WO2016167313A1 - Hot-rolled steel sheet and method for manufacturing same - Google Patents

Hot-rolled steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2016167313A1
WO2016167313A1 PCT/JP2016/061991 JP2016061991W WO2016167313A1 WO 2016167313 A1 WO2016167313 A1 WO 2016167313A1 JP 2016061991 W JP2016061991 W JP 2016061991W WO 2016167313 A1 WO2016167313 A1 WO 2016167313A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel sheet
rolled steel
content
rolled
Prior art date
Application number
PCT/JP2016/061991
Other languages
French (fr)
Japanese (ja)
Inventor
泰明 田中
睦海 榊原
卓史 横山
裕之 川田
杉浦 夏子
近藤 泰光
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/566,246 priority Critical patent/US20180100213A1/en
Priority to MX2017013132A priority patent/MX2017013132A/en
Priority to BR112017021206-4A priority patent/BR112017021206A2/en
Priority to KR1020177032623A priority patent/KR102046544B1/en
Priority to EP16780104.2A priority patent/EP3284841A4/en
Priority to JP2017512575A priority patent/JP6515393B2/en
Priority to CN201680021926.6A priority patent/CN107532257B/en
Publication of WO2016167313A1 publication Critical patent/WO2016167313A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a hot-rolled steel sheet and a manufacturing method thereof.
  • High-strength steel sheets are being applied to automobiles in order to achieve both weight reduction and collision safety.
  • High-strength steel sheets contain many alloying elements for increasing strength.
  • a high-strength steel sheet having a tensile strength of 980 MPa or more contains a large amount of Si and Mn.
  • High strength steel sheets are usually manufactured by the following method. First, a slab is hot-rolled to produce a hot-rolled steel sheet and wound into a coil. Next, the hot-rolled steel sheet is pickled, cold-rolled and annealed.
  • the temperature at the time of winding in a coil shape (hereinafter referred to as the winding temperature) may be increased. If the coiling temperature is high, an internal oxide layer is formed in the vicinity of the surface layer of the hot rolled steel sheet.
  • the internal oxide layer is formed with a thickness of several tens of ⁇ m from the surface of the base material of the hot-rolled steel sheet toward the center of the thickness.
  • the internal oxide layer decreases the surface properties, formability and weldability of the steel sheet (cold rolled steel sheet) after cold rolling. Therefore, an internal oxide layer is removed before cold rolling by performing a pickling process with respect to a hot-rolled steel plate.
  • an oxide film (scale) is formed on the surface of the hot-rolled steel sheet.
  • the scale reduces the surface properties, formability and weldability of the steel sheet. Therefore, the scale is also removed by performing pickling treatment on the hot-rolled steel sheet, like the internal oxide layer.
  • the internal oxide layer or the scale is thick, an excessive work load is applied to the pickling treatment for the hot-rolled steel sheet. Furthermore, if the internal oxide layer and the scale remain, as described above, the surface properties, formability and weldability of the cold-rolled steel sheet are deteriorated. Furthermore, the internal oxide layer and the scale are peeled off when forming the cold-rolled steel sheet, causing surface flaws such as pushing rivets.
  • the internal oxide layer is formed by selectively oxidizing an alloy element in the base material. Si and Mn are easily oxidized. Therefore, an internal oxide layer is likely to occur in a hot-rolled steel sheet having a high Si and Mn content. Similarly, the scale tends to be thick with a hot-rolled steel sheet having a high Si and Mn content.
  • the inner oxide layer and scale become thicker as the steel plate temperature continues for a longer time. As described above, if the coiling temperature is increased in order to improve the cold workability of the hot-rolled steel sheet, an internal oxide layer is more likely to be formed and the thickness is likely to be increased.
  • the scale is the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-13520
  • Patent Document 2 Japanese Patent Application Publication No. 2010-535946
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2011-184741
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2011-231391
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2013-216916.
  • Patent Document 7 JP 2013-103235 A (Patent Document 8), JP 2010-503769 A (Patent Document 9), JP 2011-523441 A (Patent Document 10), JP 2015 No. 11-13505 (Patent Document 11), JP 2004-332099 A (Patent Document 12), JP 2013-060657 A It has been proposed in Japanese Patent (JP 13) and JP-T 2011-523443 (Patent Document 14).
  • Patent Document 1 an antioxidant is applied to the surface of a steel sheet. Thereby, it is described in Patent Document 1 that the generation of the internal oxide layer and the scale is suppressed.
  • Patent Document 2 a hot-rolled steel sheet is wound at a relatively low temperature of 530 to 580 ° C. Thus, Patent Document 2 describes that the generation of an oxide layer is suppressed.
  • Patent Document 3 a rolled hot-rolled steel sheet is wound at 750 ° C. to 600 ° C. to form a coil. After winding, the coil is held for 10 to 30 minutes, and then the hot-rolled steel sheet is cooled while discharging the coil. And when the temperature of a hot-rolled steel plate becomes 550 degrees C or less, a hot-rolled steel plate is wound up again to make a coil. In this case, Patent Document 3 describes that the oxide layer can be thinned.
  • Patent Documents 4 to 6 the steel sheet after hot rolling or winding is subjected to heat treatment or cooling treatment in an atmosphere with a reduced oxygen concentration. These documents describe that the scale and the internal oxide layer are reduced by heat treatment or cooling treatment in an atmosphere with a reduced oxygen concentration.
  • Patent Document 7 descaling is performed on a hot-rolled steel sheet after hot rolling before winding to remove the oxide scale on the surface.
  • the oxygen source used to create the internal oxide layer during coil cooling is reduced. Therefore, Patent Document 7 describes that not only the scale but also the internal oxide layer is reduced.
  • Patent Document 8 proposes a cooling method for making the internal oxidation amount of a hot-rolled steel sheet uniform in an appropriate range in the longitudinal direction and the width direction.
  • Patent Documents 9 to 14 propose a technique different from the above-mentioned Patent Documents.
  • the alloy components of steel and the heat treatment conditions of the hot-rolled steel sheet are appropriately controlled to suppress internal oxidation.
  • 0.001 to 0.1% of Sb is contained in steel, reheated at 1100 to 1250 ° C., hot-rolled, and wound at 450 to 750 ° C. Thereafter, the hot-rolled steel sheet is pickled and cold-rolled, and annealed at 700 to 850 ° C. Thereby, formation of an internal oxide layer is suppressed.
  • Patent Document 10 proposes a technique for appropriately controlling the alloy components to suppress the formation of oxides and to improve the plating properties.
  • a steel slab containing 0.005 to 0.1% of Sb and adjusting the relationship among the contents of Ni, Mn, Al, and Ti is used. This steel slab is hot-worked and hot-rolled at 500 to 700 ° C. Furthermore, pickling, cold rolling and annealing are performed. Thereby, internal oxidation is suppressed.
  • Patent Document 11 a slab containing 0.02 to 0.10% Sb is hot-rolled, pickled, cold-rolled, annealed and cooled.
  • the finish rolling temperature in hot rolling is set to 800 to 1000 ° C.
  • the rolling reduction in cold rolling is set to 20% or more.
  • annealing is performed in an atmosphere having a dew point of ⁇ 35 ° C. or lower and a temperature range of 750 to 900 ° C. for 60 seconds or more. After annealing, after cooling to 300 ° C. or less at an average cooling rate of 30 ° C./second or more, tempering is performed. Thereby, internal oxidation is suppressed.
  • Patent Documents 12 to 14 describe that the scale is suppressed by appropriately adjusting the Si content, the slab heating temperature, the finish rolling temperature, the winding temperature, and the like.
  • the internal oxide layer may be formed deeply or the scale may be formed thickly.
  • An object of the present invention is to provide a hot rolled steel sheet in which formation of an internal oxide layer or scale is suppressed.
  • the hot-rolled steel sheet according to the present embodiment is, in mass%, C: 0.07 to 0.30%, Si: more than 1.0 to 2.8%, Mn: 2.0 to 3.5%, P: 0 0.03% or less, S: 0.010% or less, Al: 0.01 to less than 1.0%, N: 0.01% or less, O: 0.01% or less, Sb: 0.03 to 0.30 %, Ti: 0 to 0.15%, V: 0 to 0.30%, Nb: 0 to 0.15%, Cr: 0 to 1.0%, Ni: 0 to 1.0%, Mo: 0 ⁇ 1.0%, W: 0 ⁇ 1.0%, B: 0 ⁇ 0.010%, Cu: 0 ⁇ 0.50%, Sn: 0 ⁇ 0.30%, Bi: 0 ⁇ 0.30% , Se: 0 to 0.30%, Te: 0 to 0.30%, Ge: 0 to 0.30%, As: 0 to 0.30%, Ca: 0 to 0.50%, Mg: 0.50%
  • FIG. 1 is a cross-sectional view showing Nital corrosion in a high Si / high Mn-containing steel (Sb-free steel) and a Sb-containing steel containing 0.1% Sb in a high Si / high Mn-containing steel. It is a list figure which shows the SEM image of this, the oxygen mapping image by EPMA in a SEM image area
  • FIG. 2 shows the Sb content ( ⁇ 10 ⁇ 3 %) and the thickness of the internal oxide layer ( ⁇ m) when a hot-rolled steel sheet was produced by changing the Sb content contained in the high Si / high Mn content steel.
  • FIG. FIG. 3 is an SEM image in the vicinity of the surface layer of the above-described Sb-free steel and Sb-containing steel.
  • the present inventors investigated and examined the internal oxide layer and scale in the high Si / high Mn content steel, and obtained the following knowledge.
  • an internal oxide layer formed inside the base material (base metal) and a scale adjacent to the surface are formed.
  • the internal oxide layer and scale are considered to be formed by the following mechanism.
  • Oxygen ions enter the hot-rolled steel sheet through the surface of the hot-rolled steel sheet and the grain boundaries of the surface layer of the hot-rolled steel sheet.
  • the oxygen ions that have entered the hot-rolled steel sheet oxidize the base iron to form an internal oxide layer.
  • iron ions in the base material move to the surface of the hot-rolled steel sheet through the grain boundary.
  • a scale is formed by oxidation of Fe that has moved to the surface.
  • the segregated elements segregate at the surface and grain boundaries of the hot-rolled steel sheet and suppress the movement of oxygen ions and iron ions. To do. Therefore, oxygen ions can be prevented from entering the hot rolled steel sheet. Furthermore, it can suppress that an iron ion moves to the surface of a hot-rolled steel plate. As a result, formation of the internal oxide layer and scale can be suppressed.
  • Segregation elements are, for example, P, B, Sb.
  • P and B segregate at the grain boundaries and block the migration path of oxygen ions and iron ions, the mechanical properties of the hot-rolled steel sheet also deteriorate.
  • the present inventors manufactured hot-rolled steel sheets by further adding Sb to high Si / high Mn content steel, and investigated the thickness of the scale and the internal oxide layer.
  • FIG. 1 shows the vicinity of the surface of a conventional high Si / high Mn content steel (hereinafter referred to as Sb-free steel) and a conventional high Si / high Mn content steel containing 0.10% Sb.
  • Sb-free steel is mass%, C: 0.185%, Si: 1.8%, Mn: 2.6%, P: 0.01%, S: 0.002%, Al: 0.03 %, N: 0.003%, O: 0.0009%, and Ti: 0.005%, with the balance being Fe and impurities.
  • the Sb-containing steel was a steel containing 0.10% Sb in the chemical composition of the Sb-free steel. All the steels were hot-rolled steel sheets by hot rolling similar to the conventional steel. The above-described structure observation and EPMA mapping were performed on the manufactured hot-rolled steel sheet.
  • the scale 10 was formed on the steel plate surface, and the internal oxide layer 20 was formed on the base material.
  • the thickness thereof was thinner than that of the Sb-free steel.
  • the internal oxide layer 20 was not observed.
  • oxygen mapping by EPMA oxygen was observed in the scale 10 and the internal oxide layer 20 in the Sb-free steel (white region and gray region in the figure).
  • oxygen was observed only in the region where the scale 10 was formed (white region in the figure).
  • Sb mapping with EPMA was carried out.
  • an Sb-containing layer 30 (white region in the figure, hereinafter referred to as Sb enriched layer) was observed at the interface between the scale 10 and the base material.
  • an Sb concentrated layer is formed. From this, the following matters can be considered.
  • an Sb concentrated layer is formed at the interface between the scale and the base material (the surface of the hot rolled steel sheet) in the hot rolling process.
  • the Sb enriched layer blocks oxygen ions from entering the base material. Therefore, iron in the base material is not oxidized and an internal oxide layer is difficult to be formed.
  • the Sb enriched layer further suppresses iron ions in the base material from moving to the scale. Therefore, scale growth is suppressed and the scale thickness is reduced.
  • the Sb enriched layer functions as a so-called barrier layer that blocks the movement of oxygen ions and iron ions. Therefore, the formation of the Sb enriched layer can suppress oxygen ions from entering the base material from the scale after winding the hot-rolled steel sheet. Furthermore, the movement of iron ions from the base material to the scale can also be suppressed. Therefore, the generation of the internal oxide layer and scale is suppressed.
  • FIG. 2 shows the Sb content ( ⁇ 10 ⁇ 3 %) and the inside when a hot-rolled steel sheet is manufactured by changing the Sb content contained in the high Si / high Mn content steel (winding temperature is 750 ° C.). It is a figure which shows the relationship with the thickness (micrometer) of an oxide layer.
  • FIG. 2 shows the Sb content ( ⁇ 10 ⁇ 3 %) and the inside when a hot-rolled steel sheet is manufactured by changing the Sb content contained in the high Si / high Mn content steel (winding temperature is 750 ° C.). It is a figure which shows the relationship with the thickness (micrometer) of an oxide layer.
  • the thickness of the internal oxide layer decreases significantly.
  • the Sb content is 0.03% or more
  • the thickness of the internal oxide layer decreases as the Sb content increases.
  • the lower the Sb content is less than 0.03% the greater the reduction margin. Don't be. That is, an inflection point exists in the relationship between the thickness of the internal oxide layer and the Sb
  • the Sb enriched layer further suppresses not only the movement of oxygen ions and iron ions, but also the movement of carbon in the base material. As a result, it is easy to maintain a uniform structure in the sheet thickness direction, and the strength of the cold-rolled steel sheet after cold rolling and annealing is easily obtained.
  • FIG. 3 is an SEM image in the vicinity of the surface layer of the above-described Sb-free steel and Sb-containing steel.
  • the decarburized layer 40 is formed in the surface layer in Sb non-containing steel.
  • the Sb-containing steel in which the Sb enriched layer is formed at the interface between the base material and the scale the decarburized layer is not formed. Therefore, the Sb enriched layer can suppress not only the movement of oxygen ions and iron ions, but also the movement of carbon in the base material.
  • the hot-rolled steel sheet according to the present embodiment completed based on the above knowledge is, in mass%, C: 0.07 to 0.30%, Si: more than 1.0 to 2.8%, Mn: 2.0 to 3.5%, P: 0.030% or less, S: 0.010% or less, Al: 0.01 to less than 1.0%, N: 0.01% or less, O: 0.01% or less, Sb : 0.03-0.30%, Ti: 0-0.15%, V: 0-0.30%, Nb: 0-0.15%, Cr: 0-1.0%, Ni: 0- 1.0%, Mo: 0 to 1.0%, W: 0 to 1.0%, B: 0 to 0.010%, Cu: 0 to 0.50%, Sn: 0 to 0.30%, Bi: 0 to 0.30%, Se: 0 to 0.30%, Te: 0 to 0.30%, Ge: 0 to 0.30%, As: 0 to 0.30%, Ca: 0 to 0 .50%, Mg: 0 to 0.50%, Zr:
  • the chemical composition is one or two selected from the group consisting of Ti: 0.005 to 0.15%, V: 0.001 to 0.30%, and Nb: 0.005 to 0.15%. It may contain seeds or more.
  • the chemical composition is Cr: 0.10 to 1.0%, Ni: 0.10 to 1.0%, Mo: 0.01 to 1.0%, W: 0.01 to 1.0%, and B: One or more selected from the group consisting of 0.0001 to 0.010% may be contained.
  • the above chemical composition may contain Cu: 0.10 to 0.50%.
  • the above chemical composition may contain 0.0001 to 0.30% in total of one or more selected from the group consisting of Sn, Bi, Se, Te, Ge and As.
  • the above chemical composition may contain 0.0001 to 0.50% in total of one or more selected from the group consisting of Ca, Mg, Zr, Hf and rare earth elements.
  • the hot-rolled steel sheet according to the present embodiment includes an Sb enriched layer having a thickness of 0.5 ⁇ m or more between the surface and the scale.
  • the total area ratio of ferrite and pearlite may be 75% or more, and the tensile strength of the hot-rolled steel sheet may be 800 MPa or less.
  • the total area ratio of bainite and martensite may be 75% or more, and the tensile strength of the hot-rolled steel sheet may be 900 MPa or more.
  • the structure of the hot-rolled steel sheet may be that the total area ratio of bainite and martensite is 75% or more, and the tensile strength of the hot-rolled steel sheet may be 800 MPa or less.
  • the thickness of the internal oxide layer of the hot-rolled steel sheet is 5 ⁇ m or less.
  • the scale thickness is 10 ⁇ m or less.
  • the decarburized layer thickness of the surface layer of the hot-rolled steel sheet is 20 ⁇ m or less.
  • the scale thickness is 7 ⁇ m or less.
  • the scale thickness is 7 ⁇ m or less.
  • the method for producing the hot rolled steel sheet having a structure in which the total area ratio of ferrite and pearlite is 75% or more and a tensile strength of 800 MPa or less includes a step of preparing a steel material having the above chemical composition, and the steel material at 1100 to 1350 ° C. After heating, the method includes a step of hot rolling to form a steel plate and a step of winding the steel plate at 600 to 750 ° C., preferably 650 to 750 ° C., more preferably 700 to 750 ° C.
  • the manufacturing method of the hot-rolled steel sheet having a structure in which the total area ratio of bainite and martensite is 75% or more and a tensile strength of 900 MPa or more includes a preparation step of preparing a steel material having the chemical composition, and a steel material 1100. After being heated to ⁇ 1350 ° C., hot rolled into a steel plate, the hot rolling step of cooling the steel plate to the coiling temperature, and the steel plate after cooling is 150 to 600 ° C., preferably 350 to 500 ° C., more preferably Comprises a step of winding at 400 to 500 ° C.
  • the manufacturing method of the hot-rolled steel sheet having a structure in which the total area ratio of bainite and martensite is 75% or more and a tensile strength of 800 MPa or less includes a preparation step of preparing a steel material having the chemical composition, and a steel material 1100. After being heated to ⁇ 1350 ° C., hot rolled into a steel plate, the hot rolling step of cooling the steel plate to the coiling temperature, and the steel plate after cooling is 150 to 600 ° C., preferably 350 to 500 ° C., more preferably Comprises a step of winding at 400 to 500 ° C. and a step of tempering the wound steel sheet at 550 ° C. or higher.
  • C 0.07 to 0.30% Carbon (C) forms retained austenite in the hot-rolled steel sheet, and increases the strength and formability of the steel. If the C content is too low, the above effect cannot be obtained. On the other hand, if the C content is too high, the strength of the hot-rolled steel sheet becomes too high, and the cold rollability deteriorates. If the C content is too high, the weldability of the steel further decreases. Therefore, the C content is 0.07 to 0.30%.
  • the minimum with preferable C content is 0.10%, More preferably, it is 0.12%, More preferably, it is 0.15%.
  • the upper limit with preferable C content is 0.25%, More preferably, it is 0.22%.
  • Si more than 1.0 to 2.8% Silicon (Si) suppresses the formation of iron-based carbides and facilitates the formation of retained austenite. The formation of retained austenite increases the strength and formability of the steel. If the Si content is too low, this effect cannot be obtained. On the other hand, if the Si content is too high, the internal oxide layer grows significantly and the surface properties of the hot-rolled steel sheet deteriorate. If the Si content is too high, the hot-rolled steel sheet becomes brittle and the ductility is lowered. Therefore, the Si content is more than 1.0 to 2.8%.
  • the minimum with preferable Si content is 1.3%, More preferably, it is 1.5%.
  • the upper limit with preferable Si content is 2.5%, More preferably, it is 2.0%.
  • Mn 2.0 to 3.5%
  • Manganese (Mn) increases the strength of the steel sheet. If the Mn content is too low, a large amount of soft tissue is formed during cooling after annealing, and the strength is lowered. On the other hand, if the Mn content is too high, a coarse Mn-concentrated portion is generated at the center of the plate thickness, and the steel becomes brittle. Therefore, the cast slab is easily broken. If the Mn content is too high, the weldability of the steel further decreases. If the Mn content is too high, the hot-rolled steel sheet becomes harder and the cold rolling property is lowered. Therefore, the Mn content is 2.0 to 3.5%. The minimum with preferable Mn content is 2.2%, More preferably, it is 2.3%, More preferably, it is 2.5%. The upper limit with preferable Mn content is 3.2%, More preferably, it is 3.0%.
  • P 0.030% or less Phosphorus (P) segregates in the central part of the plate thickness of the steel sheet and embrittles the weld. Therefore, the P content is 0.030% or less. A lower P content is preferred. However, in order to reduce the P content, the manufacturing cost increases. Therefore, considering the manufacturing cost, the lower limit of the P content is, for example, 0.0010%.
  • S 0.010% or less Sulfur (S) decreases the weldability of steel. Further, S decreases the manufacturability during casting and hot rolling. Further, S combines with Mn to form MnS, which lowers the ductility and stretch flangeability of steel. Therefore, the S content is 0.010% or less.
  • the upper limit with preferable S content is 0.005%, More preferably, it is 0.0025%.
  • the lower limit of the S content is not particularly limited. However, considering the manufacturing cost, the lower limit of the S content is, for example, 0.0001%.
  • Al 0.01 to less than 1.0%
  • Aluminum (Al) suppresses the formation of iron-based carbides and facilitates the formation of retained austenite. The formation of retained austenite increases the strength and formability of the steel. Al further deoxidizes the steel. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, the weldability of the steel decreases. Therefore, the Al content is 0.01 to less than 1.0%.
  • the minimum with preferable Al content is 0.02%.
  • the upper limit with preferable Al content is 0.8%, More preferably, it is 0.5%.
  • the Al content is sol. Al (acid-soluble Al) is meant.
  • N 0.01% or less Nitrogen (N) forms coarse nitrides and lowers the ductility and stretch flangeability of steel. N further causes blowholes during welding. Therefore, it is preferable that the N content is low. N content is 0.01% or less. The upper limit with preferable N content is 0.005%. The lower limit of the N content is not particularly limited. However, considering the manufacturing cost, the lower limit of the N content is, for example, 0.0001%.
  • Oxygen (O) forms an oxide and lowers the toughness and stretch flangeability of steel. Accordingly, a lower O content is preferable.
  • the O content is 0.01% or less.
  • the upper limit with preferable O content is 0.008%, More preferably, it is 0.006%.
  • the lower limit of the O content is not particularly limited. However, considering the manufacturing cost, a preferable lower limit of the O content is, for example, 0.0001%.
  • Antimony is an element that easily segregates on the surface of steel as described above.
  • Sb forms an Sb concentrated layer on the surface of the hot-rolled steel sheet (interface between scale and base material) during hot rolling.
  • the Sb enriched layer suppresses oxygen ions from entering the hot rolled steel sheet from the grain boundaries exposed on the surface of the hot rolled steel sheet.
  • the Sb enriched layer further suppresses iron ions in the base material from moving to the scale. Therefore, formation of an internal oxide layer and scale growth of the hot-rolled steel sheet are suppressed.
  • Sb further restricts the movement of C and suppresses the formation of a decarburized layer.
  • the Sb content is 0.03 to 0.30%.
  • the minimum with preferable Sb content is 0.05%, More preferably, it is 0.07%, More preferably, it is 0.10%, More preferably, it is 0.11%.
  • the upper limit with preferable Sb content is 0.25%, More preferably, it is 0.20%.
  • the chemical composition of the hot-rolled steel sheet further satisfies the formula (1).
  • the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
  • the lower limit of the total content of Si and Mn is 3.20%. In this case, the strength and ductility of the steel sheet are high even after cold rolling and annealing.
  • the lower limit of the total content of Si and Mn is preferably 3.50%.
  • the phase transformation delay can be suppressed during annealing. Therefore, carbon (C) is sufficiently concentrated to untransformed austenite, and the retained austenite is further stabilized. Therefore, preferably, the upper limit of the total content of Si and Mn is 5.0%, more preferably 4.5%.
  • the balance of the chemical composition of the hot-rolled steel sheet according to the present embodiment is composed of Fe and impurities.
  • the impurities are mixed from ore, scrap, or production environment as raw materials when industrially manufacturing a hot-rolled steel sheet, and do not adversely affect the hot-rolled steel sheet according to the present embodiment. It means what is allowed in the range.
  • the chemical composition of the hot-rolled steel sheet may contain any element described below in addition to the essential elements. Optional elements may not be contained.
  • the above chemical composition may contain one or more selected from the group consisting of Ti, V and Nb instead of a part of Fe.
  • Ti, V and Nb are all optional elements and increase the strength of the steel.
  • Titanium (Ti) is an optional element and may not be contained. When contained, Ti forms carbonitrides and increases the strength of the steel. Ti further suppresses the growth of ferrite crystal grains and strengthens the steel by fine grains. Ti further dislocation strengthens the steel by suppressing recrystallization. However, if the Ti content is too high, excessive carbonitrides are produced and the formability of the steel is reduced. Therefore, the Ti content is 0 to 0.15%.
  • the upper limit with preferable Ti content is 0.10%, More preferably, it is 0.07%.
  • the minimum with preferable Ti content is 0.005%, More preferably, it is 0.010%, More preferably, it is 0.015%.
  • V 0 to 0.30%
  • Vanadium is an optional element and may not be contained.
  • V like Ti
  • the V content is 0 to 0.30%.
  • the upper limit with preferable V content is 0.20%, More preferably, it is 0.15%.
  • the minimum with preferable V content is 0.001%, More preferably, it is 0.005%.
  • Niobium (Nb) is an optional element and may not be contained.
  • Nb like Ti and V, enhances the strength of the steel by precipitation strengthening, fine grain strengthening and dislocation strengthening of the steel.
  • the Nb content is 0 to 0.15%.
  • the upper limit with preferable Nb content is 0.10%, More preferably, it is 0.06%.
  • the minimum with preferable Nb content is 0.005%, More preferably, it is 0.010%, More preferably, it is 0.015%.
  • the chemical composition may contain one or more selected from the group consisting of Cr, Ni, Mo, W and B instead of a part of Fe. Cr, Ni, Mo, W and B are all optional elements and increase the strength of the steel.
  • Chromium (Cr) is an optional element and may not be contained. When contained, Cr suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the Cr content is too high, the workability of the steel is lowered and the productivity is lowered. Therefore, the Cr content is 0 to 1.0%. The minimum with preferable Cr content is 0.10%.
  • Nickel (Ni) is an optional element and may not be contained. When contained, Ni suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the Ni content is too high, the weldability of the steel decreases. Therefore, the Ni content is 0 to 1.0%. A preferable lower limit of the Ni content is 0.10%.
  • Mo 0 to 1.0%
  • Molybdenum (Mo) is an optional element and may not be contained. When contained, Mo suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the Mo content is too high, the hot workability of the steel is lowered and the productivity is lowered. Therefore, the Mo content is 0 to 1.0%. A preferable lower limit of the Mo content is 0.01%.
  • Tungsten (W) is an optional element and may not be contained. When contained, W suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the W content is too high, the hot workability of the steel is lowered and the productivity is lowered. Therefore, the W content is 0 to 1.0%. A preferable lower limit of the W content is 0.01%.
  • B 0 to 0.010%
  • Boron (B) is an optional element and may not be contained. When contained, B suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the B content is too high, the hot workability of the steel is lowered and the productivity is lowered. Therefore, the B content is 0 to 0.010%.
  • the upper limit with preferable B content is 0.005%, More preferably, it is 0.003%.
  • the minimum with preferable B content is 0.0001%, More preferably, it is 0.0003%, More preferably, it is 0.0005%.
  • the above chemical composition may contain Cu instead of a part of Fe.
  • Cu 0 to 0.50% Copper (Cu) is an optional element and may not be contained. When contained, Cu precipitates in the steel as fine particles and increases the strength of the steel. However, if the Cu content is too high, the weldability of the steel decreases. Therefore, the Cu content is 0 to 0.50%. A preferable lower limit of the Cu content is 0.10%.
  • the above chemical composition may contain one or more selected from the group consisting of Sn, Bi, Se, Te, Ge, and As, instead of a part of Fe. These elements are optional elements and suppress the formation of the internal oxide layer.
  • Sn 0 to 0.30% Bi: 0 to 0.30% Se: 0 to 0.30% Te: 0 to 0.30% Ge: 0 to 0.30% As: 0 to 0.30% Tin (Sn), bismuth (Bi), selenium (Se), tellurium (Te), germanium (Ge) and arsenic (As) are optional elements and may not be contained. When contained, these elements suppress the segregation of Mn and Si and suppress the formation of the internal oxide layer. However, if the content of these elements is too high, the formability of the steel decreases.
  • the Sn content is 0 to 0.30%, the Bi content is 0 to 0.30%, the Se content is 0 to 0.30%, and the Te content is 0 to 0.30. %,
  • the Ge content is 0 to 0.30%, and the As content is 0 to 0.30%.
  • the upper limit with preferable Sn content is 0.25%, More preferably, it is 0.20%.
  • the upper limit with preferable Bi content is 0.25%, More preferably, it is 0.20%.
  • the upper limit with preferable Se content is 0.25%, More preferably, it is 0.20%.
  • the upper limit with preferable Te content is 0.25%, More preferably, it is 0.20%.
  • the upper limit with preferable Ge content is 0.25%, More preferably, it is 0.20%.
  • the upper limit with preferable As content is 0.25%, More preferably, it is 0.20%.
  • a preferable lower limit of the Sn content is 0.0001%.
  • the minimum with preferable Bi content is 0.0001%.
  • a preferred lower limit of the Se content is 0.0001%.
  • a preferred lower limit of the Te content is 0.0001%.
  • a preferable lower limit of the Ge content is 0.0001%.
  • a preferred lower limit of the As content is 0.0001%.
  • the total content is preferably 0.0001 to 0.30%.
  • the chemical composition may contain one or more selected from the group consisting of Ca, Mg, Zr, Hf, and rare earth elements (REM) instead of part of Fe. These elements are optional elements and enhance the formability of the steel.
  • REM rare earth elements
  • Ca 0 to 0.50% Mg: 0 to 0.50% Zr: 0 to 0.50% Hf: 0 to 0.50%
