WO2023120888A1 - Predictive maintenance method, for device, using gan algorithm - Google Patents

Predictive maintenance method, for device, using gan algorithm Download PDF

Info

Publication number
WO2023120888A1
WO2023120888A1 PCT/KR2022/014427 KR2022014427W WO2023120888A1 WO 2023120888 A1 WO2023120888 A1 WO 2023120888A1 KR 2022014427 W KR2022014427 W KR 2022014427W WO 2023120888 A1 WO2023120888 A1 WO 2023120888A1
Authority
WO
WIPO (PCT)
Prior art keywords
normal
image
collected
real
defective
Prior art date
Application number
PCT/KR2022/014427
Other languages
French (fr)
Korean (ko)
Inventor
이영규
Original Assignee
주식회사 아이티공간
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티공간 filed Critical 주식회사 아이티공간
Publication of WO2023120888A1 publication Critical patent/WO2023120888A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a method for predictive maintenance of a device using a GAN algorithm, and more particularly, a determination module includes a large amount of normal image information collected when the device is in a normal state and a defective image collected from the device before a failure occurs in the generation module.
  • Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of similar defective image information generated based on the information. It relates to a predictive maintenance method for devices using a GAN algorithm that can prevent huge losses due to device failures in advance by inducing maintenance and replacement of devices at an appropriate time.
  • the present invention has been proposed to solve various problems as described above, and its purpose is that the determination module is a large amount of normal image information collected when the device is in a normal state and a bad image collected from the device before a failure occurs in the generation module.
  • Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of similar defective image information generated based on the information. It is to provide a predictive maintenance method for devices using a GAN algorithm that can prevent huge losses due to device failures in advance by inducing maintenance and replacement of devices at an appropriate time.
  • the discrimination module increases the learning effect of the discrimination module by relearning by receiving feedback on the success or failure of the discrimination result in the learning stage and the relearning stage, thereby securing excellent reliability for the discrimination result determined by the discrimination module. It is to provide a method for predictive maintenance of a device using a GAN algorithm.
  • the predictive maintenance method of a device using the GAN algorithm according to the present invention to achieve the above object is to perform a process in a normal operating state.
  • a normal information collection step (S10) in which at least one or more are collected and converted into an image file, and when two or more normal waveforms are collected, each normal waveform is superimposed on each other and then converted into an image file and collected as a normal image; Before the occurrence, a process is performed while the device is running, and at least one defective waveform representing the change information of the amount of energy over time measured by the device is collected, converted into an image file, and collected.
  • a learning step (S40) of learning the similar defective image information produced in step (S30) in the discrimination module and, a process performed in a real-time driving state, showing the change information of the amount of energy over time measured by the device At least one real-time waveform is collected, converted into an image file, and collected.
  • each real-time waveform is superimposed on each other, converted into an image file, and collected as a real-time image, and the real-time image is collected in the learning step (S50) of determining whether the determination module through S40) is normal or defective; and, if the real-time image collected from the real-time device is determined to be defective through the determination module in the determination step (S50), the device is abnormal. It is characterized in that it includes; a detection step (S60) of detecting the state.
  • the learning step (S40) includes a first step (S41) of learning about a normal image based on a large amount of normal image information collected in the normal information collection step (S10) by the discrimination module;
  • the determination module that has learned about the normal image is provided with a large amount of similar defective images generated in the generation module together with the normal image, and the image determined as a normal image through the determination module is normal, and other
  • the second process (S42) of determining that the image is defective the success or failure of the result determined by the discrimination module in the second process (S42) is fed back to the discrimination module to maximize the learning efficiency of the discrimination module.
  • a third step (S43) of learning whether or not the determination module's determination result for similar defective images was successful by receiving feedback from the generating module.
  • the determination module re-learns by receiving feedback on the success or failure of the determination result of the real-time image determined in the determination step (S50), thereby inducing reliability of the determination result determined in the determination step (S50) to be improved. Characterized in that it further includes; learning step (S70).
  • the energy according to the time measured by the device is any one selected from the current consumed in driving the device, the vibration or noise generated when the device is driven, the frequency of power supplied to the device, and the temperature, humidity, and pressure of the device when driven. It is characterized by using one or a combination of two or more.
  • the determination module includes a large amount of normal image information collected when the device is in a normal state and a bad image collected from the device before a failure occurs in the generation module.
  • Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of similar defective image information generated based on the information.
  • the discrimination module increases the learning effect of the discrimination module by relearning by receiving feedback on the success or failure of the discrimination result in the learning stage and the relearning stage, thereby securing excellent reliability for the discrimination result determined by the discrimination module. There is an effect.
  • FIG. 1 is a block diagram of a method for predictive maintenance of a device using a GAN algorithm according to an embodiment of the present invention.
  • FIG. 2 to 6 are diagrams for explaining a method for predictive maintenance of a device using the GAN algorithm shown in FIG. 1 .
  • FIG. 1 to 6 show a method for predictive maintenance of a device using a GAN algorithm according to an embodiment of the present invention
  • FIG. 1 is a block diagram of a method for predictive maintenance of a device using a GAN algorithm according to an embodiment of the present invention
  • FIGS. 2 to 6 each show diagrams for explaining a method for predictive maintenance of a device using the GAN algorithm shown in FIG. 1 .
  • the predictive maintenance method 100 of a device using the GAN algorithm includes a normal information collection step (S10), a bad information collection step (S20), and a good product generation step ( S30), a learning step (S40), a determination step (S50), and a detection step (S60).
  • the normal information collection step (S10) performs a process in a normal driving state, and collects at least one normal waveform representing the change information of the amount of energy over time measured by the device Conversion into image files is performed, but if two or more normal waveforms are collected, each normal waveform is overlapped with each other, converted into an image file, and collected as a normal image.
  • the energy measured by the device performing the process As shown in FIG. 2, in the present invention, for convenience of description, the energy measured by the device performing the process, the current consumed in driving the device, the vibration generated in the device during driving, and the temperature of the device during driving, respectively. It is measured to extract a total of three types of waveforms from the device, but energy waveforms are not limited to these types and numbers to be extracted. Of course, any one selected from vibration or noise generated, the frequency of power supplied to the device, and the temperature, humidity, and pressure of the device during driving, or a combination of two or more may be used.
  • a normal waveform of current consumed in driving from a normal device and a normal waveform of vibration and temperature are respectively measured and collected.
  • it is converted into an image of a mixture of three types of waveforms and extracted and collected as a normal image.
  • the normal image information collected in the normal information collection step (S10) is an important basis for determining the state of the device in the discrimination module (S40) to be learned by the discrimination module in the learning step (S40) to be described later. .
  • a process is performed in the operating state of the device before a failure occurs, indicating the change information of the amount of energy measured by the device over time.
  • At least one waveform is collected, converted into an image file, and collected.
  • each of the defective waveforms is overlapped with each other, converted into an image file, and collected as a defective image.
  • each of the collected defective waveforms is converted into an image in which three types of waveforms are mixed by taking pictures in a state of overlapping each other, and extracting and collecting the defective images.
  • the defective image is extracted from the device before failure, it may include an energy value that is abnormally changed, and thus may have a slightly different image from a normal image extracted and collected from a normal device.
  • the normal image information collected in the defective information collection step (S20) is learned by the determination module in the learning step (S40), and becomes an important basis for determining the state of the device in the determination step (S50).
  • the defective image information collected in the defective information collection step (S20) is learned, and the defective image information is generated in the generating module 20 based on the learned defective image information. This is a step of mass-producing similar defective images similar to the image.
  • the generation module 20 can be implemented through a general artificial intelligence (Artificial Intelligence) program.
  • the determination and generation modules 10 and 20 are implemented with a GAN (Generative Adversarial Network) algorithm, but the implementation is limited to this algorithm. Of course not.
  • the normal image information collected in the normal information collection step (S10) and the similar bad image information produced in the best work generation step (S30) are determined by a discriminating module.
  • the determination module 10 learns about normal images based on a large amount of normal image information collected in the normal information collection step (S10). Through this learning, the determination result of the determination module in the determination step to ensure reliability.
  • the determination module 10 determines success or failure of determination. While clearly recognizing and supplementing learning, the learning efficiency of the discrimination module 10 is maximized.
  • the generation module 20 receives feedback and clearly recognizes and learns the success of the determination result of the determination module 10 for the similar defect image, and more precisely so that the generation module 10 can be deceived.
  • An image is generated, and this process eventually helps efficient learning of the generation module 10, and thus becomes a basis for securing excellent reliability for the discrimination result of the generation module 10.
  • the determination step (S50) performs a process in a real-time driving state, and collects at least one real-time waveform representing the change information of the amount of energy over time measured by the device to obtain an image file.
  • each real-time waveform is superimposed on each other, converted into an image file, collected as a real-time image, and the real-time image is passed through the learning step (S40). This is the step of determining whether it is normal or defective.
  • the determination module 10 determines whether real-time images repeatedly extracted and collected from devices in a real-time driving state are normal or defective, and continuously outputs the determination result. Since the module 10 has gone through the learning step (S40), excellent reliability of the discrimination result can be expected.
  • the detection step (S60) detects the device as an abnormal state when the real-time image collected from the real-time device in the discrimination step (S50) is determined to be defective through the discrimination module 10. It is a step.
  • the determination module 10 determines that the real-time image is normal, it detects the state of the real-time driven device as a stable state, and when the real-time image is determined to be defective, the real-time driven device is placed in an abnormal state. will be detected with
  • the manager can induce stable inspection and management of the device, thereby reducing the enormous economic cost that can occur when the entire operation of the facility is stopped due to a sudden device failure. phosphorus loss can be prevented.
  • the determination module 10 receives feedback on the success or failure of the determination result of the real-time image determined in the determination step (S50) and re-learns to discriminate in the determination step (S50).
  • a re-learning step (S70) leading to improved reliability of the result; is further included.
  • the determination module 10 determines whether a real-time image extracted from a device driven in real time is normal or defective, and receives feedback on whether the determination result is successful or not through a process of re-learning the determination. The reliability of the determination of the module 10 is induced to be further improved.
  • the determination module 10 In the predictive maintenance method 100 of a device using the GAN algorithm of the present invention consisting of the above process, the determination module 10 generates a large amount of normal image information collected in a normal state of the device and a failure occurs in the generation module 20 Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of pseudo-defective image information generated based on defective image information collected from devices prior to processing, and real-time image information is determined as a defective image. In this case, it is effective to prevent huge losses due to failure of the equipment in advance by detecting the equipment in an abnormal state and inducing maintenance and replacement of the equipment at an appropriate time.
  • the discrimination module 10 increases the learning effect of the discrimination module 10 by receiving feedback on the success or failure of the discrimination result in the learning step (S40) and the re-learning step (S70) and re-learning. There is an effect of securing excellent reliability for the discrimination result determined by the discrimination module 10 .
  • the predictive maintenance method 100 of a device using the GAN algorithm of the present invention can be implemented through a combination of various electronic devices and programs capable of measuring, collecting, discriminating, and detecting the energy waveform of the device.
  • the present invention is applicable to the predictive maintenance industry.

