WO2023120780A1 - Room-temperature fast-curing geopolymer and preparation method therefor - Google Patents

Room-temperature fast-curing geopolymer and preparation method therefor Download PDF

Info

Publication number
WO2023120780A1
WO2023120780A1 PCT/KR2021/019797 KR2021019797W WO2023120780A1 WO 2023120780 A1 WO2023120780 A1 WO 2023120780A1 KR 2021019797 W KR2021019797 W KR 2021019797W WO 2023120780 A1 WO2023120780 A1 WO 2023120780A1
Authority
WO
WIPO (PCT)
Prior art keywords
geopolymer
room temperature
alkali
speed
silicate
Prior art date
Application number
PCT/KR2021/019797
Other languages
French (fr)
Korean (ko)
Inventor
고현석
김경원
임형미
문소윤
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to PCT/KR2021/019797 priority Critical patent/WO2023120780A1/en
Publication of WO2023120780A1 publication Critical patent/WO2023120780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a method for producing a geopolymer capable of high-speed curing at room temperature.
  • Geopolymer as one of the cement replacement materials, has begun to come into the limelight as a substitute for the existing Portland cement or used as an additive.
  • Geopolymer is an amorphous aluminosilicate cement-based material that is synthesized through polycondensation of a geopolymer precursor and an alkali activator. It is an inorganic material that can be used.
  • geopolymer The structure of geopolymer is created by the chemical reaction of alkali polysilicate and oxidized aluminosilicate constituting the Si-O-Al bond, and it is named as geopolymer because it forms a network similar to a polymer during the curing process.
  • Geopolymer can be synthesized at room temperature or at a low temperature of 100°C or less, and it is expected to reduce carbon dioxide emissions by about 70% compared to cement because carbon dioxide emissions are extremely low during the manufacturing process.
  • geopolymers can be produced from industrial by-products such as fly ash, and are characterized by a wide range of physical property changes depending on manufacturing conditions.
  • geopolymer raw materials and alkaline activators are highly dependent on geopolymer precursors (e.g. fly ash, metakaolin, etc.), so it is necessary to optimize synthesis conditions according to starting materials and target properties.
  • geopolymer precursors e.g. fly ash, metakaolin, etc.
  • geopolymer since the physical properties of geopolymer can be adjusted according to additives and reinforcing materials, it can be applied in various fields of application.
  • Geopolymer is a ceramic material with high purity, so it has high heat resistance and fire resistance, can be cured at room temperature, and its manufacturing method is simple. If it is a material that can be cured at high speed at room temperature with these characteristics, it can be used for industrial heat-resistant members that require heat resistance or repair and finishing materials for buildings.
  • a simple method widely known in the cement field to speed up the setting is to use calcium cations.
  • the presence of calcium compounds allows calcium ions to function as charge-balancing cations within the geopolymer binder, forming a network (e.g., tobermorite (Ca 5 Si 6 O 16 (OH) 2 4H 2 O), gehlenite (Ca 2 Al(AlSiO 7 )) and jennite (Ca 9 Si 6 O 18 (OH) 6 .8H 2 O))
  • raw materials containing CaO may be used, or additional calcium compounds (eg CaCO 3 and Ca(OH) 2 ) may be used.
  • the setting time can be shortened from 15 hours to less than 1 hour
  • 4 wt% of CaO is included, the curing time is from 20 hours to 4 hours. can be shortened to
  • nano-silica increases mechanical strength by forming a contracted microstructure (compact structure by filling pores) and promotes the polymerization process (because of its high surface area to volume ratio).
  • SiO 2 nano-silica
  • the overall void value is lowered and the cross-linking effect is shown by the dispersed fibers.
  • the flexural strength is increased by a factor of 4 by the chopped carbon fibers in the geopolymer.
  • SiO 2 and short carbon fibers are used simultaneously. That is, when SiO 2 is added to the geopolymer containing 2 vol% of PVA fibers, the flexural modulus increases. With the help of SiO 2 , a shrinkage effect occurs at the fiber/matrix interface, resulting in a compact microstructure and improved workability. Since fibers and SiO 2 compensate for the low mechanical strength of geopolymer, a synergistic effect in the properties and workability of geopolymer is expected, which is suitable for high-speed curing conditions.
  • the room temperature high-speed curing geopolymer according to the present invention is an alkali solution; silica; alkali silicates; short fibers; metakaolin (MK); and a calcium compound, and an alkali (M) component ratio of 0.87 ⁇ M 2 O/Al 2 O 3 ⁇ 2.0; 0.3 ⁇ M 2 O/SiO 2 ⁇ 0.7; 6.5 ⁇ H 2 O/M 2 O ⁇ 9.1; is preferably satisfied.
  • the geopolymer preferably satisfies 2.8 ⁇ SiO 2 /Al 2 O 3 ⁇ 4.0.
  • the said alkali solution is a KOH solution.
  • the silica is a single or a mixture of colloidal silica and dry silica.
  • the alkali silicate is composed of sodium silicate, potassium silicate and lithium silicate alone or as a mixture.
  • the short fibers are short carbon fibers.
  • the size of the short fibers is preferably 2 to 6 mm.
  • the calcium compound is calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ).
  • the meta-kaolin is preferably kaolin calcined at 700 to 900 ° C. for 1 to 5 hours.
  • the metakaolin has an average particle size of 3 to 30 ⁇ m.
  • the KOH is 0.3 to 0.9 wt% compared to metakaolin.
  • the alkali silicate is 0.25 to 1.2 wt% compared to metakaolin.
  • the alkali silicate/KOH ratio in the entire geopolymer is 0.8 to 1.5.
  • a heat resistant material or heat resistant finishing material comprising the geopolymer according to the present invention is preferred.
  • a repair material or a repair finishing material comprising the geopolymer according to the present invention is preferred.
  • the room temperature high-speed curing geopolymer prepared according to the present invention shortens the curing speed and has a flexural strength of up to 31.8 MPa, 40% higher than that of conventional geopolymers, and a compressive strength of up to 66.2 MPa, 20% higher than conventional geopolymers. can be improved to have.
  • Figure 1 schematically shows the function of dry silica and calcium cations.
  • Figure 3 schematically shows the strength contours according to the composition ratio of the geopolymer according to the present invention.
  • Figure 4 schematically shows the flexural strength according to the individual composition ratio of the geopolymer according to the present invention.
  • Room-temperature high-speed curing geopolymers have multivariable manufacturing conditions (chemical component molar ratio (SiO 2 , Al 2 O 3 , K 2 O, Ca(OH) 2 , H 2 O), and each raw material (MK, colloidal silica) , Ca(OH) 2 , KOH, K 2 SiO 3 )) has a large effect on the final physical properties, so it is not easy to achieve the desired physical properties.
  • chemical component molar ratio SiO 2 , Al 2 O 3 , K 2 O, Ca(OH) 2 , H 2 O
  • MK colloidal silica
  • SiO 2 and Al 2 O 3 form the basic structure of geopolymer, and K 2 O is a chemical component that causes geopolymer reaction.
  • Si and K they are supplied from various raw materials.
  • Three sources of SiO 2 are metakaolin (MK), alkali silicate, and silica, and two sources of K 2 O are KOH and K 2 SiO 3 .
  • FIG. 1 the role of the applied calcium cation and the accompanying dry silica (f-SiO 2 ) is schematically illustrated in FIG. 1 .
  • the aggregated calcium compound becomes large, it becomes susceptible to local destruction.
  • Fumed silica with high surface area has a significant effect on constructing the activated CASH gel, and it becomes more rigid as the calcium/silicate ratio decreases. Therefore, a relatively high proportion of silica is required to reduce aggregation of calcium particles.
  • fumed silica can balance the acceleration of cure rate with the reduction of mechanical strength by adjusting the rate of growth of calcium compounds.
  • the alkali solution is preferably a KOH solution.
  • the silica is preferably a single or a mixture of colloidal silica and fumed silica, but fumed silica is more preferred. Fumed silica was used to provide sufficient Si.
  • fumed silica allows the geopolymer to be densified, and its dendrite-like particles enable geopolymerization with the geopolymer binder.
  • the presence of fumed silica has a significant effect on the growth of Ca and hinders its growth. Ca growth inhibition slows the curing process and sustains the geopolymerization reaction between alkali activator and metakaolin for a sufficient time. A uniform and continuous reaction enables the geopolymer to be solidified in close proximity, which results in an increase in mechanical strength.
  • the presence of an optimal alkali activator and fumed silica is one means of controlling the reaction.
  • the alkali silicate is preferably a single or a mixture of sodium silicate, potassium silicate and lithium silicate, but potassium silicate is more preferable.
  • KOH is 0.3 to 0.9 wt% and alkali silicate is 0.25 to 1.2 wt% compared to the metakaolin.
  • KOH and flexural strength have a positive correlation, and alkali silicate and flexural strength have a negative correlation. That is, the flexural strength increases as KOH is increased and alkali silicate is decreased.
  • the dry silica serving as a bridge is a particle having a high surface area and porosity, and has hygroscopicity.
  • dry silica directly affects the water demand and thus improves the viscosity of the slurry.
  • Other additives also have the property of increasing viscosity.
  • the ratio of K 2 SiO 3 /KOH in the entire geopolymer is preferably 0.8 to 1.5.
  • the low viscosity of KOH and alkali silicate solutions and the high reactivity of metakaolin may be one cause.
  • Another cause is dry silica, in which calcium hydroxide is added to maintain calcium ions in a supersaturated state, which cancels out the charge imbalance, shortens the reaction time, and imparts reactivity so that water acts like a filler.