  • Rare earth element (REM) 0 to 0.50% Calcium (Ca), magnesium (Mg), zirconium (Zr), hafnium (Hf) and rare earth element (REM) are all optional elements and may not be contained. When contained, these elements enhance the formability of the steel. However, if the content of these elements is too high, the ductility of the steel decreases. Therefore, the Ca content is 0 to 0.50%, the Mg content is 0 to 0.50%, the Zr content is 0 to 0.50%, and the Hf content is 0 to 0.50.
  • the rare earth element (REM) content is 0 to 0.50%.
  • the minimum with preferable Ca content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%.
  • the minimum with preferable Mg content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%.
  • the minimum with preferable Zr content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%.
  • the minimum with preferable Hf content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%.
  • the minimum with preferable rare earth element (REM) content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%. When two or more selected from the group consisting of Ca, Mg, Zr, Hf and rare earth elements (REM) are contained, the total content is preferably 0.0001 to 0.50%.
  • REM in this specification is one or more selected from the group consisting of Sc, Y, and lanthanoids (La of atomic number 57 to Lu of 71).
  • the REM content means the total content of these elements.
  • the structure of the hot-rolled steel sheet of the present embodiment is not particularly limited.
  • the structure of the hot-rolled steel sheet of the present embodiment is mainly composed of ferrite and pearlite, for example.
  • the area ratio of ferrite and pearlite in the structure is 75% or more.
  • the region (remainder) other than ferrite and pearlite is one or more selected from the group consisting of bainite (including tempered bainite), martensite (including tempered martensite), and retained austenite. is there.
  • the total area ratio of ferrite and pearlite in the structure is 75% or more, the strength of the hot-rolled steel sheet can be suppressed. In this case, cold workability is enhanced.
  • the area ratio of each phase can be obtained by the following method.
  • the hot rolled steel sheet is cut along a plane perpendicular to the rolling direction.
  • the cut surface is mirror-polished.
  • the observation area is corroded with nital etchant. After the corrosion, an arbitrary 200 ⁇ m ⁇ 150 ⁇ m range is photographed in the observation region using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the ferrite and the pearlite are specified using an image of the imaged area (hereinafter referred to as an imaging area).
  • the total area of the specified ferrite and pearlite is obtained and divided by the total area of the entire imaging region to obtain the total area ratio (%) of the ferrite and pearlite.
  • the area of ferrite and pearlite is measured using a mesh method or image processing software (trade name: Image Pro).
  • the measuring method of the area ratio of bainite and martensite is as follows. In the same photographing region (200 ⁇ m ⁇ 150 ⁇ m) as the above-described method for measuring the area ratio of ferrite and pearlite, a photograph image is generated by photographing using an electron backscatter diffraction image method (EBSD method).
  • EBSD method electron backscatter diffraction image method
  • the area ratio of martensite is defined as a value (%) obtained by subtracting the sum (%) of the ferrite area ratio, pearlite area ratio, bainite area ratio, and residual austenite area ratio described later from 100 (%).
  • the area ratio of residual austenite is determined by the X-ray diffraction method. Specifically, in the same imaging region (200 ⁇ m ⁇ 150 ⁇ m) as the above-described method for measuring the area ratio of ferrite and pearlite, the ratio of retained austenite is used because of the difference in the strength of the reflective surface between austenite and ferrite. Is experimentally determined by X-ray diffraction. From the image obtained by the X-ray diffraction method using Mo K ⁇ rays, the residual austenite area ratio V ⁇ is obtained using the following equation.
  • V ⁇ (2/3) ⁇ 100 / (0.7 ⁇ ⁇ (211) / ⁇ (220) +1) ⁇ + (1/3) ⁇ 100 / (0.78 ⁇ ⁇ (211) / ⁇ (311) +1) ⁇
  • ⁇ (211) is the intensity of the reflecting surface on the (211) plane of ferrite
  • ⁇ (220) is the intensity of the reflecting surface on the (220) plane of austenite
  • ⁇ (311) is the intensity of the reflecting surface on the (311) plane of austenite. It is.
  • the preferable tensile strength of the hot-rolled steel sheet of this embodiment is 800 MPa or less, and more preferably 700 MPa or less. Since the tensile strength is low, the cold workability is enhanced. Although the minimum of tensile strength is not specifically limited, For example, it is 400 MPa.
  • the tensile strength can be determined by a metal material tensile test method based on JIS Z2241 (2011).
  • the Sb enriched layer is formed at the interface between the base material surface of the hot-rolled steel sheet and the scale.
  • the presence or absence of the Sb enriched layer can be observed by electron microanalysis (EPMA).
  • EPMA electron microanalysis
  • the hot-rolled steel sheet is cut along a plane perpendicular to the rolling direction, and among the cut surfaces, the width of the hot-rolled steel sheet is within the width central portion (range of ⁇ 10 mm in the width direction from the center in the width direction).
  • An arbitrary region of 50 ⁇ m in the width direction and 45 ⁇ m in the depth direction is defined as an observation region.
  • a sample including the observation area is collected. Mapping analysis using EPMA is performed on the observation region.
  • a portion where the Sb concentration is 1.5 times or more of the region average is specified as the Sb concentrated layer.
  • the Sb concentrated layer is confirmed at 90% or more with respect to the width (50 ⁇ m) of the observation region, it is recognized that the Sb concentrated layer is formed.
  • the thickness of the specified Sb concentrated layer is measured at a 5 ⁇ m pitch in the width direction of the observation region, and the average value is defined as the thickness of the Sb concentrated layer.
  • the preferred thickness of the Sb concentrated layer is 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and further preferably 1.5 ⁇ m or more.
  • Sb segregates at grain boundaries and surfaces of steel at high temperatures, and in particular has a strong tendency to segregate and concentrate on the surface. Even when the scale covers the base material, Sb strongly segregates on the base material surface. In order to sufficiently cause segregation of Sb and promote the formation of the Sb concentrated layer, it is preferable to retain the hot-rolled steel sheet in a high temperature region for a long time.
  • the Sb enriched layer is also formed during hot rolling and is extended by rolling. Therefore, the finish rolling temperature is preferably higher as described later.
  • the thickness of the internal oxide layer is suppressed.
  • the preferred thickness of the internal oxide layer is 5 ⁇ m or less.
  • the internal oxide layer is measured by the following method.
  • a small piece including the surface of the hot-rolled steel sheet is cut out from an arbitrary position within the center of the width of the hot-rolled steel sheet (a range of ⁇ 10 mm in the width direction from the center in the width direction).
  • a cross section perpendicular to the rolling direction (hereinafter referred to as an observation surface) is mirror-polished.
  • C deposition is performed on the observation surface. After the C deposition, a portion near the surface of the observation surface is photographed with an arbitrary field of view at 1000 times using a field emission scanning electron microscope (FE-SEM) to obtain an image (each field is 200 ⁇ m ⁇ 180 ⁇ m).
  • FE-SEM field emission scanning electron microscope
  • the thickness ( ⁇ m) of the internal oxide layer is obtained.
  • oxides of Si and Mn are generated in the base material. Therefore, the scale, the internal oxide layer, and the base material can be easily distinguished from each other by a reflected electron image that is normally mounted on a general SEM.
  • the distance from the interface between the scale and the base material to the lowest end of the internal oxide layer is determined every 10 ⁇ m in the rolling direction. This measurement is carried out in three arbitrary fields of view, and the average value of the obtained distances is defined as the internal oxide layer thickness ( ⁇ m).
  • Scale thickness In the hot-rolled steel sheet according to the present embodiment, since the Sb concentrated layer is formed, scale generation is also suppressed.
  • the preferred thickness of the scale is 10 ⁇ m or less.
  • Measure scale thickness by the following method. Similar to the measurement of the thickness of the internal oxide layer, an image is obtained using FE-SEM. In the obtained image (the same image as that used for measuring the internal oxide layer is sufficient), the scale is specified, and the distance between the uppermost end of the scale and the interface is obtained every 10 ⁇ m in the rolling direction. The average value of distances obtained by carrying out this measurement with arbitrary three fields of view is defined as the scale thickness ( ⁇ m).
  • Decarburized layer thickness In the hot-rolled steel sheet of the present embodiment, since the Sb enriched layer is formed, the thickness of the decarburized phase is also suppressed. A preferable thickness of the decarburized layer is 20 ⁇ m or less.
  • Measure the decarburized layer by the following method.
  • a small piece including the surface of the hot-rolled steel sheet is cut out from an arbitrary position within the center of the width of the hot-rolled steel sheet (in the range of ⁇ 10 mm from the center in the width direction).
  • CK ⁇ line analysis is performed on the surface of the small piece by EPMA to obtain C intensity (line analysis result) in the depth direction from the surface of the steel sheet.
  • C strength is 98% of the difference between the average C strength of the steel plate (C strength of the base material) and the minimum C strength in the steel plate.
  • the distance to the depth position is defined as the thickness ( ⁇ m) of the decarburized layer.
  • the Sb enriched layer suppresses the formation of the internal oxide layer.
  • the Sb enriched layer further suppresses the generation of scale.
  • the Sb enriched layer further suppresses the formation of a decarburized layer.
  • the total area ratio of ferrite and pearlite is 75% or more in the structure. Therefore, the tensile strength is suppressed to 800 MPa or less, preferably 700 MPa or less, and excellent cold workability is obtained.
  • the hot-rolled steel sheet of the present embodiment may be further descaled as described later.
  • the area ratio on the surface of the island-like scale formed on the surface due to the firelight becomes low. Therefore, pickling properties are further enhanced.
  • the manufacturing method includes a preparation process, a hot rolling process, and a winding process.
  • a steel material having the chemical composition is prepared. Specifically, molten steel having the above chemical composition is produced.
  • a slab, which is a steel material, is manufactured using molten steel.
  • the slab may be manufactured by a continuous casting method.
  • the ingot may be manufactured using molten steel, and the slab may be manufactured by performing ingot rolling on the ingot.
  • the prepared steel material (slab) is heated.
  • the heating temperature is 1100 to 1350 ° C.
  • the heating time is preferably 30 minutes or longer.
  • the heated slab is hot-rolled using a roughing mill and a finish rolling mill to form a steel plate.
  • the rough rolling mill includes a plurality of rolling stands arranged in a row, and each rolling stand has a roll pair.
  • the roughing mill may be a lever type.
  • the finish rolling mill includes a plurality of rolling stands arranged in a row, and each rolling stand includes a roll pair.
  • the steel sheet being rolled may be descaled by one or more high hydraulic pressure descaling devices installed between a plurality of rolling stands (rough rolling mill or finish rolling mill). Descaling is preferably performed on a steel plate of 1050 ° C. or higher.
  • Fe 2 SiO 4 (firelite) generated on the surface of the high Si / high Mn content steel can be effectively removed as in the steel sheet having the chemical composition of the present embodiment.
  • an island scale is formed on the surface of the hot-rolled steel sheet. If the island-like scale remains on the surface of the hot-rolled steel sheet, it becomes difficult to remove the scale during pickling. If the firelight remains, indentation flaws may occur during cold rolling, which may impair the appearance of the cold rolled steel sheet. If descaling is performed, the fire light can be removed.
  • finishing is performed after rough rolling by a heating device placed near the entrance side of the first rolling stand of the finish rolling mill. It is preferable to heat the steel plate (rough bar) before rolling to 1050 ° C. or higher.
  • the method for heating the coarse bar is not particularly limited.
  • the coarse bar is heated by an induction heating device, a reflow furnace, or the like.
  • the finish rolling temperature FT (° C.).
  • a preferable finish rolling temperature FT (° C.) is Ar 3 transformation temperature + 50 ° C. or higher. If finish rolling temperature FT is less than Ar3 transformation temperature +50 degreeC , the rolling resistance of a steel plate will increase and productivity will fall. Furthermore, the steel sheet is rolled in a two-phase region of ferrite and austenite. In this case, the structure of the steel sheet forms a layered structure, and the mechanical properties deteriorate. Therefore, the finish rolling temperature FT is Ar3 transformation temperature + 50 ° C. or higher.
  • a preferable finish rolling temperature FT is more than 920 ° C, more preferably 950 ° C or more.
  • Cooling methods are, for example, water cooling, forced air cooling, and standing cooling.
  • the hot-rolled steel sheet produced in the hot rolling process is wound up to form a coil.
  • the surface temperature (hereinafter referred to as the winding temperature) CT of the hot rolled steel sheet at the start of coil winding is preferably 600 ° C. to 750 ° C.
  • the coiling temperature CT is too high, the formation of an internal oxide layer in the hot-rolled steel sheet is promoted. On the other hand, if the coiling temperature CT is too low, the steel containing a large amount of Si, such as the hot-rolled steel sheet of the present embodiment, is too hot and the cold-rollability is lowered.
  • the coiling temperature CT is set to 600 ° C. to 750 ° C., an increase in the strength of the hot-rolled steel sheet can be suppressed, and the formation of an internal oxide layer is suppressed in the steel composition defined in this embodiment.
  • the coiling temperature CT is preferably 650 ° C. to 750 ° C., and more preferably 700 ° C. to 750 ° C.
  • the hot-rolled steel sheet of this embodiment can be manufactured by the above process.
  • the above-mentioned manufacturing method is an example of a manufacturing method of the hot rolled steel sheet in which the total area ratio of ferrite and pearlite is 75% or more, and the manufacturing method of the hot rolled steel sheet according to the present embodiment is not limited to this.
  • the structure of the hot-rolled steel sheet may be a structure mainly composed of bainite and martensite. Specifically, the area ratio of bainite and martensite may be 75% or more.
  • the chemical composition of the hot-rolled steel sheet according to the present embodiment is the same as that of the hot-rolled steel sheet according to the first embodiment, and satisfies the formula (1). If the formula (1) is not satisfied, the ductility of the cold-rolled steel sheet may decrease. If the formula (1) is satisfied, excellent ductility can be obtained even in the cold-rolled steel sheet after annealing.
  • the structure of the hot-rolled steel sheet of this embodiment is different from that of the first embodiment.
  • the area ratio of bainite and martensite is 75% or more.
  • the region (remainder) other than bainite and martensite is one or more selected from the group consisting of ferrite, pearlite, and retained austenite.
  • a tempering process is implemented to the hot-rolled steel plate after winding.
  • strength of a steel plate can be reduced to some extent, and cold workability can be improved, maintaining a certain amount of intensity
  • bainite is mainly tempered bainite
  • martensite is mainly tempered martensite.
  • the method for measuring the area ratio of each phase in the tissue is the same as in the first embodiment.
  • the hot rolled steel sheet of this embodiment has the above chemical composition and structure.
  • the tensile strength of the hot-rolled steel sheet of this embodiment is 900 MPa or more.
  • the tensile strength of the hot-rolled steel sheet is 800 MPa or less. In this case, the cold workability can be improved, and the load on the production equipment during cold rolling can be reduced.
  • the minimum of tensile strength is not specifically limited, For example, it is 400 MPa.
  • the tensile strength is obtained by a method based on JIS Z2241 (2011).
  • the manufacturing method includes a preparation process, a hot rolling process, and a winding process.
  • the winding temperature CT in the winding process is different.
  • a tempering step is further performed after the winding step. Other steps are the same as those in the first embodiment.
  • Winding process The steel plate manufactured in the hot rolling process is wound into a coil. If the surface temperature (winding temperature) of the steel sheet at the start of coil winding is too low, the strength of the steel sheet increases and the load on the winding device increases. Accordingly, the surface temperature (winding temperature) CT of the steel sheet at the start of coil winding is 150 to 600 ° C., preferably 350 to 500 ° C., more preferably 400 ° C. to 500 ° C.
  • the hot-rolled steel sheet of the present embodiment has a high hardness because the coiling temperature CT is 600 ° C. or lower, preferably 500 ° C. or lower. Therefore, tempering may be performed to reduce the strength and increase the cold rolling property.
  • the steel plate after winding is tempered at 550 ° C. or higher (Ac1 transformation temperature or lower). If the tempering time is too short, it is difficult to obtain the above effect. On the other hand, if the tempering time is too long, the effect is saturated. Therefore, a preferable tempering time is 0.5 to 8 hours in a temperature range of 550 ° C. or higher.
  • the hot-rolled steel sheet of the second embodiment can be manufactured.
  • the tempering process does not have to be performed.
  • the structure of the hot-rolled steel sheet is one or more selected from the group consisting of ferrite, pearlite, and retained austenite, with the area ratio of bainite and martensite being 75% or more. 2 or more types.
  • the bainite structure and martensite structure when not tempering is not a structure mainly composed of tempered bainite and tempered martensite, but includes tempered bainite and a part of tempered martensite formed in the winding process, bainite and It will be a martensite-based organization.
  • the tensile strength of the hot-rolled steel sheet is 900 MPa or more.
  • a hot-rolled steel sheet that is not tempered is particularly useful when high tensile strength is required as a hot-rolled steel sheet.
  • the above-mentioned manufacturing method is an example of a manufacturing method of a hot-rolled steel sheet in which the total area ratio of bainite and martensite is 75% or more, and the manufacturing method of the hot-rolled steel sheet of the present embodiment is not limited to this.
  • an organization is defined.
  • the structure of the hot-rolled steel sheet of this embodiment is not particularly limited.
  • an Sb concentrated layer can be formed while maintaining necessary workability and strength, and generation of an internal oxide layer and / or scale can be suppressed.
  • the hot-rolled steel sheets of the first and second embodiments may be manufactured by other manufacturing methods.
  • the average cooling rate (hereinafter referred to as ADFT) from the temperature of the steel plate when the final descaling is performed until the temperature of the steel plate reaches 800 ° C. by cooling after the finish rolling. Is preferably 10 ° C./second or more. In this case, generation of scale on the surface of the hot-rolled steel sheet can be further suppressed.
  • the conditions in the examples are one example of conditions used to confirm the feasibility and effects of the present invention. Therefore, the present invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the steel types A to O were within the range of the chemical composition of the steel material of this embodiment.
  • the chemical compositions of the steel types P to U were outside the range of the chemical composition of the steel material of the present embodiment.
  • a steel material (ingot) was produced by an ingot-making method.
  • the steel material was hot rolled under the hot rolling conditions shown in Table 2 (heating temperature (° C), finish rolling temperature FT (° C)), A hot-rolled steel sheet was produced.
  • the heat history corresponding to the coil wound at the coiling temperature CT (° C.) shown in Table 2 was given to the hot-rolled steel sheet after hot rolling by a slow cooling furnace purged with N 2 .
  • a reheating furnace simulating a coarse bar heater was installed on the entry side of the finish rolling mill and reheated under the conditions shown in Table 2.
  • a high water pressure descaling device was arranged between the rolling stands of the finish rolling mill, and descaling was performed on the steel sheet during finish rolling.
  • Table 2 shows the surface temperature (descaling temperature) of the steel plate immediately before the descaling.
  • “Structure” in Table 3 indicates the structure at the plate thickness / 4 depth position of the center of the width of the steel sheet (in the range of ⁇ 10 mm in the width direction from the center in the width direction).
  • the area ratio (%) of ferrite in each structure is described in the “F” column, and the area ratio of pearlite is described in the “P” column.
  • the area ratio of phases other than ferrite and pearlite is described.
  • “B” is the area ratio (%) of bainite (including tempered bainite)
  • “M” is the area ratio (%) of martensite (including tempered martensite).
  • “Rg” is the area ratio (%) of retained austenite. The area ratio of each phase was measured by the measurement method described above.
  • “Tensile strength TS” indicates the tensile strength TS (MPa) at the center of the width of the steel sheet. When the tensile strength was 800 MPa or less, it was judged that the cold rolling property was excellent.
  • the “ ⁇ ” mark in the “Pickling” column indicates that the pickling completion time was within 60 seconds.
  • the “x” mark means that the pickling completion time has exceeded 60 seconds.
  • the chemical compositions of test numbers 1 to 19 were appropriate, and the formula (1) was also satisfied. Therefore, an Sb enriched layer was confirmed.
  • the thickness of the Sb enriched layer was 0.5 ⁇ m or more.
  • the scale thickness was 10 ⁇ m or less, and the thickness of the internal oxide layer was 5 ⁇ m or less. Therefore, the internal oxide layer and scale could be suppressed. As a result, the pickling property was excellent.
  • the thickness of the decarburized layer was 20 ⁇ m or less.
  • Test Nos. 1 to 5 Test No. 7, and Test Nos. 9 to 19 were production conditions suitable for the formation of ferrite and pearlite. Therefore, the total area ratio of ferrite and pearlite was 75% or more in the structures of the hot-rolled steel sheets having these test numbers. Therefore, the tensile strength was 800 MPa or less.
  • the Sb content was too low. Therefore, the thickness of the Sb enriched layer was less than 0.5 ⁇ m, and the thickness of the internal oxide layer exceeded 5 ⁇ m. Therefore, the pickling property was low.
  • the steel type Q used in test number 21 did not contain Sb. Therefore, no Sb enriched layer was confirmed. As a result, the thickness of the internal oxide layer exceeded 5 ⁇ m and the scale thickness exceeded 10 ⁇ m. Therefore, the pickling property was low. Furthermore, the thickness of the decarburized layer exceeded 20 ⁇ m.
  • the C content was too high. Furthermore, Sb was not contained. Furthermore, the coiling temperature CT was too low. Therefore, the structure was mainly composed of bainite and martensite, and there was no ferrite and pearlite. Therefore, the tensile strength exceeded 800 MPa. Furthermore, since there was no Sb enriched layer, the thickness of the internal oxide layer exceeded 5 ⁇ m and the scale thickness exceeded 10 ⁇ m. Therefore, the pickling property was low.
  • the Si content was too high and Sb was not contained.
  • the Sb enriched layer was not generated, the thickness of the internal oxide layer exceeded 5 ⁇ m, and the scale thickness exceeded 10 ⁇ m. Therefore, the pickling property was low. Furthermore, the thickness of the decarburized layer exceeded 20 ⁇ m.
  • test number 23 heating with a coarse bar heater was not performed during hot rolling. Therefore, the descaling temperature was less than 1050 ° C. As a result, the island scale ratio exceeded 6%.
  • a steel material (ingot) was manufactured by an ingot-making method.
  • the steel material was hot rolled under the hot rolling conditions shown in Table 5 (heating temperature (° C.) and finish rolling temperature FT (° C.)) to produce a steel plate.
  • the steel sheet after hot rolling was subjected to heat treatment simulating winding at the winding temperature CT (° C.) shown in Table 5.
  • steel sheets were stacked and charged in a furnace set at a coiling temperature CT (° C.). The inside of the furnace was a nitrogen atmosphere, and the steel plate surface was cut off from the atmosphere. That is, the surface state of the steel sheet was equivalent to the surface state of the coil produced by actual manufacturing.
  • the steel sheet was held at the coiling temperature CT (° C.) for 30 minutes in the furnace, and then gradually cooled to room temperature at 20 ° C./hour.
  • the scale is a layer formed by oxidizing iron ions outside the hot-rolled steel sheet.
  • the internal oxide layer includes Si and Mn oxides and is a layer formed inside the hot-rolled steel sheet. Therefore, the scale, the internal oxide layer, and the base material can be easily distinguished by using a general SEM.
  • the tensile test was implemented by the method based on JISZ2241 (2011) with respect to the steel plate after annealing. During the tensile test, the length of the test piece was measured until the test piece was constricted (section where the test piece showed uniform elongation). The obtained length was divided by the length of the test piece to obtain a uniform elongation EL. The results are shown in Table 5. In “EL (%)” of Table 5, “ ⁇ ” indicates that the end of the steel plate was cracked and could not be measured.
  • test results Referring to Tables 4 and 5, the chemical compositions of test numbers 1 to 10 were appropriate. Furthermore, the production conditions of test numbers 1 to 10 were appropriate. Therefore, the structure of the hot rolled steel sheets of test numbers 1 to 10 has a total area ratio of ferrite and pearlite of 75% or more. In the hot rolled steel sheets of test numbers 1 to 10, an Sb concentrated layer having a thickness of 0.5 ⁇ m or more was further formed. Moreover, the thickness of the internal oxide layer was 5 ⁇ m or less, and the formation of the internal oxide layer was suppressed.
  • the tensile strength of the hot-rolled steel sheets with test numbers 1 to 10 was 800 MPa or less, and the workability during cold rolling was excellent.
  • the uniform elongation of the cold-rolled steel sheets of test numbers 1 to 10 was 10.0% or more, and excellent workability was exhibited even after cold rolling.
  • the steel type K used in test number 11 did not contain Sb. Therefore, in the hot rolled steel sheet of test number 11, no Sb enriched layer was formed, and the internal oxide layer thickness was as thick as 47 ⁇ m.
  • the hot rolled steel sheet of test number 13 had an internal oxide layer thickness of 34 ⁇ m.
  • the Si content was as low as 0.93%. Further, the steel type O had a total content of Si and Mn of 3.04% and did not satisfy the formula (1). Therefore, the uniform elongation of the cold rolled steel sheet of test number 15 was 8.7%, which was lower than those of test numbers 1 to 10 where the total area ratio of ferrite and pearlite was 75% or more.
  • the Sb content was as low as 0.02%. Therefore, in the hot rolled steel sheet of test number 19, the thickness of the Sb concentrated layer was less than 0.5 ⁇ m, and the thickness of the internal oxide layer was as thick as 25 ⁇ m.
  • a steel material (ingot) was manufactured by an ingot-making method.
  • the steel material was hot rolled under the hot rolling conditions shown in Table 6 (heating temperature (° C.) and finish rolling temperature FT (° C.)) to produce a steel plate.
  • the steel sheet after hot rolling was subjected to heat treatment simulating winding at a winding temperature CT (° C.) shown in Table 6.
  • steel plates were stacked and introduced into a furnace set at a coiling temperature CT (° C.). The inside of the furnace was a nitrogen atmosphere, and the steel plate surface was cut off from the atmosphere.
  • the surface state of the steel sheet was equivalent to the surface state of the coil produced by actual manufacturing.
  • the steel sheet was held at the coiling temperature CT (° C.) for 30 minutes in the furnace, and then gradually cooled to room temperature at 20 ° C./hour. Further, tempering was performed on the steel plates having test numbers other than test numbers 2, 5, 7, 13, and 15 at the tempering temperature (° C.) and the tempering time (hr) shown in Table 6. In Table 6, “tempering time (hr)” indicates the time during which the steel sheet was retained at the tempering temperature shown in Table 6.
  • test results Referring to Tables 4 and 6, the chemical compositions of test numbers 1 to 15 were appropriate. Furthermore, the production conditions of test numbers 1 to 15 were appropriate. Therefore, in the structures of the hot-rolled steel sheets of test numbers 1 to 15, the total area ratio of bainite and martensite was 75% or more. Further, in the hot rolled steel sheets of test numbers 1 to 15, an Sb concentrated layer having a thickness of 0.5 ⁇ m or more was confirmed. As a result, the thickness of the internal oxide layer was 5 ⁇ m or less, and the formation of the internal oxide layer was suppressed. Further, the scale thickness of the hot-rolled steel sheets of test numbers 1 to 15 was 7 ⁇ m or less, and the scale was suppressed.
  • test numbers 1 3, 4, 6, 8-12 and 14, tempering was performed. Therefore, the tensile strength TS was 800 MPa or less, the uniform elongation EL was 10% or more, and excellent workability was obtained after cold rolling. On the other hand, in test numbers 2, 5, 7, 13 and 15, tempering was not performed. Therefore, the tensile strength was 900 MPa or more, and an excellent strength was obtained.
  • steel type K used in test number 16 did not contain Sb. Therefore, the Sb concentrated layer was not formed. As a result, the thickness of the internal oxide layer exceeded 5 ⁇ m and the scale thickness exceeded 7 ⁇ m.
  • the Sb content was too low at 0.004%. Therefore, the Sb concentrated layer was not formed in the hot rolled steel sheet of test number 18. Therefore, the thickness of the internal oxide layer exceeded 5 ⁇ m and the scale thickness exceeded 7 ⁇ m.
  • the Si content was as low as 0.93%. Furthermore, steel type S had a total content of Si and Mn of 3.04% and did not satisfy the formula (1). Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
  • the Mn content was as low as 1.55%. Therefore, in the structure, the area ratio of ferrite was 30%, and the combined area ratio of martensite and bainite was less than 75%. As a result, the uniform elongation EL was less than 10% despite tempering.
  • the Si content was as high as 2.96%. Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
  • the Mn content was as high as 3.99%. Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
  • the Sb content was as low as 0.02%. Therefore, the pressure S of the Sb concentrated layer was less than 0.5 ⁇ m. Therefore, the internal oxide layer thickness exceeded 10 ⁇ m and the scale thickness exceeded 7 ⁇ m.

