WO2023121164A1 - Modified cross-section polyethylene yarn, and functional fabric comprising same - Google Patents

Modified cross-section polyethylene yarn, and functional fabric comprising same Download PDF

Info

Publication number
WO2023121164A1
WO2023121164A1 PCT/KR2022/020674 KR2022020674W WO2023121164A1 WO 2023121164 A1 WO2023121164 A1 WO 2023121164A1 KR 2022020674 W KR2022020674 W KR 2022020674W WO 2023121164 A1 WO2023121164 A1 WO 2023121164A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
fabric
polyethylene
section
cross
Prior art date
Application number
PCT/KR2022/020674
Other languages
French (fr)
Korean (ko)
Inventor
박정은
이영수
김성용
이신호
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2023121164A1 publication Critical patent/WO2023121164A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments

Definitions

  • the present invention relates to a modified cross-section polyethylene yarn and a functional fabric including the same, and more particularly, to a modified cross-section polyethylene yarn and a functional fabric including the same, capable of producing a fabric having coolness and quick-drying ability.
  • the textile industry is researching not only the improvement of polymers constituting fibers but also the differentiation of yarn cross-sections as part of the development of differentiated materials with high added value.
  • the differentiation of yarn cross section is highly effective in terms of improvement of fiber properties compared to investment time and cost, and research is being actively conducted.
  • the conventional deformed cross-section yarn has a disadvantage in that it has a poor water absorption rate compared to cotton yarn and does not sufficiently absorb sweat or breath excreted by a user wearing a product (fabric) manufactured from the deformed cross-section yarn.
  • products manufactured from conventional shaped cross-section yarns have a problem in that, as the moisture absorption rate is low, the amount of moisture discharged to the outside is also small, making it difficult for the wearer to feel comfortable.
  • products manufactured from conventional shaped cross-section yarns can generate heat from the skin by increasing the coefficient of friction between the fabric and the skin when the human body is active due to moisture that is not discharged to the outside.
  • conventional cross-section yarns are mostly polyester yarns, and as described above, there is no cooling sensation compared to conventional polyethylene fibers. Accordingly, there is a disadvantage in that the wearer may rather cause discomfort as the wearer feels more heat and discharges a large amount of sweat.
  • An object of the present invention is to provide a modified cross-section polyethylene yarn capable of producing a fabric having coolness and sweat perspiration and quick drying ability, and a functional fabric including the same.
  • the polyethylene yarn according to the present invention contains a filament including a core and two or more protrusions protruding from the core, based on a cross section perpendicular to the longitudinal direction, and has a crystallinity of 56 to 85%.
  • the first radius (R1) of the inscribed circle formed by the core body in the core body, and the core body and the protrusion are formed
  • the second radius R2 of the circumscribed circle may satisfy the following equation.
  • the yarn may have a melt index (MI, @190 °C) of 1 to 25 g / 10 min measured at 190 ° C. 2.16 kg according to ASTM D1238.
  • MI melt index
  • the yarn may have a polydispersity index (PDI) of 5 to 30.
  • PDI polydispersity index
  • the yarn may have a strength of 5 to 10 g / d as measured by ASTM D2256.
  • the functional fabric according to the present invention includes the above-described polyethylene yarn.
  • the fabric is 20 ⁇ 2 °C, 65 ⁇ 2% RH, by contacting a hot plate (T-box) of 30 ⁇ 2 °C to the fabric of 20 ⁇ 2 °C
  • the measured contact cooling (Q-max) may be 0.1 to 0.5 W/cm 2 .
  • the fabric may have a heat flux of 95 to 150 W/m 2 measured at 20 ⁇ 2° C. and 65 ⁇ 2% RH.
  • the fabric may have a moisture absorption rate of 80 to 160 mm/10 min by the B method of KS K 0642 8.26.
  • the fabric may have a moisture drying rate of 20 to 50 mm/10 min according to the KS K 0642 8.25 A method.
  • the sweat perspiration and quick-drying product according to the present invention is manufactured from the functional fabric described above.
  • the modified cross-section polyethylene yarn according to the present invention moisture can move and discharge quickly, and as it has excellent thermal conductivity, it is possible to manufacture a fabric having sweat perspiration, quick drying, and coolness at the same time.
  • the functional fabric according to the present invention includes a polyethylene yarn having excellent thermal conductivity and sweat perspiration and quick drying ability, so it has coolness and sweat perspiration and quick drying ability, quickly discharges moisture generated by sweat, moisture and breath, and heat can be released to the outside, thereby reducing the feeling of dampness and feeling of heat, thereby providing a sense of comfort to the user.
  • FIG. 1 is a cross-sectional view of a filament of a modified cross-section polyethylene yarn according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a filament of a modified cross-section polyethylene yarn according to a second embodiment of the present invention.
  • Figure 3 is a schematic diagram schematically showing a device for measuring the contact coolness of the fabric.
  • Figure 4 is a photograph showing a thermal mannequin experiment for measuring the heat flux of the fabric.
  • Figure 5 is an optical microscope picture showing an enlarged cross-section of the filament of the hetero-shaped cross-section polyethylene yarn shown in Figure 1.
  • weight% or ratio means weight% or weight ratio, and unless otherwise defined, weight% is any one component of the entire composition It means the weight percent occupied in the composition.
  • numerical ranges include lower and upper limits and all values within that range, increments logically derived from the shape and breadth of the defined range, all values defined therebetween, and the upper limit of the numerical range defined in a different form. and all possible combinations of lower bounds. Unless otherwise specifically defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • Sweat perspiration and quick drying refers to quickly absorbing and drying moisture such as sweat, moisture, and breath, and is required in various fields to provide comfort to the human body, such as sportswear, work clothes, and masks.
  • the cross-section of the filaments constituting the yarn is demolded to form voids in the yarns composed of filament bundles, and the yarns are given absorbent and quick-drying properties through capillarity caused by microvoids formed between the filaments.
  • the conventional deformed cross-section yarn has a disadvantage in that it has a poor water absorption rate compared to cotton yarn and does not sufficiently absorb sweat or breath excreted by a user wearing a product (fabric) manufactured from the deformed cross-section yarn.
  • products manufactured from conventional shaped cross-section yarns have a problem in that, as the moisture absorption rate is low, the amount of moisture discharged to the outside is also small, making it difficult for the wearer to feel comfortable.
  • products manufactured from conventional shaped cross-section yarns can generate heat from the skin by increasing the coefficient of friction between the fabric and the skin when the human body is active due to moisture that is not discharged to the outside.
  • conventional cross-section yarns are mostly polyester yarns, and as described above, there is no cooling sensation compared to conventional polyethylene fibers. Accordingly, there is a disadvantage in that a user wearing a product manufactured from a conventional cross-section yarn may rather cause discomfort as the user feels more heat and discharges a large amount of sweat.
  • the present applicant has conducted in-depth research for a long period of time to develop a high value-added yarn that can simultaneously have excellent sweat-absorbing and quick-drying performance and coolness. It was discovered that it was possible to manufacture a product capable of providing a very good feeling of comfort when worn by a user by providing a cooling sensation unique to polyethylene, and as a result of intensifying research on this, the present invention was completed.
  • the polyethylene yarn of the present invention contains a filament comprising a core body and two or more projections protruding from the core body, based on a cross section perpendicular to the longitudinal direction, and has a crystallinity of 56 to 85%, specifically 60 to 85%, More specifically, it may be 65 to 75%.
  • Such a polyethylene yarn has a structure in which a plurality of filaments having a specific cross-section are bundled, and due to the cross-sectional structure of the filaments, fine voids are formed between the filaments in the yarn, and moisture is generated by capillarity caused by the fine voids. Absorption and discharge of can be performed smoothly.
  • it has excellent thermal conductivity unique to polyethylene, it is possible to manufacture a fabric having sweat perspiration, quick drying and coolness at the same time.
  • 1 is a filament of a polyethylene yarn according to an embodiment of the present invention is shown.
  • a polyethylene yarn includes a filament including a core body and two or more protrusions protruding from the core body, based on a cross section perpendicular to the longitudinal direction, and as described above, such a cross section is released. As the filaments are included, fine voids may be formed between the filaments in the yarn.
  • the filaments constituting the polyethylene yarn are non-porous, and pores may be formed in the polyethylene yarn only by spacing between the filaments. That is, the porosity of the polyethylene yarn may be formed by fine pores between the filaments.
  • the area occupied by the filament based on the cross section of the yarn measured along the outer shape of the yarn may be 50 to 99%, specifically 60 to 90%, and the area excluding this is the area where voids are formed in the yarn, and may be the cross-sectional porosity of the yarn.
  • the polyethylene yarn having a high porosity due to the fine pores formed between the filaments may maintain a high cooling sensation characteristic of polyethylene and at the same time rapidly absorb and dry moisture.
  • the centrosome may have various cross-sectional shapes such as polygons such as triangles, squares, and pentagons, ellipses, or circulars based on a cross section perpendicular to the longitudinal direction of the filaments, but preferably, as shown in FIG. 1, circular or It has a cross-sectional shape close to circular and can form an average radius length.
  • the radius formed by the center body means an inscribed circle of the filament.
  • the center body may have an elliptical shape based on a cross section perpendicular to the longitudinal direction of the filament.
  • the radius formed by the center body means the inscribed circle of the filament, but since the inscribed circle is an ellipse, it may be any one selected from the short radius and the long radius of the ellipse. Preferably, it may mean a long radius.
  • the protrusion is formed by protruding from the center body based on a cross section perpendicular to the longitudinal direction of the filament, and the filament including the protrusion has a shape in which the cross section perpendicular to the longitudinal direction is deformed.
  • fine voids are formed between the filaments, and a channel through which moisture can be absorbed through capillary action, that is, microchannels (micro voids) are formed.
  • microchannels micro voids
  • the projection is not limited as long as it protrudes from the center body, but may have a gently protruding end in a round shape.
  • the protrusion is not limited in size that can separate the filaments in the yarn to the extent that moisture can be absorbed through capillary action, that is, the length protruding from the core body.
  • the first radius R1 of the inscribed circle formed by the core body and the second radius R2 of the circumscribed circle formed by the core body and the protrusion are ) satisfies the following formula, which is advantageous in terms of water absorbing power by capillarity.
  • the length ratio occupied by one projection with respect to the circumference of the inscribed circle of the filament formed by the core body may be 10% or more, specifically 20 to 50%.
  • the length occupied by the projection means the length of an arc connecting both ends of the projection and each contact point of the inscribed circle in the circumference of the inscribed circle. Specifically, in Figure 1, can mean
  • Two or more protrusions may be provided.
  • the central body is circular, it is provided in three, so that the cross section of the filament perpendicular to the longitudinal direction is formed in a three-lobed shape, so that the size of the microchannel can be easily adjusted by adjusting the length of the inscribed circle and the circumscribed circle.
  • the centrosome when the centrosome is elliptical, it may be advantageous in controlling the size of the microchannel that the filament is provided in four, and the cross section of the filament perpendicular to the longitudinal direction is formed in a quadrangular shape.
  • the protrusions may be arranged at equal intervals from each other along the circumferential direction of the centrosome, but are not limited thereto. For example, as shown in FIG. 1, when three protrusions are provided, they may be arranged at equal intervals along the circumferential direction of the center body, but, on the other hand, when two protrusions are provided, the protrusions are biased to one side of the center body. can be located.
  • a pair of protrusions may be arranged symmetrically with each other based on the elliptical center body.
  • the area ratio occupied by the protrusions with respect to the entire area of one surface of the core body on which the protrusions are formed is preferably 60% or more, specifically 80 to 100%.
  • 100% means that the protrusions are continuously formed on the entire area of one surface of the centrosome.
  • the ends of adjacent protrusions are located in contact with each other, and based on a cross section perpendicular to the longitudinal direction of the filament, the filament cross-sectional shape may be a wave along the circumferential direction of the filament.
  • Such a polyethylene yarn is a bundle of a plurality of filaments having a release cross section as described above, and the area occupied by the filaments based on the cross section perpendicular to the longitudinal direction is 70 to 99%, more specifically 80 to 95%.
  • the area other than the area occupied by the filaments may refer to an area occupied by the micropores or an area formed by the microchannels. Within the above range, the microchannel may have sufficient water absorption and discharge capabilities.
  • a polyethylene yarn may include multiple filaments.
  • the yarn is not limited as long as the number of filaments capable of forming fine pores.
  • the polyethylene yarn may include 40 to 500 filaments each having a fineness of 1 to 3 denier, and may have a total fineness of 100 to 1,000 denier.
  • the polyethylene yarn may have a density of 0.90 to 0.99 g/cm 3 , or 0.93 to 0.97 g/cm 3 .
  • the polyethylene yarn may have a crystallinity of 56 to 85%, specifically 60 to 85%, and more specifically 65 to 75% through spinning, and may exhibit a uniform crystallinity from the center to the outer edge of the polyethylene yarn.
  • the crystallinity of the polyethylene yarn may be derived together with the crystallite size during crystallinity analysis using an X-ray diffractometer.
  • the polyethylene yarn according to one embodiment is hollow, has a higher crystallinity per unit volume than the hollow yarn, and can contain more crystal parts when the yarn has substantially the same thickness, which is the object of the present invention Fabrics having excellent coolness can be manufactured.
  • the polyethylene yarn has a melt index (MI, @190 °C) measured at 190 °C 2.16 kg according to ASTM D1238, 1 to 25g / 10min, specifically, 3 to 15g / 10min, more specifically, It may be 5 to 10g/10min, but is not limited thereto. However, it may have relatively excellent strength within the above range.
  • MI melt index
  • the polydispersity index of the polyethylene yarn may be 5 to 30, specifically 10 to 20.
  • the strength measured according to ASTM D2256 may be 5 to 10 g/d, specifically 6 to 9 g/d, and more specifically, 7 to 8 g/d. It may have high thermal conductivity in the above range and at the same time have appropriate stiffness advantageous to weaving.
  • the polyethylene yarn of the present invention is not limited to its manufacturing method as long as it satisfies the above ranges of physical properties such as PDI, strength and elongation, and the following will describe one aspect.
  • a polyethylene melt is obtained by introducing polyethylene in the form of a chip into an extruder 100 and melting it.
  • Molten polyethylene is carried through the nozzle 100 by a screw (not shown) in the extruder 100 and is extruded through a plurality of holes formed in the nozzle 200 .
  • the number of holes of the spinneret 200 may be determined according to the Denier Per Filament (DPF) and fineness of the yarn to be manufactured. For example, when manufacturing a yarn having a total fineness of 75 denier, the nozzle 200 may have 20 to 75 holes, and when manufacturing a yarn having a total fineness of 450 denier, the nozzle 200 It may have 90 to 450 holes, preferably 100 to 400 holes.
  • DPF Denier Per Filament
  • the melting process in the extruder 100 and the extrusion process through the nozzle 200 can be changed according to the melt index of the polyethylene chip, but specifically, for example, 150 to 315 ° C, preferably 250 to 315 °C, more preferably at 265 to 310 °C. That is, it is preferable that the extruder 100 and the cap 200 be maintained at 150 to 315°C, preferably 250 to 315°C, and more preferably 265 to 310°C.
  • the spinning temperature is less than 150° C.
  • the spinning may be difficult because the polyethylene is not uniformly melted due to the low spinning temperature.
  • the spinning temperature exceeds 315 ° C., thermal decomposition of polyethylene may occur, and thus desired strength may not be expressed.
  • the plurality of filaments 11 are completely solidified by being cooled in a cooling unit (or "quenching zone") 300 . Cooling of the filaments 11 may be performed by air cooling.
  • the cooling of the filaments 11 in the cooling unit 300 is preferably performed to be cooled to 15 to 40° C. using a cooling wind having a wind speed of 0.2 to 1 m/sec. If the cooling temperature is less than 15 ° C, elongation may be insufficient due to supercooling and thread breakage may occur during the stretching process, and if the cooling temperature exceeds 40 ° C, the fineness deviation between the filaments 11 increases due to uneven solidification, rejection may occur.
  • the cooling unit may be divided into two or more sections. For example, when it consists of three cooling sections, it is preferable to design such that the temperature gradually decreases from the first cooling section to the third cooling section.
  • the first cooling unit may be set to 40 to 80°C
  • the second cooling unit may be set to 30 to 50°C
  • the third cooling unit may be set to 15 to 30°C.
  • the first cooling unit may use cooling wind at a speed of 0.8 to 1 m/sec, the second cooling unit at 0.4 to 0.6 m/sec, and the third cooling unit at a wind speed of 0.2 to 0.5 m/sec. is higher, and a yarn with a smoother surface can be produced.
  • the multifilaments 10 are formed by concentrating the cooled and completely solidified filaments 11 with a collimator 400 .
  • the polyethylene yarn of the present invention can be produced through a direct spinning stretching (DSD) process. That is, the multifilament 10 is directly transferred to the multi-stage stretching unit 500 including the plurality of godet roller units GR1 ... GRn and multi-stage stretching at a total stretching ratio of 2 to 20, preferably 3 to 15 times. After being, it can be wound around the winder 600.
  • DMD direct spinning stretching
  • the polyethylene yarn of the present invention may be produced by first winding the multifilament 10 as an undrawn yarn and then drawing the undrawn yarn. That is, the polyethylene yarn of the present invention may be manufactured through a two-step process of first preparing an undrawn yarn by melt-spinning polyethylene and then drawing the undrawn yarn.
  • the finally obtained polyethylene yarn cannot have a crystallinity of 56% or more and 60% or more, and there is a risk of causing fluff (pilling) on the fabric made of the yarn.
  • the total draw ratio of 2 to 20, preferably 3 to 15 in the multi-stage stretching unit 500 is the multi-stage stretching unit 500.
  • the linear speed of the remaining godet roller portions is appropriately determined so as to be applied to the filament 10 .
  • the temperature of the godet roller parts (GR1 ... GRn) of the multi-stage stretching unit 500 is appropriately set in the range of 40 to 140 ° C. Heat-setting of the yarn may be performed.
  • the multi-stage stretching unit may be composed of 3 or more, specifically 3 to 5 stretching sections.
  • each stretching section may be composed of several godet roller parts.
  • the multi-stage stretching unit may be composed of four stretching sections, and after stretching at a total stretching ratio of 7 to 15 times in the first to third stretching sections, 1 to 3% contraction stretching in the fourth stretching section. It may be to perform (relaxation).
  • the total draw ratio refers to the final draw ratio of fibers that have passed through the third drawing section from the first drawing section compared to the fibers before drawing.
  • the first stretching section may be performed at 40 to 130 ° C., and the total stretching ratio may be 2 to 5 times.
  • the second stretching section may be performed at a higher temperature than the first drawing section, specifically at 100 to 150° C., and may be stretching so that the total stretching ratio is 5 to 8 times.
  • the third stretching section may be carried out at 100 to 150 ° C., and may be stretching so that the total stretching ratio is 7 to 15 times.
  • the fourth stretching section may be performed at a temperature equal to or lower than that of the second drawing section, and may be specifically performed at 80 to 140° C., and 1 to 3% contraction stretching (relaxation) may be performed.
  • Multi-stage stretching and heat setting of the multi-filament 10 are simultaneously performed by the multi-stage stretching unit 500, and the multi-stage stretching multi-filament 10 is wound around the winder 600, thereby completing the polyethylene yarn of the present invention.
  • the functional fabric according to the present invention includes the above-described polyethylene yarn, and has excellent thermal conductivity and sweat perspiration and quick-drying ability, as it includes polyethylene yarn, and has a cool feeling and sweat perspiration and quick-drying ability. Moisture can be drained quickly. When a user wears a product made of such a fabric, moisture and heat can be quickly released to the outside, thereby reducing a damp feeling and a feeling of heat, thereby providing a pleasant feeling to the user.
  • the functional fabric according to the present invention may be one using the above-described polyethylene yarn alone, and may further include heterogeneous yarns to further impart other functionalities, but from the viewpoint of having better coolness and quick-drying ability at the same time. In, it is preferable to use the polyethylene yarn alone.
  • the functional fabric may have a contact cooling sensation of 0.1 to 0.5 W/cm 2 , more specifically 0.15 to 0.3 W/cm 2 measured at 20 ⁇ 2° C. and 65 ⁇ 2% RH.
  • the functional fabric may have a heat flux of 95 to 150W/m 2 , specifically, 100 to 120W/m 2 measured at 20 ⁇ 2° C. and 65 ⁇ 2% RH.
  • the functional fabric may have a water absorption rate of 80 to 160 mm / 10 min, specifically, 100 to 130 mm / 10 min according to the B-birec method of KS K 0642 8.26.
  • Such a functional fabric has a higher moisture absorption rate than cotton yarn having a moisture absorption rate of around 50 mm/10 min under the same conditions, and has a very excellent moisture absorption capacity.
  • the functional fabric has a relatively fast moisture drying rate of 20 to 50 mm/10 min, specifically 30 to 40 mm/10 min according to the KS K 0642 8.25 A method, and the moisture can be smoothly discharged.
  • the functional fabric exhibiting a fast moisture absorption rate and a moisture drying rate is very excellent in sweat perspiration and quick drying ability to quickly absorb and discharge moisture such as sweat, moisture, and breath.
  • the functional fabric may be a woven or knitted fabric having a weight per unit area (ie, areal density) of 150 to 800 g/m 2 . If the areal density of the fabric is less than 150 g/m 2 , the denseness of the fabric is insufficient and many voids exist in the fabric, and these voids reduce the coolness of the fabric. On the other hand, when the areal density of the fabric exceeds 800 g/m 2 , the fabric becomes stiff due to an overly dense fabric structure, problems occur in the tactile feeling experienced by the user, and problems in use are caused due to the high weight.
  • areal density of the fabric is less than 150 g/m 2 , the denseness of the fabric is insufficient and many voids exist in the fabric, and these voids reduce the coolness of the fabric.
  • the areal density of the fabric exceeds 800 g/m 2 , the fabric becomes stiff due to an overly dense fabric structure, problems occur in the tactile feeling experienced by the user, and problems in use are caused due to the high weight
  • Such a fabric can be processed into a sweat-absorbing and quick-drying product requiring both sweat-absorbing and quick-drying properties and coolness.
  • the product may be any conventional textile product, but preferably may be summer summer clothes, sportswear, masks, and work clothes for imparting coolness and quick-drying performance to the human body.
  • the weight average molecular weight (Mw) and polydispersity index (Mw/Mn: PDI) of the polyethylene yarn were obtained using the following gel permeation chromatography (GPC), respectively.
  • strain-stress curves of polyethylene yarns were obtained using a universal tensile tester manufactured by Instron Engineering Corp., Canton, Mass.
  • the sample length was 250 mm
  • the tensile speed was 300 mm/min
  • the initial load was set to 0.05 g/d.
  • the strength (g/d) was obtained from the stress and elongation at the breaking point. After measuring 5 times for each yarn, the average value was calculated.
  • the crystallinity of the polyethylene yarn was measured using an XRD device (X-ray Diffractometer) [manufacturer: PANalytical, model name: EMPYREAN]. Specifically, a sample having a length of 2.5 cm was prepared by cutting a polyethylene yarn, and the sample was fixed to a sample holder and then measured under the following conditions.
  • XRD device X-ray Diffractometer
  • the contact cooling (Q max) of the fabric was measured using a KES-F7 THERMO LABO II (Kato Tech Co., Ltd.) device in a test environment of 20 ⁇ 2 ° C. and 65 ⁇ 2% RH.
  • the fabric sample 23 is placed on a base plate (also referred to as a 'Water-Box') 21 maintained at 20 ° C, and the fabric sample 23 is heated to 30 ° C.
  • a male thermal mannequin was placed in the center of an artificial climate room at 20 ⁇ 2° C. and 65 ⁇ 2% R.H. Then, after setting the thermal mannequin temperature to 33.7 ° C., power was supplied to heat the thermal mannequin.
  • test pieces After preparing three test pieces with a size of 4 cm ⁇ 4 cm, they were immersed in distilled water at 20 ⁇ 2 ° C in an open state to sufficiently absorb moisture into the test pieces. Then, when the water droplets no longer fall after being taken out of the distilled water, it is attached to a drying time measuring device and left in the test room under conditions of 20 ⁇ 2 ° C and 65 ⁇ 2% R.H. The time from natural drying to constant weight was measured.
  • a polyethylene yarn containing 200 filaments and having a total fineness of 150 denier was prepared.
  • the filaments 11 formed while being discharged from the nozzle holes of the nozzle 200 are cooled to 50° C. by a cooling wind at a wind speed of 0.9 m/sec in the first cooling unit and at a wind speed of 0.5 m/sec in the second cooling unit. It was cooled to 35 ° C by the cooling wind of , and finally cooled to 25 ° C by the cooling wind of 0.4 m / sec wind speed in the third cooling unit. After cooling, it was collected into a multifilament yarn by a collimator.
  • the stretching unit is composed of a multi-stage stretching unit consisting of four sections. Specifically, the first stretching section is stretched at a maximum stretching temperature of 80 ° C. and the total stretching ratio is 3 times, and the second stretching section is at a maximum stretching temperature of 120 ° C. and the total stretching ratio is 7 times. The third stretching section is stretched at a maximum stretching temperature of 130 ° C and the total stretching ratio is 10 times, and the fourth stretching section is 2% shrinkage (relaxation) compared to the third stretching section at a maximum stretching temperature of 120 ° C. Stretching and heat Fixed.
  • the stretched multifilament yarn was wound around the winder 600 .
  • the winding tension was 0.8 g/d.
  • FIG. 5 A cross-sectional optical micrograph of the prepared yarn is shown in FIG. 5, and the physical properties of the prepared yarn are measured and shown in Table 1 below.
  • a functional fabric having an areal density of 500 g/m 2 was prepared by weaving the prepared polyethylene yarn.
  • the physical properties of the prepared functional fabric were measured and shown in Table 3 below.
  • a fabric was prepared in the same manner as in Example 1, except that yarn conditions were changed as shown in Table 1 below.
  • the physical properties of the fabric prepared in the same manner as in Example 1 were measured and are shown in Table 3 below.
  • Example 1 yarn and fabric were prepared in the same manner as in Example 1, except that a ">- ⁇ " type nozzle was used as the nozzle nozzle.
  • the physical properties of the prepared yarns and fabrics were measured and shown in Tables 1 and 3 below.
  • Example 1 yarn and fabric were prepared in the same manner as in Example 1, except that a circular nozzle was used as the nozzle nozzle.
  • the physical properties of the yarn were shown in Table 2 below, and also, the physical properties of the fabric prepared in the same manner as in Example 1 were measured and shown in Table 4 below.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • TiO 2 titanium dioxide
  • Example 1 a yarn was prepared in the same manner as in Example 1, except that the stretching process of the polyethylene yarn was changed from multi-stage stretching to single stretching so that the crystallinity satisfies Table 2 below, and the physical properties of the fabric were measured. It is shown in Table 4 below.
  • Example 1 except for changing the cooling process of the polyethylene yarn from multi-stage cooling to single cooling (cooling to 25 ° C. by cooling wind at a wind speed of 0.5 m / sec) so that the crystallinity satisfies Table 2 below, Example Yarn was prepared in the same manner as in 1, and the physical properties of the fabric were measured and shown in Table 4 below.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Properties of polyethylene yarn PDI 9.82 10.11 10.23 9.74 9.88 9.71 Mw (g/mol) 311654 308542 313451 316321 309991 315642 Crystallinity (%) 75.2 75.7 74.1 74.9 75.3 75.1 melt index (g/10min) 10.1 9.8 11.2 10.5 10.4 10.5 Strength (g/d) 7.5 8.2 7.8 7.4 7.3 7.6 filament section shape three-lobed three-lobed three-lobed three-lobed three-lobed four-lobed R2/R1 ratio 2.81 3.10 2.12 2.24 2.79 2.36
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 yarn properties Material PE PET PET+TiO 2 PE PE Crystallinity (%) 75.2 48.7 48.7 55.1 55.7 Strength (g/d) 11.5 3.4 3.5 7.4 7.5 yarn cross section section shape circle three-lobed three-lobed three-lobed three-lobed section R2/R1 ratio - 1.65 1.78 1.98 1.91
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Physical properties of functional fabrics coldness to the touch (W/cm 2 ) 0.2 0.19 0.18 0.17 0.18 0.21 Heat flux (W/m 2 ) 115 102 107 114 109 114 Water absorption rate (mm/min) 125 108 107 115 112 127 Moisture drying speed (mm/min) 32 28 26 30 34 31
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Physical properties of functional fabrics Contact coolness (W/cm 2 ) 0.2 0.12 0.13 0.10 0.11 Heat flux (W/m 2 ) 114 80 90 87 85 water absorption rate (mm/min) 45 99 101 111 112 Moisture drying speed (mm/min) 11 24 27 30 25
  • the fabrics prepared from the yarns according to the embodiments of the present invention had high contact coolness and excellent sweat perspiration and quick drying performance. Through this, the fabric manufactured from the yarn according to the embodiment can provide significantly superior cooling sensation to the user.
  • the contact cooling sensation was similar to that of the examples, but the moisture absorption rate and the moisture drying rate were low, so the moisture was not quickly removed, and the cooling sensation felt by the user was poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The present invention relates to a modified cross-section polyethylene yarn and a functional fabric comprising same, and more specifically, to: a modified cross-section polyethylene yarn from which a fabric having coolness and quick moisture-wicking ability can be produced; and a functional fabric comprising same. The polyethylene yarn according to the present invention contains filaments comprising, along a cross-section perpendicular to the longitudinal direction, a core body and at least two protrusions protruding from the core body, and has a crystallinity of 56 to 85%.