  • the short fibers are preferably short carbon fibers, and the size is 2 to 6 mm, preferably 4 mm.
  • the meta-kaolin is preferably kaolin calcined at 700 to 900 ° C. for 1 to 5 hours.
  • Metakaolin is used as a basic aluminosilicate in geopolymers.
  • kaolinite was calcined at 800° C. for 4 hours.
  • the metakaolin preferably has an average particle size of 3 to 30 ⁇ m.
  • KOH and potassium silicate were used in the present invention as an alkali activator for accelerating the polymerization reaction. Since calcium ions are highly reactive with aluminosilicate materials, a potassium-based activator was used, achieving a tighter structure and increased strength.
  • the speed mixer it is preferable to mix for 30 to 90 sec at 1500 to 2500 rpm.
  • the room temperature high-speed curing geopolymer according to the present invention is an alkaline solution; silica; alkali silicates; short fibers; metakaolin (MK); and a calcium compound, and an alkali (M) component ratio of 0.87 ⁇ M 2 O/Al 2 O 3 ⁇ 2.0; 0.3 ⁇ M 2 O/SiO 2 ⁇ 0.7; 6.5 ⁇ H 2 O/M 2 O ⁇ 9.1; is preferably satisfied.
  • the geopolymer preferably satisfies 2.8 ⁇ SiO 2 /Al 2 O 3 ⁇ 4.0 (see FIG. 4).
  • a specific method for preparing the geopolymer is as follows (see FIG. 2).
  • Metakaolin (MK) produced by calcining kaolin at 800 °C for 4 hours was used as the main material of the geopolymer.
  • the metakaolin and calcium hydroxide were prepared separately.
  • Dry silica was added to a KOH solution in which KOH was dissolved in distilled water, adjusted to pH> 13 to disperse the dry silica well, and sonicated for 5 minutes (SONICS Vibracell-VCX750, Sonics & Materials, Inc., USA).
  • potassium silicate was added and well dispersed.
  • a completely uniform solution is prepared by adding the separately prepared metakaolin and calcium hydroxide.
  • the homogeneous solution was mixed for 1 minute at 2000 rpm in a speed mixer (DAC 150.1 FVZ-K, UniNanoTech Co., Ltd, USA) to perform a final mixing process.
  • DAC 150.1 FVZ-K UniNanoTech Co., Ltd, USA
  • the geopolymer according to the present invention has a flexural strength of 40% or more compared to the conventional geopolymer and a maximum of 31.8 MPa in the highest strength space, and 20% or more compared to the conventional geopolymer, the maximum It showed a compressive strength of 66.2 MPa.
  • the present invention relates to a method for producing a geopolymer capable of high-speed curing at room temperature.

Abstract

The present invention provides a room-temperature fast-curing geopolymer and a preparation method therefor, wherein the geopolymer has: a higher curing rate than conventional geopolymers; a flexural strength increase of 40% or more compared to conventional geopolymers, with a maximum strength of 27.83 MPa; and a compressive strength increase of 20% or more compared to conventional geopolymers, with a maximum strength of 55 MPa. The geopolymer according to the present invention has excellent heat resistance and thus is suitable for flame-retardant performance and fire spread prevention.

Description

상온 고속경화형 지오폴리머 및 그의 제조방법Room-temperature high-speed curing geopolymer and its manufacturing method
본 발명은 상온 고속경화가 가능한 지오폴리머의 제조방법에 관한 것이다.The present invention relates to a method for producing a geopolymer capable of high-speed curing at room temperature.
지오폴리머는 시멘트 대체 재료 중 하나로서 기존의 포틀랜드 시멘트를 대체 혹은 첨가제로 사용되기 위한 용도로 각광을 받기 시작하였다. 지오폴리머는 비정질 알루미노 규산염의 시멘트계 재료로 지오폴리머 전구체와 알칼리 활성제의 중축합(polycondensation) 반응을 통해 합성되며, 전구체로 천연의 광물 혹은 플라이애쉬와 같은 산업부산물을 원료로 하기 때문에 경제적으로 광범위하게 활용이 가능한 무기질 소재이다. Geopolymer, as one of the cement replacement materials, has begun to come into the limelight as a substitute for the existing Portland cement or used as an additive. Geopolymer is an amorphous aluminosilicate cement-based material that is synthesized through polycondensation of a geopolymer precursor and an alkali activator. It is an inorganic material that can be used.
지오폴리머의 구조는 Si-O-Al 결합을 구성하는 알칼리 폴리규산염과 산화 알루미노 규산염의 화학반응에 의해 생성되는 것으로 경화과정에서 폴리머와 유사하게 네트워크를 형성하기에 지오폴리머라 명명되고 있는 소재이다. 지오폴리머는 실온 또는 100°C 이하의 저온에서 합성이 가능하며 제조공정 중 이산화탄소 배출량이 극히 낮아 시멘트 대비 약 70%까지 이산화탄소 배출을 낮출 수 있을 것으로 기대되고 있다. 또한, 지오폴리머는 플라이애쉬와 같은 산업부산물로부터 제조가 가능하며, 제조 조건에 따라 물리적 특성 변화의 폭이 크다는 특징이 있다. The structure of geopolymer is created by the chemical reaction of alkali polysilicate and oxidized aluminosilicate constituting the Si-O-Al bond, and it is named as geopolymer because it forms a network similar to a polymer during the curing process. . Geopolymer can be synthesized at room temperature or at a low temperature of 100°C or less, and it is expected to reduce carbon dioxide emissions by about 70% compared to cement because carbon dioxide emissions are extremely low during the manufacturing process. In addition, geopolymers can be produced from industrial by-products such as fly ash, and are characterized by a wide range of physical property changes depending on manufacturing conditions.
또한, 지오폴리머의 원료 및 알칼리 활성제에 대한 최적화는 지오폴리머 전구체 (e.g. 플라이애쉬, 메타카올린 등)에 크게 의존하기에, 출발 원료와 목표 물성에 따라 합성 조건에 대한 최적화가 필요하다.In addition, optimization of geopolymer raw materials and alkaline activators is highly dependent on geopolymer precursors (e.g. fly ash, metakaolin, etc.), so it is necessary to optimize synthesis conditions according to starting materials and target properties.
또한, 지오폴리머의 물성은 첨가제 및 강화재료에 따라 조정될 수 있으므로, 다양한 응용분야에 다양하게 적용될 수 있다.In addition, since the physical properties of geopolymer can be adjusted according to additives and reinforcing materials, it can be applied in various fields of application.
지오폴리머는 순도 높은 세라믹 소재이므로 높은 내열성 및 내화성을 가지며, 상온에서 경화가 가능하며 그 제조 방법이 간단하다. 만일 이러한 특성에 상온에서 고속으로 경화 가능한 소재라면 내열성이 요구되는 산업용 내열 부재 혹은 건축물의 보수 및 마감재 등에 활용이 가능하다. Geopolymer is a ceramic material with high purity, so it has high heat resistance and fire resistance, can be cured at room temperature, and its manufacturing method is simple. If it is a material that can be cured at high speed at room temperature with these characteristics, it can be used for industrial heat-resistant members that require heat resistance or repair and finishing materials for buildings.
경화속도를 올리기 위해 시멘트 분야에서 널리 알려진 간단한 방법은 칼슘 양이온을 이용하는 것이다. 칼슘 화합물의 존재는 칼슘 이온이 지오폴리머 결합제 내에서 전하를 균형시키는 양이온으로서 기능하게 하고, 네트워크(예를 들어, tobermorite (Ca5Si6O16(OH)2·4H2O), gehlenite (Ca2Al(AlSiO7)), jennite (Ca9Si6O18(OH)6·8H2O))의 고속 중합을 가능하게 한다. 이를 위해, CaO 함유 원료물질을 사용하거나, 추가의 칼슘 화합물(예를 들어, CaCO3 and Ca(OH)2)을 사용할 수 있다. 예를 들어, 0.4 mol Ca(OH)2를 첨가하면, 응고 시간(setting time)이 15시간에서 1시간 미만으로 단축될 수 있고, 4 wt%의 CaO가 포함되면 경화시간이 20시간에서 4시간으로 단축될 수 있다.A simple method widely known in the cement field to speed up the setting is to use calcium cations. The presence of calcium compounds allows calcium ions to function as charge-balancing cations within the geopolymer binder, forming a network (e.g., tobermorite (Ca 5 Si 6 O 16 (OH) 2 4H 2 O), gehlenite (Ca 2 Al(AlSiO 7 )) and jennite (Ca 9 Si 6 O 18 (OH) 6 .8H 2 O)) enable high-speed polymerization. For this purpose, raw materials containing CaO may be used, or additional calcium compounds (eg CaCO 3 and Ca(OH) 2 ) may be used. For example, when 0.4 mol Ca(OH) 2 is added, the setting time can be shortened from 15 hours to less than 1 hour, and when 4 wt% of CaO is included, the curing time is from 20 hours to 4 hours. can be shortened to
칼슘 화합물의 첨가는 고속 경화를 가능하게 하는 반면에, 일반적으로 기계적 강도를 저하시킨다. 이러한 이유로, 고송 경화용 조성물에 다른 강화 첨가제(예를 들어, 필러)가 종종 혼합물에 사용된다. While the addition of a calcium compound allows for rapid curing, it generally lowers the mechanical strength. For this reason, other reinforcing additives (eg, fillers) are often used in the mixture for high-speed curing compositions.
