WO2023120538A1 - Method for producing 4-hydroxybenzoic acid - Google Patents
Method for producing 4-hydroxybenzoic acid Download PDFInfo
- Publication number
- WO2023120538A1 WO2023120538A1 PCT/JP2022/046954 JP2022046954W WO2023120538A1 WO 2023120538 A1 WO2023120538 A1 WO 2023120538A1 JP 2022046954 W JP2022046954 W JP 2022046954W WO 2023120538 A1 WO2023120538 A1 WO 2023120538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- poba
- aqueous solution
- bacterium
- bacteria
- Prior art date
Links
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 title claims abstract description 147
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 241000894006 Bacteria Species 0.000 claims abstract description 68
- 102000004190 Enzymes Human genes 0.000 claims abstract description 58
- 108090000790 Enzymes Proteins 0.000 claims abstract description 58
- 239000007864 aqueous solution Substances 0.000 claims abstract description 45
- 239000002253 acid Substances 0.000 claims abstract description 41
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 claims abstract description 36
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 claims abstract description 36
- 235000001785 ferulic acid Nutrition 0.000 claims abstract description 36
- 229940114124 ferulic acid Drugs 0.000 claims abstract description 36
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 claims abstract description 36
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 claims abstract description 36
- 230000002950 deficient Effects 0.000 claims abstract description 30
- 239000002028 Biomass Substances 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 239000000284 extract Substances 0.000 claims description 35
- 241000589516 Pseudomonas Species 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- 239000003513 alkali Substances 0.000 claims description 15
- 229920005610 lignin Polymers 0.000 claims description 14
- 235000000346 sugar Nutrition 0.000 claims description 14
- 150000007524 organic acids Chemical class 0.000 claims description 13
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 10
- 235000005985 organic acids Nutrition 0.000 claims description 10
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- 235000011054 acetic acid Nutrition 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 5
- 235000014655 lactic acid Nutrition 0.000 claims description 5
- 230000012010 growth Effects 0.000 abstract description 11
- 239000007858 starting material Substances 0.000 abstract 1
- 101150046211 pobA gene Proteins 0.000 description 31
- 108090000623 proteins and genes Proteins 0.000 description 20
- 239000002994 raw material Substances 0.000 description 17
- 241000609240 Ambelania acida Species 0.000 description 15
- 239000010905 bagasse Substances 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000006801 homologous recombination Effects 0.000 description 10
- 238000002744 homologous recombination Methods 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 241000589776 Pseudomonas putida Species 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- -1 phenol alkali salt Chemical class 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 150000001491 aromatic compounds Chemical class 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010903 husk Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- YQUVCSBJEUQKSH-UHFFFAOYSA-N protochatechuic acid Natural products OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- WKOLLVMJNQIZCI-UHFFFAOYSA-N vanillic acid Chemical compound COC1=CC(C(O)=O)=CC=C1O WKOLLVMJNQIZCI-UHFFFAOYSA-N 0.000 description 5
- TUUBOHWZSQXCSW-UHFFFAOYSA-N vanillic acid Natural products COC1=CC(O)=CC(C(O)=O)=C1 TUUBOHWZSQXCSW-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 239000002054 inoculum Substances 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 235000012141 vanillin Nutrition 0.000 description 4
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 4
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 239000006142 Luria-Bertani Agar Substances 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 108010084455 Zeocin Proteins 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 150000004676 glycans Chemical group 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229930005346 hydroxycinnamic acid Natural products 0.000 description 2
- DEDGUGJNLNLJSR-UHFFFAOYSA-N hydroxycinnamic acid group Chemical class OC(C(=O)O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 2
- 235000010359 hydroxycinnamic acids Nutrition 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000009288 screen filtration Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-M 4-hydroxybenzoate Chemical compound OC1=CC=C(C([O-])=O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-M 0.000 description 1
- 241000590020 Achromobacter Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 240000007582 Corylus avellana Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- XPJVKCRENWUEJH-UHFFFAOYSA-N Isobutylparaben Chemical compound CC(C)COC(=O)C1=CC=C(O)C=C1 XPJVKCRENWUEJH-UHFFFAOYSA-N 0.000 description 1
- CMHMMKSPYOOVGI-UHFFFAOYSA-N Isopropylparaben Chemical compound CC(C)OC(=O)C1=CC=C(O)C=C1 CMHMMKSPYOOVGI-UHFFFAOYSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- GZYFIMLSHBLMKF-REOHCLBHSA-N L-Albizziine Chemical compound OC(=O)[C@@H](N)CNC(N)=O GZYFIMLSHBLMKF-REOHCLBHSA-N 0.000 description 1
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 1
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 1
- 241000721603 Mycoplana Species 0.000 description 1
- 241001230286 Narenga Species 0.000 description 1
- 241001520808 Panicum virgatum Species 0.000 description 1
- 244000130556 Pennisetum purpureum Species 0.000 description 1
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000204715 Pseudomonas agarici Species 0.000 description 1
- 241001459308 Pseudomonas alcaliphila Species 0.000 description 1
- 241000320117 Pseudomonas putida KT2440 Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 238000006085 Schmidt reaction Methods 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229940113094 isopropylparaben Drugs 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000007965 phenolic acids Chemical class 0.000 description 1
- 235000009048 phenolic acids Nutrition 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000010907 stover Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
Definitions
- the present invention includes the following [1] to [6].
- a method for producing 4-hydroxybenzoic acid comprising the following steps (1) and (2).
- Step (1) Preparing an aqueous solution containing coumaric acid and ferulic acid
- Step (2) Bacteria deficient in PobA enzyme expression are allowed to act on the aqueous solution prepared in Step (1), and the bacteria produce ferulic acid. as a growth carbon source, and converting the coumaric acid to 4-hydroxybenzoic acid by the bacteria
- the step (1) includes alkali-treating the lignin-containing biomass to contain coumaric acid and ferulic acid.
- [3] The method for producing 4-hydroxybenzoic acid according to [1] or [2], wherein the aqueous solution prepared in step (1) has a sugar concentration of less than 5 g/L.
- ferulic acid and coumaric acid are sometimes covalently bound to polysaccharides in the solid raw materials, in order to increase the extraction efficiency, a hydrolysis reaction is performed in a high-temperature alkaline aqueous solution for several hours to obtain ferulic acid. and coumaric acid are preferably eluted in an alkaline aqueous solution.
- the solid raw material for obtaining the extract is preferably lignin-containing biomass.
- Lignin-containing biomass refers to biological resources that contain at least lignin components. Specific examples of lignin-containing biomass include herbaceous biomass such as bagasse, corn cob, switchgrass, napier grass, erianthus, corn stover, rice straw, and straw; woody biomass such as trees and waste building materials; biomass derived from aquatic environments such as algae and seaweed; grain husk biomass such as corn husks, wheat husks, soybean husks and rice husks.
- step (1) is a step of treating lignin-containing biomass with alkali to obtain an extract containing coumaric acid and ferulic acid as the aqueous solution.
- the aqueous solution prepared in step (1) may contain sugar, and the sugar concentration in that case is preferably less than 5 g/L, more preferably 1 g/L or less.
- the lower limit of the sugar concentration of the aqueous solution prepared in step (1) is zero.
- the sugar concentration of the aqueous solution prepared in step (1) is 5 g/L or more, the 4HBA production rate and the 4HBA yield from coumaric acid decrease. This is because the bacterium of the present invention preferentially consumes sugar as a carbon source.
- a Pseudomonas bacterium in which the PobA enzyme is functionally inactivated is, for example, a Pseudomonas bacterium (for example, a wild-type bacterium) before deficient expression of the PobA enzyme, in which the activity of the PobA enzyme is reduced or eliminated.