Description

이형단면 폴리에틸렌 원사 및 이를 포함하는 기능성 원단Heterogeneous cross-section polyethylene yarn and functional fabric containing the same
본 발명은 이형단면 폴리에틸렌 원사 및 이를 포함하는 기능성 원단에 관한 것으로, 더 상세하게는 냉감성 및 흡한속건능을 가지는 원단 제조가 가능한, 이형단면 폴리에틸렌 원사 및 이를 포함하는 기능성 원단에 관한 것이다.The present invention relates to a modified cross-section polyethylene yarn and a functional fabric including the same, and more particularly, to a modified cross-section polyethylene yarn and a functional fabric including the same, capable of producing a fabric having coolness and quick-drying ability.
최근 섬유업계에서는 고부가가치를 가지는 차별화 소재의 개발 일환으로 섬유를 이루는 중합체의 개선뿐만 아니라 원사단면의 차별화 등을 연구하고 있다. 그 중, 원사단면의 차별화는 투자시간 및 비용 대비 섬유 물성의 개량 측면에서 효과가 커 연구가 활발히 진행되고 있다.Recently, the textile industry is researching not only the improvement of polymers constituting fibers but also the differentiation of yarn cross-sections as part of the development of differentiated materials with high added value. Among them, the differentiation of yarn cross section is highly effective in terms of improvement of fiber properties compared to investment time and cost, and research is being actively conducted.
한편, 최근 생활수준이 향상되며, 건강한 자기관리를 위해 나이불문하고 전 세대에서 다양한 스포츠 활동을 하고 있다. 이에, 스포츠 웨어의 수요가 늘어남에 따라 다양한 스포츠 웨어 개발이 활발히 이루어지고 있는 실정이다. 특히, 경량성과 통기성 같은 기능성을 결합해 가벼운 트레킹부터 액티브한 스포츠 활동까지 폭넓게 활용할 수 있는 스포츠 웨어용 섬유소재의 개발이 절실하게 요구되고 있다.On the other hand, the standard of living has recently improved, and various sports activities are being performed by all generations regardless of age for healthy self-management. Accordingly, as the demand for sportswear increases, the development of various sportswear is being actively performed. In particular, there is an urgent need to develop textile materials for sportswear that can be widely used from light trekking to active sports activities by combining functionality such as light weight and breathability.
이에, 대한민국 등록특허공보 제10-1808459호 '흡한속건성 및 내마모성이 우수한 폴리에스테르 이형단면사 및 그 제조방법' 및 대한민국 공개특허공보 제10-2011-0076122호 '우수한 흡한속건성 및 스트레치 특성을 갖는 폴리부틸렌테레프탈레이트 이형단면 섬유'가 개시되어 있다. 이와 같은 이형단면 섬유(사)는 원사를 이루는 필라멘트 단면을 이형화하여, 필라멘트 다발로 이루어진 원사 내 공극을 형성하고, 필라멘트 사이에 형성된 미세 공극에 의한 모세관 현상(미세공극을 통해 흡수속도를 빠르게 하고 물의 확산표면을 크게하는 것)을 통해 수분을 흡수하고 배출하도록 하였다. 즉, 원사 내 모세관현상을 이용하여 땀의 흡수와 발산을 빠르게 하는 기능, 즉, 흡한속건능을 부여하였다. Accordingly, Republic of Korea Patent Registration No. 10-1808459 'Polyester with excellent quick-drying and abrasion resistance and manufacturing method thereof' and Korean Patent Publication No. 10-2011-0076122 'Polyester having excellent sweat-absorbing and quick-drying properties and stretch properties' Butylene terephthalate hetero-shaped cross-section fibers' are disclosed. Such deformed cross-section fibers (yarns) release the cross-section of the filament constituting the yarn to form voids in the yarn composed of filament bundles, and capillary action (accelerating the absorption rate through the microvoids) due to the microvoids formed between the filaments. by increasing the diffusion surface of water) to absorb and release moisture. That is, by using the capillarity within the yarn, the function of speeding up the absorption and dissipation of sweat, that is, the sweat perspiration and quick-drying ability was given.
그러나, 종래 이형단면사는 면사에 비해 수분 흡수율이 좋지 못하며, 이형단면사로부터 제조된 제품(원단)을 착용한 사용자가 배출하는 땀 또는 입김을 충분히 흡수하지 못한다는 단점이 있다. 또한, 종래 이형단면사로부터 제조된 제품은 수분 흡수율이 낮음에 따라 외부로 배출되는 수분 역시 작아 실질적으로 착용자가 쾌적성을 느끼기 어렵다는 문제점이 있다. However, the conventional deformed cross-section yarn has a disadvantage in that it has a poor water absorption rate compared to cotton yarn and does not sufficiently absorb sweat or breath excreted by a user wearing a product (fabric) manufactured from the deformed cross-section yarn. In addition, products manufactured from conventional shaped cross-section yarns have a problem in that, as the moisture absorption rate is low, the amount of moisture discharged to the outside is also small, making it difficult for the wearer to feel comfortable.
또한, 종래 이형단면사로부터 제조된 제품은 외부로 배출되지 못한 수분에 의해 인체의 활동 시, 직물과 피부와의 마찰 계수를 증가시켜 피부에서 열을 발생시킬 수 있다. 나아가, 종래 이형단면사는 대부분 폴리에스터사로 상술한 바와 같이 기존 폴리에틸렌 섬유에 비해 냉감성이 없다. 이에, 착용자가 오히려 더욱 열감을 느끼며 다량의 땀을 더욱 배출함에 따라 오히려 불쾌감을 초래할 수 있다는 단점이 있다. In addition, products manufactured from conventional shaped cross-section yarns can generate heat from the skin by increasing the coefficient of friction between the fabric and the skin when the human body is active due to moisture that is not discharged to the outside. Furthermore, conventional cross-section yarns are mostly polyester yarns, and as described above, there is no cooling sensation compared to conventional polyethylene fibers. Accordingly, there is a disadvantage in that the wearer may rather cause discomfort as the wearer feels more heat and discharges a large amount of sweat.
이에, 빠르게 다량의 수분의 흡수 및 배출하며 냉감성을 가지는 새로운 섬유소재 개발이 더욱 필요한 실정이다. Accordingly, there is a further need to develop a new textile material that rapidly absorbs and discharges a large amount of moisture and has coolness.
본 발명의 목적은 냉감성 및 흡한속건능을 가지는 원단 제조가 가능한 이형단면 폴리에틸렌 원사 및 이를 포함하는 기능성 원단을 제공하는 것이다.An object of the present invention is to provide a modified cross-section polyethylene yarn capable of producing a fabric having coolness and sweat perspiration and quick drying ability, and a functional fabric including the same.
본 발명에 따른 폴리에틸렌 원사는 길이방향에 수직하는 단면을 기준으로, 중심체와, 상기 중심체에서 돌출된 두개 이상의 돌기를 포함하는 필라멘트를 함유하고, 결정화도가 56 내지 85% 이다.The polyethylene yarn according to the present invention contains a filament including a core and two or more protrusions protruding from the core, based on a cross section perpendicular to the longitudinal direction, and has a crystallinity of 56 to 85%.
본 발명의 일 실시예에 따른 폴리에틸렌 원사에 있어서, 상기 필라멘트의 길이방향에 수직하는 단면을 기준으로, 상기 중심체에서 상기 중심체가 형성하는 내접원의 제1반지름(R1)과, 상기 중심체와 돌기가 형성하는 외접원의 제2반지름(R2)는 하기 식을 만족할 수 있다.In the polyethylene yarn according to an embodiment of the present invention, based on the cross section perpendicular to the longitudinal direction of the filament, the first radius (R1) of the inscribed circle formed by the core body in the core body, and the core body and the protrusion are formed The second radius R2 of the circumscribed circle may satisfy the following equation.
[식][ceremony]
1.2 ≤ R2/R1 ≤ 5.01.2 ≤ R2/R1 ≤ 5.0
본 발명의 일 실시예에 따른 폴리에틸렌 원사에 있어서, 상기 원사는 ASTM D1238에 따라 190 ℃ 2.16 kg에서 측정되는 용융지수 (melt index: MI, @190℃)가 1 내지 25g/10min일 수 있다.In the polyethylene yarn according to one embodiment of the present invention, the yarn may have a melt index (MI, @190 °C) of 1 to 25 g / 10 min measured at 190 ° C. 2.16 kg according to ASTM D1238.
본 발명의 일 실시예에 따른 폴리에틸렌 원사에 있어서, 상기 원사는 다분산지수(Polydispersity Index, PDI)가 5 내지 30일 수 있다. In the polyethylene yarn according to an embodiment of the present invention, the yarn may have a polydispersity index (PDI) of 5 to 30.
본 발명의 일 실시예에 따른 폴리에틸렌 원사에 있어서, 상기 원사는 ASTM D2256으로 측정되는 강도가 5 내지 10g/d일 수 있다.In the polyethylene yarn according to an embodiment of the present invention, the yarn may have a strength of 5 to 10 g / d as measured by ASTM D2256.
본 발명에 따른 기능성 원단은 상술한 폴리에틸렌 원사를 포함한다.The functional fabric according to the present invention includes the above-described polyethylene yarn.
본 발명의 일 실시예에 따른 기능성 원단에 있어서, 상기 원단은 20±2 ℃, 65±2 % R.H에서, 20±2℃의 원단에 대해 30±2℃의 열판(T-box)을 접촉시켜 측정되는 접촉냉감(Q-max)이 0.1 내지 0.5W/cm2 일 수 있다.In the functional fabric according to an embodiment of the present invention, the fabric is 20 ± 2 ℃, 65 ± 2% RH, by contacting a hot plate (T-box) of 30 ± 2 ℃ to the fabric of 20 ± 2 ℃ The measured contact cooling (Q-max) may be 0.1 to 0.5 W/cm 2 .
본 발명의 일 실시예에 따른 기능성 원단에 있어서, 상기 원단은 20±2℃, 65±2% R.H에서 측정된 열유속(heat flux)이 95 내지 150W/m2일 수 있다.In the functional fabric according to an embodiment of the present invention, the fabric may have a heat flux of 95 to 150 W/m 2 measured at 20±2° C. and 65±2% RH.
본 발명의 일 실시예에 따른 기능성 원단에 있어서, 상기 원단은 KS K 0642 8.26의 B법 바이렉법에 의한 수분 흡수속도가 80 내지 160mm/10min 일 수 있다.In the functional fabric according to an embodiment of the present invention, the fabric may have a moisture absorption rate of 80 to 160 mm/10 min by the B method of KS K 0642 8.26.
본 발명의 일 실시예에 따른 기능성 원단에 있어서, 상기 원단은 KS K 0642 8.25 A법에 의한 수분 건조속도가 20 내지 50mm/10min일 수 있다.In the functional fabric according to an embodiment of the present invention, the fabric may have a moisture drying rate of 20 to 50 mm/10 min according to the KS K 0642 8.25 A method.
본 발명에 따른 흡한속건 제품은 상술한 기능성 원단으로부터 제조된 것이다.The sweat perspiration and quick-drying product according to the present invention is manufactured from the functional fabric described above.
본 발명에 따른 이형단면 폴리에틸렌 원사는 수분이 빠르게 이동 및 배출할 수 있으며, 우수한 열전도도를 가짐에 따라, 흡한속건 및 냉감성을 동시에 가지는 원단의 제조가 가능하다.According to the modified cross-section polyethylene yarn according to the present invention, moisture can move and discharge quickly, and as it has excellent thermal conductivity, it is possible to manufacture a fabric having sweat perspiration, quick drying, and coolness at the same time.
또한, 본 발명에 따른 기능성 원단은 우수한 열전도도 및 흡한속건능을 가지는 폴리에틸렌 원사를 포함함에 따라 냉감성 및 흡한속건능을 가지며, 땀이나, 습기 및 입김 등에 의해 발생하는 수분을 빠르게 배출하고, 열을 외부로 방출할 수 있어 축축한 느낌과 열감을 감소시킴에 따라 사용자에게 쾌적감을 제공할 수 있다. In addition, the functional fabric according to the present invention includes a polyethylene yarn having excellent thermal conductivity and sweat perspiration and quick drying ability, so it has coolness and sweat perspiration and quick drying ability, quickly discharges moisture generated by sweat, moisture and breath, and heat can be released to the outside, thereby reducing the feeling of dampness and feeling of heat, thereby providing a sense of comfort to the user.
도 1은 본 발명의 제1 실시예에 따른 이형단면 폴리에틸렌 원사의 필라멘트 단면도이다.1 is a cross-sectional view of a filament of a modified cross-section polyethylene yarn according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 이형단면 폴리에틸렌 원사의 필라멘트 단면도이다.2 is a cross-sectional view of a filament of a modified cross-section polyethylene yarn according to a second embodiment of the present invention.
도 3은 원단의 접촉냉감을 측정하는 장치를 개략적으로 도시한 모식도이다.Figure 3 is a schematic diagram schematically showing a device for measuring the contact coolness of the fabric.
도 4는 원단의 열유속을 측정하는 써멀마네킹 실험을 도시한 사진이다.Figure 4 is a photograph showing a thermal mannequin experiment for measuring the heat flux of the fabric.
도 5는 도 1에 도시된 이형단면 폴리에틸렌 원사의 필라멘트 단면을 확대하여 도시한 광학현미경 사진이다.Figure 5 is an optical microscope picture showing an enlarged cross-section of the filament of the hetero-shaped cross-section polyethylene yarn shown in Figure 1.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Unless otherwise defined, the technical and scientific terms used in this specification have meanings commonly understood by those of ordinary skill in the art to which this invention belongs, and the gist of the present invention in the following description and accompanying drawings Descriptions of known functions and configurations that may unnecessarily obscure are omitted.
또한, 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.In addition, the singular form used in this specification may be intended to include the plural form as well unless otherwise indicated in the context.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.In addition, units used in this specification without special mention are based on weight, and as an example, the unit of % or ratio means weight% or weight ratio, and unless otherwise defined, weight% is any one component of the entire composition It means the weight percent occupied in the composition.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다. Further, as used herein, numerical ranges include lower and upper limits and all values within that range, increments logically derived from the shape and breadth of the defined range, all values defined therebetween, and the upper limit of the numerical range defined in a different form. and all possible combinations of lower bounds. Unless otherwise specifically defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다. The term 'comprising' in the present specification is an open description having the same meaning as expressions such as 'includes', 'includes', 'has' or 'characterized by', elements not additionally listed, No materials or processes are excluded.
흡한속건(吸汗速乾)은 땀, 습기 및 입김 등과 같은 수분을 빠르게 흡수하고 건조시키는 것을 의미하는 것으로, 스포츠 웨어, 작업복 및 마스크 등 인체에 쾌적성을 부여하기 위해 다양한 분야에서 요구되고 있다. Sweat perspiration and quick drying refers to quickly absorbing and drying moisture such as sweat, moisture, and breath, and is required in various fields to provide comfort to the human body, such as sportswear, work clothes, and masks.
