WO2023120710A1 - Method for producing synthetic three-dimensional tissue, device for producing synthetic three-dimensional tissue, and synthetic three-dimensional tissue body - Google Patents

Method for producing synthetic three-dimensional tissue, device for producing synthetic three-dimensional tissue, and synthetic three-dimensional tissue body Download PDF

Info

Publication number
WO2023120710A1
WO2023120710A1 PCT/JP2022/047671 JP2022047671W WO2023120710A1 WO 2023120710 A1 WO2023120710 A1 WO 2023120710A1 JP 2022047671 W JP2022047671 W JP 2022047671W WO 2023120710 A1 WO2023120710 A1 WO 2023120710A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
hollow fiber
artificial
holders
culture
Prior art date
Application number
PCT/JP2022/047671
Other languages
French (fr)
Japanese (ja)
Inventor
昌治 竹内
銘昊 聶
亜衣 田嶋
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2023120710A1 publication Critical patent/WO2023120710A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to an artificial three-dimensional tissue manufacturing method, an artificial three-dimensional tissue manufacturing apparatus, and an artificial three-dimensional tissue.
  • Patent Document 1 a culture medium and cell masses are introduced from a supply port of a channel space portion in which a plurality of fibers are arranged, and are accumulated on the outer surface of each fiber with the vicinity of the discharge port of the channel space portion serving as a growth starting point. Culturing is disclosed.
  • Each fiber in Patent Document 1 is hollow or has a groove formed along its longitudinal direction, and has micropores communicating from the outer surface to the inside of the hollow or the inside of the groove.
  • Each fiber of Patent Document 1 removes metabolic waste products from the cell mass through the micropores and supplies at least one of growth factors and nutrient factors to the cell mass through the micropores.
  • the present invention has been made in consideration of the above points, and aims to provide an artificial three-dimensional tissue manufacturing method and an artificial three-dimensional tissue manufacturing apparatus capable of easily manufacturing an oriented large-sized tissue.
  • Another object of the present invention is to provide an oriented large-sized artificial three-dimensional tissue.
  • a hollow fiber having a hollow portion is prepared; and a second culture space located on the opposite side of the culture space in the first direction with respect to the engagement wall, wherein the engagement wall connects the engagement wall to the first culture space.
  • a plurality of holding portions provided in a plane orthogonal to the first direction and penetrating in the direction perpendicular to the first direction; a communicating portion for communicating, wherein the holding portion prepares a pair of the holders for holding the end portions of the hollow fibers in the first direction; holding one end side of the hollow fiber in each of the holders, holding the other end side of the hollow fiber in each of the plurality of holding sections in the other of the pair of holders; Disposing a pair of holders in the first direction with the culture space interposed therebetween, and supplying a pre-cured scaffold material containing cells to the culture space and the second culture space and curing the scaffold material. and culturing the cells while perfusing the hollow portion with a medium.
  • a hollow fiber having a hollow portion and a pair of holders spaced apart in the first direction across a culture space in which a cell-containing scaffold material is disposed are provided.
  • the holder has an engagement wall facing the culture space, and a second culture space located on the opposite side of the engagement wall to the culture space in the first direction with respect to the engagement wall.
  • the engaging wall includes a plurality of holding portions provided at intervals in a plane perpendicular to the first direction and penetrating the engaging wall in the first direction, and the engaging wall.
  • a cell-containing scaffold material culture body and hollow fibers having a hollow portion and provided through the culture body in a direction in which the culture body extends, are provided.
  • An artificial three-dimensional tissue is provided, wherein the hollow portion is a perfusion channel, and the outer peripheral surface of the hollow fiber is a treated surface sterilized with plasma.
  • an oriented large-sized tissue can be easily produced.
  • FIG. 1 is a cross-sectional view of an artificial three-dimensional tissue manufacturing device according to a first embodiment of the present invention
  • FIG. FIG. 4 is an external perspective view of the anchor section viewed from the culture space side.
  • FIG. 4 is a cross-sectional view showing a process related to formation of muscle tissue;
  • FIG. 4 is a cross-sectional view showing steps related to culturing muscle tissue.
  • FIG. 4 is a cross-sectional view of the main body of the culture body;
  • FIG. 4 is a cross-sectional view along the channel of the main body of the culture body.
  • FIG. 4 is a diagram showing a fluorescence image of a cell nucleus in a cross section perpendicular to the X direction of one hollow fiber in the main body.
  • FIG. 8 is a diagram showing the relationship between the distance range from the center of the hollow fiber and the cell nucleus density in the fluorescence image of the cell nucleus in FIG. 7;
  • FIG. 10 is a diagram showing a fluorescence image of muscle tissue in a cross section along the X direction in a hollow fiber; 10 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. 9.
  • FIG. 4 is a diagram showing a fluorescence image of muscle tissue T in a cross section perpendicular to the X direction of the hollow fiber.
  • FIG. 4 is a photographic view of a muscle tissue T cultured using nine hollow fibers F in a cross section perpendicular to the X direction of the hollow fibers.
  • FIG. 15 is a diagram showing a fluorescence image of the muscle tissue shown in FIG. 14;
  • FIG. 16 is a diagram showing an enlarged fluorescence image of a portion of the muscle tissue shown in FIG. 15; 17 is a diagram showing a fluorescence image of cell nuclei around the hollow fibers shown in FIG. 16.
  • FIG. FIG. 3 is an external perspective view of muscle tissue formed in an elongated shape.
  • FIG. 3 is a perspective view of a muscle tissue block in which muscle tissue is stacked in 4 rows ⁇ 2 layers.
  • FIG. 10 is an exploded perspective view of the artificial three-dimensional tissue manufacturing device according to the second embodiment of the present invention, before passing the hollow fibers. It is a perspective view which shows one side of the anchor part which concerns on the artificial three-dimensional tissue manufacturing apparatus. It is a perspective view which shows the other of the anchor part which concerns on the artificial three-dimensional tissue manufacturing apparatus. It is a figure which shows the state by which the anchor part was connected.
  • 7 is a graph showing the results of texture analysis of the artificial three-dimensional tissue according to the second embodiment; 4 is a table showing amino acid analysis results of the artificial three-dimensional tissue according to the second embodiment.
  • FIG. 1 Embodiments of an artificial three-dimensional tissue manufacturing method, an artificial three-dimensional tissue manufacturing apparatus, and an artificial three-dimensional tissue structure according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 19.
  • FIG. It should be noted that each of the embodiments shown below is one aspect of the present invention, does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention.
  • FIG. 1 is a cross-sectional view of an artificial three-dimensional tissue manufacturing apparatus 1.
  • the artificial three-dimensional tissue manufacturing apparatus 1 has a support member 10 , a pair of holders 20 , hollow fibers F, and a culture medium supply section 40 .
  • the support member 10 supports the pair of holders 20 with a predetermined distance in the first direction (horizontal direction in FIG. 1).
  • the support member 10 is a rectangular parallelepiped flat plate.
  • the support member 10 has a groove portion 12 on its upper surface 11 .
  • the grooves 12 are spaced apart in the first direction.
  • the groove portion 12 extends in a second direction orthogonal to the first direction (a direction orthogonal to the plane of the paper in FIG. 1).
  • the support member 10 is made of, for example, a soft elastic material such as PDMS (polydimethylsiloxane).
  • the horizontal direction in which the pair of holders 20 are arranged apart from each other is defined as the X direction
  • the horizontal direction orthogonal to the X direction is defined as the Y direction
  • the vertical direction is defined as the vertical direction
  • the direction orthogonal to the X direction and the Y direction is defined as the Z direction.
  • the pair of holders 20 are symmetrical about the center line parallel to the Z direction, the same reference numerals are given to the pair of holders 20 below, and the holder 20 located on the +X side will be described, and the -X side will be described. The description of the holder 20 positioned at is omitted.
  • a culture space 2 is between the pair of holders 20 in the X direction. That is, the pair of holders 20 are spaced apart in the X direction with the culture space 2 interposed therebetween.
  • the holder 20 has a holder body (facing portion) 21 , an anchor portion 22 and a fitting projection 23 .
  • the fitting projection 23 projects downward from the holder body 21 .
  • the fitting projection 23 fits into the groove 12 of the support member 10 from above. By fitting the fitting protrusion 23 into the groove 12 , the holder 20 is supported while being positioned by the support member 10 .
  • FIG. 2 is an external perspective view of the anchor part 22 viewed from the culture space 2 side. As shown in FIG. 2, the anchor portion 22 has a cubic shape. The anchor part 22 has an engaging wall 30 , a side wall 35 and a second culture space 37 .
  • the engagement wall 30 is arranged facing the culture space 2 .
  • the engagement wall 30 has a rectangular plate shape parallel to the YZ plane.
  • the engagement wall 30 has a holding portion 31 and a communicating portion 32 .
  • the holding portion 31 has a circular cross section and penetrates the engaging wall 30 in the X direction.
  • a plurality of holding portions 31 are provided at intervals in the YZ plane.
  • the holding portions 31 are provided in total of nine pieces, three each in the Y direction and the Z direction, centering on the central position of the engaging wall 30 in the YZ plane, with regular intervals therebetween. .
  • a hollow fiber F can be inserted through each of the plurality of holding portions 31 .
  • the ends of the hollow fibers F on the +X side are inserted through each of the plurality of holding portions 31 .
  • the plurality of holding portions 31 hold the outer peripheral surfaces Fb of the hollow fibers F that are inserted therethrough.
  • the communicating portion 32 penetrates the engaging wall 30 in the X direction, which is the thickness direction.
  • the communication part 32 communicates the culture space 2 with a second culture space 37, which will be described later.
  • a plurality of communicating portions 32 are provided at intervals in the YZ plane.
  • a plurality of communicating portions 32 are provided at positions that do not overlap with the holding portion 31 in the YZ plane at intervals.
  • a total of 16 communication portions 32 are provided, four each in the Y direction and the Z direction at regular intervals.
  • the side wall 35 extends from each edge of the rectangular engagement wall 30 to the +X side opposite to the culture space 2 in the X direction. That is, the side wall 35 has a plate shape parallel to the XZ plane or parallel to the XY plane.
  • Each side wall 35 has a plurality of second communication portions 36 .
  • the second communicating portion 36 penetrates the side wall 35 in the thickness direction.
  • the second communication part 36 allows the second culture space 37 and the outside of the holder 20 to communicate with each other.
  • Four second communicating portions 36 are provided on each side wall 35 at regular intervals, for a total of 16 second communicating portions 36 .
  • the second culture space 37 is formed inside the anchor section 22 .
  • the second culture space 37 is a cubic space surrounded by the engaging walls 30 , the side walls 35 and the holder body 21 .
  • the second culture space 37 communicates with the culture space 2 via the communicating portion 32 .
  • the second culture space 37 communicates with the outside of the holder 20 in the Y and Z directions via the second communicating portion 36 .
  • the holder main body 21 is positioned on the +X side, which is the outside of the anchor portion 22 in the X direction.
  • the holder main body 21 faces the engagement wall 30 with the second culture space 37 interposed therebetween in the X direction.
  • the holder main body 21 has an insertion hole 24 , an adhesive portion 25 , a culture medium storage portion 26 and a connection portion 27 .
  • the insertion hole 24 extends in the X direction.
  • the insertion hole 24 opens to the second culture space 37 at the ⁇ X side end and opens to the medium reservoir 26 at the +X side end.
  • the insertion hole 24 is arranged coaxially with the holding portion 31 . Accordingly, there are nine insertion holes 24 in total, three each in the Y direction and the Z direction at regular intervals.
  • a hollow fiber F is inserted through the insertion hole 24 . By arranging the insertion hole 24 and the holding portion 31 coaxially, the hollow fiber F can be inserted across the holding portion 31 and the insertion hole 24 .
  • the bonding portion 25 extends in a direction perpendicular to the X direction (only the bonding portion 25 extending in the Z direction is shown in FIG. 1). The position of the adhesion portion 25 in the X direction is between the second culture space 37 and the medium reservoir portion 26 .
  • the adhesive portion 25 has one end connected to the insertion hole 24 and the other end opened to the outside of the holder main body 21 .
  • the bonding portion 25 is provided for each of the plurality of insertion holes 24 .
  • the bonding portion 25 is filled with an adhesive 25A. By filling the bonding portion 25 with the adhesive 25A, the gap between the hollow fiber F inserted in the insertion hole 24 and the insertion hole 24 can be closed to prevent the culture medium from leaking out of the gap.
  • the medium reservoir 26 is an area in which the medium is reserved.
  • the culture medium reservoir 26 is arranged on the +X side of the insertion hole 24 .
  • the culture medium storage part 26 is formed in a range spanning the plurality of insertion holes 24 . Therefore, all of the plurality of insertion holes 24 open to the culture medium reservoir 26 .
  • the culture medium reservoir 26 in the holder 20 located on the +X side stores the culture medium supplied from the culture medium supply section 40 and before perfusing the hollow portions Fa of the hollow fibers F described later.
  • the medium reservoir 26 in the holder 20 located on the -X side stores the medium after the hollow portion Fa of the hollow fiber F has been perfused.
  • the connecting portion 27 protrudes from the holder main body 21 to the +X side.
  • a pipe 28 is connected to the connecting portion 27 .
  • a hole portion 29 is provided inside the connection portion 27 .
  • the hole portion 29 extends in the X direction, one end of which is open to the culture medium storage portion 26 and the other end of which is open to the +X side end of the connection portion 27 .
  • the above holder 20 is manufactured using, for example, a 3D printer.
  • the material of the holder 20 is not particularly limited as long as it does not adversely affect the three-dimensional structure, and an appropriate material can be appropriately used according to the selected manufacturing method.
  • the medium supply unit 40 supplies the medium.
  • the medium supply unit 40 is, for example, a perfusion pump.
  • the culture medium supplied from the culture medium supply unit 40 is introduced into the holder 20 located on the +X side through the pipe 28 . That is, the connecting portion 27 of the holder 20 located on the +X side constitutes an introducing portion 27A into which the culture medium for perfusing the hollow portion Fa of the hollow fiber F is introduced via the pipe 28 .
  • the connection portion 27 of the holder 20 positioned on the ⁇ X side constitutes a discharge portion 27B through which the culture medium perfused in the hollow portion Fa of the hollow fiber F is discharged through the pipe 28 .
  • a hollow fiber F is a fiber having a hollow portion Fa.
  • the hollow fiber F is not particularly limited as long as it has a semipermeable membrane structure.
  • the inner diameter of the hollow portion Fa is preferably about 20-1000 ⁇ m, more preferably about 50-500 ⁇ m, even more preferably about 50-150 ⁇ m.
  • the thickness of the hollow fiber F is preferably about 10 to 200 ⁇ m.
  • the interval between the hollow fibers F defined by the arrangement of the holding portion 31 and the insertion hole 24 is a minute interval of about several hundred ⁇ m, preferably 20 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m, and even more preferably 50 to 150 ⁇ m. Regular arrangement is preferred.
  • the material of the hollow fiber F is not particularly limited as long as it does not have a detrimental effect on cells, scaffold materials (hydrogel, etc.), and the medium. can be mentioned.
  • the average pore size of the porous hollow fiber membrane is desirably large in consideration of the material exchange property, and is desirably about 0.1 to 5 ⁇ m.
  • the pore size is not limited to this range, and can be appropriately set according to the purpose of use, such as a pore size of less than 0.1 ⁇ m. It is also desirable that the minimum average molecular weight (molecular weight cutoff) of standard molecules that do not effectively diffuse through the membrane is greater than 70 kDa.
  • the outer peripheral surface Fb of the hollow fiber F and the anchor portion 22 are preferably subjected to hydrophilic treatment.
  • hydrophilic treatment By subjecting the outer peripheral surface Fb of the hollow fibers F and the anchor portions 22 to a hydrophilic treatment, when the hollow fibers F are arranged in an array, the inside of the array (between the plurality of hollow fibers F) is filled with a viscous scaffolding material. becomes possible.
  • hydrophilization treatment for the outer peripheral surface Fb of the hollow fiber F and the anchor portion 22 for example, O 2 plasma treatment or Aqua Plasma (registered trademark) treatment can be employed.
  • Aquaplasma (registered trademark) treatment is plasma treatment using water vapor.
  • surface hydrophilization and sterilization of the artificial three-dimensional tissue manufacturing apparatus 1 can be performed.
  • the outer peripheral surface Fb of the hollow fiber F is subjected to a plasma treatment using water vapor. That is, the outer peripheral surface Fb of the hollow fiber F is a plasma-sterilized surface.
  • the outer peripheral surface Fb can be sterilized without causing slack in the hollow fibers F arranged in an array.
  • cells contained in the scaffolding material can be cultured with high viability around the hollow fibers F whose outer peripheral surface Fb is sterilized, and a large oriented tissue can be easily produced. can.
  • a pre-cured scaffold material e.g., hydrogel, etc.
  • the hollow fibers F having the outer peripheral surface Fb previously subjected to the above-described hydrophilic treatment are attached to the holding portions 31 and the insertion holes 24 of the pair of holders 20 as shown in FIG. Insert each.
  • the hollow fibers F pass from the holding portion 31 through the second culture space 37 and communicate with the insertion holes 24 .
  • the end of the hollow fiber F may be located at the end facing the culture medium reservoir 26 in the insertion hole 24 or may protrude into the culture medium reservoir 26 .
  • the number of hollow fibers F to be inserted through the holding portion 31 and the insertion hole 24 can be arbitrarily selected from one to nine.
  • the fitting protrusion 23 is fitted into the groove 12 of the support member 10 from above, and is supported while being positioned at a predetermined distance in the X direction.
  • the hollow fibers F inserted through the holding portion 31 and the insertion hole 24 are fixed to the insertion hole 24 by filling the bonding portion 25 with an adhesive 25A.
  • the culture medium stored in the culture medium reservoir 26 can be prevented from flowing out through the gap between the insertion hole 24 and the hollow fibers F.
  • FIG. 3 is a cross-sectional view showing the steps involved in forming muscle tissue.
  • a mixture of cells C suspended in a scaffolding material for example, hydrogel
  • a scaffolding material for example, hydrogel
  • a scaffold material for example, hydrogel
  • Myoblasts are used as cells C in this embodiment.
  • an extracellular matrix component is used as a scaffold material (eg, hydrogel, etc.) G.
  • a mixture of Matrigel ((registered trademark)) and Collagen is used as the extracellular matrix component.
  • the mixing ratio of Matrigel (registered trademark) and collagen is preferably 20 to 80% Matrigel (registered trademark) and 80 to 20% collagen, and 40 to 60% Matrigel (registered trademark) and 60% collagen. More preferably ⁇ 40%.
  • the pre-hardening scaffolding material eg, hydrogel, etc.
  • the scaffold material for example, hydrogel
  • the outer peripheral surface Fb of the hollow fibers F is subjected to a hydrophilic treatment, it is can also be filled and cured.
  • the culture conditions As an example, it is cultured at a temperature of 37°C for 30 minutes. As a result, a culture B in which a scaffolding material (for example, hydrogel, etc.) G containing cells C is cultured is formed.
  • the culture body B consists of a body part B1 cultured in the culture space 2, an outside culture body B2 located outside the body part B1 in the X direction and cultured in the second culture space 37, the body part B1 and the outside culture. It includes a bound culture B3 that is bound to the body B2 and cultured in the communicating section 32 .