- Known methods for deficient expression of the PobA enzyme in target bacteria include methods of disrupting the pobA gene by homologous recombination.
- methods such as introduction of mutations into the pobA gene and inactivation of the pobA gene are also known.
- Genetic manipulations such as phage transduction, homologous recombination, plasmid vector insertion, and the like can be used to abolish PobA enzyme expression in the bacterium of interest.
- Methods using homologous recombination include gene knockout for gene disruption and gene knockin for mutation introduction.
- a method of disrupting the pobA gene of a wild-type bacterium by homologous recombination is used as a method of deficient PobA enzyme expression in a target bacterium.
- Disruption of the pobA gene may be insertion of a disruption cassette into the pobA gene by homologous recombination, replacement of the pobA gene with the disruption cassette by homologous recombination, or pobA gene by homologous recombination.
- Table 1 shows the component composition of the bagasse alkali extract.
- Pseudomonas putida (P. putida) strain KT2440 was inoculated into 10 mL of LB liquid medium and cultured with shaking at 30° C. for 16 hours. A portion of the culture was inoculated into 5 mL of fresh LB liquid medium and cultured with shaking at 30° C. until OD 600 reached 0.3-0.5. Cells were collected from the resulting culture medium by centrifugation (6,000 ⁇ g, 5 min, 4° C.) and washed with a cooled 10% Glycerol solution. The washing operation was repeated 3 times. The washed cells were collected by centrifugation and suspended in 0.1 mL of chilled 10% Glycerol solution.
- Example 3 Preculture of Pseudomonas bacterium (KT2440 strain ⁇ PobA strain) deficient in PobA enzyme expression KT2440 strain ⁇ PobA strain was statically cultured overnight at 30°C on an LB agar medium. A colony formed on the agar medium was inoculated into 10 mL of an LB liquid medium and cultured with shaking at 30° C. for 16 hours. 1 mL of a cell suspension (suspended in physiological saline) having an OD 600 of 5.0 was prepared from the obtained culture medium and used as an inoculum.
Landscapes
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention addresses the problem of providing a method for producing 4-hydroxybenzoic acid (4HBA) with high efficiency from a starting material such as a biomass, and provides a method for producing 4-hydroxybenzoic acid which includes the following steps (1) and (2). Step (1): a step for preparing an aqueous solution containing coumaric acid and ferulic acid; and step (2): a step for allowing a bacterium in which the expression of PobA enzyme is defective to act on the aqueous solution prepared in step (1) to metabolize the ferulic acid as a growth carbon source by the bacterium and convert the coumaric acid to 4-hydroxybenzoic acid by the bacterium.
Description
本発明は、バイオマスなどを原料とする4-ヒドロキシ安息香酸の製造方法に関する。
The present invention relates to a method for producing 4-hydroxybenzoic acid using biomass or the like as a raw material.
4-ヒドロキシ安息香酸(4HBA)は、液晶ポリマーのモノマーとして利用されているだけでなく、酸化防止剤、農薬原料など用途は多岐にわたる。4HBAは、石油由来のフェノール・アルカリ塩に二酸化炭素を高温および高圧で反応させるコルベ・シュミット反応にて製造されているが、温室効果ガス(GHG)削減の観点から、バイオ原料への転換が課題となっている。
4-Hydroxybenzoic acid (4HBA) is used not only as a monomer for liquid crystal polymers, but also as an antioxidant and as a raw material for agricultural chemicals. 4HBA is produced by the Kolbe-Schmidt reaction, in which carbon dioxide is reacted with petroleum-derived phenol alkali salt at high temperature and high pressure. It has become.
一方、バイオマスからフェルラ酸、クマル酸などのヒドロキシ桂皮酸類を製造する方法が知られており、原料としてサトウキビ絞り粕であるバガスが利用できることが開示されている(特許文献1)。また、バイオマス抽出物から高純度のフェルラ酸を製造し、得られたフェルラ酸をバニリンに変換する方法が開示されている(特許文献2)。さらに、シュードモナス属細菌のpobA遺伝子をノックアウトすることで、クマル酸から4HBAが蓄積できることが開示されている(非特許文献1)。このように、バイオマスを原料として4HBAが製造できる可能性は示唆されているが、バイオマス原料から4HBAを一気通貫で簡単に製造した例は報告されておらず、また、商業生産も実現していないため、さらなる技術開発が求められている。
On the other hand, a method of producing hydroxycinnamic acids such as ferulic acid and coumaric acid from biomass is known, and it is disclosed that bagasse, which is sugarcane residue, can be used as a raw material (Patent Document 1). Moreover, a method of producing high-purity ferulic acid from a biomass extract and converting the obtained ferulic acid into vanillin is disclosed (Patent Document 2). Furthermore, it has been disclosed that 4HBA can be accumulated from coumaric acid by knocking out the pobA gene of Pseudomonas bacteria (Non-Patent Document 1). In this way, the possibility of producing 4HBA using biomass as a raw material has been suggested, but there have been no reports of a single, easy production of 4HBA from a biomass raw material, and commercial production has not been realized. Therefore, further technical development is required.
本発明は、バイオマスなどの原料から4-ヒドロキシ安息香酸(4HBA)を高効率に製造する方法を提供することを目的とする。
The purpose of the present invention is to provide a method for highly efficient production of 4-hydroxybenzoic acid (4HBA) from raw materials such as biomass.
本発明者は、バイオマスなどの原料からの抽出液に含まれるヒドロキシ桂皮酸類に着目して鋭意検討を重ねた結果、PobA酵素発現が欠損した細菌は、抽出液に含まれるフェルラ酸を生育炭素源として代謝して生育しながら、同じく抽出液に含まれるクマル酸を4-ヒドロキシ安息香酸(4HBA)に変換することを見出し、本発明を完成した。
The inventor of the present invention focused on hydroxycinnamic acids contained in extracts from raw materials such as biomass and conducted extensive studies. The inventors also found that coumaric acid contained in the extract is converted to 4-hydroxybenzoic acid (4HBA) while metabolizing and growing as , and completed the present invention.
すなわち、本発明は以下の[1]~[6]を包含する。
[1]以下の工程(1)および(2)を含む、4-ヒドロキシ安息香酸の製造方法。
工程(1):クマル酸およびフェルラ酸を含む水溶液を準備する工程
工程(2):工程(1)で準備された前記水溶液にPobA酵素発現が欠損した細菌を作用させ、前記細菌により前記フェルラ酸を生育炭素源として代謝させるとともに、前記細菌により前記クマル酸を4-ヒドロキシ安息香酸に変換させる工程
[2]前記工程(1)が、リグニン含有バイオマスをアルカリ処理し、クマル酸およびフェルラ酸を含む抽出液を前記水溶液として得る工程である、[1]に記載の4-ヒドロキシ安息香酸の製造方法。
[3]前記工程(1)で準備される前記水溶液の糖濃度が5g/L未満である、[1]または[2]に記載の4-ヒドロキシ安息香酸の製造方法。
[4]前記工程(1)で準備される前記水溶液が、酢酸、ギ酸および乳酸からなる群から選択される1種または2種以上の有機酸を含む、[1]から[3]のいずれかに記載の4-ヒドロキシ安息香酸の製造方法。
[5]前記工程(2)で使用される前記細菌がシュードモナス属細菌である、[1]から[4]のいずれかに記載の4-ヒドロキシ安息香酸の製造方法。
[6]前記工程(2)において、前記細菌をpH5~7の条件で前記水溶液に作用させる、[1]から[5]のいずれかに記載の4-ヒドロキシ安息香酸の製造方法。 That is, the present invention includes the following [1] to [6].