Abstract

The present invention relates to a predictive maintenance method, for a device, using a GAN algorithm, the method in which a decision module learns a large amount of normal image information, which is collected when the device is in a normal state, and a large amount of quasi-defect image information which is generated by a generation module on the basis of defect image information collected from the device before a malfunction occurs, thereby deciding whether real-time image information, which is collected from the device operating in real time, is a normal image or a defect image. If the real-time image information is decided to be a defect image, the method detects the abnormal state of the device and provides a guide to perform maintenance and replacement of the device at an appropriate time, thereby preventing huge losses due to a malfunction of the device.

Description

GAN 알고리즘을 이용한 기기의 예지 보전방법Method for predictive maintenance of devices using GAN algorithm
본 발명은 GAN 알고리즘을 이용한 기기의 예지 보전방법에 관한 것으로, 더욱 상세하게는 판별모듈은 기기가 정상적인 상태에서 수집되는 대량의 정상 이미지 정보와 생성모듈에서 고장이 발생하기 전의 기기에서 수집되는 불량 이미지 정보를 기반으로 생성되는 대량의 유사 불량 이미지 정보를 학습하여 실시간 구동되는 기기로부터 수집되는 실시간 이미지 정보를 정상 또는 불량 이미지로 판별하되, 실시간 이미지 정보가 불량 이미지로 판별되면 기기를 이상상태로 검출하여 적합한 시기에 기기의 정비 및 교체를 수행할 수 있도록 유도함으로 기기의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 GAN 알고리즘을 이용한 기기의 예지 보전방법에 관한 것이다.The present invention relates to a method for predictive maintenance of a device using a GAN algorithm, and more particularly, a determination module includes a large amount of normal image information collected when the device is in a normal state and a defective image collected from the device before a failure occurs in the generation module. Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of similar defective image information generated based on the information. It relates to a predictive maintenance method for devices using a GAN algorithm that can prevent huge losses due to device failures in advance by inducing maintenance and replacement of devices at an appropriate time.
일반적으로 설비의 자동화 공정을 위해 사용되는 각종 기기들은 안정적인 작동이 매우 중요하다. In general, stable operation of various devices used for the automation process of facilities is very important.
일 예로, 대규모 생산 공장의 설비에는 수십, 수백 개의 기기가 설치되어 서로 연동 동작하면서 제품을 연속 생산하게 되는데, 만약 다수의 기기 중에서 어느 하나의 기기가 고장이 발생하면 설비의 동작이 전체적으로 중단되는 엄청난 상황이 발생할 수 있다.For example, dozens or hundreds of devices are installed in facilities of a large-scale production plant to continuously produce products while interlocking with each other. situation may arise.
이때는 기기의 고장으로 인한 다운 타임의 발생으로 기기의 수리비용뿐만 아니라, 설비가 중단되는 동안 낭비되는 운영비와 비즈니스 효과에 의해 엄청난 손실이 발생될 수밖에 없다.In this case, not only equipment repair costs due to downtime due to equipment failure, but also huge losses due to wasted operating costs and business effects while the equipment is stopped.
최근 고용노동부와 산업안전 관리공단의 자료에 따르면 연간 산업 안전사고로 인한 사상자는 총 10만 명 수준으로 집게 되고 있으며, 이를 비용으로 환산시 연간 18조원의 손실이 발생하고 있다고 집계되고 있다.According to recent data from the Ministry of Employment and Labor and the Korea Occupational Safety and Health Administration, the number of casualties due to industrial safety accidents annually is estimated to be around 100,000, and when converted into costs, it is estimated that an annual loss of 18 trillion won is occurring.
이러한 예기치 않은 다운 타임 비용을 피하기 위한 방법으로 사전 예지 보전시스템의 도입이 시급한 실정이다. As a way to avoid such unexpected downtime costs, it is urgent to introduce a predictive maintenance system.
본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위하여 제안된 것으로, 그 목적은 판별모듈은 기기가 정상적인 상태에서 수집되는 대량의 정상 이미지 정보와 생성모듈에서 고장이 발생하기 전의 기기에서 수집되는 불량 이미지 정보를 기반으로 생성되는 대량의 유사 불량 이미지 정보를 학습하여 실시간 구동되는 기기로부터 수집되는 실시간 이미지 정보를 정상 또는 불량 이미지로 판별하되, 실시간 이미지 정보가 불량 이미지로 판별되면 기기를 이상상태로 검출하여 적합한 시기에 기기의 정비 및 교체를 수행할 수 있도록 유도함으로 기기의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 GAN 알고리즘을 이용한 기기의 예지 보전방법을 제공함에 있다.The present invention has been proposed to solve various problems as described above, and its purpose is that the determination module is a large amount of normal image information collected when the device is in a normal state and a bad image collected from the device before a failure occurs in the generation module. Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of similar defective image information generated based on the information. It is to provide a predictive maintenance method for devices using a GAN algorithm that can prevent huge losses due to device failures in advance by inducing maintenance and replacement of devices at an appropriate time.
또한, 판별모듈은 학습단계 및 재학습 단계에서 판별 결과에 대한 성공 여부를 피드백 받아 재학습하는 방식으로 판별모듈의 학습 효과를 증대시킴으로, 판별모듈에서 판별하는 판별 결과에 대한 우수한 신뢰도를 확보할 수 있는 GAN 알고리즘을 이용한 기기의 예지 보전방법을 제공함에 있다.In addition, the discrimination module increases the learning effect of the discrimination module by relearning by receiving feedback on the success or failure of the discrimination result in the learning stage and the relearning stage, thereby securing excellent reliability for the discrimination result determined by the discrimination module. It is to provide a method for predictive maintenance of a device using a GAN algorithm.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법은 정상적인 구동 상태의 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 정상 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 정상 파형이 둘 이상 수집되면 각각의 정상 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 정상 이미지로 수집하는 정상 정보 수집단계(S10);와, 고장이 발생하기 전, 기기의 구동 상태에서 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 불량 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 불량 파형이 둘 이상 수집되면 각각의 불량 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 불량 이미지로 수집하는 불량 정보 수집단계(S20);와, 상기 불량 정보 수집단계(S20)에서 수집된 불량 이미지 정보를 학습하고, 그 학습된 불량 이미지 정보를 기반으로 생성모듈에서 불량 이미지와 유사한 유사 불량 이미지를 대량으로 생산하는 가작 생성단계(S30);와, 상기 정상 정보 수집단계(S10)에서 수집되는 정상 이미지 정보와 상기 가작 생성단계(S30)에서 생산되는 유사 불량 이미지 정보를 판별모듈에서 학습하는 학습단계(S40);와, 실시간 구동 상태에서 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 실시간 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 실시간 파형이 둘 이상 수집되면 각각의 실시간 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 실시간 이미지로 수집하고, 그 실시간 이미지를 상기 학습단계(S40)를 거친 상기 판별모듈에서 정상 또는 불량으로 판별하는 판별단계(S50);와, 상기 판별단계(S50)에서 실시간 기기에서 수집되는 실시간 이미지가 상기 판별모듈을 통해 불량으로 판별되면 상기 기기를 이상상태로 검출하는 검출단계(S60);를 포함하는 것을 특징으로 한다.The predictive maintenance method of a device using the GAN algorithm according to the present