JPS6213520A - Method for inhibiting oxidation of steel material during heating - Google Patents

Method for inhibiting oxidation of steel material during heating

Info

Publication number
JPS6213520A
JPS6213520A JP15240885A JP15240885A JPS6213520A JP S6213520 A JPS6213520 A JP S6213520A JP 15240885 A JP15240885 A JP 15240885A JP 15240885 A JP15240885 A JP 15240885A JP S6213520 A JPS6213520 A JP S6213520A
Authority
JP
Japan
Prior art keywords
steel material
oxidation
carbon
steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15240885A
Other languages
Japanese (ja)
Inventor
Takuji Okiyama
沖山 卓司
Kazuo Hoshino
和夫 星野
Takashige Mukai
向井 孝慈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15240885A priority Critical patent/JPS6213520A/en
Publication of JPS6213520A publication Critical patent/JPS6213520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the surface oxidation and grain boundary oxidation of a steel material during heating and to enhance the yield and quality of hot steel sheets by placing solid carbon on or near the surface of the steel material and heating the steel material at a specified temp. CONSTITUTION:When a steel slab is charged into a heating furnace, granular carbon is uniformly distributed on or near the surface of the slab and the slab is heated at >=730 deg.C. The slab is preferably covered with a steel sheet or the like so that generated CO and CO2 stay near the slab. Thus, the surface defects of hot steel sheets due to the surface oxidation or grain boundary oxidation of the slab are reduced to enhance the yield and quality.

Description

【発明の詳細な説明】 く技術分野〉 本発明は鋼材を加熱する際の、−鍛鋼スラブにおいては
スケールロスの低減、ステンレス鋼や高Ni鋼等の高合
金スラブの場合には粒界酸化の防止、またそれから製造
される熱延鋼板の疵の防止、歩留の向上を図った酸化防
止法に関する。
[Detailed Description of the Invention] Technical Field> The present invention is aimed at reducing scale loss in forged steel slabs and reducing grain boundary oxidation in high alloy slabs such as stainless steel and high Ni steel when heating steel materials. The present invention relates to an oxidation prevention method that aims to prevent oxidation, prevent flaws in hot rolled steel sheets manufactured therefrom, and improve yield.

〈従来技術とその問題点〉 熱延鋼板の製造の歩留は各種技術の進歩改良によって、
既に98.7〜99%に達しているが、ロス1.0−1
.3%のうち表面酸化によるスケールロスが0.5〜0
.7%、即ち約50%を占めており、この加熱時のスケ
ールロスの低減が歩留向上の重要課題の一つである。
<Prior art and its problems> The production yield of hot rolled steel sheets has improved due to the progress and improvement of various technologies.
It has already reached 98.7-99%, but the loss is 1.0-1
.. Scale loss due to surface oxidation is 0.5 to 0 out of 3%
.. 7%, that is, approximately 50%, and reducing scale loss during heating is one of the important issues for improving yield.

また連続鋳造法または造塊法により製造されたステンレ
ス鋼あるいは高Nl鋼等のスラブから熱間圧延により熱
延板を製造する場合には、加熱時にスラブ表層部に粒界
酸化を生じ、この粒界酸化が原因で圧延時にカブレ疵、
ヘゲ疵等の表面疵および耳割れが発生する。
In addition, when hot-rolled sheets are manufactured from slabs of stainless steel or high-Nl steel manufactured by continuous casting or ingot-forming, grain boundary oxidation occurs in the surface layer of the slab during heating. Due to field oxidation, blemishes occur during rolling.
Surface flaws such as bald spots and edge cracks occur.

従来これらの防止のために。Traditionally to prevent these.

(1)スラブ全面に酸化防止剤を100〜300#LI
8の膜厚で塗布して表層の酸化を防止する。
(1) Apply 100 to 300 #LI of antioxidant to the entire surface of the slab.
8 to prevent oxidation of the surface layer.

(2)At 、N2等の不活性ガスを炉内に導入して表
層の酸化を防止する。
(2) An inert gas such as At or N2 is introduced into the furnace to prevent oxidation of the surface layer.

等の処置を施してから、被加熱鋼材を加熱炉に装入し、
1100〜1400℃で数時間保持加熱後に熱延される
After taking the above measures, the steel material to be heated is charged into the heating furnace.
After holding and heating at 1100 to 1400°C for several hours, it is hot rolled.