Abstract

Provided is a hot-rolled steel sheet in which the formation of an internal oxide layer is restricted and which has superior workability. This hot-rolled steel sheet according to an embodiment of the present invention has a chemical composition that satisfies formula (1) and contains, by mass%, 0.07-0.30% of C, over 1.0-2.8% of Si, 2.0-3.5% of Mn, no more than 0.030% of P, no more than 0.010% of S, 0.01 to less than 1.0% of Al, no more than 0.01% of N, no more than 0.01% of O, and 0.03-0.30% of Sb, the remainder comprising Fe and unavoidable impurities. (1) Si + Mn ≥ 3.20 where, the chemical symbols in formula (1) are assigned the content (% by mass) of the corresponding element.

Description

熱延鋼板及びその製造方法Hot rolled steel sheet and manufacturing method thereof
 本発明は、熱延鋼板及びその製造方法に関する。 The present invention relates to a hot-rolled steel sheet and a manufacturing method thereof.
 自動車の軽量化及び衝突安全性を両立させるために、自動車への高強度鋼板の適用が進んでいる。高強度鋼板は、高強度化のために多くの合金元素を含有する。特に、980MPa以上の引張強度を有する高強度鋼板は、Si及びMnを多く含有する。 High-strength steel sheets are being applied to automobiles in order to achieve both weight reduction and collision safety. High-strength steel sheets contain many alloying elements for increasing strength. In particular, a high-strength steel sheet having a tensile strength of 980 MPa or more contains a large amount of Si and Mn.
 高強度鋼板は通常、次の方法で製造される。はじめに、スラブを熱間圧延して熱延鋼板を製造し、コイル状に巻き取る。次に、熱延鋼板を酸洗、冷間圧延及び焼鈍する。 High strength steel sheets are usually manufactured by the following method. First, a slab is hot-rolled to produce a hot-rolled steel sheet and wound into a coil. Next, the hot-rolled steel sheet is pickled, cold-rolled and annealed.
 熱延鋼板の冷間加工性を高めるために、コイル状に巻き取る際の温度(以下、巻取温度と称する)を高める場合がある。巻取温度が高ければ、熱延鋼板の表層近傍に内部酸化層が形成される。内部酸化層は熱延鋼板の母材表面から板厚中央に向かって数十μmの厚さで形成される。内部酸化層は、冷間圧延後の鋼板(冷延鋼板)の表面性状、成形性及び溶接性を低下する。そのため、内部酸化層は、熱延鋼板に対して酸洗処理を実施することにより、冷間圧延前に除去される。 In order to improve the cold workability of the hot-rolled steel sheet, the temperature at the time of winding in a coil shape (hereinafter referred to as the winding temperature) may be increased. If the coiling temperature is high, an internal oxide layer is formed in the vicinity of the surface layer of the hot rolled steel sheet. The internal oxide layer is formed with a thickness of several tens of μm from the surface of the base material of the hot-rolled steel sheet toward the center of the thickness. The internal oxide layer decreases the surface properties, formability and weldability of the steel sheet (cold rolled steel sheet) after cold rolling. Therefore, an internal oxide layer is removed before cold rolling by performing a pickling process with respect to a hot-rolled steel plate.
 また、熱延鋼板の製造において、熱延鋼板の表面に酸化皮膜(スケール)が形成される。スケールは、鋼板の表面性状、成形性及び溶接性を低下する。そのため、スケールも内部酸化層と同様に、熱延鋼板に対して酸洗処理を実施することにより除去される。 Also, in the production of hot-rolled steel sheet, an oxide film (scale) is formed on the surface of the hot-rolled steel sheet. The scale reduces the surface properties, formability and weldability of the steel sheet. Therefore, the scale is also removed by performing pickling treatment on the hot-rolled steel sheet, like the internal oxide layer.
 しかしながら、内部酸化層やスケールが厚ければ、熱延鋼板に対する酸洗処理に過大な作業負荷が掛かる。さらに、内部酸化層、スケールが残存すれば、上述のとおり、冷延鋼板の表面性状、成形性及び溶接性が低下する。さらに、冷延鋼板の成形時に内部酸化層やスケールが剥離して、押し疵等の表面疵の原因となる。 However, if the internal oxide layer or the scale is thick, an excessive work load is applied to the pickling treatment for the hot-rolled steel sheet. Furthermore, if the internal oxide layer and the scale remain, as described above, the surface properties, formability and weldability of the cold-rolled steel sheet are deteriorated. Furthermore, the internal oxide layer and the scale are peeled off when forming the cold-rolled steel sheet, causing surface flaws such as pushing rivets.
 内部酸化層は、母材中の合金元素が選択的に酸化されることにより形成される。Si及びMnは酸化され易い。したがって、Si及びMn含有量が高い熱延鋼板では、内部酸化層が生じ易い。スケールも同様に、Si及びMn含有量が高い熱延鋼板で厚くなりやすい。 The internal oxide layer is formed by selectively oxidizing an alloy element in the base material. Si and Mn are easily oxidized. Therefore, an internal oxide layer is likely to occur in a hot-rolled steel sheet having a high Si and Mn content. Similarly, the scale tends to be thick with a hot-rolled steel sheet having a high Si and Mn content.
 内部酸化層及びスケールはさらに、鋼板温度が高い時間が長く続くほど、厚くなる。上述のとおり、熱延鋼板の冷間加工性を高めるために巻取温度を高めれば、内部酸化層がさらに生じ易く、厚くなりやすい。スケールも同様である。 The inner oxide layer and scale become thicker as the steel plate temperature continues for a longer time. As described above, if the coiling temperature is increased in order to improve the cold workability of the hot-rolled steel sheet, an internal oxide layer is more likely to be formed and the thickness is likely to be increased. The scale is the same.
 このような内部酸化層及びスケールの形成を抑制する技術が、特開昭62-13520号公報(特許文献1)、特表2010-535946号公報(特許文献2)、特開2013-253301号公報(特許文献3)、特開2011-184741号公報(特許文献4)、特開2011-231391号公報(特許文献5)、特開2012-036483号公報(特許文献6)、特開2013-216961号公報(特許文献7)、特開2013-103235号公報(特許文献8)、特表2010-503769号公報(特許文献9)、特表2011-523441号公報(特許文献10)、特開2015-113505号公報(特許文献11)、特開2004-332099号公報(特許文献12)、特開2013-060657号公報(特許文献13)及び特表2011-523443号公報(特許文献14)に提案されている。 Techniques for suppressing the formation of such an internal oxide layer and scale are disclosed in Japanese Patent Application Laid-Open No. 62-13520 (Patent Document 1), Japanese Patent Application Publication No. 2010-535946 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2013-253301. (Patent Document 3), Japanese Patent Application Laid-Open No. 2011-184741 (Patent Document 4), Japanese Patent Application Laid-Open No. 2011-231391 (Patent Document 5), Japanese Patent Application Laid-Open No. 2012-036483 (Patent Document 6), Japanese Patent Application Laid-Open No. 2013-216916. Gazette (Patent Document 7), JP 2013-103235 A (Patent Document 8), JP 2010-503769 A (Patent Document 9), JP 2011-523441 A (Patent Document 10), JP 2015 No. 11-13505 (Patent Document 11), JP 2004-332099 A (Patent Document 12), JP 2013-060657 A It has been proposed in Japanese Patent (JP 13) and JP-T 2011-523443 (Patent Document 14).
 特許文献1では、鋼板表面に酸化防止剤を塗布する。これにより、内部酸化層及びスケールの生成が抑制される、と特許文献1には記載されている。 In Patent Document 1, an antioxidant is applied to the surface of a steel sheet. Thereby, it is described in Patent Document 1 that the generation of the internal oxide layer and the scale is suppressed.
 特許文献2では、熱延鋼板を比較的低温である530~580℃で巻き取る。これにより、酸化層の生成が抑制される、と特許文献2には記載されている。 In Patent Document 2, a hot-rolled steel sheet is wound at a relatively low temperature of 530 to 580 ° C. Thus, Patent Document 2 describes that the generation of an oxide layer is suppressed.
 特許文献3では、圧延後の熱延鋼板を750℃~600℃で巻き取ってコイルにする。巻き取り後、コイルを10~30分保持した後、コイルを払い出しながら、熱延鋼板の冷却を実施する。そして、熱延鋼板の温度が550℃以下となったときに、熱延鋼板を再度巻き取ってコイルにする。この場合、酸化層が薄くすることができる、と特許文献3には記載されている。 In Patent Document 3, a rolled hot-rolled steel sheet is wound at 750 ° C. to 600 ° C. to form a coil. After winding, the coil is held for 10 to 30 minutes, and then the hot-rolled steel sheet is cooled while discharging the coil. And when the temperature of a hot-rolled steel plate becomes 550 degrees C or less, a hot-rolled steel plate is wound up again to make a coil. In this case, Patent Document 3 describes that the oxide layer can be thinned.
 特許文献4~6では、熱間圧延後又は巻き取り後の鋼板に対して、酸素濃度を低減した雰囲気中で熱処理又は冷却処理を実施する。酸素濃度を低減した雰囲気中での熱処理又は冷却処理により、スケール及び内部酸化層が低減する、とこれらの文献には記載されている。 In Patent Documents 4 to 6, the steel sheet after hot rolling or winding is subjected to heat treatment or cooling treatment in an atmosphere with a reduced oxygen concentration. These documents describe that the scale and the internal oxide layer are reduced by heat treatment or cooling treatment in an atmosphere with a reduced oxygen concentration.
 特許文献7では、熱間圧延後の熱延鋼板に対して、巻き取り前にデスケーリングを実施して、表面の酸化スケールを除去する。酸化スケールを除去することにより、コイル冷却中における内部酸化層の生成に利用される酸素供給源が低下する。そのため、スケールだけでなく、内部酸化層が低減する、と特許文献7には記載されている。 In Patent Document 7, descaling is performed on a hot-rolled steel sheet after hot rolling before winding to remove the oxide scale on the surface. By removing the oxide scale, the oxygen source used to create the internal oxide layer during coil cooling is reduced. Therefore, Patent Document 7 describes that not only the scale but also the internal oxide layer is reduced.
 特許文献8では、熱延鋼板の内部酸化量を、その長手方向、幅方向にわたり適正範囲で均一化させるための冷却方法が提案されている。 Patent Document 8 proposes a cooling method for making the internal oxidation amount of a hot-rolled steel sheet uniform in an appropriate range in the longitudinal direction and the width direction.
 一方、特許文献9~14では、上述の特許文献とは異なる技術を提案する。特許文献9では、鋼の合金成分と熱延鋼板の熱処理条件とを適切に制御して、内部酸化を抑制する。具体的には、特許文献9では、鋼にSbを0.001~0.1%含有させ、1100~1250℃で再加熱して熱間圧延し、450~750℃で巻取する。その後、熱延鋼板を酸洗及び冷間圧延し、700~850℃で焼鈍する。これにより、内部酸化層の形成を抑制する。 On the other hand, Patent Documents 9 to 14 propose a technique different from the above-mentioned Patent Documents. In Patent Document 9, the alloy components of steel and the heat treatment conditions of the hot-rolled steel sheet are appropriately controlled to suppress internal oxidation. Specifically, in Patent Document 9, 0.001 to 0.1% of Sb is contained in steel, reheated at 1100 to 1250 ° C., hot-rolled, and wound at 450 to 750 ° C. Thereafter, the hot-rolled steel sheet is pickled and cold-rolled, and annealed at 700 to 850 ° C. Thereby, formation of an internal oxide layer is suppressed.
 特許文献10では、合金成分を適切に制御して酸化物の生成を抑制し、めっき性を改善する技術を提案する。特許文献10では、Sbを0.005~0.1%含有し、Ni、Mn、Al及びTiの含有量の関係を調整した鋼スラブを用いる。この鋼スラブを熱間加工し、500~700℃で熱延巻取する。さらに、酸洗、冷間圧延及び焼鈍する。これにより、内部酸化を抑制する。 Patent Document 10 proposes a technique for appropriately controlling the alloy components to suppress the formation of oxides and to improve the plating properties. In Patent Document 10, a steel slab containing 0.005 to 0.1% of Sb and adjusting the relationship among the contents of Ni, Mn, Al, and Ti is used. This steel slab is hot-worked and hot-rolled at 500 to 700 ° C. Furthermore, pickling, cold rolling and annealing are performed. Thereby, internal oxidation is suppressed.
 特許文献11では、Sbを0.02~0.10%含有するスラブを熱間圧延、酸洗、冷間圧延、焼鈍及び冷却する。ここで、熱間圧延における仕上げ圧延温度を800~1000℃、冷間圧延における圧下率を20%以上とする。さらに、焼鈍を、露点:-35℃以下の雰囲気中にて、750~900℃の温度域で60秒以上保持する条件で行う。焼鈍後、30℃/秒以上の平均冷却速度で300℃以下まで冷却した後、焼戻しする。これにより、内部酸化を抑制する。 In Patent Document 11, a slab containing 0.02 to 0.10% Sb is hot-rolled, pickled, cold-rolled, annealed and cooled. Here, the finish rolling temperature in hot rolling is set to 800 to 1000 ° C., and the rolling reduction in cold rolling is set to 20% or more. Further, annealing is performed in an atmosphere having a dew point of −35 ° C. or lower and a temperature range of 750 to 900 ° C. for 60 seconds or more. After annealing, after cooling to 300 ° C. or less at an average cooling rate of 30 ° C./second or more, tempering is performed. Thereby, internal oxidation is suppressed.
 特許文献12~14には、Siの含有量、スラブの加熱温度、仕上げ圧延の温度及び巻取温度等を適切に調整することでスケールを抑制することについて記載がある。 Patent Documents 12 to 14 describe that the scale is suppressed by appropriately adjusting the Si content, the slab heating temperature, the finish rolling temperature, the winding temperature, and the like.
 しかしながら、特許文献1~14の技術を実施しても、内部酸化層が深く形成されたり、スケールが厚く形成されたりする場合がある。 However, even if the techniques of Patent Documents 1 to 14 are implemented, the internal oxide layer may be formed deeply or the scale may be formed thickly.
特開昭62-13520号公報JP-A-62-13520 特表2010-535946号公報Special table 2010-535946 特開2013-253301号公報JP 2013-253301 A 特開2011-184741号公報JP 2011-184741 A 特開2011-231391号公報JP 2011-231391 A 特開2012-036483号公報JP 2012-036483 A 特開2013-216961号公報JP 2013-216916 A 特開2013-103235号公報JP 2013-103235 A 特表2010-503769号公報Special table 2010-503769 gazette 特表2011-523441号公報Special table 2011-523441 特開2015-113505号公報JP2015-113505A 特開2004-332099号公報JP 2004-332099 A 特開2013-060657号公報JP 2013-060657 A 特表2011-523443号公報Special table 2011-523443
 本発明の目的は、内部酸化層又はスケールの形成が抑制される熱延鋼板を提供することである。 An object of the present invention is to provide a hot rolled steel sheet in which formation of an internal oxide layer or scale is suppressed.
 本実施形態による熱延鋼板は、質量%で、C:0.07~0.30%、Si:1.0超~2.8%、Mn:2.0~3.5%、P:0.030%以下、S:0.010%以下、Al:0.01~1.0%未満、N:0.01%以下、O:0.01%以下、Sb:0.03~0.30%、Ti:0~0.15%、V:0~0.30%、Nb:0~0.15%、Cr:0~1.0%、Ni:0~1.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.010%、Cu:0~0.50%、Sn:0~0.30%、Bi:0~0.30%、Se:0~0.30%、Te:0~0.30%、Ge:0~0.30%、As:0~0.30%、Ca:0~0.50%、Mg:0~0.50%、Zr:0~0.50%、Hf:0~0.50%、及び、希土類元素:0~0.50%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。
 Si+Mn≧3.20 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
The hot-rolled steel sheet according to the present embodiment is, in mass%, C: 0.07 to 0.30%, Si: more than 1.0 to 2.8%, Mn: 2.0 to 3.5%, P: 0 0.03% or less, S: 0.010% or less, Al: 0.01 to less than 1.0%, N: 0.01% or less, O: 0.01% or less, Sb: 0.03 to 0.30 %, Ti: 0 to 0.15%, V: 0 to 0.30%, Nb: 0 to 0.15%, Cr: 0 to 1.0%, Ni: 0 to 1.0%, Mo: 0 ~ 1.0%, W: 0 ~ 1.0%, B: 0 ~ 0.010%, Cu: 0 ~ 0.50%, Sn: 0 ~ 0.30%, Bi: 0 ~ 0.30% , Se: 0 to 0.30%, Te: 0 to 0.30%, Ge: 0 to 0.30%, As: 0 to 0.30%, Ca: 0 to 0.50%, Mg: 0 to 0.50%, Zr: 0 to 0.50%, Hf: 0 to 0.50%, and Rare earth element: 0 to 0.50% is contained, the balance is composed of Fe and impurities, and has a chemical composition satisfying the formula (1).
Si + Mn ≧ 3.20 (1)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
 本実施形態の熱延鋼板では、内部酸化層又はスケールの形成が抑制される。 In the hot-rolled steel sheet of this embodiment, formation of an internal oxide layer or scale is suppressed.
図1は、Sb未含有の高Si・高Mn含有鋼(Sb未含有鋼)と、高Si・高Mn含有鋼にSbを0.1%含有したSb含有鋼とにおける、ナイタール腐食された断面のSEM画像と、SEM画像領域におけるEPMAでの酸素マッピング画像と、Sbマッピング画像とを示す一覧図である。FIG. 1 is a cross-sectional view showing Nital corrosion in a high Si / high Mn-containing steel (Sb-free steel) and a Sb-containing steel containing 0.1% Sb in a high Si / high Mn-containing steel. It is a list figure which shows the SEM image of this, the oxygen mapping image by EPMA in a SEM image area | region, and a Sb mapping image. 図2は、高Si・高Mn含有鋼に含有されるSb量を変化させて、熱延鋼板を製造した場合の、Sb含有量(×10-3%)と内部酸化層の厚さ(μm)との関係を示す図である。FIG. 2 shows the Sb content (× 10 −3 %) and the thickness of the internal oxide layer (μm) when a hot-rolled steel sheet was produced by changing the Sb content contained in the high Si / high Mn content steel. FIG. 図3は、上述のSb未含有鋼及びSb含有鋼での、表層近傍のSEM画像である。FIG. 3 is an SEM image in the vicinity of the surface layer of the above-described Sb-free steel and Sb-containing steel.
 本発明者らは、高Si・高Mn含有鋼における内部酸化層及びスケールについて調査及び検討を行い、次の知見を得た。 The present inventors investigated and examined the internal oxide layer and scale in the high Si / high Mn content steel, and obtained the following knowledge.
 巻取り後の熱延鋼板の表層には、母材(地金)内部に形成される内部酸化層と、表面に隣接するスケールとが形成される。 In the surface layer of the hot-rolled steel sheet after winding, an internal oxide layer formed inside the base material (base metal) and a scale adjacent to the surface are formed.
 内部酸化層及びスケールは次のメカニズムで形成されると考えられる。熱延鋼板の表面及び熱延鋼板の表層部の粒界を介して、酸素イオンが熱延鋼板内部に侵入する。熱延鋼板内部に侵入した酸素イオンが母材の鉄を酸化することで内部酸化層が形成される。一方、粒界を介して母材中の鉄イオンが熱延鋼板の表面に移動する。表面に移動したFeが酸化されることでスケールが形成される。 The internal oxide layer and scale are considered to be formed by the following mechanism. Oxygen ions enter the hot-rolled steel sheet through the surface of the hot-rolled steel sheet and the grain boundaries of the surface layer of the hot-rolled steel sheet. The oxygen ions that have entered the hot-rolled steel sheet oxidize the base iron to form an internal oxide layer. On the other hand, iron ions in the base material move to the surface of the hot-rolled steel sheet through the grain boundary. A scale is formed by oxidation of Fe that has moved to the surface.
 内部酸化層及びスケールを抑制するためには、酸素イオン及び鉄イオンの移動経路(粒界及び表面)を遮断することが有効である。粒界及び表面に偏析しやすい元素(以下、偏析元素という)を熱延鋼板に含有させると、偏析元素は、熱延鋼板の表面及び粒界に偏析して酸素イオン及び鉄イオンの移動を抑制する。そのため、酸素イオンが熱延鋼板内部へ侵入するのを抑制できる。さらに、鉄イオンが熱延鋼板表面へ移動するのを抑制できる。この結果、内部酸化層及びスケールの形成を抑制できる。 In order to suppress the internal oxide layer and scale, it is effective to block the movement paths (grain boundaries and surface) of oxygen ions and iron ions. When elements that easily segregate at grain boundaries and surfaces (hereinafter referred to as segregating elements) are included in the hot-rolled steel sheet, the segregated elements segregate at the surface and grain boundaries of the hot-rolled steel sheet and suppress the movement of oxygen ions and iron ions. To do. Therefore, oxygen ions can be prevented from entering the hot rolled steel sheet. Furthermore, it can suppress that an iron ion moves to the surface of a hot-rolled steel plate. As a result, formation of the internal oxide layer and scale can be suppressed.
 偏析元素はたとえば、P、B、Sbである。しかしながら、P及びBは粒界に偏析し、酸素イオン及び鉄イオンの移動経路を遮断するものの、熱延鋼板の機械的性質も低下する。 Segregation elements are, for example, P, B, Sb. However, although P and B segregate at the grain boundaries and block the migration path of oxygen ions and iron ions, the mechanical properties of the hot-rolled steel sheet also deteriorate.
 一方、Sbは熱延鋼板の表面に偏析する。そこで本発明者らは、高Si・高Mn含有鋼にさらにSbを含有させて熱延鋼板を製造し、スケール及び内部酸化層の厚さを調査した。 On the other hand, Sb segregates on the surface of the hot-rolled steel sheet. Therefore, the present inventors manufactured hot-rolled steel sheets by further adding Sb to high Si / high Mn content steel, and investigated the thickness of the scale and the internal oxide layer.
 図1は、従来の高Si・高Mn含有鋼(以下、Sb未含有鋼という)と、従来の高Si・高Mn含有鋼にSbを0.10%含有したSb含有鋼とにおける、表面近傍の断面のSEM画像と、SEM画像領域におけるEPMAでの酸素マッピング画像と、Sbマッピング画像とを示す。Sb未含有鋼は、質量%で、C:0.185%、Si:1.8%、Mn:2.6%、P:0.01%、S:0.002%、Al:0.03%未満、N:0.003%、O:0.0009%、及び、Ti:0.005%を含有し、残部はFe及び不純物であった。Sb含有鋼は、Sb未含有鋼の化学組成に、0.10%のSbを含有した鋼であった。いずれの鋼においても、従来と同様の熱間圧延により熱延鋼板とした。製造された熱延鋼板に対して、上述の組織観察、及び、EPMAマッピングを実施した。 FIG. 1 shows the vicinity of the surface of a conventional high Si / high Mn content steel (hereinafter referred to as Sb-free steel) and a conventional high Si / high Mn content steel containing 0.10% Sb. The cross-sectional SEM image, the oxygen mapping image in EPMA in a SEM image area | region, and the Sb mapping image are shown. Sb-free steel is mass%, C: 0.185%, Si: 1.8%, Mn: 2.6%, P: 0.01%, S: 0.002%, Al: 0.03 %, N: 0.003%, O: 0.0009%, and Ti: 0.005%, with the balance being Fe and impurities. The Sb-containing steel was a steel containing 0.10% Sb in the chemical composition of the Sb-free steel. All the steels were hot-rolled steel sheets by hot rolling similar to the conventional steel. The above-described structure observation and EPMA mapping were performed on the manufactured hot-rolled steel sheet.
 図1のSEM画像を参照して、Sb未含有鋼では、鋼板表面にスケール10が形成され、母材に内部酸化層20が形成された。一方、Sb含有鋼では、スケール10が形成されたものの、その厚さはSb未含有鋼よりも薄かった。また、Sb含有鋼では、内部酸化層20が観察されなかった。EPMAでの酸素マッピングを実施した結果、Sb未含有鋼では、スケール10及び内部酸化層20において、酸素が観察された(図中白色領域及び灰色領域)。一方、Sb含有鋼では、スケール10が形成された領域にのみ、酸素が観察された(図中白色領域)。 Referring to the SEM image of FIG. 1, in the Sb-free steel, the scale 10 was formed on the steel plate surface, and the internal oxide layer 20 was formed on the base material. On the other hand, in the Sb-containing steel, although the scale 10 was formed, the thickness thereof was thinner than that of the Sb-free steel. In the Sb-containing steel, the internal oxide layer 20 was not observed. As a result of performing oxygen mapping by EPMA, oxygen was observed in the scale 10 and the internal oxide layer 20 in the Sb-free steel (white region and gray region in the figure). On the other hand, in the Sb-containing steel, oxygen was observed only in the region where the scale 10 was formed (white region in the figure).
 さらに、EPMAでのSbマッピングを実施した。その結果、Sb含有鋼では、スケール10と母材との界面に、Sbを含有する層30(図中の白色領域、以下Sb濃化層という)が観察された。 Furthermore, Sb mapping with EPMA was carried out. As a result, in the Sb-containing steel, an Sb-containing layer 30 (white region in the figure, hereinafter referred to as Sb enriched layer) was observed at the interface between the scale 10 and the base material.
 以上のとおり、高Si・高Mn含有鋼にSbを含有した場合、Sb濃化層が形成される。このことから、次の事項が考えられる。高Si・高Mn含有鋼にSbを適量含有した場合、熱間圧延工程において、スケールと母材との界面(熱延鋼板の表面)にSb濃化層が形成される。Sb濃化層は、酸素イオンの母材への侵入を遮断する。そのため、母材中の鉄が酸化されず、内部酸化層が形成されにくい。Sb濃化層はさらに、母材中の鉄イオンがスケールに移動するのを抑制する。そのため、スケールの成長が抑制され、スケールの厚さが薄くなる。 As described above, when Sb is contained in the high Si / high Mn content steel, an Sb concentrated layer is formed. From this, the following matters can be considered. When an appropriate amount of Sb is contained in the high Si / high Mn content steel, an Sb concentrated layer is formed at the interface between the scale and the base material (the surface of the hot rolled steel sheet) in the hot rolling process. The Sb enriched layer blocks oxygen ions from entering the base material. Therefore, iron in the base material is not oxidized and an internal oxide layer is difficult to be formed. The Sb enriched layer further suppresses iron ions in the base material from moving to the scale. Therefore, scale growth is suppressed and the scale thickness is reduced.
 このように、Sb濃化層は酸素イオン及び鉄イオンの移動を遮断する、いわゆるバリア層として機能する。そのため、Sb濃化層の形成により、熱延鋼板の巻取り後にスケールから母材に酸素イオンが侵入するのを抑制することができる。さらに、母材からスケールへの鉄イオンの移動も抑制できる。そのため、内部酸化層及びスケールの生成が抑制される。 Thus, the Sb enriched layer functions as a so-called barrier layer that blocks the movement of oxygen ions and iron ions. Therefore, the formation of the Sb enriched layer can suppress oxygen ions from entering the base material from the scale after winding the hot-rolled steel sheet. Furthermore, the movement of iron ions from the base material to the scale can also be suppressed. Therefore, the generation of the internal oxide layer and scale is suppressed.
 粒界に偏析する元素であるP及びBを高Si・高Mn含有鋼に含有しても、Sb濃化層のようなバリア層は形成されない。したがって、スケール及び内部酸化層の抑制には、Sbが適している。 Even if P and B, which are elements segregating at grain boundaries, are contained in the steel containing high Si and high Mn, a barrier layer such as an Sb concentrated layer is not formed. Therefore, Sb is suitable for suppressing the scale and the internal oxide layer.
 図2は、高Si・高Mn含有鋼に含有するSb量を変化させて、熱延鋼板を製造した場合(巻取り温度は750℃)の、Sb含有量(×10-3%)と内部酸化層の厚さ(μm)との関係を示す図である。図2を参照して、Sb含有量が増加するに従い、内部酸化層の厚さは顕著に低下する。そして、Sb含有量が0.03%以上となった場合、Sb含有量の増加に従い、内部酸化層の厚さは低下するものの、Sb含有量が0.03%未満の場合ほど低下代は大きくならない。つまり、内部酸化層の厚さとSb含有量との関係には、Sb含有量=0.03%付近で変曲点が存在する。 FIG. 2 shows the Sb content (× 10 −3 %) and the inside when a hot-rolled steel sheet is manufactured by changing the Sb content contained in the high Si / high Mn content steel (winding temperature is 750 ° C.). It is a figure which shows the relationship with the thickness (micrometer) of an oxide layer. Referring to FIG. 2, as the Sb content increases, the thickness of the internal oxide layer decreases significantly. When the Sb content is 0.03% or more, the thickness of the internal oxide layer decreases as the Sb content increases. However, the lower the Sb content is less than 0.03%, the greater the reduction margin. Don't be. That is, an inflection point exists in the relationship between the thickness of the internal oxide layer and the Sb content near Sb content = 0.03%.
 本実施形態ではさらに、Sb濃化層が酸素イオン及び鉄イオンの移動だけでなく、母材中の炭素の移動も抑制する。その結果、板厚方向に均一な組織を維持しやすく、冷間圧延及び焼鈍後の冷延鋼板の強度が得られやすくなる。 In this embodiment, the Sb enriched layer further suppresses not only the movement of oxygen ions and iron ions, but also the movement of carbon in the base material. As a result, it is easy to maintain a uniform structure in the sheet thickness direction, and the strength of the cold-rolled steel sheet after cold rolling and annealing is easily obtained.
 図3は、上述のSb未含有鋼及びSb含有鋼での、表層近傍のSEM画像である。図3を参照して、Sb未含有鋼では、表層に脱炭層40が形成されている。一方、Sb濃化層が母材とスケールとの界面に形成されるSb含有鋼では、脱炭層が形成されていない。したがって、Sb濃化層は、酸素イオン及び鉄イオンの移動を抑制するだけでなく、母材中の炭素の移動も抑制できる。 FIG. 3 is an SEM image in the vicinity of the surface layer of the above-described Sb-free steel and Sb-containing steel. With reference to FIG. 3, the decarburized layer 40 is formed in the surface layer in Sb non-containing steel. On the other hand, in the Sb-containing steel in which the Sb enriched layer is formed at the interface between the base material and the scale, the decarburized layer is not formed. Therefore, the Sb enriched layer can suppress not only the movement of oxygen ions and iron ions, but also the movement of carbon in the base material.
 以上の知見に基づいて完成した本実施形態による熱延鋼板は、質量%で、C:0.07~0.30%、Si:1.0超~2.8%、Mn:2.0~3.5%、P:0.030%以下、S:0.010%以下、Al:0.01~1.0%未満、N:0.01%以下、O:0.01%以下、Sb:0.03~0.30%、Ti:0~0.15%、V:0~0.30%、Nb:0~0.15%、Cr:0~1.0%、Ni:0~1.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.010%、Cu:0~0.50%、Sn:0~0.30%、Bi:0~0.30%、Se:0~0.30%、Te:0~0.30%、Ge:0~0.30%、As:0~0.30%、Ca:0~0.50%、Mg:0~0.50%、Zr:0~0.50%、Hf:0~0.50%、及び、希土類元素:0~0.50%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する。
 Si+Mn≧3.20 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
The hot-rolled steel sheet according to the present embodiment completed based on the above knowledge is, in mass%, C: 0.07 to 0.30%, Si: more than 1.0 to 2.8%, Mn: 2.0 to 3.5%, P: 0.030% or less, S: 0.010% or less, Al: 0.01 to less than 1.0%, N: 0.01% or less, O: 0.01% or less, Sb : 0.03-0.30%, Ti: 0-0.15%, V: 0-0.30%, Nb: 0-0.15%, Cr: 0-1.0%, Ni: 0- 1.0%, Mo: 0 to 1.0%, W: 0 to 1.0%, B: 0 to 0.010%, Cu: 0 to 0.50%, Sn: 0 to 0.30%, Bi: 0 to 0.30%, Se: 0 to 0.30%, Te: 0 to 0.30%, Ge: 0 to 0.30%, As: 0 to 0.30%, Ca: 0 to 0 .50%, Mg: 0 to 0.50%, Zr: 0 to 0.50%, Hf: 0 to 0.50% and rare earth element: 0 to 0.50%, the balance is composed of Fe and impurities, and has a chemical composition satisfying the formula (1).
Si + Mn ≧ 3.20 (1)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
 上記化学組成は、Ti:0.005~0.15%、V:0.001~0.30%、及び、Nb:0.005~0.15%からなる群から選択される1種又は2種以上を含有してもよい。 The chemical composition is one or two selected from the group consisting of Ti: 0.005 to 0.15%, V: 0.001 to 0.30%, and Nb: 0.005 to 0.15%. It may contain seeds or more.
 上記化学組成は、Cr:0.10~1.0%、Ni:0.10~1.0%、Mo:0.01~1.0%、W:0.01~1.0%、及び、B:0.0001~0.010%からなる群から選択される1種又は2種以上を含有してもよい。 The chemical composition is Cr: 0.10 to 1.0%, Ni: 0.10 to 1.0%, Mo: 0.01 to 1.0%, W: 0.01 to 1.0%, and B: One or more selected from the group consisting of 0.0001 to 0.010% may be contained.
 上記化学組成は、Cu:0.10~0.50%を含有してもよい。 The above chemical composition may contain Cu: 0.10 to 0.50%.
 上記化学組成は、Sn、Bi、Se、Te、Ge及びAsからなる群から選択される1種又は2種以上を合計で0.0001~0.30%含有してもよい。 The above chemical composition may contain 0.0001 to 0.30% in total of one or more selected from the group consisting of Sn, Bi, Se, Te, Ge and As.
 上記化学組成は、Ca、Mg、Zr、Hf及び希土類元素からなる群から選択される1種又は2種以上を合計で0.0001~0.50%含有してもよい。 The above chemical composition may contain 0.0001 to 0.50% in total of one or more selected from the group consisting of Ca, Mg, Zr, Hf and rare earth elements.
 本実施形態による熱延鋼板は、表面とスケールとの間に0.5μm以上の厚さを有するSb濃化層を備える。 The hot-rolled steel sheet according to the present embodiment includes an Sb enriched layer having a thickness of 0.5 μm or more between the surface and the scale.
 上記熱延鋼板の組織では、フェライト及びパーライトの総面積率が75%以上であり、熱延鋼板の引張強度が800MPa以下であってもよい。 In the structure of the hot-rolled steel sheet, the total area ratio of ferrite and pearlite may be 75% or more, and the tensile strength of the hot-rolled steel sheet may be 800 MPa or less.
 上記熱延鋼板の組織では、ベイナイト及びマルテンサイトの総面積率が75%以上であり、熱延鋼板の引張強度が900MPa以上であってもよい。 In the structure of the hot-rolled steel sheet, the total area ratio of bainite and martensite may be 75% or more, and the tensile strength of the hot-rolled steel sheet may be 900 MPa or more.
 上記熱延鋼板の組織は、ベイナイト及びマルテンサイトの総面積率が75%以上であり、熱延鋼板の引張強度が800MPa以下であってもよい。 The structure of the hot-rolled steel sheet may be that the total area ratio of bainite and martensite is 75% or more, and the tensile strength of the hot-rolled steel sheet may be 800 MPa or less.
 好ましくは、熱延鋼板の内部酸化層の厚さは5μm以下である。 Preferably, the thickness of the internal oxide layer of the hot-rolled steel sheet is 5 μm or less.
 好ましくは、フェライト及びパーライトの総面積率が75%以上である組織と800MPa以下の引張強度を有する上記熱延鋼板において、スケール厚さは10μm以下である。 Preferably, in the hot rolled steel sheet having a structure in which the total area ratio of ferrite and pearlite is 75% or more and a tensile strength of 800 MPa or less, the scale thickness is 10 μm or less.
 好ましくは、フェライト及びパーライトの総面積率が75%以上である組織と800MPa以下の引張強度を有する上記熱延鋼板において、熱延鋼板の表層の脱炭層厚さは20μm以下である。 Preferably, in the hot-rolled steel sheet having a structure in which the total area ratio of ferrite and pearlite is 75% or more and a tensile strength of 800 MPa or less, the decarburized layer thickness of the surface layer of the hot-rolled steel sheet is 20 μm or less.
 好ましくは、ベイナイト及びマルテンサイトの総面積率が75%以上である組織と、900MPa以上の引張強度とを有する上記熱延鋼板において、スケール厚さは7μm以下である。 Preferably, in the above hot-rolled steel sheet having a structure in which the total area ratio of bainite and martensite is 75% or more and a tensile strength of 900 MPa or more, the scale thickness is 7 μm or less.
 好ましくは、ベイナイト及びマルテンサイトの総面積率が75%以上である組織と、800MPa以下の引張強度とを有する上記熱延鋼板において、スケール厚さは7μm以下である。 Preferably, in the hot rolled steel sheet having a structure in which the total area ratio of bainite and martensite is 75% or more and a tensile strength of 800 MPa or less, the scale thickness is 7 μm or less.
