 깊이를 0.8μm 이하(0μm 포함)로 할 수 있다.In the case of the hot-rolled steel sheet of the present invention, since a large amount of surface thickening elements Si, Mn, Al, and the like are added, internal oxides are inevitably formed in the surface layer portion. However, as a result of the present inventors, when the maximum depth of the internal oxide exceeds a certain range, a dent defect is caused in the annealing process after cold rolling, thereby lowering the continuous productivity. In order to prevent this, it is necessary to suppress the maximum depth of the internal oxide to 1 μm or less (including 0 μm). Herein, the maximum depth of the internal oxide includes 0 μm, which means that the internal oxide does not exist at all. In one example of the present invention, the maximum depth of the internal oxide may be 0.8 μm or less (including 0 μm).
한편, 본 발명에서는 열연강판의 미세조직에 대해서는 특별히 한정하지 않으며, 예를 들어, 페라이트, 펄라이트, 베이나이트 중 1종 이상의 조직을 적정한 비율로 포함할 수 있다. 다만, 이중 베이나이트의 과다 형성시 열연강판의 강도가 지나치게 상승하여 냉간 압연 과정에서 강판에 크랙이 야기될 수 있다. 이를 방지하기 위한 측면에서 베이나이트의 면적분율의 상한은 50%로 제어함이 바람직하며 더욱 바람직하게는 상한을 40%로 정할 수 있다.In the present invention, the microstructure of the hot rolled steel sheet is not particularly limited. For example, the microstructure of the hot rolled steel sheet may include at least one of ferrite, pearlite, and bainite at an appropriate ratio. However, when the double bainite is excessively formed, the strength of the hot rolled steel sheet is excessively increased, which may cause cracks in the steel sheet during the cold rolling process. In order to prevent this, the upper limit of the area fraction of bainite is preferably controlled to 50%, and more preferably, the upper limit may be set to 40%.
이하, 본 발명의 다른 측면인 연속 생산성이 우수한 고강도 냉연강판에 대하여 상세히 설명한다. Hereinafter, a high strength cold rolled steel sheet having excellent continuous productivity, which is another aspect of the present invention, will be described in detail.
본 발명의 다른 측면인 고강도 냉연강판은 전술한 성분계를 가지며, 상기 냉연강판의 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하며, 상기 내부 산화물의 최대 깊이는 0.3μm 이하(0μm 제외)인 것을 특징으로 한다. 만약, 냉연강판의 내부 산화물의 최대 깊이가 0.3μm를 초과할 경우 소둔 과정에서 덴트(dent) 결함이 유발되며, 이에 따라 연속 생산성이 저하될 수 있다. 본 발명의 한가지 예에 따르면 상기 내부 산화물의 최대 깊이는 0.2μm 이하(0μm 제외)일 수 있다.The high strength cold rolled steel sheet according to another aspect of the present invention has the aforementioned component system, and an internal oxide containing at least one element of Si, Mn, Al, and Fe is present in the surface layer portion of the cold rolled steel sheet, and the maximum depth of the internal oxide is It is characterized by being 0.3 μm or less (excluding 0 μm). If the maximum depth of the internal oxide of the cold rolled steel sheet exceeds 0.3μm, a dent defect is caused during the annealing process, and thus continuous productivity may be lowered. According to one example of the present invention, the maximum depth of the internal oxide may be 0.2 μm or less (excluding 0 μm).
이하, 본 발명의 또다른 측면인 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판에 대하여 상세히 설명한다.Hereinafter, another aspect of the present invention will be described in detail a high-strength hot-dip galvanized steel sheet excellent in surface quality and plating adhesion.
본 발명의 다른 측면인 고강도 용융아연도금강판은, 전술한 성분계를 갖는 냉연강판과 상기 냉연강판의 표면에 형성된 용융아연도금층을 포함하고, 상기 냉연강판의 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하며, 상기 내부 산화물의 최대 깊이는 0.3μm 이하(0μm 제외)인 것을 특징으로 한다. 만약, 냉연강판의 내부 산화물의 최대 깊이가 0.3μm를 초과할 경우 소둔 과정에서 덴트(dent) 결함이 유발되며, 이에 따라 연속 생산성이 저하될 수 있다. 본 발명의 한가지 예에 따르면 상기 내부 산화물의 최대 깊이는 0.2μm 이하(0μm 제외)일 수 있다.Another aspect of the present invention is a high strength hot-dip galvanized steel sheet, comprising a cold-rolled steel sheet having the above-described component system and a hot-dip galvanized layer formed on the surface of the cold-rolled steel sheet, wherein the surface layer portion of the cold-rolled steel sheet has one of Si, Mn, Al, and Fe. Internal oxides containing more than one element are present, and the maximum depth of the internal oxides is 0.3 μm or less (excluding 0 μm). If the maximum depth of the internal oxide of the cold rolled steel sheet exceeds 0.3μm, a dent defect is caused during the annealing process, and thus continuous productivity may be lowered. According to one example of the present invention, the maximum depth of the internal oxide may be 0.2 μm or less (excluding 0 μm).
일 예에 따르면, 냉연강판의 표면으로부터 두께 방향으로 0.001μm 지점에서의 Sb, Bi, Sn, Zn 중 1종 이상의 함량의 합이 상기 냉연강판의 표면으로부터 두께 방향 0.02μm 지점의 Sb, Bi, Sn, Zn 중 1종 이상의 함량의 합의 3 내지 15배일 수 있다.According to one embodiment, the sum of the contents of at least one of Sb, Bi, Sn, Zn in the thickness direction 0.001μm from the surface of the cold rolled steel sheet Sb, Bi, Sn in the thickness direction 0.02μm from the surface of the cold rolled steel sheet , Zn may be 3 to 15 times the sum of one or more contents of Zn.
냉연강판 표층부에 Sb, Bi, Sn, Zn 성분의 농화는 고온의 소둔 과정에서 Mn, Si 및/또는 Al의 표면확산을 억제하는 효과가 있으므로 이들 성분의 농화 정도가 클수록 Mn, Si, Al의 표면확산을 억제하는 효과가 크며, 도금품질과 도금밀착성을 확보하기 위해서는 최소한 도금층과 소지철 계면에서부터 소지철 두께 방향으로 0.001μm 지점에서의 함량이 소지철 계면에서부터 소지철 두께방향으로 0.02μm 지점의 함량 대비 최소 3배 이상 농화될 필요가 있다. 그러나 15배를 초과할 경우 도금욕 중에서 Fe-Al-Zn로 구성된 합금화 억제층 형성을 방해하여 밀착성이 감소하기 때문에 상한은 15배로 제한한다. 본 발명의 한가지 구현례에 따르면, 소지철 두께 방향으로 0.001μm 지점에서의 함량과 0.02μm 지점의 함량은 각각 5회 측정한 것을 평균한 것으로 정할 수 있다.The concentration of Sb, Bi, Sn and Zn components in the surface layer of cold rolled steel sheet has the effect of suppressing the surface diffusion of Mn, Si and / or Al during the high temperature annealing process, so the higher the concentration of these components, the higher the surface of Mn, Si, Al. The effect of suppressing diffusion is great, and in order to secure plating quality and adhesion, at least 0.001μm in the thickness direction of the base iron from the interface of the plating layer and the base iron is 0.02μm in the thickness direction of the base iron from the base iron interface. It needs to be concentrated at least three times as much. However, if it exceeds 15 times, the upper limit is limited to 15 times because the adhesion decreases by preventing the formation of the alloying inhibitory layer composed of Fe-Al-Zn in the plating bath. According to one embodiment of the present invention, the content at the 0.001 μm point and the content of the 0.02 μm point in the thickness direction of the base iron may be determined as an average of five measurements each.
한편, 본 발명에서는 냉연강판의 미세조직에 대해서는 특별히 한정하지 않으며, 예를 들어, 페라이트, 펄라이트, 베이나이트, 마르텐사이트, 잔류 오스테나이트 중 1종 이상의 조직을 적정한 비율로 포함할 수 있다. 다만, 강도 및 연성을 동시에 확보하기 위한 측면에서, 이중 잔류 오스테나이트의 면적분율은 5~50%로 제어함이 바람직하다. In the present invention, the microstructure of the cold rolled steel sheet is not particularly limited. For example, the microstructure of the cold rolled steel sheet may include at least one of ferrite, pearlite, bainite, martensite, and retained austenite in an appropriate ratio. However, in terms of ensuring strength and ductility at the same time, the area fraction of the double retained austenite is preferably controlled to 5 to 50%.
일 예에 따르면, 본 발명의 고강도 용융아연도금강판은 냉연강판 및 용융아연도금층의 계면에 형성된 합금화 억제층을 더 포함할 수 있으며, 이 경우, 상기 합금화 억제층은 Sb, Bi 및 Sn 중 1종 이상을 함량의 합계로 0.001~0.05중량% 포함할 수 있다. 한가지예에서는 이들 원소를 함량의 합계로 0.001~0.03%를 포함할 수 있다. 이와 같이, 합금화 억제층 내 Sb, Bi 및 Sn 중 1종 이상이 일정 함량 이상 포함될 경우 도금 밀착성이 향상되게 된다. 다만, 그 함량이 지나치게 과다할 경우 합금화 억제층이 조대해져 도금 밀착성이 도리어 감소할 수 있으며, 이에 그 함량의 합을 0.05중량% 이하로 제어한다.According to one example, the high-strength hot-dip galvanized steel sheet of the present invention may further include an alloying suppression layer formed at the interface between the cold-rolled steel sheet and the hot-dip galvanized layer, in this case, the alloying inhibitory layer is one of Sb, Bi and Sn The above may include 0.001 to 0.05% by weight of the total content. In one example, these elements may comprise 0.001 to 0.03% of the total content. As such, when at least one of Sb, Bi, and Sn in the alloying suppression layer is included in a predetermined amount or more, the plating adhesion is improved. However, if the content is excessively excessive, the alloying inhibitory layer may be coarse, and plating adhesion may be reduced, thereby controlling the sum of the content to 0.05 wt% or less.
본 발명의 고강도 용융아연도금강판은 강도 및 연성이 매우 우수한 장점이 있으며, 일 예에 따르면, 본 발명의 고강도 용융아연도금강판은 인장강도가 950Mpa 이상이고, 인장강도와 연신율의 곱이 16000Mpa·% 이상일 수 있다.High strength hot-dip galvanized steel sheet of the present invention has the advantages of excellent strength and ductility, according to one embodiment, the high-strength hot-dip galvanized steel sheet of the present invention is a tensile strength of 950Mpa or more, the product of tensile strength and elongation is 16000Mpa ·% or more Can be.
이상에서 설명한 본 발명의 고강도 열연강판, 고강도 냉연강판 및 고강도 용융아연도금강판은 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 바람직한 일 예로써, 다음과 같은 방법에 의해 제조될 수 있다.The high strength hot rolled steel sheet, the high strength cold rolled steel sheet, and the high strength hot dip galvanized steel sheet of the present invention described above may be manufactured by various methods, and the manufacturing method thereof is not particularly limited. However, as a preferred example, it may be prepared by the following method.
이하, 본 발명의 또 다른 측면인 연속 생산성이 우수한 고강도 열연강판 및 냉연강판 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판의 제조방법에 대하여 상세히 설명한다.Hereinafter, another aspect of the present invention will be described in detail a method for producing a high strength hot rolled steel sheet and a cold rolled steel sheet having excellent continuous productivity and a high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion.
먼저, 전술한 성분계를 갖는 슬라브를 재가열한다. 이때, 재가열 온도는 1100~1300℃인 것이 바람직하다. 만약, 재가열온도가 1100℃ 미만일 경우 열간 압연 하중이 급격히 증가할 수 있으며, 반면, 1300℃를 초과할 경우 재가열 비용의 상승 및 표면 스케일의 양이 지나치게 증가할 수 있다.First, the slab having the above-described component system is reheated. At this time, it is preferable that reheating temperature is 1100-1300 degreeC. If the reheating temperature is less than 1100 ° C., the hot rolling load may increase rapidly. On the other hand, if the reheating temperature is higher than 1300 ° C., the reheating cost may increase and the amount of surface scale may be excessively increased.
다음으로, 마무리 열간압연 온도 Ar3℃ 이상의 조건 하 열간압연하여 열연강판을 얻는다. 만약, 마무리 압연 온도가 Ar3℃ 미만일 경우 페라이트 및 오스테나이트의 2상역 혹은 페라이트역 압연이 이뤄져 혼립조직이 만들어지며 열간 압연 하중의 변동으로 인한 오작이 우려되므로, Ar3℃ 이상의 온도로 제한한다.Next, hot rolling is carried out under the condition of the finish hot rolling temperature Ar3 ° C or higher to obtain a hot rolled steel sheet. If the finish rolling temperature is less than Ar3 ℃, two-phase or ferritic rolling of ferrite and austenite is carried out to create a hybrid structure and because of the possibility of malfunction due to fluctuation of the hot rolling load, limit to the temperature of Ar3 ℃ or more.