[1] A method for producing 4-hydroxybenzoic acid, comprising the following steps (1) and (2).
Step (1): Preparing an aqueous solution containing coumaric acid and ferulic acid Step (2): Bacteria deficient in PobA enzyme expression are allowed to act on the aqueous solution prepared in Step (1), and the bacteria produce ferulic acid. as a growth carbon source, and converting the coumaric acid to 4-hydroxybenzoic acid by the bacteria [2] The step (1) includes alkali-treating the lignin-containing biomass to contain coumaric acid and ferulic acid. The method for producing 4-hydroxybenzoic acid according to [1], which is a step of obtaining an extract as the aqueous solution.
[3] The method for producing 4-hydroxybenzoic acid according to [1] or [2], wherein the aqueous solution prepared in step (1) has a sugar concentration of less than 5 g/L.
[4] Any one of [1] to [3], wherein the aqueous solution prepared in step (1) contains one or more organic acids selected from the group consisting of acetic acid, formic acid and lactic acid. A method for producing 4-hydroxybenzoic acid according to .
[5] The method for producing 4-hydroxybenzoic acid according to any one of [1] to [4], wherein the bacterium used in step (2) is Pseudomonas bacterium.
[6] The method for producing 4-hydroxybenzoic acid according to any one of [1] to [5], wherein in the step (2), the bacteria are allowed to act on the aqueous solution under conditions of pH 5-7.
[1]以下の工程(1)および(2)を含む、4-ヒドロキシ安息香酸の製造方法。
工程(1):クマル酸およびフェルラ酸を含む水溶液を準備する工程
工程(2):工程(1)で準備された前記水溶液にPobA酵素発現が欠損した細菌を作用させ、前記細菌により前記フェルラ酸を生育炭素源として代謝させるとともに、前記細菌により前記クマル酸を4-ヒドロキシ安息香酸に変換させる工程
[2]前記工程(1)が、リグニン含有バイオマスをアルカリ処理し、クマル酸およびフェルラ酸を含む抽出液を前記水溶液として得る工程である、[1]に記載の4-ヒドロキシ安息香酸の製造方法。
[3]前記工程(1)で準備される前記水溶液の糖濃度が5g/L未満である、[1]または[2]に記載の4-ヒドロキシ安息香酸の製造方法。
[4]前記工程(1)で準備される前記水溶液が、酢酸、ギ酸および乳酸からなる群から選択される1種または2種以上の有機酸を含む、[1]から[3]のいずれかに記載の4-ヒドロキシ安息香酸の製造方法。
[5]前記工程(2)で使用される前記細菌がシュードモナス属細菌である、[1]から[4]のいずれかに記載の4-ヒドロキシ安息香酸の製造方法。
[6]前記工程(2)において、前記細菌をpH5~7の条件で前記水溶液に作用させる、[1]から[5]のいずれかに記載の4-ヒドロキシ安息香酸の製造方法。 That is, the present invention includes the following [1] to [6].
[1] A method for producing 4-hydroxybenzoic acid, comprising the following steps (1) and (2).
Step (1): Preparing an aqueous solution containing coumaric acid and ferulic acid Step (2): Bacteria deficient in PobA enzyme expression are allowed to act on the aqueous solution prepared in Step (1), and the bacteria produce ferulic acid. as a growth carbon source, and converting the coumaric acid to 4-hydroxybenzoic acid by the bacteria [2] The step (1) includes alkali-treating the lignin-containing biomass to contain coumaric acid and ferulic acid. The method for producing 4-hydroxybenzoic acid according to [1], which is a step of obtaining an extract as the aqueous solution.
[3] The method for producing 4-hydroxybenzoic acid according to [1] or [2], wherein the aqueous solution prepared in step (1) has a sugar concentration of less than 5 g/L.
[4] Any one of [1] to [3], wherein the aqueous solution prepared in step (1) contains one or more organic acids selected from the group consisting of acetic acid, formic acid and lactic acid. A method for producing 4-hydroxybenzoic acid according to .
[5] The method for producing 4-hydroxybenzoic acid according to any one of [1] to [4], wherein the bacterium used in step (2) is Pseudomonas bacterium.
[6] The method for producing 4-hydroxybenzoic acid according to any one of [1] to [5], wherein in the step (2), the bacteria are allowed to act on the aqueous solution under conditions of pH 5-7.
本発明では、PobA酵素発現が欠損した細菌(以下「本発明の細菌」という場合がある。)により、水溶液(例えば、バイオマスなどの原料からの抽出液)に含まれるフェルラ酸が生育炭素源として代謝されるとともに、同じ水溶液中のクマル酸が4-ヒドロキシ安息香酸に変換される。すなわち、フェルラ酸は、4-ヒドロキシ安息香酸の製造における不純物であり、本発明の細菌により除去される。また、特に、リグニン含有バイオマスのアルカリ抽出液には、有機酸やアミノ酸などその他の不純物も含まれ得るが、これらも本発明の細菌より除去される。これらの効果により、純度の高い4-ヒドロキシ安息香酸を少ない精製ステップで得ることができる。
In the present invention, ferulic acid contained in an aqueous solution (for example, an extract from raw materials such as biomass) is used as a carbon source for growth by bacteria lacking PobA enzyme expression (hereinafter sometimes referred to as "bacteria of the present invention"). As it is metabolized, coumaric acid in the same aqueous solution is converted to 4-hydroxybenzoic acid. That is, ferulic acid is an impurity in the production of 4-hydroxybenzoic acid and is removed by the bacterium of the present invention. In particular, alkaline extracts of lignin-containing biomass may also contain other impurities, such as organic acids and amino acids, which are also removed from the bacteria of the invention. Due to these effects, highly pure 4-hydroxybenzoic acid can be obtained with a small number of purification steps.
以下に、本発明を詳細に説明するが、本発明はこれらに限定されない。
Although the present invention will be described in detail below, the present invention is not limited to these.
<工程(1)>
工程(1)は、クマル酸およびフェルラ酸を含む水溶液を準備する工程である。以下、工程(1)について説明する。 <Step (1)>
Step (1) is a step of preparing an aqueous solution containing coumaric acid and ferulic acid. The step (1) will be described below.
工程(1)は、クマル酸およびフェルラ酸を含む水溶液を準備する工程である。以下、工程(1)について説明する。 <Step (1)>
Step (1) is a step of preparing an aqueous solution containing coumaric acid and ferulic acid. The step (1) will be described below.
本発明において、クマル酸およびフェルラ酸を含む水溶液とは、少なくともクマル酸およびフェルラ酸を含有する水溶液のことを指し、具体例としては、クマル酸およびフェルラ酸を含有する固体原料に水を接触せしめ、固体原料に含まれるクマル酸およびフェルラ酸を抽出して得られた抽出液が挙げられる。クマル酸およびフェルラ酸を含有する固体原料からの抽出方法は、クマル酸およびフェルラ酸が効率的に抽出されうるのであれば限定されることはないが、フェルラ酸およびクマル酸は、アルカリ条件で水溶性が高まることから、アルカリ水溶液で抽出することが好ましい。また、フェルラ酸およびクマル酸は、固体原料中の多糖などと共有結合していることもあることから、抽出効率を高めるために、高温のアルカリ水溶液で数時間、加水分解反応を行い、フェルラ酸およびクマル酸をアルカリ水溶液に溶出させることが好ましい。
In the present invention, the aqueous solution containing coumaric acid and ferulic acid refers to an aqueous solution containing at least coumaric acid and ferulic acid. , an extract obtained by extracting coumaric acid and ferulic acid contained in a solid raw material. The extraction method from solid raw materials containing coumaric acid and ferulic acid is not limited as long as coumaric acid and ferulic acid can be efficiently extracted. Extraction with an alkaline aqueous solution is preferable because the properties of the extract are enhanced. In addition, since ferulic acid and coumaric acid are sometimes covalently bound to polysaccharides in the solid raw materials, in order to increase the extraction efficiency, a hydrolysis reaction is performed in a high-temperature alkaline aqueous solution for several hours to obtain ferulic acid. and coumaric acid are preferably eluted in an alkaline aqueous solution.