 フェライト及びパーライトの総面積率が75%以上である組織と800MPa以下の引張強度を有する上記熱延鋼板の製造方法は、上記化学組成を有する鋼材を準備する工程と、鋼材を1100~1350℃に加熱した後、熱間圧延して鋼板にする工程と、鋼板を、600~750℃、好ましくは650~750℃、より好ましくは700~750℃で巻き取る工程とを備える。 The method for producing the hot rolled steel sheet having a structure in which the total area ratio of ferrite and pearlite is 75% or more and a tensile strength of 800 MPa or less includes a step of preparing a steel material having the above chemical composition, and the steel material at 1100 to 1350 ° C. After heating, the method includes a step of hot rolling to form a steel plate and a step of winding the steel plate at 600 to 750 ° C., preferably 650 to 750 ° C., more preferably 700 to 750 ° C.
 ベイナイト及びマルテンサイトの総面積率が75%以上である組織と、900MPa以上の引張強度とを有する上記熱延鋼板の製造方法は、上記化学組成を有する鋼材を準備する準備工程と、鋼材を1100~1350℃に加熱した後、熱間圧延して鋼板とし、巻取温度まで鋼板を冷却する熱間圧延工程と、冷却後の鋼板を、150~600℃、好ましくは350~500℃、より好ましくは400~500℃で巻き取る工程とを備える。 The manufacturing method of the hot-rolled steel sheet having a structure in which the total area ratio of bainite and martensite is 75% or more and a tensile strength of 900 MPa or more includes a preparation step of preparing a steel material having the chemical composition, and a steel material 1100. After being heated to ˜1350 ° C., hot rolled into a steel plate, the hot rolling step of cooling the steel plate to the coiling temperature, and the steel plate after cooling is 150 to 600 ° C., preferably 350 to 500 ° C., more preferably Comprises a step of winding at 400 to 500 ° C.
 ベイナイト及びマルテンサイトの総面積率が75%以上である組織と、800MPa以下の引張強度とを有する上記熱延鋼板の製造方法は、上記化学組成を有する鋼材を準備する準備工程と、鋼材を1100~1350℃に加熱した後、熱間圧延して鋼板とし、巻取温度まで鋼板を冷却する熱間圧延工程と、冷却後の鋼板を、150~600℃、好ましくは350~500℃、より好ましくは400~500℃で巻き取る工程と、巻取後の鋼板を550℃以上で焼戻しする工程とを備える。 The manufacturing method of the hot-rolled steel sheet having a structure in which the total area ratio of bainite and martensite is 75% or more and a tensile strength of 800 MPa or less includes a preparation step of preparing a steel material having the chemical composition, and a steel material 1100. After being heated to ˜1350 ° C., hot rolled into a steel plate, the hot rolling step of cooling the steel plate to the coiling temperature, and the steel plate after cooling is 150 to 600 ° C., preferably 350 to 500 ° C., more preferably Comprises a step of winding at 400 to 500 ° C. and a step of tempering the wound steel sheet at 550 ° C. or higher.
 以下、本実施形態による熱延鋼板について詳述する。 Hereinafter, the hot-rolled steel sheet according to the present embodiment will be described in detail.
 [第1の実施の形態]
 [化学組成]
 本実施形態による熱延鋼板の化学組成は、次の元素を含有する。化学組成について「%」は、特に断りが無い限り質量%を意味する。
[First Embodiment]
[Chemical composition]
The chemical composition of the hot-rolled steel sheet according to the present embodiment contains the following elements. “%” In the chemical composition means mass% unless otherwise specified.
 C:0.07~0.30%
 炭素(C)は、熱延鋼板中の残留オーステナイトを形成し、鋼の強度及び成形性を高める。C含有量が低すぎれば、上記効果が得られない。一方、C含有量が高すぎれば、熱延鋼板の強度が高くなりすぎ、冷間圧延性が低下する。C含有量が高すぎればさらに、鋼の溶接性が低下する。したがって、C含有量は0.07~0.30%である。C含有量の好ましい下限は0.10%であり、より好ましくは0.12%であり、さらに好ましくは0.15%である。C含有量の好ましい上限は0.25%であり、より好ましくは0.22%である。
C: 0.07 to 0.30%
Carbon (C) forms retained austenite in the hot-rolled steel sheet, and increases the strength and formability of the steel. If the C content is too low, the above effect cannot be obtained. On the other hand, if the C content is too high, the strength of the hot-rolled steel sheet becomes too high, and the cold rollability deteriorates. If the C content is too high, the weldability of the steel further decreases. Therefore, the C content is 0.07 to 0.30%. The minimum with preferable C content is 0.10%, More preferably, it is 0.12%, More preferably, it is 0.15%. The upper limit with preferable C content is 0.25%, More preferably, it is 0.22%.
 Si:1.0超~2.8%
 シリコン(Si)は、鉄系炭化物の生成を抑制し、残留オーステナイトを形成しやすくする。残留オーステナイトの形成により、鋼の強度及び成形性が高まる。Si含有量が低すぎれば、この効果が得られない。一方、Si含有量が高すぎれば、内部酸化層が顕著に成長して、熱延鋼板の表面性状が低下する。Si含有量が高すぎればさらに、熱延鋼板が脆化して、延性が低下する。したがって、Si含有量は1.0超~2.8%である。Si含有量の好ましい下限は1.3%であり、より好ましくは1.5%である。Si含有量の好ましい上限は2.5%であり、より好ましくは2.0%である。
Si: more than 1.0 to 2.8%
Silicon (Si) suppresses the formation of iron-based carbides and facilitates the formation of retained austenite. The formation of retained austenite increases the strength and formability of the steel. If the Si content is too low, this effect cannot be obtained. On the other hand, if the Si content is too high, the internal oxide layer grows significantly and the surface properties of the hot-rolled steel sheet deteriorate. If the Si content is too high, the hot-rolled steel sheet becomes brittle and the ductility is lowered. Therefore, the Si content is more than 1.0 to 2.8%. The minimum with preferable Si content is 1.3%, More preferably, it is 1.5%. The upper limit with preferable Si content is 2.5%, More preferably, it is 2.0%.
 Mn:2.0~3.5%
 マンガン(Mn)は、鋼板の強度を高める。Mn含有量が低すぎれば、焼鈍後の冷却中に軟質な組織が多量に形成され、強度が低くなる。一方、Mn含有量が高すぎれば、板厚の中央部に粗大なMn濃化部が発生し、鋼が脆化する。そのため、鋳造したスラブが割れやすくなる。Mn含有量が高すぎればさらに、鋼の溶接性が低下する。Mn含有量が高すぎればさらに、熱延鋼板が硬くなり、冷間圧延性が低下する。したがって、Mn含有量は2.0~3.5%である。Mn含有量の好ましい下限は、2.2%であり、より好ましくは2.3%であり、さらに好ましくは2.5%である。Mn含有量の好ましい上限は3.2%であり、より好ましくは3.0%である。
Mn: 2.0 to 3.5%
Manganese (Mn) increases the strength of the steel sheet. If the Mn content is too low, a large amount of soft tissue is formed during cooling after annealing, and the strength is lowered. On the other hand, if the Mn content is too high, a coarse Mn-concentrated portion is generated at the center of the plate thickness, and the steel becomes brittle. Therefore, the cast slab is easily broken. If the Mn content is too high, the weldability of the steel further decreases. If the Mn content is too high, the hot-rolled steel sheet becomes harder and the cold rolling property is lowered. Therefore, the Mn content is 2.0 to 3.5%. The minimum with preferable Mn content is 2.2%, More preferably, it is 2.3%, More preferably, it is 2.5%. The upper limit with preferable Mn content is 3.2%, More preferably, it is 3.0%.
 P:0.030%以下
 燐(P)は、鋼板の板厚中央部に偏析し、溶接部を脆化する。したがって、P含有量は0.030%以下である。P含有量は低い方が好ましい。しかしながら、P含有量を低くするためには、製造コストが高くなる。したがって、製造コストを考慮すれば、P含有量の下限はたとえば、0.0010%である。
P: 0.030% or less Phosphorus (P) segregates in the central part of the plate thickness of the steel sheet and embrittles the weld. Therefore, the P content is 0.030% or less. A lower P content is preferred. However, in order to reduce the P content, the manufacturing cost increases. Therefore, considering the manufacturing cost, the lower limit of the P content is, for example, 0.0010%.
 S:0.010%以下
 硫黄(S)は、鋼の溶接性を低下する。Sはさらに、鋳造時及び熱延時の製造性を低下する。Sはさらに、Mnと結合してMnSを形成し、鋼の延性及び伸びフランジ性を低下する。したがって、Sの含有量は0.010%以下である。S含有量の好ましい上限は、0.005%であり、さらに好ましくは、0.0025%である。S含有量の下限は特に制限されない。しかしながら、製造コストを考慮すれば、S含有量の下限はたとえば、0.0001%である。
S: 0.010% or less Sulfur (S) decreases the weldability of steel. Further, S decreases the manufacturability during casting and hot rolling. Further, S combines with Mn to form MnS, which lowers the ductility and stretch flangeability of steel. Therefore, the S content is 0.010% or less. The upper limit with preferable S content is 0.005%, More preferably, it is 0.0025%. The lower limit of the S content is not particularly limited. However, considering the manufacturing cost, the lower limit of the S content is, for example, 0.0001%.
 Al:0.01~1.0%未満
 アルミニウム(Al)は、鉄系炭化物の生成を抑制し、残留オーステナイトを形成しやすくする。残留オーステナイトの形成により、鋼の強度及び成形性が高まる。Alはさらに、鋼を脱酸する。Al含有量が低すぎれば、この効果が得られない。一方、Al含有量が高すぎれば、鋼の溶接性が低下する。したがって、Al含有量は、0.01~1.0%未満である。Al含有量の好ましい下限は0.02%である。Al含有量の好ましい上限は、0.8%であり、より好ましくは0.5%である。本明細書において、Al含有量はsol.Al(酸可溶Al)を意味する。
Al: 0.01 to less than 1.0% Aluminum (Al) suppresses the formation of iron-based carbides and facilitates the formation of retained austenite. The formation of retained austenite increases the strength and formability of the steel. Al further deoxidizes the steel. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, the weldability of the steel decreases. Therefore, the Al content is 0.01 to less than 1.0%. The minimum with preferable Al content is 0.02%. The upper limit with preferable Al content is 0.8%, More preferably, it is 0.5%. In this specification, the Al content is sol. Al (acid-soluble Al) is meant.
 N:0.01%以下
 窒素(N)は粗大な窒化物を形成し、鋼の延性及び伸びフランジ性を低下する。Nはさらに、溶接時のブローホール発生の要因となる。したがって、N含有量は低い方が好ましい。N含有量は0.01%以下である。N含有量の好ましい上限は0.005%である。N含有量の下限は特に制限されない。しかしながら、製造コストを考慮すれば、N含有量の下限はたとえば、0.0001%である。
N: 0.01% or less Nitrogen (N) forms coarse nitrides and lowers the ductility and stretch flangeability of steel. N further causes blowholes during welding. Therefore, it is preferable that the N content is low. N content is 0.01% or less. The upper limit with preferable N content is 0.005%. The lower limit of the N content is not particularly limited. However, considering the manufacturing cost, the lower limit of the N content is, for example, 0.0001%.
 O:0.01%以下
 酸素(O)は酸化物を形成して、鋼の靭性及び伸びフランジ性を低下する。したがって、O含有量は低い方が好ましい。O含有量は0.01%以下である。O含有量の好ましい上限は0.008%であり、さらに好ましくは0.006%である。O含有量の下限は特に制限されない。しかしながら、製造コストを考慮すれば、O含有量の好ましい下限はたとえば、0.0001%である。
O: 0.01% or less Oxygen (O) forms an oxide and lowers the toughness and stretch flangeability of steel. Accordingly, a lower O content is preferable. The O content is 0.01% or less. The upper limit with preferable O content is 0.008%, More preferably, it is 0.006%. The lower limit of the O content is not particularly limited. However, considering the manufacturing cost, a preferable lower limit of the O content is, for example, 0.0001%.
 Sb:0.03~0.30%
 アンチモン(Sb)は、上述のとおり鋼の表面に偏析しやすい元素である。Sbは、熱間圧延中に熱延鋼板の表面(スケールと母材との界面)にSb濃化層を形成する。Sb濃化層は、熱延鋼板の表面に露出した粒界から、酸素イオンが熱延鋼板の内部に侵入するのを抑制する。Sb濃化層はさらに、母材中の鉄イオンがスケールへ移動するのを抑制する。そのため、熱延鋼板の内部酸化層の形成及びスケールの成長が抑制される。Sbはさらに、Cの移動を制限して、脱炭層の形成も抑制する。
Sb: 0.03 to 0.30%
Antimony (Sb) is an element that easily segregates on the surface of steel as described above. Sb forms an Sb concentrated layer on the surface of the hot-rolled steel sheet (interface between scale and base material) during hot rolling. The Sb enriched layer suppresses oxygen ions from entering the hot rolled steel sheet from the grain boundaries exposed on the surface of the hot rolled steel sheet. The Sb enriched layer further suppresses iron ions in the base material from moving to the scale. Therefore, formation of an internal oxide layer and scale growth of the hot-rolled steel sheet are suppressed. Sb further restricts the movement of C and suppresses the formation of a decarburized layer.
 Sb含有量が低すぎれば、Sb濃化層が形成されにくくなり、上述の効果が得られない。一方、Sb含有量が高すぎれば、鋼板の加工性が低下する。Sb含有量が高すぎればさらに、熱延鋼板の機械的性質が低下する。したがって、Sb含有量は0.03~0.30%である。Sb含有量の好ましい下限は0.05%であり、より好ましくは0.07%であり、さらに好ましくは0.10%であり、さらに好ましくは0.11%である。Sb含有量の好ましい上限は0.25%であり、より好ましくは0.20%である。 If the Sb content is too low, the Sb concentrated layer is hardly formed, and the above-described effects cannot be obtained. On the other hand, if the Sb content is too high, the workability of the steel sheet decreases. If the Sb content is too high, the mechanical properties of the hot-rolled steel sheet are further deteriorated. Therefore, the Sb content is 0.03 to 0.30%. The minimum with preferable Sb content is 0.05%, More preferably, it is 0.07%, More preferably, it is 0.10%, More preferably, it is 0.11%. The upper limit with preferable Sb content is 0.25%, More preferably, it is 0.20%.
 上記熱延鋼板の化学組成はさらに、式(1)を満たす。
 Si+Mn≧3.20 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
The chemical composition of the hot-rolled steel sheet further satisfies the formula (1).
Si + Mn ≧ 3.20 (1)
Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
 Si及びMnの合計含有量が3.20%未満であれば、冷間圧延後に実施する焼鈍において残留オーステナイトが安定しない。この場合、焼鈍後の鋼板の強度又は延性が低い可能性がある。したがって、Si及びMnの合計含有量の下限は3.20%である。この場合、冷間圧延及び焼鈍後であっても、鋼板の強度及び延性は高い。Si及びMnの合計含有量の下限は好ましくは3.50%である。一方、Si及びMnの合計含有量が5.0%以下であれば、焼鈍時に相変態の遅延を抑制できる。そのため、未変態オーステナイトへ炭素(C)が十分に濃縮し、残留オーステナイトがより安定化する。したがって、好ましくは、Si及びMnの合計含有量の上限は5.0%であり、より好ましくは、4.5%である。 If the total content of Si and Mn is less than 3.20%, retained austenite is not stable in annealing performed after cold rolling. In this case, the strength or ductility of the steel plate after annealing may be low. Therefore, the lower limit of the total content of Si and Mn is 3.20%. In this case, the strength and ductility of the steel sheet are high even after cold rolling and annealing. The lower limit of the total content of Si and Mn is preferably 3.50%. On the other hand, if the total content of Si and Mn is 5.0% or less, the phase transformation delay can be suppressed during annealing. Therefore, carbon (C) is sufficiently concentrated to untransformed austenite, and the retained austenite is further stabilized. Therefore, preferably, the upper limit of the total content of Si and Mn is 5.0%, more preferably 4.5%.
 本実施形態による熱延鋼板の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、熱延鋼板を工業的に製造する際に、原料としての鉱石、スクラップ又は製造環境などから混入されるものであって、本実施形態による熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。 The balance of the chemical composition of the hot-rolled steel sheet according to the present embodiment is composed of Fe and impurities. Here, the impurities are mixed from ore, scrap, or production environment as raw materials when industrially manufacturing a hot-rolled steel sheet, and do not adversely affect the hot-rolled steel sheet according to the present embodiment. It means what is allowed in the range.
 [任意元素]
 上記熱延鋼板の化学組成は、上記必須元素に加えて、以下に説明する任意元素を含有してもよい。任意元素は含有されなくてもよい。
[Arbitrary elements]
The chemical composition of the hot-rolled steel sheet may contain any element described below in addition to the essential elements. Optional elements may not be contained.
 上記化学組成は、Feの一部に代えて、Ti、V及びNbからなる群から選択される1種又は2種以上を含有してもよい。Ti、V及びNbはいずれも任意元素であり、鋼の強度を高める。 The above chemical composition may contain one or more selected from the group consisting of Ti, V and Nb instead of a part of Fe. Ti, V and Nb are all optional elements and increase the strength of the steel.
 Ti:0~0.15%
 チタン(Ti)は任意元素であり、含有されなくてもよい。含有される場合、Tiは、炭窒化物を形成して鋼の強度を高める。Tiはさらに、フェライト結晶粒の成長を抑制して鋼を細粒強化する。Tiはさらに、再結晶を抑制して鋼を転位強化する。しかしながら、Ti含有量が高すぎれば、炭窒化物が過剰に生成して鋼の成形性が低下する。したがって、Ti含有量は0~0.15%である。Ti含有量の好ましい上限は0.10%であり、より好ましくは0.07%である。Ti含有量の好ましい下限は0.005%であり、より好ましくは0.010%であり、さらに好ましくは0.015%である。
Ti: 0 to 0.15%
Titanium (Ti) is an optional element and may not be contained. When contained, Ti forms carbonitrides and increases the strength of the steel. Ti further suppresses the growth of ferrite crystal grains and strengthens the steel by fine grains. Ti further dislocation strengthens the steel by suppressing recrystallization. However, if the Ti content is too high, excessive carbonitrides are produced and the formability of the steel is reduced. Therefore, the Ti content is 0 to 0.15%. The upper limit with preferable Ti content is 0.10%, More preferably, it is 0.07%. The minimum with preferable Ti content is 0.005%, More preferably, it is 0.010%, More preferably, it is 0.015%.
 V:0~0.30%
 バナジウムは任意元素であり、含有されなくてもよい。含有される場合、VはTiと同様に、鋼を析出物強化、細粒強化及び転位強化して、鋼の強度を高める。しかしながら、V含有量が高すぎれば、炭窒化物が過剰に析出して鋼の成形性が低下する。したがって、V含有量は0~0.30%である。V含有量の好ましい上限は0.20%であり、より好ましくは0.15%である。V含有量の好ましい下限は0.001%であり、より好ましくは0.005%である。
V: 0 to 0.30%
Vanadium is an optional element and may not be contained. When contained, V, like Ti, strengthens the steel by precipitation strengthening, fine grain strengthening and dislocation strengthening, thereby increasing the strength of the steel. However, if the V content is too high, carbonitride precipitates excessively and the formability of the steel decreases. Therefore, the V content is 0 to 0.30%. The upper limit with preferable V content is 0.20%, More preferably, it is 0.15%. The minimum with preferable V content is 0.001%, More preferably, it is 0.005%.
 Nb:0~0.15%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。含有される場合、Nbは、Ti及びVと同様に、鋼を析出物強化、細粒強化及び転位強化して、鋼の強度を高める。しかしながら、Nb含有量が高すぎれば、炭窒化物が過剰に析出して鋼の成形性が低下する。したがって、Nb含有量は0~0.15%である。Nb含有量の好ましい上限は0.10%であり、さらに好ましくは0.06%である。Nb含有量の好ましい下限は0.005%であり、より好ましくは0.010%であり、さらに好ましくは0.015%である。
Nb: 0 to 0.15%
Niobium (Nb) is an optional element and may not be contained. When contained, Nb, like Ti and V, enhances the strength of the steel by precipitation strengthening, fine grain strengthening and dislocation strengthening of the steel. However, if the Nb content is too high, excessive carbonitride precipitates and the formability of the steel decreases. Therefore, the Nb content is 0 to 0.15%. The upper limit with preferable Nb content is 0.10%, More preferably, it is 0.06%. The minimum with preferable Nb content is 0.005%, More preferably, it is 0.010%, More preferably, it is 0.015%.
 上記化学組成は、Feの一部に代えて、Cr、Ni、Mo、W及びBからなる群から選択される1種又は2種以上を含有してもよい。Cr、Ni、Mo、W及びBはいずれも任意元素であり、鋼の強度を高める。 The chemical composition may contain one or more selected from the group consisting of Cr, Ni, Mo, W and B instead of a part of Fe. Cr, Ni, Mo, W and B are all optional elements and increase the strength of the steel.
 Cr:0~1.0%
 クロム(Cr)は任意元素であり、含有されなくてもよい。含有される場合、Crは高温での相変態を抑制し、鋼の強度を高める。しかしながら、Cr含有量が高すぎれば、鋼の加工性が低下して、生産性が低下する。したがって、Cr含有量は0~1.0%である。Cr含有量の好ましい下限は0.10%である。
Cr: 0 to 1.0%
Chromium (Cr) is an optional element and may not be contained. When contained, Cr suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the Cr content is too high, the workability of the steel is lowered and the productivity is lowered. Therefore, the Cr content is 0 to 1.0%. The minimum with preferable Cr content is 0.10%.
 Ni:0~1.0%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有される場合、Niは高温での相変態を抑制し、鋼の強度を高める。しかしながら、Ni含有量が高すぎれば、鋼の溶接性が低下する。したがって、Ni含有量は0~1.0%である。Ni含有量の好ましい下限は0.10%である。
Ni: 0 to 1.0%
Nickel (Ni) is an optional element and may not be contained. When contained, Ni suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the Ni content is too high, the weldability of the steel decreases. Therefore, the Ni content is 0 to 1.0%. A preferable lower limit of the Ni content is 0.10%.
 Mo:0~1.0%
 モリブデン(Mo)は任意元素であり、含有されなくてもよい。含有される場合、Moは高温での相変態を抑制し、鋼の強度を高める。しかしながら、Mo含有量が高すぎれば、鋼の熱間加工性が低下して生産性が低下する。したがって、Mo含有量は0~1.0%である。Mo含有量の好ましい下限は0.01%である。
Mo: 0 to 1.0%
Molybdenum (Mo) is an optional element and may not be contained. When contained, Mo suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the Mo content is too high, the hot workability of the steel is lowered and the productivity is lowered. Therefore, the Mo content is 0 to 1.0%. A preferable lower limit of the Mo content is 0.01%.
 W:0~1.0%
 タングステン(W)は任意元素であり、含有されなくてもよい。含有される場合、Wは高温での相変態を抑制し、鋼の強度を高める。しかしながら、W含有量が高すぎれば、鋼の熱間加工性が低下して生産性が低下する。したがって、W含有量は0~1.0%である。W含有量の好ましい下限は0.01%である。
W: 0 to 1.0%
Tungsten (W) is an optional element and may not be contained. When contained, W suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the W content is too high, the hot workability of the steel is lowered and the productivity is lowered. Therefore, the W content is 0 to 1.0%. A preferable lower limit of the W content is 0.01%.
 B:0~0.010%
 ボロン(B)は任意元素であり、含有されなくてもよい。含有される場合、Bは高温での相変態を抑制し、鋼の強度を高める。しかしながら、B含有量が高すぎれば、鋼の熱間加工性が低下して生産性が低下する。したがって、B含有量は0~0.010%である。B含有量の好ましい上限は0.005%であり、より好ましくは0.003%である。B含有量の好ましい下限は0.0001%であり、より好ましくは0.0003%であり、さらに好ましくは0.0005%である。
B: 0 to 0.010%
Boron (B) is an optional element and may not be contained. When contained, B suppresses phase transformation at high temperatures and increases the strength of the steel. However, if the B content is too high, the hot workability of the steel is lowered and the productivity is lowered. Therefore, the B content is 0 to 0.010%. The upper limit with preferable B content is 0.005%, More preferably, it is 0.003%. The minimum with preferable B content is 0.0001%, More preferably, it is 0.0003%, More preferably, it is 0.0005%.
 上記化学組成は、Feの一部に代えて、Cuを含有してもよい。 The above chemical composition may contain Cu instead of a part of Fe.
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。含有される場合、Cuは微細な粒子として鋼中に析出し、鋼の強度を高める。しかしながら、Cu含有量が高すぎれば、鋼の溶接性が低下する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい下限は0.10%である。
Cu: 0 to 0.50%
Copper (Cu) is an optional element and may not be contained. When contained, Cu precipitates in the steel as fine particles and increases the strength of the steel. However, if the Cu content is too high, the weldability of the steel decreases. Therefore, the Cu content is 0 to 0.50%. A preferable lower limit of the Cu content is 0.10%.
 上記化学組成は、Feの一部に代えて、Sn、Bi、Se、Te、Ge及びAsからなる群から選択される1種又は2種以上を含有してもよい。これらの元素は任意元素であり、内部酸化層の形成を抑制する。 The above chemical composition may contain one or more selected from the group consisting of Sn, Bi, Se, Te, Ge, and As, instead of a part of Fe. These elements are optional elements and suppress the formation of the internal oxide layer.
 Sn:0~0.30%
 Bi:0~0.30%
 Se:0~0.30%
 Te:0~0.30%
 Ge:0~0.30%
 As:0~0.30%
 スズ(Sn)、ビスマス(Bi)、セレン(Se)、テルル(Te)、ゲルマニウム(Ge)及びヒ素(As)は任意元素であり、含有されなくてもよい。含有される場合、これらの元素は、Mn及びSiの偏析を抑制して内部酸化層の形成を抑制する。しかしながら、これらの元素の含有量が高すぎれば、鋼の成形性が低下する。したがって、Sn含有量は0~0.30%であり、Bi含有量は0~0.30%であり、Se含有量は0~0.30%であり、Te含有量は0~0.30%であり、Ge含有量は0~0.30%であり、As含有量は0~0.30%である。Sn含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。Bi含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。Se含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。Te含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。Ge含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。As含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%である。Sn含有量の好ましい下限は0.0001%である。Bi含有量の好ましい下限は0.0001%である。Se含有量の好ましい下限は0.0001%である。Te含有量の好ましい下限は0.0001%である。Ge含有量の好ましい下限は0.0001%である。As含有量の好ましい下限は0.0001%である。なお、Sn、Bi、Se、Te、Ge及びAsからなる群から選択される2種以上を含有させる場合、合計で0.0001~0.30%とするのが好ましい。
Sn: 0 to 0.30%
Bi: 0 to 0.30%
Se: 0 to 0.30%
Te: 0 to 0.30%
Ge: 0 to 0.30%
As: 0 to 0.30%
Tin (Sn), bismuth (Bi), selenium (Se), tellurium (Te), germanium (Ge) and arsenic (As) are optional elements and may not be contained. When contained, these elements suppress the segregation of Mn and Si and suppress the formation of the internal oxide layer. However, if the content of these elements is too high, the formability of the steel decreases. Therefore, the Sn content is 0 to 0.30%, the Bi content is 0 to 0.30%, the Se content is 0 to 0.30%, and the Te content is 0 to 0.30. %, The Ge content is 0 to 0.30%, and the As content is 0 to 0.30%. The upper limit with preferable Sn content is 0.25%, More preferably, it is 0.20%. The upper limit with preferable Bi content is 0.25%, More preferably, it is 0.20%. The upper limit with preferable Se content is 0.25%, More preferably, it is 0.20%. The upper limit with preferable Te content is 0.25%, More preferably, it is 0.20%. The upper limit with preferable Ge content is 0.25%, More preferably, it is 0.20%. The upper limit with preferable As content is 0.25%, More preferably, it is 0.20%. A preferable lower limit of the Sn content is 0.0001%. The minimum with preferable Bi content is 0.0001%. A preferred lower limit of the Se content is 0.0001%. A preferred lower limit of the Te content is 0.0001%. A preferable lower limit of the Ge content is 0.0001%. A preferred lower limit of the As content is 0.0001%. When two or more selected from the group consisting of Sn, Bi, Se, Te, Ge and As are contained, the total content is preferably 0.0001 to 0.30%.
 上記化学組成は、Feの一部に代えて、Ca、Mg、Zr、Hf及び希土類元素(REM)からなる群から選択される1種又は2種以上を含有してもよい。これらの元素は任意元素であり、鋼の成形性を高める。 The chemical composition may contain one or more selected from the group consisting of Ca, Mg, Zr, Hf, and rare earth elements (REM) instead of part of Fe. These elements are optional elements and enhance the formability of the steel.
 Ca:0~0.50%
 Mg:0~0.50%
 Zr:0~0.50%
 Hf:0~0.50%
 希土類元素(REM):0~0.50%
 カルシウム(Ca)、マグネシウム(Mg)、ジルコニウム(Zr)、ハフニウム(Hf)及び希土類元素(REM)はいずれも任意元素であり、含有されなくてもよい。含有される場合、これらの元素は、鋼の成形性を高める。しかしながら、これらの元素の含有量が高すぎれば、鋼の延性が低下する。したがって、Ca含有量は0~0.50%であり、Mg含有量は0~0.50%であり、Zr含有量は0~0.50%であり、Hf含有量は0~0.50%であり、希土類元素(REM)含有量は0~0.50%である。Ca含有量の好ましい下限は、0.0001%であり、より好ましくは、0.0005%であり、さらに好ましくは、0.001%である。Mg含有量の好ましい下限は、0.0001%であり、より好ましくは、0.0005%であり、さらに好ましくは、0.001%である。Zr含有量の好ましい下限は、0.0001%であり、より好ましくは、0.0005%であり、さらに好ましくは、0.001%である。Hf含有量の好ましい下限は、0.0001%であり、より好ましくは、0.0005%であり、さらに好ましくは、0.001%である。希土類元素(REM)含有量の好ましい下限は、0.0001%であり、より好ましくは、0.0005%であり、さらに好ましくは、0.001%である。なお、Ca、Mg、Zr、Hf及び希土類元素(REM)からなる群から選択される2種以上を含有させる場合、合計で0.0001~0.50%とするのが好ましい。
Ca: 0 to 0.50%
Mg: 0 to 0.50%
Zr: 0 to 0.50%
Hf: 0 to 0.50%
Rare earth element (REM): 0 to 0.50%
Calcium (Ca), magnesium (Mg), zirconium (Zr), hafnium (Hf) and rare earth element (REM) are all optional elements and may not be contained. When contained, these elements enhance the formability of the steel. However, if the content of these elements is too high, the ductility of the steel decreases. Therefore, the Ca content is 0 to 0.50%, the Mg content is 0 to 0.50%, the Zr content is 0 to 0.50%, and the Hf content is 0 to 0.50. The rare earth element (REM) content is 0 to 0.50%. The minimum with preferable Ca content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%. The minimum with preferable Mg content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%. The minimum with preferable Zr content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%. The minimum with preferable Hf content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%. The minimum with preferable rare earth element (REM) content is 0.0001%, More preferably, it is 0.0005%, More preferably, it is 0.001%. When two or more selected from the group consisting of Ca, Mg, Zr, Hf and rare earth elements (REM) are contained, the total content is preferably 0.0001 to 0.50%.
 本明細書におけるREMは、Sc、Y、及び、ランタノイド(原子番号57番のLa~71番のLu)からなる群から選ばれる1種又は2種以上である。REM含有量は、これらの元素の合計含有量を意味する。 REM in this specification is one or more selected from the group consisting of Sc, Y, and lanthanoids (La of atomic number 57 to Lu of 71). The REM content means the total content of these elements.
 [組織]
 本実施形態の熱延鋼板の組織は、特に限定されない。本実施形態の熱延鋼板の組織はたとえば、主としてフェライト及びパーライトからなる。具体的には、組織において、フェライト及びパーライトを合わせた面積率が75%以上である。組織において、フェライト及びパーライト以外の領域(残部)は、ベイナイト(焼戻しベイナイトを含む)、マルテンサイト(焼戻しマルテンサイトを含む)、及び、残留オーステナイトからなる群から選択される1種又は2種以上である。
[Organization]
The structure of the hot-rolled steel sheet of the present embodiment is not particularly limited. The structure of the hot-rolled steel sheet of the present embodiment is mainly composed of ferrite and pearlite, for example. Specifically, the area ratio of ferrite and pearlite in the structure is 75% or more. In the structure, the region (remainder) other than ferrite and pearlite is one or more selected from the group consisting of bainite (including tempered bainite), martensite (including tempered martensite), and retained austenite. is there.
 組織におけるフェライト及びパーライトの総面積率が75%以上であれば、熱延鋼板の強度を抑えることができる。この場合、冷間加工性が高まる。 If the total area ratio of ferrite and pearlite in the structure is 75% or more, the strength of the hot-rolled steel sheet can be suppressed. In this case, cold workability is enhanced.
 各相の面積率は、次の方法で求めることができる。 The area ratio of each phase can be obtained by the following method.
 [フェライト及びパーライトの面積率]
 熱延鋼板を圧延方向と垂直な面で切断する。切断面を鏡面研磨する。鏡面研磨された切断面のうち、表面から板厚の1/4位置±5mmの範囲であって、かつ、熱延鋼板の幅中央部(幅方向中心から幅方向に±10mmの範囲)を観察領域と定義する。観察領域をナイタール腐食液で腐食する。腐食後、走査型電子顕微鏡(SEM)を用いて、観察領域のうち、任意の200μm×150μmの範囲を撮影する。撮影された領域(以下、撮影領域という)の画像を用いて、フェライト及びパーライトを特定する。特定されたフェライト及びパーライトの面積の総計を求め、撮影領域全体の面積の総計で除して、フェライト及びパーライトの総面積率(%)を求める。フェライト及びパーライトの面積は、メッシュ法又は画像処理ソフトウェア(商品名:イメージプロ)を用いて測定する。
[Area ratio of ferrite and pearlite]
The hot rolled steel sheet is cut along a plane perpendicular to the rolling direction. The cut surface is mirror-polished. Observe the center of the width of the hot-rolled steel sheet (range ± 10 mm from the center in the width direction) within the range of ± 5 mm of the plate thickness from the surface of the mirror-polished cut surface Defined as an area. The observation area is corroded with nital etchant. After the corrosion, an arbitrary 200 μm × 150 μm range is photographed in the observation region using a scanning electron microscope (SEM). The ferrite and the pearlite are specified using an image of the imaged area (hereinafter referred to as an imaging area). The total area of the specified ferrite and pearlite is obtained and divided by the total area of the entire imaging region to obtain the total area ratio (%) of the ferrite and pearlite. The area of ferrite and pearlite is measured using a mesh method or image processing software (trade name: Image Pro).
 [ベイナイト及びマルテンサイトの面積率]
 ベイナイト及びマルテンサイトの面積率の測定方法は次のとおりである。上述のフェライト及びパーライトの面積率の測定方法と同じ撮影領域(200μm×150μm)において、電子後方散乱回折像法(EBSD法)を用いて撮影して写真画像を生成する。
[Area ratio of bainite and martensite]
The measuring method of the area ratio of bainite and martensite is as follows. In the same photographing region (200 μm × 150 μm) as the above-described method for measuring the area ratio of ferrite and pearlite, a photograph image is generated by photographing using an electron backscatter diffraction image method (EBSD method).