다음으로, 열연강판을 600~800℃의 온도에서 권취한다. 권취온도가 600℃ 미만일 경우 열연강판의 강도가 지나치게 높아 냉간 압연 과정에서 압연 롤의 파단이 야기될 수 있으며, 또한 강판의 폭방향으로 재질 편차가 심해 냉간압연 후 강판이 휘는 반곡이 발생하기 쉽다. 반면, 권취온도가 800℃를 초과할 경우 열연강판 중 내부 산화물의 최대 깊이가 1μm를 초과하여 이후 소둔 과정에서 냉연강판의 표층부 내부 산화 깊이가 0.3μm를 초과하게 되고, 이로 인해 결국 덴트(dent) 결함이 심해질 수 있다. Next, the hot rolled steel sheet is wound at a temperature of 600 to 800 ° C. If the coiling temperature is less than 600 ℃ the strength of the hot rolled steel sheet is too high may cause the fracture of the rolling roll during cold rolling process, and also the material variation in the width direction of the steel sheet is prone to bend bending easily occurs after cold rolling. On the other hand, if the coiling temperature exceeds 800 ℃, the maximum depth of the internal oxide in the hot-rolled steel sheet exceeds 1μm, the oxidation depth inside the surface layer of the cold-rolled steel sheet exceeds 0.3μm during the subsequent annealing process, resulting in a dent The defect can be severe.
다음으로 권취된 열연강판을 550℃ 이하의 온도까지 2℃/min 이상의 평균 냉각 속도로 냉각한다. 통상적으로 권취 후에는 상온의 공기 중에서 자연 냉각, 즉 공냉을 실시하게 되는데, 공냉의 경우 냉각 속도가 느리기 때문에, 내부 산화가 종료되는 550℃ 이하로 떨어질 때까지 시간이 오래 소요되어 권취 후에도 내부 산화가 추가적으로 진행되게 된다. 따라서, 적어도 권취된 열연강판의 표면 온도가 550℃ 이하의 온도가 될 때까지는 강제적인 냉각을 수행할 필요가 있으며, 본 발명의 경우, 2℃/min 이상의 평균 냉각 속도로 냉각할 필요가 있다. 한편, 권취 후 냉각 속도가 빠를수록 내부 산화 방지에 유리하므로, 본 발명에서는 그 상한에 대해서는 특별히 한정하지 않으나, 냉각 속도가 지나치게 빠를 경우, 열연강판의 강도가 증가하여 냉간 압연 부하를 증가시킬 수 있으며, 이에 따라, 냉간 압연이 어려워질 수 있으므로, 이를 고려할 때, 그 상한을 10℃/min로 한정할 수는 있다.Next, the wound hot rolled steel sheet is cooled to an average cooling rate of 2 ° C / min or more to a temperature of 550 ° C or lower. Normally, after winding, natural cooling, that is, air cooling is performed in air at room temperature. In the case of air cooling, the cooling rate is slow, so that it takes a long time until the internal oxidation ends up to 550 ° C. or lower, so that the internal oxidation occurs even after winding. Further progress will be made. Therefore, it is necessary to perform forced cooling until at least the surface temperature of the wound hot rolled steel sheet reaches a temperature of 550 ° C. or lower, and in the case of the present invention, it is necessary to cool at an average cooling rate of 2 ° C./min or more. On the other hand, since the higher the cooling rate after the winding is advantageous to the prevention of internal oxidation, the present invention is not particularly limited to the upper limit, but if the cooling rate is too fast, the strength of the hot rolled steel sheet may increase to increase the cold rolling load. Therefore, since cold rolling may become difficult, when considering this, the upper limit may be limited to 10 degrees C / min.
다음으로, 선택적으로, 냉각된 열연강판을 산세 후 수세할 수 있으며, 이 경우 산세는 온도가 60~80℃인 15~20부피%의 염산 수용액에 30~60초 동안 실시하는 것일 수 있다. 본 산세 공정은 열연강판 표면에 존재하는 산화 스케일을 제거하고 또한 열연강판의 표층부 일부도 용해시킴으로서 표층부 1㎛ 이하에 존재할 수도 있는 내부산화물을 일부 용해하는 기능이 있다. 따라서 산농도가 높고 온도가 높고 시간이 길수록 소지철 표층부 용해량이 많아 산세후 내부산화 깊이가 감소할수 있지만, 산농도가 너무 높을 경우 강판표면에 국부부식이 일어나 작은 구멍형태의 결함이 발생할수 있고, 염산 수용액의 온도가 높을 경우 염산의 증발량이 많아 주변 설비를 부식시킬 우려가 있다. 한편 산세시간은 표면 산화스케일을 제거하기 위해 최소 30초가 필요하며, 너무 길면 생산성이 떨어지므로 60초로 제한한다.Next, optionally, the cooled hot-rolled steel sheet may be washed after pickling, in this case, pickling may be performed for 15 to 20% by volume of hydrochloric acid aqueous solution having a temperature of 60 to 80 ℃ for 30 to 60 seconds. The pickling process removes the oxidation scale present on the hot rolled steel sheet and also dissolves a portion of the surface layer portion of the hot rolled steel sheet, thereby partially dissolving internal oxides that may be present in the surface layer portion of 1 μm or less. Therefore, the higher the acid concentration, the higher the temperature, and the longer the time, the greater the amount of dissolution of the surface layer of the iron, which may reduce the internal oxidation depth after pickling. However, if the acid concentration is too high, local corrosion may occur on the surface of the steel sheet, which may cause small hole defects. When the temperature of the hydrochloric acid aqueous solution is high, the amount of hydrochloric acid evaporates, which may corrode the surrounding equipment. On the other hand, the pickling time requires at least 30 seconds to remove the surface oxidation scale, and if it is too long, productivity is limited to 60 seconds.
다음으로, 냉각된 열연강판을 냉간압연하여 냉연강판을 얻는다. 이때, 냉간 압하율은 30~60%일 수 있다. 냉간 압하율이 30% 미만일 경우 열연판의 두께를 지나치게 얇게 해야 하기 때문에 열간 압연이 어려워질 수 있으며, 반면, 60%를 초과하는 경우 냉간 압연 롤에 걸리는 하중이 크게 증가하여 압연 롤의 파손이 일어날 수 있다.Next, the cold rolled hot rolled steel sheet is cold rolled to obtain a cold rolled steel sheet. In this case, the cold reduction rate may be 30 to 60%. If the cold rolling reduction is less than 30%, hot rolling may be difficult because the thickness of the hot rolled sheet needs to be made too thin. On the other hand, if the cold rolling rate exceeds 60%, the load on the cold rolling roll may increase significantly, resulting in breakage of the rolling roll. Can be.
다음으로, 선택적으로, 냉연강판의 표면에 Fe, Ni, Co, Sn 중 1종 이상의 원소로 이루어진 선도금층을 형성할 수 있으며, 이 경우, 선도금층의 부착량은 편면당 0.01~2g/m2으로 제어할 수 있다. 이와 같이, 선도금을 실시할 경우, 후속 공정인 재결정 소둔 공정에서 이슬점을 목표 범위로 제어하는데 매우 효과적이다.Next, optionally, a lead gold layer made of at least one element among Fe, Ni, Co, and Sn may be formed on the surface of the cold rolled steel sheet. In this case, the amount of the lead gold layer deposited may be 0.01-2 g / m 2 per side. Can be controlled. As described above, when the lead is applied, it is very effective in controlling the dew point in the target range in the subsequent recrystallization annealing process.
다음으로, 냉연강판을 이슬점 온도 -60~-30℃의 조건 하 820~870℃의 온도까지 가열한 후, 5~120초 동안 유지하여 재결정 소둔한다.Next, the cold rolled steel sheet is heated to a temperature of 820 ~ 870 ℃ under a dew point temperature of -60 ~-30 ℃, then maintained for 5 to 120 seconds and recrystallized annealing.
본 발명에서 소둔온도는 목표로 한 재질을 얻기 위해 오스테나이트 단상역까지 가열하는 것이 매우 중요하다. 본 발명에서는 열연 내부산화 및 도금성 향상을 위해 Sb, Bi, Sn, Zn를 1종 혹은 2종 이상 첨가하는데 이들 첨가는 연신율 하락을 가져온다. 따라서 본 발명에서는 연신율을 높이기 위해 소둔 및 냉각 후 잔류 오스테나이트를 최대로 하고 이후 재가열을 통해 일부 오스테나이트를 템퍼링시켜 연신율를 확보하는 방법이 중요하다. 따라서 오스테나이트 단상역인 최소 820℃ 이상으로 가열할 필요가 있다. 그러나 870℃를 초과하면 표면에 Sb, Bi, Sn, Zn 농화가 지나치게 증가하고 이중 Sb, Bi, Sn의 다량의 농화는 도금품질 및 밀착성 향상효과를 감소시킨다. 따라서 소둔 온도는 820~870℃로 제한함이 바람직하다.In the present invention, it is very important that the annealing temperature is heated to the austenite single phase in order to obtain the target material. In the present invention, one or two or more Sb, Bi, Sn, and Zn are added to improve the hot rolling internal oxidation and plating property, and these additions cause a decrease in elongation. Therefore, in the present invention, in order to increase the elongation, it is important to maximize the residual austenite after annealing and cooling, and then temper some of the austenite through reheating to secure the elongation. Therefore, it is necessary to heat it to at least 820 degreeC which is austenite single phase. However, if it exceeds 870 ℃ Sb, Bi, Sn, Zn thickening on the surface is excessively increased, the double concentration of Sb, Bi, Sn is reduced the plating quality and adhesion improvement effect. Therefore, the annealing temperature is preferably limited to 820 ~ 870 ℃.
소둔 시간은 균일한 재결정 조직을 얻기 위해서 최소 5초가 필요하며 너무 길 경우 생산성이 하락하므로 120초로 제한한다.The annealing time requires at least 5 seconds to obtain a uniform recrystallized structure, and if it is too long, productivity is reduced, so it is limited to 120 seconds.
만약, 이슬점 온도가 -60℃보다 낮으면 강중 Si 및 Al의 표면으로의 확산속도가 Mn의 확산속도보다 빨라져 소둔후 강판표면에 형성하는 Si, Mn, Al을 주성분으로 하는 복합 산화물 중 Si와 Al 함량이 Mn 대비 크게 증가하고 표면의 복합 산화물 중 Si 또는 Al 함량이 Mn 대비 클수록 도금성이 열위하기 때문에 본 발명의 성분 조성과 제조 조건에서도 아연의 젖음성을 확보하는데 불충분하고, 이슬점이 -30℃를 초과할 경우에는 소둔 과정에서 Si, Mn, Al 성분 중 일부가 강판 표층부 소지철 내부에 결정립계 및 입내에서 산화되어 내부산화물로 존재하여 열연강판의 내부산화물 깊이를 1μm 이하로 제어하여 산세 및 냉간 압연 후 내부 산화물의 최대 깊이가 0.3μm 이하이더라도 다시 소둔 과정에서 내부산화가 추가로 발생하여 소둔 과정에서 강판 표층부 내부산화 깊이가 본 발명에서 제한한 0.3μm를 초과하여 노내 덴트(Dent)가 발생할 수 있으므로 소둔로내 분위기 가스의 이슬점은 -60~-30℃로 제한함이 바람직하다.If the dew point temperature is lower than -60 ° C, the diffusion rate of Si and Al in the steel is faster than the diffusion rate of Mn, so that Si and Al of the composite oxides containing Si, Mn, and Al formed on the surface of the steel sheet as main components Since the content is significantly increased compared to Mn, and the Si or Al content of the surface complex oxide is higher than that of Mn, the plating property is inferior, which is insufficient to ensure the wettability of zinc even in the composition and manufacturing conditions of the present invention, and the dew point is -30 ° C. In case of exceeding, during the annealing process, some of the Si, Mn and Al components are oxidized in the grain boundary and the inside of the sheet steel of the steel sheet and present as internal oxides. Even if the maximum depth of internal oxide is less than 0.3μm, internal oxidation is additionally generated during annealing process. Since more than a 0.3μm limited in the present invention can cause the furnace Dent (Dent) dew point of the atmosphere gas in the annealing it is preferably also limited to -60 ~ -30 ℃.
일 예에 따르면, 재결정 소둔은 3~70부피%H2-N2 가스 분위기 조건 하 실시할 수 있다. 수소 함량이 3부피% 미만에서는 강판 표면에 존재하는 철 산화물의 환원이 불충분할 수 있으며, 수소 함량이 증가할수록 환원 효과 측면에서는 유리하나, 경제성이 저하되어 생산성이 하락하므로, 그 상한은 70부피%로 한정한다.According to one example, the recrystallization annealing may be carried out under 3 to 70 volume% H 2 -N 2 gas atmosphere conditions. If the hydrogen content is less than 3% by volume, the reduction of the iron oxide present on the surface of the steel sheet may be insufficient, and as the hydrogen content is increased, it is advantageous in terms of the reduction effect, but the economical efficiency is lowered and the productivity decreases, so the upper limit is 70% by volume. It is limited to.
다음으로, 재결정 소둔된 냉연강판을 20℃/sec 이상의 속도로 250~350℃의 온도까지 냉각한 후, 50~150초 동안 유지한다.Next, the recrystallized annealed cold rolled steel sheet is cooled to a temperature of 250 ~ 350 ℃ at a rate of 20 ℃ / sec or more, and then maintained for 50 to 150 seconds.