  • the outer culture B2 is held in the second culture space 37 as a holding space.
  • the main body B1 which is cultured in the culture space 2 and contacts the engagement wall 30 from the inside in the X direction, shrinks inward in the X direction without restraint as the scaffolding material (for example, hydrogel, etc.) G shrinks.
  • the scaffolding material for example, hydrogel, etc.
  • the engaging wall 30 engages with the outer culture body B2 from the inside in the X direction and acts as an anchor to suppress the contraction of the outer culture body B2 inward in the X direction.
  • FIG. 4 is a cross-sectional view showing the steps involved in culturing muscle tissue.
  • the culture body B is formed by hardening the scaffolding material (for example, hydrogel) containing the cells C, as shown in FIG. be placed on.
  • the scaffolding material for example, hydrogel
  • FIG. 5 is a cross-sectional view of the body portion B1 in the culture body B.
  • muscle tissue T is formed around hollow fibers F by culturing a scaffolding material (for example, hydrogel, etc.) containing cells C.
  • a scaffolding material for example, hydrogel, etc.
  • Nutrients, oxygen, and the like permeate the porous hollow fiber membrane from the culture medium that perfuses the hollow portion Fa and diffuse into the muscle tissue T, which is the culture body B.
  • metabolic waste products permeate the porous hollow fiber membrane and diffuse into the culture medium.
  • the medium in which the waste products have diffused by perfusing the hollow portion Fa is once stored in the medium storage section 26 in the holder 20 located on the -X side, and then discharged to the culture tank 100 via the discharge section 27B and the pipe 28. be done.
  • the scaffolding material (eg, hydrogel, etc.) G containing cells C before hardening is supplied to the outer periphery of the hollow fiber F, and then the scaffolding material (eg, hydrogel, etc.) G is hardened to form a culture body B.
  • the muscle tissue T can be cultured by forming the muscle tissue T as , and perfusing the medium in the hollow portion Fa. As the culture of the muscle tissue T progresses, the contraction of the body portion B1 increases. However, the engagement wall 30 engages the outer culture body B2 from the inside in the X direction as an anchor, so that the outer culture body B2 contracts. suppressed.
  • FIG. 6 is a cross-sectional view of the main body B1 of the culture body B along the channel.
  • the muscle tissue T is easily oriented along the X direction as shown in FIG.
  • FIG. 7 shows a fluorescence image of cell nuclei in a cross section perpendicular to the X direction of the hollow fiber F in the main body B1 of the muscle tissue T cultured for 4 days in a state where only one hollow fiber F is perfused with the above medium.
  • FIG. 4 is a diagram showing; As shown in FIG. 7, cell nuclei are present at high density in the region near the outer peripheral surface Fb of the hollow fiber F, but cell nuclei are present at low density in the region away from the outer peripheral surface Fb of the hollow fiber F. rice field. From this, it can be concluded that nutrients, oxygen, and the like diffuse from the medium that perfuses the hollow portion Fa into the muscle tissue T formed around the hollow fibers F, and the cells are cultured in a live state. I can judge.
  • FIG. 8 is a diagram showing the relationship between the distance range from the center of the hollow fiber F and the cell nucleus density in the fluorescence image of the cell nucleus in FIG.
  • the distance range from the center of the hollow fiber F includes a ring-shaped range with a radius of 250-300 ⁇ m from the center of the hollow fiber F, a ring-shaped range with a radius of 300-350 ⁇ m from the center of the hollow fiber F, and a ring-shaped range with a radius of 300-350 ⁇ m from the center of the hollow fiber F.
  • a ring-shaped range with a radius of 350-400 ⁇ m, a ring-shaped range with a radius of 400-450 ⁇ m from the center of the hollow fiber F, and a ring-shaped range with a radius of 450-500 ⁇ m from the center of the hollow fiber F are defined.
  • the number of cell nuclei with respect to the area in each ring-shaped range is shown as the cell nucleus density.
  • the distance from the center of the hollow fiber F when the perfusion rate of the medium for perfusing the hollow portion Fa was 0 ⁇ L/min, 15 ⁇ L/min, 100 ⁇ L/min, and 500 ⁇ L/min.
  • the relationship between range and cell nucleus density is shown. As shown in FIG. 8, no significant correlation was observed between the distance range from the center of the hollow fiber F and the cell nucleus density. It was confirmed that the cell nucleus density became higher than the perfusion rate.
  • FIG. 9 shows the body portion B1 of muscle tissue T cultured for 10 days in a state where only one hollow fiber F was perfused with the medium at a perfusion rate of 15 ⁇ L/min.
  • FIG. 4 is a diagram showing a fluorescent image of muscle tissue in a cross section;
  • FIG. 10 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. The direction (Direction (°)) in FIG. 10 is 0° in the Y direction and 90° in the X direction.
  • FIG. 11 shows the body portion B1 of the muscle tissue T cultured for 10 days in a state where only one hollow fiber F was perfused with the above medium at a perfusion rate of 500 ⁇ L/min.
  • FIG. 4 is a diagram showing a fluorescent image of muscle tissue in a cross section; 12 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. 11.
  • FIG. The direction (Direction (°)) in FIG. 12 is 0° in the Y direction and 90° in the X direction.
  • muscle tissue T could be formed when the medium was perfused at a perfusion rate of 15 ⁇ L/min.
  • a muscle tissue T with a greater thickness could be formed than when the medium was perfused at a perfusion rate of 15 ⁇ L/min.
  • the scaffold material eg, hydrogel, etc.
  • muscle tissue T can be formed when the medium perfusion rate is 15 ⁇ L/min or higher. In this case, even in the range where the medium perfusion rate exceeds 500 ⁇ L/min, not only can the muscle tissue T be formed, but also the muscle tissue T can be formed with a larger film thickness, a higher cell nucleus density, and a greater degree of orientation in the X direction. is assumed.
  • FIG. 13 shows the fluorescence of the muscle tissue T in the cross section perpendicular to the X direction of the hollow fiber F in the main body B1 of the muscle tissue T cultured for 10 days in a state where only one hollow fiber F is perfused with the above medium.
  • FIG. 4 is a diagram showing an image; As shown in FIG. 13, since muscle tissue is differentiated and formed around the hollow fibers F, the muscle tissue T formed around the hollow fibers F is perfused with the hollow portion Fa. It can be determined that nutrients, oxygen, and the like diffuse from the cells, and the cells are cultured in a live state.
  • FIG. 14 is a photograph of the muscle tissue T in the cross section perpendicular to the X direction of the hollow fibers F in the main body B1 of the muscle tissue T cultured for 4 days in the state of perfusion with the medium using the nine hollow fibers F. It is a diagram. As shown in FIG. 14, the muscle tissue T was able to be formed in a size surrounding the nine hollow fibers F. The center-to-center distance of the hollow fibers F was 900 ⁇ m before culturing the muscle tissue T, but the center-to-center distance of the hollow fibers F in the muscle tissue T after culturing was approximately 600 ⁇ m due to contraction accompanying the culture. In addition, the muscle tissue T after culture had a minimum width of approximately 2300 ⁇ m (2.3 mm).
  • the muscle tissue T cultured by the artificial three-dimensional tissue manufacturing method using the artificial three-dimensional tissue manufacturing apparatus 1 of the present embodiment has an orientation and can easily produce a larger tissue than the conventional artificial three-dimensional tissue. I was able to
  • FIG. 15 is a diagram showing a fluorescence image of the muscle tissue in FIG. 14.
  • FIG. 15 muscle tissue was formed around eight hollow fibers F out of the nine hollow fibers F, indicating that the eight hollow fibers F were cultured by perfusion. I can judge.
  • FIG. 16 is a diagram showing a fluorescence image in which a part of the muscle tissue shown in FIG. 15 is enlarged.
  • cell nuclei are present at high density in the region near the outer peripheral surface Fb of the hollow fiber F, but cell nuclei are present at low density in the region away from the outer peripheral surface Fb of the hollow fiber F. . From this fact, nutrients, oxygen, etc. diffuse from the medium perfusing the hollow portion Fa into the muscle tissue T formed around the eight hollow fibers F out of the nine hollow fibers F, and the cells It can be judged that the culture is performed in a living state.
  • FIG. 17 is a diagram showing a fluorescent image of cell nuclei around the hollow fibers F shown in FIG.
  • FIG. 17 similar to the case of using one hollow fiber F, in the region near the outer peripheral surface Fb of the hollow fiber F, cell nuclei exist at a high density, but the outer peripheral surface Fb of the hollow fiber F Cell nuclei were present at a low density in regions away from . From this, it can be concluded that nutrients, oxygen, and the like diffuse from the medium that perfuses the hollow portion Fa into the muscle tissue T formed around the hollow fibers F, and the cells are cultured in a live state. I can judge.
  • FIG. 18 is an external perspective view of an elongated muscle tissue.
  • the muscle tissue shown in FIG. 18 is formed by culturing using four hollow fibers F arranged in two rows in the Y and Z directions. Whereas the muscle tissue described above was approximately 5 mm in length of body portion B1, the muscle tissue shown in FIG. 18 is approximately 4 cm in length of body portion B1.
  • the muscle tissue block TB has a cross-sectional side of 2-2.5 mm. Therefore, the muscle tissue block TB can produce a large tissue on the order of centimeters with a width of 8-10 mm and a height of 4-5 mm. Also, by removing the hollow fibers F from the muscle tissue, it becomes possible to construct a large-sized artificial three-dimensional tissue suitable for meat.
  • a hardened scaffold material for example, hydrogel, etc.
  • Hollow fibers F are passed through G, and the medium is perfused into the hollow portions Fa of the hollow fibers F for culturing. It becomes possible to manufacture to
  • the gap between the hollow fiber F and the insertion hole 24 can be closed to prevent the culture medium from leaking out of the gap.
  • the distance between the pair of holders 20 can be accurately defined. Therefore, in the present embodiment, it is possible to define the length in the X direction of the body portion B1 of the culture body B with high accuracy.
  • the outer peripheral surface Fb of the hollow fibers F and the anchor portion 22 are subjected to a hydrophilic treatment, when the hollow fibers F are arranged in an array, a viscous scaffolding material (for example, hydrogel, etc.) ) can be filled in the array (between a plurality of hollow fibers F), and the muscle tissue T can be easily produced even in an array with narrow gaps between the hollow fibers F.
  • a viscous scaffolding material for example, hydrogel, etc.
  • the artificial three-dimensional tissue structure M can be constructed by removing the pair of holders 20 containing the culture B (muscle tissue T) and the hollow fibers F from the support member 10.
  • the fitting protrusion 23 on one side of the holder 20 is supported by, for example, a fixed portion of the biological model, and the fitting protrusion 23 on the other side of the holder 20 is supported by the movable portion of the biological model. It can be used as an actuator in a biological model by supporting and contracting the culture body B (muscle tissue T) by energizing it.
  • animal-derived cells C having a large contractile force in the muscle tissue T.
  • animal-derived cells C for example, C2C12 cells can be used. The use of C2C12 cells makes it possible to construct actuators without sacrificing animals.
  • the artificial three-dimensional tissue structure N in which the hollow fibers F penetrate the culture body B (muscle tissue T) in the longitudinal direction is formed.
  • the outer peripheral surface Fb of the hollow fiber F is a treated surface sterilized with plasma, the outer peripheral surface Fb is sterilized without causing slack, and the cells contained in the scaffold material survive. It becomes possible to culture efficiently, and it becomes a large-sized tissue with orientation.
  • FIG. 20 to 25 A second embodiment of the present invention will be described with reference to FIGS. 20 to 25.
  • FIG. 20 to 25 the same reference numerals are given to the same configurations as those already described, and redundant descriptions will be omitted.
  • FIG. 20 shows an exploded view of the artificial three-dimensional tissue manufacturing device 101 according to this embodiment.
  • the artificial three-dimensional tissue manufacturing device 101 includes a holder 120 in place of the holder 20 .
  • Each holder 120 has a structure in which the guide 102 is arranged between the anchor portion and the holder body 121 .
  • one holder is provided with an anchor portion 122A, and the other holder is provided with an anchor portion 122B.
  • the anchor portion 122A and the anchor portion 122B are slightly different in shape.
  • FIG. 21 shows the anchor part 122A viewed from the front side facing the culture space.
  • the anchor part 122A has 50 cylindrical holding parts 131A, and is configured so that more hollow fibers can be inserted than in the first embodiment.
  • the holding portions 131A are arranged in a two-dimensional matrix of 5 ⁇ 10, but this is not essential, and by arranging them in another manner such as a honeycomb shape, the per unit cross-sectional area It is also possible to increase the arrangement density of the hollow fibers.
  • the holding portion 131A has a portion with a small inner diameter inside, thereby having a step 202 inside.
  • FIG. 22 shows the anchor part 122B viewed from the front side.
  • the anchor portion 122B also has 50 cylindrical holding portions 131B like the anchor portion 122A.
  • the outer diameter of the holding portion 131B is smaller than the inner diameter of the end opening of the holding portion 131A, and can be inserted into the holding portion 131A. Since the outer diameter of the holding portion 131B is larger than the inner diameter of the step 202 inside the holding portion 131A, it cannot enter deeper than the step 202 .
  • the anchor part 122A and the anchor part 122B are brought close to each other with their front sides facing each other, and the ends of the respective holding parts 131B are inserted into the opposing holding parts 131A. Thereby, the anchor portion 122A and the anchor portion 122B are connected as shown in FIG.
  • the connecting operation when the holding portion 131B enters the holding portion 131A by a certain amount, the end portion of the holding portion 131B abuts against the step 202, so excessive entry is suppressed.
  • a hollow fiber is passed from the rear side of one anchor part through the holes that communicate with the holding parts, and protrudes from the rear side of the other anchor part.
  • the hollow fiber may be inserted from either the anchor portion 122A or the anchor portion 122B.
  • the guides 102 are attached to the anchor portions 122A and 122B while passing the plurality of hollow fibers protruding from the rear side of the anchor portions 122A and 122B through different guides 102 respectively.
  • the attachment method is not particularly limited, and examples include mechanical fitting and adhesion.
  • the guide 102 has an inclined surface 102a, and the width of the space through which the hollow fibers pass gradually narrows as the distance from the anchor portion increases. For this reason, the hollow fibers passing through the guide 102 are bundled into one while gradually narrowing the distance between them and guided to the holder main body 121 .
  • the holder body 121 is fixed to the guide 102, the anchor portion, the guide, and the holder body are integrated to form a pair. becomes the holder 120 of The operation for adjusting the distance between the anchor portions can be performed at any timing after the hollow fibers are passed through the two anchor portions in the connected state. After that, the anchor portions 122A and 122B are inserted into the grooves 10a provided in the support member 10. As shown in FIG. As a result, the holder 120 holding the hollow fibers is attached to the support member 10 to complete the artificial three-dimensional tissue manufacturing apparatus 101, and perfusion and culture can be performed in the same manner as in the first embodiment.
  • the artificial three-dimensional tissue manufacturing apparatus it is possible to produce a larger artificial three-dimensional tissue by increasing the number of hollow fibers. becomes complicated.
  • the hollow fiber passed through one holder may be bent, making it difficult to pass through the other holder, or may be held in a non-corresponding (non-face-to-face) manner.
  • the possibility of having to pass it through a part and need to redo it will increase, and the difficulty of the work will also increase.
  • the anchor portions 122A and 122B are configured to be connectable. Therefore, by separating the anchor portion 122A and the anchor portion 122B after passing the hollow fiber in a connected state, it is possible to significantly suppress the occurrence of the above-described error when passing the hollow fiber. As a result, even if the number of hollow fibers increases, it is possible to prevent the assembly of the artificial three-dimensional structure manufacturing apparatus and the execution of the artificial three-dimensional structure manufacturing method from becoming complicated. With such a configuration, the artificial three-dimensional tissue manufacturing apparatus can be expected to be automatically manufactured by a robot.
  • the number of hollow fibers is not limited to 50 as described above, and it is of course possible to increase the number. Even if the number of anchors increases, the difficulty of assembling the artificial three-dimensional tissue manufacturing device and executing the artificial three-dimensional tissue manufacturing method does not change significantly by passing the hollow fibers while the anchor portions are connected.
  • an engaging wall around the holding portion can be used as a stopper to prevent excessive intrusion during connection.
  • a plurality of hollow fibers are bundled together in the guide 102, but by changing the number and arrangement of slopes provided on the guide, the hollow fibers can be bundled into two or more bundles.
  • the guide may be configured as follows. Such a mode is suitable when the number of hollow fibers increases, for example, 100 or more.
  • the evaluation results of the artificial three-dimensional tissue manufactured using the artificial three-dimensional tissue manufacturing apparatus 101 according to the present embodiment are shown.
  • An artificial three-dimensional tissue was produced using chicken myoblasts using an artificial three-dimensional tissue manufacturing apparatus configured using 50 hollow fibers.
  • Two types of artificial three-dimensional tissues were prepared: a perfused sample cultured for 9 days with perfusion and a non-perfused sample cultured for 9 days without perfusion.
  • the hollow fiber was pulled out and measured, and the weight of the perfused sample was 470 mg.
  • the perfused sample it was confirmed that cell nuclei were present at high density around the hollow fibers F, as in the first embodiment.
  • the tissue was larger than that of the first embodiment, the orientation of the muscle tissue was well aligned in the longitudinal direction of the hollow fiber, and good contraction was observed by energization.
  • the horizontal axis is the elapsed time (seconds), and the vertical axis is the magnitude of the reaction force (g/mm 2 ) that the probe received from the tissue.
  • All perfused samples had a longer time to peak reaction force than non-perfused samples. This indicates that the perfused samples are thicker than the non-perfused samples.
  • the peak values of the reaction force of the perfused samples were all higher than the non-perfused samples. This indicates that the perfused samples have higher elasticity than the non-perfused samples, suggesting a denser tissue.
  • Evaluation 1 indicates that, for example, when an artificial three-dimensional tissue is used for meat, the elasticity of the tissue can be moderately improved by culturing the tissue while perfusion is performed, and the texture can be improved.
  • hollow fibers that branch midway may be used.
  • one holder on one side of the hollow fiber and two or more holders on the other side. can be identified as a pair of holders, and the direction in which the pair of holders are separated can be identified as the first direction.
  • the present invention can be suitably applied to an artificial three-dimensional tissue and its manufacture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention comprises: preparing hollow fibers having a hollow part; preparing a pair of holders that are disposed apart in a first direction with a culturing space therebetween, said pair of holders each comprising an engaging wall which faces the culturing space, and a second culturing space that is positioned oppositely from the culturing space in the first direction with respect to the engaging wall, the engaging wall having a plurality of holding sections which pass through the engaging wall in the first direction and which have intervals therebetween in an a plane orthogonal to the first direction, and a communication section which passes through the engaging wall in the first direction and which puts the culturing space and the second culturing space in communication, the holding sections holding an end part side of the hollow fibers in the first direction; holding the hollow fibers in each of the holding sections of the pair of holders; disposing the pair of holders, which hold the hollow fibers, apart from each other in the first direction with the culturing space therebetween; supplying to the culturing space and the second culturing spaces a non-cured scaffolding material that contains cells and curing the scaffolding material; and culturing the cells while irrigating the hollow parts with a culture medium.