종래에는, 원사를 이루는 필라멘트 단면을 이형화하여, 필라멘트 다발로 이루어진 원사 내 공극을 형성하고, 필라멘트 사이에 형성된 미세 공극에 의한 모세관 현상을 통해 원사에 흡한 속건능을 부여하였다. 그러나, 종래 이형단면사는 면사에 비해 수분 흡수율이 좋지 못하며, 이형단면사로부터 제조된 제품(원단)을 착용한 사용자가 배출하는 땀 또는 입김을 충분히 흡수하지 못한다는 단점이 있다. 또한, 종래 이형단면사로부터 제조된 제품은 수분 흡수율이 낮음에 따라 외부로 배출되는 수분 역시 작아 실질적으로 착용자가 쾌적성을 느끼기 어렵다는 문제점이 있다. Conventionally, the cross-section of the filaments constituting the yarn is demolded to form voids in the yarns composed of filament bundles, and the yarns are given absorbent and quick-drying properties through capillarity caused by microvoids formed between the filaments. However, the conventional deformed cross-section yarn has a disadvantage in that it has a poor water absorption rate compared to cotton yarn and does not sufficiently absorb sweat or breath excreted by a user wearing a product (fabric) manufactured from the deformed cross-section yarn. In addition, products manufactured from conventional shaped cross-section yarns have a problem in that, as the moisture absorption rate is low, the amount of moisture discharged to the outside is also small, making it difficult for the wearer to feel comfortable.
또한, 종래 이형단면사로부터 제조된 제품은 외부로 배출되지 못한 수분에 의해 인체의 활동 시, 직물과 피부와의 마찰 계수를 증가시켜 피부에서 열을 발생시킬 수 있다. 나아가, 종래 이형단면사는 대부분 폴리에스터사로 상술한 바와 같이 기존 폴리에틸렌 섬유에 비해 냉감성이 없다. 이에, 종래 이형단면사로부터 제조된 제품을 착용한 사용자가 오히려 더욱 열감을 느끼며 다량의 땀을 더욱 배출함에 따라 오히려 불쾌감을 초래할 수 있다는 단점이 있다. In addition, products manufactured from conventional shaped cross-section yarns can generate heat from the skin by increasing the coefficient of friction between the fabric and the skin when the human body is active due to moisture that is not discharged to the outside. Furthermore, conventional cross-section yarns are mostly polyester yarns, and as described above, there is no cooling sensation compared to conventional polyethylene fibers. Accordingly, there is a disadvantage in that a user wearing a product manufactured from a conventional cross-section yarn may rather cause discomfort as the user feels more heat and discharges a large amount of sweat.
이에, 본 출원인은 매우 우수한 흡한속건능 및 냉감성을 동시에 가질 수 있는 고부가가치의 원사를 개발하고자 장기간 심도 깊은 연구를 수행한 결과, 특정 형상을 가지는 이형단면 폴리에틸렌 원사가 우수한 흡한속건능을 가지며, 폴리에틸렌 특유의 냉감성을 제공하여 사용자 착용시 매우 우수한 쾌적감을 제공할 수 있는 제품의 제조를 가능하게 함을 발견하고, 이에 대한 연구를 심화한 결과 본 발명을 완성하기에 이르렀다.Accordingly, the present applicant has conducted in-depth research for a long period of time to develop a high value-added yarn that can simultaneously have excellent sweat-absorbing and quick-drying performance and coolness. It was discovered that it was possible to manufacture a product capable of providing a very good feeling of comfort when worn by a user by providing a cooling sensation unique to polyethylene, and as a result of intensifying research on this, the present invention was completed.
본 발명의 폴리에틸렌 원사는 길이방향에 수직하는 단면을 기준으로, 중심체와, 상기 중심체에서 돌출된 두개 이상의 돌기를 포함하는 필라멘트를 함유하는 것으로, 결정화도는 56 내지 85%, 구체적으로 60 내지 85%, 더욱 구체적으로 65 내지 75%일 수 있다.The polyethylene yarn of the present invention contains a filament comprising a core body and two or more projections protruding from the core body, based on a cross section perpendicular to the longitudinal direction, and has a crystallinity of 56 to 85%, specifically 60 to 85%, More specifically, it may be 65 to 75%.
이와 같은 폴리에틸렌 원사는 특정 이형단면을 가지는 다수의 필라멘트가 다발로 구비된 구조로, 필라멘트의 단면구조에 의해, 원사 내 필라멘트들 사이에 미세 공극이 형성됨에 따라, 미세 공극에 의한 모세관 현상에 의해 수분의 흡수 및 배출이 원활히 수행될 수 있다. 뿐만 아니라, 폴리에틸렌 특유의 우수한 열전도도를 가짐에 따라, 흡한속건 및 냉감성을 동시에 가지는 원단의 제조가 가능하다.Such a polyethylene yarn has a structure in which a plurality of filaments having a specific cross-section are bundled, and due to the cross-sectional structure of the filaments, fine voids are formed between the filaments in the yarn, and moisture is generated by capillarity caused by the fine voids. Absorption and discharge of can be performed smoothly. In addition, as it has excellent thermal conductivity unique to polyethylene, it is possible to manufacture a fabric having sweat perspiration, quick drying and coolness at the same time.
도 1은 본 발명의 일 실시예에 따른 폴리에틸렌 원사의 필라멘트가 도시되어 있다. 1 is a filament of a polyethylene yarn according to an embodiment of the present invention is shown.
도 1을 참조하면, 폴리에틸렌 원사는 길이방향에 수직하는 단면을 기준으로, 중심체와, 상기 중심체에서 돌출된 두개 이상의 돌기를 포함하는 필라멘트를 포함하는 것으로, 상술한 바와 같이, 이와 같은 단면이 이형화된 필라멘트를 포함함에 따라, 원사 내 필라멘트들 사이에 미세 공극이 형성될 수 있다. Referring to FIG. 1, a polyethylene yarn includes a filament including a core body and two or more protrusions protruding from the core body, based on a cross section perpendicular to the longitudinal direction, and as described above, such a cross section is released. As the filaments are included, fine voids may be formed between the filaments in the yarn.
본 발명의 일 양태에 있어서, 폴리에틸렌 원사를 이루는 필라멘트들은 비다공질로, 필라멘트들의 사이 간격 의해서만 폴리에틸렌 원사에 공극이 형성될 수 있다. 즉, 필라멘트들 사이에 미세 공극에 의해서 폴리에틸렌 원사의 공극율이 형성될 수 있다. 상세하게, 폴리에틸렌 원사의 길이방향에 수직한 방향으로, 원사의 외형을 따라 측정되는 원사의 단면을 기준으로 필라멘트가 차지하는 면적은 50 내지 99%, 구체적으로 60 내지 90%일 수 있으며, 이를 제외한 면적은 원사에 공극이 형성된 면적으로, 원사의 단면 공극율일 수 있다. 이처럼 필라멘트들 사이에 형성되는 미세 공극에 의해서 공극율이 높게 형성된 폴리에틸렌 원사는 폴리에틸렌 특유의 냉감성을 높게 유지함과 동시에 수분의 빠른 흡수 및 건조가 가능할 수 있다.In one aspect of the present invention, the filaments constituting the polyethylene yarn are non-porous, and pores may be formed in the polyethylene yarn only by spacing between the filaments. That is, the porosity of the polyethylene yarn may be formed by fine pores between the filaments. Specifically, in a direction perpendicular to the length direction of the polyethylene yarn, the area occupied by the filament based on the cross section of the yarn measured along the outer shape of the yarn may be 50 to 99%, specifically 60 to 90%, and the area excluding this is the area where voids are formed in the yarn, and may be the cross-sectional porosity of the yarn. As such, the polyethylene yarn having a high porosity due to the fine pores formed between the filaments may maintain a high cooling sensation characteristic of polyethylene and at the same time rapidly absorb and dry moisture.
구체적으로, 중심체는 필라멘트의 길이방향에 수직하는 단면을 기준으로, 삼각형, 사각형, 오각형 등 다각형, 타원형 또는 원형 등 다양한 단면형상을 가질 수 있으나, 바람직하게는 도 1에 도시된 바와 같이, 원형 또는 원형에 가까운 단면형상을 가지며 평균 반지름 길이를 형성할 수 있다. 이때, 필라멘트의 길이방향에 수직한 단면에 있어서, 중심체가 이루는 반지름은 필라멘트의 내접원을 의미한다.Specifically, the centrosome may have various cross-sectional shapes such as polygons such as triangles, squares, and pentagons, ellipses, or circulars based on a cross section perpendicular to the longitudinal direction of the filaments, but preferably, as shown in FIG. 1, circular or It has a cross-sectional shape close to circular and can form an average radius length. At this time, in a cross section perpendicular to the longitudinal direction of the filament, the radius formed by the center body means an inscribed circle of the filament.
또는, 도 2에 도시된 바와 같이, 중심체는 필라멘트의 길이방향에 수직하는 단면을 기준으로, 타원형일 수 있다. 이때, 필라멘트의 길이방향에 수직한 단면에 있어서, 중심체가 이루는 반지름은 필라멘트의 내접원을 의미하나, 내접원이 타원형임에 따라, 타원형의 짧은반지름 및 긴반지름 중 선택되는 어느 하나 일 수 있다. 바람직하게는 긴 반지름을 의미할 수 있다.Alternatively, as shown in FIG. 2, the center body may have an elliptical shape based on a cross section perpendicular to the longitudinal direction of the filament. At this time, in the cross section perpendicular to the longitudinal direction of the filament, the radius formed by the center body means the inscribed circle of the filament, but since the inscribed circle is an ellipse, it may be any one selected from the short radius and the long radius of the ellipse. Preferably, it may mean a long radius.
돌기는 필라멘트의 길이방향에 수직하는 단면을 기준으로, 중심체로부터 돌출되어 형성되는 것으로, 돌기를 포함하는 필라멘트는 길이방향에 수직한 단면이 이형화된 모양을 가진다. 이와 같은 필라멘트를 포함하는 원사는 필라멘트 간 미세 공극이 형성되어, 모세관 현상을 통한 수분이 흡수될 수 있는 유로, 즉, 마이크로채널(미세 공극)이 형성된다. 이에, 원사는 마이크로채널에 의해 수분을 흡수 및 배출할 수 있어 우수한 흡한속건능을 가질 수 있다.The protrusion is formed by protruding from the center body based on a cross section perpendicular to the longitudinal direction of the filament, and the filament including the protrusion has a shape in which the cross section perpendicular to the longitudinal direction is deformed. In the yarn including such filaments, fine voids are formed between the filaments, and a channel through which moisture can be absorbed through capillary action, that is, microchannels (micro voids) are formed. Thus, the yarn can absorb and discharge moisture through the microchannel, so it can have excellent sweat perspiration and quick drying performance.
돌기는 중심체로부터 돌출된 형상이라면 한정되지 않으나, 단부가 라운드형으로 완만하게 돌출된 것일 수 있다. 돌기는 모세관 현상을 통해 수분이 흡수될 수 있을 정도로 원사내 필라멘트를 이격시킬 수 있는 크기, 즉, 중심체로부터 돌출되는 길이가 한정되지 않는다. The projection is not limited as long as it protrudes from the center body, but may have a gently protruding end in a round shape. The protrusion is not limited in size that can separate the filaments in the yarn to the extent that moisture can be absorbed through capillary action, that is, the length protruding from the core body.
다만, 상기 원사, 또는 필라멘트의 길이방향에 수직하는 단면을 기준으로, 상기 중심체에서 상기 중심체가 형성하는 내접원의 제1반지름(R1)과, 상기 중심체와 돌기가 형성하는 외접원의 제2반지름(R2)는 하기 식을 만족하는 것이 모세관 현상에 의한 수분 흡수력에 있어서 유리하다.However, based on the cross section perpendicular to the longitudinal direction of the yarn or filament, the first radius R1 of the inscribed circle formed by the core body and the second radius R2 of the circumscribed circle formed by the core body and the protrusion are ) satisfies the following formula, which is advantageous in terms of water absorbing power by capillarity.
[식][ceremony]
1.2 ≤ R2/R1 ≤ 5.01.2 ≤ R2/R1 ≤ 5.0
더욱 구체적으로, 상기 식에서, 1.2 ≤ R2/R1 ≤ 3.5 또는 1.3 ≤ R2/R1 ≤ 3 일 수 있다. 상기 범위에서, 폴리에틸렌이 소수성임에도 불구하고, 강한 모세관력에 의해 원사의 수분 흡수가 원활히 일어날 수 있다. More specifically, in the above formula, 1.2 ≤ R2/R1 ≤ 3.5 or 1.3 ≤ R2/R1 ≤ 3. Within this range, even though polyethylene is hydrophobic, water absorption of the yarn may occur smoothly due to strong capillary force.
또한, 필라멘트의 길이방향에 수직한 단면에 있어서, 중심체가 형성하는 필라멘트의 내접원의 원주에 대하여, 하나의 돌기가 차지하는 길이비는 10%이상, 구체적으로 20 내지 50%일 수 있다. 이때, 돌기가 차지하는 길이는, 내접원의 원주에 있어서, 돌기의 양단부와 내접원의 각 접점을 잇는 호의 길이를 의미한다. 구체적으로 도 1에 있어서,
Figure PCTKR2022020674-appb-img-000001
를 의미할 수 있다.
In addition, in the cross section perpendicular to the longitudinal direction of the filament, the length ratio occupied by one projection with respect to the circumference of the inscribed circle of the filament formed by the core body may be 10% or more, specifically 20 to 50%. At this time, the length occupied by the projection means the length of an arc connecting both ends of the projection and each contact point of the inscribed circle in the circumference of the inscribed circle. Specifically, in Figure 1,
Figure PCTKR2022020674-appb-img-000001
can mean
돌기는 2개 이상, 구체적으로 2개 내지 5개가 구비될 수 있다. 바람직하게는, 중심체가 원형일 시, 3개로 구비되어, 길이방향에 수직하는 필라멘트의 단면이 3엽형으로 형성되는 것이, 내접원 및 외접원의 길이 조절을 통한 마이크로채널의 크기조절이 용이할 수 있다. Two or more protrusions, specifically 2 to 5 may be provided. Preferably, when the central body is circular, it is provided in three, so that the cross section of the filament perpendicular to the longitudinal direction is formed in a three-lobed shape, so that the size of the microchannel can be easily adjusted by adjusting the length of the inscribed circle and the circumscribed circle.
또는 중심체가 타원형일 시, 4개로 구비되어, 길이방향에 수직하는 필라멘트의 단면이 4엽형으로 형성되는 것이 마이크로채널의 크기조절에 있어서 유리할 수 있다. Alternatively, when the centrosome is elliptical, it may be advantageous in controlling the size of the microchannel that the filament is provided in four, and the cross section of the filament perpendicular to the longitudinal direction is formed in a quadrangular shape.
돌기는 중심체의 원주방향을 따라 서로 동일간격으로 배열될 수 있으나 이에 한정되진 않는다. 일 예로, 도 1에 도시된 바와 같이 돌기가 3개로 구비될 시 중심체의 원주방향을 따라 서로 동일 간격으로 배열될 수 있으나, 이와 달리, 돌기가 2개로 구비될 시 중심체의 어느 일측으로 편향되게 돌기가 위치될 수 있다. The protrusions may be arranged at equal intervals from each other along the circumferential direction of the centrosome, but are not limited thereto. For example, as shown in FIG. 1, when three protrusions are provided, they may be arranged at equal intervals along the circumferential direction of the center body, but, on the other hand, when two protrusions are provided, the protrusions are biased to one side of the center body. can be located.
또는 도 2에 도시된 바와 같이, 돌기 4개로 구비될 시, 타원형 중심체를 기준으로, 한 쌍의 돌기가 서로 대칭되게 배열될 수 있다. Alternatively, as shown in FIG. 2, when provided with four protrusions, a pair of protrusions may be arranged symmetrically with each other based on the elliptical center body.
상술한 바와 같이, 다수개의 돌기가 중심체에 돌출되어 형성됨에 따라, 돌기가 형성된 중심체의 일 표면 전체 면적에 대하여 돌기가 차지하는 면적비는 60% 이상, 구체적으로 80 내지 100%인 것이 바람직하다. 이때, 100%는 중심체의 일 표면 전체 면적에 대하여 돌기가 연속적으로 형성된 것을 의미한다. 구체적으로 도 1에 도시된 바와 같이, 인접한 돌기의 단부가 서로 접하게 위치하여, 필라멘트의 길이방향에 수직하는 단면을 기준으로, 상기 필라멘트 단면 형상이 필라멘트의 둘레방향을 따라 파형인 것일 수 있다. As described above, since a plurality of protrusions protrude from the core body, the area ratio occupied by the protrusions with respect to the entire area of one surface of the core body on which the protrusions are formed is preferably 60% or more, specifically 80 to 100%. At this time, 100% means that the protrusions are continuously formed on the entire area of one surface of the centrosome. Specifically, as shown in FIG. 1, the ends of adjacent protrusions are located in contact with each other, and based on a cross section perpendicular to the longitudinal direction of the filament, the filament cross-sectional shape may be a wave along the circumferential direction of the filament.