抽出液を得るための固体原料は、リグニン含有バイオマスであることが好ましい。リグニン含有バイオマスとは、少なくともリグニン成分を含む生物資源のことを指す。リグニン含有バイオマスの具体例としては、バガス、コーンコブ、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、稲わら、麦わらなどの草本系バイオマス;樹木、廃建材などの木質系バイオマス;木質系バイオマスから得られるパルプ;藻類、海草など水生環境由来のバイオマス;コーン外皮、小麦外皮、大豆外皮、籾殻などの穀物外皮バイオマスなどが挙げられる。
The solid raw material for obtaining the extract is preferably lignin-containing biomass. Lignin-containing biomass refers to biological resources that contain at least lignin components. Specific examples of lignin-containing biomass include herbaceous biomass such as bagasse, corn cob, switchgrass, napier grass, erianthus, corn stover, rice straw, and straw; woody biomass such as trees and waste building materials; biomass derived from aquatic environments such as algae and seaweed; grain husk biomass such as corn husks, wheat husks, soybean husks and rice husks.
好ましい一実施形態において、工程(1)は、リグニン含有バイオマスをアルカリ処理し、クマル酸およびフェルラ酸を含む抽出液を前記水溶液として得る工程である。
In a preferred embodiment, step (1) is a step of treating lignin-containing biomass with alkali to obtain an extract containing coumaric acid and ferulic acid as the aqueous solution.
本発明において、アルカリ処理とは、リグニン含有バイオマス1g重量あたりアルカリ成分を0.1~1g添加して、常温または加温下で、一定時間放置する処理である。アルカリとしては、水酸化ナトリウム、水酸化カルシウム、アンモニアなどを使用することができる。アルカリ処理の温度は、常温~300℃の範囲において、クマル酸およびフェルラ酸の抽出量が最大になるように設定すればよい。アルカリ処理の温度は、好ましくは50℃以上100℃未満、より好ましくは65℃以上90℃以下である。アルカリ処理におけるリグニン含有バイオマスの固形分濃度は、好ましくは1~25重量%、より好ましくは5~20重量%の範囲となるように加水をして調整される。アルカリ処理の反応後、アルカリ抽出液には、クマル酸およびフェルラ酸が溶解して含まれるため、固形分を分離除去することで抽出液を得ることができる。また、固形分の分離除去の前に、酸を投入し、中和または酸性化することが好ましい。酸により中和または酸性化することで、アルカリ抽出液に溶解しているアルカリ可溶リグニンのみを選択的に析出させることができ、これらを固形分として分離除去することで、微生物の変換効率を高める効果がある。中和または酸性化した後のpHの範囲は、好ましくはpH3~7.5、より好ましくはpH4.5~5.5である。これらのpH範囲であると、クマル酸およびフェルラ酸は溶解したままの状態として、アルカリ可溶リグニンのみを選択的に析出させ、分離除去することができる。固液分離の方法は、特に限定されないが、スクリューデカンタなどによる遠心分離;フィルタープレスなどによる膜分離;ベルトプレス、ベルトフィルター、自然沈降などによる分離;メッシュスクリーン、不織布、ろ紙などによるろ過法などにより固液分離を行うことができる。前記操作によって得られた、クマル酸およびフェルラ酸を含む抽出液に対して、工程(2)で使用する前に成分濃度の調整を行ってもよい。
In the present invention, the alkali treatment is a treatment in which 0.1 to 1 g of an alkali component is added per 1 g weight of lignin-containing biomass and left at room temperature or under heating for a certain period of time. Examples of alkalis that can be used include sodium hydroxide, calcium hydroxide, and ammonia. The temperature of the alkali treatment may be set in the range of room temperature to 300° C. so that the amount of coumaric acid and ferulic acid extracted is maximized. The temperature of the alkali treatment is preferably 50°C or higher and lower than 100°C, more preferably 65°C or higher and 90°C or lower. The solid content concentration of the lignin-containing biomass in the alkali treatment is preferably adjusted to 1 to 25% by weight, more preferably 5 to 20% by weight, by adding water. Since coumaric acid and ferulic acid are dissolved in the alkaline extract after the alkali treatment reaction, the extract can be obtained by separating and removing the solids. Moreover, it is preferable to add an acid to neutralize or acidify the solid content before separating and removing the solid content. By neutralizing or acidifying with an acid, only the alkali-soluble lignin dissolved in the alkali extract can be selectively precipitated, and by separating and removing these as solids, the conversion efficiency of microorganisms can be improved. It has a boosting effect. The pH range after neutralization or acidification is preferably pH 3-7.5, more preferably pH 4.5-5.5. Within these pH ranges, coumaric acid and ferulic acid remain dissolved, and only alkali-soluble lignin can be selectively deposited and separated and removed. The method of solid-liquid separation is not particularly limited, but centrifugation using a screw decanter, etc.; membrane separation using a filter press, etc.; separation using a belt press, belt filter, natural sedimentation, etc.; Solid-liquid separation can be performed. The extract containing coumaric acid and ferulic acid obtained by the above operation may be adjusted in component concentration before being used in step (2).
好ましい一実施形態において、工程(1)は、バガスをアルカリ処理した後、中和し固形分を除去して、クマル酸およびフェルラ酸を含む抽出液を前記水溶液として得る工程である。
In a preferred embodiment, step (1) is a step of subjecting bagasse to alkali treatment, followed by neutralization to remove solids to obtain an extract containing coumaric acid and ferulic acid as the aqueous solution.
工程(1)で準備される水溶液のクマル酸濃度は、例えば1~1000mg/L、好ましくは10~200mg/Lである。工程(1)の水溶液のフェルラ酸濃度は、例えば1~1000mg/L、好ましくは10~200mg/L、より好ましくは10~50mg/Lである。クマル酸は、4-ヒドロキシ安息香酸(4HBA)に変換できるため、クマル酸濃度は高い方が好ましいが、フェルラ酸は生育炭素源であり、また微生物に消費されずに残った場合に不純物となるため、フェルラ酸濃度はクマル酸濃度より相対的に低い方が好ましい。
The concentration of coumaric acid in the aqueous solution prepared in step (1) is, for example, 1-1000 mg/L, preferably 10-200 mg/L. The concentration of ferulic acid in the aqueous solution in step (1) is, for example, 1-1000 mg/L, preferably 10-200 mg/L, more preferably 10-50 mg/L. Since coumaric acid can be converted to 4-hydroxybenzoic acid (4HBA), the higher the concentration of coumaric acid, the better, but ferulic acid is a carbon source for growth and becomes an impurity if left unconsumed by microorganisms. Therefore, the ferulic acid concentration is preferably relatively lower than the coumaric acid concentration.