しかし、(1)の手段は酸化防止剤の塗布時に生ずる膜
厚のむらによるキレンの発生や、高温の炉内に長時間保
持する際に酸化防止剤の剥離が起りやすく、局所的な一
次スケールが発生し、圧延後の熱延鋼板上の表面欠陥が
発生するなど、酸化防止に十分の効果を発揮することが
できない。
However, with the method (1), there is a tendency for oxidation to occur due to unevenness in the film thickness that occurs when applying the antioxidant, and for the antioxidant to peel off when kept in a high-temperature furnace for a long time, resulting in localized primary scale. This causes surface defects on the hot-rolled steel sheet after rolling, making it impossible to achieve a sufficient effect in preventing oxidation.

また(2)の方法では高価なA「やN2などのガスを大
量に使用するため製品の大幅な価格上昇をまぬがれない
Furthermore, method (2) uses a large amount of expensive gases such as A and N2, which inevitably leads to a significant increase in the price of the product.

本発明はこのような現状に鑑み、安価で強力な酸化防止
法を提供するものである。
In view of the current situation, the present invention provides an inexpensive and powerful antioxidant method.

〈発明の構成〉 本発明によれば、鋼材を加熱する際に、鋼材の表面また
はその近傍に固体炭素を配置し、730 ”0以とに加
熱することを特徴とする酸化防止法が提供される。
<Structure of the Invention> According to the present invention, there is provided an oxidation prevention method characterized in that when heating a steel material, solid carbon is placed on or near the surface of the steel material and the steel material is heated to a temperature of 730" or less. Ru.

また本発明によれば、鋼材を加熱する際に、鋼材の表面
またはその近傍に固体炭素を配置し、さらに発生する一
酸化炭素および二酸化炭素をその近傍に滞留させるよう
に適当な材料で覆い、730°C以上に加熱することを
ことを特徴とする酸化防止法が提供される。
Further, according to the present invention, when heating the steel material, solid carbon is placed on or near the surface of the steel material, and further covered with a suitable material so that the generated carbon monoxide and carbon dioxide are retained in the vicinity. A method for preventing oxidation is provided, which comprises heating to 730°C or higher.

使用する炭素は固定炭素分が70〜99.9%の炭素、
石油系コークスあるいはグラファイトの固形炭素で、い
ずれの場合にも炭素は粒状炭素を使用するのが有利であ
る0本発明方法は原理的にはどのようは加熱状況にも適
用できるが、実際にはスラブを加熱炉に装入する際、そ
の表面に炭素粒を均一に分布させ、好ましくは、薄鋼板
などで覆うのが有利である。
The carbon used is carbon with a fixed carbon content of 70 to 99.9%,
Solid carbon of petroleum coke or graphite, in either case it is advantageous to use granular carbon.Although the method of the present invention can be applied in principle to any heating situation, in practice When charging the slab into the heating furnace, it is advantageous to uniformly distribute carbon grains on its surface, preferably covering it with a thin steel plate or the like.

〈発明の具体的記載〉 鉄の酸化と炭素の燃焼は1次式のように進行する。<Specific description of the invention> Oxidation of iron and combustion of carbon proceed according to a linear equation.

Fe  + 1/202  = Fe O、(1)C+
1/2 o2=co          (2)CO+
 1/202 = C02(3)一般にこれらの反応は
温度、酸素ポテンシャル等に依存するが、各温度におけ
る酸化優先順位は例えば、日本金属学会編「鉄鋼製錬」
 (昭和54年10月20日発行)のp、12に掲げら
れる図に示されるような標準生成自由エネルギー(ΔG
O)によって決まる。ΔGOは次式によって墜えられる
Fe + 1/202 = Fe O, (1) C +
1/2 o2=co (2) CO+
1/202 = C02 (3) In general, these reactions depend on temperature, oxygen potential, etc., but the oxidation priority at each temperature is given, for example, in "Iron and Steel Smelting" edited by the Japan Institute of Metals.
The standard free energy of formation (ΔG
O). ΔGO is calculated by the following formula.

ΔG、:、 = −83310+ 15.827 (c
al)     (4)ΔG ’  = −21370
0−20,95T  (cal)       (5)
oO 式(4) (5)より、730℃以上では。
ΔG, :, = −83310+ 15.827 (c
al) (4) ΔG' = -21370
0-20,95T (cal) (5)
oO From formulas (4) and (5), at temperatures above 730°C.