본 발명에서 재결정 소둔 후 냉각 과정 또한 재료의 강도와 연성을 확보하는데 매우 중요한 공정이다. 본 발명의 소둔가열 및 유지에 의해 강판을 오스테나이트 단상을 만든 후 냉각 과정에서 페라이트 변태를 최소화하여 냉각 후 잔류 오스테나이트를 최대화시키기 위해 냉각속도는 빠를수록 좋으며, 최소 20℃/sec 이상의 평균 냉각속도로 250~350℃까지 냉각하는 것이 필요하다. 만약 평균 냉각속도가 20℃/sec 미만이면 냉각 중 페라이트 변태가 많아져 목표로 한 강도와 연성을 확보할 수 없다. 또한 냉각 종료 온도는 잔류 오스테나이트를 최대화하기 위해 최소 250℃가 필요하며, 냉각온도가 250℃ 미만이 되면 일부 마르텐사이트 상이 형성되어 강도는 상승하지만 연신율이 크게 하락하는 문제가 있다. 냉각온도가 350℃를 초과하면 오스테나이트가 베이나이트로 변태되는 양이 증가하여 목표로 한 강도 및 연성을 확보하는데 불리하다.In the present invention, the cooling process after recrystallization annealing is also a very important process for securing the strength and ductility of the material. In order to maximize the residual austenite after cooling by minimizing the ferrite transformation in the cooling process after making the austenite single phase of the steel sheet by annealing heating and holding of the present invention, the cooling rate is better, the average cooling rate of at least 20 ℃ / sec or more It is necessary to cool to 250 ~ 350 ℃. If the average cooling rate is less than 20 ℃ / sec, the ferrite transformation during cooling increases the target strength and ductility cannot be secured. In addition, the cooling end temperature is required at least 250 ° C to maximize the residual austenite, and when the cooling temperature is less than 250 ° C some martensite phase is formed to increase the strength, but there is a problem that the elongation is greatly reduced. If the cooling temperature exceeds 350 ℃, the amount of austenite transformation to bainite increases, which is disadvantageous to secure the target strength and ductility.
한편, 냉각된 강판은 이후 50~150초 동안 유지 과정이 필요하다. 최소 50초 동안 냉각온도에서 유지시키면서 오스테나이트 안정화 및 일부 오스테나이트를 베이나이트로 변태를 유도한다. 그러나 유지 시간이 150초를 초과하면 베이나이트 변태량이 증가하여 최종 제품에 연성이 감소할 수 있으므로 150초로 제한하는 것이 바람직하다.On the other hand, the cooled steel plate needs a maintenance process for 50 to 150 seconds. Maintain austenite stabilization and transformation of some austenite to bainite while maintaining at a cooling temperature for at least 50 seconds. However, if the holding time exceeds 150 seconds, the bainite transformation amount may increase, thereby reducing the ductility of the final product.
다음으로, 냉각 및 유지된 냉연강판을 30℃/sec 이상의 속도로 460~500℃의 온도까지 가열한 후, 7초 이내에 아연 도금욕에 침적하여 도금한다.Next, the cooled and held cold rolled steel sheet is heated to a temperature of 460 to 500 ° C. at a rate of 30 ° C./sec or more, and then plated by plating in a zinc plating bath within 7 seconds.
냉각온도에서 유지된 강판은 다음 공정인 도금욕에 침지시키기 위해 승온이 필요하다. 이 승온 과정에서 잔류 오스테나이트의 일부가 템퍼링이 일어나 인장강도는 약간 하락하지만, Sb, Bi, Sn, Zn 등의 첨가에 의해 하락한 연신율을 확보할 수가 있다. 그러나 가열속도가 초당 30℃ 미만에서는 가열하는데 시간이 오려 걸려 템퍼링이 과다하게 진행되어 인장강도 하락이 발생하기 때문에 최소 30℃/sec가 되어야 한다. 마찬가지로 460~500℃까지 가열한 이후는 7초 이내에 도금욕에 침지할 필요가 있다. 이 또한 가열후 유지시간이 길어지면 템퍼링이 증가하여 강도 하락의 원인이 된다.The steel plate maintained at the cooling temperature requires an elevated temperature to be immersed in the plating bath, which is the next process. In this temperature raising process, some of the retained austenite is tempered, so that the tensile strength is slightly decreased, but the elongation that is decreased by the addition of Sb, Bi, Sn, Zn and the like can be ensured. However, if the heating rate is less than 30 ℃ per second, it takes a long time to heat, so the tempering is excessively proceeded and the tensile strength drop occurs, so it should be at least 30 ℃ / sec. Similarly, after heating to 460 ~ 500 ℃ it needs to be immersed in the plating bath within 7 seconds. In addition, if the holding time after heating is long, the tempering increases, causing a drop in strength.
일 예에 따르면, 아연 도금욕은 Al을 0.12~0.3중량% 포함할 수 있다. 만약 합금화 용융아연도금강판을 제조할 경우 Al 함량을 0.12~0.15%로 관리함이 좋고, 용융아연도금강판을 제조할 경우 0.15%~0.3%로 관리함이 좋다.According to one example, the zinc plating bath may comprise 0.12 to 0.3% by weight of Al. If the alloyed hot-dip galvanized steel sheet is manufactured, it is better to manage the Al content of 0.12 to 0.15%, and when manufacturing the hot-dip galvanized steel sheet, it is better to manage it to 0.15% to 0.3%.
일 예에 따르면, 아연 도금욕의 온도는 450~500℃일 수 있다. 450℃ 미만에서는 아연의 점도가 증가하여 아연 도금욕 내 롤의 구동성이 떨어지고 500℃를 초과하면 아연의 증발이 증가하기 때문에 바람직하지 않다.According to one example, the temperature of the zinc plating bath may be 450 ~ 500 ℃. It is not preferable because the viscosity of zinc increases below 450 ° C., so that the driveability of the roll in the zinc plating bath is lowered, and when the temperature exceeds 500 ° C., evaporation of zinc increases.
다음으로, 선택적으로, 480~600℃의 온도에서 1초 이상 합금화 열처리할 수 있다. 이 경우, 합금화 처리된 용융아연도금층은 7~13중량%의 Fe를 포함할 수 있다.Next, the alloying heat treatment may optionally be performed for 1 second or more at a temperature of 480 to 600 ° C. In this case, the alloyed hot-dip galvanized layer may contain 7 to 13% by weight of Fe.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the description of these examples is only for illustrating the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(( 실시예Example 1) One)
하기 표 1 및 표 2의 조성을 갖는 강 슬라브를 1200℃의 온도에서 1시간 동안 재가열하고, 모든 강 슬라브의 Ar3 보다 높은 900℃에서 마무리 압연한 후, 하기 표 3의 권취 온도까지 냉각한 후, 550℃의 온도까지 3℃/min의 평균 냉각 속도로 강제 냉각한 후, 로냉을 실시하였다. 냉각이 완료된 열연강판은 열연 내부 산화물 관찰을 위해 강판 단면을 주사전자현미경으로 관찰하였다. 이때, 열연강판의 내부 산화물 최대 깊이는 5000배로 5군데를 측정하여 이들 중 최대 깊이를 택하였다. The steel slabs having the compositions of Tables 1 and 2 below were reheated at a temperature of 1200 ° C. for 1 hour, finish-rolled at 900 ° C. higher than Ar 3 of all steel slabs, and then cooled to the winding temperatures of Table 3, followed by 550 After forced cooling to an average cooling rate of 3 ℃ / min to a temperature of ℃, Furnace cooling was carried out. The cold-rolled hot rolled steel sheet was observed by scanning electron microscopy to observe the steel sheet internal oxide. At this time, the maximum depth of the internal oxide of the hot-rolled steel sheet was measured five times at 5000 times to take the maximum depth of these.
다음으로, 냉각이 완료된 열연강판을 60℃, 17부피%의 HCl 용액으로 40초 동안 산세하여 표면의 산화철을 용해시킨 후, 45%의 압하율로 냉간압연하였다. 이후 냉연 내부 산화물 관찰을 위해 강판 단면을 주사전자현미경으로 관찰하였다. 이때, 냉연강판의 내부 산화물 최대 깊이는 5000배로 5군데를 측정하여 이들 중 최대 깊이를 택하였다. 또한, 냉연강판의 크랙 발생 여부를 관찰하였으며, 그 결과를 하기 표 3에 나타내었다.Next, the cooled hot rolled steel sheet was pickled with 60 ° C. and 17% by volume of HCl solution for 40 seconds to dissolve iron oxide on the surface, and then cold-rolled at a rolling reduction of 45%. Then, the cross section of the steel sheet was observed by scanning electron microscopy to observe the cold rolled oxide. At this time, the maximum depth of the internal oxide of the cold rolled steel sheet was measured five times at 5000 times to take the maximum depth of these. In addition, it was observed whether the crack of the cold rolled steel sheet, the results are shown in Table 3 below.
다음으로, 전처리를 통해 표면에 묻은 이물질을 제거한 후, 하기 표 4의 가열 및 냉각 조건으로 소둔을 실시한 후, 도금욕 온도 460℃, Al 함량 0.13wt% (GA의 경우) 또는 0.22wt% (GI의 경우)의 조건으로 도금을 실시한 후, 에어나이프를 사용하여 편면 기준 도금 부착량 60g/m2으로 조절하고 냉각하여 도금강판을 얻었다. 이때, 일부 시편은 소둔 후 표면 및 소지철 표층부 농화를 관찰하기 위해 도금을 실시하지 아니하였다. 이후, 일부 시편에 대해 추가적으로 550℃에서 25초 간 합금화 열처리를 실시하였으며, 하기 표 4에 합금화 열처리를 실시한 시편의 경우 GA, 합금화 열처리를 미실시한 시편의 경우 GI로 나타내었다.Next, after removing the foreign matter on the surface through the pre-treatment, after performing annealing under the heating and cooling conditions of Table 4, the plating bath temperature 460 ℃, Al content 0.13wt% (for GA) or 0.22wt% (GI After plating under the conditions of ()), using an air knife was adjusted to 60g / m 2 single-side reference plating deposition amount and cooled to obtain a plated steel sheet. At this time, some of the specimens were not plated to observe the surface and the base iron surface thickening after annealing. Subsequently, some of the specimens were additionally subjected to alloying heat treatment for 25 seconds at 550 ° C. In Table 4, the specimens subjected to the alloying heat treatment were shown as GA, GI for the specimens that had not been alloyed.
이후, 도금이 완료된 도금강판을 대상으로 표면 품질 평가를 위해 표면의 미도금 부위 존재여부 및 정도를 육안으로 확인하고, 도금 밀착성을 평가하기 위해 강판 표면에 자동차 구조용 접착제를 도포하고, 건조한 후, 90도로 굽힌 후 도금층이 접착제에 묻어나오는지 여부를 확인하였으며, 아래와 같은 기준으로 표면 품질 및 도금 밀착성을 평가한 후, 그 결과를 하기 표 5에 함께 나타내었다. Subsequently, the surface of the plated steel sheet is visually checked for the presence of unplated parts and degree for surface quality evaluation, and the automotive structural adhesive is applied to the surface of the steel sheet to evaluate plating adhesion, and then dried. After bending the road was confirmed whether the plating layer is buried in the adhesive, and after evaluating the surface quality and plating adhesion on the basis of the following criteria, the results are shown in Table 5 together.
- 표면품질; ○ : 미도금 부위 없음, △ : 직경 2mm미만 크기의 미도금 존재, X : 직경 2mm초과 미도금 존재Surface quality; ○: no unplated part, △: unplated in size less than 2mm in diameter, X: unplated in excess of 2mm in diameter
- 도금 밀착성; ○ : 도금박리 없음, △ 부분박리, X 완전 박리Plating adhesion; ○: no plating peeling, △ partial peeling, X complete peeling
이후, JIS 5호로 인장시험을 실시하여 도금강판의 인장강도와 연신율을 측정하였으며, 그 결과를 하기 표 5에 함께 나타내었다. 또한, 도금강판의 내부 산화물 최대 깊이는 5000배로 5군데를 측정하여 이들 중 최대 깊이를 택하였다.Then, the tensile test was carried out in JIS No. 5 to measure the tensile strength and elongation of the plated steel sheet, the results are shown in Table 5 together. In addition, the maximum depth of the internal oxide of the plated steel sheet was measured five times at 5000 times, and the maximum depth was selected among them.
다음으로, 도금강판의 용융아연도금층과 냉연강판 계면의 합금화 억제층 내 Sb, Bi, Sn 함량을 측정하기 위해 아연도금층만을 제거한 후 계면의 합금화 억제층을 용해하여 ICP(Inductively Coupled Plasma)로 분석하였다. 또한 도금강판의 냉연강판 표층부의 농화를 관찰하기 위해 단면을 FIB(Focused Ion Beam)로 가공하여 3-D APT(Atom Probe Topography)의 조성 프로파일을 통해 냉연강판 표층부로부터 냉연강판 깊이 방향으로 0.001μm의 위치에 있는 5 지점의 Sb, Bi, Sn, Zn 평균 함량을 측정하고 냉연강판 표층부로부터 소지철 깊이 방향으로 0.02μm의 위치에 있는 5 지점의 Sb, Bi, Sn, Zn 평균 함량을 측정하여 표층부 0.02μm 지점의 함량 대비 0.001μm 지점의 함량의 비율을 측정하여 표층부 농화도로 하였다.Next, in order to measure the Sb, Bi, Sn content in the alloying inhibitory layer between the hot-dip galvanized layer and the cold-rolled steel sheet interface, only the zinc-plated layer was removed and the alloying inhibitory layer at the interface was dissolved and analyzed by ICP (Inductively Coupled Plasma). . In addition, in order to observe the thickening of the cold rolled steel plate surface portion of the plated steel sheet, the cross section is processed by FIB (Focused Ion Beam), and the composition profile of 3-D Atom Probe Topography (FAT) is 0.001μm in the depth direction from the cold rolled steel plate surface layer portion. Measure the average content of Sb, Bi, Sn, Zn at the five points in the location, and measure the average content of Sb, Bi, Sn, Zn at the location of 0.02μm in the depth direction of the steel sheet from the cold rolled steel plate surface. The ratio of the content of the 0.001 μm point to the content of the μm point was measured to determine the surface concentration.