工程(1)で準備される水溶液は、クマル酸およびフェルラ酸に加えて、バニリン酸、バニリンなどの他の芳香族化合物を含んでいてもよい。これらの芳香族化合物は、工程(2)において、本発明の細菌の生育炭素源として利用される。工程(1)で準備される水溶液のバニリン酸濃度は、例えば0~100mg/L、好ましくは0~10mg/Lである。工程(1)で準備される水溶液のバニリン濃度は、例えば0~100mg/m、好ましくは0~10mg/Lである。なお、バニリンおよび/またはバニリン酸濃度が100mg/Lを超えると、細菌増殖が阻害されることがある。
The aqueous solution prepared in step (1) may contain other aromatic compounds such as vanillic acid and vanillin in addition to coumaric acid and ferulic acid. These aromatic compounds are used in step (2) as a growth carbon source for the bacteria of the present invention. The vanillic acid concentration of the aqueous solution prepared in step (1) is, for example, 0-100 mg/L, preferably 0-10 mg/L. The vanillin concentration of the aqueous solution prepared in step (1) is, for example, 0-100 mg/m, preferably 0-10 mg/L. In addition, when the vanillin and/or vanillic acid concentration exceeds 100 mg/L, bacterial growth may be inhibited.
工程(1)で準備される水溶液は、通常、4-ヒドロキシ安息香酸(4HBA)を含まない。
The aqueous solution prepared in step (1) usually does not contain 4-hydroxybenzoic acid (4HBA).
工程(1)で準備される水溶液には糖が含まれていてもよく、その場合の糖濃度は、好ましくは5g/L未満、より好ましくは1g/L以下である。なお、工程(1)で準備される水溶液の糖濃度の下限値はゼロである。工程(1)で準備される水溶液の糖濃度が5g/L以上であると、4HBA生成速度、クマル酸からの4HBA収率が減少する。これは、本発明の細菌が糖を炭素源として優先消費するためである。ここで、糖とは、単糖(例えば、グルコール、フルクトース、キシロース、マンノース、アラビノースなど)、二糖(例えば、スクロースなど)、オリゴ糖、多糖などを意味する。糖は、単糖および二糖から選択される1種または2種以上の糖であることが好ましい。工程(1)で準備される水溶液が2種以上の糖を含む場合、糖濃度は、当該2種以上の糖の合計濃度を意味する。
The aqueous solution prepared in step (1) may contain sugar, and the sugar concentration in that case is preferably less than 5 g/L, more preferably 1 g/L or less. The lower limit of the sugar concentration of the aqueous solution prepared in step (1) is zero. When the sugar concentration of the aqueous solution prepared in step (1) is 5 g/L or more, the 4HBA production rate and the 4HBA yield from coumaric acid decrease. This is because the bacterium of the present invention preferentially consumes sugar as a carbon source. Here, sugar means monosaccharide (eg, glucose, fructose, xylose, mannose, arabinose, etc.), disaccharide (eg, sucrose, etc.), oligosaccharide, polysaccharide, and the like. The sugar is preferably one or two or more sugars selected from monosaccharides and disaccharides. When the aqueous solution prepared in step (1) contains two or more sugars, the sugar concentration means the total concentration of the two or more sugars.
工程(1)で準備される水溶液は、酢酸、ギ酸および乳酸からなる群から選択される1種または2種以上の有機酸を含むことが好ましい。これらの有機酸は、工程(2)において、本発明の細菌のための生育炭素源として利用される。有機酸は、4HBA生成速度、4HBA収率を下げることなく本発明の細菌の生育炭素源として利用され得る。工程(1)で準備される水溶液の有機酸濃度は、例えば1~10,000mg/L、好ましくは50~2,000mg/Lである。工程(1)で準備される水溶液が2種以上の有機酸を含む場合、有機酸濃度は、2種以上の有機酸の合計濃度を意味する。
The aqueous solution prepared in step (1) preferably contains one or more organic acids selected from the group consisting of acetic acid, formic acid and lactic acid. These organic acids are utilized as a growth carbon source for the bacteria of the invention in step (2). An organic acid can be used as a growth carbon source for the bacterium of the present invention without lowering the 4HBA production rate and 4HBA yield. The organic acid concentration of the aqueous solution prepared in step (1) is, for example, 1 to 10,000 mg/L, preferably 50 to 2,000 mg/L. When the aqueous solution prepared in step (1) contains two or more organic acids, the organic acid concentration means the total concentration of the two or more organic acids.
<工程(2)>
工程(2)は、工程(1)で準備された水溶液にPobA酵素発現が欠損した細菌を作用させ、前記細菌により前記フェルラ酸を生育炭素源として代謝させるとともに、前記細菌により前記クマル酸を4-ヒドロキシ安息香酸に変換させる工程である。以下、工程(2)について説明する。 <Step (2)>
In the step (2), bacteria deficient in PobA enzyme expression are allowed to act on the aqueous solution prepared in the step (1), the bacteria metabolize the ferulic acid as a carbon source for growth, and the bacteria convert the coumaric acid into 4 - is a step of converting to hydroxybenzoic acid. The step (2) will be described below.
工程(2)は、工程(1)で準備された水溶液にPobA酵素発現が欠損した細菌を作用させ、前記細菌により前記フェルラ酸を生育炭素源として代謝させるとともに、前記細菌により前記クマル酸を4-ヒドロキシ安息香酸に変換させる工程である。以下、工程(2)について説明する。 <Step (2)>
In the step (2), bacteria deficient in PobA enzyme expression are allowed to act on the aqueous solution prepared in the step (1), the bacteria metabolize the ferulic acid as a carbon source for growth, and the bacteria convert the coumaric acid into 4 - is a step of converting to hydroxybenzoic acid. The step (2) will be described below.
PobA酵素とは、4-ヒドロキシ安息香酸ヒドロキシラーゼとも呼ばれる酵素であり、安息香酸分解酵素のひとつである。天然に存在する細菌には、PobA酵素を保有する細菌と保有しない細菌が存在する。PobA酵素発現が欠損した細菌は、対象の細菌においてPobA酵素発現を欠損させることにより得ることができる。PobA酵素発現を欠損させるべき対象の細菌とは、PobA酵素を本来保有する細菌のことを指し、PobA酵素発現が欠損した細菌とは、PobA酵素を本来保有する細菌において、PobA酵素を機能的に不活化させた細菌のことを指す。好ましくは、PobA酵素発現が欠損した細菌とは、PobA酵素を本来保有する細菌において、その細菌が本来保有するPobA酵素をコードする遺伝子(以下「pobA遺伝子」という。)の改変により、PobA酵素を機能的に不活性化させた細菌のことを指す。PobA酵素発現が欠損した細菌としては、例えば、pobA遺伝子の破壊(例えば、破壊カセットのpobA遺伝子への挿入、破壊カセットでのpobA遺伝子の置換、pobA遺伝子の欠失(削除)など)、pobA遺伝子への変異の導入、pobA遺伝子の制御領域のブロックなどにより、PobA酵素を機能的に不活化させた細菌が挙げられる。PobA酵素を機能的に不活化させた細菌としては、例えば、PobA酵素発現を欠損させる前の細菌(例えば、野生型細菌)と比較して、PobA酵素の活性が低下または消失している細菌;PobA酵素発現を欠損させる前の細菌(例えば、野生型細菌)と比較して、PobA酵素の発現量が低減している細菌;PobA酵素を発現しない細菌などが挙げられる。一方で、PobA酵素を本来保有しない細菌もいるが、こうした細菌の場合、クマル酸やフェルラ酸の酵素的な代謝変換経路がそもそも存在せず、目的とする4-ヒドロキシ安息香酸を製造することが難しいため使用は好ましくない。
The PobA enzyme is an enzyme also called 4-hydroxybenzoate hydroxylase, and is one of the benzoate-degrading enzymes. Naturally occurring bacteria include those that possess the PobA enzyme and those that do not. A bacterium deficient in PobA enzyme expression can be obtained by deficient PobA enzyme expression in the bacterium of interest. The target bacterium to be deficient in PobA enzyme expression refers to a bacterium that originally possesses the PobA enzyme. It refers to inactivated bacteria. Preferably, the PobA enzyme expression-deficient bacterium is a bacterium that originally possesses the PobA enzyme. It refers to functionally inactivated bacteria. Bacteria deficient in PobA enzyme expression include, for example, disruption of the pobA gene (e.g., insertion of a disruption cassette into the pobA gene, replacement of the pobA gene with the disruption cassette, deletion (deletion) of the pobA gene, etc.), pobA gene Bacteria in which the PobA enzyme has been functionally inactivated by introducing mutations into , blocking the control region of the pobA gene, or the like. Bacteria in which the PobA enzyme is functionally inactivated include, for example, bacteria in which the activity of the PobA enzyme is reduced or eliminated compared to the bacterium (e.g., wild-type bacterium) before the PobA enzyme expression is deficient; Bacteria in which the level of expression of the PobA enzyme is reduced compared to bacteria (for example, wild-type bacteria) before the expression of the PobA enzyme is deficient; bacteria that do not express the PobA enzyme; On the other hand, some bacteria do not originally possess the PobA enzyme, but in the case of such bacteria, the enzymatic metabolic conversion pathway of coumaric acid and ferulic acid does not exist in the first place, and the desired 4-hydroxybenzoic acid cannot be produced. I don't like to use it because it's difficult.