invention to achieve the above object is to perform a process in a normal operating state. A normal information collection step (S10) in which at least one or more are collected and converted into an image file, and when two or more normal waveforms are collected, each normal waveform is superimposed on each other and then converted into an image file and collected as a normal image; Before the occurrence, a process is performed while the device is running, and at least one defective waveform representing the change information of the amount of energy over time measured by the device is collected, converted into an image file, and collected. Once collected, a defect information collection step (S20) of overlapping the defective waveforms with each other and then converting them into image files and collecting them as defective images; and learning the defective image information collected in the defect information collection step (S20), Based on the learned bad image information, a creation module mass-produces similar bad images similar to the bad images (S30); and, the normal image information collected in the normal information collection step (S10) and the good work generation A learning step (S40) of learning the similar defective image information produced in step (S30) in the discrimination module; and, a process performed in a real-time driving state, showing the change information of the amount of energy over time measured by the device At least one real-time waveform is collected, converted into an image file, and collected. When two or more real-time waveforms are collected, each real-time waveform is superimposed on each other, converted into an image file, and collected as a real-time image, and the real-time image is collected in the learning step ( A determination step (S50) of determining whether the determination module through S40) is normal or defective; and, if the real-time image collected from the real-time device is determined to be defective through the determination module in the determination step (S50), the device is abnormal. It is characterized in that it includes; a detection step (S60) of detecting the state.
또한, 상기 학습단계(S40)는 상기 판별모듈은 상기 정상 정보 수집단계(S10)에서 수집되는 대량의 정상 이미지 정보를 기반으로 정상 이미지에 대해 학습하는 제1공정(S41)과, 상기 제1공정(S41)을 통해 정상 이미지에 대해 학습한 상기 판별모듈로 정상 이미지와 함께 상기 생성모듈에서 생성된 대량의 유사 불량 이미지를 제공하여 상기 판별모듈을 통해 정상 이미지로 판별되는 이미지는 정상으로, 그 외의 이미지는 불량으로 판별하는 제2공정(S42)과, 상기 제2공정(S42)에서 상기 판별모듈에서 판별한 결과에 대한 성공 여부를 상기 판별모듈로 피드백하여 상기 판별모듈의 학습 능률을 극대화하는 동시에, 유사 불량 이미지에 대한 상기 판별모듈의 판별 결과에 대한 성공 여부를 상기 생성모듈이 피드백 받아 학습하는 제3공정(S43)을 포함하는 것을 특징으로 한다.In addition, the learning step (S40) includes a first step (S41) of learning about a normal image based on a large amount of normal image information collected in the normal information collection step (S10) by the discrimination module; In (S41), the determination module that has learned about the normal image is provided with a large amount of similar defective images generated in the generation module together with the normal image, and the image determined as a normal image through the determination module is normal, and other In the second process (S42) of determining that the image is defective, the success or failure of the result determined by the discrimination module in the second process (S42) is fed back to the discrimination module to maximize the learning efficiency of the discrimination module. , and a third step (S43) of learning whether or not the determination module's determination result for similar defective images was successful by receiving feedback from the generating module.
또한, 상기 판별모듈은 상기 판별단계(S50)에서 판별한 실시간 이미지의 판별 결과에 대한 성공 여부를 피드백 받아 재학습하여 상기 판별단계(S50)에서 판별하는 판별 결과에 대한 신뢰성이 향상되도록 유도하는 재학습 단계(S70);를 더 포함하는 것을 특징으로 한다.In addition, the determination module re-learns by receiving feedback on the success or failure of the determination result of the real-time image determined in the determination step (S50), thereby inducing reliability of the determination result determined in the determination step (S50) to be improved. Characterized in that it further includes; learning step (S70).
또한, 기기에서 측정되는 시간에 따른 에너지는 기기의 구동에 소모되는 전류, 기기의 구동시 발생되는 진동이나 소음, 기기로 공급되는 전원의 주파수 및 구동시 기기의 온도, 습도, 압력 중에서 선택되는 어느 하나 또는 둘 이상을 조합하여 사용하는 것을 특징으로 한다.In addition, the energy according to the time measured by the device is any one selected from the current consumed in driving the device, the vibration or noise generated when the device is driven, the frequency of power supplied to the device, and the temperature, humidity, and pressure of the device when driven. It is characterized by using one or a combination of two or more.
이상에서와 같이 본 발명에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법에 의하면, 판별모듈은 기기가 정상적인 상태에서 수집되는 대량의 정상 이미지 정보와 생성모듈에서 고장이 발생하기 전의 기기에서 수집되는 불량 이미지 정보를 기반으로 생성되는 대량의 유사 불량 이미지 정보를 학습하여 실시간 구동되는 기기로부터 수집되는 실시간 이미지 정보를 정상 또는 불량 이미지로 판별하되, 실시간 이미지 정보가 불량 이미지로 판별되면 기기를 이상상태로 검출하여 적합한 시기에 기기의 정비 및 교체를 수행할 수 있도록 유도함으로 기기의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 효과가 있다.As described above, according to the method for predictive maintenance of a device using the GAN algorithm according to the present invention, the determination module includes a large amount of normal image information collected when the device is in a normal state and a bad image collected from the device before a failure occurs in the generation module. Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of similar defective image information generated based on the information. By inducing maintenance and replacement of devices at an appropriate time, there is an effect of preventing huge losses due to device failures in advance.
또한, 판별모듈은 학습단계 및 재학습 단계에서 판별 결과에 대한 성공 여부를 피드백 받아 재학습하는 방식으로 판별모듈의 학습 효과를 증대시킴으로, 판별모듈에서 판별하는 판별 결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다.In addition, the discrimination module increases the learning effect of the discrimination module by relearning by receiving feedback on the success or failure of the discrimination result in the learning stage and the relearning stage, thereby securing excellent reliability for the discrimination result determined by the discrimination module. There is an effect.
도 1은 본 발명의 실시예에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법의 블록도이다.1 is a block diagram of a method for predictive maintenance of a device using a GAN algorithm according to an embodiment of the present invention.