예를 들어, 나노-실리카(SiO2)는 수축된 미세구조(공극을 채워서 컴팩트한 구조)를 형성하여 기계적 강도를 증가시킨고, (부피 대비 큰 표면적 때문에) 중합 공정을 촉진한다. 적당량의 SiO2를 혼합물에 첨가함으로써, 치밀 구조를 형성할 분만 아니라 양호한 기계적 강도를 얻을 수 있다. For example, nano-silica (SiO 2 ) increases mechanical strength by forming a contracted microstructure (compact structure by filling pores) and promotes the polymerization process (because of its high surface area to volume ratio). By adding an appropriate amount of SiO 2 to the mixture, it is possible to obtain good mechanical strength as well as to form a dense structure.
또 다른 예로 섬유의 경우에는, 전반적인 공극값을 낮추고, 분산된 섬유에 의해 가교 효과를 보인다. 지오폴리머 내의 탄소단섬유(chopped carbon fiber)에 의해 굴곡 강도가 4배나 증가한다. 흥미롭게도, SiO2와 탄소단섬유를 동시에 사용하는 경우 시너지 효과가 있다. 즉, 2 vol%의 PVA 섬유를 포함한 지오폴리머에 SiO2가 첨가되면 굴곡탄성율이 증가한다. SiO2의 도움으로 섬유/매트릭스 경계에서 수축 효과가 발생하기 때문에 컴팩트 미세구조와 작업성이 향상된다. 지오폴리머의 낮은 기계적 강도를 섬유와 SiO2가 보상하기 때문에, 지오폴리머의 특성 및 작업성에서의 시너지 효과가 기대되며, 이것은 고속 경화 조건에 적합하다.As another example, in the case of fibers, the overall void value is lowered and the cross-linking effect is shown by the dispersed fibers. The flexural strength is increased by a factor of 4 by the chopped carbon fibers in the geopolymer. Interestingly, there is a synergistic effect when SiO 2 and short carbon fibers are used simultaneously. That is, when SiO 2 is added to the geopolymer containing 2 vol% of PVA fibers, the flexural modulus increases. With the help of SiO 2 , a shrinkage effect occurs at the fiber/matrix interface, resulting in a compact microstructure and improved workability. Since fibers and SiO 2 compensate for the low mechanical strength of geopolymer, a synergistic effect in the properties and workability of geopolymer is expected, which is suitable for high-speed curing conditions.
전술한 바와 같이, 지오폴리머의 개발을 위해 첨가제가 보편적으로 사용된다. 경화된 지오폴리머의 특성은 투입 물질에 의해 크게 영향을 받는다: 즉, 원료의 몰농도, 알칼리 활성제의 비율(즉, 알칼리실리케이트 대비 알칼리수산화물), 및 알칼리활성제와 기타 성분에 대비한 지오폴리머의 혼합비.As mentioned above, additives are commonly used for the development of geopolymers. The properties of cured geopolymers are greatly influenced by the input materials: the molarity of the raw materials, the ratio of alkali activators (i.e., alkali hydroxides to alkali silicates), and the mixing ratio of geopolymer to alkali activators and other constituents. .
최근까지 다양한 화학 조성에 대한 연구가 진행되어 왔으나, 조성적 효과에 대한 이해는 협소한 범위로 제한되어 있고, 논란이 있는 결론이 도출되어 왔다. 다양한 첨가제를 포함시키면서, 변수 및 최종 물성의 조절이 보다 더 복잡해진다. Until recently, studies on various chemical compositions have been conducted, but the understanding of compositional effects is limited to a narrow range, and controversial conclusions have been drawn. With the inclusion of various additives, the control of parameters and final properties becomes more complex.
본 발명에서는 빠르고 강한 지오폴리머 복합체를 제조하는데 집중하면서 낮은 칼슘 함량의 지오폴리머를 개발하고, 기계적 물성 및 단기 내구성에 대한 건식 실리카(fumed silica)의 효과를 입증하여 상온 고속경화형 지오폴리머를 제공하고자 한다.In the present invention, while focusing on manufacturing a fast and strong geopolymer composite, a low calcium content geopolymer is developed, and the effect of fumed silica on mechanical properties and short-term durability is demonstrated to provide a room temperature high-speed curing geopolymer. .
본 발명에 따른 상온 고속경화형 지오폴리머의 제조방법은 The method for producing a high-speed curing type geopolymer at room temperature according to the present invention
알칼리용액에 실리카를 혼합하는 단계;Mixing silica with an alkaline solution;
초음파 처리하는 단계;ultrasonic treatment;
알칼리실리케이트 및 단섬유를 투입하는 단계;Injecting alkali silicate and short fibers;
초음파 처리하는 단계;ultrasonic treatment;
메타카올린(MK) 및 칼슘화합물의 혼합용액을 투입하는 단계;Injecting a mixed solution of metakaolin (MK) and a calcium compound;
스피드 믹서로 혼합하는 단계;Mixing with a speed mixer;
캐스팅 하는 단계; 및casting; and
상온에서 경화시키는 단계를 포함하는 것이 바람직하다.It is preferable to include a step of curing at room temperature.
본 발명의 또 다른 구체예로서, 본 발명에 따른 상온 고속경화형 지오폴리머는 알칼리용액; 실리카; 알칼리실리케이트; 단섬유; 메타카올린(MK); 및 칼슘화합물으로부터 제조되며, 알칼리(M) 성분비가 0.87≤M2O/Al2O3≤2.0; 0.3≤M2O/SiO2≤0.7; 6.5≤H2O/M2O≤9.1;를 만족하는 것이 바람직하다.As another embodiment of the present invention, the room temperature high-speed curing geopolymer according to the present invention is an alkali solution; silica; alkali silicates; short fibers; metakaolin (MK); and a calcium compound, and an alkali (M) component ratio of 0.87≤M 2 O/Al 2 O 3 ≤2.0; 0.3≤M 2 O/SiO 2 ≤0.7; 6.5≤H 2 O/M 2 O≤9.1; is preferably satisfied.
또한, 상기 지오폴리머는 2.8≤SiO2/Al2O3≤4.0를 만족하는 것이 보다 바람직하다.Further, the geopolymer preferably satisfies 2.8≤SiO 2 /Al 2 O 3 ≤4.0.
상기 알칼리용액이 KOH용액인 것이 바람직하다.It is preferable that the said alkali solution is a KOH solution.
상기 실리카가 콜로이달 실리카 및 건식실리카의 단독 또는 혼합물인 것이 바람직하다.It is preferable that the silica is a single or a mixture of colloidal silica and dry silica.
상기 알칼리실리케이트가 소듐실리케이트, 포타슘실리케이트 및 리튬실리케이트의 단독 또는 혼합물로 구성된 것이 바람직하다.It is preferable that the alkali silicate is composed of sodium silicate, potassium silicate and lithium silicate alone or as a mixture.
상기 단섬유가 탄소단섬유인 것이 바람직하다.It is preferable that the short fibers are short carbon fibers.
상기 단섬유의 크기는 2~6mm인 것이 바람직하다.The size of the short fibers is preferably 2 to 6 mm.
상기 칼슘화합물이 수산화칼슘(Ca(OH)2), 산화칼슘(CaO) 또는 탄산칼슘 (CaCO3)인 것이 바람직하다.It is preferable that the calcium compound is calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ).
상기 메타카올린은 카올린이 700~900℃에서 1~5시간 하소된 것인 것이 바람직하다.The meta-kaolin is preferably kaolin calcined at 700 to 900 ° C. for 1 to 5 hours.
상기 메타카올린이 평균입자크기가 3~30 μm인 것이 바람직하다.It is preferable that the metakaolin has an average particle size of 3 to 30 μm.
상기 스피드 믹서에서 1500~2500rpm에서 30~90sec 동안 혼합하는 것이 바람직하다.It is preferable to mix for 30 to 90 sec at 1500 to 2500 rpm in the speed mixer.
상기 KOH가 메타카올린 대비 0.3~0.9 wt%인 것이 바람직하다.It is preferable that the KOH is 0.3 to 0.9 wt% compared to metakaolin.
상기 알칼리실리케이트가 메타카올린 대비 0.25~1.2 wt%인 것이 바람직하다.It is preferable that the alkali silicate is 0.25 to 1.2 wt% compared to metakaolin.
상기 지오폴리머 전체 중 알칼리실리케이트/KOH 비율은 0.8~1.5인 것이 것이 바람직하다.Preferably, the alkali silicate/KOH ratio in the entire geopolymer is 0.8 to 1.5.
본 발명의 또 다른 구체예로서, 본 발명에 따른 지오폴리머를 포함하는 내열재 또는 내열마감재가 바람직하다.As another embodiment of the present invention, a heat resistant material or heat resistant finishing material comprising the geopolymer according to the present invention is preferred.
본 발명의 또 다른 구체예로서, 본 발명에 따른 지오폴리머를 포함하는 보수재 또는 보수마감재가 바람직하다.As another embodiment of the present invention, a repair material or a repair finishing material comprising the geopolymer according to the present invention is preferred.
본 발명에 따라 제조된 상온 고속경화형 지오폴리머는 경화속도를 단축시키며, 종래 지오폴리머 대비 40% 이상, 최대 31.8 MPa의 굴곡강도를 가지며, 종래 지오폴리머 대비 20% 이상, 최대 66.2 MPa의 압축강도를 갖도록 향상시킬 수 있다.The room temperature high-speed curing geopolymer prepared according to the present invention shortens the curing speed and has a flexural strength of up to 31.8 MPa, 40% higher than that of conventional geopolymers, and a compressive strength of up to 66.2 MPa, 20% higher than conventional geopolymers. can be improved to have.