本発明で好ましく使用できる細菌としては、シュードモナス属細菌、ロドコッカス属細菌、エンテロバクター属細菌、バチルス属細菌、マイコプラナ属細菌、キサントモナス属細菌、アクロモバクター属細菌などを例示できるが、最も好ましくは、シュードモナス属細菌である。
Bacteria preferably usable in the present invention include Pseudomonas, Rhodococcus, Enterobacter, Bacillus, Mycoplana, Xanthomonas, Achromobacter, etc. Most preferably, Pseudomonas bacterium.
シュードモナス属細菌が本来保有するPobA酵素としては、例えば、以下の(a)または(b)のタンパク質が挙げられる。
(a)配列番号2に記載のアミノ酸配列を含むまたは該アミノ酸配列からなるタンパク質
(b)配列番号2に記載のアミノ酸配列と50%以上、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上(例えば、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上または99%以上)の配列同一性を有するアミノ酸配列を含むまたは該アミノ酸配列からなるタンパク質であって、PobA酵素活性を有するタンパク質 PobA enzymes originally possessed by Pseudomonas bacteria include, for example, the following proteins (a) and (b).
(a) a protein comprising or consisting of the amino acid sequence set forth in SEQ ID NO: 2; Preferably 80% or more, more preferably 90% or more (e.g., 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more ) comprising or consisting of an amino acid sequence having the sequence identity of ), which protein has PobA enzymatic activity
(a)配列番号2に記載のアミノ酸配列を含むまたは該アミノ酸配列からなるタンパク質
(b)配列番号2に記載のアミノ酸配列と50%以上、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上(例えば、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上または99%以上)の配列同一性を有するアミノ酸配列を含むまたは該アミノ酸配列からなるタンパク質であって、PobA酵素活性を有するタンパク質 PobA enzymes originally possessed by Pseudomonas bacteria include, for example, the following proteins (a) and (b).
(a) a protein comprising or consisting of the amino acid sequence set forth in SEQ ID NO: 2; Preferably 80% or more, more preferably 90% or more (e.g., 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more ) comprising or consisting of an amino acid sequence having the sequence identity of ), which protein has PobA enzymatic activity
配列番号2に記載のアミノ酸配列は、シュードモナス・プチダ KT2440株由来のPobA酵素のアミノ酸配列(Accession No.Q88H28)である。
The amino acid sequence set forth in SEQ ID NO: 2 is the amino acid sequence (Accession No. Q88H28) of the PobA enzyme derived from Pseudomonas putida strain KT2440.
アミノ酸配列の配列同一性は、BLAST(J.Mol.Biol.,215,403(1990))、FASTA(Methods in Enzymology,183,63(1990))などの相同性検索ソフトを用いて計算することができる。
Sequence identity of amino acid sequences is calculated using homology search software such as BLAST (J. Mol. Biol., 215, 403 (1990)) and FASTA (Methods in Enzymology, 183, 63 (1990)). can be done.
シュードモナス属細菌が本来保有するPobA酵素をコードする遺伝子(pobA遺伝子)としては、例えば、以下の(c)または(d)のDNAが挙げられる。
(c)配列番号1に記載の塩基配列を含むまたは該塩基配列からなるDNA
(d)配列番号1に記載の塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし得るDNAであって、PobA酵素活性を有するタンパク質をコードするDNA Examples of the gene (pobA gene) encoding the PobA enzyme originally possessed by Pseudomonas bacteria include the following DNAs (c) and (d).
(c) DNA containing or consisting of the nucleotide sequence set forth in SEQ ID NO: 1
(d) A DNA that can hybridize under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 1 and that encodes a protein having PobA enzymatic activity.
(c)配列番号1に記載の塩基配列を含むまたは該塩基配列からなるDNA
(d)配列番号1に記載の塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズし得るDNAであって、PobA酵素活性を有するタンパク質をコードするDNA Examples of the gene (pobA gene) encoding the PobA enzyme originally possessed by Pseudomonas bacteria include the following DNAs (c) and (d).
(c) DNA containing or consisting of the nucleotide sequence set forth in SEQ ID NO: 1
(d) A DNA that can hybridize under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 1 and that encodes a protein having PobA enzymatic activity.
配列番号1に記載の塩基配列は、シュードモナス・プチダ KT2440株由来のpobA遺伝子の塩基配列(Accession No.AAN69138)である。
The nucleotide sequence set forth in SEQ ID NO: 1 is the nucleotide sequence of the pobA gene (Accession No. AAN69138) derived from Pseudomonas putida strain KT2440.
(d)のDNAは、例えば、配列番号1に記載の塩基配列からなるDNAまたはその断片をプローブとして、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法、サザンブロットハイブリダイゼーション法などを用いて取得することができる。より具体的には、ストリンジェントな条件下でハイブリダイズするDNAは、コロニーまたはプラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0MのNaClの存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM NaCl、15mM クエン酸ナトリウムである)の中、65℃でフィルターを洗浄することにより取得することができる。ハイブリダイゼーションは、例えば、Sambrookら、Molecular Cloning,A Laboratory Manual,3rd Ed,,Cold Spring Harbor Laboratory(2001)に記載の方法などの公知の方法を用いて行うことができる。温度が高いほど、または、塩濃度が低いほど、ストリンジェンシーは高くなり、より相同性(配列同一性)の高いポリヌクレオチドを単離することができる。
The DNA of (d) is obtained, for example, by colony hybridization, plaque hybridization, Southern blot hybridization, etc., using the DNA consisting of the base sequence of SEQ ID NO: 1 or a fragment thereof as a probe. be able to. More specifically, DNA that hybridizes under stringent conditions is filtered at 65° C. in the presence of 0.7-1.0 M NaCl using filters on which DNA from colonies or plaques has been immobilized. After hybridization, filter was washed at 65°C in 0.1-2x SSC solution (1x SSC solution has 150mM NaCl and 15mM sodium citrate) can do. Hybridization can be performed using known methods such as those described in, for example, Sambrook et al., Molecular Cloning, A Laboratory Manual, 3rd Ed, Cold Spring Harbor Laboratory (2001). The higher the temperature or the lower the salt concentration, the higher the stringency and the more homologous (sequence identity) polynucleotides can be isolated.