Description

人工三次元組織製造方法、人工三次元組織製造装置、および人工三次元組織体Artificial three-dimensional tissue manufacturing method, artificial three-dimensional tissue manufacturing device, and artificial three-dimensional tissue
 本発明は、人工三次元組織製造方法、人工三次元組織製造装置、および人工三次元組織体に関する。
 本願は、2021年12月23日に日本に出願された特願2021-209959号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to an artificial three-dimensional tissue manufacturing method, an artificial three-dimensional tissue manufacturing apparatus, and an artificial three-dimensional tissue.
This application claims priority based on Japanese Patent Application No. 2021-209959 filed in Japan on December 23, 2021, the content of which is incorporated herein.
 培養により作製する組織は、数百μm程度の厚さを超えると栄養や酸素の浸透が困難である。より大きい組織を作製するために、複数の数百μm程度の薄い組織を成熟させてから組み立てる方法や、大型組織に灌流可能な管を形成して灌流培養を行う方法などが提案されている。しかし、複数の薄い組織を組み立てる方法の工程が複雑であり、組み立て後の組織の強度が弱いという問題点がある。一方で、大型組織に作られた管は潰されやすい、灌流ポンプへの配管が漏れやすい等の問題点もある。 It is difficult for nutrients and oxygen to permeate tissue created by culture when it exceeds a thickness of several hundred μm. In order to prepare a larger tissue, a method of maturing a plurality of thin tissues of about several hundred μm and then assembling them, a method of forming perfusion-capable tubes in a large tissue and performing perfusion culture, and the like have been proposed. However, there is a problem that the method of assembling a plurality of thin structures is complicated and the strength of the structure after assembly is weak. On the other hand, there are problems such as that the tube made in a large tissue is easily crushed, and the piping to the perfusion pump is easily leaked.
 特許文献1には、複数のファイバを配置した流路空間部の供給口から培養液および細胞塊を投入し、流路空間部の排出口近傍を成長起点として各ファイバの外表面に集積させながら培養することが開示されている。特許文献1における各ファイバは、中空または長手方向に沿って側溝が形成されるとともに、外表面から中空内部または側溝内部に連通する微細孔を有している。特許文献1の各ファイバは、微細孔を通じて細胞塊からの代謝老廃物を除去するとともに、微細孔を通じて細胞塊に対して成長因子および栄養因子の少なくとも一方を供給する。 In Patent Document 1, a culture medium and cell masses are introduced from a supply port of a channel space portion in which a plurality of fibers are arranged, and are accumulated on the outer surface of each fiber with the vicinity of the discharge port of the channel space portion serving as a growth starting point. Culturing is disclosed. Each fiber in Patent Document 1 is hollow or has a groove formed along its longitudinal direction, and has micropores communicating from the outer surface to the inside of the hollow or the inside of the groove. Each fiber of Patent Document 1 removes metabolic waste products from the cell mass through the micropores and supplies at least one of growth factors and nutrient factors to the cell mass through the micropores.
日本国特許第6715330号公報Japanese Patent No. 6715330
 しかしながら、特許文献1に記載された技術では、細胞塊が各ファイバの外表面に集積するため、細胞塊を培養した後の組織には配向が生じづらい。そのため、培養後の組織は生体組織に近いものとは言えない。 However, with the technique described in Patent Document 1, since cell clusters accumulate on the outer surface of each fiber, orientation is difficult to occur in the tissue after culturing the cell clusters. Therefore, it cannot be said that the cultured tissue is close to living tissue.
 本発明は、以上のような点を考慮してなされたもので、配向を有する大型組織を容易に作製できる人工三次元組織製造方法および人工三次元組織製造装置を提供することを目的とする。 The present invention has been made in consideration of the above points, and aims to provide an artificial three-dimensional tissue manufacturing method and an artificial three-dimensional tissue manufacturing apparatus capable of easily manufacturing an oriented large-sized tissue.
 また、本発明の別の目的は、配向を有する大型の人工三次元組織体を提供することである。 Another object of the present invention is to provide an oriented large-sized artificial three-dimensional tissue.
 本発明の第1の態様に従えば、中空部を有する中空糸を準備することと、培養空間を挟んで第1方向に離間して配置される一対のホルダであって、前記培養空間に臨む係合壁と、前記係合壁に対して前記第1方向における前記培養空間と逆側に位置する第2培養空間とをそれぞれ有し、前記係合壁は、当該係合壁を前記第1方向に貫通し前記第1方向と直交する面内に互いに間隔をあけて複数設けられた保持部と、前記係合壁を前記第1方向に貫通し前記培養空間と前記第2培養空間とを連通させる連通部とを有し、前記保持部は、前記中空糸における前記第1方向の端部側を保持する一対の前記ホルダを準備することと、一対の前記ホルダの一方における複数の前記保持部のそれぞれに前記中空糸の一端側を保持させ、一対の前記ホルダの他方における複数の前記保持部のそれぞれに前記中空糸の他端側を保持させることと、前記中空糸を保持させた前記一対のホルダを、前記培養空間を挟んで前記第1方向に離間して配置することと、前記培養空間および前記第2培養空間に、細胞を含有する硬化前の足場材料を供給して硬化させることと、前記中空部に培地を灌流させながら前記細胞を培養することと、を含む、人工三次元組織製造方法が提供される。 According to the first aspect of the present invention, a hollow fiber having a hollow portion is prepared; and a second culture space located on the opposite side of the culture space in the first direction with respect to the engagement wall, wherein the engagement wall connects the engagement wall to the first culture space. a plurality of holding portions provided in a plane orthogonal to the first direction and penetrating in the direction perpendicular to the first direction; a communicating portion for communicating, wherein the holding portion prepares a pair of the holders for holding the end portions of the hollow fibers in the first direction; holding one end side of the hollow fiber in each of the holders, holding the other end side of the hollow fiber in each of the plurality of holding sections in the other of the pair of holders; Disposing a pair of holders in the first direction with the culture space interposed therebetween, and supplying a pre-cured scaffold material containing cells to the culture space and the second culture space and curing the scaffold material. and culturing the cells while perfusing the hollow portion with a medium.
 本発明の第2の態様に従えば、中空部を有する中空糸と、細胞を含有する足場材料が配される培養空間を挟んで第1方向に離間して配置された一対のホルダと、を有し、前記ホルダは、前記培養空間に臨む係合壁と、前記係合壁に対して前記第1方向における前記係合壁の前記培養空間と逆側に位置する第2培養空間とをそれぞれ有し、前記係合壁は、当該係合壁を前記第1方向に貫通し前記第1方向と直交する面内に互いに間隔をあけて複数設けられた保持部と、前記係合壁を前記第1方向に貫通し前記培養空間と前記第2培養空間とを連通させる連通部とを有し、一対の前記ホルダの一方は、複数の前記保持部のそれぞれが前記中空糸の一端側を保持し、一対の前記ホルダの他方は、複数の前記保持部のそれぞれが前記中空糸の他端側を保持する、人工三次元組織製造装置が提供される。 According to the second aspect of the present invention, a hollow fiber having a hollow portion and a pair of holders spaced apart in the first direction across a culture space in which a cell-containing scaffold material is disposed are provided. The holder has an engagement wall facing the culture space, and a second culture space located on the opposite side of the engagement wall to the culture space in the first direction with respect to the engagement wall. and the engaging wall includes a plurality of holding portions provided at intervals in a plane perpendicular to the first direction and penetrating the engaging wall in the first direction, and the engaging wall. a communicating portion penetrating in a first direction and communicating between the culture space and the second culture space; and one of the pair of holders has a plurality of holding portions each holding one end side of the hollow fiber. and the other of the pair of holders is provided with an artificial three-dimensional tissue manufacturing apparatus in which each of the plurality of holding parts holds the other end side of the hollow fiber.
 本発明の第3の態様に従えば、細胞を含有する足場材料の培養体と、中空部を有し、前記培養体が延びる方向に前記培養体を貫通して設けられた中空糸と、を有し、前記中空部は、灌流流路であり、前記中空糸の外周面は、プラズマで滅菌処理された処理面である、人工三次元組織体が提供される。 According to the third aspect of the present invention, a cell-containing scaffold material culture body, and hollow fibers having a hollow portion and provided through the culture body in a direction in which the culture body extends, are provided. An artificial three-dimensional tissue is provided, wherein the hollow portion is a perfusion channel, and the outer peripheral surface of the hollow fiber is a treated surface sterilized with plasma.
 本発明によれば、配向を有する大型組織を容易に作製できる。 According to the present invention, an oriented large-sized tissue can be easily produced.
本発明の第一実施形態に係る人工三次元組織製造装置の断面図である。1 is a cross-sectional view of an artificial three-dimensional tissue manufacturing device according to a first embodiment of the present invention; FIG. アンカー部を培養空間側から見た外観斜視図である。FIG. 4 is an external perspective view of the anchor section viewed from the culture space side. 筋組織の形成に係る工程を示す断面図である。FIG. 4 is a cross-sectional view showing a process related to formation of muscle tissue; 筋組織の培養に係る工程を示す断面図である。FIG. 4 is a cross-sectional view showing steps related to culturing muscle tissue. 培養体における本体部の断面図である。FIG. 4 is a cross-sectional view of the main body of the culture body; 培養体における本体部の流路に沿った断面図である。FIG. 4 is a cross-sectional view along the channel of the main body of the culture body. 本体部において一本の中空糸のX方向と直交する断面における細胞核の蛍光画像を示す図である。FIG. 4 is a diagram showing a fluorescence image of a cell nucleus in a cross section perpendicular to the X direction of one hollow fiber in the main body. 図7における細胞核の蛍光画像において、中空糸の中心からの距離範囲と細胞核密度との関係を示す図である。FIG. 8 is a diagram showing the relationship between the distance range from the center of the hollow fiber and the cell nucleus density in the fluorescence image of the cell nucleus in FIG. 7; 中空糸におけるX方向に沿った断面における筋組織の蛍光画像を示す図である。FIG. 10 is a diagram showing a fluorescence image of muscle tissue in a cross section along the X direction in a hollow fiber; 図9に示した蛍光画像において、筋組織の方向と量との関係を示す図である。10 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. 9. FIG. 中空糸におけるX方向に沿った断面における筋組織の蛍光画像を示す図である。FIG. 10 is a diagram showing a fluorescence image of muscle tissue in a cross section along the X direction in a hollow fiber; 図11に示した蛍光画像において、筋組織の方向と量との関係を示す図である。12 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. 11. FIG. 中空糸のX方向と直交する断面における筋組織Tの蛍光画像を示す図である。FIG. 4 is a diagram showing a fluorescence image of muscle tissue T in a cross section perpendicular to the X direction of the hollow fiber. 中空糸のX方向と直交する断面における、9本の中空糸Fを用いて培養した筋組織Tの写真図である。FIG. 4 is a photographic view of a muscle tissue T cultured using nine hollow fibers F in a cross section perpendicular to the X direction of the hollow fibers. 図14に示した筋組織の蛍光画像を示す図である。FIG. 15 is a diagram showing a fluorescence image of the muscle tissue shown in FIG. 14; 図15に示した筋組織の一部を拡大した蛍光画像を示す図である。FIG. 16 is a diagram showing an enlarged fluorescence image of a portion of the muscle tissue shown in FIG. 15; 図16に示した中空糸の周囲における細胞核の蛍光画像を示す図である。17 is a diagram showing a fluorescence image of cell nuclei around the hollow fibers shown in FIG. 16. FIG. 長尺に形成された筋組織の外観斜視図である。FIG. 3 is an external perspective view of muscle tissue formed in an elongated shape. 筋組織が4列×2段で積み上げられた筋組織ブロックの斜視図である。FIG. 3 is a perspective view of a muscle tissue block in which muscle tissue is stacked in 4 rows×2 layers. 本発明の第二実施形態に係る人工三次元組織製造装置の、中空糸を通す前の状態における分解斜視図である。FIG. 10 is an exploded perspective view of the artificial three-dimensional tissue manufacturing device according to the second embodiment of the present invention, before passing the hollow fibers. 同人工三次元組織製造装置に係るアンカー部の一方を示す斜視図である。It is a perspective view which shows one side of the anchor part which concerns on the artificial three-dimensional tissue manufacturing apparatus. 同人工三次元組織製造装置に係るアンカー部の他方を示す斜視図である。It is a perspective view which shows the other of the anchor part which concerns on the artificial three-dimensional tissue manufacturing apparatus. アンカー部が連結された状態を示す図である。It is a figure which shows the state by which the anchor part was connected. 第二実施形態に係る人工三次元組織のテクスチャー分析の結果を示すグラフである。7 is a graph showing the results of texture analysis of the artificial three-dimensional tissue according to the second embodiment; 第二実施形態に係る人工三次元組織のアミノ酸分析の結果を示す表である。4 is a table showing amino acid analysis results of the artificial three-dimensional tissue according to the second embodiment.
 以下、本発明の第一実施形態に係る人工三次元組織製造方法、人工三次元組織製造装置および人工三次元組織構造体の実施の形態を、図1から図19を参照して説明する。
 なお、以下に示す各実施形態は、いずれも本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。
Embodiments of an artificial three-dimensional tissue manufacturing method, an artificial three-dimensional tissue manufacturing apparatus, and an artificial three-dimensional tissue structure according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 19. FIG.
It should be noted that each of the embodiments shown below is one aspect of the present invention, does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention.
 図1は、人工三次元組織製造装置1の断面図である。
 図1に示すように、人工三次元組織製造装置1は、支持部材10と一対のホルダ20と中空糸Fと培地供給部40とを有している。
FIG. 1 is a cross-sectional view of an artificial three-dimensional tissue manufacturing apparatus 1. FIG.
As shown in FIG. 1 , the artificial three-dimensional tissue manufacturing apparatus 1 has a support member 10 , a pair of holders 20 , hollow fibers F, and a culture medium supply section 40 .
 支持部材10は、一対のホルダ20を第1方向(図1における左右方向)に所定距離隔てて支持する。支持部材10は、直方体状の平板である。支持部材10は、上面11に溝部12を有する。溝部12は、第1方向に離間して配置されている。溝部12は、第1方向と直交する第2方向(図1における紙面と直交する方向)に延びる。支持部材10は、例えば、PDMS(ポリジメチルシロキサン)等の軟弾性材で形成される。 The support member 10 supports the pair of holders 20 with a predetermined distance in the first direction (horizontal direction in FIG. 1). The support member 10 is a rectangular parallelepiped flat plate. The support member 10 has a groove portion 12 on its upper surface 11 . The grooves 12 are spaced apart in the first direction. The groove portion 12 extends in a second direction orthogonal to the first direction (a direction orthogonal to the plane of the paper in FIG. 1). The support member 10 is made of, for example, a soft elastic material such as PDMS (polydimethylsiloxane).
 以下においては、水平方向であって、一対のホルダ20が互いに離間して配置される方向をX方向とし、水平方向であって、X方向と直交する方向をY方向とし、上下方向であって、X方向とY方向とに直交する方向をZ方向として説明する。 Hereinafter, the horizontal direction in which the pair of holders 20 are arranged apart from each other is defined as the X direction, the horizontal direction orthogonal to the X direction is defined as the Y direction, and the vertical direction is defined as the vertical direction. , the direction orthogonal to the X direction and the Y direction is defined as the Z direction.
 一対のホルダ20は、Z方向と平行な中心線に対して線対称であるため、以下では、一対のホルダ20について同一符号を付し、+X側に位置するホルダ20について説明し、-X側に位置するホルダ20の説明は省略する。 Since the pair of holders 20 are symmetrical about the center line parallel to the Z direction, the same reference numerals are given to the pair of holders 20 below, and the holder 20 located on the +X side will be described, and the -X side will be described. The description of the holder 20 positioned at is omitted.
 X方向における一対のホルダ20の間は、培養空間2である。すなわち、一対のホルダ20は、培養空間2を挟んでX方向に離間して配置されている。ホルダ20は、ホルダ本体(対向部)21とアンカー部22と嵌合突部23とを有している、嵌合突部23は、ホルダ本体21から下側に突出している。嵌合突部23は、支持部材10における溝部12に上側から嵌合する。嵌合突部23が溝部12に嵌合することで、ホルダ20は支持部材10に位置決めされた状態で支持される。 A culture space 2 is between the pair of holders 20 in the X direction. That is, the pair of holders 20 are spaced apart in the X direction with the culture space 2 interposed therebetween. The holder 20 has a holder body (facing portion) 21 , an anchor portion 22 and a fitting projection 23 . The fitting projection 23 projects downward from the holder body 21 . The fitting projection 23 fits into the groove 12 of the support member 10 from above. By fitting the fitting protrusion 23 into the groove 12 , the holder 20 is supported while being positioned by the support member 10 .
 図2は、アンカー部22を培養空間2側から見た外観斜視図である。
 図2に示すように、アンカー部22は、立方体形状を有する。アンカー部22は、係合壁30と側壁35と第2培養空間37とを有している。
FIG. 2 is an external perspective view of the anchor part 22 viewed from the culture space 2 side.
As shown in FIG. 2, the anchor portion 22 has a cubic shape. The anchor part 22 has an engaging wall 30 , a side wall 35 and a second culture space 37 .
 係合壁30は、培養空間2に臨んで配置されている。係合壁30は、YZ平面と平行な矩形板状である。係合壁30は、保持部31と連通部32とを有する。保持部31は、断面円形状であり、係合壁30をX方向に貫通する。保持部31は、YZ平面内に間隔をあけて複数設けられている。本実施形態のホルダ20において保持部31は、YZ平面における係合壁30の中央の位置を中心として、Y方向およびZ方向にそれぞれ一定間隔をあけて3個ずつ、合計9個設けられている。複数の保持部31には、それぞれ中空糸Fが挿通可能である。本実施形態では、複数の保持部31のそれぞれに中空糸Fにおける+X側の端部側が挿通されている。複数の保持部31は、それぞれ挿通された中空糸Fの外周面Fbを保持する。 The engagement wall 30 is arranged facing the culture space 2 . The engagement wall 30 has a rectangular plate shape parallel to the YZ plane. The engagement wall 30 has a holding portion 31 and a communicating portion 32 . The holding portion 31 has a circular cross section and penetrates the engaging wall 30 in the X direction. A plurality of holding portions 31 are provided at intervals in the YZ plane. In the holder 20 of the present embodiment, the holding portions 31 are provided in total of nine pieces, three each in the Y direction and the Z direction, centering on the central position of the engaging wall 30 in the YZ plane, with regular intervals therebetween. . A hollow fiber F can be inserted through each of the plurality of holding portions 31 . In the present embodiment, the ends of the hollow fibers F on the +X side are inserted through each of the plurality of holding portions 31 . The plurality of holding portions 31 hold the outer peripheral surfaces Fb of the hollow fibers F that are inserted therethrough.
 連通部32は、係合壁30を厚さ方向であるX方向に貫通する。連通部32は、培養空間2と後述する第2培養空間37とを連通させる。連通部32は、YZ平面内に間隔をあけて複数設けられている。本実施形態のホルダ20において連通部32は、YZ平面内において、保持部31と重ならない位置に間隔をあけて複数設けられている。連通部32は、Y方向およびZ方向にそれぞれ一定間隔をあけて4個ずつ、合計16個設けられている。 The communicating portion 32 penetrates the engaging wall 30 in the X direction, which is the thickness direction. The communication part 32 communicates the culture space 2 with a second culture space 37, which will be described later. A plurality of communicating portions 32 are provided at intervals in the YZ plane. In the holder 20 of the present embodiment, a plurality of communicating portions 32 are provided at positions that do not overlap with the holding portion 31 in the YZ plane at intervals. A total of 16 communication portions 32 are provided, four each in the Y direction and the Z direction at regular intervals.
 側壁35は、矩形状の係合壁30の各縁部からX方向で培養空間2と逆側である+X側に延びている。すなわち、側壁35は、XZ平面と平行またはXY平面と平行な板状である。側壁35のそれぞれは、複数の第2連通部36を有している。第2連通部36は、側壁35を厚さ方向に貫通する。第2連通部36は、第2培養空間37とホルダ20の外部とを連通させる。側壁35のそれぞれにおいて第2連通部36は、一定間隔をあけて4個ずつ、合計16個設けられている。 The side wall 35 extends from each edge of the rectangular engagement wall 30 to the +X side opposite to the culture space 2 in the X direction. That is, the side wall 35 has a plate shape parallel to the XZ plane or parallel to the XY plane. Each side wall 35 has a plurality of second communication portions 36 . The second communicating portion 36 penetrates the side wall 35 in the thickness direction. The second communication part 36 allows the second culture space 37 and the outside of the holder 20 to communicate with each other. Four second communicating portions 36 are provided on each side wall 35 at regular intervals, for a total of 16 second communicating portions 36 .