* 표층부 농화도 = 0.001μm 지점의 Sb, Bi, Sn ,Zn 성분 총합(wt%)/0.02μm 지점의 Sb, Bi, Sn ,Zn 성분 총합(wt%)* Surface concentration = total sum of Sb, Bi, Sn and Zn components (wt%) at 0.001μm / sum of Sb, Bi, Sn and Zn components (wt%) at 0.02μm
강종Steel grade 화학 조성 (중량%)Chemical composition (% by weight)
CC SiSi MnMn PP SS Sol.AlSol.Al CrCr TiTi
AA 0.160.16 1.521.52 2.752.75 0.0150.015 0.0020.002 0.0360.036 0.020.02 0.0190.019
BB 0.170.17 1.551.55 2.72.7 0.00850.0085 0.00270.0027 0.10.1 0.40.4 0.0190.019
CC 0.170.17 1.551.55 3.053.05 0.0150.015 0.00230.0023 0.10.1 0.410.41 0.0180.018
DD 0.170.17 1.651.65 2.722.72 0.0140.014 0.00210.0021 0.70.7 -- 0.0180.018
EE 0.150.15 1.151.15 2.652.65 0.0150.015 0.00370.0037 0.010.01 -- 0.0120.012
FF 0.170.17 1.551.55 2.712.71 0.00950.0095 0.00250.0025 0.010.01 0.40.4 0.0100.010
GG 0.170.17 1.981.98 4.24.2 0.010.01 0.00260.0026 0.010.01 -- 0.010.01
HH 0.180.18 1.41.4 33 0.0150.015 0.0030.003 0.50.5 0.10.1 0.0120.012
II 0.150.15 1.71.7 3.33.3 0.0150.015 0.0040.004 0.20.2 -- 0.0080.008
JJ 0.150.15 3.53.5 4.114.11 0.00950.0095 0.0030.003 0.10.1 0.20.2 0.0080.008
KK 0.180.18 1.651.65 10.110.1 0.0150.015 0.00450.0045 0.0150.015 0.20.2 0.0080.008
강종Steel grade 화학 조성 (중량%)Chemical composition (% by weight)
BB MoMo NN NbNb SbSb BiBi SnSn ZnZn
AA -- 0.050.05 0.00360.0036 -- -- -- -- --
BB 0.0010.001 0.050.05 0.00320.0032 -- 0.10.1 -- -- --
CC 0.0010.001 -- 0.00330.0033 -- -- 0.090.09 -- 0.0050.005
DD 0.0010.001 0.080.08 0.00310.0031 -- -- -- 0.110.11 --
EE -- 0.110.11 0.00330.0033 -- 0.040.04 -- 0.040.04 0.0050.005
FF 0.0010.001 0.050.05 0.00320.0032 0.010.01 0.030.03 -- 0.060.06 0.0010.001
GG -- -- 0.00210.0021 -- 0.060.06 0.020.02 0.050.05
HH -- -- 0.00310.0031 -- 0.060.06 -- -- --
II 0.0010.001 0.020.02 0.00270.0027 0.010.01 0.030.03 -- 0.020.02 --
JJ -- 0.020.02 0.00150.0015 -- 0.020.02 0.080.08 -- --
KK 0.0020.002 -- 0.00250.0025 0.0050.005 0.050.05 -- 0.060.06 0.010.01
시편번호Psalm Number 강종Steel grade 권취온도(℃)Winding temperature (℃) 열연 내부산화 깊이(㎛)Hot Rolled Internal Oxidation Depth (㎛) 냉간압연 후 강판Crack 여부Steel plate cracking after cold rolling 냉연 내부산화 깊이(㎛)Cold Rolled Internal Oxidation Depth (㎛) 구분division
1One BB 610610 00 radish 00 발명예Inventive Example
22 BB 720720 0.60.6 radish ≤0.1≤0.1 발명예Inventive Example
33 BB 420420 00 U -- 비교예Comparative example
44 CC 680680 0.20.2 radish 00 발명예Inventive Example
55 CC 730730 0.60.6 radish ≤0.1≤0.1 발명예Inventive Example
66 CC 650650 0.10.1 radish 00 발명예Inventive Example
77 CC 650650 0.10.1 radish 00 비교예Comparative example
88 CC 650650 0.10.1 radish 00 비교예Comparative example
99 DD 630630 0.10.1 radish 00 발명예Inventive Example
1010 DD 630630 0.10.1 radish 00 비교예Comparative example
1111 DD 850850 7.57.5 radish 3.13.1 비교예Comparative example
1212 AA 650650 1212 radish 5.85.8 비교예Comparative example
1313 AA 450450 0.20.2 U 00 비교예Comparative example
1414 EE 620620 00 radish 00 발명예Inventive Example
1515 EE 730730 0.30.3 radish 00 발명예Inventive Example
1616 EE 650650 0.10.1 radish 00 비교예Comparative example
1717 EE 650650 0.10.1 radish 00 비교예Comparative example
1818 EE 650650 0.10.1 radish 00 비교예Comparative example
1919 EE 650650 0.10.1 radish 00 비교예Comparative example
2020 FF 720720 0.60.6 radish ≤0.1≤0.1 발명예Inventive Example
2121 FF 650650 0.20.2 radish 00 비교예Comparative example
2222 FF 650650 0.20.2 radish 00 발명예Inventive Example
2323 GG 700700 0.90.9 radish 0.20.2 발명예Inventive Example
2424 GG 610610 0.20.2 radish 00 발명예Inventive Example
2525 GG 870870 88 radish 2.92.9 비교예Comparative example
2626 GG 650650 0.40.4 radish ≤0.1≤0.1 비교예Comparative example
2727 HH 700700 3.53.5 radish 1.61.6 비교예Comparative example
2828 II 680680 7.17.1 radish 33 비교예Comparative example
2929 JJ 680680 0.20.2 U 00 비교예Comparative example
3030 KK 680680 00 radish 00 비교예Comparative example
시편번호Psalm Number 이슬점온도(℃)Dew point temperature (℃) 소둔온도(℃)Annealing Temperature (℃) 냉각온도(℃)Cooling temperature (℃) 평균냉각속도(℃/sec)Average cooling rate (℃ / sec) 냉각온도에서 유지시간 (sec)Holding time at cooling temperature (sec) 재가열온도(℃)Reheating Temperature (℃) 재가열 속도(℃/sec)Reheat Rate (℃ / sec) 재가열후 도금욕 침지전 유지시간(sec)Holding time before reimmersion of plating bath (sec) 도금층 종류Plating layer type 구분division
1One -45-45 840840 300300 2828 8585 480480 5555 4.54.5 GIGI 발명예Inventive Example
22 -45-45 840840 300300 2828 9090 480480 5353 4.34.3 GIGI 발명예Inventive Example
33 -- -- -- -- -- -- -- -- -- 비교예Comparative example
44 -45-45 840840 280280 3535 9090 480480 5858 4.14.1 GIGI 발명예Inventive Example
55 -45-45 850850 300300 2525 9090 480480 6060 5.35.3 GIGI 발명예Inventive Example
5-15-1 -45-45 920920 300300 2525 9090 480480 5555 4.84.8 GIGI 비교예Comparative example
66 -40-40 850850 320320 2525 7070 480480 5656 4.14.1 GIGI 발명예Inventive Example
77 -10-10 850850 320320 2525 8080 480480 5555 4.54.5 GIGI 비교예Comparative example
88 -40-40 910910 300300 3030 100100 480480 5757 4.14.1 GAGA 비교예Comparative example
99 -45-45 850850 300300 3030 115115 480480 5454 4.24.2 GIGI 발명예Inventive Example
1010 -45-45 850850 390390 2525 9090 480480 5555 5.25.2 GIGI 비교예Comparative example
1111 -45-45 850850 320320 2525 7070 480480 5454 5.65.6 GIGI 비교예Comparative example
1212 -45-45 830830 290290 2525 7070 500500 6565 4.14.1 GIGI 비교예Comparative example
1313 -- -- -- -- -- -- -- -- 비교예Comparative example
1414 -45-45 850850 300300 2525 7070 480480 5555 44 GIGI 발명예Inventive Example
1515 -45-45 860860 320320 2222 7070 480480 6767 4.34.3 GIGI 발명예Inventive Example
1616 -45-45 850850 300300 1212 7070 480480 4848 4.84.8 GAGA 비교예Comparative example
1717 -45-45 850850 300300 2525 1010 480480 3535 5.45.4 GIGI 비교예Comparative example
1818 -45-45 850850 300300 2525 8080 470470 1515 5.35.3 GIGI 비교예Comparative example
1919 -45-45 850850 300300 2525 7575 480480 5555 1212 GIGI 비교예Comparative example
2020 -45-45 860860 320320 2222 8080 480480 4949 5.25.2 GIGI 발명예Inventive Example
20-120-1 -50-50 850850 320320 2222 8080 480480 1010 5.25.2 GIGI 비교예Comparative example
2121 -45-45 790790 310310 2323 8080 480480 5858 4.54.5 GIGI 비교예Comparative example
2222 -50-50 840840 330330 4545 8080 480480 5959 5.85.8 GIGI 발명예Inventive Example
2323 -55-55 840840 330330 4545 8080 480480 5454 5.25.2 GIGI 발명예Inventive Example
2424 -50-50 850850 380380 2525 8080 480480 5656 5.35.3 GAGA 발명예Inventive Example
2525 -50-50 830830 290290 2525 8080 500500 6161 5.65.6 GIGI 비교예Comparative example
2626 -55-55 800800 420420 4545 8080 480480 5959 4.44.4 GIGI 비교예Comparative example
2727 -45-45 850850 280280 2525 9090 490490 4141 4.64.6 GIGI 비교예Comparative example
2828 -45-45 850850 350350 2525 9090 480480 4242 4.64.6 GIGI 비교예Comparative example
2929 -- -- -- -- -- -- -- 5.25.2 -- 비교예Comparative example
3030 -45-45 840840 420420 2525 7878 500500 4545 5.25.2 GIGI 비교예Comparative example
시편번호Psalm Number 소둔후내부산화 깊이(㎛)Internal oxidation depth after annealing (㎛) Sb,Bi,Sn,Zn표층 농화도Sb, Bi, Sn, Zn surface concentration 합금화억제층내 Sb,Bi,Sn 성분함량(wt%) (Sb+Bi+Sn) Sb, Bi, Sn content (wt%) (Sb + Bi + Sn) in the alloying inhibition layer 표면품질Surface quality 도금밀착성Plating adhesion TS(Mpa)TS (Mpa) TS(Mpa)xEl(%)TS (Mpa) xEl (%) 구분division
1One 00 9.39.3 0.0060.006 ≥950≥950 1983419834 발명예Inventive Example
22 ≤0.1≤0.1 9.19.1 0.00550.0055 ≥950≥950 1948119481 발명예Inventive Example
33 -- -- -- -- -- -- -- 비교예Comparative example
44 00 7.27.2 0.00230.0023 ≥950≥950 1862918629 발명예Inventive Example
55 00 7.77.7 0.00380.0038 ≥950≥950 1859618596 발명예Inventive Example
5-15-1 00 16.816.8 0.03590.0359 ≥950≥950 1690016900 비교예Comparative example
66 00 7.47.4 0.00260.0026 ≥950≥950 1835918359 발명예Inventive Example
77 1.11.1 6.96.9 0.00190.0019 ≥950≥950 1897518975 비교예Comparative example
88 00 26.426.4 0.0310.031 ≥950≥950 1861318613 비교예Comparative example
99 00 10.110.1 0.0090.009 ≥950≥950 1821618216 발명예Inventive Example
1010 00 9.99.9 0.00610.0061 ≥950≥950 1525615256 비교예Comparative example
1111 3.23.2 10.310.3 0.00580.0058 ≥950≥950 1814518145 비교예Comparative example
1212 5.85.8 -- -- XX XX ≥950≥950 1985619856 비교예Comparative example
1313 -- -- -- -- -- -- -- 비교예Comparative example
1414 00 6.86.8 0.00310.0031 ≥950≥950 1894518945 발명예Inventive Example
1515 0.160.16 6.56.5 0.00340.0034 ≥950≥950 1865718657 발명예Inventive Example
1616 00 6.96.9 0.0030.003 ≥950≥950 1478014780 비교예Comparative example
1717 00 7.07.0 0.00320.0032 ≥950≥950 1510015100 비교예Comparative example
1818 00 6.76.7 0.00310.0031 ≤900≤900 1520015200 비교예Comparative example
1919 00 6.96.9 0.00310.0031 ≤900≤900 1665716657 비교예Comparative example
2020 ≤0.1≤0.1 7.37.3 0.03960.0396 ≥950≥950 1817818178 발명예Inventive Example
20-120-1 ≤0.1≤0.1 8.28.2 0.03250.0325 ≥950≥950 1521015210 비교예Comparative example
2121 00 4.84.8 0.00120.0012 ≥950≥950 1498814988 비교예Comparative example
2222 00 4.94.9 0.00130.0013 ≥950≥950 1808318083 발명예Inventive Example
2323 0.20.2 12.212.2 0.01710.0171 ≥950≥950 1804518045 발명예Inventive Example
2424 00 12.812.8 0.01830.0183 ≥950≥950 1823118231 발명예Inventive Example
2525 2.92.9 11.911.9 0.01530.0153 ≥950≥950 1811418114 비교예Comparative example
2626 ≤0.1≤0.1 9.29.2 0.01090.0109 ≥950≥950 1450014500 비교예Comparative example
2727 1.61.6 5.15.1 0.00210.0021 ≥950≥950 1967219672 비교예Comparative example
2828 33 3.83.8 0.00110.0011 ≥950≥950 1913219132 비교예Comparative example
2929 -- -- -- -- -- -- -- 비교예Comparative example
3030 00 10.810.8 0.01110.0111 ≥950≥950 1818218182 비교예Comparative example
상기 표 1 내지 5에 나타낸 바와 같이, 본 발명예인 1~2, 4~6, 9, 14~15, 20 및 22~24는 본 발명에서 한정한 성분 범위를 갖는 강종을 사용하여 본 발명에서 한정한 제조 방법을 통해 열연강판, 냉연강판 및 용융아연도금강판을 제조한 것으로서, 열연강판의 내부 산화물 최대 깊이가 1μm 이하이고, 냉연강판의 내부 산화물 최대 깊이가 0.3μm 이하이며, 소둔 후 냉연강판의 내부 산화물 최대 깊이가 0.3μm 이하로 나타났다. 또한, Sb, Bi, Sn, Zn의 표층부 농화도가 3~15이고, 아연 도금층과 냉연강판 계면 Fe-Al계 합금화 억제층 내 Sb, Bi, Sn 성분 중 하나 혹은 둘 이상이 0.001~0.05% 포함되어 있으며, 인장강도 950mpa 이상, 인장강도(Mpa) x 연신율(%) = 16000 이며, 표면 품질 및 도금 밀착성이 우수하게 나타났다.As shown in Tables 1 to 5, Examples 1 to 2, 4 to 6, 9, 14 to 15, 20, and 22 to 24, which are examples of the present invention, are limited in the present invention using steel grades having a component range defined in the present invention. A hot rolled steel sheet, a cold rolled steel sheet, and a hot dip galvanized steel sheet were manufactured by one manufacturing method, and the maximum internal oxide depth of the hot rolled steel sheet was 1 μm or less, the internal oxide maximum depth of the cold rolled steel sheet was 0.3 μm or less, and after annealing, The maximum internal oxide depth was 0.3 μm or less. In addition, the surface concentration of Sb, Bi, Sn, and Zn is 3 to 15, and one or two or more of the Sb, Bi, Sn components in the galvanized layer and the cold-rolled steel interface Fe-Al alloy suppression layer contain 0.001 to 0.05%. Tensile strength of more than 950mpa, Tensile strength (Mpa) x Elongation (%) = 16000, excellent surface quality and plating adhesion.