도 2 내지 는 도 6은 도 1에 도시된 GAN 알고리즘을 이용한 기기의 예지 보전방법을 설명하기 위한 도면이다.2 to 6 are diagrams for explaining a method for predictive maintenance of a device using the GAN algorithm shown in FIG. 1 .
본 발명의 바람직한 실시예에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법을 첨부된 도면에 의거하여 상세히 설명한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.A method for predictive maintenance of a device using a GAN algorithm according to a preferred embodiment of the present invention will be described in detail based on the accompanying drawings. Detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1 내지 도 6은 본 발명의 실시예에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법을 도시한 것으로, 도 1은 본 발명의 실시예에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법의 블록도를, 도 2 내지 는 도 6은 도 1에 도시된 GAN 알고리즘을 이용한 기기의 예지 보전방법을 설명하기 위한 도면을 각각 나타낸 것이다.1 to 6 show a method for predictive maintenance of a device using a GAN algorithm according to an embodiment of the present invention, and FIG. 1 is a block diagram of a method for predictive maintenance of a device using a GAN algorithm according to an embodiment of the present invention. , FIGS. 2 to 6 each show diagrams for explaining a method for predictive maintenance of a device using the GAN algorithm shown in FIG. 1 .
상기 도면에 도시한 바와 같이, 본 발명의 실시예에 따른 GAN 알고리즘을 이용한 기기의 예지 보전방법(100)은 정상 정보 수집단계(S10)와, 불량 정보 수집단계(S20)와, 가작 생성단계(S30)와, 학습단계(S40)와, 판별단계(S50)와, 검출단계(S60)를 포함하고 있다.As shown in the figure, the predictive maintenance method 100 of a device using the GAN algorithm according to an embodiment of the present invention includes a normal information collection step (S10), a bad information collection step (S20), and a good product generation step ( S30), a learning step (S40), a determination step (S50), and a detection step (S60).
도 1에 도시된 바와 같이, 상기 정상 정보 수집단계(S10)는 정상적인 구동 상태의 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 정상 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 정상 파형이 둘 이상 수집되면 각각의 정상 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 정상 이미지로 수집하는 단계이다.As shown in FIG. 1, the normal information collection step (S10) performs a process in a normal driving state, and collects at least one normal waveform representing the change information of the amount of energy over time measured by the device Conversion into image files is performed, but if two or more normal waveforms are collected, each normal waveform is overlapped with each other, converted into an image file, and collected as a normal image.
도 2에 도시된 바와 같이, 본 발명에서는 설명의 편의를 위해 공정을 수행하는 기기에서 측정되는 에너지로 기기의 구동에 소모되는 전류와, 구동시 기기에서 발생되는 진동 및 구동시 기기의 온도를 각각 측정하여 기기로부터 총 3종류의 파형을 추출하도록 하나, 이러한 종류 및 개수로 한정하여 에너지 파형을 추출하는 것은 아니며, 기기에서 측정되는 시간에 따른 에너지로 기기의 구동에 소모되는 전류, 기기의 구동시 발생되는 진동이나 소음, 기기로 공급되는 전원의 주파수 및 구동시 기기의 온도, 습도, 압력 중에서 선택되는 어느 하나 또는 둘 이상을 조합하여 사용할 수 있음은 물론이다.As shown in FIG. 2, in the present invention, for convenience of description, the energy measured by the device performing the process, the current consumed in driving the device, the vibration generated in the device during driving, and the temperature of the device during driving, respectively. It is measured to extract a total of three types of waveforms from the device, but energy waveforms are not limited to these types and numbers to be extracted. Of course, any one selected from vibration or noise generated, the frequency of power supplied to the device, and the temperature, humidity, and pressure of the device during driving, or a combination of two or more may be used.
즉, 도 3에 도시된 바와 같이 상기 정상 정보 수집단계(S10)에서는 정상적인 기기로부터 구동에 소모되는 전류의 정상 파형과, 진동 및 온도의 정상 파형을 각각 측정 수집하는데, 그 수집된 각 정상 파형은 서로 중첩시킨 상태에서 사진과 같이 찍는 방식으로 3종류의 파형이 혼합된 모습의 이미지로 변환하여 정상 이미지로 추출 수집하게 된다.That is, as shown in FIG. 3, in the normal information collection step (S10), a normal waveform of current consumed in driving from a normal device and a normal waveform of vibration and temperature are respectively measured and collected. In the way of taking a picture in the state of overlapping each other, it is converted into an image of a mixture of three types of waveforms and extracted and collected as a normal image.
만약, 기기로부터 한 종류의 에너지 파형을 측정 수집하는 경우에는 수집된 에너지 파형만을 이미지로 변환하여 정상 이미지로 추출 수집함은 물론이다.If one type of energy waveform is measured and collected from a device, only the collected energy waveform is converted into an image and extracted and collected as a normal image.
상기와 같이 정상 정보 수집단계(S10)에서 수집되는 정상 이미지 정보들은 후설될 상기 학습단계(S40)에서 판별모듈이 학습하여 후설될 상기 판별단계(S50)에서 기기의 상태를 판별하는 중요한 기반이 된다.As described above, the normal image information collected in the normal information collection step (S10) is an important basis for determining the state of the device in the discrimination module (S40) to be learned by the discrimination module in the learning step (S40) to be described later. .
도 1에 도시된 바와 같이, 상기 불량 정보 수집단계(S20)는 고장이 발생하기 전, 기기의 구동 상태에서 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 불량 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 불량 파형이 둘 이상 수집되면 각각의 불량 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 불량 이미지로 수집하는 단계이다.As shown in FIG. 1, in the defect information collection step (S20), a process is performed in the operating state of the device before a failure occurs, indicating the change information of the amount of energy measured by the device over time. At least one waveform is collected, converted into an image file, and collected. When two or more defective waveforms are collected, each of the defective waveforms is overlapped with each other, converted into an image file, and collected as a defective image.
여기서, 도 4에 도시된 바와 같이 상기 불량 정보 수집단계(S20)에서는 상기 정상 정보 수집단계(S10)와 동일하게 고장 전에 기기로부터 구동에 소모되는 전류의 불량 파형과, 진동 및 온도의 불량 파형을 각각 측정 수집하고, 그 수집된 각 불량 파형은 서로 중첩시킨 상태에서 사진과 같이 찍는 방식으로 3종류의 파형이 혼합된 모습의 이미지로 변환하여 불량 이미지로 추출 수집함은 물론이다.Here, as shown in FIG. 4, in the failure information collection step (S20), in the same manner as the normal information collection step (S10), the failure waveform of current consumed for driving from the device before failure and the failure waveform of vibration and temperature Of course, each of the collected defective waveforms is converted into an image in which three types of waveforms are mixed by taking pictures in a state of overlapping each other, and extracting and collecting the defective images.