도 1은 건식실리카와 칼슘 양이온의 기능에 대해 개략적으로 도시한 것이다.Figure 1 schematically shows the function of dry silica and calcium cations.
도 2는 본 발명에 따른 제조방법을 개략적으로 도시한 것이다.2 schematically illustrates a manufacturing method according to the present invention.
도 3은 본 발명에 따른 지오폴리머의 조성비에 따른 강도 등고선을 개략적으로 도시한 것이다.Figure 3 schematically shows the strength contours according to the composition ratio of the geopolymer according to the present invention.
도 4는 본 발명에 따른 지오폴리머의 개별 조성비에 따른 굴곡강도를 개략적으로 도시한 것이다.Figure 4 schematically shows the flexural strength according to the individual composition ratio of the geopolymer according to the present invention.
본 발명에 따른 상온 고속경화형 지오폴리머의 제조방법은 The method for producing a high-speed curing type geopolymer at room temperature according to the present invention
알칼리용액에 실리카를 혼합하는 단계;Mixing silica with an alkaline solution;
초음파 처리하는 단계;ultrasonic treatment;
알칼리실리케이트 및 단섬유를 투입하는 단계;Injecting alkali silicate and short fibers;
초음파 처리하는 단계;ultrasonic treatment;
메타카올린(MK) 및 칼슘화합물의 혼합용액을 투입하는 단계;Injecting a mixed solution of metakaolin (MK) and a calcium compound;
스피드 믹서로 혼합하는 단계;Mixing with a speed mixer;
캐스팅 하는 단계; 및casting; and
상온에서 경화시키는 단계를 포함하는 것이 바람직하다.It is preferable to include a step of curing at room temperature.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below.
본 실시예들을 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 부호가 사용되며, 이에 따라 중복되는 부가적인 설명은 아래에서 생락된다. 아래에서 참조되는 도면들에서는 축적비가 적용되지 않는다.In describing the present embodiments, the same names and reference numerals are used for the same components, and thus redundant additional descriptions are omitted below. Scale ratios are not applied in the drawings referred to below.
상온 고속경화 지오폴리머는 그 제조 조건이 다변수이며 (화학성분 몰비 (SiO2, Al2O3, K2O, Ca(OH)2, H2O), 각각의 원료(MK, 콜로이달실리카, Ca(OH)2, KOH, K2SiO3))의 양이 최종 물성에 미치는 영향이 크기 때문에 원하는 물성을 달성하기 위한 조건 성취가 용이하지 않다.Room-temperature high-speed curing geopolymers have multivariable manufacturing conditions (chemical component molar ratio (SiO 2 , Al 2 O 3 , K 2 O, Ca(OH) 2 , H 2 O), and each raw material (MK, colloidal silica) , Ca(OH) 2 , KOH, K 2 SiO 3 )) has a large effect on the final physical properties, so it is not easy to achieve the desired physical properties.
SiO2와 Al2O3은 지오폴리머의 기본 구조를 이루며 K2O는 지오폴리머 반응을 일으키는 화학성분이다. Si와 K의 경우, 여러 원료에서 공급이 된다. SiO2의 소스는 메타카올린(MK), 알칼리실리케이트, 실리카로 3종이며, K2O의 소스는 KOH 및 K2SiO3 로 2종이다.SiO 2 and Al 2 O 3 form the basic structure of geopolymer, and K 2 O is a chemical component that causes geopolymer reaction. In the case of Si and K, they are supplied from various raw materials. Three sources of SiO 2 are metakaolin (MK), alkali silicate, and silica, and two sources of K 2 O are KOH and K 2 SiO 3 .
또한, Ca는 Si 소스와 염기 분위기에서 칼슘실리케이트 결정상을 이루며, 그 결정상은 지오폴리머의 핵생성처(nucleation site)로 작용하여 경화 속도를 빠르게 하는 경화촉진제 역할을 한다. 이와 같은 칼슘실리케이트는 시멘트 양생과정에서도 형성되어 시멘트의 강도를 발현시키는 역할을 한다. 하지만 Ca의 함량이 높을 경우에는 Ca로 이뤄진 결정과 지오폴리머 사이의 계면 면적이 증가하게 되며, 이러한 계면은 강도의 저하를 가져오고, 국부적 경화에 의해 성형이 불가능해진다.In addition, Ca forms a calcium silicate crystal phase in a Si source and a basic atmosphere, and the crystal phase acts as a nucleation site of geopolymer and serves as a hardening accelerator that speeds up the curing rate. Such calcium silicate is formed during cement curing and plays a role in expressing the strength of cement. However, when the Ca content is high, the interface area between the crystals made of Ca and the geopolymer increases, and this interface causes a decrease in strength and makes molding impossible due to local hardening.
상기 건식 실리카와 수산화칼슘을 사용하는 경우, 적용한 칼슘 양이온과 동반된 건식 실리카(f-SiO2)의 역할에 대해 도 1에 개략적으로 도시하였다. 응집된 칼슘 화합물이 커지는 경우, 국부 파괴에 민감해진다. 고표면적의 건식 실리카는 활성화된 C-A-S-H 겔을 구성하는데 중요한 효과를 미치고, 칼슘/실리케이트 비율이 감소할수록 보다 강성해진다. 따라서, 칼슘 입자의 응집을 낮추기 위해 비교적 높은 비율의 실리카가 요구된다. 결국, 건식 실리카는 칼슘 화합물의 성장율을 조정하여 경화 속도 촉진과 기계강도 감소의 균형을 맞출 수 있다.In the case of using the dry silica and calcium hydroxide, the role of the applied calcium cation and the accompanying dry silica (f-SiO 2 ) is schematically illustrated in FIG. 1 . When the aggregated calcium compound becomes large, it becomes susceptible to local destruction. Fumed silica with high surface area has a significant effect on constructing the activated CASH gel, and it becomes more rigid as the calcium/silicate ratio decreases. Therefore, a relatively high proportion of silica is required to reduce aggregation of calcium particles. Finally, fumed silica can balance the acceleration of cure rate with the reduction of mechanical strength by adjusting the rate of growth of calcium compounds.
구체적으로, 본 발명에 따른 상온 고속경화형 지오폴리머를 제조하는 방법은, Specifically, the method for producing a room temperature high-speed curing geopolymer according to the present invention,
알칼리용액에 실리카를 혼합하여 초음파 처리하는 단계; Mixing silica with an alkaline solution and treating it with ultrasonic waves;
알칼리실리케이트를 투입하는 단계;Injecting alkali silicate;
단섬유를 투입하고 초음파 처리하는 단계;Injecting short fibers and subjecting them to ultrasonic treatment;
메타카올린(MK) 및 칼슘화합물의 혼합용액을 투입하는 단계;Injecting a mixed solution of metakaolin (MK) and a calcium compound;
스피드 믹서로 혼합하는 단계;Mixing with a speed mixer;
캐스팅 하는 단계; 및casting; and
상온에서 경화시키는 단계를 포함하는 것이 바람직하다.It is preferable to include a step of curing at room temperature.
상기 알칼리용액은 KOH 용액이 바람직하다.The alkali solution is preferably a KOH solution.
상기 실리카는 콜로이달 실리카 및 건식 실리카의 단독 또는 혼합물이 바람직하지만, 건식 실리카가 보다 바람직하다. 건식 실리카는 충분한 Si를 제공하도록 사용하였다.The silica is preferably a single or a mixture of colloidal silica and fumed silica, but fumed silica is more preferred. Fumed silica was used to provide sufficient Si.
건식 실리카의 유무는 기계적 강도에 중요한 영향을 미친다. 건식 실리카는 지오폴리머가 최밀화되게 하고, 그 수상돌기상 입자는 지오폴리머 바인더와의 지오폴리머화를 가능하게 한다. 또한, 도 1에 도시된 바와 같이, 건식 실리카의 존재는 Ca의 성장에 중요한 영향을 미쳐 그 성장을 방해한다. Ca 성장 억제는 경화 진행을 늦추고, 충분한 시간동안 알칼리활성제와 메타카올린 사이의 지오폴리머화 반응을 지속시킨다. 균일하고 지속적인 반응은 지오폴리머의 최밀 고형화를 가능하게 하며, 이는 기계적 강도 증가로 귀결된다. 최적 알칼리활성제와 건식 실리카의 존재는 상기 반응을 조절하는 하나의 수단이 된다.The presence or absence of fumed silica has a significant effect on mechanical strength. Fumed silica allows the geopolymer to be densified, and its dendrite-like particles enable geopolymerization with the geopolymer binder. In addition, as shown in FIG. 1, the presence of fumed silica has a significant effect on the growth of Ca and hinders its growth. Ca growth inhibition slows the curing process and sustains the geopolymerization reaction between alkali activator and metakaolin for a sufficient time. A uniform and continuous reaction enables the geopolymer to be solidified in close proximity, which results in an increase in mechanical strength. The presence of an optimal alkali activator and fumed silica is one means of controlling the reaction.
상기 알칼리실리케이트는 소듐실리케이트, 포타슘실리케이트 및 리튬실리케이트의 단독 또는 혼합물이 바람직하지만, 포타슘실리케이트가 보다 바람직하다.The alkali silicate is preferably a single or a mixture of sodium silicate, potassium silicate and lithium silicate, but potassium silicate is more preferable.