비교예 3과 13은 열간압연공정에서 강판 권취온도를 본 발명에서 한정한 550℃ 보다 낮은 온도에서 권취한 경우로서, 각각 베이나이트의 면적분율이 74% 및 69%로써 열연강판의 강도가 너무 높아 냉간압연과정에서 강판에 크랙이 발생하였다.Comparative Examples 3 and 13 are cases in which the steel sheet winding temperature is wound at a temperature lower than 550 ° C. defined in the present invention in the hot rolling process, and the area fraction of bainite is 74% and 69%, respectively, and the strength of the hot rolled steel sheet is too high. Cracks occurred in the steel sheet during cold rolling.
한편 비교예 29의 경우에는 강성분중 Si가 본 발명에서 한정한 범위보다 높은 경우로서, 냉간압연과정에서 강판에 크랙이 발생하였다.On the other hand, in the case of Comparative Example 29, the Si in the steel component is higher than the range defined in the present invention, cracks occurred in the steel sheet during cold rolling process.
비교예 5-1은 표3의 시편 번호 5의 냉연강판을 사용하였지만 용융도금과정에서 소둔온도가 본 발명에서 한정한 범위보다 높은 경우로서, 소둔후 Sb, Bi, Sn, Zn 표층 농화도가 본 발명에서 한정한 범위인 15배를 초과하여 도금후 표면품질 및 도금밀착성이 비교적 열위하였다.In Comparative Example 5-1, the cold rolled steel sheet of Specimen No. 5 in Table 3 was used, but the annealing temperature was higher than the range defined in the present invention during the hot dip plating process. After annealing, the surface concentration of Sb, Bi, Sn, and Zn was observed. The surface quality and plating adhesion after plating were inferior in excess of 15 times the range defined in the present invention.
비교예 7의 경우에는 강성분, 열연권취온도가 본 발명에서 한정한 범위를 만족하여 열연 내부산화 깊이가 본 발명에서 한정한 범위를 만족하지만, 소둔과정에서 소둔로내 이슬점 온도를 본 발명에서 한정한 범위보다 높게 실시한 경우로서 소둔로내에서 추가로 내부산화가 진행되어 소둔후 강판의 내부산화 깊이가 본 발명의 한정범위를 초과하였다.In the case of Comparative Example 7, although the steel component and the hot rolled coil temperature satisfy the range defined in the present invention, the hot rolling internal oxidation depth satisfies the range defined in the present invention, but the dew point temperature in the annealing furnace during the annealing process is limited in the present invention. In the case of higher than one range, the internal oxidation further progressed in the annealing furnace, and the internal oxidation depth of the steel sheet after annealing exceeded the limited range of the present invention.
비교예 8의 경우 소둔온도가 본 발명에서 한정한 범위보다 높은 경우로서, Sb, Bi, Sn, Zn의 표층부 농화도가 본 발명에서 한정함 범위를 초과하여 부분적으로 도금박리가 발생하였다.In the case of Comparative Example 8, the annealing temperature was higher than the range defined in the present invention, and the surface layer thickening degree of Sb, Bi, Sn, and Zn exceeded the range defined in the present invention, and partial plating peeling occurred.
비교예 10의 경우 강성분, 열연조건은 본 발명에서 한정한 범위를 만족하나, 소둔공정에서 냉각온도가 본 발명의 한정범위보다 높은 경우로서, 오스테나이트가 베이나이트로 변태되는 양이 증가하여 TsxEl이 본 발명에서 한정한 범위보다 낮았다.In the case of Comparative Example 10, the steel component and the hot rolling conditions satisfy the range defined in the present invention, but the cooling temperature is higher than the limited range of the present invention in the annealing process, and the amount of austenite transformed to bainite increases, thereby increasing TsxEl. This was lower than the range defined in the present invention.
비교예 11 및 25의 경우 열연권취온도가 본 발명에서 한정한 범위보다 높은 경우로서, 내부산화억제 성분인 Sb, Bi, Sn, Zn의 함량은 본 발명에서 한정한 범위를 만족하더라도 열연 내부산화 깊이가 본 발명에서 한정한 범위를 초과하였으며, 냉연강판 및 소둔후 내부산화 깊이가 본 발명에서 한정한 범위를 초과하였다.In the case of Comparative Examples 11 and 25, the hot-rolled coiling temperature is higher than the range defined in the present invention, and the content of the internal oxidation inhibiting components Sb, Bi, Sn, and Zn is within the hot-rolled internal oxidation depth even if the content defined in the present invention is satisfied. Was beyond the range defined in the present invention, the cold rolled steel sheet and the annealing depth after annealing exceeded the range defined in the present invention.
한편 비교예 12 의 경우 강성분 중 Sb, Bi, Sn, Zn성분을 첨가하지 않은 경우로서, 열연권취온도가 본발명의 범위를 만족하더라도 내부산화 깊이가 12㎛로 본 발명에서 한정한 범위를 초과하여 소둔 내부산화 깊이도 5.8㎛로 깊었다. 또한 냉연강판의 소둔과정에서 강판표면에 Si, Mn, Al등 산화성 성분의 농화로 인해 직경 2mm초과 미도금 존재하였으며, 도금박리가 심하게 발생되었다.On the other hand, in the case of Comparative Example 12, Sb, Bi, Sn, Zn component is not added among the steel components, even if the hot rolling temperature satisfies the range of the present invention, the internal oxidation depth is 12㎛, exceeding the range defined in the present invention The annealing internal oxidation depth was also deep to 5.8 μm. In addition, during annealing of the cold rolled steel sheet, due to the concentration of oxidizing components such as Si, Mn, and Al on the surface of the steel sheet, an unplated diameter exceeding 2mm was present.
비교예 13 의 경우 강성분 중 Sb, Bi, Sn, Zn성분을 첨가하지 않은 경우이지만, 열연권취온도가 본발명의 범위보다 낮은 경우로서, 권취온도가 낮기 때문에 열연 내부산화는 0.2㎛로 본 발명을 만족하지만, 권취온도가 낮아 열연강도가 크게 높아져 냉간압연과정에서 크랙이 발생하였다.In the case of Comparative Example 13, Sb, Bi, Sn, Zn component of the steel component is not added, but the hot rolling temperature is lower than the range of the present invention, since the coiling temperature is low, the hot rolling internal oxidation is 0.2㎛ However, due to the low coiling temperature, the hot rolled strength was greatly increased, causing cracks during cold rolling.
비교예 16은 강성분, 열연조건은 본 발명에서 한정한 범위를 만족하나, 소둔공정에서 각각 평균 냉각속도가 본 발명에서 한정한 범위보다 낮은 경우로서, 오스테나이트가 냉각과정에서 페라이트로 변태되어 잔류오스테나이트 함량이 감소하여 TSxEL이 본 발명에서 한정한 범위보다 낮았다.Comparative Example 16 is a steel component, hot rolling conditions satisfy the range defined in the present invention, but the average cooling rate in the annealing process is lower than the range defined in the present invention, respectively, austenite is transformed into ferrite during the cooling process remaining The austenite content was reduced so that TSxEL was lower than the range defined in the present invention.
비교예 17은 강성분, 열연조건은 본 발명에서 한정한 범위를 만족하나, 냉각온도에서 유지시간이 본 발명의 한정범위를 벗어난 경우로서, 오스테나이트 안정화가 일어나지 않아 이후 재가열시 템퍼링량이 증가하여 TSxEL이 낮았다.Comparative Example 17 is a steel component, the hot rolling conditions satisfy the range defined in the present invention, but when the holding time at the cooling temperature is outside the limited range of the present invention, austenite stabilization does not occur, the amount of tempering increases after reheating TSxEL Was low.
한편 비교예 18은 강성분, 열연조건, 소둔, 냉각조건은 본 발명에서 한정한 범위를 만족하나, 냉각 유지후 470℃까지 재가열하는 속도가 본 발명에서 한정한 범위보다 느려 가열동안 템퍼링 발생량이 많아 강도와 연성이 동시에 하락하였다.In Comparative Example 18, the steel component, hot rolling condition, annealing, and cooling conditions satisfy the range defined in the present invention, but the rate of reheating up to 470 ° C. after cooling and holding is slower than the range defined in the present invention. Strength and ductility fell simultaneously.
비교예 19는 강성분, 열연조건, 소둔, 냉각, 재가열 조건은 본 발명에서 한정한 범위를 만족하나, 480℃까지 재가열후 도금욕에 침지될때까지 오랜시간경과되어 템퍼링이 증가하였으며 이로 인해 TSxEL이 낮았다.In Comparative Example 19, the steel component, hot rolling condition, annealing, cooling, and reheating conditions satisfied the range defined in the present invention, but after a long time until the immersion in the plating bath after reheating up to 480 ° C, the tempering increased, which caused TSxEL Low.
비교예 20-1의 경우 표3의 시편 번호 20의 냉연강판을 사용하였지만 용융도금과정에서 재가열속도가 본 발명에서 한정한 범위보다 낮은 경우로서, 장시간 재가열하는 동안 템퍼링이 일어나 탄화물 석출에 의해 연신율이 크게 감소하여 TsxEl이 본 발명에서 한정한 범위보다 적었다.In Comparative Example 20-1, the cold rolled steel sheet of Specimen No. 20 of Table 3 was used, but the reheating rate during the hot dip plating process was lower than the range defined in the present invention, and tempering occurred during reheating for a long time. Significantly decreased, TsxEl was less than the range defined in the present invention.
비교예 21의 경우 소둔온도가 본 발명에서 한정한 범위보다 낮은 경우로서, 페라이트와 오스테나이트 이상역에서 소둔되어 이후 냉각, 유지, 재가열을 거쳐 잔류오스테나이트 함량이 감소하여 TSxEL이 낮았다.In case of Comparative Example 21, the annealing temperature was lower than the range defined in the present invention. The annealing temperature was lowered in the ferrite and austenite abnormal zone, and then the residual austenite content was reduced through cooling, maintenance, and reheating, thereby lowering TSxEL.
비교예 26은 소둔온도가 본 발명에서 한정한 오스테나이트 단상역이 아닌 이상역에서 소둔후 냉각온도도 본 발명에서 한정한 범위보다 높은 경우로서, 잔류오스테나이트 함량이 낮아 TSxEL이 본발명에서 한정한 범위보다 낮았다.Comparative Example 26 is a case in which the annealing temperature is higher than the range defined in the present invention after the annealing in the anomaly zone other than the austenite single-phase zone defined in the present invention, the residual austenite content is low TSxEL is limited in the present invention Lower than the range.
비교예 27 및 28의 경우 강성분 중 Sb, Bi, Sn, Zn성분을 본 발명에서 한정한 범위보다 적게 첨가한 경우로서, 열연 내부산화 깊이가 본발명에서 제한한 범위를 초과하였으며, 이후 냉연강판 및 소둔강판에서 내부산화깊이가 본 발명에서 한정한 범위보다 깊었다. 그러나 Sb, Bi, Sn, Zn성분이 소둔공정에서 Si, Mn, Al등 소둔산화물 형성을 억제하는 효과는 충분하여 도금품질 및 밀착성은 우수하였다.In the case of Comparative Examples 27 and 28, when the Sb, Bi, Sn, Zn components of the steel components were added less than the range defined in the present invention, the hot-rolled internal oxidation depth exceeded the range limited by the present invention, and then the cold rolled steel sheet And the depth of internal oxidation in the annealed steel sheet was deeper than the range defined in the present invention. However, Sb, Bi, Sn, Zn components in the annealing process, the effect of inhibiting the formation of annealing oxides, such as Si, Mn, Al was sufficient, and the plating quality and adhesion was excellent.