이러한 상기 불량 이미지는 고장 전에 기기로부터 추출되므로 비정상적으로 변화되는 에너지 값이 포함될 수 있어 정상적인 기기로부터 추출 수집되는 정상 이미지와는 다소 다른 이미지를 가질 수 있음은 물론이다.Since the defective image is extracted from the device before failure, it may include an energy value that is abnormally changed, and thus may have a slightly different image from a normal image extracted and collected from a normal device.
상기와 같이 불량 정보 수집단계(S20)에서 수집되는 정상 이미지 정보들은 상기 학습단계(S40)에서 판별모듈이 학습하여 상기 판별단계(S50)에서 기기의 상태를 판별하는 중요한 기반이 된다.As described above, the normal image information collected in the defective information collection step (S20) is learned by the determination module in the learning step (S40), and becomes an important basis for determining the state of the device in the determination step (S50).
도 1에 도시된 바와 같이, 상기 가작 생성단계(S30)는 상기 불량 정보 수집단계(S20)에서 수집된 불량 이미지 정보를 학습하고, 그 학습된 불량 이미지 정보를 기반으로 생성모듈(20)에서 불량 이미지와 유사한 유사 불량 이미지를 대량으로 생산하는 단계이다.As shown in FIG. 1, in the best work generating step (S30), the defective image information collected in the defective information collection step (S20) is learned, and the defective image information is generated in the generating module 20 based on the learned defective image information. This is a step of mass-producing similar defective images similar to the image.
통상적으로 고장이 발생하기 전의 기기로부터 측정 수집될 수 있는 불량 이미지의 정보량은 정상적인 기기로부터 측정 수집되는 정상 이미지 정보량에 대비하여 현실적으로 매우 부족함으로, 도 5에 도시된 바와 같이 상기 생성모듈(20)을 통해 유사 불량 이미지 정보를 대량으로 생산하여 후설될 상기 학습단계(S40)에서 상기 판단모듈(10)의 효율적인 학습이 이루어지도록 유도한다.In general, since the amount of information of a defective image that can be measured and collected from a device before a failure occurs is practically insufficient compared to the amount of information of a normal image that can be measured and collected from a normal device, as shown in FIG. 5, the generation module 20 In the learning step (S40) to be described later, efficient learning of the judgment module 10 is induced by mass production of similar bad image information.
여기서, 상기 생성모듈(20)은 통상적인 인공지능(Artificial Intelligence) 프로그램를 통해 구현할 수 있는데 상기 판단 및 생성모듈(10,20)은 GAN(Generative Adversarial Network) 알고리즘으로 구현하였으나, 이러한 알고리즘으로 한정하여 구현하는 것은 물론 아니다.Here, the generation module 20 can be implemented through a general artificial intelligence (Artificial Intelligence) program. The determination and generation modules 10 and 20 are implemented with a GAN (Generative Adversarial Network) algorithm, but the implementation is limited to this algorithm. Of course not.
도 1과 도 5에 도시된 바와 같이, 상기 학습단계(S40)는 상기 정상 정보 수집단계(S10)에서 수집되는 정상 이미지 정보와 상기 가작 생성단계(S30)에서 생산되는 유사 불량 이미지 정보를 판별모듈(10)에서 학습하는 단계로, 그 과정을 살펴보면 아래와 같다.1 and 5, in the learning step (S40), the normal image information collected in the normal information collection step (S10) and the similar bad image information produced in the best work generation step (S30) are determined by a discriminating module. This is the learning step in (10), and the process is as follows.
먼저, 상기 판별모듈(10)은 상기 정상 정보 수집단계(S10)에서 수집되는 대량의 정상 이미지 정보를 기반으로 정상 이미지에 대해 학습하는데, 이러한 학습을 통해 상기 판별단계에서 상기 판별모듈의 판별 결과에 대한 신뢰도가 확보되도록 한다.First, the determination module 10 learns about normal images based on a large amount of normal image information collected in the normal information collection step (S10). Through this learning, the determination result of the determination module in the determination step to ensure reliability.
이때, 상기 정상 정보 수집단계(S10)에서 수집되는 정상 이미지의 정보가 풍부할수록 상기 판별모듈(10)의 판별 결과에 대한 정확도를 향상시킬 수 있으므로 대량의 정상 이미지 정보를 수집 제공함은 물론이다. (S41)At this time, since the accuracy of the determination result of the determination module 10 can be improved as the information of the normal image collected in the normal information collection step (S10) is rich, it goes without saying that a large amount of normal image information is collected and provided. (S41)
그런 후, 상기 제1공정(S41)을 통해 정상 이미지에 대해 학습한 상기 판별모듈(10)로 정상 이미지와 함께 상기 생성모듈(20)에서 생성된 대량의 유사 불량 이미지를 제공하여 상기 판별모듈(10)을 통해 정상 이미지로 판별되는 이미지는 정상으로, 그 외의 이미지는 불량으로 판별하도록 한다.Then, a large amount of similar defective images generated in the generation module 20 are provided to the determination module 10 that has learned about the normal image through the first process S41, and the determination module ( 10), the images determined as normal images are judged normal, and the other images are judged defective.
이러한 과정을 통해 상기 판별모듈(10)은 정상 이미지와 불량 이미지를 명확하게 구분 학습하도록 한다. (S42)Through this process, the discrimination module 10 clearly classifies and learns normal images and defective images. (S42)
그런 후, 상기 제2공정(S42)에서 상기 판별모듈(10)에서 판별한 결과에 대한 성공 여부를 상기 판별모듈(10)로 피드백하게 되므로 상기 판별모듈(10)은 판별에 대한 성공과 실패를 명확하게 인지하여 보완 학습하면서 상기 판별모듈(10)의 학습 능률이 극대화되도록 한다.Then, in the second process (S42), since the success or failure of the result determined by the determination module 10 is fed back to the determination module 10, the determination module 10 determines success or failure of determination. While clearly recognizing and supplementing learning, the learning efficiency of the discrimination module 10 is maximized.
동시에, 유사 불량 이미지에 대한 상기 판별모듈(10)의 판별 결과에 대한 성공 여부를 상기 생성모듈(20)이 피드백 받아 명확하게 인지 학습하면서 상기 생성모듈(10)을 속일 수 있도록 더욱 정교하게 유사 불량 이미지를 생성하도록 하며, 이러한 과정은 결국 상기 생성모듈(10)의 효율적인 학습을 도울 수 있어 상기 생성모듈(10)의 판별 결과에 대한 우수한 신뢰도를 확보하는 기반이 된다. (S43)At the same time, the generation module 20 receives feedback and clearly recognizes and learns the success of the determination result of the determination module 10 for the similar defect image, and more precisely so that the generation module 10 can be deceived. An image is generated, and this process eventually helps efficient learning of the generation module 10, and thus becomes a basis for securing excellent reliability for the discrimination result of the generation module 10. (S43)
도 1에 도시된 바와 같이, 상기 판별단계(S50)는 실시간 구동 상태에서 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 실시간 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 실시간 파형이 둘 이상 수집되면 각각의 실시간 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 실시간 이미지로 수집하고, 그 실시간 이미지를 상기 학습단계(S40)를 거친 상기 판별모듈(10)에서 정상 또는 불량으로 판별하는 단계이다.As shown in FIG. 1, the determination step (S50) performs a process in a real-time driving state, and collects at least one real-time waveform representing the change information of the amount of energy over time measured by the device to obtain an image file. When two or more real-time waveforms are collected, each real-time waveform is superimposed on each other, converted into an image file, collected as a real-time image, and the real-time image is passed through the learning step (S40). This is the step of determining whether it is normal or defective.