 第2培養空間37は、アンカー部22の内部に形成されている。第2培養空間37は、係合壁30、側壁35およびホルダ本体21に周囲を囲まれた立方体形状の空間である。第2培養空間37は、連通部32を介して培養空間2と連通する。第2培養空間37は、第2連通部36を介してY方向およびZ方向でホルダ20の外部と連通する。 The second culture space 37 is formed inside the anchor section 22 . The second culture space 37 is a cubic space surrounded by the engaging walls 30 , the side walls 35 and the holder body 21 . The second culture space 37 communicates with the culture space 2 via the communicating portion 32 . The second culture space 37 communicates with the outside of the holder 20 in the Y and Z directions via the second communicating portion 36 .
 ホルダ本体21は、アンカー部22のX方向外側である+X側に位置する。ホルダ本体21は、X方向で第2培養空間37を挟んで係合壁30と対向する。ホルダ本体21は、挿通孔24と接着部25と培地貯溜部26と接続部27とを有する。
 挿通孔24は、X方向に延びる。挿通孔24は、-X側の端部が第2培養空間37に開口し、+X側の端部が培地貯溜部26に開口している。挿通孔24は、保持部31と同軸に配置されている。従って、挿通孔24は、Y方向およびZ方向にそれぞれ一定間隔をあけて3個ずつ、合計9個設けられている。挿通孔24には、中空糸Fが挿通される。挿通孔24と保持部31が同軸に配置されることで、中空糸Fは保持部31と挿通孔24に跨がって挿通可能である。
The holder main body 21 is positioned on the +X side, which is the outside of the anchor portion 22 in the X direction. The holder main body 21 faces the engagement wall 30 with the second culture space 37 interposed therebetween in the X direction. The holder main body 21 has an insertion hole 24 , an adhesive portion 25 , a culture medium storage portion 26 and a connection portion 27 .
The insertion hole 24 extends in the X direction. The insertion hole 24 opens to the second culture space 37 at the −X side end and opens to the medium reservoir 26 at the +X side end. The insertion hole 24 is arranged coaxially with the holding portion 31 . Accordingly, there are nine insertion holes 24 in total, three each in the Y direction and the Z direction at regular intervals. A hollow fiber F is inserted through the insertion hole 24 . By arranging the insertion hole 24 and the holding portion 31 coaxially, the hollow fiber F can be inserted across the holding portion 31 and the insertion hole 24 .
 接着部25は、X方向と直交する方向に延びる(図1では、Z方向に延びる接着部25のみ図示)。接着部25のX方向の位置は、第2培養空間37と培地貯溜部26との間である。接着部25は、一端が挿通孔24に接続され、他端がホルダ本体21の外側に開口している。接着部25は、複数の挿通孔24毎に設けられている。接着部25には、接着剤25Aが導入されて充填されている。接着部25に接着剤25Aが充填されることで、挿通孔24に挿入された中空糸Fと挿通孔24との隙間を塞いで培地が当該隙間から漏れ出すことを抑制できる。 The bonding portion 25 extends in a direction perpendicular to the X direction (only the bonding portion 25 extending in the Z direction is shown in FIG. 1). The position of the adhesion portion 25 in the X direction is between the second culture space 37 and the medium reservoir portion 26 . The adhesive portion 25 has one end connected to the insertion hole 24 and the other end opened to the outside of the holder main body 21 . The bonding portion 25 is provided for each of the plurality of insertion holes 24 . The bonding portion 25 is filled with an adhesive 25A. By filling the bonding portion 25 with the adhesive 25A, the gap between the hollow fiber F inserted in the insertion hole 24 and the insertion hole 24 can be closed to prevent the culture medium from leaking out of the gap.
 培地貯溜部26は、培地が貯留される領域である。培地貯溜部26は、挿通孔24の+X側に配置される。培地貯溜部26は、複数の挿通孔24に跨がる範囲に形成されている。従って、複数の挿通孔24は、いずれも培地貯溜部26に開口する。+X側に位置するホルダ20における培地貯溜部26は、培地供給部40から供給され後述する中空糸Fの中空部Faを灌流する前の培地を貯留する。-X側に位置するホルダ20における培地貯溜部26は、中空糸Fの中空部Faを灌流した後の培地を貯留する。 The medium reservoir 26 is an area in which the medium is reserved. The culture medium reservoir 26 is arranged on the +X side of the insertion hole 24 . The culture medium storage part 26 is formed in a range spanning the plurality of insertion holes 24 . Therefore, all of the plurality of insertion holes 24 open to the culture medium reservoir 26 . The culture medium reservoir 26 in the holder 20 located on the +X side stores the culture medium supplied from the culture medium supply section 40 and before perfusing the hollow portions Fa of the hollow fibers F described later. The medium reservoir 26 in the holder 20 located on the -X side stores the medium after the hollow portion Fa of the hollow fiber F has been perfused.
 接続部27は、ホルダ本体21から+X側に突出する。接続部27には、配管28が接続される。接続部27の内部には、孔部29が設けられている。孔部29はX方向に延び、一端が培地貯溜部26に開口し、他端が接続部27における+X側の端部に開口している。 The connecting portion 27 protrudes from the holder main body 21 to the +X side. A pipe 28 is connected to the connecting portion 27 . A hole portion 29 is provided inside the connection portion 27 . The hole portion 29 extends in the X direction, one end of which is open to the culture medium storage portion 26 and the other end of which is open to the +X side end of the connection portion 27 .
 上記のホルダ20は、例えば、3Dプリンタ等を用いて製作される。ホルダ20の材質としては、三次元組織に悪影響を及ぼさないものであれば特に限定されず、選択された製作方法に応じて適切な素材を適宜用いることができる。 The above holder 20 is manufactured using, for example, a 3D printer. The material of the holder 20 is not particularly limited as long as it does not adversely affect the three-dimensional structure, and an appropriate material can be appropriately used according to the selected manufacturing method.
 培地供給部40は、培地を供給する。培地供給部40は、例えば、灌流ポンプである。培地供給部40から供給された培地は、配管28を介して+X側に位置するホルダ20に導入される。つまり、+X側に位置するホルダ20における接続部27は、中空糸Fの中空部Faを灌流する培地が配管28を介して導入される導入部27Aを構成する。一方、-X側に位置するホルダ20における接続部27は、中空糸Fの中空部Faを灌流した培地が配管28を介して排出される排出部27Bを構成する。 The medium supply unit 40 supplies the medium. The medium supply unit 40 is, for example, a perfusion pump. The culture medium supplied from the culture medium supply unit 40 is introduced into the holder 20 located on the +X side through the pipe 28 . That is, the connecting portion 27 of the holder 20 located on the +X side constitutes an introducing portion 27A into which the culture medium for perfusing the hollow portion Fa of the hollow fiber F is introduced via the pipe 28 . On the other hand, the connection portion 27 of the holder 20 positioned on the −X side constitutes a discharge portion 27B through which the culture medium perfused in the hollow portion Fa of the hollow fiber F is discharged through the pipe 28 .
 中空糸Fは、中空部Faを有するファイバーである。中空糸Fは、半透膜構造を有するものであれば特に制限はない。中空部Faの内径は、好ましくは20~1000μm、より好ましくは50~500μm、さらに好ましくは50~150μm程度である。中空糸Fの膜厚は、10~200μm程度が好ましい。 A hollow fiber F is a fiber having a hollow portion Fa. The hollow fiber F is not particularly limited as long as it has a semipermeable membrane structure. The inner diameter of the hollow portion Fa is preferably about 20-1000 μm, more preferably about 50-500 μm, even more preferably about 50-150 μm. The thickness of the hollow fiber F is preferably about 10 to 200 μm.
 保持部31および挿通孔24の配置で規定される中空糸Fの間隔は、数百μm程度の間隔、好ましくは20~1000μm、より好ましくは50~500μm、さらに好ましくは50~150μmの微小間隔で規則的に配置することが好ましい。 The interval between the hollow fibers F defined by the arrangement of the holding portion 31 and the insertion hole 24 is a minute interval of about several hundred μm, preferably 20 to 1000 μm, more preferably 50 to 500 μm, and even more preferably 50 to 150 μm. Regular arrangement is preferred.
 中空糸Fの材質は、細胞、足場材料(ハイドロゲル等)、培地に対して有害な作用を行うものでなければ特に限定されるものではないが、例えば、セルロース系素材、ポリスルホン、ポリプロピレン等を挙げることができる。また、多孔性中空糸膜の平均孔径は物質交換性を考慮すると大きな方が望ましく、0.1~5μm程度が望ましい。しかしながら、孔径はこの範囲に限定されるものではなく、孔径0.1μm未満等、使用目的に合わせて適宜設定することが可能である。また、膜を通して有効に拡散しない標準的分子の最小平均分子量(分子量カットオフ)は70kDaよりも大きな方が望ましい。 The material of the hollow fiber F is not particularly limited as long as it does not have a detrimental effect on cells, scaffold materials (hydrogel, etc.), and the medium. can be mentioned. Also, the average pore size of the porous hollow fiber membrane is desirably large in consideration of the material exchange property, and is desirably about 0.1 to 5 μm. However, the pore size is not limited to this range, and can be appropriately set according to the purpose of use, such as a pore size of less than 0.1 μm. It is also desirable that the minimum average molecular weight (molecular weight cutoff) of standard molecules that do not effectively diffuse through the membrane is greater than 70 kDa.
 また、中空糸Fの外周面Fbとアンカー部22には、親水化処理を施すことが好ましい。中空糸Fの外周面Fbとアンカー部22に親水化処理を施すことで、中空糸Fをアレイ配置した場合に、粘性を有する足場材料をアレイ内(複数の中空糸Fの間)に充填することが可能になる。 Further, the outer peripheral surface Fb of the hollow fiber F and the anchor portion 22 are preferably subjected to hydrophilic treatment. By subjecting the outer peripheral surface Fb of the hollow fibers F and the anchor portions 22 to a hydrophilic treatment, when the hollow fibers F are arranged in an array, the inside of the array (between the plurality of hollow fibers F) is filled with a viscous scaffolding material. becomes possible.
 中空糸Fの外周面Fbとアンカー部22に対する親水化処理としては、例えば、Oプラズマ処理やアクアプラズマ(登録商標)処理を採用できる。
 アクアプラズマ(登録商標)処理とは、水蒸気を用いたプラズマ処理である。アクアプラズマ(登録商標)処理を採用した場合には、人工三次元組織製造装置1の表面親水化及び滅菌ができる。
As the hydrophilization treatment for the outer peripheral surface Fb of the hollow fiber F and the anchor portion 22, for example, O 2 plasma treatment or Aqua Plasma (registered trademark) treatment can be employed.
Aquaplasma (registered trademark) treatment is plasma treatment using water vapor. When Aquaplasma (registered trademark) treatment is adopted, surface hydrophilization and sterilization of the artificial three-dimensional tissue manufacturing apparatus 1 can be performed.
 中空糸Fおよびアンカー部22を用いて細胞を培養するためには、細胞と接する中空糸Fおよびアンカー部22の表面を滅菌する必要がある。
 従来では、例えば、エタノール等の液体を用いた湿式の滅菌方法が採られていたが、この方法を採った場合には、中空糸Fが膨潤することで弛む。アレイ配置した複数の中空糸Fが弛むと中空糸F間の距離が制御できず、組織全体の細胞に、均等に栄養分を与えながら生存率良く培養することが困難となる。
 本実施形態では、水蒸気を用いたプラズマ処理が中空糸Fの外周面Fbに施されている。すなわち、中空糸Fの外周面Fbは、プラズマで滅菌処理された処理面である。
 従って、アレイ配置した中空糸Fに弛みを生じさせずに外周面Fbを滅菌することができる。
 その結果、本実施形態では、外周面Fbが滅菌された中空糸Fの周囲で足場材料に含まれる細胞を生存率良く培養することが可能となり、配向を有する大型組織を容易に作製することができる。
In order to culture cells using the hollow fibers F and the anchors 22, it is necessary to sterilize the surfaces of the hollow fibers F and the anchors 22 that come into contact with the cells.
Conventionally, for example, a wet sterilization method using a liquid such as ethanol has been adopted. If the plurality of hollow fibers F arranged in an array are loosened, the distance between the hollow fibers F cannot be controlled, and it becomes difficult to culture the cells in the entire tissue with good viability while evenly supplying nutrients.
In this embodiment, the outer peripheral surface Fb of the hollow fiber F is subjected to a plasma treatment using water vapor. That is, the outer peripheral surface Fb of the hollow fiber F is a plasma-sterilized surface.
Therefore, the outer peripheral surface Fb can be sterilized without causing slack in the hollow fibers F arranged in an array.
As a result, in the present embodiment, cells contained in the scaffolding material can be cultured with high viability around the hollow fibers F whose outer peripheral surface Fb is sterilized, and a large oriented tissue can be easily produced. can.
 続いて、上記人工三次元組織製造装置1を用いた人工三次元組織製造方法について図3から図6を参照して説明する。
 本発明に係る人工三次元組織製造方法は、中空部Faを有する中空糸Fを準備することと、培養空間2を挟んで第1方向に離間して配置された一対のホルダ20であって、培養空間2に臨む係合壁30と、係合壁30に対して第1方向における培養空間2と逆側に位置する第2培養空間37とをそれぞれ有し、係合壁30は、係合壁30を第1方向に貫通し第1方向と直交する面内に互いに間隔をあけて複数設けられた保持部31と、係合壁30を第1方向に貫通し培養空間2と第2培養空間37とを連通させる連通部32とを有し、保持部31は、中空糸Fにおける第1方向の端部側を保持する、一対のホルダ20とを準備することと、一対のホルダ20の一方における複数の保持部31のそれぞれに中空糸Fの一端側を保持させ、一対のホルダ20の他方における複数の保持部31のそれぞれに中空糸Fの他端側を保持させることと、培養空間2および第2培養空間37に、細胞を含有する硬化前の足場材料(例えば、ハイドロゲル等)を供給して硬化させることと、中空部Faに培地を灌流させながら細胞を培養することと、を含む。
Next, an artificial three-dimensional tissue manufacturing method using the artificial three-dimensional tissue manufacturing apparatus 1 will be described with reference to FIGS. 3 to 6. FIG.
The artificial three-dimensional tissue manufacturing method according to the present invention comprises preparing a hollow fiber F having a hollow portion Fa, and a pair of holders 20 spaced apart in a first direction with the culture space 2 interposed therebetween, Each has an engaging wall 30 facing the culture space 2 and a second culture space 37 positioned opposite to the culture space 2 in the first direction with respect to the engaging wall 30, and the engaging wall 30 is engaged a plurality of holding parts 31 that penetrate the wall 30 in the first direction and are provided in a plane perpendicular to the first direction at intervals; A communicating portion 32 that communicates with the space 37, and the holding portion 31 prepares a pair of holders 20 that hold the ends of the hollow fibers F in the first direction, and the pair of holders 20 are provided. holding one end side of the hollow fiber F in each of the plurality of holding portions 31 on one side and holding the other end side of the hollow fiber F in each of the plurality of holding portions 31 on the other side of the pair of holders 20; 2 and the second culture space 37 are supplied with a pre-cured scaffold material (e.g., hydrogel, etc.) containing cells and cured, and the cells are cultured while perfusing the medium in the hollow portion Fa; including.
[中空糸Fおよびホルダ20の準備]
 中空糸Fおよびホルダ20の準備としては、予め上述した親水化処理を外周面Fbに施した中空糸Fを、図1に示したように、一対のホルダ20における保持部31および挿通孔24にそれぞれ挿通する。中空糸Fは、保持部31から第2培養空間37を通過して挿通孔24に疎通させる。中空糸Fの端部は、挿通孔24において培地貯溜部26に臨む端部の位置でもよいし、培地貯溜部26の内部に突出してもよい。保持部31および挿通孔24にそれぞれ挿通する中空糸Fは、1本~9本の間で任意に選択可能である。
[Preparation of hollow fiber F and holder 20]
As preparation for the hollow fibers F and the holder 20, the hollow fibers F having the outer peripheral surface Fb previously subjected to the above-described hydrophilic treatment are attached to the holding portions 31 and the insertion holes 24 of the pair of holders 20 as shown in FIG. Insert each. The hollow fibers F pass from the holding portion 31 through the second culture space 37 and communicate with the insertion holes 24 . The end of the hollow fiber F may be located at the end facing the culture medium reservoir 26 in the insertion hole 24 or may protrude into the culture medium reservoir 26 . The number of hollow fibers F to be inserted through the holding portion 31 and the insertion hole 24 can be arbitrarily selected from one to nine.
 中空糸Fが挿通されたホルダ20については、嵌合突部23を支持部材10における溝部12に上側から嵌合させ、X方向に所定距離離れて位置決めされた状態で支持させる。この後、保持部31および挿通孔24にそれぞれ挿通された中空糸Fについては、接着部25に接着剤25Aを充填することで、挿通孔24に中空糸Fを固定する。これにより、培地貯溜部26に貯溜された培地が、挿通孔24と中空糸Fとの隙間を介して流出することを抑制できる。 Regarding the holder 20 through which the hollow fiber F is inserted, the fitting protrusion 23 is fitted into the groove 12 of the support member 10 from above, and is supported while being positioned at a predetermined distance in the X direction. After that, the hollow fibers F inserted through the holding portion 31 and the insertion hole 24 are fixed to the insertion hole 24 by filling the bonding portion 25 with an adhesive 25A. As a result, the culture medium stored in the culture medium reservoir 26 can be prevented from flowing out through the gap between the insertion hole 24 and the hollow fibers F.
[筋組織の形成]
 中空糸Fおよびホルダ20の準備が完了すると、人工三次元組織として筋組織を形成する。
 図3は、筋組織の形成に係る工程を示す断面図である。
 図3に示すように、細胞Cを足場材料(例えば、ハイドロゲル等)に懸濁した混合物を培養空間2に注ぎ込む。培養空間2に注ぎ込まれた細胞Cを足場材料(例えば、ハイドロゲル等)に懸濁した混合物は、連通部32および第2連通部36を介して第2培養空間37に供給される。
[Formation of muscle tissue]
After preparation of the hollow fibers F and the holder 20 is completed, muscle tissue is formed as an artificial three-dimensional tissue.
FIG. 3 is a cross-sectional view showing the steps involved in forming muscle tissue.
As shown in FIG. 3, a mixture of cells C suspended in a scaffolding material (for example, hydrogel) is poured into the culture space 2 . A mixture of cells C poured into the culture space 2 and suspended in a scaffolding material (for example, hydrogel) is supplied to the second culture space 37 via the communicating portion 32 and the second communicating portion 36 .
 すなわち、筋組織の形成においては、まず、培養空間2および第2培養空間37に細胞Cを含有する硬化前の足場材料(例えば、ハイドロゲル等)Gを供給する。
 本実施形態では、細胞Cとして筋芽細胞を用いる。また、足場材料(例えば、ハイドロゲル等)Gとして、細胞外マトリックス成分を用いる。
That is, in the formation of muscle tissue, first, a scaffold material (for example, hydrogel) G containing cells C before hardening is supplied to the culture space 2 and the second culture space 37 .
Myoblasts are used as cells C in this embodiment. In addition, an extracellular matrix component is used as a scaffold material (eg, hydrogel, etc.) G.
 細胞外マトリックス成分としては、マトリゲル(Matrigel;(登録商標))とコラーゲン(Collagen)の混合物を用いる。マトリゲル(登録商標)とコラーゲンの混合比率としては、マトリゲル(登録商標)が20~80%、コラーゲンが80~20%であることが好ましく、マトリゲル(登録商標)が40~60%、コラーゲンが60~40%であることがより好ましい。 A mixture of Matrigel ((registered trademark)) and Collagen is used as the extracellular matrix component. The mixing ratio of Matrigel (registered trademark) and collagen is preferably 20 to 80% Matrigel (registered trademark) and 80 to 20% collagen, and 40 to 60% Matrigel (registered trademark) and 60% collagen. More preferably ~40%.
 培養空間2および第2培養空間37に細胞Cを含有する硬化前の足場材料(例えば、ハイドロゲル等)Gを供給すると、所定条件で培養して細胞外マトリックス成分を硬化させる。培養空間2に供給された足場材料(例えば、ハイドロゲル等)Gについては、中空糸Fの外周面Fbに親水化処理が施されているため、複数の中空糸F同士の隙間が狭い箇所にも充填して硬化させることが可能である。 When the pre-hardening scaffolding material (eg, hydrogel, etc.) containing cells C is supplied to the culture space 2 and the second culture space 37, it is cultured under predetermined conditions to harden the extracellular matrix components. Regarding the scaffold material (for example, hydrogel) G supplied to the culture space 2, since the outer peripheral surface Fb of the hollow fibers F is subjected to a hydrophilic treatment, it is can also be filled and cured.
 培養条件としては、一例として、37℃の温度下で30分間培養する。これにより、細胞Cを含有する足場材料(例えば、ハイドロゲル等)Gが培養された培養体Bが形成される。培養体Bは、培養空間2で培養された本体部B1と、本体部B1よりもX方向の外側に位置し第2培養空間37で培養された外側培養体B2と、本体部B1と外側培養体B2と結合し連通部32で培養された結合培養体B3とを含む。外側培養体B2は、保持空間としての第2培養空間37において保持される。 As for the culture conditions, as an example, it is cultured at a temperature of 37°C for 30 minutes. As a result, a culture B in which a scaffolding material (for example, hydrogel, etc.) G containing cells C is cultured is formed. The culture body B consists of a body part B1 cultured in the culture space 2, an outside culture body B2 located outside the body part B1 in the X direction and cultured in the second culture space 37, the body part B1 and the outside culture. It includes a bound culture B3 that is bound to the body B2 and cultured in the communicating section 32 . The outer culture B2 is held in the second culture space 37 as a holding space.
 培養空間2で培養され係合壁30にX方向内側から接する本体部B1は、足場材料(例えば、ハイドロゲル等)Gの収縮に伴って拘束されずにX方向内側に収縮する。第2培養空間37において保持される外側培養体B2には、結合培養体B3を介して本体部B1によるX方向内側への収縮力が作用する。外側培養体B2に対しては、係合壁30がX方向の内側から係合することでアンカーとして作用して、外側培養体B2のX方向内側への収縮を抑える。 The main body B1, which is cultured in the culture space 2 and contacts the engagement wall 30 from the inside in the X direction, shrinks inward in the X direction without restraint as the scaffolding material (for example, hydrogel, etc.) G shrinks. On the outer culture body B2 held in the second culture space 37, a contractile force inward in the X direction by the body part B1 acts via the bound culture body B3. The engaging wall 30 engages with the outer culture body B2 from the inside in the X direction and acts as an anchor to suppress the contraction of the outer culture body B2 inward in the X direction.