また、pobA遺伝子は、PobA酵素活性を有するタンパク質をコードする限り、配列番号1の塩基配列と50%以上、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上(例えば、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上または99%以上)の配列同一性を有する塩基配列を含むまたは該塩基配列からなるDNAであってもよい。例えば、pobA遺伝子は、コドンの縮重に基づいて、あるコドンがそれと等価のコドンに置換されたDNAであってもよい。
In addition, the pobA gene is 50% or more, preferably 60% or more, more preferably 70% or more, more preferably 80% or more, more preferably 80% or more of the base sequence of SEQ ID NO: 1, as long as it encodes a protein having PobA enzymatic activity. has 90% or more (e.g., 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more) sequence identity It may be a DNA containing the sequence or consisting of the base sequence. For example, the pobA gene may be DNA in which a codon is replaced with its equivalent codon based on codon degeneracy.
塩基配列の配列同一性は、BLAST(J.Mol.Biol.,215,403(1990))、FASTA(Methods in Enzymology,183,63(1990))などの相同性検索ソフトを用いて計算することができる。
The sequence identity of base sequences is calculated using homology search software such as BLAST (J. Mol. Biol., 215, 403 (1990)) and FASTA (Methods in Enzymology, 183, 63 (1990)). can be done.
本発明は、PobA酵素発現が欠損した細菌を利用することを特徴とする。PobA酵素発現が欠損した細菌は、好ましくは、PobA酵素発現が欠損したシュードモナス属細菌である。PobA酵素発現が欠損したシュードモナス属細菌とは、PobA酵素を本来保有するシュードモナス属細菌において、PobA酵素を機能的に不活化させた細菌のことを指す。PobA酵素発現が欠損したシュードモナス属細菌としては、例えば、pobA遺伝子の破壊(例えば、破壊カセットのpobA遺伝子への挿入、破壊カセットでのpobA遺伝子の置換、pobA遺伝子の欠失(削除)など)、pobA遺伝子への変異の導入、pobA遺伝子の制御領域のブロックなどにより、PobA酵素を機能的に不活化させたシュードモナス属細菌が挙げられる。PobA酵素を機能的に不活化させたシュードモナス属細菌としては、例えば、PobA酵素発現を欠損させる前のシュードモナス属細菌(例えば、野生型細菌)と比較して、PobA酵素の活性が低下または消失しているシュードモナス属細菌;PobA酵素発現を欠損させる前のシュードモナス属細菌(例えば、野生型細菌)と比較して、PobA酵素の発現量が低減しているシュードモナス属細菌;PobA酵素を発現しないシュードモナス属細菌などが挙げられる。
The present invention is characterized by utilizing bacteria deficient in PobA enzyme expression. The bacterium deficient in PobA enzyme expression is preferably a Pseudomonas bacterium deficient in PobA enzyme expression. A Pseudomonas bacterium deficient in PobA enzyme expression refers to a Pseudomonas bacterium that originally possesses the PobA enzyme, in which the PobA enzyme has been functionally inactivated. Pseudomonas bacteria deficient in PobA enzyme expression include, for example, disruption of the pobA gene (e.g., insertion of a disruption cassette into the pobA gene, replacement of the pobA gene with the disruption cassette, deletion (deletion) of the pobA gene, etc.), Pseudomonas bacterium in which the PobA enzyme is functionally inactivated by introducing a mutation into the pobA gene, blocking the control region of the pobA gene, or the like. A Pseudomonas bacterium in which the PobA enzyme is functionally inactivated is, for example, a Pseudomonas bacterium (for example, a wild-type bacterium) before deficient expression of the PobA enzyme, in which the activity of the PobA enzyme is reduced or eliminated. Pseudomonas bacterium in which the expression level of the PobA enzyme is reduced compared to the Pseudomonas bacterium (e.g., wild-type bacterium) before the expression of the PobA enzyme is deleted; Pseudomonas bacterium that does not express the PobA enzyme bacteria and the like.
シュードモナス属細菌としては、シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・エルジノーサ(Pseudomonas aeruginosa)、シュードモナス・アガリシ(Pseudomonas agarici)、シュードモナス・アルカリゲネス(Pseudomonas alcarigenes)、シュードモナス・アルカリフィラ(Pseudomonas alcaliphila)などが例示でき、好ましくは、シュードモナス・プチダ(Pseudomonas putida)である。
Pseudomonas bacteria include Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas agarici, Pseudomonas alcarigenes, Pseudomonas alkaline Phila (Pseudomonas alcaliphila) can be exemplified. , preferably Pseudomonas putida.
対象の細菌においてPobA酵素発現を欠損させる方法としては、相同組換えによりpobA遺伝子を破壊する方法などが知られている。その他に、例えば、pobA遺伝子への変異の導入、pobA遺伝子の不活性化などの方法も知られている。対象の細菌においてPobA酵素発現を欠損させる際、ファージ・トランスダクション法、相同組換え法、プラスミドベクター挿入法などの遺伝子操作を利用することができる。相同組換えを利用した方法として、遺伝子破壊のための遺伝子ノックアウトや、変異の導入のための遺伝子ノックインなどを用いることができる。
Known methods for deficient expression of the PobA enzyme in target bacteria include methods of disrupting the pobA gene by homologous recombination. In addition, methods such as introduction of mutations into the pobA gene and inactivation of the pobA gene are also known. Genetic manipulations such as phage transduction, homologous recombination, plasmid vector insertion, and the like can be used to abolish PobA enzyme expression in the bacterium of interest. Methods using homologous recombination include gene knockout for gene disruption and gene knockin for mutation introduction.
一実施形態において、対象の細菌においてPobA酵素発現を欠損させる方法として、相同組換えにより野生型細菌のpobA遺伝子を破壊する方法が用いられる。pobA遺伝子の破壊は、相同組換えによる破壊カセットのpobA遺伝子への挿入であってもよいし、相同組換えによる破壊カセットでのpobA遺伝子の置換であってもよいし、相同組換えによるpobA遺伝子の欠失であってもよい。ベクターとしては、例えば、pK18mobsacB(GenBank:FJ437239.1)(Gene,145,69-73(1994))などのプラスミドを用いることができる。野生型細菌へのベクターの導入法としては、例えば、エレクトロポレーション、リン酸カルシウム共沈降法、リポフェクション、マイクロインジェクション、酢酸リチウム法などを用いることができる。pobA遺伝子の破壊カセットは、薬剤耐性遺伝子(例えば、カナマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、ゼオシン耐性遺伝子、クロラムフェニコール耐性遺伝子など)などの選択マーカー遺伝子を含んでいてもよい。選択マーカー遺伝子は、ベクターに含まれていてもよい。相同組換えが生じた形質転換細胞は、選択マーカー遺伝子に対応する薬剤(例えば、カナマイシン、ハイグロマイシン、ゼオシン、クロラムフェニコールなど)で細胞を選抜することにより取得することができる。取得された形質転換細胞において、相同組換えによる標的遺伝子への挿入あるいは標的遺伝子の置換または欠失が生じていることは、標的遺伝子を増幅可能なプライマーを用いたPCRにより確認することができる。
In one embodiment, a method of disrupting the pobA gene of a wild-type bacterium by homologous recombination is used as a method of deficient PobA enzyme expression in a target bacterium. Disruption of the pobA gene may be insertion of a disruption cassette into the pobA gene by homologous recombination, replacement of the pobA gene with the disruption cassette by homologous recombination, or pobA gene by homologous recombination. may be a deletion of As a vector, for example, a plasmid such as pK18mobsacB (GenBank: FJ437239.1) (Gene, 145, 69-73 (1994)) can be used. Methods for introducing vectors into wild-type bacteria include, for example, electroporation, calcium phosphate coprecipitation, lipofection, microinjection, lithium acetate, and the like. The pobA gene disruption cassette may contain a selectable marker gene such as a drug resistance gene (eg, kanamycin resistance gene, hygromycin resistance gene, zeocin resistance gene, chloramphenicol resistance gene, etc.). A selectable marker gene may be included in the vector. Transformed cells in which homologous recombination has occurred can be obtained by selecting cells with drugs corresponding to selectable marker genes (eg, kanamycin, hygromycin, zeocin, chloramphenicol, etc.). The occurrence of insertion into the target gene or substitution or deletion of the target gene by homologous recombination in the obtained transformed cells can be confirmed by PCR using primers capable of amplifying the target gene.