즉, 도 6에 도시된 바와 같이 상기 판별모듈(10)은 실시간 구동 상태의 기기로부터 반복적으로 추출 수집되는 실시간 이미지를 정상 또는 불량으로 판별하고, 그 판별 결과를 연속적으로 출력하게 되는데, 이러한 상기 판별모듈(10)은 상기 학습단계(S40)를 거친 상태이므로 판별 결과에 대한 우수한 신뢰도를 기대할 수 있다.That is, as shown in FIG. 6, the determination module 10 determines whether real-time images repeatedly extracted and collected from devices in a real-time driving state are normal or defective, and continuously outputs the determination result. Since the module 10 has gone through the learning step (S40), excellent reliability of the discrimination result can be expected.
도 1에 도시된 바와 같이, 상기 검출단계(S60)는 상기 판별단계(S50)에서 실시간 기기에서 수집되는 실시간 이미지가 상기 판별모듈(10)을 통해 불량으로 판별되면 상기 기기를 이상상태로 검출하는 단계이다.As shown in FIG. 1, the detection step (S60) detects the device as an abnormal state when the real-time image collected from the real-time device in the discrimination step (S50) is determined to be defective through the discrimination module 10. It is a step.
즉, 도 6에 도시된 바와 같이 상기 판별모듈(10)이 실시간 이미지를 정상으로 판별하면 실시간 구동되는 기기의 상태를 안정적인 상태로 검출하고, 실시간 이미지를 불량으로 판별하면 실시간 구동되는 기기를 이상상태로 검출하게 된다.That is, as shown in FIG. 6, when the determination module 10 determines that the real-time image is normal, it detects the state of the real-time driven device as a stable state, and when the real-time image is determined to be defective, the real-time driven device is placed in an abnormal state. will be detected with
따라서 관리자는 상기 판별모듈(10)을 통해 실시간 기기의 이상상태가 검출되면 곧바로 기기의 안정적인 점검 및 관리를 유도할 수 있어 갑작스러운 기기의 고장으로 인해 설비의 전체적인 가동이 중단되어 발생할 수 있는 막대한 경제적인 손실을 방지할 수 있다.Therefore, when an abnormal state of a device is detected in real time through the determination module 10, the manager can induce stable inspection and management of the device, thereby reducing the enormous economic cost that can occur when the entire operation of the facility is stopped due to a sudden device failure. phosphorus loss can be prevented.
한편, 도 1에 도시된 바와 같이 상기 판별모듈(10)은 상기 판별단계(S50)에서 판별한 실시간 이미지의 판별 결과에 대한 성공 여부를 피드백 받아 재학습하여 상기 판별단계(S50)에서 판별하는 판별 결과에 대한 신뢰성이 향상되도록 유도하는 재학습 단계(S70);를 더 포함하여 이루어진다.On the other hand, as shown in FIG. 1, the determination module 10 receives feedback on the success or failure of the determination result of the real-time image determined in the determination step (S50) and re-learns to discriminate in the determination step (S50). A re-learning step (S70) leading to improved reliability of the result; is further included.
즉, 도 6에 도시된 바와 같이 상기 판별모듈(10)은 실시간 구동되는 기기로부터 추출되는 실시간 이미지의 정상 또는 불량을 판별하고, 그 판별 결과의 성공 여부를 피드백 받아 재학습하는 과정을 통해 상기 판별모듈(10)의 판별에 대한 신뢰성이 더욱 향상될 수 있도록 유도한다.That is, as shown in FIG. 6, the determination module 10 determines whether a real-time image extracted from a device driven in real time is normal or defective, and receives feedback on whether the determination result is successful or not through a process of re-learning the determination. The reliability of the determination of the module 10 is induced to be further improved.
상기와 같은 과정으로 이루어지는 본 발명의 GAN 알고리즘을 이용한 기기의 예지 보전방법(100)은 판별모듈(10)은 기기가 정상적인 상태에서 수집되는 대량의 정상 이미지 정보와 생성모듈(20)에서 고장이 발생하기 전의 기기에서 수집되는 불량 이미지 정보를 기반으로 생성되는 대량의 유사 불량 이미지 정보를 학습하여 실시간 구동되는 기기로부터 수집되는 실시간 이미지 정보를 정상 또는 불량 이미지로 판별하되, 실시간 이미지 정보가 불량 이미지로 판별되면 기기를 이상상태로 검출하여 적합한 시기에 기기의 정비 및 교체를 수행할 수 있도록 유도함으로 기기의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 효과가 있다.In the predictive maintenance method 100 of a device using the GAN algorithm of the present invention consisting of the above process, the determination module 10 generates a large amount of normal image information collected in a normal state of the device and a failure occurs in the generation module 20 Real-time image information collected from real-time driven devices is determined as a normal or defective image by learning a large amount of pseudo-defective image information generated based on defective image information collected from devices prior to processing, and real-time image information is determined as a defective image. In this case, it is effective to prevent huge losses due to failure of the equipment in advance by detecting the equipment in an abnormal state and inducing maintenance and replacement of the equipment at an appropriate time.
또한, 상기 판별모듈(10)은 학습단계(S40) 및 재학습 단계(S70)에서 판별 결과에 대한 성공 여부를 피드백 받아 재학습하는 방식으로 상기 판별모듈(10)의 학습 효과를 증대시킴으로, 상기 판별모듈(10)에서 판별하는 판별 결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다.In addition, the discrimination module 10 increases the learning effect of the discrimination module 10 by receiving feedback on the success or failure of the discrimination result in the learning step (S40) and the re-learning step (S70) and re-learning. There is an effect of securing excellent reliability for the discrimination result determined by the discrimination module 10 .
본 발명의 GAN 알고리즘을 이용한 기기의 예지 보전방법(100)은 기기의 에너지 파형을 측정, 수집, 판별, 검출할 수 있는 각종 전자기기와 프로그램 등의 조합을 통해 구현될 수 있음은 물론이다.Of course, the predictive maintenance method 100 of a device using the GAN algorithm of the present invention can be implemented through a combination of various electronic devices and programs capable of measuring, collecting, discriminating, and detecting the energy waveform of the device.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것으로 상술한 실시예에 한정되지 않으며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 또한, 본 발명의 사상을 해치지 않는 범위 내에서 당업자에 의한 변형이 가능함은 물론이다. 따라서, 본 발명에서 권리를 청구하는 범위는 상세한 설명의 범위 내로 정해지는 것이 아니라 후술되는 청구범위와 이의 기술적 사상에 의해 한정될 것이다.The present invention has been described with reference to the embodiments shown in the accompanying drawings, but these are illustrative and not limited to the above-described embodiments, and those skilled in the art can make various modifications and equivalent embodiments therefrom. you will understand the point. In addition, of course, modifications by those skilled in the art are possible within a range that does not impair the spirit of the present invention. Therefore, the scope claimed in the present invention will not be determined within the scope of the detailed description, but will be limited by the claims described later and their technical spirit.
본 발명은 예지보전 산업에 이용 가능하다.The present invention is applicable to the predictive maintenance industry.