ΔG鷲、〉ΔG乳。ΔG Eagle, 〉ΔG Breasts.

であり、FeよりCの方が優先的に醸化される。Therefore, C is fermented preferentially over Fe.

またこの傾向は、(4) (5)式から理解できるよう
に、さらに高温になるほど顕著であり、炭素の燃焼が先
に起りCOガスとなる。
Further, as can be understood from equations (4) and (5), this tendency becomes more pronounced as the temperature becomes higher, and combustion of carbon occurs first to become CO gas.

熱間圧延ラインでのスラブ加熱炉温度はΔG0  >Δ
GO FiOoO である温度であるため、炭素を被加熱鋼材表面またはそ
の近傍に存在させ、(2)式の反応によって発生するc
oガス、あるいは、(3)式によって発生するC02ガ
ス雰囲気を造り出すことで鋼材表面の酸化雰囲気を減弱
し、表面酸化および粒界酸化を防止することができる。
The slab heating furnace temperature in the hot rolling line is ΔG0 > Δ
Since the temperature is GO FiOoO, carbon is present on or near the surface of the heated steel material, and the c generated by the reaction of equation (2)
By creating an atmosphere of o gas or CO2 gas generated by equation (3), the oxidizing atmosphere on the surface of the steel material can be weakened, and surface oxidation and grain boundary oxidation can be prevented.

 本発明者らは上記の理論を実証するために次のような
基礎実験を行なった。
The present inventors conducted the following basic experiment to prove the above theory.

第1表に示す組成を有する高Ni合金鋼を用いて、50
腸1角のブロックを作成し、表面研摩後、第1図&、b
、cに示すように、固形炭素粒を配置した。aは炭素粒
配置なし、bは粒径2〜51■の炭素粒を上表面に配置
した場合、Cは同じ炭素粒を配置し、かつその上面を薄
鋼板で覆った場合を示す。
Using high Ni alloy steel having the composition shown in Table 1,
A block of one corner of the intestine was prepared, and after surface polishing, Fig. 1&b
The solid carbon particles were arranged as shown in ,c. A shows the case where no carbon grains are arranged, b shows the case where carbon grains with a grain size of 2 to 51 square meters are arranged on the upper surface, and C shows the case where the same carbon grains are arranged and the upper surface is covered with a thin steel plate.

このような処理を施したブロックを大気雰囲気中で12
50℃で90分保持した後の表面酸化深さくh+鳳麿)
および粒界酸化深さくh2ts)を測定した。第2図は
前記ブロックの断面の100倍第3表 の拡大写真であるが、その表面にサブスケールと一次ス
ケールを生じている。hlとh2はこの図に示すように
定義される。
A block treated in this way was exposed to air for 12 hours.
Surface oxidation depth after holding at 50℃ for 90 minutes (h + Homaro)
and the grain boundary oxidation depth (h2ts) were measured. FIG. 2 is a 100 times enlarged photograph of the cross section of the block shown in Table 3, showing that subscales and primary scales are formed on its surface. hl and h2 are defined as shown in this figure.

実験結果は第3図に示す、aの炭素粒を配置しない場合
はh 1= 0.41mm、 h 2 = 0.85m
−であるのに対して、bの場合はh 、 =0.08m
m、  h 2= 0.22■であり、単に炭素粒を配
置することにより、表面および粒界酸化深さが約175
に低減することが認められた。さらに、Cのように炭素
粒を薄鋼板により覆った場合には、h、=0.02m層
、h2=0.05m層であり、酸化深さは約1/10に
減少し、酸化防止に関してbの場合よりさらに効果があ
ることが確認された。
The experimental results are shown in Figure 3. When carbon grains a are not arranged, h 1 = 0.41 mm, h 2 = 0.85 m
-, whereas in the case of b, h = 0.08m
m, h2 = 0.22■, and by simply arranging carbon grains, the surface and grain boundary oxidation depth is approximately 175
It was observed that the Furthermore, when the carbon grains are covered with a thin steel plate as shown in C, h = 0.02 m layer, h2 = 0.05 m layer, the oxidation depth is reduced to about 1/10, and the oxidation prevention is It was confirmed that this method was even more effective than case b.