[灌流による筋組織の培養]
 図4は、筋組織の培養に係る工程を示す断面図である。
 細胞Cを含有する足場材料(例えば、ハイドロゲル等)が硬化した培養体Bが形成されると、図4に示すように、支持部材10と一対のホルダ20を上下反転した状態で培養槽100に載置する。
[Culture of muscle tissue by perfusion]
FIG. 4 is a cross-sectional view showing the steps involved in culturing muscle tissue.
When the culture body B is formed by hardening the scaffolding material (for example, hydrogel) containing the cells C, as shown in FIG. be placed on.
 この後、培地供給部40から培地を+X側に位置するホルダ20に供給する。ホルダ20に供給された培地は、一旦、培地貯溜部26に貯留された後に、中空糸Fの中空部Faを灌流する。図5は、培養体Bにおける本体部B1の断面図である。図5に示すように、中空糸Fの周囲には、細胞Cを含有する足場材料(例えば、ハイドロゲル等)Gを培養した筋組織Tが形成されている。中空部Faを灌流する培地からは、栄養素および酸素等が多孔性中空糸膜を透過して培養体Bである筋組織Tに拡散する。一方、筋組織Tからは、代謝により生じた老廃物が多孔性中空糸膜を透過して培地に拡散する。中空部Faを灌流して老廃物が拡散した培地は、一旦、-X側に位置するホルダ20における培地貯溜部26に貯留された後に、排出部27Bおよび配管28を介して培養槽100に排出される。 After that, the medium is supplied from the medium supply unit 40 to the holder 20 located on the +X side. The medium supplied to the holder 20 perfuses the hollow portions Fa of the hollow fibers F after being temporarily stored in the medium reservoir 26 . FIG. 5 is a cross-sectional view of the body portion B1 in the culture body B. FIG. As shown in FIG. 5, muscle tissue T is formed around hollow fibers F by culturing a scaffolding material (for example, hydrogel, etc.) containing cells C. As shown in FIG. Nutrients, oxygen, and the like permeate the porous hollow fiber membrane from the culture medium that perfuses the hollow portion Fa and diffuse into the muscle tissue T, which is the culture body B. As shown in FIG. On the other hand, from the muscle tissue T, metabolic waste products permeate the porous hollow fiber membrane and diffuse into the culture medium. The medium in which the waste products have diffused by perfusing the hollow portion Fa is once stored in the medium storage section 26 in the holder 20 located on the -X side, and then discharged to the culture tank 100 via the discharge section 27B and the pipe 28. be done.
 以上説明したように、細胞Cを含有する硬化前の足場材料(例えば、ハイドロゲル等)Gを中空糸Fの外周に供給した後に足場材料(例えば、ハイドロゲル等)Gを硬化させ培養体Bとして筋組織Tを形成し、中空部Faに培地を灌流させることにより、筋組織Tを培養することができる。筋組織Tの培養が進むに従って本体部B1における収縮が大きくなるが、係合壁30が外側培養体B2に対してX方向の内側からアンカーとして係合することで、外側培養体B2の収縮が抑えられる。 As described above, the scaffolding material (eg, hydrogel, etc.) G containing cells C before hardening is supplied to the outer periphery of the hollow fiber F, and then the scaffolding material (eg, hydrogel, etc.) G is hardened to form a culture body B. The muscle tissue T can be cultured by forming the muscle tissue T as , and perfusing the medium in the hollow portion Fa. As the culture of the muscle tissue T progresses, the contraction of the body portion B1 increases. However, the engagement wall 30 engages the outer culture body B2 from the inside in the X direction as an anchor, so that the outer culture body B2 contracts. suppressed.
 図6は、培養体Bにおける本体部B1の流路に沿った断面図である。
 本体部B1においては、筋組織TにおけるX方向への収縮が大きくなることから、図6に示すように、筋組織TはX方向に沿って配向しやすくなる。
FIG. 6 is a cross-sectional view of the main body B1 of the culture body B along the channel.
In the main body portion B1, since the contraction of the muscle tissue T in the X direction increases, the muscle tissue T is easily oriented along the X direction as shown in FIG.
[中空糸F周囲の細胞核]
 図7は、中空糸Fを1本のみ用いて上記培地を灌流させた状態で4日間培養した筋組織Tの本体部B1において、中空糸FのX方向と直交する断面における細胞核の蛍光画像を示す図である。
 図7に示すように、中空糸Fの外周面Fb近傍領域においては、細胞核が高密度で存在するが、中空糸Fの外周面Fbから離れた領域においては、細胞核が低密度で存在していた。このことから、中空糸Fの周囲に形成された筋組織Tに対して、中空部Faを灌流する培地から栄養素および酸素等が拡散して、細胞が生きた状態で培養が行われていると判断できる。
[Cell nucleus around hollow fiber F]
FIG. 7 shows a fluorescence image of cell nuclei in a cross section perpendicular to the X direction of the hollow fiber F in the main body B1 of the muscle tissue T cultured for 4 days in a state where only one hollow fiber F is perfused with the above medium. FIG. 4 is a diagram showing;
As shown in FIG. 7, cell nuclei are present at high density in the region near the outer peripheral surface Fb of the hollow fiber F, but cell nuclei are present at low density in the region away from the outer peripheral surface Fb of the hollow fiber F. rice field. From this, it can be concluded that nutrients, oxygen, and the like diffuse from the medium that perfuses the hollow portion Fa into the muscle tissue T formed around the hollow fibers F, and the cells are cultured in a live state. I can judge.
[細胞核密度と灌流速度]
 図8は、図7における細胞核の蛍光画像において、中空糸Fの中心からの距離範囲と細胞核密度との関係を示す図である。中空糸Fの中心からの距離範囲としては、中空糸Fの中心から半径250-300μmのリング形状の範囲、中空糸Fの中心から半径300-350μmのリング形状の範囲、中空糸Fの中心から半径350-400μmのリング形状の範囲、中空糸Fの中心から半径400-450μmのリング形状の範囲および中空糸Fの中心から半径450-500μmのリング形状の範囲を規定している。図8においては、各リング形状の範囲における面積に対する細胞核の個数を細胞核密度として示されている。
[Cell nucleus density and perfusion rate]
FIG. 8 is a diagram showing the relationship between the distance range from the center of the hollow fiber F and the cell nucleus density in the fluorescence image of the cell nucleus in FIG. The distance range from the center of the hollow fiber F includes a ring-shaped range with a radius of 250-300 μm from the center of the hollow fiber F, a ring-shaped range with a radius of 300-350 μm from the center of the hollow fiber F, and a ring-shaped range with a radius of 300-350 μm from the center of the hollow fiber F. A ring-shaped range with a radius of 350-400 μm, a ring-shaped range with a radius of 400-450 μm from the center of the hollow fiber F, and a ring-shaped range with a radius of 450-500 μm from the center of the hollow fiber F are defined. In FIG. 8, the number of cell nuclei with respect to the area in each ring-shaped range is shown as the cell nucleus density.
 また、図8においては、中空部Faを灌流する培地の灌流速度を、0μL/min、15μL/min、100μL/min、500μL/minで行った場合のそれぞれについて、中空糸Fの中心からの距離範囲と細胞核密度との関係が示されている。
 図8に示されるように、中空糸Fの中心からの距離範囲と細胞核密度との間には、大きな相関は見られなかったが、培地の灌流速度を500μL/minで行った場合は他の灌流速度よりも細胞核密度が高くなることを確認できた。
In addition, in FIG. 8, the distance from the center of the hollow fiber F when the perfusion rate of the medium for perfusing the hollow portion Fa was 0 μL/min, 15 μL/min, 100 μL/min, and 500 μL/min. The relationship between range and cell nucleus density is shown.
As shown in FIG. 8, no significant correlation was observed between the distance range from the center of the hollow fiber F and the cell nucleus density. It was confirmed that the cell nucleus density became higher than the perfusion rate.
[筋組織の配向]
 図9は、中空糸Fを1本のみ用いて上記培地を灌流速度15μL/minにて灌流させた状態で10日間培養した筋組織Tの本体部B1において、中空糸FにおけるX方向に沿った断面における筋組織の蛍光画像を示す図である。図10は、図9に示した蛍光画像において、筋組織の方向と量との関係を示す図である。図10における方向(Direction(°))は、Y方向が0°であり、X方向が90°である。
[Orientation of muscle tissue]
FIG. 9 shows the body portion B1 of muscle tissue T cultured for 10 days in a state where only one hollow fiber F was perfused with the medium at a perfusion rate of 15 μL/min. FIG. 4 is a diagram showing a fluorescent image of muscle tissue in a cross section; FIG. 10 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. The direction (Direction (°)) in FIG. 10 is 0° in the Y direction and 90° in the X direction.
 図11は、中空糸Fを1本のみ用いて上記培地を灌流速度500μL/minにて灌流させた状態で10日間培養した筋組織Tの本体部B1において、中空糸FにおけるX方向に沿った断面における筋組織の蛍光画像を示す図である。図12は、図11に示した蛍光画像において、筋組織の方向と量との関係を示す図である。図12における方向(Direction(°))は、Y方向が0°であり、X方向が90°である。 FIG. 11 shows the body portion B1 of the muscle tissue T cultured for 10 days in a state where only one hollow fiber F was perfused with the above medium at a perfusion rate of 500 μL/min. FIG. 4 is a diagram showing a fluorescent image of muscle tissue in a cross section; 12 is a diagram showing the relationship between the direction and amount of muscle tissue in the fluorescence image shown in FIG. 11. FIG. The direction (Direction (°)) in FIG. 12 is 0° in the Y direction and 90° in the X direction.
 図9および図11に示されるように、培地を灌流速度15μL/minにて灌流させた場合においては、筋組織Tを形成することができた。培地を灌流速度500μL/minにて灌流させた場合は、培地を灌流速度15μL/minにて灌流させた場合よりも大きな膜厚で筋組織Tを形成することができた。また、図10および図12に示されるように、細胞Cを含有する足場材料(例えば、ハイドロゲル等)Gを用いて形成した筋組織Tにおいては、培地を灌流速度15μL/min以上、500μL/min以下の速度で灌流させたときに、培養体が収縮することで、X方向に多く配向した筋組織Tを形成することができた。
 これらの結果から、培地の灌流速度が15μL/min以上であれば、筋組織Tを形成することができる。この場合、培地の灌流速度が500μL/minを超えた範囲についても、筋組織Tを形成できることのみならず、より大きな膜厚、より高い細胞核密度、X方向により多く配向した筋組織Tを形成できると想定される。
As shown in FIGS. 9 and 11, muscle tissue T could be formed when the medium was perfused at a perfusion rate of 15 μL/min. When the medium was perfused at a perfusion rate of 500 μL/min, a muscle tissue T with a greater thickness could be formed than when the medium was perfused at a perfusion rate of 15 μL/min. Further, as shown in FIGS. 10 and 12, in the muscle tissue T formed using the scaffold material (eg, hydrogel, etc.) G containing the cells C, the medium was perfused at a perfusion rate of 15 μL/min or more and 500 μL/min. When the culture was perfused at a rate of min or less, the contraction of the culture allowed the formation of muscle tissue T that was largely oriented in the X direction.
From these results, muscle tissue T can be formed when the medium perfusion rate is 15 μL/min or higher. In this case, even in the range where the medium perfusion rate exceeds 500 μL/min, not only can the muscle tissue T be formed, but also the muscle tissue T can be formed with a larger film thickness, a higher cell nucleus density, and a greater degree of orientation in the X direction. is assumed.
[中空糸F周囲の筋組織]
 図13は、中空糸Fを1本のみ用いて上記培地を灌流させた状態で10日間培養した筋組織Tの本体部B1において、中空糸FのX方向と直交する断面における筋組織Tの蛍光画像を示す図である。
 図13に示されるように、中空糸Fの周囲に筋組織が分化して形成されていることから、中空糸Fの周囲に形成された筋組織Tに対して、中空部Faを灌流する培地から栄養素および酸素等が拡散して、細胞が生きた状態で培養が行われていると判断できる。
[Muscle tissue around hollow fiber F]
FIG. 13 shows the fluorescence of the muscle tissue T in the cross section perpendicular to the X direction of the hollow fiber F in the main body B1 of the muscle tissue T cultured for 10 days in a state where only one hollow fiber F is perfused with the above medium. FIG. 4 is a diagram showing an image;
As shown in FIG. 13, since muscle tissue is differentiated and formed around the hollow fibers F, the muscle tissue T formed around the hollow fibers F is perfused with the hollow portion Fa. It can be determined that nutrients, oxygen, and the like diffuse from the cells, and the cells are cultured in a live state.
[9本の中空糸Fによる筋組織]
 図14は、9本の中空糸Fを用いて上記培地を灌流させた状態で4日間培養した筋組織Tの本体部B1において、中空糸FのX方向と直交する断面における筋組織Tの写真図である。
 図14に示されるように、9本の中空糸Fを取り囲む大きさで筋組織Tを形成することができた。筋組織Tの培養前に中空糸Fの中心間距離は900μmであったが、培養に伴う収縮により、培養後の筋組織Tにおける中空糸Fの中心間距離はおよそ600μmであった。また、培養後の筋組織Tは、最小幅がおよそ2300μm(2.3mm)であった。
[Muscle tissue with 9 hollow fibers F]
FIG. 14 is a photograph of the muscle tissue T in the cross section perpendicular to the X direction of the hollow fibers F in the main body B1 of the muscle tissue T cultured for 4 days in the state of perfusion with the medium using the nine hollow fibers F. It is a diagram.
As shown in FIG. 14, the muscle tissue T was able to be formed in a size surrounding the nine hollow fibers F. The center-to-center distance of the hollow fibers F was 900 μm before culturing the muscle tissue T, but the center-to-center distance of the hollow fibers F in the muscle tissue T after culturing was approximately 600 μm due to contraction accompanying the culture. In addition, the muscle tissue T after culture had a minimum width of approximately 2300 μm (2.3 mm).
 従って、本実施形態の人工三次元組織製造装置1を用いた人工三次元組織製造方法で培養した筋組織Tは、配向を有し従来の人工三次元組織よりも大型の組織を容易に作製することができた。 Therefore, the muscle tissue T cultured by the artificial three-dimensional tissue manufacturing method using the artificial three-dimensional tissue manufacturing apparatus 1 of the present embodiment has an orientation and can easily produce a larger tissue than the conventional artificial three-dimensional tissue. I was able to
[9本の中空糸Fによる筋組織の蛍光画像]
 図15は、図14における筋組織の蛍光画像を示す図である。
 図15に示されるように、9本の中空糸Fのうち、8本の中空糸Fの周囲に筋組織が形成されていたことから、8本の中空糸Fにおいて灌流による培養が行われたと判断できる。
[Fluorescent image of muscle tissue by nine hollow fibers F]
15 is a diagram showing a fluorescence image of the muscle tissue in FIG. 14. FIG.
As shown in FIG. 15, muscle tissue was formed around eight hollow fibers F out of the nine hollow fibers F, indicating that the eight hollow fibers F were cultured by perfusion. I can judge.
 図16は、図15に示した筋組織の一部を拡大した蛍光画像を示す図である。
 図16に示されるように、中空糸Fの外周面Fb近傍領域においては、細胞核が高密度で存在するが、中空糸Fの外周面Fbから離れた領域においては、細胞核が低密度で存在する。このことから、9本の中空糸Fのうち、8本の中空糸Fの周囲に形成された筋組織Tに対して、中空部Faを灌流する培地から栄養素および酸素等が拡散して、細胞が生きた状態で培養が行われていると判断できる。
FIG. 16 is a diagram showing a fluorescence image in which a part of the muscle tissue shown in FIG. 15 is enlarged.
As shown in FIG. 16, cell nuclei are present at high density in the region near the outer peripheral surface Fb of the hollow fiber F, but cell nuclei are present at low density in the region away from the outer peripheral surface Fb of the hollow fiber F. . From this fact, nutrients, oxygen, etc. diffuse from the medium perfusing the hollow portion Fa into the muscle tissue T formed around the eight hollow fibers F out of the nine hollow fibers F, and the cells It can be judged that the culture is performed in a living state.
[9本の中空糸Fによる細胞核の蛍光画像]
 図17は、図16に示した中空糸Fの周囲における細胞核の蛍光画像を示す図である。
 図17に示されるように、1本の中空糸Fを用いた場合と同様に、中空糸Fの外周面Fb近傍領域においては、細胞核が高密度で存在するが、中空糸Fの外周面Fbから離れた領域においては、細胞核が低密度で存在していた。このことから、中空糸Fの周囲に形成された筋組織Tに対して、中空部Faを灌流する培地から栄養素および酸素等が拡散して、細胞が生きた状態で培養が行われていると判断できる。
[Fluorescence image of cell nucleus by nine hollow fibers F]
FIG. 17 is a diagram showing a fluorescent image of cell nuclei around the hollow fibers F shown in FIG.
As shown in FIG. 17, similar to the case of using one hollow fiber F, in the region near the outer peripheral surface Fb of the hollow fiber F, cell nuclei exist at a high density, but the outer peripheral surface Fb of the hollow fiber F Cell nuclei were present at a low density in regions away from . From this, it can be concluded that nutrients, oxygen, and the like diffuse from the medium that perfuses the hollow portion Fa into the muscle tissue T formed around the hollow fibers F, and the cells are cultured in a live state. I can judge.
[長尺の筋組織]
 図18は、長尺に形成された筋組織の外観斜視図である。図18に示す筋組織は、Y方向およびZ方向でそれぞれ二列に並ぶ4つの中空糸Fを用いて培養して形成されている。上述した筋組織は、本体部B1の長さでおよそ5mmであったが、図18に示す筋組織は、本体部B1の長さでおよそ4cmである。
[Long muscle tissue]
FIG. 18 is an external perspective view of an elongated muscle tissue. The muscle tissue shown in FIG. 18 is formed by culturing using four hollow fibers F arranged in two rows in the Y and Z directions. Whereas the muscle tissue described above was approximately 5 mm in length of body portion B1, the muscle tissue shown in FIG. 18 is approximately 4 cm in length of body portion B1.
 この筋組織に対して、1Hz、19Vppにて通電したところ、収縮が観察された。また、この筋組織に対して、20Hz、19Vppにて通電したところ、収縮状態が継続して観察された。また、この筋組織から中空糸Fを抜去した後に、上記の通電を実施したところ、より大きな変位での収縮が観察された。 When electricity was applied to this muscle tissue at 1 Hz and 19 Vpp, contraction was observed. Further, when the muscle tissue was energized at 20 Hz and 19 Vpp, a contraction state was continuously observed. Further, when the above energization was performed after removing the hollow fiber F from this muscle tissue, contraction with a larger displacement was observed.
 また、長さ4cmの筋組織Tを二つ作製し、それぞれ長さ1cmずつの4つに切断したブロックを、図19に示すように、4列×2段で積み上げて筋組織ブロックTBを作製した。筋組織ブロックTBは、一例として、断面における一辺が2-2.5mmである。従って、筋組織ブロックTBは、幅が8-10mm、高さが4-5mmであるセンチメートルオーダの大型の組織を作製できる。また、筋組織から中空糸Fを抜去することで、食肉に適した大型の人工三次元組織を構築することが可能になる。 In addition, two muscle tissue Ts each having a length of 4 cm were prepared, and each block was cut into four blocks each having a length of 1 cm. As shown in FIG. bottom. As an example, the muscle tissue block TB has a cross-sectional side of 2-2.5 mm. Therefore, the muscle tissue block TB can produce a large tissue on the order of centimeters with a width of 8-10 mm and a height of 4-5 mm. Also, by removing the hollow fibers F from the muscle tissue, it becomes possible to construct a large-sized artificial three-dimensional tissue suitable for meat.
 以上説明したように、本実施形態では、ホルダ20に設けられた保持部31および挿通孔24に中空糸Fを挿通させることで、細胞Cを含有し硬化した足場材料(例えば、ハイドロゲル等)Gに中空糸Fを挿通させ、中空糸Fの中空部Faに培地を灌流させながら培養するため、足場材料(例えば、ハイドロゲル等)Gの収縮に伴って配向する大型の筋組織Tを容易に作製することが可能になる。 As described above, in the present embodiment, by inserting the hollow fibers F through the holding portion 31 and the insertion hole 24 provided in the holder 20, a hardened scaffold material (for example, hydrogel, etc.) containing the cells C can be obtained. Hollow fibers F are passed through G, and the medium is perfused into the hollow portions Fa of the hollow fibers F for culturing. It becomes possible to manufacture to
 また、本実施形態では、ホルダ20における接着部25に接着剤25Aを導入することで、中空糸Fと挿通孔24との隙間を塞いで培地が当該隙間から漏れ出すことを抑制できる。 In addition, in the present embodiment, by introducing the adhesive 25A into the adhesive portion 25 of the holder 20, the gap between the hollow fiber F and the insertion hole 24 can be closed to prevent the culture medium from leaking out of the gap.
 また、本実施形態では、ホルダ20における嵌合突部23を支持部材10における溝部12に嵌合させることで、一対のホルダ20間の距離を正確に規定できる。そのため、本実施形態では、培養体Bの本体部B1におけるX方向の長さを高精度で規定することが可能である。 In addition, in this embodiment, by fitting the fitting protrusions 23 of the holders 20 into the grooves 12 of the support member 10, the distance between the pair of holders 20 can be accurately defined. Therefore, in the present embodiment, it is possible to define the length in the X direction of the body portion B1 of the culture body B with high accuracy.
 また、本実施形態では、中空糸Fの外周面Fbとアンカー部22に親水化処理が施されているため、中空糸Fをアレイ配置した場合に、粘性を有する足場材料(例えば、ハイドロゲル等)をアレイ内(複数の中空糸Fの間)に充填することができ、中空糸F間の隙間が狭いアレイ内にも筋組織Tを容易に作製することが可能になる。 Further, in the present embodiment, since the outer peripheral surface Fb of the hollow fibers F and the anchor portion 22 are subjected to a hydrophilic treatment, when the hollow fibers F are arranged in an array, a viscous scaffolding material (for example, hydrogel, etc.) ) can be filled in the array (between a plurality of hollow fibers F), and the muscle tissue T can be easily produced even in an array with narrow gaps between the hollow fibers F.