Claims (5)

  1. 반복적인 공정을 수행하는 기기의 예지 보정방법에 있어서,In the predictive correction method of a device performing a repetitive process,
    정상적인 구동 상태의 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 정상 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 정상 파형이 둘 이상 수집되면 각각의 정상 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 정상 이미지로 수집하는 정상 정보 수집단계;To perform a process in a normal operating state, collect at least one normal waveform representing the change in energy level over time measured by the device, convert it into an image file, and collect it. If two or more normal waveforms are collected, each normal waveform a normal information collection step of superimposing the waveforms and then converting them into image files and collecting them as normal images;
    고장이 발생하기 전, 기기의 구동 상태에서 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 불량 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 불량 파형이 둘 이상 수집되면 각각의 불량 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 불량 이미지로 수집하는 불량 정보 수집단계;Before a failure occurs, a process is performed while the device is running, and at least one defective waveform representing the change information of energy over time measured by the device is collected, converted into an image file, and collected. If two or more are collected, a defect information collection step of overlapping each of the defect waveforms and then converting them into image files and collecting them as a defect image;
    상기 불량 정보 수집단계에서 수집된 불량 이미지 정보를 학습하고, 그 학습된 불량 이미지 정보를 기반으로 생성모듈에서 불량 이미지와 유사한 유사 불량 이미지를 대량으로 생산하는 가작 생성단계;a creation step of learning defective image information collected in the defective information collection step, and mass-producing similar defective images similar to the defective image in a generation module based on the learned defective image information;
    상기 정상 정보 수집단계에서 수집되는 정상 이미지 정보와 상기 가작 생성단계에서 생산되는 유사 불량 이미지 정보를 판별모듈에서 학습하는 학습단계;a learning step of learning the normal image information collected in the normal information collection step and the similar bad image information produced in the best product creation step in a discrimination module;
    실시간 구동 상태에서 한 공정을 수행하는데 기기에서 측정한 시간의 흐름에 따른 에너지 크기의 변화정보를 나타낸 실시간 파형을 적어도 하나 이상 수집하여 이미지 파일로 변환 수집하되, 실시간 파형이 둘 이상 수집되면 각각의 실시간 파형들을 서로 중첩시킨 후에 이미지 파일로 변환하여 실시간 이미지로 수집하고, 그 실시간 이미지를 상기 학습단계를 거친 상기 판별모듈에서 정상 또는 불량으로 판별하는 판별단계; 및When performing a process in real-time operation, at least one real-time waveform representing the change in energy size over time measured by the device is collected and converted into an image file. If two or more real-time waveforms are collected, each real-time waveform A determination step of superimposing waveforms on each other, converting them into image files, collecting real-time images, and discriminating the real-time images as normal or defective in the determination module that has gone through the learning step; and
    상기 판별단계에서 실시간 기기에서 수집되는 실시간 이미지가 상기 판별모듈을 통해 불량으로 판별되면 상기 기기를 이상상태로 검출하는 검출단계;를 포함하는 것을 특징으로 하는 GAN 알고리즘을 이용한 기기의 예지 보전방법.A method for predictive maintenance of a device using a GAN algorithm, comprising: a detecting step of detecting the device as an abnormal state when the real-time image collected from the real-time device in the determining step is determined to be defective through the determining module.
  2. 제 1 항에 있어서,According to claim 1,
    상기 학습단계는, In the learning phase,
    상기 판별모듈은 상기 정상 정보 수집단계에서 수집되는 대량의 정상 이미지 정보를 기반으로 정상 이미지에 대해 학습하는 제1공정;The determination module may include: a first step of learning a normal image based on a large amount of normal image information collected in the normal information collection step;
    상기 제1공정을 통해 정상 이미지에 대해 학습한 상기 판별모듈로 정상 이미지와 함께 상기 생성모듈에서 생성된 대량의 유사 불량 이미지를 제공하여 상기 판별모듈을 통해 정상 이미지로 판별되는 이미지는 정상으로, 그 외의 이미지는 불량으로 판별하는 제2공정; 및The determination module that has learned about the normal image through the first process provides a large amount of similar defective images generated in the generation module together with the normal image, and the image determined as a normal image through the determination module is normal. A second process of determining that images other than those are defective; and
    상기 제2공정에서 상기 판별모듈에서 판별한 결과에 대한 성공 여부를 상기 판별모듈로 피드백하여 상기 판별모듈의 학습 능률을 극대화하는 동시에, 유사 불량 이미지에 대한 상기 판별모듈의 판별 결과에 대한 성공 여부를 상기 생성모듈(20)이 피드백 받아 학습하는 제3공정;을 포함하는 것을 특징으로 하는 GAN 알고리즘을 이용한 기기의 예지 보전방법.In the second process, the success or failure of the result determined by the determination module is fed back to the determination module to maximize the learning efficiency of the determination module, and at the same time, the success or failure of the determination result of the determination module for similar defective images is determined. A predictive maintenance method for a device using a GAN algorithm, characterized in that it includes a; third process in which the generation module 20 receives feedback and learns.
  3. 제 1 항에 있어서,According to claim 1,
    상기 판별모듈은 상기 판별단계에서 판별한 실시간 이미지의 판별 결과에 대한 성공 여부를 피드백 받아 재학습하여 상기 판별단계에서 판별하는 판별 결과에 대한 신뢰성이 향상되도록 유도하는 재학습 단계;를 더 포함하는 것을 특징으로 하는 GAN 알고리즘을 이용한 기기의 예지 보전방법.The discrimination module further includes a re-learning step in which the reliability of the discrimination result determined in the discrimination step is improved by re-learning by receiving feedback on the success or failure of the discrimination result of the real-time image determined in the discrimination step. A method for predictive maintenance of a device using a GAN algorithm.
  4. 제 2 항에 있어서,According to claim 2,
    상기 판별모듈은 상기 판별단계에서 판별한 실시간 이미지의 판별 결과에 대한 성공 여부를 피드백 받아 재학습하여 상기 판별단계에서 판별하는 판별 결과에 대한 신뢰성이 향상되도록 유도하는 재학습 단계;를 더 포함하는 것을 특징으로 하는 GAN 알고리즘을 이용한 기기의 예지 보전방법.The discrimination module further includes a re-learning step in which the reliability of the discrimination result determined in the discrimination step is improved by re-learning by receiving feedback on the success or failure of the discrimination result of the real-time image determined in the discrimination step. A method for predictive maintenance of a device using a GAN algorithm.
  5. 제 1 항에 있어서,According to claim 1,
    기기에서 측정되는 시간에 따른 에너지는 기기의 구동에 소모되는 전류, 기기의 구동시 발생되는 진동이나 소음, 기기로 공급되는 전원의 주파수 및 구동시 기기의 온도, 습도, 압력 중에서 선택되는 어느 하나 또는 둘 이상을 조합하여 사용하는 것을 특징으로 하는 GAN 알고리즘을 이용한 기기의 예지 보전방법.The energy over time measured by the device is any one selected from the current consumed in driving the device, vibration or noise generated when the device is driven, the frequency of the power supplied to the device, and the temperature, humidity, and pressure of the device when driven. A method for predictive maintenance of a device using a GAN algorithm, characterized in that two or more are used in combination.
PCT/KR2022/014427 2021-12-23 2022-09-27 Predictive maintenance method, for device, using gan algorithm WO2023120888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0185786 2021-12-23
KR1020210185786A KR20230096364A (en) 2021-12-23 2021-12-23 Predictive maintenance method of device using Generative Adversarial Network algorithm