비교예 29는 강성분중 Si함량이 본 발명에서 한정한 범위를 초과한 경우로서, 열간압연공정에서 이상역 압연이 진행되고 이로 인해 열연강판에 재결정이 일어나지 않은 가공경화된 페라이트와 시멘타이트가 다량 존재하여 열연강판의 강도가 크게 증가하고 이로인해 냉연작업시 판파단이 발생하였다.Comparative Example 29 is a case where the Si content of the steel component exceeds the range defined in the present invention, the abnormal reverse rolling is carried out in the hot rolling process, whereby a large amount of work hardened ferrite and cementite in which recrystallization does not occur in the hot rolled steel sheet As a result, the strength of the hot rolled steel sheet was greatly increased, which caused plate breakage during cold rolling.
비교예 30은 강성분중 Mn함량이 본 발명에서 한정한 범위를 초과한 경우로서, Sb, Bi, Sn, Zn 성분의 첨가량이 본 발명의 범위를 만족하더라도 소둔과정에서 강판표면에 Si, Mn, Al 등 소둔산화물 생성량이 많아 강판에 2mm 미만의 점형태의 미도금이 발생하였으며, 부분적으로 박리가 발생하였다. Comparative Example 30 is a case in which the Mn content in the steel component exceeds the range defined in the present invention, even if the addition amount of the Sb, Bi, Sn, and Zn components satisfies the scope of the present invention, Si, Mn, Due to the large amount of annealing oxides, such as Al, unplated spots of less than 2 mm occurred in the steel sheet, and partial peeling occurred.
한편, 도 1은 발명예 9에 따른 냉연강판을 3D-AP로 분석한 결과를 시각적으로 나타낸 것이다.On the other hand, Figure 1 shows the results of the analysis of the cold rolled steel sheet according to Inventive Example 9 by 3D-AP.
(( 실시예Example 2) 2)
코일상태의 제품을 연속적으로 생산하면서 덴트(Dent) 결함의 발생 여부를 확인하기 위해 실제 생산설비에서 생산하여 분석하였다. 하기 표 6 및 7의 조성을 갖는 성분을 연속주조 후, 강 슬라브를 제조하였다. 이를 활용하여 1200℃의 온도에서 1시간 유지후, 모든 강 슬라브의 Ar3 보다 높은 온도인 900℃에서 마무리 압연후 표 8에 나타낸 권취온도까지 냉각하여 코일로 권취한 후, 550℃의 온도까지 3℃/min의 평균 냉각 속도로 강제 냉각한 후, 공랭하였다.In order to check the occurrence of dent defects while continuously producing coiled products, they were produced and analyzed in actual production facilities. Following the continuous casting of the components having the composition of Tables 6 and 7, to prepare a steel slab. After using it for 1 hour at 1200 ℃, after finishing rolling at 900 ℃, which is higher than Ar3 of all steel slabs, it is cooled to the coiling temperature shown in Table 8 and wound up with coils, and then heated to 3 ℃ to 550 ℃. After forced cooling at an average cooling rate of / min, the mixture was air cooled.
상온까지 냉각이 완료된 열연강판은 열연 내부산화물 관찰을 위해 강판 단면을 주사전자현미경으로 관찰하였다. 이때 강판의 내부 산화물 최대 깊이는 5000배로 5군데를 측정하여 이들 중 최대 깊이를 택하였다In the hot rolled steel sheet cooled to room temperature, the cross section of the steel sheet was observed with a scanning electron microscope to observe the hot rolled oxide. In this case, the maximum depth of the internal oxide of the steel sheet was measured five times at 5000 times, and the maximum depth was selected.
열연강판의 산세는 70℃, 17Vol% HCl 용액으로 30~50초간 산세를 실시하고 이어서 곧바로 냉간압연을 실시하였다. 냉간압연이 완료된 강판은 단면 내부산화 깊이를 관찰하기 위해 강판 단면을 주사전자현미경으로 관찰하였다. 이때 강판의 내부 산화물 최대 깊이는 5000배로 5군데를 측정하여 이들 중 최대 깊이를 택하였다The pickling of the hot rolled steel sheet was performed at 70 ° C. and 17 Vol% HCl solution for 30 to 50 seconds, followed by cold rolling immediately. Cold rolled steel sheet was observed by scanning electron microscopy to observe the cross-sectional internal oxidation depth. In this case, the maximum depth of the internal oxide of the steel sheet was measured five times at 5000 times, and the maximum depth was selected.
냉연강판은 전처리를 통해 표면에 묻은 이물질을 제거한 후 하기 표 8의 가열 및 냉각 조건으로 소둔을 실시한 후 도금욕 온도 456℃, 도금욕 내 Al 함량 0.22wt%의 조건으로 도금을 실시한 후 에어나이프를 사용하여 편면기준 도금부착량 60g/m2으로 조절하고 냉각하여 도금강판을 제조하였다. 생산량에 따른 소둔로내 덴트(Dent) 결함 발생여부를 확인하기 위해 동일강을 동일조건에서 각각 15코일(Coil)씩 연속 생산하여 덴트(Dent) 발생 시작 코일(Coil)수를 측정하여 그 결과를 하기 표 9에 나타내었다.The cold rolled steel sheet is subjected to annealing under the heating and cooling conditions of the following Table 8 after removing foreign substances on the surface through pretreatment, and then plated under the conditions of the plating bath temperature of 456 ° C and the Al content of 0.22wt% in the plating bath. It was used to adjust the coating weight of coating on one side of 60g / m 2 and cooled to prepare a plated steel sheet. In order to confirm the occurrence of dent defects in the annealing furnace according to the production volume, the same steel is continuously produced for 15 coils under the same conditions, and the number of dent generating start coils is measured. It is shown in Table 9 below.
이후, 도금이 완료된 도금강판을 대상으로 표면 품질 및 도금 밀착성을 평가하고, 인장강도 및 연신율을 측정하였으며, 그 결과를 하기 표 9에 함께 나타내었다. 구체적인 측정 및 평가 방법은 실시예 1에서의 그것과 같다.Then, the surface quality and plating adhesion was evaluated for the plated steel sheet, the tensile strength and elongation were measured, and the results are shown in Table 9 together. Specific measurement and evaluation methods are the same as those in Example 1.
강종Steel grade 화학 조성 (중량%)Chemical composition (% by weight)
CC SiSi MnMn PP SS Sol.AlSol.Al CrCr TiTi
LL 0.1620.162 1.511.51 2.752.75 0.0080.008 0.00240.0024 0.0220.022 0.20.2 0.020.02
MM 0.1610.161 1.521.52 2.742.74 0.0120.012 0.00260.0026 0.0210.021 0.20.2 0.020.02
NN 0.1620.162 1.501.50 2.722.72 0.0110.011 0.00290.0029 0.0180.018 0.20.2 0.0210.021
OO 0.1630.163 1.491.49 2.762.76 0.0090.009 0.00220.0022 0.0150.015 0.20.2 0.0210.021
PP 0.1650.165 1.551.55 2.692.69 0.0140.014 0.00210.0021 0.0250.025 0.20.2 0.0180.018
강종Steel grade 화학 조성 (중량%)Chemical composition (% by weight)
BB MoMo NN NbNb SbSb BiBi SnSn ZnZn
LL 0.0010.001 0.050.05 0.00310.0031 -- -- -- -- 0.0010.001
MM 0.0010.001 0.050.05 0.00270.0027 0.040.04 -- -- -- 0.0010.001
NN 0.00110.0011 0.050.05 0.00370.0037 0.090.09 0.040.04 -- 0.040.04 0.00110.0011
OO 0.0010.001 0.050.05 0.00240.0024 -- 0.030.03 0.070.07 -- 0.0010.001
PP 0.0010.001 0.060.06 0.00310.0031 0.050.05 0.040.04 0.040.04 0.00170.0017 0.0010.001
시편번호Psalm Number 강종Steel grade 권취온도(℃)Winding temperature (℃) 열연내부산화깊이(㎛)Hot Rolled Internal Oxidation Depth (㎛) 냉연내부산화깊이(㎛)Cold Rolled Internal Oxidation Depth (㎛) 소둔공정Annealing Process 구분division
이슬점온도(℃)Dew point temperature (℃) 소둔온도(℃)Annealing Temperature (℃) 냉각온도(℃)Cooling temperature (℃) 평균냉각속도(℃/sec)Average cooling rate (℃ / sec) 냉각온도에서 유지시간(sec)Holding time at cooling temperature (sec) 재가열온도(℃)Reheating Temperature (℃) 재가열속도(℃/sec)Reheat rate (℃ / sec) 재가열후 도금욕침지전 유지시간(sec)Holding time (sec) before plating bath immersion after reheating
3131 LL 650650 1212 5.25.2 -43-43 850850 300300 2828 7878 480480 5555 4.24.2 비교예Comparative example
3232 MM 650650 5.55.5 2.42.4 -43-43 850850 300300 2828 7878 480480 5555 4.34.3 비교예Comparative example
3333 NN 650650 00 00 -43-43 850850 300300 2828 7878 480480 5555 4.34.3 발명예Inventive Example
3434 NN 650650 00 00 -43-43 850850 300300 2323 6767 480480 2222 8.58.5 비교예Comparative example
3535 OO 680680 00 00 -43-43 850850 300300 2828 7878 480480 5555 4.34.3 발명예Inventive Example
3636 PP 680680 00 00 -43-43 850850 300300 2828 7878 480480 5555 4.34.3 발명예Inventive Example
시편번호Psalm Number Dent 결함 발생시작 코일순서Dent Fault start coil order 표면품질Surface quality 도금밀착성Plating adhesion TS(Mpa)TS (Mpa) TS(Mpa)xEl(%)TS (Mpa) xEl (%) 구분division
3131 2번째 코일부터From the second coil XX XX ≥950≥950 1916219162 비교예Comparative example
3232 4번째 코일부터From the 4th coil ≥950≥950 1908119081 비교예Comparative example
3333 15코일 모두 미발생Not all 15 coils ≥950≥950 1888118881 발명예Inventive Example
3434 15코일 모두 미발생Not all 15 coils ≤900≤900 1534915349 비교예Comparative example
3535 15코일 모두 미발생Not all 15 coils ≥950≥950 1856118561 발명예Inventive Example
3636 15코일 모두 미발생Not all 15 coils ≥950≥950 1799217992 발명예Inventive Example
상기 표 6 내지 9에 나타낸 바와 같이 본 발명예인 33, 35 및 36은 본 발명에서 제안하는 합금 조성 및 제조 조건을 모두 만족하는 경우로서, 내부 산화물 최대 깊이가 적절히 제어되어 15코일 모두에서 덴트(dent)가 발생하지 않았으며, 내부산화방지를 위해 Sb, Bi, Sn, Zn성분이 0.08% 이상 첨가되었어도 인장강도 950MPa 이상, 인장강도(Mpa) x 연신율(%) = 16000 인 표면품질 및 도금 밀착성이 우수한 용융아연도금강판을 제공할 수 있음을 확인할 수 있다.As shown in Tables 6 to 9, Examples 33, 35, and 36 of the present invention satisfy all of the alloy composition and manufacturing conditions proposed by the present invention. ), Surface quality and coating adhesion with Sb, Bi, Sn and Zn added at 0.08% or more, tensile strength (Mpa) x elongation (%) = 16000 It can be seen that an excellent hot-dip galvanized steel sheet can be provided.
비교예 31의 경우 강중 열연 내부산화를 억제할 수 있는 성분이 들어있지 않아 열연강판의 소지철 표면으로부터 12㎛ 깊이까지 내부산화되어 이후 산세 및 냉연 이후에도 냉연강판에서고 소지철 표면으로부터 5.2㎛ 깊이까지 내부산화되어 이후 소둔과정에서 표층의 내부산화된 결정립이 탈락하여 소둔로내 롤에 부착후 2번째 코일부터 Dent결함이 관찰되었다.In the case of Comparative Example 31, there is no component that can inhibit the hot rolling internal oxidation in steel, so it is internally oxidized to the depth of 12㎛ from the base iron surface of the hot rolled steel sheet, and then to the depth of 5.2㎛ from the high iron surface of the cold rolled steel sheet even after pickling and cold rolling. After internal oxidation, the internally oxidized grains of the surface layer were dropped during the annealing process, and the Dent defects were observed from the second coil after being attached to the roll in the annealing furnace.
비교예 32의 경우 강중에 열연 내부산화 억제 성분인 Sb가 0.04% 첨가된 강종으로서, 열연 내부산화가 P강종 대비 감소하여 열연강판 내부산화 깊이가 5.2㎛로 비교예 31 대비 감소하였으나, 본 발명에서 한정한 1㎛를 초과하여 산세 및 냉간압연후 냉연강판에서도 본 발명에서 한정한 내부산화 깊이보다 깊은 2.4㎛로서, 4번째 생산 코일부터 Dent가 관찰되었다.In the case of Comparative Example 32, Sb, which is a hot rolled internal oxidation inhibiting component in steel, is added 0.04%, and the hot rolled internal oxidation is reduced compared to P steel, and the internal oxidation depth of hot rolled steel sheet is decreased to 5.2 μm compared to Comparative Example 31. Dent was observed from the fourth production coil as 2.4 μm deeper than the internal oxidation depth defined in the present invention even in cold rolled steel sheets after pickling and cold rolling exceeding the limited 1 μm.