 また、本実施形態では、培養体B(筋組織T)および中空糸Fを含む一対のホルダ20を支持部材10から取り外すことで、人工三次元組織構造体Mを構築することが可能である。人工三次元組織構造体Mのうち、ホルダ20の一方における嵌合突部23を、例えば、生体モデルにおける固定部に支持させ、ホルダ20の他方における嵌合突部23を生体モデルにおける可動部に支持させ、培養体B(筋組織T)に通電して収縮させることによって、生体モデルにおけるアクチュエータとして用いることができる。 In addition, in this embodiment, the artificial three-dimensional tissue structure M can be constructed by removing the pair of holders 20 containing the culture B (muscle tissue T) and the hollow fibers F from the support member 10. Of the artificial three-dimensional tissue structure M, the fitting protrusion 23 on one side of the holder 20 is supported by, for example, a fixed portion of the biological model, and the fitting protrusion 23 on the other side of the holder 20 is supported by the movable portion of the biological model. It can be used as an actuator in a biological model by supporting and contracting the culture body B (muscle tissue T) by energizing it.
 人工三次元組織構造体Mをアクチュエータとして用いる場合には、筋組織Tにおける収縮力が大きい動物由来の細胞Cを培養することが好ましい。
 動物由来の細胞Cとしては、例えば、C2C12細胞を用いることができる。C2C12細胞を用いることにより、動物を犠牲にすることなくアクチュエータを構築することが可能になる。
When the artificial three-dimensional tissue structure M is used as an actuator, it is preferable to culture animal-derived cells C having a large contractile force in the muscle tissue T.
As animal-derived cells C, for example, C2C12 cells can be used. The use of C2C12 cells makes it possible to construct actuators without sacrificing animals.
 さらに、本実施形態では、人工三次元組織構造体Mから一対のホルダ20を分離させることによって、中空糸Fが長手方向に培養体B(筋組織T)を貫通する人工三次元組織体Nが得られる。この人工三次元組織体Nは、中空糸Fの外周面Fbがプラズマで滅菌処理された処理面であるため、弛みを生じさせずに外周面Fbが滅菌され、足場材料に含まれる細胞を生存率良く培養することが可能となり、配向を有する大型組織となる。 Furthermore, in the present embodiment, by separating the pair of holders 20 from the artificial three-dimensional tissue structure M, the artificial three-dimensional tissue structure N in which the hollow fibers F penetrate the culture body B (muscle tissue T) in the longitudinal direction is formed. can get. In this artificial three-dimensional tissue N, since the outer peripheral surface Fb of the hollow fiber F is a treated surface sterilized with plasma, the outer peripheral surface Fb is sterilized without causing slack, and the cells contained in the scaffold material survive. It becomes possible to culture efficiently, and it becomes a large-sized tissue with orientation.
 本発明の第二実施形態について、図20から図25を参照して説明する。以降の説明において、既に説明したものと共通する構成については、同一の符号を付して重複する説明を省略する。 A second embodiment of the present invention will be described with reference to FIGS. 20 to 25. FIG. In the following description, the same reference numerals are given to the same configurations as those already described, and redundant descriptions will be omitted.
 図20に、本実施形態に係る人工三次元組織製造装置101の分解図を示す。人工三次元組織製造装置101は、ホルダ20に代えてホルダ120を備える。各々のホルダ120は、アンカー部とホルダ本体121との間にガイド102が配置された構造を有する。 FIG. 20 shows an exploded view of the artificial three-dimensional tissue manufacturing device 101 according to this embodiment. The artificial three-dimensional tissue manufacturing device 101 includes a holder 120 in place of the holder 20 . Each holder 120 has a structure in which the guide 102 is arranged between the anchor portion and the holder body 121 .
 本実施形態においては、一方のホルダにアンカー部122Aが設けられ、もう一方のホルダにアンカー部122Bが設けられている。アンカー部122Aとアンカー部122Bとは、形状がわずかに異なっている。 In this embodiment, one holder is provided with an anchor portion 122A, and the other holder is provided with an anchor portion 122B. The anchor portion 122A and the anchor portion 122B are slightly different in shape.
 図21に、培養空間側に向けられる前側から見た状態でアンカー部122Aを示す。アンカー部122Aは、円筒状の保持部131Aを50個有しており、第一実施形態よりも多数の中空糸を挿通できるように構成されている。本実施形態において、保持部131Aは、5×10の二次元マトリクス状に配列されているが、これは必須ではなく、例えばハニカム状等の他の態様で配列することで、単位断面積当たりの中空糸の配置密度を高めることもできる。
 保持部131Aは、内部に内径が小さい部位を有しており、これにより、内部に段差202を有している。
FIG. 21 shows the anchor part 122A viewed from the front side facing the culture space. The anchor part 122A has 50 cylindrical holding parts 131A, and is configured so that more hollow fibers can be inserted than in the first embodiment. In the present embodiment, the holding portions 131A are arranged in a two-dimensional matrix of 5×10, but this is not essential, and by arranging them in another manner such as a honeycomb shape, the per unit cross-sectional area It is also possible to increase the arrangement density of the hollow fibers.
The holding portion 131A has a portion with a small inner diameter inside, thereby having a step 202 inside.
 図22に、アンカー部122Bを前側から見た状態を示す。アンカー部122Bも、アンカー部122Aと同様に円筒状の保持部131Bを50個有する。保持部131Bの外径は、保持部131Aの端部開口の内径よりも小さく、保持部131A内に差し込むことができる。保持部131Bの外径は、保持部131A内の段差202における内径よりも大きいため、段差202よりも奥には進入できない。 FIG. 22 shows the anchor part 122B viewed from the front side. The anchor portion 122B also has 50 cylindrical holding portions 131B like the anchor portion 122A. The outer diameter of the holding portion 131B is smaller than the inner diameter of the end opening of the holding portion 131A, and can be inserted into the holding portion 131A. Since the outer diameter of the holding portion 131B is larger than the inner diameter of the step 202 inside the holding portion 131A, it cannot enter deeper than the step 202 .
 本実施形態において、ホルダに中空糸を通す手順の一例を説明する。
 アンカー部122Aとアンカー部122Bとを、互いの前側を対向させた状態で接近させ、各保持部131Bの端部をそれぞれ正対する保持部131A内に差し込む。これにより、アンカー部122Aとアンカー部122Bとが、図23に示すように連結される。連結操作時には、保持部131Bが一定量保持部131A内に進入すると、保持部131Bの端部が段差202に突き当たるため、過剰に進入することが抑制される。
In this embodiment, an example of the procedure for passing the hollow fibers through the holder will be described.
The anchor part 122A and the anchor part 122B are brought close to each other with their front sides facing each other, and the ends of the respective holding parts 131B are inserted into the opposing holding parts 131A. Thereby, the anchor portion 122A and the anchor portion 122B are connected as shown in FIG. During the connecting operation, when the holding portion 131B enters the holding portion 131A by a certain amount, the end portion of the holding portion 131B abuts against the step 202, so excessive entry is suppressed.
 アンカー部122Aとアンカー部122Bとが連結した状態で、一方のアンカー部の後側から各保持部に連通する穴に中空糸を通し、他方のアンカー部の後側から突出させる。中空糸は、アンカー部122Aおよびアンカー部122Bのいずれから挿入してもよい。 With the anchor parts 122A and 122B connected, a hollow fiber is passed from the rear side of one anchor part through the holes that communicate with the holding parts, and protrudes from the rear side of the other anchor part. The hollow fiber may be inserted from either the anchor portion 122A or the anchor portion 122B.
 すべての保持部に中空糸を通した後、アンカー部122Aおよびアンカー部122Bの後側から突出した複数の中空糸をそれぞれ異なるガイド102に通しつつ、ガイド102をアンカー部122Aおよびアンカー部122Bに取り付ける。取り付け方法には特に制限はなく、機械的嵌合や接着等を例示できる。
 図20に示すように、ガイド102は斜面102aを有しており、アンカー部から離れるにつれて中空糸が通る空間の幅が徐々に狭くなっている。このため、ガイド102内を通る中空糸は、互いの間隔を徐々に狭めながら1つに束ねられてホルダ本体121に導かれる。
After passing the hollow fibers through all the holding portions, the guides 102 are attached to the anchor portions 122A and 122B while passing the plurality of hollow fibers protruding from the rear side of the anchor portions 122A and 122B through different guides 102 respectively. . The attachment method is not particularly limited, and examples include mechanical fitting and adhesion.
As shown in FIG. 20, the guide 102 has an inclined surface 102a, and the width of the space through which the hollow fibers pass gradually narrows as the distance from the anchor portion increases. For this reason, the hollow fibers passing through the guide 102 are bundled into one while gradually narrowing the distance between them and guided to the holder main body 121 .
 アンカー部122Aとアンカー部122Bとの距離を、支持部材10に設置される際の距離に調節し、ホルダ本体121をガイド102に固定すると、アンカー部、ガイド、およびホルダ本体が一体化されて一対のホルダ120となる。アンカー部間の距離調整動作は、連結状態で2つのアンカー部に中空糸を通した後の任意のタイミングで行うことができる。
 その後、アンカー部122Aおよび122Bを支持部材10に設けられた溝10aに差し込む。これにより、中空糸を保持させたホルダ120が支持部材10に取り付けられて人工三次元組織製造装置101が完成し、第一実施形態と同様に灌流及び培養が可能となる。
When the distance between the anchor portion 122A and the anchor portion 122B is adjusted to the distance when the anchor portion 122B is installed on the support member 10, and the holder body 121 is fixed to the guide 102, the anchor portion, the guide, and the holder body are integrated to form a pair. becomes the holder 120 of The operation for adjusting the distance between the anchor portions can be performed at any timing after the hollow fibers are passed through the two anchor portions in the connected state.
After that, the anchor portions 122A and 122B are inserted into the grooves 10a provided in the support member 10. As shown in FIG. As a result, the holder 120 holding the hollow fibers is attached to the support member 10 to complete the artificial three-dimensional tissue manufacturing apparatus 101, and perfusion and culture can be performed in the same manner as in the first embodiment.
 本発明に係る人工三次元組織製造装置においては、中空糸を多くすることにより、より大きい人工三次元組織の作製が可能となるが、中空糸を増やすことにより、ホルダに中空糸を通す作業が煩雑となる。特に、離間して配置された2つのホルダに中空糸を通す場合、一方のホルダに通した中空糸が撓むことで他方のホルダに通しにくくなったり、対応していない(正対しない)保持部に通してしまいやり直しが必要になったりする可能性が増加し、作業の難度も高くなる。 In the artificial three-dimensional tissue manufacturing apparatus according to the present invention, it is possible to produce a larger artificial three-dimensional tissue by increasing the number of hollow fibers. becomes complicated. In particular, when a hollow fiber is passed through two holders that are spaced apart, the hollow fiber passed through one holder may be bent, making it difficult to pass through the other holder, or may be held in a non-corresponding (non-face-to-face) manner. The possibility of having to pass it through a part and need to redo it will increase, and the difficulty of the work will also increase.
 本実施形態に係る人工三次元組織製造装置101においては、上述したように、アンカー部122Aとアンカー部122Bとが連結可能に構成されている。このため、連結した状態で中空糸を通してからアンカー部122Aとアンカー部122Bとを離間させることにより、中空糸を通す際に上述したエラーが発生することを著しく抑制できる。
 その結果、中空糸の数が多くなっても、人工三次元組織製造装置の組み立てや、人工三次元組織製造方法の実行が煩雑になることを抑制できる。人工三次元組織製造装置については、このような構成とすることにより、ロボットに自動製造させることも期待できる。
In the artificial three-dimensional tissue manufacturing device 101 according to this embodiment, as described above, the anchor portions 122A and 122B are configured to be connectable. Therefore, by separating the anchor portion 122A and the anchor portion 122B after passing the hollow fiber in a connected state, it is possible to significantly suppress the occurrence of the above-described error when passing the hollow fiber.
As a result, even if the number of hollow fibers increases, it is possible to prevent the assembly of the artificial three-dimensional structure manufacturing apparatus and the execution of the artificial three-dimensional structure manufacturing method from becoming complicated. With such a configuration, the artificial three-dimensional tissue manufacturing apparatus can be expected to be automatically manufactured by a robot.
 本実施形態において、中空糸の数は上述した50本に限られず、さらに多数とできることは当然である。さらに多数となった場合でも、アンカー部が連結した状態で中空糸を通すことにより、人工三次元組織製造装置の組み立てや、人工三次元組織製造方法の実行の難度は大きく変化しない。 In this embodiment, the number of hollow fibers is not limited to 50 as described above, and it is of course possible to increase the number. Even if the number of anchors increases, the difficulty of assembling the artificial three-dimensional tissue manufacturing device and executing the artificial three-dimensional tissue manufacturing method does not change significantly by passing the hollow fibers while the anchor portions are connected.
 本実施形態において、保持部内に段差202を設けることは必須ではない。他の方法として、保持部の周囲にある係合壁を連結時の過剰な進入を防ぐストッパとすることもできる。 In this embodiment, it is not essential to provide the step 202 inside the holding portion. As another method, an engaging wall around the holding portion can be used as a stopper to prevent excessive intrusion during connection.
 上述の例では、複数の中空糸がガイド102内で一つに束ねられる例を説明したが、ガイドに設ける斜面の数や配置を変更することにより、中空糸が2つ以上の束にまとめられるようにガイドが構成されてもよい。このような態様は、中空糸が例えば100本以上になるなど、さらに多くなる場合に好適である。 In the above example, a plurality of hollow fibers are bundled together in the guide 102, but by changing the number and arrangement of slopes provided on the guide, the hollow fibers can be bundled into two or more bundles. The guide may be configured as follows. Such a mode is suitable when the number of hollow fibers increases, for example, 100 or more.
 本実施形態に係る人工三次元組織製造装置101を用いて作製した人工三次元組織の評価結果を示す。
 中空糸を50本用いて構成した人工三次元組織製造装置により、ニワトリの筋芽細胞を用いて人工三次元組織を作製した。灌流しつつ9日間培養した灌流サンプルと、灌流せずに9日間培養した非灌流サンプルとの2種類の人工三次元組織を作製した。
The evaluation results of the artificial three-dimensional tissue manufactured using the artificial three-dimensional tissue manufacturing apparatus 101 according to the present embodiment are shown.
An artificial three-dimensional tissue was produced using chicken myoblasts using an artificial three-dimensional tissue manufacturing apparatus configured using 50 hollow fibers. Two types of artificial three-dimensional tissues were prepared: a perfused sample cultured for 9 days with perfusion and a non-perfused sample cultured for 9 days without perfusion.
 培養後に中空糸を抜き取って計測したところ、灌流サンプルは470mgであり、非灌流サンプルの340mgよりも質量の大きい組織を作製できた。
 灌流サンプルにおいては、第一実施形態と同様に中空糸Fの周囲に細胞核が高密度で存在していることが確認できた。また、第一実施形態よりも大きい組織でありながら、筋組織の配向も良好に中空糸の長手方向に揃っており、通電により良好な収縮が観察された。
After culturing, the hollow fiber was pulled out and measured, and the weight of the perfused sample was 470 mg.
In the perfused sample, it was confirmed that cell nuclei were present at high density around the hollow fibers F, as in the first embodiment. In addition, although the tissue was larger than that of the first embodiment, the orientation of the muscle tissue was well aligned in the longitudinal direction of the hollow fiber, and good contraction was observed by energization.
 灌流サンプルおよび非灌流サンプルを用いて、さらに以下の分析を行った。
(評価1:組織のテクスチャー分析)
 テクスチャーアナライザー(TA.XTPlus)を用いて、等速で上下するプローブにより組織を半分の厚さまで押圧してから戻るまでの組織の反力を経時的に計測することでStress-Time curveを取得した。計測は、各サンプルを3つに分割し、各サンプルについて3回ずつ行った。
Further analyzes were performed using perfused and non-perfused samples.
(Evaluation 1: Tissue texture analysis)
Using a texture analyzer (TA.XTPlus), a stress-time curve was acquired by measuring the reaction force of the tissue over time from pressing the tissue to half the thickness with a probe that moves up and down at a constant speed until it returns. . Each sample was divided into three, and each sample was measured three times.
 結果を図24に示す。グラフにおいて横軸は経過時間(秒)であり、縦軸は、プローブが組織から受けた反力の大きさ(g/mm)である。
 灌流サンプルは、いずれも反力がピークに達するまでの時間が非灌流サンプルよりも長かった。これは、灌流サンプルの厚みが非灌流サンプルよりも厚いことを示している。さらに、灌流サンプルの反力のピーク値は、いずれも非灌流サンプルよりも高かった。これは、灌流サンプルが非灌流サンプルよりも高い弾性を有することを示しており、組織の密度が高いことが推測される。
 評価1により、例えば人工三次元組織を食肉用途に用いる場合、灌流を行いながら培養することにより、組織の弾性を適度に向上させて食感を向上できる可能性が示された。
The results are shown in FIG. In the graph, the horizontal axis is the elapsed time (seconds), and the vertical axis is the magnitude of the reaction force (g/mm 2 ) that the probe received from the tissue.
All perfused samples had a longer time to peak reaction force than non-perfused samples. This indicates that the perfused samples are thicker than the non-perfused samples. In addition, the peak values of the reaction force of the perfused samples were all higher than the non-perfused samples. This indicates that the perfused samples have higher elasticity than the non-perfused samples, suggesting a denser tissue.
Evaluation 1 indicates that, for example, when an artificial three-dimensional tissue is used for meat, the elasticity of the tissue can be moderately improved by culturing the tissue while perfusion is performed, and the texture can be improved.
(評価2:組織のアミノ酸分析)
 ポストカラム誘導体化法を用いて、各サンプルに含まれるアミノ酸の量を測定した。さらに、アミノ酸を、主に甘味に関与するアミノ酸(スレオニン、セリン、グリシン、アラニン、プロリン)、主に旨味に関与するアミノ酸(グルタミン酸、アスパラギン酸、グルタミン、アスパラギン)、主に苦味に関与するアミノ酸(チロシン、バリン、ロイシン、フェニルアラニン、メチオニン、イソロイシン、アルギニン、システイン、ヒスチジン、リジン、トリプトファン)の3つに分類し、その比率を算出した。
(Evaluation 2: Tissue amino acid analysis)
A post-column derivatization method was used to determine the amount of amino acids contained in each sample. Furthermore, amino acids mainly involved in sweetness (threonine, serine, glycine, alanine, proline), amino acids mainly involved in umami (glutamic acid, aspartic acid, glutamine, asparagine), amino acids mainly involved in bitterness ( tyrosine, valine, leucine, phenylalanine, methionine, isoleucine, arginine, cysteine, histidine, lysine, and tryptophan), and the ratio was calculated.
 結果を図25に示す。灌流サンプルにおける組織100グラムあたりのアミノ酸の総量は、非灌流サンプルのおよそ2倍であった。また、旨味アミノ酸の比率はサンプル間で差がなかったが、灌流サンプルにおいて甘味アミノ酸の比率がより高く、苦味アミノ酸の比率がより低かった。
 評価2により、例えば人工三次元組織を食肉用途に用いる場合、灌流を行いながら培養することにより、栄養価や風味を向上できる可能性が示された。
The results are shown in FIG. The total amount of amino acids per 100 grams of tissue in perfused samples was approximately double that in non-perfused samples. Also, the proportions of umami amino acids did not differ between samples, but there was a higher proportion of sweet amino acids and a lower proportion of bitter amino acids in the perfused samples.
Evaluation 2 indicates that, for example, when the artificial three-dimensional tissue is used for meat, the nutritional value and flavor can be improved by culturing while performing perfusion.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. The various shapes, combinations, etc., of the constituent members shown in the above examples are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、中空糸として、途中で分岐したものが用いられてもよい。この場合、中空糸の一方の側に1つのホルダがあり、もう一方の側に2つ以上のホルダを備える態様も考えられるが、この場合でも、一方の側のホルダともう一方の側のホルダの1つとが一対のホルダとして特定でき、かつこの一対のホルダが離間する方向を第1方向と認定できる。 For example, hollow fibers that branch midway may be used. In this case, it is conceivable to have one holder on one side of the hollow fiber and two or more holders on the other side. can be identified as a pair of holders, and the direction in which the pair of holders are separated can be identified as the first direction.
 本発明は、人工三次元組織体およびその製造に好適に適用できる。 The present invention can be suitably applied to an artificial three-dimensional tissue and its manufacture.
 1、101…人工三次元組織製造装置、 2…培養空間、 10…支持部材、 20、120…ホルダ、 21、121…ホルダ本体(対向部)、 22、122A、122B…アンカー部、 24…挿通孔、 25…接着部、 25A…接着剤、 27A…導入部(接続部)、 27B…排出部(接続部)、 30…係合壁、 31、131A、131B…保持部、 32…連通部、 35…側壁、 36…第2連通部、 37…第2培養空間(保持空間)、 B…培養体、 B1…本体部、 B2…外側培養体、 B3…結合培養体、 C…細胞、 F…中空糸、 Fa…中空部、 Fb…外周面、 G…足場材料、 M…人工三次元組織構造体 1, 101... artificial three-dimensional tissue manufacturing apparatus, 2... culture space, 10... support member, 20, 120... holder, 21, 121... holder main body (facing part), 22, 122A, 122B... anchor part, 24... insertion Hole 25 Adhering portion 25A Adhesive 27A Introduction portion (connecting portion) 27B Discharging portion (connecting portion) 30 Engaging wall 31, 131A, 131B Holding portion 32 Communicating portion 35... side wall, 36... second communication part, 37... second culture space (holding space), B... culture body, B1... body part, B2... outer culture body, B3... bound culture body, C... cell, F... Hollow fiber, Fa... Hollow portion, Fb... Peripheral surface, G... Scaffolding material, M... Artificial three-dimensional tissue structure