이와 같은 폴리에틸렌 원사는, 상술한 바와 같이 이형화된 단면을 가지는 다수개의 필라멘트가 다발을 이루는 것으로, 길이방향에 수직한 단면을 기준으로 상기 필라멘트가 차지하는 면적이 70 내지 99%, 더욱 상세하게는 80 내지 95%일 수 있다. 필라멘트가 차지하는 면적 이외의 면적은 미세공극이 차지하는 면적을 의미할 수 있으며, 마이크로채널이 형성하는 면적을 의미할 수 있다. 상기 범위에서, 마이크로채널에 의한 충분한 수분 흡수 및 배출능을 가질 수 있다. Such a polyethylene yarn is a bundle of a plurality of filaments having a release cross section as described above, and the area occupied by the filaments based on the cross section perpendicular to the longitudinal direction is 70 to 99%, more specifically 80 to 95%. The area other than the area occupied by the filaments may refer to an area occupied by the micropores or an area formed by the microchannels. Within the above range, the microchannel may have sufficient water absorption and discharge capabilities.
폴리에틸렌 원사는 다수개의 필라멘트들을 포함할 수 있다. 원사는 미세 공극을 형성할 수 있는 필라멘트 개수라면 한정되지 않는다. 일 예로, 폴리에틸렌 원사는 1 내지 3 데니어의 섬도를 각각 갖는 40 내지 500 개의 필라멘트들을 포함할 수 있고, 100 내지 1,000 데니어의 총섬도를 가질 수 있다.A polyethylene yarn may include multiple filaments. The yarn is not limited as long as the number of filaments capable of forming fine pores. For example, the polyethylene yarn may include 40 to 500 filaments each having a fineness of 1 to 3 denier, and may have a total fineness of 100 to 1,000 denier.
또한, 폴리에틸렌 원사는 밀도가 0.90 내지 0.99g/cm3, 또는 0.93 내지 0.97g/cm3일 수 있다. 또한, 폴리에틸렌 원사는 방사를 통한 결정화도가 56 내지 85%, 구체적으로 60 내지 85%, 더욱 구체적으로 65 내지 75%일 수 있고, 상기 폴리에틸렌 원사의 중심부터 외각까지 균일한 결정화도를 나타낼 수 있다. 상기 폴리에틸렌 원사의 결정화도는 X-선 회절분석기를 이용한 결정성 분석 시 미결정 크기와 함께 도출될 수 있다. 결정화도가 상기 범위를 만족하는 범위에서 고밀도 폴리에틸렌(HDPE)의 공유 결합을 통해 연결된 분자 사슬 방향으로 '포논(phonon)'이라는 격자 진동(lattice vibration)을 통해 열이 빠르게 확산 및 발산되고, 땀 및 입김 등의 수분 배출 기능이 향상되어 냉감성이 우수한 원단을 제공할 수 있다. 특히, 일 실시예에 따른 폴리에틸렌 원사는 속이 채워져 있어, 속이 비워진 원사보다 단위부피당 결정화도가 높고, 실질적으로 동일 굵기의 원사일 경우 결정부분을 더 많이 함유할 수 있다는 점에서, 본 발명에서 목적으로 하는 뛰어난 냉감성을 가지는 원단을 제조할 수 있다.In addition, the polyethylene yarn may have a density of 0.90 to 0.99 g/cm 3 , or 0.93 to 0.97 g/cm 3 . In addition, the polyethylene yarn may have a crystallinity of 56 to 85%, specifically 60 to 85%, and more specifically 65 to 75% through spinning, and may exhibit a uniform crystallinity from the center to the outer edge of the polyethylene yarn. The crystallinity of the polyethylene yarn may be derived together with the crystallite size during crystallinity analysis using an X-ray diffractometer. In the range where the crystallinity satisfies the above range, heat is rapidly diffused and dissipated through lattice vibration called 'phonon' in the direction of molecular chains connected through covalent bonds of high-density polyethylene (HDPE), and sweat and breath It is possible to provide a fabric with excellent cooling sensation by improving the moisture release function of the back. In particular, the polyethylene yarn according to one embodiment is hollow, has a higher crystallinity per unit volume than the hollow yarn, and can contain more crystal parts when the yarn has substantially the same thickness, which is the object of the present invention Fabrics having excellent coolness can be manufactured.
아울러, 폴리에틸렌 원사는 원사는 ASTM D1238에 따라 190 ℃ 2.16 kg에서 측정되는 용융지수 (melt index: MI, @190℃)가 1 내지 25g/10min, 구체적으로, 3 내지 15g/10min, 더욱 구체적으로, 5 내지 10g/10min 일 수 있으나 이에 한정되진 않는다. 다만, 상기 범위에서 비교적 우수한 강도를 가질 수 있다. In addition, the polyethylene yarn has a melt index (MI, @190 ℃) measured at 190 ℃ 2.16 kg according to ASTM D1238, 1 to 25g / 10min, specifically, 3 to 15g / 10min, more specifically, It may be 5 to 10g/10min, but is not limited thereto. However, it may have relatively excellent strength within the above range.
또한, 폴리에틸렌 원사의 다분산지수는 5 내지 30, 구체적으로 10 내지 20일 수 있다. 이때, ASTM D2256에 따라 측정되는 강도는 5 내지 10g/d, 구체적으로 6 내지 9g/d, 더욱 구체적으로, 7 내지 8g/d일 수 있다. 상기 범위에서 높은 열전도도를 가짐과 동시에 제직성에 유리한 적절한 강연도를 가질 수 있다. In addition, the polydispersity index of the polyethylene yarn may be 5 to 30, specifically 10 to 20. At this time, the strength measured according to ASTM D2256 may be 5 to 10 g/d, specifically 6 to 9 g/d, and more specifically, 7 to 8 g/d. It may have high thermal conductivity in the above range and at the same time have appropriate stiffness advantageous to weaving.
이하에서는, 도 1을 참조하여 본 발명의 일 양태에 따른 폴리에틸렌 원사의 제조방법을 구체적으로 설명한다. 본 발명의 폴리에틸렌 원사는 PDI, 강도 및 신율 등 상기한 물성들의 범위를 만족하는 것이라면 그 제조방법에 제한되는 것은 아니며, 아래는 일 양태를 설명하는 것이다.Hereinafter, a method for producing a polyethylene yarn according to an aspect of the present invention will be described in detail with reference to FIG. 1 . The polyethylene yarn of the present invention is not limited to its manufacturing method as long as it satisfies the above ranges of physical properties such as PDI, strength and elongation, and the following will describe one aspect.
먼저, 칩(chip) 형태의 폴리에틸렌을 익스트루더(extruder)(100)로 투입하여 용융시킴으로써 폴리에틸렌 용융물을 얻는다. First, a polyethylene melt is obtained by introducing polyethylene in the form of a chip into an extruder 100 and melting it.
용융된 폴리에틸렌이 상기 익스트루더(100) 내의 스크루(미도시)에 의해 구금(100)을 통해 운반되며, 상기 구금(200)에 형성된 다수의 홀들을 통해 압출된다. 상기 구금(200)의 홀들의 개수는 제조될 원사의 DPF (Denier Per Filament) 및 섬도에 따라 결정될 수 있다. 예를 들어, 75 데니어의 총섬도를 갖는 원사를 제조할 경우 상기 구금(200)은 20 내지 75개의 홀들을 가질 수 있고, 450 데니어의 총섬도를 갖는 원사를 제조할 경우 상기 구금(200)은 90 내지 450 개, 바람직하게는 100 내지 400개의 홀들을 가질 수 있다.Molten polyethylene is carried through the nozzle 100 by a screw (not shown) in the extruder 100 and is extruded through a plurality of holes formed in the nozzle 200 . The number of holes of the spinneret 200 may be determined according to the Denier Per Filament (DPF) and fineness of the yarn to be manufactured. For example, when manufacturing a yarn having a total fineness of 75 denier, the nozzle 200 may have 20 to 75 holes, and when manufacturing a yarn having a total fineness of 450 denier, the nozzle 200 It may have 90 to 450 holes, preferably 100 to 400 holes.
상기 익스트루더(100) 내에서의 용융 공정 및 구금(200)을 통한 압출 공정은 폴리에틸렌 칩의 용융지수에 따라 변경 적용 가능하지만, 구체적으로 예를 들면 150 내지 315℃, 바람직하게는 250 내지 315 ℃, 더욱 바람직하게는 265 내지 310℃에서 수행되는 것이 바람직하다. 즉, 익스트루더(100) 및 구금(200)이 150 내지 315℃ 바람직하게는 250 내지 315℃ 더욱 바람직하게는 265 내지 310℃로 유지되는 것이 바람직하다.The melting process in the extruder 100 and the extrusion process through the nozzle 200 can be changed according to the melt index of the polyethylene chip, but specifically, for example, 150 to 315 ° C, preferably 250 to 315 °C, more preferably at 265 to 310 °C. That is, it is preferable that the extruder 100 and the cap 200 be maintained at 150 to 315°C, preferably 250 to 315°C, and more preferably 265 to 310°C.
상기 방사 온도가 150℃미만일 경우, 낮은 방사온도로 인해 폴리에틸렌의 균일한 용융이 이루어지지 않아서 방사가 곤란할 수 있다. 반면, 방사 온도가 315℃를 초과할 경우 폴리에틸렌의 열분해가 야기되어 원하는 강도를 발현하지 못할 수 있다.When the spinning temperature is less than 150° C., the spinning may be difficult because the polyethylene is not uniformly melted due to the low spinning temperature. On the other hand, if the spinning temperature exceeds 315 ° C., thermal decomposition of polyethylene may occur, and thus desired strength may not be expressed.
용융된 폴리에틸렌이 이형단면용 구금(200)의 홀들로부터 토출되면서 방사온도와 실온 간의 차이에 의해 폴리에틸렌의 고화가 시작되면서 반고화 상태의 필라멘트들(11)이 형성된다. 본 명세서에서는, 반고화 상태의 필라멘트는 물론이고 완전 고화된 필라멘트 모두를 "필라멘트"라 통칭한다. As the molten polyethylene is discharged from the holes of the deformed cross-section mold 200, the solidification of the polyethylene starts due to the difference between the spinning temperature and the room temperature, and the filaments 11 in a semi-solidified state are formed. In the present specification, both fully solidified filaments as well as semi-solidified filaments are collectively referred to as "filaments".
다수의 상기 필라멘트들(11)은 냉각부(또는 "quenching zone")(300)에서 냉각됨으로써 완전 고화된다. 상기 필라멘트들(11)의 냉각은 공냉 방식으로 수행될 수 있다.The plurality of filaments 11 are completely solidified by being cooled in a cooling unit (or "quenching zone") 300 . Cooling of the filaments 11 may be performed by air cooling.
상기 냉각부(300)에서의 상기 필라멘트들(11) 냉각은 0.2 내지 1m/sec 풍속의 냉각풍을 이용하여 15 내지 40℃로 냉각되도록 수행되는 것이 바람직하다. 상기 냉각 온도가 15℃미만이면 과냉각으로 인해 신도가 부족하여 연신 과정에서 사절이 발생할 수 있고, 상기 냉각 온도가 40℃를 초과하면 고화 불균일로 인해 필라멘트들(11)간 섬도 편차가 커지고 연신 과정에서 사절이 발생할 수 있다.The cooling of the filaments 11 in the cooling unit 300 is preferably performed to be cooled to 15 to 40° C. using a cooling wind having a wind speed of 0.2 to 1 m/sec. If the cooling temperature is less than 15 ° C, elongation may be insufficient due to supercooling and thread breakage may occur during the stretching process, and if the cooling temperature exceeds 40 ° C, the fineness deviation between the filaments 11 increases due to uneven solidification, rejection may occur.
또한, 냉각부에서 냉각 시 다단냉각을 수행함으로써 더욱 균일하게 결정화가 되도록 할 수 있으며, 이에 따라 습기 및 땀의 배출을 더욱 원활하게 하고, 냉감성이 우수한 원사를 제조할 수 있다. 더욱 구체적으로 상기 냉각부는 2개 이상의 구간으로 나누어질 수 있다. 예를 들어 3개의 냉각 구간으로 이루어진 경우, 제1 냉각부에서 제3 냉각부로 갈수록 온도가 점차 낮아지도록 설계되는 것이 바람직하다. 구체적으로 예를 들면 제1 냉각부는 40 내지 80℃ 로 설정되고, 제2 냉각부는 30 내지 50℃로 설정되고, 제3 냉각부는 15 내지 30℃로 설정될 수 있다.In addition, by performing multi-stage cooling during cooling in the cooling unit, it is possible to crystallize more uniformly, and accordingly, it is possible to more smoothly discharge moisture and sweat, and to manufacture a yarn having excellent coolness. More specifically, the cooling unit may be divided into two or more sections. For example, when it consists of three cooling sections, it is preferable to design such that the temperature gradually decreases from the first cooling section to the third cooling section. Specifically, for example, the first cooling unit may be set to 40 to 80°C, the second cooling unit may be set to 30 to 50°C, and the third cooling unit may be set to 15 to 30°C.
또한, 제1 냉각부에서 풍속을 가장 높게 설정함으로써 표면이 더욱 매끄러운 섬유를 제조할 수 있다. 구체적으로 제1 냉각부는 0.8 내지 1m/sec, 제2 냉각부는 0.4 내지 0.6m/sec 및 제3 냉각부는 0.2 내지 0.5m/sec 풍속의 냉각풍을 이용하는 것일 수 있으며, 이와 같은 조건으로 조절함으로써 결정화도가 더욱 높고, 표면이 더욱 매끄러운 원사를 제조할 수 있다. In addition, by setting the wind speed to the highest in the first cooling unit, fibers having a smoother surface can be produced. Specifically, the first cooling unit may use cooling wind at a speed of 0.8 to 1 m/sec, the second cooling unit at 0.4 to 0.6 m/sec, and the third cooling unit at a wind speed of 0.2 to 0.5 m/sec. is higher, and a yarn with a smoother surface can be produced.
이어서, 집속기(400)로 상기 냉각 및 완전 고화된 필라멘트들(11)을 집속시켜 멀티필라멘트(10)를 형성시킨다.Then, the multifilaments 10 are formed by concentrating the cooled and completely solidified filaments 11 with a collimator 400 .
도 1에 예시된 바와 같이, 본 발명의 폴리에틸렌 원사는 직접방사연신(DSD) 공정을 통해 제조될 수 있다. 즉, 상기 멀티필라멘트(10)가 다수의 고뎃 롤러부들(GR1...GRn)을 포함하는 다단연신부(500)로 직접 전달되어 2 내지 20, 바람직하게는 3 내지 15배의 총연신비로 다단연신된 후 와인더(600)에 권취될 수 있다. 또한 다단연신 시 마지막 연신구간에서는 1 내지 5%의 수축연신(이완)을 부여함으로써 내구성이 더욱 우수한 원사를 제공할 수 있다.As illustrated in Figure 1, the polyethylene yarn of the present invention can be produced through a direct spinning stretching (DSD) process. That is, the multifilament 10 is directly transferred to the multi-stage stretching unit 500 including the plurality of godet roller units GR1 ... GRn and multi-stage stretching at a total stretching ratio of 2 to 20, preferably 3 to 15 times. After being, it can be wound around the winder 600. In addition, by giving 1 to 5% contraction stretching (relaxation) in the last stretching section during multi-stage stretching, it is possible to provide a yarn with more excellent durability.
대안적으로, 상기 멀티필라멘트(10)를 미연신사로서 일단 권취한 후 상기 미연신사를 연신함으로써 본 발명의 폴리에틸렌 원사가 제조될 수도 있다. 즉, 본 발명의 폴리에틸렌 원사는 폴리에틸렌을 용융방사하여 미연신사를 일단 제조한 후 상기 미연신사를 연신하는 2단계 공정을 통해 제조될 수도 있다.Alternatively, the polyethylene yarn of the present invention may be produced by first winding the multifilament 10 as an undrawn yarn and then drawing the undrawn yarn. That is, the polyethylene yarn of the present invention may be manufactured through a two-step process of first preparing an undrawn yarn by melt-spinning polyethylene and then drawing the undrawn yarn.
연신 공정에서 적용되는 총연신비가 2 미만이면, 최종적으로 얻어지는 폴리에틸렌 원사가 56% 이상, 60% 이상의 결정화도를 가질 수 없으며, 상기 원사로 제조되는 원단 상에 보푸라기(필링)가 유발될 위험이 있다.If the total draw ratio applied in the drawing process is less than 2, the finally obtained polyethylene yarn cannot have a crystallinity of 56% or more and 60% or more, and there is a risk of causing fluff (pilling) on the fabric made of the yarn.
반면, 상기 총연신비가 15배를 초과하면 사절이 발생할 가능성이 있고, 최종적으로 얻어지는 폴리에틸렌 원사의 강도가 적합하지 못해 상기 폴리에틸렌 원사의 제직성이 좋지 못할 뿐만 아니라 이를 이용하여 제조된 원단이 지나치게 뻣뻣하여 사용자가 불편함을 느낄 수 있다.On the other hand, if the total draw ratio exceeds 15 times, there is a possibility of yarn breakage, and the strength of the finally obtained polyethylene yarn is not suitable, so that the weaving property of the polyethylene yarn is not good, and the fabric manufactured using it is too stiff. Users may feel uncomfortable.
본 발명의 용융 방사의 방사속도를 결정하는 첫 번째 고뎃 롤러부(GR1)의 선속도가 결정되면, 상기 다단연신부 (500)에서 2 내지 20, 바람직하게는 3 내지 15의 총 연신비가 상기 멀티필라멘트(10)에 적용될 수 있도록, 나머지 고뎃 롤러부들의 선속도가 적절히 결정된다.When the linear speed of the first godet roller part (GR1) that determines the spinning speed of the melt spinning of the present invention is determined, the total draw ratio of 2 to 20, preferably 3 to 15 in the multi-stage stretching unit 500 is the multi-stage stretching unit 500. The linear speed of the remaining godet roller portions is appropriately determined so as to be applied to the filament 10 .