 写真画像からパーライト及び残留オーステナイトを除いた部分を、画像処理により抽出する。残った領域の低温変態相について、15度を隣接結晶粒との方位差の閾値として定義し、結晶粒を特定する。特定された各結晶粒において、粒内平均の菊地回折パターンの鮮明度(Grain Average Image Quality:GAIQ)を数値化する。数値化されたGAIQに対する面積率のヒストグラムを作成する。作成されたヒストグラムが2つのピークを有する場合、GAIQが高い側の分布をベイナイト由来、GAIQが低い側の分布をマルテンサイト由来とする。ベイナイト由来と特定されたGAIQを有する結晶粒の総面積率を、ベイナイト面積率と定義する。ヒストグラム中において、2つのピークが重なっている場合、分布が重なり合う境界までのGAIQで特定された結晶粒をベイナイトと定義して、ベイナイトの面積率を求める。 ¡Extract the perlite and residual austenite from the photographic image by image processing. About the low temperature transformation phase of the remaining area | region, 15 degree | times is defined as a threshold value of an orientation difference with an adjacent crystal grain, and a crystal grain is specified. In each identified crystal grain, the definition of the average Kikuchi diffraction pattern (GrainQAverage Image Quality: GAIQ) is quantified. A histogram of the area ratio for the digitized GAIQ is created. When the created histogram has two peaks, the distribution with higher GAIQ is derived from bainite and the distribution with lower GAIQ is derived from martensite. The total area ratio of crystal grains having GAIQ identified as being derived from bainite is defined as the bainite area ratio. In the histogram, when two peaks overlap, the crystal grain specified by GAIQ up to the boundary where the distributions overlap is defined as bainite, and the area ratio of bainite is obtained.
 上述のフェライト面積率、パーライト面積率及びベイナイト面積率及び後述の残留オーステナイト面積率の総和(%)を100(%)から差し引いた値(%)を、マルテンサイトの面積率を定義する。 The area ratio of martensite is defined as a value (%) obtained by subtracting the sum (%) of the ferrite area ratio, pearlite area ratio, bainite area ratio, and residual austenite area ratio described later from 100 (%).
 [残留オーステナイトの面積率]
 残留オーステナイトの面積率は、X線回折法により決定される。具体的には、上述のフェライト及びパーライトの面積率の測定方法と同じ撮影領域(200μm×150μm)において、オーステナイトとフェライトとの間の反射面強度が相違するという性質を用いて、残留オーステナイトの割合をX線回折法によって実験的に求める。MoのKα線を用いたX線回折法により得られる像から、次式を用いて残留オーステナイト面積率Vγを求める。
 Vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
 ここで、α(211)はフェライトの(211)面における反射面強度、γ(220)はオーステナイトの(220)面における反射面強度、γ(311)はオーステナイトの(311)面における反射面強度である。
[Area ratio of retained austenite]
The area ratio of residual austenite is determined by the X-ray diffraction method. Specifically, in the same imaging region (200 μm × 150 μm) as the above-described method for measuring the area ratio of ferrite and pearlite, the ratio of retained austenite is used because of the difference in the strength of the reflective surface between austenite and ferrite. Is experimentally determined by X-ray diffraction. From the image obtained by the X-ray diffraction method using Mo Kα rays, the residual austenite area ratio Vγ is obtained using the following equation.
Vγ = (2/3) {100 / (0.7 × α (211) / γ (220) +1)} + (1/3) {100 / (0.78 × α (211) / γ (311) +1)}
Here, α (211) is the intensity of the reflecting surface on the (211) plane of ferrite, γ (220) is the intensity of the reflecting surface on the (220) plane of austenite, and γ (311) is the intensity of the reflecting surface on the (311) plane of austenite. It is.
 [引張強度]
 本実施形態の熱延鋼板の好ましい引張強度は800MPa以下であり、さらに好ましくは700MPa以下である。引張強度が低いため、冷間加工性が高まる。引張強度の下限は特に限定されないが、たとえば400MPaである。引張強度はJIS Z2241(2011)に準拠した金属材料引張試験方法により求めることができる。
[Tensile strength]
The preferable tensile strength of the hot-rolled steel sheet of this embodiment is 800 MPa or less, and more preferably 700 MPa or less. Since the tensile strength is low, the cold workability is enhanced. Although the minimum of tensile strength is not specifically limited, For example, it is 400 MPa. The tensile strength can be determined by a metal material tensile test method based on JIS Z2241 (2011).
 [Sb濃化層について]
 上述のとおり、Sb濃化層は、熱延鋼板の母材表面とスケールとの界面に形成される。Sb濃化層の有無は、電子微小分析法(EPMA)にて観察できる。具体的には、熱延鋼板を圧延方向と垂直な面で切断し、切断面のうち、表面を含む幅中央部(幅方向中心から幅方向に±10mmの範囲)のうち、熱延鋼板の幅方向に50μm×深さ方向に45μmの任意の領域を観察領域と定義する。観察領域を含むサンプルを採取する。観察領域に対してEPMAを用いたマッピング分析を実施する。Sb濃度が領域平均の1.5倍以上の部分をSb濃化層として特定する。観察領域の幅(50μm)に対して90%以上でSb濃化層が確認された場合、Sb濃化層が形成されていると認定する。
[About Sb thickened layer]
As described above, the Sb enriched layer is formed at the interface between the base material surface of the hot-rolled steel sheet and the scale. The presence or absence of the Sb enriched layer can be observed by electron microanalysis (EPMA). Specifically, the hot-rolled steel sheet is cut along a plane perpendicular to the rolling direction, and among the cut surfaces, the width of the hot-rolled steel sheet is within the width central portion (range of ± 10 mm in the width direction from the center in the width direction). An arbitrary region of 50 μm in the width direction and 45 μm in the depth direction is defined as an observation region. A sample including the observation area is collected. Mapping analysis using EPMA is performed on the observation region. A portion where the Sb concentration is 1.5 times or more of the region average is specified as the Sb concentrated layer. When the Sb concentrated layer is confirmed at 90% or more with respect to the width (50 μm) of the observation region, it is recognized that the Sb concentrated layer is formed.
 特定されたSb濃化層の厚さを、観察領域の幅方向5μmピッチで測定し、その平均値をSb濃化層の厚さと定義する。Sb濃化層の好ましい厚さは0.5μm以上であり、さらに好ましくは1.0μm以上であり、さらに好ましくは1.5μm以上である。 The thickness of the specified Sb concentrated layer is measured at a 5 μm pitch in the width direction of the observation region, and the average value is defined as the thickness of the Sb concentrated layer. The preferred thickness of the Sb concentrated layer is 0.5 μm or more, more preferably 1.0 μm or more, and further preferably 1.5 μm or more.
 Sbは高温において鋼の粒界及び表面に偏析し、特に、表面に偏析して濃化する傾向が強い。スケールが母材を覆っている場合であっても、Sbは母材表面へ強く偏析する。Sbの偏析を十分に生じさせ、Sb濃化層の形成を促進するために、熱延鋼板を高温域に長時間滞留させるのが好ましい。Sb濃化層は熱間圧延時においても形成され、圧延により引き延ばされる。そのため、仕上げ圧延温度は、後述のとおり、高温である方が好ましい。 Sb segregates at grain boundaries and surfaces of steel at high temperatures, and in particular has a strong tendency to segregate and concentrate on the surface. Even when the scale covers the base material, Sb strongly segregates on the base material surface. In order to sufficiently cause segregation of Sb and promote the formation of the Sb concentrated layer, it is preferable to retain the hot-rolled steel sheet in a high temperature region for a long time. The Sb enriched layer is also formed during hot rolling and is extended by rolling. Therefore, the finish rolling temperature is preferably higher as described later.
 [内部酸化層の厚さ]
 本実施形態の熱延鋼板では、Sb濃化層が形成されるため、内部酸化層の厚さが抑制される。内部酸化層の好ましい厚さは5μm以下である。
[Thickness of internal oxide layer]
In the hot-rolled steel sheet of the present embodiment, since the Sb concentrated layer is formed, the thickness of the internal oxide layer is suppressed. The preferred thickness of the internal oxide layer is 5 μm or less.
 内部酸化層は次の方法で測定される。熱延鋼板の幅中央部(幅方向中心から幅方向に±10mmの範囲)内の任意の位置から、熱延鋼板の表面を含む小片を切り出す。小片の表面のうち、圧延方向と垂直な断面(以下、観察面という)を鏡面研磨する。観察面に対してC蒸着を実施する。C蒸着後、観察面の表面近傍部分を電界放出形走査電子顕微鏡(FE-SEM)を用いて任意の視野を1000倍で撮影し、画像を得る(各視野は200μm×180μm)。得られた画像に基づいて、内部酸化層の厚さ(μm)を求める。内部酸化層では、Si及びMnの酸化物が母材中に生じている。そのため、一般的なSEMに標準的に搭載されている反射電子像により、スケールと、内部酸化層と、母材とを容易に区別できる。 The internal oxide layer is measured by the following method. A small piece including the surface of the hot-rolled steel sheet is cut out from an arbitrary position within the center of the width of the hot-rolled steel sheet (a range of ± 10 mm in the width direction from the center in the width direction). Of the surface of the small piece, a cross section perpendicular to the rolling direction (hereinafter referred to as an observation surface) is mirror-polished. C deposition is performed on the observation surface. After the C deposition, a portion near the surface of the observation surface is photographed with an arbitrary field of view at 1000 times using a field emission scanning electron microscope (FE-SEM) to obtain an image (each field is 200 μm × 180 μm). Based on the obtained image, the thickness (μm) of the internal oxide layer is obtained. In the internal oxide layer, oxides of Si and Mn are generated in the base material. Therefore, the scale, the internal oxide layer, and the base material can be easily distinguished from each other by a reflected electron image that is normally mounted on a general SEM.
 得られた画像において、スケールと母材との界面から内部酸化層の最下端までの距離を、圧延方向に10μm毎に求める。この測定を任意の3視野で実施し、得られた距離の平均値を、内部酸化層厚さ(μm)と定義する。 In the obtained image, the distance from the interface between the scale and the base material to the lowest end of the internal oxide layer is determined every 10 μm in the rolling direction. This measurement is carried out in three arbitrary fields of view, and the average value of the obtained distances is defined as the internal oxide layer thickness (μm).
 [スケール厚さ]
 本実施形態の熱延鋼板では、Sb濃化層が形成されるため、スケールの生成も抑制される。スケールの好ましい厚さは10μm以下である。
[Scale thickness]
In the hot-rolled steel sheet according to the present embodiment, since the Sb concentrated layer is formed, scale generation is also suppressed. The preferred thickness of the scale is 10 μm or less.
 スケール厚さは、次の方法で測定する。内部酸化層の厚さの測定時と同様に、FE-SEMを用いて画像を得る。得られた画像(内部酸化層を測定したものと同じ画像を使用すれば足りる)において、スケールを特定し、スケールの最上端と界面との間の距離を、圧延方向に10μm毎に求める。この測定を任意の3視野で実施して得られた距離の平均値をスケール厚さ(μm)と定義する。 Measure scale thickness by the following method. Similar to the measurement of the thickness of the internal oxide layer, an image is obtained using FE-SEM. In the obtained image (the same image as that used for measuring the internal oxide layer is sufficient), the scale is specified, and the distance between the uppermost end of the scale and the interface is obtained every 10 μm in the rolling direction. The average value of distances obtained by carrying out this measurement with arbitrary three fields of view is defined as the scale thickness (μm).
 [脱炭層の厚さ]
 本実施形態の熱延鋼板ではさらに、Sb濃化層が形成されるため、脱炭相の厚さも抑制される。脱炭層の好ましい厚さは20μm以下である。
[Decarburized layer thickness]
In the hot-rolled steel sheet of the present embodiment, since the Sb enriched layer is formed, the thickness of the decarburized phase is also suppressed. A preferable thickness of the decarburized layer is 20 μm or less.
 脱炭層は次の方法で測定する。熱延鋼板の幅中央部(幅方向中心から幅方向に±10mmの範囲)内の任意の位置から、熱延鋼板の表面を含む小片を切り出す。小片の表面に対して、EPMAによるCKα線の線分析を実施し、鋼板の表面から深さ方向にC強度(線分析結果)を得る。得られた線分析結果のうち、鋼板中の最小のC強度位置から、C強度が、鋼板の平均C強度(母材のC強度)と鋼板中の最小のC強度との差の98%となる深さ位置までの距離を、脱炭層の厚さ(μm)と定義する。 Measure the decarburized layer by the following method. A small piece including the surface of the hot-rolled steel sheet is cut out from an arbitrary position within the center of the width of the hot-rolled steel sheet (in the range of ± 10 mm from the center in the width direction). CKα line analysis is performed on the surface of the small piece by EPMA to obtain C intensity (line analysis result) in the depth direction from the surface of the steel sheet. Among the obtained line analysis results, from the minimum C strength position in the steel plate, the C strength is 98% of the difference between the average C strength of the steel plate (C strength of the base material) and the minimum C strength in the steel plate. The distance to the depth position is defined as the thickness (μm) of the decarburized layer.
 以上、本実施形態の熱延鋼板では、Sb濃化層が内部酸化層の生成を抑制する。Sb濃化層はさらに、スケールの生成を抑制する。Sb濃化層はさらに、脱炭層の生成も抑制する。本実施形態の熱延鋼板ではさらに、組織において、フェライト及びパーライトの総面積率が75%以上である。そのため、引張強度が800MPa以下、好ましくは700MPa以下に抑えられ、優れた冷間加工性を有する。 As described above, in the hot-rolled steel sheet of this embodiment, the Sb enriched layer suppresses the formation of the internal oxide layer. The Sb enriched layer further suppresses the generation of scale. The Sb enriched layer further suppresses the formation of a decarburized layer. In the hot-rolled steel sheet of the present embodiment, the total area ratio of ferrite and pearlite is 75% or more in the structure. Therefore, the tensile strength is suppressed to 800 MPa or less, preferably 700 MPa or less, and excellent cold workability is obtained.
 本実施形態の熱延鋼板ではさらに、後述のデスケーリングを実施してもよい。この場合、ファイアライトに起因して表面に形成される島状スケールの表面における面積率が低くなる。そのため、酸洗性がさらに高まる。 The hot-rolled steel sheet of the present embodiment may be further descaled as described later. In this case, the area ratio on the surface of the island-like scale formed on the surface due to the firelight becomes low. Therefore, pickling properties are further enhanced.
 [製造方法]
 上述の熱延鋼板の製造方法の一例を説明する。製造方法は、準備工程と、熱間圧延工程と、巻取工程とを備える。
 [準備工程]
 準備工程では、上記化学組成を有する鋼材を準備する。具体的には、上記化学組成を有する溶鋼を製造する。溶鋼を用いて、鋼材であるスラブを製造する。スラブは、連続鋳造法により製造されてもよい。又は、溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。
[Production method]
An example of the manufacturing method of the above-mentioned hot-rolled steel sheet will be described. The manufacturing method includes a preparation process, a hot rolling process, and a winding process.
[Preparation process]
In the preparation step, a steel material having the chemical composition is prepared. Specifically, molten steel having the above chemical composition is produced. A slab, which is a steel material, is manufactured using molten steel. The slab may be manufactured by a continuous casting method. Alternatively, the ingot may be manufactured using molten steel, and the slab may be manufactured by performing ingot rolling on the ingot.
 [熱間圧延工程]
 準備された鋼材(スラブ)を加熱する。加熱温度は、1100~1350℃である。加熱時間は、30分以上とすることが好ましい。加熱されたスラブを、粗圧延機及び仕上げ圧延機を用いて熱間圧延して、鋼板にする。粗圧延機は一列に並んだ複数の圧延スタンドを備え、各圧延スタンドはロール対を有する。粗圧延機はレバース式であってもよい。仕上げ圧延機は、一列に並んだ複数の圧延スタンドを備え、各圧延スタンドはロール対を備える。
[Hot rolling process]
The prepared steel material (slab) is heated. The heating temperature is 1100 to 1350 ° C. The heating time is preferably 30 minutes or longer. The heated slab is hot-rolled using a roughing mill and a finish rolling mill to form a steel plate. The rough rolling mill includes a plurality of rolling stands arranged in a row, and each rolling stand has a roll pair. The roughing mill may be a lever type. The finish rolling mill includes a plurality of rolling stands arranged in a row, and each rolling stand includes a roll pair.
 [デスケーリング]
 熱間圧延では、複数の圧延スタンド(粗圧延機又は仕上げ圧延機)の間に設置された1又は複数の高水圧デスケーリング装置により、圧延中の鋼板に対してデスケーリングを行ってもよい。デスケーリングは、1050℃以上の鋼板に実施するのが好ましい。この場合、本実施形態の化学組成の鋼板のように、高Si・高Mn含有鋼の表面に生じるFe2SiO4(ファイヤライト)を効果的に除去できる。ファイヤライトが残存すると、熱延鋼板の表面に島状スケールが形成される。島状スケールが熱延鋼板の表面に残存すれば、酸洗時にスケールが除去されにくくなる。ファイアライトが残存すればさらに、冷間圧延時に押し込み疵が発生して、冷延鋼板の外観を損なう場合がある。デスケーリングを実施すれば、ファイヤライトを除去できる。
[Descaling]
In hot rolling, the steel sheet being rolled may be descaled by one or more high hydraulic pressure descaling devices installed between a plurality of rolling stands (rough rolling mill or finish rolling mill). Descaling is preferably performed on a steel plate of 1050 ° C. or higher. In this case, Fe 2 SiO 4 (firelite) generated on the surface of the high Si / high Mn content steel can be effectively removed as in the steel sheet having the chemical composition of the present embodiment. When the firelite remains, an island scale is formed on the surface of the hot-rolled steel sheet. If the island-like scale remains on the surface of the hot-rolled steel sheet, it becomes difficult to remove the scale during pickling. If the firelight remains, indentation flaws may occur during cold rolling, which may impair the appearance of the cold rolled steel sheet. If descaling is performed, the fire light can be removed.
 仕上げ圧延時において仕上げ圧延スタンド間に1又は複数の高水圧デスケーリング装置を配置する場合、仕上げ圧延機の先頭の圧延スタンドの入側近傍に配置された加熱装置により、粗圧延後であって仕上げ圧延前の鋼板(粗バー)を1050℃以上に加熱することが好ましい。粗バーを加熱する方法は特に限定されない。たとえば、誘導加熱装置、リフロー炉等により、粗バーを加熱する。 When one or more high hydraulic pressure descaling devices are placed between the finish rolling stands during finish rolling, finishing is performed after rough rolling by a heating device placed near the entrance side of the first rolling stand of the finish rolling mill. It is preferable to heat the steel plate (rough bar) before rolling to 1050 ° C. or higher. The method for heating the coarse bar is not particularly limited. For example, the coarse bar is heated by an induction heating device, a reflow furnace, or the like.
 [仕上げ圧延温度FT]
 熱間圧延において、仕上げ圧延機の最終スタンドの出側での鋼板の表面温度を、仕上げ圧延温度FT(℃)と定義する。好ましい仕上げ圧延温度FT(℃)は、Ar3変態温度+50℃以上である。仕上げ圧延温度FTがAr3変態温度+50℃未満であれば、鋼板の圧延抵抗が増加して生産性が低下する。さらに、フェライト及びオーステナイトの二相域で鋼板が圧延される。この場合、鋼板の組織が層状組織を形成して、機械的性質が低下する。したがって、仕上げ圧延温度FTはAr3変態温度+50℃以上である。好ましい仕上げ圧延温度FTは920℃超であり、さらに好ましくは950℃以上である。
[Finishing rolling temperature FT]
In hot rolling, the surface temperature of the steel sheet on the exit side of the final stand of the finish rolling mill is defined as the finish rolling temperature FT (° C.). A preferable finish rolling temperature FT (° C.) is Ar 3 transformation temperature + 50 ° C. or higher. If finish rolling temperature FT is less than Ar3 transformation temperature +50 degreeC , the rolling resistance of a steel plate will increase and productivity will fall. Furthermore, the steel sheet is rolled in a two-phase region of ferrite and austenite. In this case, the structure of the steel sheet forms a layered structure, and the mechanical properties deteriorate. Therefore, the finish rolling temperature FT is Ar3 transformation temperature + 50 ° C. or higher. A preferable finish rolling temperature FT is more than 920 ° C, more preferably 950 ° C or more.
 仕上げ圧延完了後、巻取温度まで鋼板を冷却する。冷却方法は特に限定されない。冷却方法はたとえば、水冷、強制空冷及び放冷である。 After finishing rolling, cool the steel plate to the coiling temperature. The cooling method is not particularly limited. Cooling methods are, for example, water cooling, forced air cooling, and standing cooling.
 [巻取工程]
 熱間圧延工程で製造された熱延鋼板を巻き取り、コイルにする。コイル巻き取り開始時の熱延鋼板の表面温度(以下、巻取温度という)CTは、好ましくは、600℃~750℃である。
[Winding process]
The hot-rolled steel sheet produced in the hot rolling process is wound up to form a coil. The surface temperature (hereinafter referred to as the winding temperature) CT of the hot rolled steel sheet at the start of coil winding is preferably 600 ° C. to 750 ° C.
 巻取温度CTが高すぎれば、熱延鋼板での内部酸化層の生成が促進される。一方、巻取温度CTが低すぎれば、本実施形態の熱延鋼板のように、Siを多量に含有する鋼では、熱延鋼板の強度が高くなりすぎ、冷間圧延性が低下する。 If the coiling temperature CT is too high, the formation of an internal oxide layer in the hot-rolled steel sheet is promoted. On the other hand, if the coiling temperature CT is too low, the steel containing a large amount of Si, such as the hot-rolled steel sheet of the present embodiment, is too hot and the cold-rollability is lowered.
 巻取温度CTを600℃~750℃とすれば、熱延鋼板の強度の上昇を抑えることができ、かつ、本実施形態に規定する鋼組成においては内部酸化層の生成が抑制される。巻取温度CTは、好ましくは650℃~750℃であり、より好ましくは、700℃~750℃である。 When the coiling temperature CT is set to 600 ° C. to 750 ° C., an increase in the strength of the hot-rolled steel sheet can be suppressed, and the formation of an internal oxide layer is suppressed in the steel composition defined in this embodiment. The coiling temperature CT is preferably 650 ° C. to 750 ° C., and more preferably 700 ° C. to 750 ° C.
 以上の工程により、本実施形態の熱延鋼板を製造できる。なお、上述の製造方法は、フェライト及びパーライトの総面積率が75%以上となる熱延鋼板の製造方法の一例であり、本実施形態の熱延鋼板の製造方法はこれに限定されない。 The hot-rolled steel sheet of this embodiment can be manufactured by the above process. In addition, the above-mentioned manufacturing method is an example of a manufacturing method of the hot rolled steel sheet in which the total area ratio of ferrite and pearlite is 75% or more, and the manufacturing method of the hot rolled steel sheet according to the present embodiment is not limited to this.
 [第2の実施の形態]
 熱延鋼板の組織は、主としてベイナイト及びマルテンサイトからなる組織であってもよい。具体的には、ベイナイト及びマルテンサイトを合わせた面積率が75%以上であってもよい。
[Second Embodiment]
The structure of the hot-rolled steel sheet may be a structure mainly composed of bainite and martensite. Specifically, the area ratio of bainite and martensite may be 75% or more.
 [組織]
 本実施形態(第2の実施の形態)による熱延鋼板の化学組成は、第1の実施の形態の熱延鋼板と同じであり、式(1)を満たす。式(1)を満たさなければ、冷延鋼板の延性が低下する場合がある。式(1)を満たせば、焼鈍後の冷延鋼板においても、優れた延性が得られる。
[Organization]
The chemical composition of the hot-rolled steel sheet according to the present embodiment (second embodiment) is the same as that of the hot-rolled steel sheet according to the first embodiment, and satisfies the formula (1). If the formula (1) is not satisfied, the ductility of the cold-rolled steel sheet may decrease. If the formula (1) is satisfied, excellent ductility can be obtained even in the cold-rolled steel sheet after annealing.
 一方、本実施形態の熱延鋼板の組織は、第1の実施の形態と異なる。本実施形態の熱延鋼板の組織は、ベイナイト及びマルテンサイトを合わせた面積率が75%以上である。 On the other hand, the structure of the hot-rolled steel sheet of this embodiment is different from that of the first embodiment. As for the structure of the hot-rolled steel sheet of the present embodiment, the area ratio of bainite and martensite is 75% or more.
 ベイナイト及びマルテンサイト以外の領域(残部)は、フェライト、パーライト、及び、残留オーステナイトからなる群から選択される1種又は2種以上である。本実施形態では、好ましくは、巻取後の熱延鋼板に焼戻し処理を実施する。これにより、鋼板の強度をある程度低下させることができ、ある程度の強度を保ちつつ冷間加工性を高めることができる。焼戻しを行った場合におけるベイナイトは主として焼戻しベイナイトであり、マルテンサイトは主として焼戻しマルテンサイトである。組織中の各相の面積率の測定方法は、第1の実施の形態と同じである。 The region (remainder) other than bainite and martensite is one or more selected from the group consisting of ferrite, pearlite, and retained austenite. In this embodiment, Preferably, a tempering process is implemented to the hot-rolled steel plate after winding. Thereby, the intensity | strength of a steel plate can be reduced to some extent, and cold workability can be improved, maintaining a certain amount of intensity | strength. In the case of tempering, bainite is mainly tempered bainite, and martensite is mainly tempered martensite. The method for measuring the area ratio of each phase in the tissue is the same as in the first embodiment.
 [引張強度]
 本実施形態の熱延鋼板は、上記化学組成及び組織を有する。巻取後に焼戻しを実施しない場合、本実施形態の熱延鋼板の引張強度は900MPa以上である。
[Tensile strength]
The hot rolled steel sheet of this embodiment has the above chemical composition and structure. When tempering is not performed after winding, the tensile strength of the hot-rolled steel sheet of this embodiment is 900 MPa or more.
 一方、巻取後に焼戻しを実施した場合、熱延鋼板の引張強度は800MPa以下である。この場合、冷間加工性を高めることができ、冷間圧延時に製造設備にかかる負荷を低減できる。引張強度の下限は特に限定されないが、たとえば400MPaである。引張強度はJIS Z2241(2011)に準拠した方法で求める。 On the other hand, when tempering is performed after winding, the tensile strength of the hot-rolled steel sheet is 800 MPa or less. In this case, the cold workability can be improved, and the load on the production equipment during cold rolling can be reduced. Although the minimum of tensile strength is not specifically limited, For example, it is 400 MPa. The tensile strength is obtained by a method based on JIS Z2241 (2011).
 [製造方法]
 本実施形態による熱延鋼板の製造方法の一例を説明する。製造方法は、準備工程と、熱間圧延工程と、巻取工程とを備える。第1の実施形態の製造方法と比較して、巻取工程での巻取温度CTが異なる。好ましくはさらに、巻取工程後、焼戻し工程を実施する。その他の工程は第1の実施形態と同じである。
[Production method]
An example of the manufacturing method of the hot rolled steel sheet according to the present embodiment will be described. The manufacturing method includes a preparation process, a hot rolling process, and a winding process. Compared with the manufacturing method of the first embodiment, the winding temperature CT in the winding process is different. Preferably, a tempering step is further performed after the winding step. Other steps are the same as those in the first embodiment.
 [巻取工程]
 熱間圧延工程で製造された鋼板を巻取り、コイルにする。コイル巻取り開始時の鋼板の表面温度(巻取温度)が低すぎれば、鋼板の強度が上昇し、巻取り装置にかかる負荷が大きくなる。したがって、コイル巻取開始時の鋼板の表面温度(巻取温度)CTは、150~600℃であり、好ましくは350~500℃であり、より好ましくは400℃~500℃である。
[Winding process]
The steel plate manufactured in the hot rolling process is wound into a coil. If the surface temperature (winding temperature) of the steel sheet at the start of coil winding is too low, the strength of the steel sheet increases and the load on the winding device increases. Accordingly, the surface temperature (winding temperature) CT of the steel sheet at the start of coil winding is 150 to 600 ° C., preferably 350 to 500 ° C., more preferably 400 ° C. to 500 ° C.
 [焼戻し工程]
 本実施形態の熱延鋼板は巻取温度CTが600℃以下、好ましくは500℃以下であるため、硬度が高い。そこで、強度を下げて冷間圧延性を高めるために焼戻しを実施してもよい。焼戻し工程では、巻取後の鋼板を550℃以上(Ac1変態温度以下)で焼戻しする。焼戻し時間が短すぎれば、上記効果が得られにくい。一方、焼戻し時間が長すぎれば、その効果が飽和する。したがって、好ましい焼戻し時間は、550℃以上の温度域において、0.5~8時間である。
[Tempering process]
The hot-rolled steel sheet of the present embodiment has a high hardness because the coiling temperature CT is 600 ° C. or lower, preferably 500 ° C. or lower. Therefore, tempering may be performed to reduce the strength and increase the cold rolling property. In the tempering step, the steel plate after winding is tempered at 550 ° C. or higher (Ac1 transformation temperature or lower). If the tempering time is too short, it is difficult to obtain the above effect. On the other hand, if the tempering time is too long, the effect is saturated. Therefore, a preferable tempering time is 0.5 to 8 hours in a temperature range of 550 ° C. or higher.
 以上の工程により、第2の実施形態の熱延鋼板を製造できる。 Through the above steps, the hot-rolled steel sheet of the second embodiment can be manufactured.
 なお、焼戻し処理は実施しなくてもよい。焼戻しを実施しない場合も、熱延鋼板の組織は、ベイナイト及びマルテンサイトを合わせた面積率が75%以上であり、残部がフェライト、パーライト、及び、残留オーステナイトからなる群から選択される1種又は2種以上である。ただし、焼戻しを実施しない場合のベイナイト組織及びマルテンサイト組織は、焼戻しベイナイト及び焼戻しマルテンサイトを主体とした組織ではなく、巻取工程において形成される焼戻しベイナイト、焼戻しマルテンサイトを一部含む、ベイナイト及びマルテンサイト主体の組織となる。 Note that the tempering process does not have to be performed. Even when tempering is not performed, the structure of the hot-rolled steel sheet is one or more selected from the group consisting of ferrite, pearlite, and retained austenite, with the area ratio of bainite and martensite being 75% or more. 2 or more types. However, the bainite structure and martensite structure when not tempering is not a structure mainly composed of tempered bainite and tempered martensite, but includes tempered bainite and a part of tempered martensite formed in the winding process, bainite and It will be a martensite-based organization.
 焼戻し処理を実施しない場合、熱延鋼板の引張強度は900MPa以上である。焼戻しを実施しない熱延鋼板は、熱延鋼板として高い引張強度が必要とされる場合等に特に有用である。 When the tempering treatment is not performed, the tensile strength of the hot-rolled steel sheet is 900 MPa or more. A hot-rolled steel sheet that is not tempered is particularly useful when high tensile strength is required as a hot-rolled steel sheet.
 なお、上述の製造方法は、ベイナイト及びマルテンサイトの総面積率が75%以上となる熱延鋼板の製造方法の一例であり、本実施形態の熱延鋼板の製造方法はこれに限定されない。 In addition, the above-mentioned manufacturing method is an example of a manufacturing method of a hot-rolled steel sheet in which the total area ratio of bainite and martensite is 75% or more, and the manufacturing method of the hot-rolled steel sheet of the present embodiment is not limited to this.
 [その他の実施形態]
 上述の第1及び第2の実施形態では、組織が規定されている。しかしながら、本実施形態の熱延鋼板の組織は特に限定されない。上記化学組成及び式(1)を満たせば、必要な加工性、強度を維持しつつ、Sb濃化層を形成でき、内部酸化層及び/又はスケールの生成を抑制できる。
[Other Embodiments]
In the first and second embodiments described above, an organization is defined. However, the structure of the hot-rolled steel sheet of this embodiment is not particularly limited. When the chemical composition and the formula (1) are satisfied, an Sb concentrated layer can be formed while maintaining necessary workability and strength, and generation of an internal oxide layer and / or scale can be suppressed.
 上記製造方法は一例に過ぎない。したがって、他の製造方法によっても、第1及び第2の実施形態の熱延鋼板を製造できる場合がある。 The above manufacturing method is only an example. Therefore, the hot-rolled steel sheets of the first and second embodiments may be manufactured by other manufacturing methods.
 なお、熱間圧延工程の仕上げ圧延において、最終のデスケーリングを実施した時の鋼板の温度から、仕上げ圧延後の冷却によって鋼板の温度が800℃になるまでの平均冷却速度(以下、ADFTという)は10℃/秒以上とすることが好ましい。この場合、熱延鋼板表面のスケールの生成をさらに抑制できる。 In the finish rolling in the hot rolling process, the average cooling rate (hereinafter referred to as ADFT) from the temperature of the steel plate when the final descaling is performed until the temperature of the steel plate reaches 800 ° C. by cooling after the finish rolling. Is preferably 10 ° C./second or more. In this case, generation of scale on the surface of the hot-rolled steel sheet can be further suppressed.
 本発明の熱延鋼板の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。したがって、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 Examples of the hot rolled steel sheet according to the present invention will be described. The conditions in the examples are one example of conditions used to confirm the feasibility and effects of the present invention. Therefore, the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 [実施例1]
 表1に示す化学組成を有する溶鋼を製造した。
[Example 1]
Molten steel having the chemical composition shown in Table 1 was produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、鋼種A~Oは本実施形態の鋼材の化学組成の範囲内であった。一方、鋼種P~Uの化学組成は、本実施形態の鋼材の化学組成の範囲外であった。 Referring to Table 1, the steel types A to O were within the range of the chemical composition of the steel material of this embodiment. On the other hand, the chemical compositions of the steel types P to U were outside the range of the chemical composition of the steel material of the present embodiment.
 上記溶鋼を用いて、造塊法により鋼材(インゴット)を製造した。複数の熱間圧延スタンドからなる試験用熱間圧延ミルを用いて、鋼材を表2に示す熱間圧延条件(加熱温度(℃)、仕上げ圧延温度FT(℃))で熱間圧延して、熱延鋼板を製造した。さらに、熱間圧延後の熱延鋼板に対して、表2に示す巻取温度CT(℃)で巻取られたコイル相当の熱履歴をNパージされた徐冷炉により与えた。 Using the molten steel, a steel material (ingot) was produced by an ingot-making method. Using a test hot rolling mill consisting of a plurality of hot rolling stands, the steel material was hot rolled under the hot rolling conditions shown in Table 2 (heating temperature (° C), finish rolling temperature FT (° C)), A hot-rolled steel sheet was produced. Furthermore, the heat history corresponding to the coil wound at the coiling temperature CT (° C.) shown in Table 2 was given to the hot-rolled steel sheet after hot rolling by a slow cooling furnace purged with N 2 .
 なお、仕上げ圧延機の入側に粗バーヒータを模擬した再加熱炉を設置して、表2に示す条件で再加熱した。また、仕上げ圧延機の圧延スタンド間に高水圧デスケーリング装置を配置して、仕上げ圧延中の鋼板に対してデスケーリングを実施した。デスケーリング実施直前の鋼板の表面温度(デスケーリング温度)は、表2に示すとおりであった。 A reheating furnace simulating a coarse bar heater was installed on the entry side of the finish rolling mill and reheated under the conditions shown in Table 2. In addition, a high water pressure descaling device was arranged between the rolling stands of the finish rolling mill, and descaling was performed on the steel sheet during finish rolling. Table 2 shows the surface temperature (descaling temperature) of the steel plate immediately before the descaling.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [内部酸化層厚さ及びスケール厚さ測定試験]