또한, 상기 메타카올린 대비 KOH가 0.3~0.9 wt%이고, 알칼리실리케이트가 0.25~1.2 wt%인 것이 바람직하다. KOH와 굴곡강도는 양의 상관관계를 가지며, 알칼리실리케이트와 굴곡강도는 부의 상관관계를 가진다. 즉, KOH를 증가시키고 알칼리실리케이트를 감소시킬수록 굴곡강도가 증가한다. 그 이유는, 가교 역할을 하는 건식실리카가 고표면적 및 다공성을 갖는 입자이고, 흡습성을 갖기 때문이다. 또한, 건식실리카는 수분요구량에 직접적으로 영향을 미치므로 슬러리의 점도를 향상시킨다. 기타 첨가제들도 점도를 증가시키는 특성이 있다. 따라서, 유연한 혼합을 위해서는 과량의 알칼리 활성제 및 수분공급이 필요하다. 그렇지 않으면, 알칼리 농도에 민감해지고, 캐스팅 작업성이 감소한다. 결국, 고속경화를 위해서는 적정량의 수분 공급이 필요하다. 가장 고강도 영역에서의 조성은 메타카올린 대비 중량비로 WKOH = 0.60, WK2SiO3 = 0.45, WCa(OH)2 = 0.13, Wf-SiO2 = 0.03이었다.In addition, it is preferable that KOH is 0.3 to 0.9 wt% and alkali silicate is 0.25 to 1.2 wt% compared to the metakaolin. KOH and flexural strength have a positive correlation, and alkali silicate and flexural strength have a negative correlation. That is, the flexural strength increases as KOH is increased and alkali silicate is decreased. The reason is that the dry silica serving as a bridge is a particle having a high surface area and porosity, and has hygroscopicity. In addition, dry silica directly affects the water demand and thus improves the viscosity of the slurry. Other additives also have the property of increasing viscosity. Therefore, an excessive amount of alkaline activator and water supply are required for smooth mixing. Otherwise, it becomes sensitive to the alkali concentration and the casting workability decreases. After all, an appropriate amount of moisture is required for high-speed curing. The composition in the highest strength region was W KOH = 0.60, W K2SiO3 = 0.45, W Ca(OH)2 = 0.13, and W f-SiO2 = 0.03 in weight ratio to metakaolin.
또한, 상기 지오폴리머 전체 중 K2SiO3/KOH 비율은 0.8~1.5인 것이 바람직하다. 강도 증가의 원인은 여러가지 있지만, KOH 및 알칼리실리케이트 용액의 낮은 점도 및 메타카올린의 높은 반응성이 하나의 원인일 수 있다. 또 다른 원인은, 초과포화 상태의 칼슘이온을 유지하도록 수산화칼슘이 첨가된 건식 실리카의 경우로서, 전하 불균형을 상쇄하며, 반응시간을 단축하고, 물이 필러처럼 작용하도록 반응성을 부여한다.In addition, the ratio of K 2 SiO 3 /KOH in the entire geopolymer is preferably 0.8 to 1.5. There are several reasons for the increase in strength, but the low viscosity of KOH and alkali silicate solutions and the high reactivity of metakaolin may be one cause. Another cause is dry silica, in which calcium hydroxide is added to maintain calcium ions in a supersaturated state, which cancels out the charge imbalance, shortens the reaction time, and imparts reactivity so that water acts like a filler.
구조적 첨가제로서, 상기 단섬유는 탄소단섬유인 것이 바람직하며, 그 크기는 2~6mm, 바람직하게는 4mm이다.As a structural additive, the short fibers are preferably short carbon fibers, and the size is 2 to 6 mm, preferably 4 mm.
상기 메타카올린은 카올린이 700~900℃에서 1~5시간 하소된 것인 것이 바람직하다. 메타카올린은 지오폴리머에서 기본 알루미노실리케이트로서 사용된다. 본 발명에서는 카올리나이트를 800℃에서 4시간 동안 소성하였다.The meta-kaolin is preferably kaolin calcined at 700 to 900 ° C. for 1 to 5 hours. Metakaolin is used as a basic aluminosilicate in geopolymers. In the present invention, kaolinite was calcined at 800° C. for 4 hours.
메타카올린의 주요성분은 Al2O3(44 wt%), SiO2 (53 wt%) 및 0.5 wt% 미만의 기타 성분으로서 CaO, Fe2O3, MgO 및 K2O가 있다. The main components of metakaolin are Al 2 O 3 (44 wt%), SiO 2 (53 wt%), and CaO, Fe 2 O 3 , MgO and K 2 O as other components less than 0.5 wt%.
상기 메타카올린은 굴곡강도를 고려하면, 평균입자크기가 3~30 μm인 것이 바람직하다.Considering the flexural strength, the metakaolin preferably has an average particle size of 3 to 30 μm.
상기 칼슘화합물은 수산화칼슘(Ca(OH)2), 산화칼슘(CaO) 또는 탄산칼슘 (CaCO3)인 것이 바람직하지만, 수산화칼슘(Ca(OH)2)을 사용하여 고속 경화를 달성하였다. 수산화칼슘은 알루미노실리케이트의 용해를 보조하며, 기계적 ㄱ아도를 강화하도록 축합 및 중합 반응을 증가시킨다. 즉, 수산화칼슘은 고속 경화를 위해 첨가하였다. 다만, 과량의 수산화칼슘은 지오폴리머 반응 이전에 경화를 진행시킬 수 있다. 수산화칼슘의 첨가로 인한 저밀도 결과를 보상하기 위해, 건식 실리카를 공급하여 구조적 밀도화를 유도하였고, 탄소단섬유를 강화 물질로 사용하였다.The calcium compound is preferably calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ), but high-speed curing was achieved using calcium hydroxide (Ca(OH) 2 ). Calcium hydroxide aids in the dissolution of aluminosilicates and increases the condensation and polymerization reactions to enhance mechanical stability. That is, calcium hydroxide was added for fast curing. However, an excessive amount of calcium hydroxide may promote curing prior to the geopolymer reaction. To compensate for the low density resulting from the addition of calcium hydroxide, dry silica was supplied to induce structural densification, and short carbon fibers were used as a reinforcing material.
중합반응을 촉진하는 알칼리 활성제로서 본 발명에서는 KOH 및 포타슘실리케이트를 사용하였다. 칼슘 이온이 알루미노실리케이트 물질과 반응성이 높기 때문에, 포타슘 기반 활성제가 사용되었으며, 보다 최밀 구조와 강도 증가를 달성할 수 있었다. KOH and potassium silicate were used in the present invention as an alkali activator for accelerating the polymerization reaction. Since calcium ions are highly reactive with aluminosilicate materials, a potassium-based activator was used, achieving a tighter structure and increased strength.
상기 스피드 믹서에서는 1500~2500rpm에서 30~90sec 동안 혼합하는 것이 바람직하다.In the speed mixer, it is preferable to mix for 30 to 90 sec at 1500 to 2500 rpm.
한편, 본 발명의 또 다른 구체예로서, 본 발명에 따른 상온 고속경화형 지오폴리머는 알칼리용액; 실리카; 알칼리실리케이트; 단섬유; 메타카올린(MK); 및 칼슘화합물으로부터 제조되며, 알칼리(M) 성분비가 0.87≤M2O/Al2O3≤2.0; 0.3≤M2O/SiO2≤0.7; 6.5≤H2O/M2O≤9.1;를 만족하는 것이 바람직하다.On the other hand, as another embodiment of the present invention, the room temperature high-speed curing geopolymer according to the present invention is an alkaline solution; silica; alkali silicates; short fibers; metakaolin (MK); and a calcium compound, and an alkali (M) component ratio of 0.87≤M 2 O/Al 2 O 3 ≤2.0; 0.3≤M 2 O/SiO 2 ≤0.7; 6.5≤H 2 O/M 2 O≤9.1; is preferably satisfied.
또한, 상기 지오폴리머는 2.8≤SiO2/Al2O3≤4.0를 만족하는 것이 보다 바람직하다(도 4 참조).Further, the geopolymer preferably satisfies 2.8≤SiO 2 /Al 2 O 3 ≤4.0 (see FIG. 4).
이하에서는 구체적인 제조방법을 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through a specific manufacturing method.
<지오폴리머의 제조><Preparation of Geopolymer>
본 발명의 실시예에서 사용된 성분들은 아래 표 1에 개시하였다.Components used in the examples of the present invention are disclosed in Table 1 below.
SourceSource Manufacturer (Prod. No.)Manufacturer (Prod. No.) Solid content (%)Solid content (%) BET surface Area (m2/g)BET surface area (m2/g)
KaolinKaolin 대정화금 (DJ 5041-1400)Daejeong Hwageum (DJ 5041-1400) -- --
Ca(OH)2 Ca(OH) 2 대정화금 (DJ 2511-4400)Daejeong Hwageum (DJ 2511-4400) -- --
KOHKOH 대정화금 (DJ 6597-4405)Daejeong Hwageum (DJ 6597-4405) 40.140.1 --
K2SiO3 K 2 SiO 3 대정화금 (DJ 6617-4405)Daejeong Hwageum (DJ 6617-4405) 42.142.1 --
Fumed SiO2 Fumed SiO 2 OCI (Konasil K-200)OCI (Konasil K-200) -- 200 ± 25200 ± 25
Carbon fiber chopCarbon fiber chops HD Fiber (C118-3K)HD Fiber (C118-3K) -- --
지오폴리머를 제조하는 구체적인 방법은 아래와 같다(도 2 참조). A specific method for preparing the geopolymer is as follows (see FIG. 2).
지오폴리머의 주재료로는 카올린을 800℃, 4시간 동안 하소하여 생성된 메타카올린(MK)을 사용하였다. Metakaolin (MK) produced by calcining kaolin at 800 °C for 4 hours was used as the main material of the geopolymer.