본 발명의 일 실시예에 의하면, 상기 다단연신부(500)의 고뎃 롤러부들(GR1...GRn)의 온도를 40 내지 140℃의 범위에서 적절히 설정함으로써 상기 다단연신부(500)를 통해 폴리에틸렌 원사의 열고정(heat-setting)이 수행될 수 있다. 구체적으로 예를 들어, 상기 다단연신부는 3개 이상, 구체적으로 3 내지 5개의 연신 구간으로 이루어진 것일 수 있다. 또한, 각 연신구간은 여러 개의 고뎃 롤러부들로 이루어진 것일 수 있다.According to one embodiment of the present invention, the temperature of the godet roller parts (GR1 ... GRn) of the multi-stage stretching unit 500 is appropriately set in the range of 40 to 140 ° C. Heat-setting of the yarn may be performed. Specifically, for example, the multi-stage stretching unit may be composed of 3 or more, specifically 3 to 5 stretching sections. In addition, each stretching section may be composed of several godet roller parts.
구체적으로 예를 들어, 상기 다단연신부는 4개의 연신구간으로 이루어질 수 있으며, 제1 연신구간 내지 제3 연신구간에서 총 연신비 7 내지 15배로 연신 후, 제4 연신구간에서 1 내지 3% 수축연신(이완)을 수행하는 것일 수 있다. 상기 총 연신비는 연신을 하기 전 섬유에 비하여, 제1연신구간에서부터 제3연신구간을 거친 섬유의 최종 연신비를 의미한다.Specifically, for example, the multi-stage stretching unit may be composed of four stretching sections, and after stretching at a total stretching ratio of 7 to 15 times in the first to third stretching sections, 1 to 3% contraction stretching in the fourth stretching section. It may be to perform (relaxation). The total draw ratio refers to the final draw ratio of fibers that have passed through the third drawing section from the first drawing section compared to the fibers before drawing.
더욱 구체적으로 제1 연신구간은 40 내지 130℃에서 수행될 수 있으며, 총 연신비가 2 내지 5배인 것일 수 있다. 제2 연신구간은 상기 제1 연신구간에 비하여 높은 온도에서 수행될 수 있으며, 구체적으로 100 내지 150℃에서 수행될 수 있으며, 총 연신비가 5 내지 8배가 되도록 연신하는 것일 수 있다. 제3 연신구간은 100 내지 150℃에서 수행될 수 있으며, 총 연신비가 7 내지 15배가 되도록 연신하는 것일 수 있다. 제4 연신구간은 상기 제2 연신구간과 같거나 낮은 온도에서 수행될 수 있으며, 구체적으로 80 내지 140℃에서 수행될 수 있으며, 1 내지 3% 수축연신(이완)을 수행하는 것일 수 있다. More specifically, the first stretching section may be performed at 40 to 130 ° C., and the total stretching ratio may be 2 to 5 times. The second stretching section may be performed at a higher temperature than the first drawing section, specifically at 100 to 150° C., and may be stretching so that the total stretching ratio is 5 to 8 times. The third stretching section may be carried out at 100 to 150 ° C., and may be stretching so that the total stretching ratio is 7 to 15 times. The fourth stretching section may be performed at a temperature equal to or lower than that of the second drawing section, and may be specifically performed at 80 to 140° C., and 1 to 3% contraction stretching (relaxation) may be performed.
다단연신부(500)에 의해 상기 멀티필라멘트(10)의 다단연신과 열고정이 동시에 수행되며, 다단연신된 멀티필라멘트(10)가 와인더(600)에 권취됨으로써 본 발명의 폴리에틸렌 원사가 완성된다.Multi-stage stretching and heat setting of the multi-filament 10 are simultaneously performed by the multi-stage stretching unit 500, and the multi-stage stretching multi-filament 10 is wound around the winder 600, thereby completing the polyethylene yarn of the present invention.
본 발명에 따른 기능성 원단은 상술한 폴리에틸렌 원사를 포함하는 것으로, 우수한 열전도도 및 흡한속건능을 가지는 폴리에틸렌 원사를 포함함에 따라 냉감성 및 흡한속건능을 가지며, 땀이나, 습기 및 입김 등에 의해 발생하는 수분을 빠르게 배출할 수 있다. 이와 같은 원단으로 제조된 제품을 사용자가 착용시 빠르게 수분과 열을 외부로 방출할 수 있어 축축한 느낌과 열감을 감소시킴에 따라 사용자에게 쾌적감을 제공할 수 있다. The functional fabric according to the present invention includes the above-described polyethylene yarn, and has excellent thermal conductivity and sweat perspiration and quick-drying ability, as it includes polyethylene yarn, and has a cool feeling and sweat perspiration and quick-drying ability. Moisture can be drained quickly. When a user wears a product made of such a fabric, moisture and heat can be quickly released to the outside, thereby reducing a damp feeling and a feeling of heat, thereby providing a pleasant feeling to the user.
본 발명에 따른 기능성 원단은 상기 설명된 폴리에틸렌 원사를 단독으로 사용하는 것일 수 있으며, 다른 기능성을 더욱 부여하기 위하여 이종 원사를 더 포함할 수도 있지만 보다 우수한 냉감성 및 흡한속건능을 동시에 가질 수 있는 관점에서는 상기 폴리에틸렌 원사를 단독으로 사용하는 것이 바람직하다.The functional fabric according to the present invention may be one using the above-described polyethylene yarn alone, and may further include heterogeneous yarns to further impart other functionalities, but from the viewpoint of having better coolness and quick-drying ability at the same time. In, it is preferable to use the polyethylene yarn alone.
구체적으로, 기능성 원단은 20±2℃, 65±2% R.H에서 측정된 접촉냉감이 0.1 내지 0.5W/cm2, 더욱 구체적으로 0.15 내지 0.3W/cm2 일 수 있다. 또한, 기능성 원단은 20±2℃, 65±2 % R.H에서 측정된 열유속(heat flux)이 95 내지 150W/m2 구체적으로, 100 내지 120W/m2 일 수 있다. 이와 같은 냉감을 가지는 기능성 원단은 추후 제품으로 제조 또는 가공되어 사용자에 착용될 시, 고온 환경 하에서 사용자가 쾌적감을 느낄 수 있는 우수한 냉감을 제공할 수 있다.Specifically, the functional fabric may have a contact cooling sensation of 0.1 to 0.5 W/cm 2 , more specifically 0.15 to 0.3 W/cm 2 measured at 20±2° C. and 65±2% RH. In addition, the functional fabric may have a heat flux of 95 to 150W/m 2 , specifically, 100 to 120W/m 2 measured at 20±2° C. and 65±2% RH. When such a functional fabric having a cool feeling is subsequently manufactured or processed into a product and worn by a user, it can provide an excellent cool feeling that allows the user to feel comfortable under a high-temperature environment.
또한, 기능성 원단은 KS K 0642 8.26의 B법 바이렉법에 의한 수분 흡수속도가 80 내지 160mm/10min, 구체적으로, 100 내지 130mm/10min 일 수 있다. 이와 같은 기능성 원단은 동일 조건에서 수분 흡수속도가 50mm/10min 내외인 면사보다도 높은 수분 흡수속도를 가진 것으로, 매우 우수한 수분 흡수능을 가진다. In addition, the functional fabric may have a water absorption rate of 80 to 160 mm / 10 min, specifically, 100 to 130 mm / 10 min according to the B-birec method of KS K 0642 8.26. Such a functional fabric has a higher moisture absorption rate than cotton yarn having a moisture absorption rate of around 50 mm/10 min under the same conditions, and has a very excellent moisture absorption capacity.
또한, 기능성 원단은 KS K 0642 8.25 A법에 의한 수분 건조속도가 20 내지 50mm/10min, 구체적으로 30 내지 40mm/10min 으로 비교적 빠른 수분 건조속도로, 수분의 배출이 원활하게 일어날 수 있다. 이처럼, 빠른 수분 흡수 속도 및 수분 건조 속도를 나타내는 기능성 원단은 땀, 습기 및 입김 등의 수분을 빠르게 흡수하여 배출할 수 있는 흡한속건능이 매우 우수하다.In addition, the functional fabric has a relatively fast moisture drying rate of 20 to 50 mm/10 min, specifically 30 to 40 mm/10 min according to the KS K 0642 8.25 A method, and the moisture can be smoothly discharged. As such, the functional fabric exhibiting a fast moisture absorption rate and a moisture drying rate is very excellent in sweat perspiration and quick drying ability to quickly absorb and discharge moisture such as sweat, moisture, and breath.
기능성 원단은 150 내지 800g/m2의 단위면적당 중량(즉, 면밀도)을 갖는 직물 또는 편물일 수 있다. 원단의 면밀도가 150g/m2 미만이면 원단의 조밀성이 부족해지고 원단 내에 많은 공극들이 존재하게 되는데, 이러한 공극들은 원단의 냉감성을 저하시킨다. 반면, 원단의 면밀도가 800g/m2를 초과하면 지나치게 조밀한 원단 구조로 인해 원단이 뻣뻣해지고, 사용자가 느끼는 촉감에 문제가 발생하며, 높은 중량으로 인해 사용상의 문제점이 유발된다.The functional fabric may be a woven or knitted fabric having a weight per unit area (ie, areal density) of 150 to 800 g/m 2 . If the areal density of the fabric is less than 150 g/m 2 , the denseness of the fabric is insufficient and many voids exist in the fabric, and these voids reduce the coolness of the fabric. On the other hand, when the areal density of the fabric exceeds 800 g/m 2 , the fabric becomes stiff due to an overly dense fabric structure, problems occur in the tactile feeling experienced by the user, and problems in use are caused due to the high weight.
이와 같은 원단은 흡한속건능 및 냉감성이 동시에 요구되는 흡한속건 제품으로 가공될 수 있다. 제품은 종래 섬유제품은 모두 가능하나 바람직하게는 인체에 냉감성 및 흡한속건능을 부여하기 위한 여름철 하복, 스포츠 웨어, 마스크 및 작업복일 수 있다. Such a fabric can be processed into a sweat-absorbing and quick-drying product requiring both sweat-absorbing and quick-drying properties and coolness. The product may be any conventional textile product, but preferably may be summer summer clothes, sportswear, masks, and work clothes for imparting coolness and quick-drying performance to the human body.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described by specific details and limited embodiments and drawings, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments, and the present invention Those skilled in the art can make various modifications and variations from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. Therefore, the spirit of the present invention should not be limited to the described embodiments, and it will be said that not only the claims to be described later, but also all modifications equivalent or equivalent to these claims belong to the scope of the present invention. .
[원사 물성 측정][Measurement of yarn properties]
<1. 중량 평균 분자량(Mw)(g/mol) 및 다분산 지수(PDI)><1. Weight Average Molecular Weight (Mw) (g/mol) and Polydispersity Index (PDI)>
폴리에틸렌 원사를 아래의 용매에 완전히 용해시킨 후 다음의 겔 투과 크로마토그래피(GPC)를 이용하여 상기 폴리에틸렌 원사의 중량 평균 분자량(Mw) 및 다분산 지수(Mw/Mn: PDI)를 각각 구하였다.After completely dissolving the polyethylene yarn in the solvent below, the weight average molecular weight (Mw) and polydispersity index (Mw/Mn: PDI) of the polyethylene yarn were obtained using the following gel permeation chromatography (GPC), respectively.
- 분석기기: Tosoh社 HLC-8321 GPC/HT- Analysis device: Tosoh HLC-8321 GPC/HT
- 컬럼: PLgel guard (7.5 x 50 mm) + 2 x PLgel mixed-B (7.5 x 300 mm)- Column: PLgel guard (7.5 x 50 mm) + 2 x PLgel mixed-B (7.5 x 300 mm)
- 컬럼 온도: 160 ℃- column temperature: 160 ° C
- 용매: 트리클로로벤젠(TCB) + 0.04 wt.% 디부틸히드록시톨루엔(BHT) (after drying with 0.1% CaCl2)- Solvent: Trichlorobenzene (TCB) + 0.04 wt.% Dibutylhydroxytoluene (BHT) (after drying with 0.1% CaCl 2 )
- Injector, Detector 온도: 160℃- Injector, detector temperature: 160℃
- Detector: RI Detector- Detector: RI Detector
- 유속: 1.0㎖/min- Flow rate: 1.0 ml/min
- 주입량: 300㎕- Injection amount: 300 μl
- 시료농도 : 1.5mg/mL- Sample concentration: 1.5mg/mL
- 표준시료: 폴리스티렌- Standard sample: polystyrene
<2. 강도(g/d)><2. Intensity (g/d)>
*ASTM D2256 방법에 따라, 인스트론사(Instron Engineering Corp, Canton, Mass)의 만능인장시험기를 이용하여 폴리에틸렌 원사의 변형-응력 곡선을 얻었다. 샘플 길이는 250mm이었고, 인장속도는 300mm/min이었으며, 초기 로드(load)는 0.05g/d로 설정하였다. 파단점에서의 응력과 신장으로부터 강도(g/d)를 구하였다. 각 원사마다 5회 측정 후 그 평균값을 산출하였다.*According to the ASTM D2256 method, strain-stress curves of polyethylene yarns were obtained using a universal tensile tester manufactured by Instron Engineering Corp., Canton, Mass. The sample length was 250 mm, the tensile speed was 300 mm/min, and the initial load was set to 0.05 g/d. The strength (g/d) was obtained from the stress and elongation at the breaking point. After measuring 5 times for each yarn, the average value was calculated.
<3. 결정화도><3. Crystallinity>
XRD 기기(X-ray Diffractometer)[제조사: PANalytical社, 모델명: EMPYREAN]를 이용하여 폴리에틸렌 원사의 결정화도를 측정하였다. 구체적으로, 폴리에틸렌 원사를 절단하여 2.5cm의 길이를 갖는 샘플을 준비하였고, 상기 샘플을 샘플 홀더에 고정시킨 후 아래의 조건들 하에서 측정을 실시하였다.The crystallinity of the polyethylene yarn was measured using an XRD device (X-ray Diffractometer) [manufacturer: PANalytical, model name: EMPYREAN]. Specifically, a sample having a length of 2.5 cm was prepared by cutting a polyethylene yarn, and the sample was fixed to a sample holder and then measured under the following conditions.
- 광원(X-ray Source): Cu-Kα radiation- Light Source (X-ray Source): Cu-Kα radiation
- 전력(Power): 45 KV x 25 mA- Power: 45 KV x 25 mA
- 모드: 연속 스캔 모드- Mode: Continuous scan mode
- 스캔 각도 범위: 10~40°- Scan angle range: 10 to 40°
- 스캔 속도: 0.1°/sec- Scan speed: 0.1°/sec
<4. 용융지수> <4. Melt Index>
ASTM D1238에 따라 190 ℃, 2.16 kg에서 측정하였다.Measured at 190 °C and 2.16 kg according to ASTM D1238.
[원단의 물성 측정][Measurement of fabric properties]
<1. 접촉냉감><1. contact coldness>
한국의류시험연구원에 의뢰하여 KES-F7(Thermo Labo II)장치를 이용하여 시험환경 20±2℃, 65±2 % R.H에서 측정하였다. Requested by the Korea Apparel Testing & Research Institute, it was measured in a test environment of 20 ± 2 ° C and 65 ± 2 % R.H using a KES-F7 (Thermo Labo II) device.
구체적으로, 20cmХ20cm 사이즈의 원단 샘플을 준비한 후 20±2℃의 온도 및 65±2%의 RH의 조건하에서 24시간 동안 방치하였다. 이어서, 20±2℃의 온도 및 65±2%의 RH의 테스트 환경에서 KES-F7 THERMO LABO II(Kato Tech Co.,LTD.) 장치를 이용하여 원단의 접촉냉감(Q max)을 측정하였다. 구체적으로, 도 3에 예시된 바와 같이, 20℃로 유지되는 베이스 플레이트('Water-Box'로도 지칭됨)(21) 상에 상기 원단 샘플(23)을 올려놓고, 30℃로 가열된 T-Box(22a)(접촉면적: 3cmХ3cm)를 상기 원단 샘플(23) 상에 1초 동안만 올려놓았다. 즉, 일면이 베이스 플레이트(21)과 접촉하고 있는 상기 원단 샘플(23)의 타면을 T-Box(22a)에 순간적으로 접촉시켰다. 상기 T-Box(22a)에 의해 상기 원단 샘플(23)에 가해진 접촉 압력은 6 gf/cm2이었다. 이어서, 상기 장치에 연결된 모니터(미도시)에 표시된 Q max 값을 기록하였다. 이와 같은 테스트를 10회 반복하였고, Q max 값의 산술평균을 산출하였다.Specifically, after preparing a fabric sample having a size of 20 cmХ20 cm, it was left for 24 hours under conditions of a temperature of 20 ± 2 ° C and an RH of 65 ± 2%. Subsequently, the contact cooling (Q max) of the fabric was measured using a KES-F7 THERMO LABO II (Kato Tech Co., Ltd.) device in a test environment of 20 ± 2 ° C. and 65 ± 2% RH. Specifically, as illustrated in FIG. 3, the fabric sample 23 is placed on a base plate (also referred to as a 'Water-Box') 21 maintained at 20 ° C, and the fabric sample 23 is heated to 30 ° C. Box 22a (contact area: 3cmХ3cm) was placed on the fabric sample 23 for only 1 second. That is, the other surface of the fabric sample 23, one surface of which is in contact with the base plate 21, was momentarily brought into contact with the T-Box 22a. The contact pressure applied to the fabric sample 23 by the T-Box 22a was 6 gf/cm 2 . Subsequently, the Q max value displayed on a monitor (not shown) connected to the device was recorded. This test was repeated 10 times, and the arithmetic average of the Q max values was calculated.
<2. 열유속(heat flux)><2. heat flux>
써멀마네킹(Thermal Manikin)을 인공기후실 내에 위치시킨 후 시험환경 20±2℃, 65±2 % R.H에서 측정하였다. After placing the thermal manikin in an artificial climate room, it was measured in a test environment of 20±2° C. and 65±2% R.H.