비교예 34의 경우 강성분은 본 발명에서 한정한 범위로서, 열연 내부산화가 발생하지 않아 15코일 모두를 생산할때까지 Dent가 발생하지 않았지만, 소둔가열 및 냉각후 재가열속도가 본 발명에서 한정한 범위보다 느리고 재가열후 도금욕 침지전까지 유지시간이 길어 잔류오스테나이트의 템퍼링에 의해 강도가 감소하고 TSxEl이 감소하였다.In the case of Comparative Example 34, the steel component is a range defined in the present invention, but Dent did not occur until all 15 coils were produced because hot rolling internal oxidation did not occur, but the reheating rate after annealing heating and cooling was limited in the present invention. The slower and longer holding time until the plating bath was immersed after reheating led to the decrease of strength and TSxEl due to tempering of the retained austenite.
한편, 도 2의 (a)는 비교예 31에 따른 냉연강판의 단면을 관찰한 SEM 이미지이고, 도 2의 (b)는 발명예 33에 따른 단면을 관찰한 SEM 이미지이다. On the other hand, Figure 2 (a) is an SEM image observed the cross section of the cold rolled steel sheet according to Comparative Example 31, Figure 2 (b) is an SEM image observed the cross section according to the invention example 33.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다. Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and changes can be made without departing from the technical spirit of the present invention described in the claims. It will be obvious to those of ordinary skill in the field.

Claims (32)

  1. 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 열연강판으로서, 상기 열연강판의 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하고, 상기 내부 산화물의 최대 깊이는 1μm 이하(0μm 포함)인 고강도 열연강판.By weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [N] to 0.1%, P : 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), at least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total, A hot rolled steel sheet containing residual Fe and unavoidable impurities, wherein an internal oxide containing at least one element of Si, Mn, Al, and Fe exists in the surface layer portion of the hot rolled steel sheet, and the maximum depth of the internal oxide is 1 μm or less (0 μm) High strength hot rolled steel sheet.
  2. 제1항에 있어서,The method of claim 1,
    상기 열연강판은 중량%로, Cr: 1.0% 이하, Mo: 0.2% 이하, Nb: 0.1% 이하, B: 0.005% 이하로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 열연강판.The hot rolled steel sheet is by weight, Cr: 1.0% or less, Mo: 0.2% or less, Nb: 0.1% or less, B: 0.005% or less selected from the group consisting of high strength hot rolled steel sheet further.
  3. 제1항에 있어서,The method of claim 1,
    상기 열연강판은 Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd로 이루어진 군으로부터 1종 이상을 더 포함하고, 이들의 함량은 각각 0.1% 미만인 고강도 열연강판.The hot rolled steel sheet further comprises one or more from the group consisting of Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd, the content of each High strength hot rolled steel sheet less than 0.1%.
  4. 제1항에 있어서,The method of claim 1,
    그 미세조직으로 베이나이트를 포함하며, 그 면적분율은 50% 이하인 고강도 열연강판.A high-strength hot rolled steel sheet containing bainite as its microstructure and having an area fraction of 50% or less.
  5. 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하고, 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하고, 상기 내부 산화물의 최대 깊이는 0.3μm 이하(0μm 제외)인 고강도 냉연강판.By weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [N] to 0.1%, P : 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), at least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total, A high strength cold rolled steel sheet containing residual Fe and unavoidable impurities, and having an internal oxide containing at least one of Si, Mn, Al, and Fe in the surface layer portion, and having a maximum depth of 0.3 μm or less (excluding 0 μm). .
  6. 제5항에 있어서,The method of claim 5,
    상기 냉연강판의 표면으로부터 두께 방향으로 0.001μm 지점에서의 Sb, Bi, Sn, Zn 중 1종 이상의 함량의 합이 상기 냉연강판의 표면으로부터 두께 방향 0.02μm 지점에서의 Sb, Bi, Sn, Zn 중 1종 이상의 함량의 합의 3 내지 15배인 고강도 냉연강판.The sum of the contents of at least one of Sb, Bi, Sn and Zn in the thickness direction from 0.001 μm in the thickness direction from the surface of the cold rolled steel sheet in the Sb, Bi, Sn, Zn in the thickness direction from 0.02 μm in the thickness direction from the surface of the cold rolled steel sheet. High strength cold rolled steel sheet having 3 to 15 times the sum of at least one content.
  7. 제5항에 있어서,The method of claim 5,
    미세조직으로 잔류 오스테나이트를 포함하며, 그 면적분율은 5~50%인 고강도 냉연강판.High-strength cold-rolled steel sheet containing residual austenite as a microstructure and having an area fraction of 5 to 50%.
  8. 제5항에 있어서,The method of claim 5,
    중량%로, Cr: 1.0% 이하, Mo: 0.2% 이하, Nb: 0.1% 이하, B: 0.005% 이하로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 냉연강판. A high strength cold rolled steel sheet further comprising at least one selected from the group consisting of Cr: 1.0% or less, Mo: 0.2% or less, Nb: 0.1% or less, B: 0.005% or less.
  9. 제5항에 있어서,The method of claim 5,
    Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd로 이루어진 군으로부터 1종 이상을 더 포함하고, 이들의 함량은 각각 0.1% 미만인 고강도 냉연강판.Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd further comprises one or more, each of which is less than 0.1% high strength Cold rolled steel sheet.
  10. 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 냉연강판; 및 상기 냉연강판의 표면에 형성된 용융아연도금층;을 포함하고,By weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [N] to 0.1%, P : 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), at least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total, Cold rolled steel sheet containing remainder Fe and unavoidable impurities; And a hot dip galvanized layer formed on the surface of the cold rolled steel sheet.
    상기 냉연강판의 표층부에는 Si, Mn, Al, Fe 중 1종 이상의 원소를 함유하는 내부 산화물이 존재하고, 상기 내부 산화물의 최대 깊이는 0.3μm 이하(0μm 제외)인 고강도 용융아연도금강판.A high strength hot dip galvanized steel sheet having an internal oxide containing at least one of Si, Mn, Al, and Fe in the surface layer portion of the cold rolled steel sheet, and having a maximum depth of 0.3 μm or less (excluding 0 μm).
  11. 제10항에 있어서,The method of claim 10,
    상기 냉연강판의 표면으로부터 두께 방향으로 0.001μm 지점에서의 Sb, Bi, Sn, Zn 중 1종 이상의 함량의 합이 상기 냉연강판의 표면으로부터 두께 방향 0.02μm 지점에서의 Sb, Bi, Sn, Zn 중 1종 이상의 함량의 합의 3 내지 15배인 고강도 용융아연도금강판.The sum of the contents of at least one of Sb, Bi, Sn and Zn in the thickness direction from 0.001 μm in the thickness direction from the surface of the cold rolled steel sheet in the Sb, Bi, Sn, Zn in the thickness direction from 0.02 μm in the thickness direction from the surface of the cold rolled steel sheet. High strength hot-dip galvanized steel sheet having 3 to 15 times the sum of at least one content.
  12. 제10항에 있어서,The method of claim 10,
    인장강도가 950Mpa 이상이고, 인장강도와 연신율의 곱이 16000Mpa·% 이상인 고강도 용융아연도금강판.High strength hot dip galvanized steel sheet having a tensile strength of 950 Mpa or more and a product of tensile strength and elongation of 16000 Mpa ·% or more.
  13. 제10항에 있어서,The method of claim 10,
    상기 냉연강판은 그 미세조직으로 잔류 오스테나이트를 포함하며, 그 면적분율은 5~50%인 고강도 용융아연도금강판.The cold-rolled steel sheet includes residual austenite as its microstructure, and the area fraction is 5 to 50% high strength hot-dip galvanized steel sheet.
  14. 제10항에 있어서,The method of claim 10,
    상기 냉연강판 및 용융아연도금층의 계면에 형성된 합금화 억제층을 더 포함하고, 상기 합금화 억제층은 Sb, Bi 및 Sn 중 1종 이상을 합계로 0.001~0.05중량% 포함하는 고강도 용융아연도금강판. A high strength hot dip galvanized steel sheet further comprising an alloying inhibitory layer formed at an interface between the cold rolled steel sheet and the hot dip galvanized layer, wherein the alloying inhibitory layer comprises 0.001 to 0.05% by weight in total of at least one of Sb, Bi, and Sn.
  15. 제10항에 있어서,The method of claim 10,
    상기 냉연강판은 중량%로, Cr: 1.0% 이하, Mo: 0.2% 이하, Nb: 0.1% 이하, B: 0.005% 이하로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 용융아연도금강판. The cold rolled steel sheet by weight, Cr: 1.0% or less, Mo: 0.2% or less, Nb: 0.1% or less, B: 0.005% or less selected from the group consisting of high strength hot-dip galvanized steel sheet further.
  16. 제10항에 있어서,The method of claim 10,
    상기 냉연강판은 Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd로 이루어진 군으로부터 1종 이상을 더 포함하고, 이들의 함량은 각각 0.1% 미만인 고강도 용융아연도금강판.The cold rolled steel sheet further comprises one or more from the group consisting of Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd, the content of each High strength hot dip galvanized steel sheet less than 0.1%.
  17. 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열한 후, 마무리 열간압연 온도 Ar3℃ 이상의 조건 하 열간압연하여 열연강판을 얻는 단계;By weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [N] to 0.1%, P : 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), at least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total, Reheating the slab including the balance Fe and unavoidable impurities, and then hot rolling under a condition of a finish hot rolling temperature Ar3 ° C. or higher to obtain a hot rolled steel sheet;
    상기 열연강판을 600~800℃의 온도에서 권취하는 단계; 및Winding the hot rolled steel sheet at a temperature of 600 to 800 ° C .; And
    상기 권취된 열연강판을 550℃ 이하의 온도까지 2℃/min 이상의 평균 냉각 속도로 냉각하는 단계Cooling the wound hot rolled steel sheet to an average cooling rate of 2 ° C./min or more to a temperature of 550 ° C. or less;
    를 포함하는 고강도 열연강판의 제조방법.Method for producing a high strength hot rolled steel sheet comprising a.
  18. 제17항에 있어서,The method of claim 17,
    상기 슬라브의 재가열 온도는 1100~1300℃인 고강도 열연강판의 제조방법.The reheating temperature of the slab is 1100 ~ 1300 ℃ manufacturing method of high strength hot rolled steel sheet.
  19. 제17항에 있어서,The method of claim 17,
    상기 권취된 열연강판의 냉각 속도는 2~10℃/sec인 고강도 열연강판의 제조방법. Cooling rate of the wound hot rolled steel sheet is a manufacturing method of high strength hot rolled steel sheet is 2 ~ 10 ℃ / sec.
  20. 제17항에 있어서,The method of claim 17,
    상기 슬라브는 중량%로, Cr: 1.0% 이하, Mo: 0.2% 이하, Nb: 0.1% 이하, B: 0.005% 이하로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 열연강판의 제조방법.The slab is a weight%, Cr: 1.0% or less, Mo: 0.2% or less, Nb: 0.1% or less, B: 0.005% or less selected from the group consisting of a high strength hot rolled steel sheet manufacturing method.
  21. 제17항에 있어서,The method of claim 17,
    상기 슬라브는 Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd로 이루어진 군으로부터 1종 이상을 더 포함하고, 이들의 함량은 각각 0.1% 미만인 고강도 열연강판의 제조방법.The slab further comprises one or more from the group consisting of Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd, their content is each 0.1 Method for producing high strength hot rolled steel sheet less than%.
  22. 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열한 후, 마무리 열간압연 온도 Ar3℃ 이상의 조건 하 열간압연하여 열연강판을 얻는 단계;By weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [N] to 0.1%, P : 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), at least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total, Reheating the slab including the balance Fe and unavoidable impurities, and then hot rolling under a condition of a finish hot rolling temperature Ar3 ° C. or higher to obtain a hot rolled steel sheet;
    상기 열연강판을 600~800℃의 온도에서 권취하는 단계;Winding the hot rolled steel sheet at a temperature of 600 to 800 ° C .;
    상기 권취된 열연강판을 550℃ 이하의 온도까지 2℃/min 이상의 평균 냉각 속도로 냉각하는 단계; 및Cooling the wound hot rolled steel sheet to an average cooling rate of 2 ° C./min or more to a temperature of 550 ° C. or less; And
    상기 냉각된 열연강판을 냉간압연하여 냉연강판을 얻는 단계를 포함하는 고강도 용융아연도금강판의 제조방법.Cold rolling the cooled hot rolled steel sheet to obtain a cold rolled steel sheet manufacturing method of high strength hot-dip galvanized steel sheet.