상기 메타카올린 및 수산화칼슘을 별도로 준비하였다.The metakaolin and calcium hydroxide were prepared separately.
KOH를 증류수에 용해시킨 KOH 용액에 건식 실리카를 투입하여 건식 실리카를 잘 분산시키기 위해 pH>13으로 조정하고, 5분간 초음파 처리하였다(SONICS Vibracell-VCX750, Sonics & Materials, Inc., USA). Dry silica was added to a KOH solution in which KOH was dissolved in distilled water, adjusted to pH> 13 to disperse the dry silica well, and sonicated for 5 minutes (SONICS Vibracell-VCX750, Sonics & Materials, Inc., USA).
이어서 포타슘실리케이트를 투입하여 잘 분산시켰다.Subsequently, potassium silicate was added and well dispersed.
이어서, 탄소단섬유를 투입하고 15분 동안 초음파 처리하여 균일하게 분산시켰다. 탄소단섬유가 잘 분산되지 않으면, 지오폴리머가 섬유 내로 좀처럼 젖어들지 않으므로 기계적 강도가 필연적으로 낮아진다.Subsequently, short carbon fibers were added and ultrasonically treated for 15 minutes to uniformly disperse them. If the short carbon fiber is not well dispersed, the mechanical strength is inevitably lowered because the geopolymer is hardly wetted into the fiber.
상기 별도 준비된 메타카올린 및 수산화칼슘을 투입하여 완전하게 균일한 용액을 준비한다.A completely uniform solution is prepared by adding the separately prepared metakaolin and calcium hydroxide.
상기 균일 용액을 스피드 믹서(DAC 150.1 FVZ-K, UniNanoTech Co., Ltd, USA)에서 2000rpm에서 1분 동안 혼합하여 최종 혼합 공정을 수행하였다.The homogeneous solution was mixed for 1 minute at 2000 rpm in a speed mixer (DAC 150.1 FVZ-K, UniNanoTech Co., Ltd, USA) to perform a final mixing process.
다양한 첨가물을 혼입하였기 때문에 충분한 물을 공급하고, 분산성을 균일하게 유지하는 것이 중요하다.Since various additives are incorporated, it is important to supply sufficient water and maintain uniform dispersibility.
칼슘화합물의 투입으로 경화가 진행되므로 민첩한 작업이 필요하다.Since hardening proceeds with the input of calcium compound, agile work is required.
실리콘 몰드에서 캐스팅한 후, 표본을 실온에서 1일 동안 경화시켰다.After casting in the silicone mold, the specimens were cured at room temperature for 1 day.
평가를 위해, 탈몰드 후 상온에서 7일 동안 추가로 건조 및 경화시켰다.For evaluation, after de-molding, it was further dried and cured at room temperature for 7 days.
<특성 평가><Characteristic evaluation>
기계적 강도, 즉 굴곡강도 및 압축강도는 유니버셜 시험기(5982, Instron Co., Ltd, USA)로 측정되었다. 굴곡 강도에 대해서는, 상술한 바와 같이, 치수가 3.20 × 12.70 × 125 mm3 (ASTM D790)인 실리콘 몰드를 사용하였다. 실제 샘플 크기는 수축 때문에 ±0.1mm의 오차범위를 갖는다. 압축 강도에 대해서는, 직경 25mm 및 높이 25mm의 원통형 표본이 사용되었다(ASTM C39). 상기 실험 결과는 도 3 및 도 4에 개략적으로 도시하였다.Mechanical strength, that is, flexural strength and compressive strength, was measured with a universal tester (5982, Instron Co., Ltd, USA). For flexural strength, as described above, a silicone mold with dimensions of 3.20 x 12.70 x 125 mm 3 (ASTM D790) was used. The actual sample size has a margin of error of ±0.1 mm due to shrinkage. For compressive strength, cylindrical specimens with a diameter of 25 mm and a height of 25 mm were used (ASTM C39). The experimental results are schematically shown in FIGS. 3 and 4 .
또한, 불연소 반응에 대해 ISO 1182에 따라 시험하였다. 불연재 표준의 질량감소율은 30%인데, 본 발명의 지오폴리머는 27%로서 기준을 충족하였다. 본 발명의 지오폴리머의 내심 온도 증가는 2.4℃로서, 내열마감재로서의 사용가능성을 확인하였다.In addition, it was tested according to ISO 1182 for the non-combustion reaction. The mass reduction rate of the non-combustible standard is 30%, but the geopolymer of the present invention satisfies the standard at 27%. The increase in the core temperature of the geopolymer of the present invention was 2.4 ° C, confirming its usability as a heat-resistant finishing material.
위와 같이 제조된 샘플 및 그 물성을 아래 표 2 내지 표 4에 나타내었다.Samples prepared as above and their physical properties are shown in Tables 2 to 4 below.
Sample No.Sample No. Molar ratioMolar ratio Weight of input materials (g)Weight of input materials (g) MeasuredMeasured
SiO2/
Al2O3
SiO 2 /
Al 2 O 3
Ca(OH)2/
Al2O3
Ca(OH) 2 /
Al 2 O 3
K2O/
SiO2
K 2 O/
SiO 2
H2O/
K2O
H 2 O/
K2O
MKMK CaCa Fumed
SiO-2
Fumed
SiO -2
KOHKOH K2SiO3 K 2 SiO 3 H2OH 2 O Flexural Strength
(MPa)
Flexural Strength
(MPa)
D1 - 1D 1 - 1 2.82.8 0.40.4 0.40.4 6.66.6 2020 2.52.5 00 66 1212 6.26.2 5.145.14
D1 - 2D 1 - 2 2.82.8 0.40.4 0.50.5 6.56.5 2020 2.52.5 00 66 1818 3.83.8 4.224.22
D1 - 3D 1 - 3 2.82.8 0.40.4 0.70.7 6.66.6 2020 2.52.5 00 66 2424 1.41.4 4.134.13
D1 - 4D 1 - 4 3.13.1 0.40.4 0.30.3 7.57.5 2020 2.52.5 00 99 1212 3.23.2 9.659.65
D1 - 5D 1 - 5 3.13.1 0.40.4 0.50.5 7.57.5 2020 2.52.5 00 99 1818 0.00.0 10.6410.64
D1 - 6D 1 - 6 3.13.1 0.40.4 0.60.6 7.27.2 2020 2.52.5 00 99 2424 0.00.0 8.538.53
D1 - 7D 1 - 7 3.53.5 0.40.4 0.30.3 8.48.4 2020 2.52.5 00 1212 1212 0.00.0 9.589.58
D1 - 8D 1 - 8 3.53.5 0.40.4 0.50.5 7.87.8 2020 2.52.5 00 1212 1818 0.00.0 7.147.14
D1 - 9D 1 - 9 3.53.5 0.40.4 0.60.6 7.57.5 2020 2.52.5 00 1212 2424 0.00.0 5.135.13
D1 - 10D 1 - 10 2.82.8 0.40.4 0.40.4 6.66.6 2020 2.52.5 0.30.3 66 1212 6.26.2 2.712.71
D1 - 11D 1 - 11 2.82.8 0.40.4 0.50.5 6.56.5 2020 2.52.5 0.30.3 66 1818 3.83.8 1.941.94
D1 - 12D 1 - 12 2.82.8 0.40.4 0.60.6 6.66.6 2020 2.52.5 0.30.3 66 2424 1.41.4 2.532.53
D1 - 13D 1 - 13 3.23.2 0.40.4 0.30.3 7.57.5 2020 2.52.5 0.30.3 99 1212 3.23.2 6.306.30
D1 - 14D 1 - 14 3.23.2 0.40.4 0.50.5 7.57.5 2020 2.52.5 0.30.3 99 1818 0.00.0 10.0710.07
D1 - 15D 1 - 15 3.23.2 0.40.4 0.60.6 7.27.2 2020 2.52.5 0.30.3 99 2424 0.00.0 7.717.71
D1 - 16D 1 - 16 3.53.5 0.40.4 0.30.3 8.48.4 2020 2.52.5 0.30.3 1212 1212 0.00.0 7.837.83
D1 - 17D 1 - 17 3.53.5 0.40.4 0.40.4 7.87.8 2020 2.52.5 0.30.3 1212 1818 0.00.0 6.516.51
D1 - 18D 1 - 18 3.53.5 0.40.4 0.60.6 7.57.5 2020 2.52.5 0.30.3 1212 2424 0.00.0 5.985.98
D1 - 19D 1 - 19 2.92.9 0.40.4 0.30.3 6.66.6 2020 2.52.5 0.60.6 66 1212 6.26.2 3.923.92
D1 - 20D 1 - 20 2.92.9 0.40.4 0.50.5 6.56.5 2020 2.52.5 0.60.6 66 1818 3.83.8 4.134.13
D1 - 21D 1 - 21 2.92.9 0.40.4 0.60.6 6.66.6 2020 2.52.5 0.60.6 66 2424 1.41.4 3.563.56
D1 - 22D 1 - 22 3.23.2 0.40.4 0.30.3 7.57.5 2020 2.52.5 0.60.6 99 1212 3.23.2 8.608.60
D1 - 23D 1 - 23 3.23.2 0.40.4 0.50.5 7.57.5 2020 2.52.5 0.60.6 99 1818 0.00.0 8.708.70
D1 - 24D 1 - 24 3.23.2 0.40.4 0.60.6 7.27.2 2020 2.52.5 0.60.6 99 2424 0.00.0 8.108.10
D1 - 25D 1 - 25 3.63.6 0.40.4 0.30.3 8.48.4 2020 2.52.5 0.60.6 1212 1212 0.00.0 7.877.87
D1 - 26D 1 - 26 3.63.6 0.40.4 0.40.4 7.87.8 2020 2.52.5 0.60.6 1212 1818 0.00.0 14.4914.49
D1 - 27D 1 - 27 3.63.6 0.40.4 0.60.6 7.57.5 2020 2.52.5 0.60.6 1212 2424 0.00.0 10.4810.48
Sample No.Sample No. Molar ratioMolar ratio Weight of input materials (g)Weight of input materials (g) MeasuredMeasured
SiO2/
Al2O3