구체적으로, 도 4에 예시된 바와 같이 20±2℃, 65±2% R.H의 인공기후실 중앙에 남성 써멀마네킹을 위치시켰다. 이어서, 써멀마네킹 온도를 33.7℃로 설정한 후 전원을 공급하여 써멀마네킹을 가온시켰다. Specifically, as illustrated in FIG. 4, a male thermal mannequin was placed in the center of an artificial climate room at 20±2° C. and 65±2% R.H. Then, after setting the thermal mannequin temperature to 33.7 ° C., power was supplied to heat the thermal mannequin.
이후, 남성 95 size의 상의 샘플을 준비한 후, 가온된 써멀마네킹에 착의시키고 1분 간격으로 30분 동안 써멀마네킹의 표면온도 및 써멀마네킹의 온도 유지를 위한 전력값을 통해 단위시간(1min) 동안 단위면적(1m2) 당 소비된 열에너지 양인 열유속(heat flux, W/m2)을 측정하였다.Then, after preparing a sample of male 95 size top, put it on a heated thermal mannequin and measure the surface temperature of the thermal mannequin for 30 minutes at 1 minute intervals and the power value for maintaining the temperature of the thermal mannequin Unit for a unit time (1 min) The heat flux (W/m 2 ), which is the amount of heat energy consumed per area (1 m 2 ), was measured.
<3. 수분 흡수속도><3. Moisture Absorption Rate>
KS K 0642 8.26 B법(바이렉법)을 통해, 원단의 수분 흡수 속도를 측정하였다.Through the KS K 0642 8.26 B method (Byrek method), the moisture absorption rate of the fabric was measured.
구체적으로, 20cmХ2.5cm 사이즈의 동일한 원단 샘플을 5개를 준비한 후, 20±2℃의 증류수가 들어 있는 용기의 수면에 샘플의 한쪽 끝이 닿도록 하여 일정한 높이로 수평봉으로 고정시켰다. 10분 경과 후, 모세관 현상으로 물이 상승하는 높이를 측정하여, 그 평균값으로 표시하였다.Specifically, after preparing five identical fabric samples with a size of 20 cmХ2.5 cm, one end of the sample was brought into contact with the surface of a container containing distilled water at 20 ± 2 ° C and fixed with a horizontal bar at a constant height. After 10 minutes, the height at which the water rises was measured by capillarity and expressed as an average value.
<4. 수분 건조속도><4. Moisture Drying Rate>
KS K 0642 8.25 A법을 통해, 원단의 수분 건조 속도를 측정하였다.Through the KS K 0642 8.25 A method, the moisture drying rate of the fabric was measured.
구체적으로, 4cm Х4cm 크기의 시험편 3개를 준비한 후, 20±2℃의 증류수에 펼친 상태로 침지시켜 충분히 수분을 시험편에 흡수시켰다. 이 후 증류수에서 꺼내어 물방울이 더 이상 떨어지지 않을 때, 건조시간 측정장치에 장착하여 20±2℃, 65±2% R.H 조건 하의 시험실 내에서 방치시켰다. 자연 건조되어 항량이 될 때까지의 시간을 측정하였다. Specifically, after preparing three test pieces with a size of 4 cm Х4 cm, they were immersed in distilled water at 20 ± 2 ° C in an open state to sufficiently absorb moisture into the test pieces. Then, when the water droplets no longer fall after being taken out of the distilled water, it is attached to a drying time measuring device and left in the test room under conditions of 20 ± 2 ° C and 65 ± 2% R.H. The time from natural drying to constant weight was measured.
[실시예 1][Example 1]
<폴리에틸렌 원사의 제조><Manufacture of polyethylene yarn>
*200개의 필라멘트들을 포함하고 총섬도가 150 데니어인 폴리에틸렌 원사를 제조하였다.* A polyethylene yarn containing 200 filaments and having a total fineness of 150 denier was prepared.
먼저, 폴리에틸렌 칩을 익스트루더(100)에 투입하여 용융시켰다. 용융된 폴리에틸렌은 200개의 홀들을 갖는 구금(200)을 통해 압출되었다. 구금 온도는 270℃이었다. 이때, 구금의 노즐은 "Y"형이었다.First, polyethylene chips were put into the extruder 100 and melted. Molten polyethylene was extruded through a nozzle 200 with 200 holes. The detention temperature was 270°C. At this time, the nozzle of the nozzle was "Y" type.
구금(200)의 노즐 홀들로부터 토출되면서 형성된 필라멘트들(11)은 제1냉각부에서는 0.9 m/sec의 풍속의 냉각풍에 의해 50℃로 냉각하고, 제2 냉각부에서는 0.5 m/sec의 풍속의 냉각풍에 의해 35℃로 냉각하였으며, 제3 냉각부에서 0.4 m/sec의 풍속의 냉각풍에 의해 25℃로 최종 냉각되었다. 냉각된 후 집속기에 의해 멀티필라멘트사로 집속되었다.The filaments 11 formed while being discharged from the nozzle holes of the nozzle 200 are cooled to 50° C. by a cooling wind at a wind speed of 0.9 m/sec in the first cooling unit and at a wind speed of 0.5 m/sec in the second cooling unit. It was cooled to 35 ° C by the cooling wind of , and finally cooled to 25 ° C by the cooling wind of 0.4 m / sec wind speed in the third cooling unit. After cooling, it was collected into a multifilament yarn by a collimator.
이어서, 상기 멀티필라멘트사는 연신부(500)로 이동하였다. 상기 연신부는 4개의 구간으로 이루어진 다단연신부로 이루어지며, 구체적으로 제1 연신구간은 최대 연신온도 80 ℃에서 총 연신비 3배로 연신되고, 제2 연신구간은 최대 연신온도 120 ℃에서 총 연신비 7배로 연신되고, 제3 연신구간은 최대 연신온도 130 ℃에서 총 연신비 10배로 연신되고, 제4 연신구간은 최대 연신온도 120 ℃에서 제3 연신구간에 비하여 2% 수축연신(이완)되도록 하여 연신 및 열고정되었다.Subsequently, the multifilament yarn moved to the stretching unit 500 . The stretching unit is composed of a multi-stage stretching unit consisting of four sections. Specifically, the first stretching section is stretched at a maximum stretching temperature of 80 ° C. and the total stretching ratio is 3 times, and the second stretching section is at a maximum stretching temperature of 120 ° C. and the total stretching ratio is 7 times. The third stretching section is stretched at a maximum stretching temperature of 130 ° C and the total stretching ratio is 10 times, and the fourth stretching section is 2% shrinkage (relaxation) compared to the third stretching section at a maximum stretching temperature of 120 ° C. Stretching and heat Fixed.
이어서, 상기 연신된 멀티필라멘트사는 와인더(600)에 권취되었다. 권취 장력은 0.8 g/d이었다.Subsequently, the stretched multifilament yarn was wound around the winder 600 . The winding tension was 0.8 g/d.
제조된 원사의 단면 광학현미경 사진을 도 5에 도시하였으며, 제조된 원사의 물성을 측정하여 하기 표 1에 나타내었다.A cross-sectional optical micrograph of the prepared yarn is shown in FIG. 5, and the physical properties of the prepared yarn are measured and shown in Table 1 below.
<기능성 원단의 제조><Manufacture of functional fabric>
상기 제조된 폴리에틸렌 원사를 제직하여 면밀도 500g/m2의 기능성 원단을 제조하였다. 제조된 기능성 원단의 물성을 측정하여 하기 표 3에 나타내었다.A functional fabric having an areal density of 500 g/m 2 was prepared by weaving the prepared polyethylene yarn. The physical properties of the prepared functional fabric were measured and shown in Table 3 below.
[실시예 2 내지 5][Examples 2 to 5]
하기 표 1과 같이 원사 조건을 변경한 것을 제외하고는 실시예 1과 동일하게 원단을 제조하였다. 또한, 실시예 1과 동일하게 제조된 원단의 물성을 측정하여 하기 표 3에 나타내었다.A fabric was prepared in the same manner as in Example 1, except that yarn conditions were changed as shown in Table 1 below. In addition, the physical properties of the fabric prepared in the same manner as in Example 1 were measured and are shown in Table 3 below.
[실시예 6][Example 6]
실시예 1에 있어서, 구금 노즐을 ">-<"형 노즐을 사용한 것을 제외하고, 실시예 1과 동일하게 원사 및 원단을 제조하였다. 또한, 제조된 원사 및 원단의 물성을 측정하여 하기 표 1 및 표 3에 나타내었다.In Example 1, yarn and fabric were prepared in the same manner as in Example 1, except that a ">-<" type nozzle was used as the nozzle nozzle. In addition, the physical properties of the prepared yarns and fabrics were measured and shown in Tables 1 and 3 below.
[비교예 1][Comparative Example 1]
실시예 1에 있어서, 구금 노즐을 원형 노즐을 사용한 것을 제외하고는 실시예 1과 동일하게 원사 및 원단을 제조하였다. 원사의 물성을 하기 표 2에 나타내었으며, 또한, 실시예 1과 동일하게 제조된 원단의 물성을 측정하여 하기 표 4에 나타내었다.In Example 1, yarn and fabric were prepared in the same manner as in Example 1, except that a circular nozzle was used as the nozzle nozzle. The physical properties of the yarn were shown in Table 2 below, and also, the physical properties of the fabric prepared in the same manner as in Example 1 were measured and shown in Table 4 below.
[비교예 2][Comparative Example 2]
실시예 1과 동일한 단면 형상 및 크기를 가지는 폴리에틸렌 테레프탈레이트(PET) 섬유를 준비한 후, 실시예 1과 동일하게 원단을 제조하였다. 원사의 물성을 하기 표 2에 나타내었으며, 실시예 1과 동일하게 제조된 원단의 물성을 측정하여 하기 표 4에 나타내었다.After preparing a polyethylene terephthalate (PET) fiber having the same cross-sectional shape and size as in Example 1, a fabric was prepared in the same manner as in Example 1. The physical properties of the yarn are shown in Table 2 below, and the physical properties of the fabric prepared in the same manner as in Example 1 are measured and shown in Table 4 below.
[비교예 3][Comparative Example 3]
실시예 1과 동일한 단면 형상 및 크기를 가지며, 흡수용 첨가제로서 이산화타이타늄이(TiO2) 첨가된 폴리에틸렌 테레프탈레이트(PET) 섬유를 준비한 후, 실시예 1과 동일하게 원단을 제조하였다. 원사의 물성을 하기 표 2에 나타내었으며, 실시예 1과 동일하게 제조된 원단의 물성을 측정하여 하기 표 4에 나타내었다.After preparing a polyethylene terephthalate (PET) fiber having the same cross-sectional shape and size as in Example 1 and adding titanium dioxide (TiO 2 ) as an absorbent additive, a fabric was prepared in the same manner as in Example 1. The physical properties of the yarn are shown in Table 2 below, and the physical properties of the fabric prepared in the same manner as in Example 1 are measured and shown in Table 4 below.
[비교예 4] [Comparative Example 4]
실시예 1에 있어서, 결정화도가 하기 표 2를 만족하도록 폴리에틸렌 원사의 연신공정을 다단연신에서 단일 연신으로 바꾼 것을 제외하고, 실시예 1과 동일하게 원사를 제조하고, 제조된 원단의 물성을 측정하여 하기 표 4에 나타내었다.In Example 1, a yarn was prepared in the same manner as in Example 1, except that the stretching process of the polyethylene yarn was changed from multi-stage stretching to single stretching so that the crystallinity satisfies Table 2 below, and the physical properties of the fabric were measured. It is shown in Table 4 below.
[비교예 5][Comparative Example 5]
실시예 1에 있어서, 결정화도가 하기 표 2를 만족하도록 폴리에틸렌 원사의 냉각공정을 다단냉각에서 단일 냉각(0.5 m/sec의 풍속의 냉각풍에 의해 25℃로 냉각)으로 바꾼 것을 제외하고, 실시예 1과 동일하게 원사를 제조하고, 제조된 원단의 물성을 측정하여 하기 표 4에 나타내었다.In Example 1, except for changing the cooling process of the polyethylene yarn from multi-stage cooling to single cooling (cooling to 25 ° C. by cooling wind at a wind speed of 0.5 m / sec) so that the crystallinity satisfies Table 2 below, Example Yarn was prepared in the same manner as in 1, and the physical properties of the fabric were measured and shown in Table 4 below.
구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6
폴리에틸렌 원사의 물성Properties of polyethylene yarn PDIPDI 9.829.82 10.1110.11 10.2310.23 9.749.74 9.889.88 9.719.71
Mw(g/mol)Mw (g/mol) 311654311654 308542308542 313451313451 316321316321 309991309991 315642315642
결정화도(%)Crystallinity (%) 75.275.2 75.775.7 74.174.1 74.974.9 75.375.3 75.175.1
용융지수
(g/10min)
melt index
(g/10min)
10.110.1 9.89.8 11.211.2 10.510.5 10.410.4 10.510.5
강도(g/d)Strength (g/d) 7.57.5 8.28.2 7.87.8 7.47.4 7.37.3 7.67.6
필라멘트 단면filament section 형상shape 3엽형three-lobed 3엽형three-lobed 3엽형three-lobed 3엽형three-lobed 3엽형three-lobed 4엽형four-lobed
R2/R1 비R2/R1 ratio 2.812.81 3.103.10 2.122.12 2.242.24 2.792.79 2.362.36
비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5
원사 물성yarn properties 소재Material PEPE PETPET PET+TiO2 PET+TiO 2 PEPE PEPE
결정화도(%)Crystallinity (%) 75.275.2 48.748.7 48.748.7 55.155.1 55.755.7
강도(g/d)Strength (g/d) 11.511.5 3.43.4 3.53.5 7.47.4 7.57.5
원사 단면yarn cross section 단면 형상section shape 원형circle 3엽형three-lobed 3엽형three-lobed 3엽형three-lobed 3엽형three-lobed
단면
R2/R1 비
section
R2/R1 ratio
-- 1.651.65 1.781.78 1.981.98 1.911.91
실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예 5Example 5 실시예 6Example 6
기능성 원단의 물성Physical properties of functional fabrics 접촉냉감
(W/cm2)
coldness to the touch
(W/cm 2 )
0.20.2 0.190.19 0.180.18 0.170.17 0.180.18 0.210.21
열유속 (W/m2)Heat flux (W/m 2 ) 115115 102102 107107 114114 109109 114114
수분흡수속도(mm/min)Water absorption rate (mm/min) 125125 108108 107107 115115 112112 127127
수분건조속도
(mm/min)
Moisture drying speed
(mm/min)
3232 2828 2626 3030 3434 3131
비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 비교예5Comparative Example 5
기능성 원단의 물성Physical properties of functional fabrics 접촉냉감(W/cm2)Contact coolness (W/cm 2 ) 0.20.2 0.120.12 0.130.13 0.100.10 0.110.11
열유속 (W/m2)Heat flux (W/m 2 ) 114114 8080 9090 8787 8585
수분흡수속도
(mm/min)
water absorption rate
(mm/min)
4545 9999 101101 111111 112112
수분건조속도
(mm/min)
Moisture drying speed
(mm/min)
1111 2424 2727 3030 2525
상기 표 1 내지 표 4를 참조하면, 본 발명의 실시예에 따른 원사로부터 제조된 원단은 높은 접촉냉감을 가짐과 동시에 우수한 흡한속건능을 가짐을 확인할 수 있었다. 이를 통해 실시예에 따른 원사로부터 제조된 원단은 사용자에게 현저히 우수한 냉감성을 제공할 수 있다. 반면 비교예 1에 따른 원단의 경우 접촉냉감은 실시예들과 유사한 수치를 나타내었으나 수분흡수속도 및 수분건조속도가 낮아 수분을 빠르게 제거하지 못해 사용자에게 느껴지는 냉감성은 떨어지는 것으로 나타났다.Referring to Tables 1 to 4, it was confirmed that the fabrics prepared from the yarns according to the embodiments of the present invention had high contact coolness and excellent sweat perspiration and quick drying performance. Through this, the fabric manufactured from the yarn according to the embodiment can provide significantly superior cooling sensation to the user. On the other hand, in the case of the fabric according to Comparative Example 1, the contact cooling sensation was similar to that of the examples, but the moisture absorption rate and the moisture drying rate were low, so the moisture was not quickly removed, and the cooling sensation felt by the user was poor.
비교예 2 내지 3의 경우, 접촉냉감 및 열유속 그리고 수분 흡수 및 건조 속도가 모두 낮아 냉감성 제품 및 흡한속건능을 가지는 제품으로 활용 가능성이 매우 낮음을 확인할 수 있었다.In the case of Comparative Examples 2 to 3, contact cooling sensation, heat flux, moisture absorption, and drying rate were all low, so it was confirmed that the possibility of utilization as a product having a cool feeling product and a sweat perspiration quick drying ability was very low.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described by specific details and limited embodiments and drawings, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments, and the present invention Those skilled in the art can make various modifications and variations from these descriptions.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and it will be said that not only the claims to be described later, but also all modifications equivalent or equivalent to these claims belong to the scope of the present invention. .
[부호의 설명][Description of code]
1 : 필라멘트 10 : 중심체 1: filament 10: centrosome
10a : 내접원 30 : 돌기 10a: inscribed circle 30: protrusion
30a : 외접원30a: circumcircle