  23. 중량%로, C: 0.14~0.3%, Si: 1~2.0%, Mn: 2.6~5%, sol.Al: 0.001~2%, Ti: (48/14)*[N]~0.1%, P: 0.04% 이하(0% 제외), S: 0.015% 이하(0% 제외), N: 0.02% 이하(0% 제외), Sb, Bi, Sn, Zn 중 1종 이상: 합계 0.08~0.2%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열한 후, 마무리 열간압연 온도 Ar3℃ 이상의 조건 하 열간압연하여 열연강판을 얻는 단계;By weight%, C: 0.14 to 0.3%, Si: 1 to 2.0%, Mn: 2.6 to 5%, sol.Al: 0.001 to 2%, Ti: (48/14) * [N] to 0.1%, P : 0.04% or less (excluding 0%), S: 0.015% or less (excluding 0%), N: 0.02% or less (excluding 0%), at least one of Sb, Bi, Sn, and Zn: 0.08 to 0.2% in total, Reheating the slab including the balance Fe and unavoidable impurities, and then hot rolling under a condition of a finish hot rolling temperature Ar3 ° C. or higher to obtain a hot rolled steel sheet;
    상기 열연강판을 600~800℃의 온도에서 권취하는 단계;Winding the hot rolled steel sheet at a temperature of 600 to 800 ° C .;
    상기 권취된 열연강판을 550℃ 이하의 온도까지 2℃/min 이상의 평균 냉각 속도로 냉각하는 단계;Cooling the wound hot rolled steel sheet to an average cooling rate of 2 ° C./min or more to a temperature of 550 ° C. or less;
    상기 냉각된 열연강판을 냉간압연하여 냉연강판을 얻는 단계;Cold rolling the cooled hot rolled steel sheet to obtain a cold rolled steel sheet;
    상기 냉연강판을 이슬점 온도 -60~-30℃의 조건 하 820~870℃의 온도까지 가열한 후, 5~120초 동안 유지하여 재결정 소둔하는 단계;Heating the cold rolled steel sheet to a temperature of 820 to 870 ° C. under a dew point temperature of −60 to −30 ° C., followed by holding for 5 to 120 seconds to recrystallize annealing;
    상기 재결정 소둔된 냉연강판을 20℃/sec 이상의 속도로 250~350℃의 온도까지 냉각한 후, 50~150초 동안 유지하는 단계; 및Cooling the recrystallized annealed cold rolled steel sheet to a temperature of 250 ° C. to 350 ° C. at a rate of 20 ° C./sec or more, and maintaining the same for 50 to 150 seconds; And
    상기 냉각 및 유지된 냉연강판을 30℃/sec 이상의 속도로 460~500℃의 온도까지 가열한 후, 7초 이내에 아연 도금욕에 침적하여 도금하는 단계를 포함하는 고강도 용융아연도금강판의 제조방법.And heating the cooled and retained cold rolled steel sheet to a temperature of 460 to 500 ° C. at a rate of 30 ° C./sec or more, and depositing and plating a zinc plating bath within 7 seconds.
  24. 제23항에 있어서,The method of claim 23,
    상기 권취 후 냉간압연 전, 상기 권취된 열연강판을 산세 후 수세하는 단계를 더 포함하고,After the winding and before cold rolling, the pickled hot rolled steel sheet further comprises the step of washing with water,
    상기 권취된 열연강판을 온도가 60~80℃인 15~20부피%의 염산 수용액에 30~60초 동안 산세하는 고강도 용융아연도금강판의 제조방법.The method of manufacturing a high strength hot-dip galvanized steel sheet wherein the wound hot-rolled steel sheet is pickled for 30 to 60 seconds in an aqueous solution of 15-20% by volume of hydrochloric acid having a temperature of 60-80 ° C.
  25. 제23항에 있어서,The method of claim 23,
    상기 냉간압연시 압하율은 30~60%인 고강도 용융아연도금강판의 제조방법.The cold rolling reduction rate is 30 to 60% of the production method of high strength hot-dip galvanized steel sheet.
  26. 제23항에 있어서,The method of claim 23,
    상기 재결정 소둔은 3~70부피%H2-N2 가스 분위기 조건 하 실시하는 고강도 용융아연도금강판의 제조방법.The recrystallization annealing is a manufacturing method of high strength hot-dip galvanized steel sheet is carried out under 3 ~ 70 volume% H 2 -N 2 gas atmosphere conditions.
  27. 제23항에 있어서,The method of claim 23,
    상기 아연 도금욕은 Al을 0.12~0.3중량% 포함하는 고강도 용융아연도금강판의 제조방법.The galvanizing bath is a method for producing a high strength hot dip galvanized steel sheet containing 0.12 ~ 0.3% by weight of Al.
  28. 제23항에 있어서,The method of claim 23,
    상기 아연 도금욕의 온도는 450~500℃인 고강도 용융아연도금강판의 제조방법.The temperature of the galvanizing bath is a manufacturing method of high strength hot-dip galvanized steel sheet of 450 ~ 500 ℃.
  29. 제23항에 있어서,The method of claim 23,
    상기 냉연강판의 재결정 소둔 전, 상기 냉연강판의 표면에 Fe, Ni, Co, Sn 중 1종 이상의 원소로 이루어진 선도금층을 형성하는 단계를 더 포함하고, 상기 선도금층의 부착량은 편면당 0.01~2g/m2인 고강도 용융아연도금강판의 제조방법.Before the recrystallization annealing of the cold rolled steel sheet, further comprising the step of forming a lead gold layer consisting of at least one element of Fe, Ni, Co, Sn on the surface of the cold rolled steel sheet, the adhesion amount of the lead gold layer is 0.01 ~ 2g per one side Method for producing a high strength hot dip galvanized steel sheet / m 2 .
  30. 제23항에 있어서,The method of claim 23,
    상기 도금 후, 480~600℃의 온도에서 1초 이상 합금화 열처리하는 단계를 더 포함하는 고강도 용융아연도금강판의 제조방법. After the plating, the method of producing a high-strength hot-dip galvanized steel sheet further comprising the step of alloying heat treatment for 1 second or more at a temperature of 480 ~ 600 ℃.
  31. 제23항에 있어서,The method of claim 23,
    상기 슬라브는 중량%로, Cr: 1.0% 이하, Mo: 0.2% 이하, Nb: 0.1% 이하, B: 0.005% 이하로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 용융아연도금강판의 제조방법.The slab is a weight%, Cr: 1.0% or less, Mo: 0.2% or less, Nb: 0.1% or less, B: 0.005% or less selected from the group consisting of high strength hot-dip galvanized steel sheet manufacturing method .
  32. 제23항에 있어서,The method of claim 23,
    상기 슬라브는 Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd로 이루어진 군으로부터 1종 이상을 더 포함하고, 이들의 함량은 각각 0.1% 미만인 고강도 용융아연도금강판의 제조방법.The slab further comprises one or more from the group consisting of Cu, Mg, Co, Ca, Na, V, Ga, Ge, As, Se, In, Ag, W, Pb, Cd, their content is each 0.1 Method for producing a high strength hot dip galvanized steel sheet less than%.
PCT/KR2017/015313 2016-12-23 2017-12-22 High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor WO2018117724A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019533551A JP6893990B2 (en) 2016-12-23 2017-12-22 High-strength hot-dip steel sheet and cold-rolled steel sheet with excellent continuous productivity, high-strength hot-dip galvanized steel sheet with excellent surface quality and plating adhesion, and their manufacturing methods
CN201780080336.5A CN110100031B (en) 2016-12-23 2017-12-22 High-strength hot-rolled steel sheet, cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and methods for producing these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160177643A KR101899688B1 (en) 2016-12-23 2016-12-23 High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
KR10-2016-0177643 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018117724A1 true WO2018117724A1 (en) 2018-06-28

Family

ID=62627855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015313 WO2018117724A1 (en) 2016-12-23 2017-12-22 High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor

Country Status (4)

Country Link
JP (1) JP6893990B2 (en)
KR (1) KR101899688B1 (en)
CN (1) CN110100031B (en)
WO (1) WO2018117724A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940091A4 (en) * 2019-03-12 2022-01-26 JFE Steel Corporation Hot press member, production method for steel sheet for hot press, and production method for hot press member
CN114746571A (en) * 2019-12-03 2022-07-12 Posco公司 Galvanized steel sheet having excellent fatigue strength at resistance spot welded portion and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180797B1 (en) * 2018-11-30 2020-11-19 주식회사 포스코 High strength hot-rolled steel sheet and cold rolled steel sheet having excellent surface property and continuous productivity, and manufacturing method for the same
WO2020128574A1 (en) * 2018-12-18 2020-06-25 Arcelormittal Cold rolled and heat-treated steel sheet and method of manufacturing the same
KR102231345B1 (en) * 2019-06-24 2021-03-24 주식회사 포스코 High-strength cold-rolled steel sheet having excellent surface property and method for manufacturing thereof
KR102379443B1 (en) * 2019-12-20 2022-03-29 주식회사 포스코 Steel material for hot press forming, hot pressed member and manufacturing method theerof
EP4079913A4 (en) * 2019-12-20 2023-02-22 Posco Steel for hot forming, hot-formed member, and manufacturing methods therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074924A (en) * 1989-06-21 1991-12-24 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line
KR20090119264A (en) * 2008-05-15 2009-11-19 주식회사 포스코 High strength steel sheet for hot-dip galvanization with excellent galvanizing properties and manufacturing method thereof
KR20160077567A (en) * 2014-12-23 2016-07-04 주식회사 포스코 High strength galvanized steel sheet having excellent surface qualities, plating adhesion and formability and method for manufacturing the same
KR20160077571A (en) * 2014-12-23 2016-07-04 주식회사 포스코 High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
KR20160132926A (en) * 2014-03-17 2016-11-21 가부시키가이샤 고베 세이코쇼 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904060B2 (en) * 1995-06-27 1999-06-14 株式会社神戸製鋼所 Surface-treated steel sheet with excellent punching workability and formability
WO2007067014A1 (en) * 2005-12-09 2007-06-14 Posco Tole d'acier laminee a froid de haute resistance possedant une excellente propriete de formabilite et de revetement, tole d'acier plaquee de metal a base de zinc fabriquee a partir de cette tole et procece de fabrication de celle-ci
KR20080061853A (en) * 2006-12-28 2008-07-03 주식회사 포스코 High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
KR20090070509A (en) * 2007-12-27 2009-07-01 주식회사 포스코 High manganese coated steel sheet having high strength and ductility and manufacturing method thereof
JP2010126757A (en) * 2008-11-27 2010-06-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for producing the same
JP5672744B2 (en) * 2009-03-31 2015-02-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5413539B2 (en) * 2011-09-30 2014-02-12 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet excellent in bake hardenability, high-strength galvannealed steel sheet, and methods for producing them
WO2013157222A1 (en) * 2012-04-18 2013-10-24 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP6237365B2 (en) * 2014-03-17 2017-11-29 新日鐵住金株式会社 High strength steel plate with excellent formability and impact properties
JP6237900B2 (en) * 2015-02-17 2017-11-29 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
EP3284841A4 (en) * 2015-04-15 2018-12-19 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074924A (en) * 1989-06-21 1991-12-24 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line
KR20090119264A (en) * 2008-05-15 2009-11-19 주식회사 포스코 High strength steel sheet for hot-dip galvanization with excellent galvanizing properties and manufacturing method thereof
KR20160132926A (en) * 2014-03-17 2016-11-21 가부시키가이샤 고베 세이코쇼 High strength cold rolled steel sheet and high strength galvanized steel sheet having excellent ductility and bendability, and methods for producing same
KR20160077567A (en) * 2014-12-23 2016-07-04 주식회사 포스코 High strength galvanized steel sheet having excellent surface qualities, plating adhesion and formability and method for manufacturing the same
KR20160077571A (en) * 2014-12-23 2016-07-04 주식회사 포스코 High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940091A4 (en) * 2019-03-12 2022-01-26 JFE Steel Corporation Hot press member, production method for steel sheet for hot press, and production method for hot press member
CN114746571A (en) * 2019-12-03 2022-07-12 Posco公司 Galvanized steel sheet having excellent fatigue strength at resistance spot welded portion and method for producing same

Also Published As

Publication number Publication date
KR20180074009A (en) 2018-07-03
CN110100031A (en) 2019-08-06
JP2020509204A (en) 2020-03-26
CN110100031B (en) 2021-04-23
KR101899688B1 (en) 2018-09-17
JP6893990B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2018117724A1 (en) High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor
WO2017111525A1 (en) Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same
WO2017105064A1 (en) High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability, and manufacturing method therefor
WO2018117543A1 (en) Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof
WO2017078278A1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
WO2016093598A1 (en) Ultrahigh strength hot galvanizing steel plate with excellent surface quality and coating adherence, and manufacturing method therefor
WO2019124693A1 (en) High-strength steel sheet having excellent processability and method for manufacturing same
WO2019124688A1 (en) High-strength steel sheet having excellent impact properties and formability and method for manufacturing same
WO2019231023A1 (en) Al-fe-alloy plated steel sheet for hot forming, having excellent twb welding characteristics, hot forming member, and manufacturing methods therefor
WO2015099382A1 (en) Steel sheet for hot press formed product having superior bendability and ultra-high strength, hot press formed product using same, and method for manufacturing same
WO2017222189A1 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
WO2018117544A1 (en) Tempered martensitic steel having low yield ratio and excellent uniform elongation, and manufacturing method therefor
WO2019132342A1 (en) Hot-rolled steel sheet having excellent impact resistance, steel pipe, member, and manufacturing methods therefor
WO2017105026A1 (en) Ultra-high strength steel sheet having excellent chemical conversion treatability and hole expansibility and method for manufacturing same
WO2017105025A1 (en) Ultra-high strength steel sheet having excellent chemical conversion treatability and bending processability and method for manufacturing same
WO2016105115A1 (en) High-strength hot-dip galvanized steel sheet having excellent surface quality, coating adhesion, and moldability, and production method therefor
WO2018056792A1 (en) Cold-rolled steel plate for hot forming, having excellent corrosion-resistance and spot-weldability, hot-formed member, and method for manufacturing same
WO2018117523A1 (en) High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for same sheet and same member
WO2016104837A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2019124807A1 (en) Steel sheet with excellent bake hardening properties and corrosion resistance and method for manufacturing same
WO2019124781A1 (en) Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same
WO2017111428A1 (en) High strength cold-rolled steel sheet excellent in ductility, hole-forming property and surface treatment property, molten galvanized steel sheet, and method for manufacturing same
WO2016104838A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2020130675A1 (en) High-strength cold-rolled steel sheet having excellent bending workability and manufacturing method therefor
WO2018117500A1 (en) High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883500

Country of ref document: EP

Kind code of ref document: A1