Claims (13)

  1.  中空部を有する中空糸を準備することと、
     培養空間を挟んで第1方向に離間して配置される一対のホルダであって、前記培養空間に臨む係合壁を有するアンカー部と、前記係合壁に対して前記第1方向における前記培養空間と逆側に位置する第2培養空間とをそれぞれ有し、前記係合壁は、当該係合壁を前記第1方向に貫通し前記第1方向と直交する面内に互いに間隔をあけて複数設けられた保持部と、前記係合壁を前記第1方向に貫通し前記培養空間と前記第2培養空間とを連通させる連通部とを有し、前記保持部は、前記中空糸における前記第1方向の端部側を保持する、一対の前記ホルダを準備することと、
     一対の前記ホルダの一方における複数の前記保持部のそれぞれに前記中空糸の一端側を保持させ、一対の前記ホルダの他方における複数の前記保持部のそれぞれに前記中空糸の他端側を保持させることと、
     前記中空糸を保持させた前記一対のホルダを、前記培養空間を挟んで前記第1方向に離間して配置することと、
     前記培養空間および前記第2培養空間に、細胞を含有する硬化前の足場材料を供給して硬化させることと、
     前記中空部に培地を灌流させながら前記細胞を培養することと、
     を含む、
     人工三次元組織製造方法。
    preparing a hollow fiber having a hollow portion;
    A pair of holders spaced apart in a first direction with a culture space interposed therebetween, comprising an anchor portion having an engaging wall facing the culture space, and the culture space in the first direction with respect to the engaging wall. a space and a second culture space located on the opposite side, and the engaging walls penetrate the engaging walls in the first direction and are spaced apart from each other in a plane orthogonal to the first direction a plurality of holding portions; and a communicating portion that penetrates the engaging wall in the first direction and communicates the culture space and the second culture space, wherein the holding portion is the hollow fiber. preparing a pair of said holders for holding end sides in the first direction;
    One end side of the hollow fiber is held by each of the plurality of holding portions of one of the pair of holders, and the other end side of the hollow fiber is held by each of the plurality of holding portions of the other of the pair of holders. and
    arranging the pair of holders holding the hollow fibers so as to be spaced apart in the first direction with the culture space interposed therebetween;
    supplying an uncured scaffold material containing cells to the culture space and the second culture space and curing the scaffold material;
    culturing the cells while perfusing the hollow portion with a medium;
    including,
    An artificial three-dimensional tissue manufacturing method.
  2.  前記ホルダは、前記第1方向で前記第2培養空間を挟んで前記係合壁と対向する対向部を有し、
     前記対向部は、前記第1方向に延び前記中空糸が挿通される挿通孔と、
     前記第1方向と直交する方向に延び、一端が前記挿通孔に接続され、他端が外側に開口する接着部と、
     を有し、
     一対の前記ホルダに前記中空糸を保持させることは、前記接着部を介して接着剤を導入して前記中空糸を前記挿通孔に固定することを含む、
     請求項1に記載の人工三次元組織製造方法。
    the holder has a facing portion facing the engagement wall across the second culture space in the first direction;
    The facing portion includes an insertion hole extending in the first direction and through which the hollow fiber is inserted;
    a bonding portion extending in a direction orthogonal to the first direction, having one end connected to the insertion hole and the other end opening outward;
    has
    holding the hollow fibers in the pair of holders includes introducing an adhesive through the bonding portion to fix the hollow fibers in the insertion holes;
    The method for producing an artificial three-dimensional tissue according to claim 1.
  3.  一対の前記ホルダを準備することは、一対の前記ホルダを前記第1方向に所定距離離れた状態で支持部材に支持させることを含む、
     請求項1または2に記載の人工三次元組織製造方法。
    Preparing the pair of holders includes supporting the pair of holders on a support member while being separated from each other by a predetermined distance in the first direction,
    The method for producing an artificial three-dimensional tissue according to claim 1 or 2.
  4.  前記中空糸を準備することは、
     前記中空糸の外周面と前記アンカー部に親水化処理を施すことを含む、
     請求項1から3のいずれか一項に記載の人工三次元組織製造方法。
    Preparing the hollow fiber includes:
    including subjecting the outer peripheral surface of the hollow fiber and the anchor portion to a hydrophilic treatment,
    The method for producing an artificial three-dimensional tissue according to any one of claims 1 to 3.
  5.  前記中空部に前記培地を15μL/min以上の速度で灌流させながら前記細胞を培養する、
     請求項1から4のいずれか一項に記載の人工三次元組織製造方法。
    culturing the cells while perfusing the medium into the hollow portion at a rate of 15 μL/min or more;
    The method for producing an artificial three-dimensional tissue according to any one of claims 1 to 4.
  6.  中空部を有する中空糸と、
     細胞を含有する足場材料が配される培養空間を挟んで第1方向に離間して配置された一対のホルダと、
     を有し、
     前記ホルダは、
      前記培養空間に臨む係合壁を有するアンカー部と、
      前記係合壁に対して前記第1方向における前記係合壁の前記培養空間と逆側に位置する第2培養空間とをそれぞれ有し、
     前記係合壁は、
      当該係合壁を前記第1方向に貫通し前記第1方向と直交する面内に互いに間隔をあけて複数設けられた保持部と、
      前記係合壁を前記第1方向に貫通し前記培養空間と前記第2培養空間とを連通させる連通部とを有し、
     一対の前記ホルダの一方は、複数の前記保持部のそれぞれが前記中空糸の一端側を保持し、
     一対の前記ホルダの他方は、複数の前記保持部のそれぞれが前記中空糸の他端側を保持する、
     人工三次元組織製造装置。
    a hollow fiber having a hollow portion;
    a pair of holders spaced apart in a first direction across a culture space in which a scaffold material containing cells is arranged;
    has
    The holder is
    an anchor portion having an engagement wall facing the culture space;
    each having a second culture space positioned opposite to the culture space of the engagement wall in the first direction with respect to the engagement wall;
    The engagement wall is
    a plurality of holding portions that penetrate the engagement wall in the first direction and are provided in a plane orthogonal to the first direction at intervals;
    a communicating portion that penetrates the engaging wall in the first direction and communicates the culture space and the second culture space;
    In one of the pair of holders, each of the plurality of holding portions holds one end side of the hollow fiber,
    In the other of the pair of holders, each of the plurality of holding portions holds the other end side of the hollow fiber.
    Artificial three-dimensional tissue manufacturing device.
  7.  一対の前記ホルダの一方は、前記中空部を灌流する培地が導入される導入部を有し、
     一対の前記ホルダの他方は、前記中空部を灌流した培地が排出される排出部を有する、
     請求項6に記載の人工三次元組織製造装置。
    one of the pair of holders has an introduction part into which a medium for perfusing the hollow part is introduced;
    The other of the pair of holders has a discharge part through which the medium perfused in the hollow part is discharged,
    The artificial three-dimensional tissue manufacturing apparatus according to claim 6.
  8.  前記ホルダは、前記第1方向で前記第2培養空間を挟んで前記係合壁と対向する対向部を有し、
     前記対向部は、前記第1方向に延び前記中空糸が挿通される挿通孔と、
     前記第1方向と直交する方向に延び、一端が前記挿通孔に接続され、他端が外側に開口する接着部と、
     を有し、
     前記中空糸は、前記接着部に配された接着剤により前記挿通孔に固定されている、
     請求項6または7に記載の人工三次元組織製造装置。
    the holder has a facing portion facing the engagement wall across the second culture space in the first direction;
    The facing portion includes an insertion hole extending in the first direction and through which the hollow fiber is inserted;
    a bonding portion extending in a direction orthogonal to the first direction, having one end connected to the insertion hole and the other end opening outward;
    has
    The hollow fiber is fixed to the insertion hole by an adhesive applied to the bonding portion,
    The artificial three-dimensional tissue manufacturing device according to claim 6 or 7.
  9.  一対の前記ホルダを前記第1方向に所定距離離れた状態で支持する支持部材を有する、
     請求項6から8のいずれか一項に記載の人工三次元組織製造装置。
    Having a support member that supports the pair of holders in a state separated by a predetermined distance in the first direction,
    The artificial three-dimensional tissue manufacturing device according to any one of claims 6 to 8.
  10.  前記中空糸は、外周面に対する親水化処理が施されている、
     請求項6から9のいずれか一項に記載の人工三次元組織製造装置。
    The hollow fiber is subjected to hydrophilic treatment on the outer peripheral surface,
    The artificial three-dimensional tissue manufacturing device according to any one of claims 6 to 9.
  11.  前記係合壁は、前記第1方向に見て矩形状であり、
     前記ホルダは、前記係合壁の各縁部から前記第1方向で前記培養空間と逆側に延び前記第2培養空間の周囲を囲む側壁を有し、
     前記側壁は、当該側壁を貫通し前記第2培養空間と前記ホルダの外部とを連通させる第2連通部を有する、
     請求項6から10のいずれか一項に記載の人工三次元組織製造装置。
    The engagement wall has a rectangular shape when viewed in the first direction,
    the holder has a side wall extending from each edge of the engagement wall in the first direction in a direction opposite to the culture space and surrounding the second culture space;
    The side wall has a second communication part that penetrates the side wall and communicates the second culture space with the outside of the holder.
    The artificial three-dimensional tissue manufacturing device according to any one of claims 6 to 10.
  12.  細胞を含有する足場材料の培養体と、
     中空部を有し、前記培養体が延びる方向に前記培養体を貫通して設けられた中空糸と、
     を有し、
     前記中空部は、灌流流路であり、
     前記中空糸の外周面は、プラズマで滅菌処理された処理面である、
     人工三次元組織体。
    a culture of a scaffold material containing cells;
    a hollow fiber having a hollow portion and penetrating the culture body in a direction in which the culture body extends;
    has
    the hollow portion is a perfusion channel,
    The outer peripheral surface of the hollow fiber is a plasma-sterilized surface,
    An artificial three-dimensional tissue.
  13.  前記培養体は、筋組織を有する、
     請求項12に記載の人工三次元組織体。
     