Claims (11)

  1. 길이방향에 수직하는 단면을 기준으로,Based on the cross section perpendicular to the longitudinal direction,
    중심체와, 상기 중심체에서 돌출된 두개 이상의 돌기를 포함하는 필라멘트를 함유하고, Containing a centrosome and filaments including two or more projections protruding from the centrosome,
    결정화도가 56 내지 85% 인 폴리에틸렌 원사.A polyethylene yarn having a crystallinity of 56 to 85%.
  2. 제1항에 있어서,According to claim 1,
    상기 필라멘트의 길이방향에 수직하는 단면을 기준으로,Based on the cross section perpendicular to the longitudinal direction of the filament,
    상기 중심체에서 상기 중심체가 형성하는 내접원의 제1반지름(R1)과, 상기 중심체와 돌기가 형성하는 외접원의 제2반지름(R2)는 하기 식을 만족하는, 폴리에틸렌 원사.The first radius (R1) of the inscribed circle formed by the core body in the core body and the second radius (R2) of the circumscribed circle formed by the core body and the projections satisfy the following formula, polyethylene yarn.
    [식][ceremony]
    1.2 ≤ R2/R1 ≤ 5.01.2 ≤ R2/R1 ≤ 5.0
  3. 제1항에 있어서,According to claim 1,
    상기 원사는 ASTM D1238에 따라 190 ℃ 2.16 kg에서 측정되는 용융지수 (melt index: MI, @190℃)가 1 내지 25g/10min인, 폴리에틸렌 원사.The yarn has a melt index (melt index: MI, @190 ℃) measured at 190 ℃ 2.16 kg according to ASTM D1238 of 1 to 25g / 10min, polyethylene yarn.
  4. 제1항에 있어서,According to claim 1,
    상기 원사는 다분산지수(Polydispersity Index, PDI)가 5 내지 30, 폴리에틸렌 원사.The yarn has a polydispersity index (PDI) of 5 to 30, polyethylene yarn.
  5. 제1항에 있어서,According to claim 1,
    상기 원사는 ASTM D2256으로 측정되는 강도가 5 내지 10g/d인, 폴리에틸렌 원사. The yarn has a strength of 5 to 10 g / d as measured by ASTM D2256, a polyethylene yarn.
  6. 제1항 내지 제5항 중 어느 한 항의 원사를 포함하는 기능성 원단.A functional fabric comprising the yarn of any one of claims 1 to 5.
  7. 제6항에 있어서,According to claim 6,
    상기 원단은 20±2 ℃, 65±2 % R.H에서 측정된 접촉냉감(Q-max)이 0.1 내지 0.5W/cm2 인, 기능성 원단.The fabric has a contact cooling sensation (Q-max) of 0.1 to 0.5 W / cm 2 measured at 20 ± 2 ℃, 65 ± 2% RH, functional fabric.
  8. 제6항에 있어서,According to claim 6,
    상기 원단은 20±2 ℃, 65±2% R.H에서 측정된 열유속(heat flux)이 95 내지 150W/m2인, 기능성 원단.The fabric has a heat flux of 95 to 150 W/m 2 measured at 20 ± 2 °C and 65 ± 2% RH, functional fabric.
  9. 제6항에 있어서,According to claim 6,
    상기 원단은 KS K 0642 8.26의 B법 바이렉법에 의한 수분 흡수속도가 80 내지 160mm/10min인, 기능성 원단.The fabric has a water absorption rate of 80 to 160 mm / 10 min according to the B method of KS K 0642 8.26, a functional fabric.
  10. 제6항에 있어서,According to claim 6,
    상기 원단은 KS K 0642 8.25 A법에 의한 수분 건조속도가 20 내지 50mm/10min인, 기능성 원단.The fabric has a moisture drying rate of 20 to 50mm/10min according to KS K 0642 8.25 A method, functional fabric.
  11. 제6항의 기능성 원단으로부터 제조된 흡한속건 제품.A sweat-absorbing and quick-drying product manufactured from the functional fabric of claim 6.
PCT/KR2022/020674 2021-12-20 2022-12-19 Modified cross-section polyethylene yarn, and functional fabric comprising same WO2023121164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210182731A KR20230093813A (en) 2021-12-20 2021-12-20 Shaped cross-section polyethylene yarn and functional fabric comprising the same
KR10-2021-0182731 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023121164A1 true WO2023121164A1 (en) 2023-06-29