SiO 2 /
Al 2 O 3
Ca(OH)2/
Al2O3
Ca(OH) 2 /
Al 2 O 3
K2O/
SiO2
K 2 O/
SiO 2
H2O/
K2O
H 2 O/
K2O
MKMK CaCa Fumed
SiO-2
Fumed
SiO -2
KOHKOH K2SiO3 K 2 SiO 3 H2OH 2 O Flexural strength
(MPa)
Flexural strength
(MPa)
Curing
time (m)
Curing
time (m)
D2 - 1 D2 - 1 3.23.2 0.40.4 0.30.3 7.77.7 2020 2.52.5 0.60.6 99 99 5.65.6 9.779.77 2121
D2 - 2 D2 - 2 3.63.6 0.40.4 0.30.3 8.58.5 2020 2.52.5 0.60.6 99 1212 3.83.8 8.248.24 4040
D2 - 3 D2 - 3 4.04.0 0.40.4 0.30.3 9.19.1 2020 2.52.5 0.60.6 99 1515 2.02.0 8.638.63 --
D2 - 4 D2 - 4 3.23.2 0.40.4 0.30.3 7.67.6 2020 2.52.5 0.60.6 1212 99 2.62.6 13.7213.72 1919
D2 - 5D 2 - 5 3.63.6 0.40.4 0.30.3 8.38.3 2020 2.52.5 0.60.6 1212 1212 0.80.8 12.2812.28 3232
D2 - 6 D2 - 6 4.04.0 0.40.4 0.30.3 8.88.8 2020 2.52.5 0.60.6 1212 1515 00 12.4212.42 --
D2 - 7 D2 - 7 3.23.2 0.40.4 0.40.4 7.77.7 2020 2.52.5 0.60.6 1515 99 00 14.3814.38 1515
D2 - 8 D2 - 8 3.63.6 0.40.4 0.40.4 8.18.1 2020 2.52.5 0.60.6 1515 1212 00 11.3011.30 4444
D2 - 9D 2 - 9 4.04.0 0.40.4 0.40.4 8.48.4 2020 2.52.5 0.60.6 1515 1515 00 8.538.53 5050
Sample No.Sample No. Molar ratioMolar ratio Weight of input materials (g)Weight of input materials (g) MeasuredMeasured
SiO2/
Al2O3
SiO 2 /
Al 2 O 3
Ca(OH)2/
Al2O3
Ca(OH) 2 /
Al 2 O 3
K2O/
SiO2
K 2 O/
SiO 2
H2O/
K2O
H 2 O/
K2O
MKMK CaCa Fumed
SiO-2
Fumed
SiO -2
KOHKOH K2SiO3 K 2 SiO 3 H2OH 2 O Flexural strength (MPa)Flexural strength (MPa) Curing
time (m)
Curing
time (m)
D3 - 1 D3-1 2.82.8 0.40.4 0.40.4 6.56.5 2020 2.52.5 0.60.6 1212 55 5.65.6 14.0314.03 1212
D3 - 2 D3 - 2 2.82.8 0.40.4 0.40.4 6.56.5 2020 2.52.5 0.60.6 1515 55 3.83.8 13.3313.33 2424
D3 - 3D 3 - 3 2.82.8 0.40.4 0.50.5 6.66.6 2020 2.52.5 0.60.6 1818 55 2.02.0 10.9310.93 6060
D3 - 4 D3 - 4 3.03.0 0.40.4 0.30.3 7.37.3 2020 2.52.5 0.60.6 1212 77 2.62.6 18.7618.76 99
D3 - 5D 3 - 5 3.03.0 0.40.4 0.40.4 7.37.3 2020 2.52.5 0.60.6 1515 77 0.80.8 17.6717.67 2020
D3 - 6D 3 - 6 3.03.0 0.40.4 0.50.5 7.27.2 2020 2.52.5 0.60.6 1818 77 00 16.9516.95 4545
D3 - 7D 3 - 7 3.23.2 0.40.4 0.30.3 8.08.0 2020 2.52.5 0.60.6 1212 99 00 27.8327.83 77
D3 - 8D 3 - 8 3.23.2 0.40.4 0.40.4 7.77.7 2020 2.52.5 0.60.6 1515 99 00 19.8519.85 1919
D3 - 9D 3 - 9 3.23.2 0.40.4 0.50.5 7.57.5 2020 2.52.5 0.60.6 1818 99 00 17.7317.73 4343
도 3에서 도시된 바와 같이, 본 발명에 따른 지오폴리머는 가장 고강도 영역(High strength space)은 종래 지오폴리머 대비 40% 이상, 최대 31.8 MPa의 굴곡강도를 가지며, 종래 지오폴리머 대비 20% 이상, 최대 66.2 MPa의 압축강도를 나타내었다. As shown in FIG. 3, the geopolymer according to the present invention has a flexural strength of 40% or more compared to the conventional geopolymer and a maximum of 31.8 MPa in the highest strength space, and 20% or more compared to the conventional geopolymer, the maximum It showed a compressive strength of 66.2 MPa.
도 4에 도시된 바와 같이, 본 발명에 따른 지오폴리머의 조성에 따른 굴곡강도는 주황색 영역으로 도시되어 있다. As shown in FIG. 4, the flexural strength according to the composition of the geopolymer according to the present invention is shown in an orange area.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible without departing from the technical spirit of the present invention described in the claims. It will be obvious to those skilled in the art.
본 발명은 상온 고속경화가 가능한 지오폴리머의 제조방법에 관한 것이다.The present invention relates to a method for producing a geopolymer capable of high-speed curing at room temperature.

Claims (25)

  1. 알칼리용액에 실리카를 혼합하는 단계;Mixing silica with an alkaline solution;
    초음파 처리하는 단계;ultrasonic treatment;
    알칼리실리케이트 및 단섬유를 투입하는 단계;Injecting alkali silicate and short fibers;
    초음파 처리하는 단계;ultrasonic treatment;
    메타카올린(MK) 및 칼슘화합물의 혼합용액을 투입하는 단계;Injecting a mixed solution of metakaolin (MK) and a calcium compound;
    스피드 믹서로 혼합하는 단계;Mixing with a speed mixer;
    캐스팅 하는 단계; 및casting; and
    상온에서 경화시키는 단계를 포함하는, 상온 고속경화형 지오폴리머의 제조방법.A method for producing a high-speed curing type geopolymer at room temperature, comprising curing at room temperature.
  2. 제 1 항에 있어서, 상기 알칼리용액이 KOH용액인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method of preparing a high-speed curing type geopolymer at room temperature according to claim 1, wherein the alkali solution is a KOH solution.
  3. 제 1 항에 있어서, 상기 실리카가 콜로이달 실리카 및 건식실리카의 단독 또는 혼합물인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method of preparing a high-speed curing type geopolymer at room temperature according to claim 1, wherein the silica is a single or a mixture of colloidal silica and dry silica.
  4. 제 1 항에 있어서, 상기 알칼리실리케이트가 소듐실리케이트, 포타슘실리케이트 및 리튬실리케이트의 단독 또는 혼합물로 구성된 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method of preparing a high-speed curing type geopolymer at room temperature according to claim 1, wherein the alkali silicate is composed of sodium silicate, potassium silicate and lithium silicate alone or as a mixture.
  5. 제 1 항에 있어서, 상기 단섬유가 탄소단섬유인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method for producing a high-speed curing type geopolymer at room temperature according to claim 1, wherein the short fibers are short carbon fibers.
  6. 제 1 항에 있어서, 상기 단섬유의 크기는 2~6mm인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method of manufacturing a high-speed curing type geopolymer at room temperature according to claim 1, wherein the short fibers have a size of 2 to 6 mm.
  7. 제 1 항에 있어서, 상기 칼슘화합물이 수산화칼슘(Ca(OH)2), 산화칼슘(CaO) 또는 탄산칼슘 (CaCO3)인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.The method of claim 1, wherein the calcium compound is calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ).
  8. 제 1 항에 있어서, 상기 메타카올린은 카올린이 700~900℃에서 1~5시간 하소된 것인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method for preparing a high-temperature curing type geopolymer according to claim 1, wherein the meta-kaolin is obtained by calcining kaolin at 700-900 °C for 1-5 hours.
  9. 제 1 항에 있어서, 상기 메타카올린이 평균입자크기가 3~30 μm인 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.[Claim 4] The method of preparing a high-speed curing type geopolymer at room temperature according to claim 1, wherein the metakaolin has an average particle size of 3 to 30 μm.
  10. 제 1 항에 있어서, 상기 스피드 믹서에서 1500~2500rpm에서 30~90sec 동안 혼합하는 것을 특징으로 하는 상온 고속경화형 지오폴리머의 제조방법.The method of claim 1, wherein the mixing is performed in the speed mixer at 1500 to 2500 rpm for 30 to 90 sec.