これらの結果より明らかなように、被加熱鋼材の表面も
しくはその近傍に固体炭素粒を配置することにより、表
面酸化および粒界酸化は、顕著に防止される。特に炭素
の燃焼によって発生する一酸化および二酸化炭素を鋼材
表面に滞留させ、その保護効果を増進すために薄鋼板で
被加熱鋼材を包囲することが有効である。
As is clear from these results, surface oxidation and grain boundary oxidation are significantly prevented by arranging solid carbon grains at or near the surface of the heated steel material. In particular, it is effective to surround the steel material to be heated with a thin steel plate in order to retain monoxide and carbon dioxide generated by the combustion of carbon on the surface of the steel material and to enhance the protective effect thereof.

〈実施例〉 第2表に示す3ヒートの組成の高Ni合金鋼スラブ(厚
み200mmX幅i ooo腸−X長さ7000 mm
)の表面に、本発明方法に従って、第4図に示すように
2〜5■の炭素粒Cを配置し、板厚0゜5mmの樋状に
折った鋼板Sで全体を覆い、この薄鋼板の覆いの継目を
溶接した。このように処訂したスラブ8本と無処置のス
ラブ3本を、ウオーキングビーム式加熱炉に装入して1
250℃に2時間保持後、熱間圧延を行ない、熱延コイ
ル(厚み5鵬腸×幅1000+u+)を製造した。この
ようにして得られた熱延コイルの表面疵の発生状況を調
査し、本発明例と比較例を比較した。なお、表面疵につ
いては、各供試材コイルを巻戻して、熱延コイル表裏面
の目視観察を行ない、105m2当りの表面疵発生数に
より次のランク分けを行なった。
<Example> High Ni alloy steel slab with the composition of 3 heats shown in Table 2 (thickness 200 mm x width i ooo intestine - x length 7000 mm
), according to the method of the present invention, 2 to 5 cm of carbon grains C are arranged as shown in Figure 4, and the whole is covered with a steel plate S having a thickness of 0.5 mm and folded into a gutter shape. The seams of the cover were welded. Eight slabs treated in this way and three untreated slabs were charged into a walking beam heating furnace.
After holding at 250° C. for 2 hours, hot rolling was performed to produce a hot rolled coil (thickness: 5 mm x width: 1000 mm). The occurrence of surface flaws in the hot-rolled coil thus obtained was investigated, and the inventive example and the comparative example were compared. Regarding surface flaws, each test material coil was rewound, and the front and back surfaces of the hot-rolled coil were visually observed, and the following ranking was performed based on the number of surface flaws generated per 105 m2.

A:   10m層2当りの表面疵 0−10個B: 
          10〜30個C:     ” 
   30〜50個D:  り          5
0個以上」二記調査結果を第3表に示す0表に見られる
通り、比較例はいずれもDランクであるのに対し、本発
明例は、はどんどAランクであることから、本発明方法
の有効性が実証される。
A: 0-10 surface flaws per 10m layer 2 B:
10-30 pieces C: ”
30-50 pieces D: Ri 5
As can be seen in Table 3, which shows the survey results of 0 or more pieces, all of the comparative examples are ranked D, whereas the examples of the present invention are ranked A. Therefore, the present invention The effectiveness of the method is demonstrated.

〈発明の効果〉 以−L述べたように1本発明方法は被加熱鋼材表面もし
くは、その近傍に固体炭素を存在させる簡単な手段で、
鋼材の表面酸化および粒界酸化による熱延板の表面欠陥
の大幅な低減を達成し、熱延鋼板の歩留向上、品質向上
に大きく寄与でき、その工業的価値はなはだ大である。
<Effects of the Invention> As stated above, the method of the present invention is a simple means of causing solid carbon to exist on or near the surface of the steel material to be heated.
It has achieved a significant reduction in surface defects in hot-rolled sheets due to surface oxidation and grain boundary oxidation of steel materials, and can greatly contribute to improving the yield and quality of hot-rolled steel sheets, and its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