Family

ID=86903351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020674 WO2023121164A1 (en) 2021-12-20 2022-12-19 Modified cross-section polyethylene yarn, and functional fabric comprising same

Country Status (2)

Country Link
KR (2) KR20230093813A (en)
WO (1) WO2023121164A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070028688A (en) * 2005-08-30 2007-03-13 정형희 Antistatic knit fabrics of comfortablity
WO2013168543A1 (en) * 2012-05-07 2013-11-14 帝人株式会社 Modified cross-section fiber with excellent cool feeling
KR20190005605A (en) * 2017-07-07 2019-01-16 주식회사 휴비스 Sbhaped hollow polyethylene fiber and method for manufacturing the same
KR20200002119A (en) * 2018-06-29 2020-01-08 코오롱인더스트리 주식회사 Skin Cooling Fabric, Polyethylene Yarn Therefor, and Method for Manufacturing Polyethylene Yarn
KR20200036171A (en) * 2018-09-28 2020-04-07 코오롱인더스트리 주식회사 Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076122A (en) 2009-12-29 2011-07-06 주식회사 효성 Polybutyleneterephthalate fiber with modified cross-section having superior sweat-absorbing, quick-drying & stretch properties
KR101808459B1 (en) 2016-11-25 2018-01-18 한국섬유개발연구원 Shaped cross-section fiber with excellent absorption and dry property and wearing resistance and manufacturing process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070028688A (en) * 2005-08-30 2007-03-13 정형희 Antistatic knit fabrics of comfortablity
WO2013168543A1 (en) * 2012-05-07 2013-11-14 帝人株式会社 Modified cross-section fiber with excellent cool feeling
KR20190005605A (en) * 2017-07-07 2019-01-16 주식회사 휴비스 Sbhaped hollow polyethylene fiber and method for manufacturing the same
KR20200002119A (en) * 2018-06-29 2020-01-08 코오롱인더스트리 주식회사 Skin Cooling Fabric, Polyethylene Yarn Therefor, and Method for Manufacturing Polyethylene Yarn
KR20200036171A (en) * 2018-09-28 2020-04-07 코오롱인더스트리 주식회사 Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same

Also Published As

Publication number Publication date
TW202325929A (en) 2023-07-01
KR20230094187A (en) 2023-06-27
KR20230093813A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
KR102167737B1 (en) Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same
KR102202592B1 (en) Skin Cooling Fabric, Polyethylene Yarn Therefor, and Method for Manufacturing Polyethylene Yarn
WO2020190070A1 (en) Cut resistant polyethylene yarn, method for manufacturing same, and protective article produced using same
KR102137243B1 (en) Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same
JPH0214011A (en) Porous polyethylene fiber
WO2018124832A1 (en) Lyocell fiber, nonwoven fabric aggregate comprising same, and mask pack sheet comprising same
WO2023121164A1 (en) Modified cross-section polyethylene yarn, and functional fabric comprising same
WO2022092854A1 (en) Functional fabric
WO2023101474A1 (en) Polyethylene yarn having enhanced weavability, and functional fabric comprising same
BR0012786B1 (en) method for producing a nonwoven fabric material.
WO2021025339A1 (en) Core sheath-type composite false-twist textured yarn and method for manufacturing same
WO2023106799A1 (en) Polyethylene yarn with improved dimensional stability, and functional fabric comprising same
WO2023106796A1 (en) Dope-dyed polyethylene yarn and functional fabric including same
WO2022075803A1 (en) High-strength polyethylene yarn with improved shrinkage rate and manufacturing method therefor
WO2020138971A1 (en) Polyethylene multifilament textured yarn and method of manufacturing same
WO2021132767A1 (en) Cooling sensation fabric, polyethylene yarn therefor, and method for manufacturing polyethylene yarn
WO2021132768A1 (en) Polyethylene yarn, method for manufacturing same, and cool-feeling fabric comprising same
WO2023277428A1 (en) Polyethylene yarn having improved post-processability, and fabric comprising same
WO2022146042A1 (en) Cut-resistant polyethylene yarn
WO2022146040A1 (en) Cut-resistant polyethylene yarn
TWI836333B (en) Shaped cross-section polyethylene yarn, functional fabric and sweat absorption and quick drying product
KR102534492B1 (en) Cut-resistance complex fiber
WO2021132769A1 (en) Polyethylene yarn, manufacturing method therefor, and cooling sensation fabric including same
WO2019050375A2 (en) Compression-molded body and method for producing same
TWI841993B (en) Polyethylene yarn having improved post-processability and fabric including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911797

Country of ref document: EP

Kind code of ref document: A1