    The culture has muscle tissue,
    The artificial three-dimensional tissue according to claim 12.
PCT/JP2022/047671 2021-12-23 2022-12-23 Method for producing synthetic three-dimensional tissue, device for producing synthetic three-dimensional tissue, and synthetic three-dimensional tissue body WO2023120710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209959 2021-12-23
JP2021-209959 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120710A1 true WO2023120710A1 (en) 2023-06-29

Family

ID=86902831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047671 WO2023120710A1 (en) 2021-12-23 2022-12-23 Method for producing synthetic three-dimensional tissue, device for producing synthetic three-dimensional tissue, and synthetic three-dimensional tissue body

Country Status (1)

Country Link
WO (1) WO2023120710A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128660A (en) * 1999-08-25 2001-05-15 Toyobo Co Ltd Module for cell culture having blood vessel network- like structure
JP2013507143A (en) * 2009-10-12 2013-03-04 テルモ ビーシーティー、インコーポレーテッド Method for assembling hollow fiber bioreactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128660A (en) * 1999-08-25 2001-05-15 Toyobo Co Ltd Module for cell culture having blood vessel network- like structure
JP2013507143A (en) * 2009-10-12 2013-03-04 テルモ ビーシーティー、インコーポレーテッド Method for assembling hollow fiber bioreactor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BETTAHALLI N.M.S., VICENTE J., MORONI L., HIGUERA G.A., VAN BLITTERSWIJK C.A., WESSLING M., STAMATIALIS D.F.: "Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs", ACTA BIOMATERIALIA, ELSEVIER, AMSTERDAM, NL, vol. 7, no. 9, 1 September 2011 (2011-09-01), AMSTERDAM, NL, pages 3312 - 3324, XP093073553, ISSN: 1742-7061, DOI: 10.1016/j.actbio.2011.06.012 *
YAMAMOTO, YASUNORI; ITO, AKIRA; JITSUNOBU, HIDEAKI; YAMAGUCHI, KATSUYA; KAWABE, YOSHINORI; MIZUMOTO, HIROSHI; KAMIHIRA, MASAMICHI: "Hollow Fiber Bioreactor Perfusion Culture System for Magnetic Force-Based Skeletal Muscle Tissue Engineering", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, SOCIETY OF CHEMICAL ENGINEERS, JP, vol. 45, no. 5, 1 January 2012 (2012-01-01), JP , pages 348 - 354, XP009547190, ISSN: 0021-9592, DOI: 10.1252/jcej.11we237 *

Similar Documents

Publication Publication Date Title
JP7257442B2 (en) Open-top microfluidic devices and methods for mimicking tissue function
US9701938B2 (en) Intra-culture perfusion methods and applications thereof
Rambani et al. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability
KR101717814B1 (en) Cell culture insert
US10982181B2 (en) Devices for cell culture and methods of making and using the same
WO2008109674A2 (en) Cell expansion system and methods of use
CN112041422A (en) Bioreactor with perfusion function
WO2023120710A1 (en) Method for producing synthetic three-dimensional tissue, device for producing synthetic three-dimensional tissue, and synthetic three-dimensional tissue body
CN112424331A (en) Method for producing a cell culture insert having at least one membrane
FI20215947A1 (en) Microfluidic cell culture device and method for cell cultivation
US5759851A (en) Reversible membrane insert for growing tissue cultures
US20030054545A1 (en) Cell and tissue culture modeling device and apparatus and method of using same
JP7052480B2 (en) Manufacturing method of anti-curing agent or therapeutic agent for crystalline lens
KR101894279B1 (en) Oxygen permeability controllable chip for 3D cell culture
JP7052439B2 (en) Anti-curing or therapeutic agent for the crystalline lens
WO2019012622A1 (en) Device for producing three-dimensional cell structure having arbitrary shape, and method for producing same
EP4239052A1 (en) Cultivation device for biological cell material and method of manufacturing thereof
US20240218309A1 (en) Open-top microfluidic devices and methods for simulating a function of a tissue
US20230265372A1 (en) Duct organoid-on-chip
WO2018070441A1 (en) Method for producing culture cell structure
TW202039819A (en) Cell culturing chip
KR20220093437A (en) Automatic apparatus for supplying cell culture media with osmosis pump
JP2020171235A (en) Cell culture apparatus and bioreactor
KR20230110031A (en) Organ-on-a-chips with inverted-microweir structures comprising collagen layer and uses thereof
JP2022120216A (en) Microfluidic device and method for manufacturing the same, and method for culturing three-dimensional tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911411

Country of ref document: EP

Kind code of ref document: A1