 各試験番号の熱延鋼板の幅中央部(幅方向中心から幅方向に±10mmの範囲)から小片を切り出した。小片の表面のうち、圧延方向と垂直な断面(以下、観察面という)を鏡面研磨した。観察面に対してC(カーボン)蒸着を実施した。C蒸着後、観察面の表面近傍部分を電界放出形走査電子顕微鏡(FE-SEM)を用いて撮影し、画像を得た。得られた画像を用いて、上述の方法により、内部酸化層の厚さ(μm)及びスケール厚さ(μm)を求めた。
[Internal oxide layer thickness and scale thickness measurement test]
A small piece was cut out from the center of the width of the hot-rolled steel sheet of each test number (range of ± 10 mm in the width direction from the center in the width direction). Of the surface of the small piece, a cross section perpendicular to the rolling direction (hereinafter referred to as an observation surface) was mirror-polished. C (carbon) deposition was performed on the observation surface. After the C deposition, a portion near the surface of the observation surface was photographed using a field emission scanning electron microscope (FE-SEM) to obtain an image. Using the obtained image, the thickness (μm) and scale thickness (μm) of the internal oxide layer were determined by the method described above.
 [脱炭層測定試験]
 各試験番号の熱延鋼板の幅中央部(幅方向中心から幅方向に±10mmの範囲)から小片を切り出した。小片の表面に対して、EPMAによるCKα線の線分析を実施した。得られた線分析結果のうち、鋼板中の最小のC強度位置から、C強度が、鋼板の平均C強度(母材のC強度)と鋼板中の最小のC強度との差分の98%となる深さ位置までの距離を、脱炭層の厚さ(μm)と定義した。
[Decarburized layer measurement test]
A small piece was cut out from the center of the width of the hot-rolled steel sheet of each test number (range of ± 10 mm in the width direction from the center in the width direction). Line analysis of CKα rays by EPMA was performed on the surface of the small piece. Among the obtained line analysis results, from the minimum C strength position in the steel plate, the C strength is 98% of the difference between the average C strength of the steel plate (C strength of the base material) and the minimum C strength in the steel plate. The distance to the depth position is defined as the thickness (μm) of the decarburized layer.
 [Sb濃化層測定試験]
 第1の実施の形態に記載された測定方法により、Sb濃化層の有無、及び、Sb濃化層の厚さ(μm)を測定した。
[Sb concentrated layer measurement test]
By the measurement method described in the first embodiment, the presence or absence of the Sb concentrated layer and the thickness (μm) of the Sb concentrated layer were measured.
 [冷間圧延性評価試験]
 鋼板の幅中央部、かつ、表面から1/4厚さの位置から、JIS規格の5号引張試験片を採取した。平行部は圧延方向に平行とした。引張試験片を用いて、JIS Z2241(2011)に準拠した引張試験を、大気中、常温(25℃)にて実施し、引張強度(MPa)を得た。
[Cold rolling property evaluation test]
A JIS standard No. 5 tensile test piece was sampled from the center of the width of the steel sheet and from a position having a thickness of 1/4 from the surface. The parallel part was parallel to the rolling direction. Using a tensile test piece, a tensile test based on JIS Z2241 (2011) was performed in the atmosphere at room temperature (25 ° C.) to obtain a tensile strength (MPa).
 [酸洗性評価試験]
 各試験番号の鋼板の板幅中央部から、鋼板表面を含む試験片を採取した。試験片のうち、鋼板表面を含む領域は、幅50mm×長さ70mmであった。試験片に対して酸洗試験を実施した。酸洗試験では、85℃に加熱した8%塩酸水溶液中に試験片を浸漬して、試験片の表面のスケールを除去した。試験片の表面全体のスケールが除去された時間(酸洗完了時間)を測定した。酸洗完了時間が60秒以内である場合、酸洗性に優れると判断した。
[Pickling evaluation test]
A test piece including the surface of the steel plate was collected from the center of the plate width of the steel plate of each test number. The area | region including the steel plate surface among test pieces was width 50mm x length 70mm. A pickling test was performed on the test piece. In the pickling test, the test piece was immersed in an 8% aqueous hydrochloric acid solution heated to 85 ° C. to remove the scale on the surface of the test piece. The time when the scale on the entire surface of the test piece was removed (pickling completion time) was measured. When the pickling completion time was within 60 seconds, it was judged that the pickling property was excellent.
 [試験結果]
 表3に試験結果を示す。
[Test results]
Table 3 shows the test results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3中の「組織」は、鋼板の幅中央部(幅方向中心から幅方向に±10mmの範囲)の板厚/4深さ位置における組織を示す。各組織のうち、「F」欄には、各組織中のフェライトの面積率(%)が記載され、「P」欄にはパーライトの面積率が記載されている。「その他」欄には、フェライト及びパーライト以外の相の面積率が記載されている。「B」はベイナイト(焼戻しベイナイト含む)の面積率(%)であり、「M」はマルテンサイト(焼戻しマルテンサイトを含む)の面積率(%)である。「Rg」は残留オーステナイトの面積率(%)である。各相の面積率は、上述の測定方法により測定した。 “Structure” in Table 3 indicates the structure at the plate thickness / 4 depth position of the center of the width of the steel sheet (in the range of ± 10 mm in the width direction from the center in the width direction). Of each structure, the area ratio (%) of ferrite in each structure is described in the “F” column, and the area ratio of pearlite is described in the “P” column. In the “others” column, the area ratio of phases other than ferrite and pearlite is described. “B” is the area ratio (%) of bainite (including tempered bainite), and “M” is the area ratio (%) of martensite (including tempered martensite). “Rg” is the area ratio (%) of retained austenite. The area ratio of each phase was measured by the measurement method described above.
 「引張強度TS」は、鋼板の幅中央部の引張強度TS(MPa)を示す。引張強度が800MPa以下である場合、冷間圧延性に優れると判断した。 “Tensile strength TS” indicates the tensile strength TS (MPa) at the center of the width of the steel sheet. When the tensile strength was 800 MPa or less, it was judged that the cold rolling property was excellent.
 表3中の「酸洗性」欄の「○」印は、酸洗完了時間が60秒以内であったことを示す。「×」印は、酸洗完了時間が60秒を超えたことを意味する。 In Table 3, the “◯” mark in the “Pickling” column indicates that the pickling completion time was within 60 seconds. The “x” mark means that the pickling completion time has exceeded 60 seconds.
 表3を参照して、試験番号1~19の化学組成は適切であり、式(1)も満たした。そのため、Sb濃化層が確認された。Sb濃化層の厚さはいずれも0.5μm以上であった。さらに、スケール厚さは10μm以下であり、内部酸化層の厚さは5μm以下であった。したがって、内部酸化層及びスケールを抑制できた。その結果、酸洗性に優れた。さらに、脱炭層の厚さは20μm以下であった。 Referring to Table 3, the chemical compositions of test numbers 1 to 19 were appropriate, and the formula (1) was also satisfied. Therefore, an Sb enriched layer was confirmed. The thickness of the Sb enriched layer was 0.5 μm or more. Furthermore, the scale thickness was 10 μm or less, and the thickness of the internal oxide layer was 5 μm or less. Therefore, the internal oxide layer and scale could be suppressed. As a result, the pickling property was excellent. Furthermore, the thickness of the decarburized layer was 20 μm or less.
 試験番号1~5、試験番号7、及び、試験番号9~19ではさらに、フェライト及びパーライトの生成に適した製造条件であった。そのため、これらの試験番号の熱延鋼板の組織ではいずれも、フェライト及びパーライトの総面積率が75%以上であった。そのため、引張強度が800MPa以下であった。 Test Nos. 1 to 5, Test No. 7, and Test Nos. 9 to 19 were production conditions suitable for the formation of ferrite and pearlite. Therefore, the total area ratio of ferrite and pearlite was 75% or more in the structures of the hot-rolled steel sheets having these test numbers. Therefore, the tensile strength was 800 MPa or less.
 試験番号6及び試験番号8では、巻取温度CTが150~600℃であったため、組織におけるベイナイト及びマルテンサイトの総面積率が75%以上であり、引張強度が900MPa以上であった。 In Test No. 6 and Test No. 8, since the coiling temperature CT was 150 to 600 ° C., the total area ratio of bainite and martensite in the structure was 75% or more, and the tensile strength was 900 MPa or more.
 一方、試験番号20で用いた鋼種Pでは、Sb含有量が低すぎた。そのため、Sb濃化層の厚さが0.5μm未満であり、内部酸化層の厚さが5μmを超えた。そのため、酸洗性が低かった。 On the other hand, in the steel type P used in the test number 20, the Sb content was too low. Therefore, the thickness of the Sb enriched layer was less than 0.5 μm, and the thickness of the internal oxide layer exceeded 5 μm. Therefore, the pickling property was low.
 試験番号21で用いた鋼種Qでは、Sbが含有されなかった。そのため、Sb濃化層が確認されなかった。その結果、内部酸化層の厚さが5μmを超え、スケール厚さが10μmを超えた。そのため、酸洗性が低かった。さらに、脱炭層厚さが20μmを超えた。 The steel type Q used in test number 21 did not contain Sb. Therefore, no Sb enriched layer was confirmed. As a result, the thickness of the internal oxide layer exceeded 5 μm and the scale thickness exceeded 10 μm. Therefore, the pickling property was low. Furthermore, the thickness of the decarburized layer exceeded 20 μm.
 試験番号22で用いた鋼種Rでは、C含有量が高すぎた。さらに、Sbが含有されなかった。さらに、巻取温度CTが低すぎた。そのため、組織が主としてベイナイト及びマルテンサイトからなり、フェライト及びパーライトが存在しなかった。そのため、引張強度が800MPaを超えた。さらに、Sb濃化層が存在しなかったため、内部酸化層の厚さが5μmを超え、スケール厚さが10μmを超えた。そのため、酸洗性が低かった。 In steel type R used in test number 22, the C content was too high. Furthermore, Sb was not contained. Furthermore, the coiling temperature CT was too low. Therefore, the structure was mainly composed of bainite and martensite, and there was no ferrite and pearlite. Therefore, the tensile strength exceeded 800 MPa. Furthermore, since there was no Sb enriched layer, the thickness of the internal oxide layer exceeded 5 μm and the scale thickness exceeded 10 μm. Therefore, the pickling property was low.
 試験番号23で用いた鋼種Sでは、Si含有量が高すぎ、かつ、Sbが含有されなかった。その結果、Sb濃化層が生成せず、内部酸化層の厚さが5μmを超え、スケール厚さが10μmを超えた。そのため、酸洗性が低かった。さらに、脱炭層厚さが20μmを超えた。 In steel type S used in test number 23, the Si content was too high and Sb was not contained. As a result, the Sb enriched layer was not generated, the thickness of the internal oxide layer exceeded 5 μm, and the scale thickness exceeded 10 μm. Therefore, the pickling property was low. Furthermore, the thickness of the decarburized layer exceeded 20 μm.
 なお、試験番号23では、熱間圧延時、粗バーヒータでの加熱を実施しなかった。そのため、デスケーリング温度が1050℃未満であった。その結果、島状スケール率が6%を超えた。 In test number 23, heating with a coarse bar heater was not performed during hot rolling. Therefore, the descaling temperature was less than 1050 ° C. As a result, the island scale ratio exceeded 6%.
 試験番号24で用いた鋼種Tでは、Mn含有量が低すぎ、Al含有量が低すぎ、かつ、Sb含有量が高すぎた。そのため、鋼材の脆化が激しく、評価試験を中止した。試験番号25では、Mn含有量が高かった。そのため、鋼材の脆化が激しく、評価試験を中止した。 In steel type T used in test number 24, the Mn content was too low, the Al content was too low, and the Sb content was too high. For this reason, the steel material was so brittle that the evaluation test was stopped. In test number 25, the Mn content was high. For this reason, the steel material was so brittle that the evaluation test was stopped.
 [実施例2]
 表4に示す化学組成を有する溶鋼を製造した。
[Example 2]
Molten steel having the chemical composition shown in Table 4 was produced.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記溶鋼を用いて、造塊法により鋼材(インゴット)を製造した。試験用熱間圧延ミルを用いて、鋼材を表5に示す熱間圧延条件(加熱温度(℃)、及び、仕上げ圧延温度FT(℃))で熱間圧延して、鋼板を製造した。さらに、熱間圧延後の鋼板に対して、表5に示す巻取温度CT(℃)での巻取を模擬した熱処理を実施した。具体的には、巻取温度CT(℃)に設定した炉内に鋼板を積層して装入した。炉内は窒素雰囲気であり、鋼板表面は大気から遮断された状態であった。つまり、鋼板の表面状態は実製造によるコイルの表面状態と同等であった。炉内で鋼板を巻取温度CT(℃)で30分保持した後、20℃/時間で室温まで徐冷した。 鋼 Using the above molten steel, a steel material (ingot) was manufactured by an ingot-making method. Using a test hot rolling mill, the steel material was hot rolled under the hot rolling conditions shown in Table 5 (heating temperature (° C.) and finish rolling temperature FT (° C.)) to produce a steel plate. Further, the steel sheet after hot rolling was subjected to heat treatment simulating winding at the winding temperature CT (° C.) shown in Table 5. Specifically, steel sheets were stacked and charged in a furnace set at a coiling temperature CT (° C.). The inside of the furnace was a nitrogen atmosphere, and the steel plate surface was cut off from the atmosphere. That is, the surface state of the steel sheet was equivalent to the surface state of the coil produced by actual manufacturing. The steel sheet was held at the coiling temperature CT (° C.) for 30 minutes in the furnace, and then gradually cooled to room temperature at 20 ° C./hour.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [フェライト及びパーライトの面積率の測定試験]
 実施例1と同様の方法により、熱間圧延後の鋼板(熱延鋼板)中のフェライト及びパーライトの合計の面積率を測定した。結果を表5に示す。表5の「鋼組織」中、「F+P」は、熱延鋼板の組織のうち、フェライト及びパーライトの総面積率が75%以上であったことを示す。表5の「鋼組織」中、「B+M」は、熱延鋼板の組織のうちベイナイト及びマルテンサイトの総面積率が75%以上であったことを示す。
[Measurement test of area ratio of ferrite and pearlite]
By the same method as in Example 1, the total area ratio of ferrite and pearlite in the steel sheet (hot-rolled steel sheet) after hot rolling was measured. The results are shown in Table 5. In “steel structure” in Table 5, “F + P” indicates that the total area ratio of ferrite and pearlite in the structure of the hot-rolled steel sheet was 75% or more. In “steel structure” in Table 5, “B + M” indicates that the total area ratio of bainite and martensite in the structure of the hot-rolled steel sheet was 75% or more.
 [内部酸化層の厚さ測定試験]
 各試験番号の熱間圧延後の鋼板(熱延鋼板)の内部酸化層の厚さを実施例1と同じ方法で測定した。具体的には、熱延鋼板の板幅中央部から熱延鋼板の表面を含む小片を切り出した。小片の表面のうち、圧延方向と垂直な断面(以下、観察面という)を鏡面研磨した。観察面に対してC(カーボン)蒸着を実施した。C蒸着後、観察面の表面近傍部分を電界放出形走査電子顕微鏡(FE-SEM)を用いて観察倍率1000倍で撮影して画像を得た。得られた画像に基づいて、上述の方法で内部酸化層の厚さを測定した。結果を表5に示す。
[Internal oxide layer thickness measurement test]
The thickness of the internal oxide layer of the steel plate (hot rolled steel plate) after hot rolling of each test number was measured by the same method as in Example 1. Specifically, a small piece including the surface of the hot-rolled steel sheet was cut out from the center part of the width of the hot-rolled steel sheet. Of the surface of the small piece, a cross section perpendicular to the rolling direction (hereinafter referred to as an observation surface) was mirror-polished. C (carbon) deposition was performed on the observation surface. After C deposition, an image was obtained by photographing the vicinity of the surface of the observation surface using a field emission scanning electron microscope (FE-SEM) at an observation magnification of 1000 times. Based on the obtained image, the thickness of the internal oxide layer was measured by the method described above. The results are shown in Table 5.
 なお、スケールは熱延鋼板の外部で鉄イオンが酸化されて形成された層である。一方、内部酸化層はSi及びMnの酸化物を含み、熱延鋼板内部に形成された層である。そのため、一般的なSEMを用いることにより、スケール、内部酸化層及び母材は容易に区別できた。 The scale is a layer formed by oxidizing iron ions outside the hot-rolled steel sheet. On the other hand, the internal oxide layer includes Si and Mn oxides and is a layer formed inside the hot-rolled steel sheet. Therefore, the scale, the internal oxide layer, and the base material can be easily distinguished by using a general SEM.
 [引張試験]
 各試験番号の熱延鋼板の引張強度TSをJIS Z2241(2011)に準拠した方法で測定した。結果を表2に示す。表5の「TS(MPa)」中、「-」は熱延鋼板の端に割れが生じ測定不能であったことを示す。
[Tensile test]
The tensile strength TS of the hot-rolled steel sheet of each test number was measured by a method based on JIS Z2241 (2011). The results are shown in Table 2. In “TS (MPa)” of Table 5, “−” indicates that cracking occurred at the end of the hot-rolled steel sheet and measurement was impossible.
 [均一伸び測定試験]
 各試験番号の熱延鋼板を圧下率50%で冷間圧延した。冷間圧延後の鋼板に対して焼鈍を実施した。焼鈍は、以下の条件で行った。鋼板を平均加熱速度5℃/秒でHC温度(Ae3温度+10℃)まで加熱し、鋼板に対してこのHC温度にて90秒の焼鈍を施した。その後、鋼板をAC温度(HC温度-120℃)まで2℃/秒の冷却速度で徐冷した。さらに、鋼板をAC温度から420℃まで80℃/秒で急冷した。鋼板を420℃で300秒保持した後に室温まで放冷した。焼鈍後の鋼板に対してJIS Z2241(2011)に準拠した方法で、引張試験を実施した。引張試験の試験中、試験片にくびれが発生するまで(試験片が一様伸びを示す区間)に試験片が伸びた長さを測定した。得られた長さを、試験片の長さで割って均一伸びELとした。結果を表5に示す。表5の「EL(%)」中、「-」は鋼板の端に割れが生じ測定不能であったことを示す。
[Uniform elongation measurement test]
The hot-rolled steel sheet of each test number was cold-rolled at a reduction rate of 50%. The steel sheet after cold rolling was annealed. Annealing was performed under the following conditions. The steel sheet was heated to an HC temperature (Ae 3 temperature + 10 ° C.) at an average heating rate of 5 ° C./second, and the steel sheet was annealed at this HC temperature for 90 seconds. Thereafter, the steel sheet was gradually cooled to an AC temperature (HC temperature—120 ° C.) at a cooling rate of 2 ° C./second. Furthermore, the steel sheet was rapidly cooled from AC temperature to 420 ° C. at 80 ° C./second. The steel plate was held at 420 ° C. for 300 seconds and then allowed to cool to room temperature. The tensile test was implemented by the method based on JISZ2241 (2011) with respect to the steel plate after annealing. During the tensile test, the length of the test piece was measured until the test piece was constricted (section where the test piece showed uniform elongation). The obtained length was divided by the length of the test piece to obtain a uniform elongation EL. The results are shown in Table 5. In “EL (%)” of Table 5, “−” indicates that the end of the steel plate was cracked and could not be measured.
 [試験結果]
 表4及び表5を参照して、試験番号1~10の化学組成は適切であった。さらに、試験番号1~10の製造条件は適切であった。そのため、試験番号1~10の熱延鋼板の組織は、フェライト及びパーライトの総面積率が75%以上であった。試験番号1~10の熱延鋼板はさらに、0.5μm以上の厚さのSb濃化層が形成された。また、内部酸化層の厚さが5μm以下であり、内部酸化層の形成が抑制された。
[Test results]
Referring to Tables 4 and 5, the chemical compositions of test numbers 1 to 10 were appropriate. Furthermore, the production conditions of test numbers 1 to 10 were appropriate. Therefore, the structure of the hot rolled steel sheets of test numbers 1 to 10 has a total area ratio of ferrite and pearlite of 75% or more. In the hot rolled steel sheets of test numbers 1 to 10, an Sb concentrated layer having a thickness of 0.5 μm or more was further formed. Moreover, the thickness of the internal oxide layer was 5 μm or less, and the formation of the internal oxide layer was suppressed.
 さらに、試験番号1~10の熱延鋼板の引張強度は800MPa以下であり、冷間圧延時の加工性に優れた。試験番号1~10の冷延鋼板の均一伸びは10.0%以上であり、冷間圧延後においても優れた加工性を示した。 Furthermore, the tensile strength of the hot-rolled steel sheets with test numbers 1 to 10 was 800 MPa or less, and the workability during cold rolling was excellent. The uniform elongation of the cold-rolled steel sheets of test numbers 1 to 10 was 10.0% or more, and excellent workability was exhibited even after cold rolling.
 試験番号11で用いた鋼種Kでは、Sbを含有しなかった。そのため、試験番号11の熱延鋼板では、Sb濃化層が形成されず、内部酸化層厚さが47μmと厚かった。 The steel type K used in test number 11 did not contain Sb. Therefore, in the hot rolled steel sheet of test number 11, no Sb enriched layer was formed, and the internal oxide layer thickness was as thick as 47 μm.
 試験番号12で用いた鋼種Lでは、Sb含有量が高すぎた。そのため、試験番号12の熱延鋼板の端に割れが生じ、引張試験が実施できなかった。したがって、冷間圧延時の加工性が低かった。 In steel type L used in test number 12, the Sb content was too high. Therefore, a crack occurred at the end of the hot rolled steel sheet of test number 12, and the tensile test could not be performed. Therefore, the workability at the time of cold rolling was low.
 試験番号13で用いた鋼種Mでは、Sb含有量が低すぎた。そのため、試験番号13の熱延鋼板は内部酸化層厚さが34μmと厚かった。 In steel type M used in test number 13, the Sb content was too low. Therefore, the hot rolled steel sheet of test number 13 had an internal oxide layer thickness of 34 μm.
 試験番号14で用いた鋼種Nでは、Si及びMnの合計含有量が3.07%であり、式(1)を満たさなかった。そのため、試験番号14の冷延鋼板では、同じくフェライト及びパーライトの総面積率が75%以上である試験番号1~10と比較して、均一伸びELが低く、10%未満であった。 In steel type N used in test number 14, the total content of Si and Mn was 3.07%, which did not satisfy Formula (1). Therefore, in the cold rolled steel sheet of test number 14, the uniform elongation EL was low and less than 10% compared to test numbers 1 to 10 where the total area ratio of ferrite and pearlite was 75% or more.
 試験番号15で用いた鋼種Oでは、Si含有量が0.93%と低かった。さらに、鋼種OはSi及びMnの合計含有量が3.04%であり、式(1)を満たさなかった。そのため、試験番号15の冷延鋼板の均一伸びは8.7%であり、同じくフェライト及びパーライトの総面積率が75%以上である試験番号1~10と比較して、低かった。 In steel type O used in test number 15, the Si content was as low as 0.93%. Further, the steel type O had a total content of Si and Mn of 3.04% and did not satisfy the formula (1). Therefore, the uniform elongation of the cold rolled steel sheet of test number 15 was 8.7%, which was lower than those of test numbers 1 to 10 where the total area ratio of ferrite and pearlite was 75% or more.
 試験番号16で用いた鋼種Pでは、Mn含有量が1.55%と低かった。そのため、試験番号16の冷延鋼板の均一伸びは6.7%であり、同じくフェライト及びパーライトの総面積率が75%以上である試験番号1~10と比較して、低かった。 In steel type P used in test number 16, the Mn content was as low as 1.55%. Therefore, the uniform elongation of the cold rolled steel sheet of test number 16 was 6.7%, which was lower than the test numbers 1 to 10 where the total area ratio of ferrite and pearlite was 75% or more.
 試験番号17で用いた鋼種Qでは、Si含有量が2.96%と高かった。そのため、試験番号17の冷延鋼板の均一伸びは7.8%であり、同じくフェライト及びパーライトの総面積率が75%以上である試験番号1~10と比較して、加工性が低かった。 In steel type Q used in test number 17, the Si content was as high as 2.96%. Therefore, the uniform elongation of the cold rolled steel sheet of test number 17 was 7.8%, and the workability was low compared with test numbers 1 to 10 where the total area ratio of ferrite and pearlite was 75% or more.
 試験番号18で用いた鋼種Rでは、Mn含有量が3.99%と高かった。そのため、試験番号18の冷延鋼板の均一伸びは3.2%であり、加工性が低かった。 In steel type R used in test number 18, the Mn content was as high as 3.99%. Therefore, the uniform elongation of the cold-rolled steel sheet having the test number 18 was 3.2%, and the workability was low.
 試験番号19で用いた鋼種Sでは、Sb含有量が0.02%と低かった。そのため、試験番号19の熱延鋼板ではSb濃化層の厚さが0.5μm未満であり、内部酸化層厚さが25μmと厚かった。 In steel type S used in test number 19, the Sb content was as low as 0.02%. Therefore, in the hot rolled steel sheet of test number 19, the thickness of the Sb concentrated layer was less than 0.5 μm, and the thickness of the internal oxide layer was as thick as 25 μm.
 [実施例3]
 表4示す化学組成を有する溶鋼を製造した。
[Example 3]
Molten steel having the chemical composition shown in Table 4 was produced.
 上記溶鋼を用いて、造塊法により鋼材(インゴット)を製造した。試験用熱間圧延ミルを用いて、鋼材を表6に示す熱間圧延条件(加熱温度(℃)、及び、仕上げ圧延温度FT(℃))で熱間圧延して、鋼板を製造した。さらに、熱間圧延後の鋼板に対して、表6に示す巻取温度CT(℃)での巻取を模擬した熱処理を実施した。具体的には、巻取温度CT(℃)に設定した炉内に鋼板を積層して投入した。炉内は窒素雰囲気であり、鋼板表面は大気から遮断された状態であった。つまり、鋼板の表面状態は実製造によるコイルの表面状態と同等であった。炉内で鋼板を巻取温度CT(℃)で30分保持した後、20℃/時間で室温まで徐冷した。さらに、試験番号2、5、7、13及び15以外の試験番号の鋼板に対して、表6に示す焼戻し温度(℃)及び焼戻し時間(hr)で、焼戻しを実施した。表6中、「焼戻し時間(hr)」は、鋼板を表6に示す焼戻し温度で滞留させた時間を示す。 鋼 Using the above molten steel, a steel material (ingot) was manufactured by an ingot-making method. Using a test hot rolling mill, the steel material was hot rolled under the hot rolling conditions shown in Table 6 (heating temperature (° C.) and finish rolling temperature FT (° C.)) to produce a steel plate. Further, the steel sheet after hot rolling was subjected to heat treatment simulating winding at a winding temperature CT (° C.) shown in Table 6. Specifically, steel plates were stacked and introduced into a furnace set at a coiling temperature CT (° C.). The inside of the furnace was a nitrogen atmosphere, and the steel plate surface was cut off from the atmosphere. That is, the surface state of the steel sheet was equivalent to the surface state of the coil produced by actual manufacturing. The steel sheet was held at the coiling temperature CT (° C.) for 30 minutes in the furnace, and then gradually cooled to room temperature at 20 ° C./hour. Further, tempering was performed on the steel plates having test numbers other than test numbers 2, 5, 7, 13, and 15 at the tempering temperature (° C.) and the tempering time (hr) shown in Table 6. In Table 6, “tempering time (hr)” indicates the time during which the steel sheet was retained at the tempering temperature shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [ベイナイト及びマルテンサイトの面積率の測定試験]
 上述の方法により、熱延鋼板中のベイナイト及びマルテンサイトの面積率を測定した。結果を表6に示す。表6の「鋼組織」中、「F」はフェライトの面積率、「P」はパーライトの面積率、「B」はベイナイトの面積率、「M」はマルテンサイトの面積率、「γ」はオーステナイトの面積率をそれぞれ示す。
[Measurement test of area ratio of bainite and martensite]
The area ratio of bainite and martensite in the hot-rolled steel sheet was measured by the method described above. The results are shown in Table 6. In Table 6, “F” is the area ratio of ferrite, “P” is the area ratio of pearlite, “B” is the area ratio of bainite, “M” is the area ratio of martensite, and “γ” is The area ratio of austenite is shown respectively.
 [内部酸化層厚さ及びスケール厚さ測定試験]
 各試験番号の熱延鋼板に対して、実施例1と同じ方法で内部酸化層厚さ及びスケール厚さを測定した。結果を表6に示す。
[Internal oxide layer thickness and scale thickness measurement test]
The thickness of the internal oxide layer and the scale thickness were measured in the same manner as in Example 1 for the hot-rolled steel sheets with the respective test numbers. The results are shown in Table 6.
 [Sb濃化層厚さ測定試験]
 各試験番号の熱延鋼板に対して、実施例1と同じ方法で、Sb濃化層の有無、及び、Sb濃化層の厚さ(μm)を測定した。結果を表6に示す。
[Sb thickened layer thickness measurement test]
With respect to the hot-rolled steel sheets of the respective test numbers, the presence or absence of the Sb concentrated layer and the thickness (μm) of the Sb concentrated layer were measured by the same method as in Example 1. The results are shown in Table 6.
 [引張試験]
 実施例1と同じ方法により、各試験番号の引張強度TS(MPa)を測定した。結果を表6に示す。表6の「引張強度」中、「-」は熱延鋼板の端に割れが生じ測定不能であったことを示す。
[Tensile test]
By the same method as in Example 1, the tensile strength TS (MPa) of each test number was measured. The results are shown in Table 6. In “Tensile strength” in Table 6, “−” indicates that the end of the hot-rolled steel sheet was cracked and could not be measured.
 [均一伸び測定試験]
 実施例2と同じ方法により、各試験番号の均一伸びELを測定した。結果を表6に示す。
[Uniform elongation measurement test]
The uniform elongation EL of each test number was measured by the same method as in Example 2. The results are shown in Table 6.
 [試験結果]
 表4及び表6を参照して、試験番号1~15の化学組成は適切であった。さらに、試験番号1~15の製造条件は適切であった。そのため、試験番号1~15の熱延鋼板の組織では、ベイナイト及びマルテンサイトの総面積率が75%以上であった。試験番号1~15の熱延鋼板ではさらに、0.5μm以上の厚さを有するSb濃化層が確認された。その結果、内部酸化層の厚さが5μm以下であり、内部酸化層の形成が抑制された。さらに、試験番号1~15の熱延鋼板のスケール厚さは7μm以下であり、スケールが抑制された。
[Test results]
Referring to Tables 4 and 6, the chemical compositions of test numbers 1 to 15 were appropriate. Furthermore, the production conditions of test numbers 1 to 15 were appropriate. Therefore, in the structures of the hot-rolled steel sheets of test numbers 1 to 15, the total area ratio of bainite and martensite was 75% or more. Further, in the hot rolled steel sheets of test numbers 1 to 15, an Sb concentrated layer having a thickness of 0.5 μm or more was confirmed. As a result, the thickness of the internal oxide layer was 5 μm or less, and the formation of the internal oxide layer was suppressed. Further, the scale thickness of the hot-rolled steel sheets of test numbers 1 to 15 was 7 μm or less, and the scale was suppressed.
 試験番号1、3、4、6、8~12及び14では、焼戻しを実施した。そのため、引張強度TSが800MPa以下、均一伸びELは10%以上であり、冷間圧延後において優れた加工性が得られた。一方、試験番号2、5、7、13及び15では、焼戻しを実施しなかった。そのため、引張強度が900MPa以上であり、優れた強度が得られた。 In test numbers 1, 3, 4, 6, 8-12 and 14, tempering was performed. Therefore, the tensile strength TS was 800 MPa or less, the uniform elongation EL was 10% or more, and excellent workability was obtained after cold rolling. On the other hand, in test numbers 2, 5, 7, 13 and 15, tempering was not performed. Therefore, the tensile strength was 900 MPa or more, and an excellent strength was obtained.
 一方、試験番号16で用いた鋼種Kでは、Sbを含有しなかった。そのため、Sb濃化層が形成されなかった。その結果、内部酸化層の厚さが5μmを超え、スケール厚さが7μmを超えた。 On the other hand, steel type K used in test number 16 did not contain Sb. Therefore, the Sb concentrated layer was not formed. As a result, the thickness of the internal oxide layer exceeded 5 μm and the scale thickness exceeded 7 μm.
 試験番号17で用いた鋼種Lでは、Sb含有量が0.41%と高すぎた。そのため、試験番号17では、熱延鋼板の端に割れが生じ、加工性が低かった。そのため、引張試験が実施できなかった。 In steel type L used in test number 17, the Sb content was too high at 0.41%. Therefore, in the test number 17, the end of the hot-rolled steel plate was cracked, and the workability was low. Therefore, the tensile test could not be performed.
 試験番号18で用いた鋼種Mでは、Sb含有量が0.004%と低すぎた。そのため、試験番号18の熱延鋼板ではSb濃化層が形成されなかった。そのため、内部酸化層の厚さが5μmを超え、スケール厚さが7μmを超えた。 In steel type M used in test number 18, the Sb content was too low at 0.004%. Therefore, the Sb concentrated layer was not formed in the hot rolled steel sheet of test number 18. Therefore, the thickness of the internal oxide layer exceeded 5 μm and the scale thickness exceeded 7 μm.
 試験番号19で用いた鋼種Nでは、Si及びMnの合計含有量が3.07%であり、式(1)を満たさなかった。そのため、焼戻しを実施したにもかかわらず、均一伸びELが10%未満であった。 In steel type N used in test number 19, the total content of Si and Mn was 3.07%, which did not satisfy Formula (1). Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
 試験番号20で用いた鋼種Oでは、Si含有量が0.93%と低かった。さらに、鋼種SはSi及びMnの合計含有量が3.04%であり、式(1)を満たさなかった。そのため、焼戻しを実施したにもかかわらず、均一伸びELが10%未満であった。 In the steel type O used in the test number 20, the Si content was as low as 0.93%. Furthermore, steel type S had a total content of Si and Mn of 3.04% and did not satisfy the formula (1). Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
 試験番号21で用いた鋼種Pでは、Mn含有量が1.55%と低かった。そのため、組織において、フェライトの面積率が30%であり、マルテンサイト及びベイナイトを合わせた面積率は75%未満であった。その結果、焼戻しを実施したにもかかわらず、均一伸びELが10%未満であった。 In steel type P used in test number 21, the Mn content was as low as 1.55%. Therefore, in the structure, the area ratio of ferrite was 30%, and the combined area ratio of martensite and bainite was less than 75%. As a result, the uniform elongation EL was less than 10% despite tempering.
 試験番号22で用いた鋼種Qでは、Si含有量が2.96%と高かった。そのため、焼戻しを実施したにもかかわらず、均一伸びELが10%未満であった。 In steel type Q used in test number 22, the Si content was as high as 2.96%. Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
 試験番号23で用いた鋼種Rでは、Mn含有量が3.99%と高かった。そのため、焼戻しを実施したにもかかわらず、均一伸びELが10%未満であった。 In steel type R used in test number 23, the Mn content was as high as 3.99%. Therefore, even though tempering was performed, the uniform elongation EL was less than 10%.
 試験番号24で用いた鋼種Sでは、Sb含有量が0.02%と低かった。そのため、Sb濃化層の圧Sが0.5μm未満であった。そのため、内部酸化層厚さが10μmを超え、スケール厚さが7μmを超えた。 In the steel type S used in the test number 24, the Sb content was as low as 0.02%. Therefore, the pressure S of the Sb concentrated layer was less than 0.5 μm. Therefore, the internal oxide layer thickness exceeded 10 μm and the scale thickness exceeded 7 μm.
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the above-described embodiment without departing from the spirit thereof.