  11. 알칼리용액; 실리카; 알칼리실리케이트; 단섬유; 메타카올린(MK); 및 칼슘화합물으로부터 제조된 지오폴리머로서,alkali solution; silica; alkali silicates; short fibers; metakaolin (MK); And as a geopolymer prepared from a calcium compound,
    알칼리(M) 성분비가 0.87≤M2O/Al2O3≤2.0; 0.3≤M2O/SiO2≤0.7; 6.5≤H2O/M2O≤9.1;를 만족하는 상온 고속경화형 지오폴리머.Alkali (M) component ratio 0.87≤M 2 O/Al 2 O 3 ≤2.0; 0.3≤M 2 O/SiO 2 ≤0.7; 6.5≤H 2 O/M 2 O≤9.1; room temperature fast curing geopolymer.
  12. 제 11 항에 있어서, 상기 지오폴리머가 2.8≤SiO2/Al2O3≤4.0를 만족하는 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 12] The geopolymer according to claim 11, wherein the geopolymer satisfies 2.8≤SiO 2 /Al 2 O 3 ≤4.0.
  13. 제 11 항에 있어서, 상기 알칼리용액이 KOH용액인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 12] The room temperature high-speed curing geopolymer according to claim 11, wherein the alkali solution is a KOH solution.
  14. 제 11 항에 있어서, 상기 실리카가 콜로이달 실리카 및 건식실리카의 단독 또는 혼합물인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[12] The geopolymer according to claim 11, wherein the silica is a single or a mixture of colloidal silica and dry silica.
  15. 제 11 항에 있어서, 상기 알칼리실리케이트가 소듐실리케이트, 포타슘실리케이트 및 리튬실리케이트의 단독 또는 혼합물로 구성된 것을 특징으로 하는 상온 고속경화형 지오폴리머.[12] The geopolymer according to claim 11, wherein the alkali silicate is composed of sodium silicate, potassium silicate and lithium silicate alone or as a mixture.
  16. 제 11 항에 있어서, 상기 단섬유가 탄소단섬유인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[12] The geopolymer according to claim 11, wherein the short fibers are short carbon fibers.
  17. 제 11 항에 있어서, 상기 단섬유의 크기는 2~6mm인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 12] The room temperature high-speed curing geopolymer according to claim 11, characterized in that the size of the short fibers is 2 to 6 mm.
  18. 제 11 항에 있어서, 상기 칼슘화합물이 수산화칼슘(Ca(OH)2), 산화칼슘(CaO) 또는 탄산칼슘 (CaCO3)인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 12] The room temperature fast curing type geopolymer according to claim 11, wherein the calcium compound is calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ).
  19. 제 11 항에 있어서, 상기 메타카올린은 카올린이 700~900℃에서 1~5시간 하소된 것인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 12] The room-temperature high-speed curing geopolymer according to claim 11, wherein the meta-kaolin is obtained by calcining kaolin at 700-900 °C for 1-5 hours.
  20. 제 11 항에 있어서, 상기 메타카올린이 평균입자크기가 3~30 μm인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 12] The room temperature high-speed curing geopolymer according to claim 11, wherein the metakaolin has an average particle size of 3 to 30 μm.
  21. 제 13 항에 있어서, 상기 KOH가 메타카올린 대비 0.3~0.9 wt%인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 14] The room temperature high-speed curing geopolymer according to claim 13, wherein the KOH is 0.3 to 0.9 wt% relative to metakaolin.
  22. 제 5 항에 있어서, 상기 알칼리실리케이트가 메타카올린 대비 0.25~1.2 wt%인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[6] The geopolymer according to claim 5, wherein the alkali silicate is 0.25 to 1.2 wt% of metakaolin.
  23. 제 13 항에 있어서, 상기 지오폴리머 전체 중 알칼리실리케이트/KOH 비율은 0.8~1.5인 것을 특징으로 하는 상온 고속경화형 지오폴리머.[Claim 14] The room temperature high-speed curing geopolymer according to claim 13, wherein the alkali silicate/KOH ratio in the entire geopolymer is 0.8 to 1.5.
  24. 제 11 항에 따른 지오폴리머를 포함하는 내열재 또는 내열마감재.A heat-resistant material or heat-resistant finishing material comprising the geopolymer according to claim 11.
  25. 제 11 항에 따른 지오폴리머를 포함하는 보수재 또는 보수마감재.A repair material or a repair finishing material comprising the geopolymer according to claim 11.
PCT/KR2021/019797 2021-12-24 2021-12-24 Room-temperature fast-curing geopolymer and preparation method therefor WO2023120780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/019797 WO2023120780A1 (en) 2021-12-24 2021-12-24 Room-temperature fast-curing geopolymer and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/019797 WO2023120780A1 (en) 2021-12-24 2021-12-24 Room-temperature fast-curing geopolymer and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2023120780A1 true WO2023120780A1 (en) 2023-06-29

Family

ID=86903018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019797 WO2023120780A1 (en) 2021-12-24 2021-12-24 Room-temperature fast-curing geopolymer and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2023120780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650310B1 (en) * 2023-06-01 2024-03-25 국방과학연구소 Flame-resistant Inorganic Fiber Composite comprising geopolymer and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086248A (en) * 2019-12-31 2021-07-08 한국세라믹기술원 Fast-curing Geopolymer reinforced by silica, and Preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086248A (en) * 2019-12-31 2021-07-08 한국세라믹기술원 Fast-curing Geopolymer reinforced by silica, and Preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHO YOUNG-HOON, AN EUNG-MO, CHON CHUL-MIN, LEE SUJEONG: "Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers", JOURNAL OF THE KOREAN INSTITUTE OF RESOURCES RECYCLING, vol. 25, no. 6, 30 December 2016 (2016-12-30), pages 73 - 81, XP093074230, ISSN: 1225-8326, DOI: 10.7844/kirr.2016.25.6.73 *
KIM KYUNG-WON, GO HYUN-SEOK, LIM HYEONG-MI: "3P-241: A Study on the Optimization of Short Fiber-Added Fast-Curing Geopolymers Process Using Experimental Planning Method", ABSTRACTS PRESENTED AT THE KSIEC MEETING; OCTOBER 28-30, 2020, KSIEC, KOREA, 1 January 2020 (2020-01-01) - 30 October 2020 (2020-10-30), Korea, pages 353, XP009547526 *
KO HYUNSEOK, NOH JUNG YOUNG, LIM HYUNG MI: "Effects of Chemical Composition of Ca(OH)2 and Precursors on the Properties of Fast-Curing Geopolymers", HAN'GUG JAERYO HAGHOEJI - KOREAN JOURNAL OF MATERIALS RESEARCH, HAN'GUG JAERYO HAGHOE, SEOUL, KR, vol. 29, no. 11, KR , pages 690 - 696, XP093074223, ISSN: 1225-0562, DOI: 10.3740/MRSK.2019.29.11.690 *
ROCHA THAIS, DIAS DYLMAR PENTEADO, FRANÇA FERNANDO, GUERRA RAFAEL, MARQUES LARISSA: "Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+)", CONSTRUCTION AND BUILDING MATERIALS, ELSEVIER, vol. 178, 1 July 2018 (2018-07-01), pages 453 - 461, XP009547255, DOI: 10.1016/j.conbuildmat.2018.05.172 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650310B1 (en) * 2023-06-01 2024-03-25 국방과학연구소 Flame-resistant Inorganic Fiber Composite comprising geopolymer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2023120780A1 (en) Room-temperature fast-curing geopolymer and preparation method therefor
KR102348274B1 (en) Fast-curing Geopolymer reinforced by silica, and Preparation method thereof
CN114292118B (en) Long-service-life castable for garbage incinerator and preparation method thereof
Matalkah et al. Effect of fiber type and content on the mechanical properties and shrinkage characteristics of alkali‐activated kaolin
Lahoti et al. Influence of mix design parameters on geopolymer mechanical properties and microstructure
CN113603368A (en) Preparation method of modified basalt fiber for anti-cracking waterproof agent of expanded fiber
Bhuiya et al. Bone ash reinforced geopolymer composites
CN1673169A (en) Process of preparing mineral bonding material and its composite material with phosphate and aluminium-silicon material
WO2018124485A1 (en) Self-healing concrete fine aggregates using sts electric arc furnace reducing slag, manufacturing method therefor, and self-healing concrete using same
US20030127025A1 (en) Novel phosphomagnesium hydraulic binder, and mortar obtained from same
US11873247B2 (en) Uncalcined geopolymer-based refractory material and method for its preparation
CN115636680A (en) Preparation method of mullite fiber reinforced corundum-spinel prefabricated member
CN114890742A (en) Nano-material composite ultra-high performance concrete
RU2140407C1 (en) Refractory concrete mix
US4687517A (en) Concrete composition having heat resisting property and dimensional stability
CN112341053A (en) High-ductility geopolymer and preparation method thereof
CN113105164A (en) Method for controlling shrinkage performance of alkali-activated slag mortar by using basalt fibers
WO2023080676A1 (en) Method for manufacturing coal fly ash-based geopolymer foam by using microwaves
KR20080105776A (en) Fire preventing gypsum board composition
CN114634320B (en) Heat-resistant and wear-resistant concrete and preparation method thereof
CN116462440B (en) Low-shrinkage industrial solid waste excitant and preparation method and application thereof
JP3025130B2 (en) Inorganic powder and curable inorganic composition
Sengupta et al. Characterization of Slag-Based Mix Activated with Hydrated Lime of Industrial Grade: a Short Communication
Wongmaneerung Effect of ZrO2 and MgO addition on structure, mechanical and thermal properties of metakaolin-based geopolymer composites
CN117342807A (en) Low-heat cement and production process thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969144

Country of ref document: EP

Kind code of ref document: A1