Publications (1)

Publication Number Publication Date
WO2023120888A1 true WO2023120888A1 (en) 2023-06-29

Family

ID=86902758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014427 WO2023120888A1 (en) 2021-12-23 2022-09-27 Predictive maintenance method, for device, using gan algorithm

Country Status (2)

Country Link
KR (1) KR20230096364A (en)
WO (1) WO2023120888A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206061A (en) * 2017-06-05 2018-12-27 トヨタ自動車株式会社 Abnormality diagnosis system and abnormality diagnosis method
KR102095389B1 (en) * 2018-12-24 2020-03-31 강릉원주대학교산학협력단 Fault diagnosis system of a faculty using energy
KR20210061517A (en) * 2019-11-19 2021-05-28 한국생산기술연구원 Apparatus and method for fault diagnosis using fake data generated by machine learning
JP2021157303A (en) * 2020-03-25 2021-10-07 東京エレクトロン株式会社 Abnormality detection device and abnormality detection method
KR20210141087A (en) * 2020-05-15 2021-11-23 인제대학교 산학협력단 Apparatus and method for diagnosing trouble of machine tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206061A (en) * 2017-06-05 2018-12-27 トヨタ自動車株式会社 Abnormality diagnosis system and abnormality diagnosis method
KR102095389B1 (en) * 2018-12-24 2020-03-31 강릉원주대학교산학협력단 Fault diagnosis system of a faculty using energy
KR20210061517A (en) * 2019-11-19 2021-05-28 한국생산기술연구원 Apparatus and method for fault diagnosis using fake data generated by machine learning
JP2021157303A (en) * 2020-03-25 2021-10-07 東京エレクトロン株式会社 Abnormality detection device and abnormality detection method
KR20210141087A (en) * 2020-05-15 2021-11-23 인제대학교 산학협력단 Apparatus and method for diagnosing trouble of machine tool

Also Published As

Publication number Publication date
KR20230096364A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2021075842A1 (en) Method of predictively maintaining equipment by means of distribution map
CN104899936B (en) A kind of photovoltaic module fault cues method and system based on image recognition
CN108345723A (en) A kind of Diagnostic system of motor fault and method based on decision tree and Bayesian network
CN111582235A (en) Alarm method, system and equipment for monitoring abnormal events in station in real time
WO2021075855A1 (en) Method for predictive maintenance of equipment via distribution chart
WO2021112577A1 (en) Method for learning and detecting abnormal part of device through artificial intelligence
WO2020138695A1 (en) Method for detecting integrity index of driving unit
WO2023128669A1 (en) Partial discharge monitoring system and partial discharge monitoring method
WO2019177239A1 (en) Precision preventive maintenance method of driving unit
WO2023120888A1 (en) Predictive maintenance method, for device, using gan algorithm
CN116152202A (en) Equipment appearance detection system based on image recognition technology and infrared thermal imaging technology
WO2021075845A1 (en) Method for predictive maintenance of equipment via distribution chart
WO2020262845A1 (en) Predictive maintenance method for equipment via control output signal
WO2020262841A2 (en) Method for detecting integrity index of apparatus through control output signal
WO2023033567A1 (en) Method for predictive maintenance of equipment by using angles to peak
WO2020262781A1 (en) Method of detecting soundness index of device via control output signal
CN112018887A (en) Distribution network feeder automatic operation process supervision and analysis method
CN111445169A (en) Multi-source information fusion monitoring method for whole process of enterprise safety production
WO2021118218A1 (en) Virtual monitoring management method for devices through motion tracking of devices
WO2020262842A2 (en) Predictive maintenance method for device by means of control output signal
CN106885960A (en) The Diagnosis Method of Transformer Faults and system of a kind of online monitoring data
CN109634849B (en) Visual signal interaction intelligent substation reconstruction and extension virtual testing device and method
WO2023277546A1 (en) Predictive maintenance method for equipment using deep learning
CN106685711A (en) System and method for detecting plug-in-level faults of equipment of motor train unit
WO2023277545A1 (en) Method for predictive maintenance of device, using deep learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911527

Country of ref document: EP

Kind code of ref document: A1