Claims (17)

  1.  質量%で、
     C:0.07~0.30%、
     Si:1.0超~2.8%、
     Mn:2.0~3.5%、
     P:0.030%以下、
     S:0.010%以下、
     Al:0.01~1.0%未満、
     N:0.01%以下、
     O:0.01%以下、
     Sb:0.03~0.30%、
     Ti:0~0.15%、
     V:0~0.30%、
     Nb:0~0.15%、
     Cr:0~1.0%、
     Ni:0~1.0%、
     Mo:0~1.0%、
     W:0~1.0%、
     B:0~0.010%、
     Cu:0~0.50%、
     Sn:0~0.30%、
     Bi:0~0.30%、
     Se:0~0.30%、
     Te:0~0.30%、
     Ge:0~0.30%、
     As:0~0.30%、
     Ca:0~0.50%、
     Mg:0~0.50%、
     Zr:0~0.50%、
     Hf:0~0.50%、及び、
     希土類元素:0~0.50%を含有し、残部はFe及び不純物からなり、式(1)を満たす化学組成を有する、熱延鋼板。
     Si+Mn≧3.20 (1)
     ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
    % By mass
    C: 0.07 to 0.30%,
    Si: more than 1.0 to 2.8%,
    Mn: 2.0 to 3.5%,
    P: 0.030% or less,
    S: 0.010% or less,
    Al: 0.01 to less than 1.0%,
    N: 0.01% or less,
    O: 0.01% or less,
    Sb: 0.03 to 0.30%,
    Ti: 0 to 0.15%,
    V: 0 to 0.30%,
    Nb: 0 to 0.15%,
    Cr: 0 to 1.0%,
    Ni: 0 to 1.0%,
    Mo: 0 to 1.0%,
    W: 0 to 1.0%
    B: 0 to 0.010%,
    Cu: 0 to 0.50%,
    Sn: 0 to 0.30%,
    Bi: 0 to 0.30%,
    Se: 0 to 0.30%,
    Te: 0 to 0.30%,
    Ge: 0 to 0.30%,
    As: 0 to 0.30%,
    Ca: 0 to 0.50%,
    Mg: 0 to 0.50%,
    Zr: 0 to 0.50%,
    Hf: 0 to 0.50%, and
    Rare earth element: Hot-rolled steel sheet containing 0 to 0.50%, with the balance being Fe and impurities and having a chemical composition satisfying formula (1).
    Si + Mn ≧ 3.20 (1)
    Here, the content (mass%) of the corresponding element is substituted for the element symbol in the formula (1).
  2.  請求項1に記載の熱延鋼板であって、質量%で、
     Ti:0.005~0.15%、
     V:0.001~0.30%、及び、
     Nb:0.005~0.15%からなる群から選択される1種又は2種以上を含有する、熱延鋼板。
    The hot-rolled steel sheet according to claim 1, wherein the mass% is
    Ti: 0.005 to 0.15%,
    V: 0.001 to 0.30%, and
    Nb: Hot rolled steel sheet containing one or more selected from the group consisting of 0.005 to 0.15%.
  3.  請求項1又は請求項2に記載の熱延鋼板であって、質量%で、
     Cr:0.10~1.0%、
     Ni:0.10~1.0%、
     Mo:0.01~1.0%、
     W:0.01~1.0%、及び、
     B:0.0001~0.010%からなる群から選択される1種又は2種以上を含有する、熱延鋼板。
    The hot-rolled steel sheet according to claim 1 or 2, wherein the hot-rolled steel sheet is in mass%.
    Cr: 0.10 to 1.0%,
    Ni: 0.10 to 1.0%,
    Mo: 0.01 to 1.0%,
    W: 0.01 to 1.0%, and
    B: A hot-rolled steel sheet containing one or more selected from the group consisting of 0.0001 to 0.010%.
  4.  請求項1~請求項3のいずれか1項に記載の熱延鋼板であって、質量%で、
     Cu:0.10~0.50%を含有する、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 3, wherein the hot-rolled steel sheet is in mass%.
    Cu: Hot rolled steel sheet containing 0.10 to 0.50%.
  5.  請求項1~請求項4のいずれか1項に記載の熱延鋼板であって、質量%で、
     Sn、Bi、Se、Te、Ge及びAsからなる群から選択される1種又は2種以上を合計で0.0001~0.30%含有する、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 4, wherein the hot-rolled steel sheet is in% by mass.
    A hot-rolled steel sheet containing 0.0001 to 0.30% in total of one or more selected from the group consisting of Sn, Bi, Se, Te, Ge and As.
  6.  請求項1~請求項5のいずれか1項に記載の熱延鋼板であって、質量%で、
     Ca、Mg、Zr、Hf及び希土類元素からなる群から選択される1種又は2種以上を合計で0.0001~0.50%含有する、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 5, wherein the hot-rolled steel sheet is in% by mass.
    A hot-rolled steel sheet containing 0.0001 to 0.50% in total of one or more selected from the group consisting of Ca, Mg, Zr, Hf and rare earth elements.
  7.  請求項1~請求項6のいずれか1項に記載の熱延鋼板であって、
     表面とスケールとの間に0.5μm以上の厚さを有するSb濃化層を備える、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 6,
    A hot-rolled steel sheet comprising an Sb concentrated layer having a thickness of 0.5 μm or more between a surface and a scale.
  8.  請求項1~請求項7のいずれか1項に記載の熱延鋼板であって、
     前記熱延鋼板の組織では、フェライト及びパーライトの総面積率が75%以上であり、
     前記熱延鋼板の引張強度が800MPa以下である、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 7,
    In the structure of the hot-rolled steel sheet, the total area ratio of ferrite and pearlite is 75% or more,
    A hot-rolled steel sheet, wherein the hot-rolled steel sheet has a tensile strength of 800 MPa or less.
  9.  請求項1~請求項7のいずれか1項に記載の熱延鋼板であって、
     前記熱延鋼板の組織では、ベイナイト及びマルテンサイトの総面積率が75%以上であり、
     前記熱延鋼板の引張強度が900MPa以上である、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 7,
    In the structure of the hot-rolled steel sheet, the total area ratio of bainite and martensite is 75% or more,
    A hot-rolled steel sheet, wherein the hot-rolled steel sheet has a tensile strength of 900 MPa or more.
  10.  請求項1~請求項7のいずれか1項に記載の熱延鋼板であって、
     前記熱延鋼板の組織は、ベイナイト及びマルテンサイトの総面積率が75%以上であり、
     前記熱延鋼板の引張強度が800MPa以下である、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 7,
    The structure of the hot-rolled steel sheet has a total area ratio of bainite and martensite of 75% or more,
    A hot-rolled steel sheet, wherein the hot-rolled steel sheet has a tensile strength of 800 MPa or less.
  11.  請求項1~請求項10のいずれか1項に記載の熱延鋼板であって、
     前記熱延鋼板の内部酸化層の厚さが5μm以下である、熱延鋼板。
    The hot-rolled steel sheet according to any one of claims 1 to 10,
    A hot-rolled steel sheet, wherein the thickness of the internal oxide layer of the hot-rolled steel sheet is 5 µm or less.
  12.  請求項8に記載の熱延鋼板であって、
     前記熱延鋼板の表面のスケール厚さが10μm以下である、熱延鋼板。
    The hot-rolled steel sheet according to claim 8,
    A hot-rolled steel sheet having a scale thickness of 10 μm or less on the surface of the hot-rolled steel sheet.
  13.  請求項8に記載の熱延鋼板であって、
     前記熱延鋼板の表層の脱炭層厚さが20μm以下である、熱延鋼板。
    The hot-rolled steel sheet according to claim 8,
    A hot-rolled steel sheet having a decarburized layer thickness of 20 μm or less on a surface layer of the hot-rolled steel sheet.
  14.  請求項9又は請求項10に記載の熱延鋼板であって、
     前記熱延鋼板の表面のスケール厚さが7μm以下である、熱延鋼板。
    The hot-rolled steel sheet according to claim 9 or claim 10,
    A hot-rolled steel sheet having a scale thickness of 7 μm or less on the surface of the hot-rolled steel sheet.
  15.  請求項8に記載の熱延鋼板の製造方法であって、
     請求項8に記載の化学組成を有する鋼材を準備する工程と、
     前記鋼材を1100~1350℃に加熱した後、熱間圧延して鋼板にする工程と、
     前記鋼板を、600~750℃で巻き取る工程とを備える、熱延鋼板の製造方法。
    A method for producing a hot-rolled steel sheet according to claim 8,
    Preparing a steel material having the chemical composition according to claim 8;
    Heating the steel material to 1100 to 1350 ° C., and then hot rolling into a steel plate;
    A method for producing a hot-rolled steel sheet, comprising the step of winding the steel sheet at 600 to 750 ° C.
  16.  請求項9に記載の熱延鋼板の製造方法であって、
     請求項9に記載の化学組成を有する鋼材を準備する準備工程と、
     前記鋼材を1100~1350℃に加熱した後、熱間圧延して鋼板とし、巻取温度まで前記鋼板を冷却する熱間圧延工程と、
     前記冷却後の前記鋼板を、150~600℃で巻き取る工程とを備える、熱延鋼板の製造方法。
    It is a manufacturing method of the hot rolled sheet steel according to claim 9,
    A preparation step of preparing a steel material having the chemical composition according to claim 9;
    After the steel material is heated to 1100 to 1350 ° C., hot-rolled into a steel plate, and a hot-rolling step of cooling the steel plate to a coiling temperature;
    And a step of winding the cooled steel sheet at 150 to 600 ° C.
  17.  請求項10に記載の熱延鋼板の製造方法であって、
     請求項10に記載の化学組成を有する鋼材を準備する工程と、
     前記鋼材を1100~1350℃に加熱した後、熱間圧延して鋼板にする工程と、
     前記鋼板を、150~600℃で巻き取る工程と、
     巻取後の前記鋼板を550℃以上で焼戻しする工程とを備える、熱延鋼板の製造方法。
    It is a manufacturing method of the hot-rolled steel sheet according to claim 10,
    Preparing a steel material having the chemical composition according to claim 10;
    Heating the steel material to 1100 to 1350 ° C., and then hot rolling into a steel plate;
    Winding the steel sheet at 150 to 600 ° C .;
    And a step of tempering the steel sheet after winding at 550 ° C. or higher.
PCT/JP2016/061991 2015-04-15 2016-04-14 Hot-rolled steel sheet and method for manufacturing same WO2016167313A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/566,246 US20180100213A1 (en) 2015-04-15 2016-04-14 Hot-rolled steel sheet and method for producing the same
MX2017013132A MX2017013132A (en) 2015-04-15 2016-04-14 Hot-rolled steel sheet and method for manufacturing same.
BR112017021206-4A BR112017021206A2 (en) 2015-04-15 2016-04-14 A hot-rolled steel product and a manufacturing method for the same
KR1020177032623A KR102046544B1 (en) 2015-04-15 2016-04-14 Hot rolled steel sheet and manufacturing method
EP16780104.2A EP3284841A4 (en) 2015-04-15 2016-04-14 Hot-rolled steel sheet and method for manufacturing same
JP2017512575A JP6515393B2 (en) 2015-04-15 2016-04-14 Hot rolled steel sheet and method of manufacturing the same
CN201680021926.6A CN107532257B (en) 2015-04-15 2016-04-14 Hot-rolled steel sheet and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015083603 2015-04-15
JP2015-083603 2015-04-15
JP2015083604 2015-04-15
JP2015-083604 2015-04-15