ワ 第1@a、b、cは鋼材表面に炭素粒子を配置する状況
を示す斜視図である。 第2図は加熱した鋼材の断面の100倍の拡大写真で、
スケールの発生状況と「酸化深さ」の定義を示す。 第3図は第1図に示す種々の炭素配置条件に相出する醸
化深さを比較して示すグラフである。 第4図は本発明の好適実施態様における炭素粒配置およ
び覆いの状況を示す斜視図である。
Figures 1A, 1B, and 1C are perspective views showing the state in which carbon particles are arranged on the surface of a steel material. Figure 2 is a 100x enlarged photograph of the cross section of the heated steel material.
The situation of scale occurrence and the definition of "oxidation depth" are shown. FIG. 3 is a graph showing a comparison of the fermentation depths that occur under the various carbon arrangement conditions shown in FIG. 1. FIG. 4 is a perspective view showing the arrangement and covering of carbon grains in a preferred embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、鋼材を加熱する際に、鋼材の表面またはその近傍に
固体炭素を配置し、730℃以上に加熱することを特徴
とする酸化防止法。 2、特許請求の範囲第1項記載の酸化防止法であって粒
状炭素を使用することを特徴する方法。 3、鋼材を加熱する際に、鋼材の表面またはその近傍に
固体炭素を配置し、さらに発生する一酸化炭素および二
酸化炭素をその近傍に滞留させるように適当な材料で覆
い、730℃以上に加熱することを特徴とする酸化防止
法。 4、特許請求の範囲第2項記載の酸化防止法であって粒
状炭素を使用することを特徴する方法。
[Claims] 1. An oxidation prevention method characterized by placing solid carbon on or near the surface of the steel material and heating it to 730°C or higher when heating the steel material. 2. The method for preventing oxidation according to claim 1, characterized in that granular carbon is used. 3. When heating steel materials, place solid carbon on or near the surface of the steel material, cover it with an appropriate material so that the generated carbon monoxide and carbon dioxide stay in the vicinity, and heat it to 730°C or higher. An antioxidant method characterized by: 4. The method for preventing oxidation according to claim 2, characterized in that granular carbon is used.
JP15240885A 1985-07-12 1985-07-12 Method for inhibiting oxidation of steel material during heating Pending JPS6213520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15240885A JPS6213520A (en) 1985-07-12 1985-07-12 Method for inhibiting oxidation of steel material during heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15240885A JPS6213520A (en) 1985-07-12 1985-07-12 Method for inhibiting oxidation of steel material during heating

Publications (1)

Publication Number Publication Date
JPS6213520A true JPS6213520A (en) 1987-01-22

Family

ID=15539856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15240885A Pending JPS6213520A (en) 1985-07-12 1985-07-12 Method for inhibiting oxidation of steel material during heating

Country Status (1)

Country Link
JP (1) JPS6213520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170137164A (en) 2015-04-15 2017-12-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997736A (en) * 1973-01-23 1974-09-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997736A (en) * 1973-01-23 1974-09-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170137164A (en) 2015-04-15 2017-12-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4411069B2 (en) Continuous casting of electromagnetic strips using controlled spray cooling.
JP4813123B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
JPS6213520A (en) Method for inhibiting oxidation of steel material during heating
JPS6160895B2 (en)
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JP2705461B2 (en) Method of manufacturing cold rolled steel strip with excellent workability
US2050408A (en) Process of treating magnetic material
JP3839090B2 (en) Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance
JP3546617B2 (en) Manufacturing method of steel sheet with excellent surface properties
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
US604195A (en) Process of and apparatus for manufacturing tin-plate
JPH01219128A (en) Manufacture of thin scale hot rolled steel sheet
JPH10219358A (en) Production of hot rolled steel sheet from thin cast slab for stainless steel and apparatus therefor
JPH0232332B2 (en)
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPS6324052B2 (en)
JP3583268B2 (en) Stainless steel strip excellent in surface gloss and method for producing the same
JPS6077921A (en) Production of hot-rolled steel plate having high adhesion to scale
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPS6013048B2 (en) Cooling method for hot-rolled steel coils
JPS61204319A (en) Method for continuously annealing cold rolled steel sheet for drawing
JPS6013049B2 (en) Cooling method for hot-rolled steel coils
JPH0336214A (en) Method for continuously annealing non-oriented electrical steel sheet
RU2178005C1 (en) Method of heat treatment of anisotropic electrical steel in bell-type furnace
CN117821724A (en) High-temperature annealing process and manufacturing method for high-magnetic-induction oriented silicon steel and high-magnetic-induction oriented silicon steel