Publications (1)

Publication Number Publication Date
WO2016167313A1 true WO2016167313A1 (en) 2016-10-20

Family

ID=57127115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061991 WO2016167313A1 (en) 2015-04-15 2016-04-14 Hot-rolled steel sheet and method for manufacturing same

Country Status (9)

Country Link
US (1) US20180100213A1 (en)
EP (1) EP3284841A4 (en)
JP (1) JP6515393B2 (en)
KR (1) KR102046544B1 (en)
CN (1) CN107532257B (en)
BR (1) BR112017021206A2 (en)
MX (1) MX2017013132A (en)
TW (1) TWI609091B (en)
WO (1) WO2016167313A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031454A (en) * 2015-07-30 2017-02-09 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method therefor
JP2019521251A (en) * 2016-06-21 2019-07-25 ヒュンダイ スチール カンパニー High strength cold rolled steel sheet excellent in workability and method of manufacturing the same
JP2020509204A (en) * 2016-12-23 2020-03-26 ポスコPosco High-strength hot-rolled steel sheet and cold-rolled steel sheet excellent in continuous productivity, high-strength hot-dip galvanized steel sheet excellent in surface quality and plating adhesion, and methods for producing them
JP2020164897A (en) * 2019-03-28 2020-10-08 日本製鉄株式会社 Steel
CN113544296A (en) * 2019-03-20 2021-10-22 日本制铁株式会社 Hot-stamped molded body
WO2023063350A1 (en) * 2021-10-14 2023-04-20 日本製鉄株式会社 Hot-rolled steel plate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670378B (en) * 2017-12-15 2019-09-01 日商日本製鐵股份有限公司 Steel plate, hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet
CN108411221A (en) * 2018-03-13 2018-08-17 浙江工贸职业技术学院 A kind of shock proof composite material and preparation method thereof
CN108486494B (en) * 2018-06-05 2019-06-21 西北工业大学 The production method of vanadium micro-alloying 1300MPa grade high-strength hot rolled steel plate and cold-rolled biphase steel plate
EP3868908A4 (en) * 2018-10-19 2022-04-13 Nippon Steel Corporation Hot rolled steel sheet
JP6750771B1 (en) 2019-02-06 2020-09-02 日本製鉄株式会社 Hot-dip galvanized steel sheet and method for producing the same
KR20220066368A (en) * 2019-11-13 2022-05-24 닛폰세이테츠 가부시키가이샤 steel
CN111593182B (en) * 2019-11-26 2022-01-25 北京特冶工贸有限责任公司 Production method of corrosion-resistant Baima complex phase structure steel rail
CN111075114A (en) * 2019-12-27 2020-04-28 广西南宁三正工程材料有限公司 Reinforcing mesh and preparation method thereof
EP4092145A4 (en) * 2020-01-16 2023-10-04 Nippon Steel Corporation Hot stamp molded body
KR20220062962A (en) * 2020-11-09 2022-05-17 주식회사 포스코 Plated steel sheets for hot press forming having excellent hydrogen brittleness resistance and impact resistance, hot press formed parts, and manufacturing methods thereof
CN114480951B (en) * 2020-11-12 2023-04-14 上海梅山钢铁股份有限公司 Hot-rolled dual-phase steel plate with 700 MPa-level tensile strength and manufacturing method thereof
CN112647014B (en) * 2020-11-23 2022-03-22 首钢集团有限公司 Building structural steel suitable for marine atmospheric environment and production method thereof
TWI774241B (en) * 2021-02-19 2022-08-11 日商日本製鐵股份有限公司 Hot-rolled steel sheet for non-oriented electrical steel sheet, method for producing hot-rolled steel sheet for non-oriented electrical steel sheet, and method for producing non-oriented electrical steel sheet
CN114034609A (en) * 2021-10-28 2022-02-11 北京理工大学 Metal material mechanical property prediction method considering micro texture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297609A (en) * 2007-05-31 2008-12-11 Kobe Steel Ltd High-strength steel sheet having excellent elongation and excellent stretch flangeability and process for production of the same
JP2010502845A (en) * 2006-12-28 2010-01-28 ポスコ High strength galvanized steel sheet with excellent mechanical properties and surface quality and method for producing the same
JP2011063877A (en) * 2009-08-21 2011-03-31 Jfe Steel Corp Hot pressed member, steel sheet for hot pressed member, and method for producing hot pressed member
JP2013060657A (en) * 2011-08-19 2013-04-04 Jfe Steel Corp High-strength cold rolled steel sheet excellent in elongation and stretch-flange formability, and method for producing the same
WO2013099235A1 (en) * 2011-12-26 2013-07-04 Jfeスチール株式会社 High-strength thin steel sheet and process for manufacturing same
JP2013216961A (en) * 2012-04-12 2013-10-24 Kobe Steel Ltd Method for manufacturing hot-rolled steel sheet having both pickling property and workability
JP2014508854A (en) * 2010-12-27 2014-04-10 ポスコ Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof
JP2014214374A (en) * 2013-04-30 2014-11-17 株式会社神戸製鋼所 Method of producing hot rolled steel sheet and hot rolled steel sheet
WO2015015739A1 (en) * 2013-08-02 2015-02-05 Jfeスチール株式会社 High-strength, high-young's modulus steel plate, and manufacturing method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213520A (en) 1985-07-12 1987-01-22 Nisshin Steel Co Ltd Method for inhibiting oxidation of steel material during heating
JP3390584B2 (en) * 1995-08-31 2003-03-24 川崎製鉄株式会社 Hot rolled steel sheet and method for producing the same
JP4091894B2 (en) 2003-04-14 2008-05-28 新日本製鐵株式会社 High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expansibility and ductility, and method for producing the same
PL1980638T3 (en) * 2006-01-30 2014-03-31 Nippon Steel & Sumitomo Metal Corp High-strength hot-dip zinced steel sheet excellent in moldability and suitability for plating, high-strength alloyed hot-dip zinced steel sheet, and processes and apparatus for producing these
WO2008007785A1 (en) * 2006-07-14 2008-01-17 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
KR20080060981A (en) 2006-12-27 2008-07-02 주식회사 포스코 Zn-coated steel sheet having excellent surface quality and the method for manufacturing the same
ES2387040T3 (en) 2007-08-15 2012-09-12 Thyssenkrupp Steel Europe Ag Double phase steel, flat product of a double phase steel of this type and process for manufacturing a flat product
KR101008117B1 (en) 2008-05-19 2011-01-13 주식회사 포스코 High strength thin steel sheet for the superier press formability and surface quality and galvanized steel sheet and method for manufacturing the same
KR101008099B1 (en) * 2008-05-29 2011-01-13 주식회사 포스코 High strength steel sheet amd galvenized steel sheet having excellent ducility and free edge crack and method of manufacturing the same
KR101115739B1 (en) * 2009-09-09 2012-03-06 주식회사 포스코 Steel sheet having excellent spot weldabity, strength and elongation for automobile and method for manufacturing the same
JP5786316B2 (en) * 2010-01-22 2015-09-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4883216B2 (en) * 2010-01-22 2012-02-22 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
JP5520086B2 (en) 2010-03-09 2014-06-11 株式会社神戸製鋼所 High Si content steel sheet with excellent surface properties and method for producing the same
JP5343035B2 (en) 2010-04-30 2013-11-13 株式会社神戸製鋼所 High Si content steel sheet with excellent surface properties and method for producing the same
JP5271981B2 (en) 2010-08-11 2013-08-21 株式会社神戸製鋼所 Method for producing Si-containing hot-rolled steel sheet having excellent pickling properties and pickling method
EP2728032A4 (en) * 2011-06-28 2015-03-11 Posco Plated steel sheet having plated layer with excellent stability for hot press molding
CA2850332C (en) * 2011-09-30 2016-06-21 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical cutting property, and manufacturing method thereof
JP5839180B2 (en) 2011-11-11 2016-01-06 Jfeスチール株式会社 Method for cooling hot-rolled steel sheet
PL2801637T3 (en) * 2012-01-05 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
JP2013253301A (en) 2012-06-08 2013-12-19 Kobe Steel Ltd Method of manufacturing cold-rolled steel sheet
JP6056745B2 (en) 2013-12-12 2017-01-11 Jfeスチール株式会社 High formability and high strength cold-rolled steel sheet excellent in chemical conversion treatment and production method thereof
CN104451407B (en) * 2014-11-25 2016-08-24 东北大学 A kind of low-carbon hot-rolling ultra-high-strength/tenacity steel and preparation method thereof
KR101647224B1 (en) * 2014-12-23 2016-08-10 주식회사 포스코 High strength galvanized steel sheet having excellent surface qualities, plating adhesion and formability and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502845A (en) * 2006-12-28 2010-01-28 ポスコ High strength galvanized steel sheet with excellent mechanical properties and surface quality and method for producing the same
JP2008297609A (en) * 2007-05-31 2008-12-11 Kobe Steel Ltd High-strength steel sheet having excellent elongation and excellent stretch flangeability and process for production of the same
JP2011063877A (en) * 2009-08-21 2011-03-31 Jfe Steel Corp Hot pressed member, steel sheet for hot pressed member, and method for producing hot pressed member
JP2014508854A (en) * 2010-12-27 2014-04-10 ポスコ Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof
JP2013060657A (en) * 2011-08-19 2013-04-04 Jfe Steel Corp High-strength cold rolled steel sheet excellent in elongation and stretch-flange formability, and method for producing the same
WO2013099235A1 (en) * 2011-12-26 2013-07-04 Jfeスチール株式会社 High-strength thin steel sheet and process for manufacturing same
JP2013216961A (en) * 2012-04-12 2013-10-24 Kobe Steel Ltd Method for manufacturing hot-rolled steel sheet having both pickling property and workability
JP2014214374A (en) * 2013-04-30 2014-11-17 株式会社神戸製鋼所 Method of producing hot rolled steel sheet and hot rolled steel sheet
WO2015015739A1 (en) * 2013-08-02 2015-02-05 Jfeスチール株式会社 High-strength, high-young's modulus steel plate, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3284841A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031454A (en) * 2015-07-30 2017-02-09 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method therefor
JP2019521251A (en) * 2016-06-21 2019-07-25 ヒュンダイ スチール カンパニー High strength cold rolled steel sheet excellent in workability and method of manufacturing the same
US10968498B2 (en) 2016-06-21 2021-04-06 Hyundai Steel Company High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
JP2020509204A (en) * 2016-12-23 2020-03-26 ポスコPosco High-strength hot-rolled steel sheet and cold-rolled steel sheet excellent in continuous productivity, high-strength hot-dip galvanized steel sheet excellent in surface quality and plating adhesion, and methods for producing them
CN113544296A (en) * 2019-03-20 2021-10-22 日本制铁株式会社 Hot-stamped molded body
CN113544296B (en) * 2019-03-20 2023-01-10 日本制铁株式会社 Hot-stamped molded body
JP2020164897A (en) * 2019-03-28 2020-10-08 日本製鉄株式会社 Steel
JP7218655B2 (en) 2019-03-28 2023-02-07 日本製鉄株式会社 steel
WO2023063350A1 (en) * 2021-10-14 2023-04-20 日本製鉄株式会社 Hot-rolled steel plate

Also Published As

Publication number Publication date
EP3284841A1 (en) 2018-02-21
US20180100213A1 (en) 2018-04-12
MX2017013132A (en) 2018-01-26
KR20170137164A (en) 2017-12-12
BR112017021206A2 (en) 2018-07-03
JPWO2016167313A1 (en) 2018-02-15
KR102046544B1 (en) 2019-11-19
TW201706425A (en) 2017-02-16
CN107532257A (en) 2018-01-02
CN107532257B (en) 2020-03-27
EP3284841A4 (en) 2018-12-19
TWI609091B (en) 2017-12-21
JP6515393B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2016167313A1 (en) Hot-rolled steel sheet and method for manufacturing same
US10544477B2 (en) Method for manufacturing high-strength galvanized steel sheet
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
CN107709598B (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
JP5163835B2 (en) Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and production methods thereof
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
WO2016010005A1 (en) Hot-rolled steel sheet
WO2016010004A1 (en) Hot-rolled steel sheet
KR101622499B1 (en) Cold-rolled steel sheet, plated steel sheet, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
JP6274360B2 (en) High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet
KR102544884B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
US20170044640A1 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet (as amended)
JP6777272B1 (en) Hot-dip galvanized steel sheet and its manufacturing method
JP6750771B1 (en) Hot-dip galvanized steel sheet and method for producing the same
KR102333410B1 (en) high strength cold rolled steel sheet
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
JP7348573B2 (en) hot rolled steel plate
JP7063414B2 (en) Steel plate
JP6687171B1 (en) steel sheet
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780104

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016780104

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017512575

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017021206

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/013132

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15566246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177032623

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017021206

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171003