工程(1)で準備された水溶液中でPobA酵素発現が欠損した細菌を培養することにより、工程(1)で準備された水溶液にPobA酵素発現が欠損した細菌を作用させることができる。培養温度は、例えば15~40℃、好ましくは20~30℃であり、培養期間は、例えば1時間~10日、好ましくは4~48時間である。培養は、例えば、好気培養であり、好気培養は、例えば、培養液を振とうしたり、培養液に空気または酸素ガスを吹き込むことにより行うことができる。PobA酵素発現が欠損した細菌を作用させる際の水溶液のpHは、pH4~9の範囲であることが好ましく、4HBAへの変換効率の観点からは、pH5~7の範囲であることがより好ましい。
By culturing the PobA enzyme expression-deficient bacterium in the aqueous solution prepared in step (1), the PobA enzyme expression-deficient bacterium can act on the aqueous solution prepared in step (1). The culture temperature is, for example, 15 to 40° C., preferably 20 to 30° C., and the culture period is, for example, 1 hour to 10 days, preferably 4 to 48 hours. Cultivation is, for example, aerobic culture, and aerobic culture can be performed by, for example, shaking the culture solution or blowing air or oxygen gas into the culture solution. The pH of the aqueous solution when the PobA enzyme expression-deficient bacterium is allowed to act is preferably in the range of pH 4 to 9, and more preferably in the range of pH 5 to 7 from the viewpoint of conversion efficiency to 4HBA.
工程(1)で準備された水溶液にPobA酵素発現が欠損した細菌を作用させると、PobA酵素発現が欠損した細菌は、水溶液中のフェルラ酸を生育炭素源として代謝しながら増殖するとともに、水溶液中のクマル酸を4-ヒドロキシ安息香酸(4HBA)に変換する。また、本来であれば細菌はPobA酵素を保有しているため、変換された4HBAがさらに分解または変換されるが、PobA酵素発現が欠損した細菌では4HBAをさらに分解または変換しないため、4HBAは培養液中に蓄積される。工程(1)で準備された水溶液が有機酸やアミノ酸などの炭素源や窒素源を含む場合、PobA酵素発現が欠損した細菌はこれらを消費分解しながら増殖する。すなわち、本発明では、4HBA以外の炭素源および窒素源が、PobA酵素発現が欠損した細菌により消費されることにより、培養液中の4HBA以外の不純物成分が除去されるため、培養液からの4HBA精製を簡素化することができる。
When the PobA enzyme expression-deficient bacterium is allowed to act on the aqueous solution prepared in step (1), the PobA enzyme expression-deficient bacterium proliferates while metabolizing ferulic acid in the aqueous solution as a carbon source for growth. of coumaric acid is converted to 4-hydroxybenzoic acid (4HBA). In addition, since bacteria originally possess the PobA enzyme, the converted 4HBA is further degraded or converted, but bacteria lacking PobA enzyme expression do not further degrade or convert 4HBA, so 4HBA is cultured. Accumulates in liquids. When the aqueous solution prepared in step (1) contains carbon sources such as organic acids and amino acids, and nitrogen sources, PobA enzyme expression-deficient bacteria grow while consuming and decomposing these. That is, in the present invention, impurity components other than 4HBA in the culture medium are removed by consuming carbon sources and nitrogen sources other than 4HBA by bacteria deficient in PobA enzyme expression, thereby removing 4HBA from the culture medium. Purification can be simplified.
PobA酵素発現が欠損した細菌を作用させた水溶液から、4HBAをさらに精製することができる。精製のためには、PobA酵素発現が欠損した細菌を分離し、分離したろ液を、吸着カラムに通液し、吸着画分を回収することでさらにHBA精製純度を高めることができる。吸着カラムとしては、疎水吸着カラム、イオン交換などがあるが、疎水吸着カラムが好ましい。
4HBA can be further purified from an aqueous solution in which bacteria deficient in PobA enzyme expression are allowed to act. For purification, bacteria deficient in PobA enzyme expression are isolated, the separated filtrate is passed through an adsorption column, and the adsorbed fraction is recovered, thereby further increasing the purification purity of HBA. As the adsorption column, there are a hydrophobic adsorption column, an ion exchange column and the like, and a hydrophobic adsorption column is preferable.
本発明における4HBAとは、4HBAのフリー体、4HBAの塩やエステルなどの総称であり、本発明で得られる4HBAは、これらのいずれかの形態またはこれらの混合物であってもよい。なお、4HBAエステルはパラベンとも呼ばれ、好ましい具体例としては、メチルエステル(メチルパラベン)、エチルエステル(エチルパラベン)、プロピルエステル(プロピルパラベン)、イソプロピルエステル(イソプロピルパラベン)、ブチルエステル(ブチルパラベン)、イソブチルエステル(イソブチルパラベン)が挙げられる。
4HBA in the present invention is a general term for free 4HBA, salts and esters of 4HBA, and the 4HBA obtained in the present invention may be in any of these forms or a mixture thereof. 4HBA ester is also called paraben, and preferred specific examples include methyl ester (methylparaben), ethyl ester (ethylparaben), propyl ester (propylparaben), isopropyl ester (isopropylparaben), butyl ester (butylparaben), Isobutyl ester (isobutylparaben) may be mentioned.
本発明で得られる4HBAは、他原料で得られた4HBAと同様に液晶ポリマー原料や化学品合成の前駆体などとして使用することができる。例えば、ACS Catal. 2016,6,9,6141-6145 Production of Terephthalic Acid from Lignin-Based Phenolic Acids by a Cascade Fixed-Bed ProcessのようにPET原料となるテレフタル酸の原料として使用することができる。
The 4HBA obtained in the present invention can be used as a raw material for liquid crystal polymers or a precursor for chemical synthesis, like 4HBA obtained from other raw materials. For example, ACS Catal. 2016, 6, 9, 6141-6145 Production of Terephthalic Acid from Lignin-Based Phenolic Acids by a Cascade Fixed-Bed Process It can be used as a raw material for terephthalic acid, which is a raw material for PET.
以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
(参考例1)糖濃度の測定
バガスアルカリ抽出液に含まれるグルコースおよびキシロース濃度は、下記に示すHPLC条件で、標品との比較により定量した。
カラム:Luna NH2(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75(流速0.6mL/分)
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。 (Reference Example 1) Measurement of Sugar Concentration The concentrations of glucose and xylose contained in the bagasse alkaline extract were quantified by comparison with standard products under the HPLC conditions shown below.
Column: Luna NH 2 (manufactured by Phenomenex)
Mobile phase: MilliQ: acetonitrile = 25:75 (flow rate 0.6 mL/min)
Reaction liquid: None Detection method: RI (differential refractive index)
Temperature: 30°C.
バガスアルカリ抽出液に含まれるグルコースおよびキシロース濃度は、下記に示すHPLC条件で、標品との比較により定量した。
カラム:Luna NH2(Phenomenex社製)
移動相:ミリQ:アセトニトリル=25:75(流速0.6mL/分)
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。 (Reference Example 1) Measurement of Sugar Concentration The concentrations of glucose and xylose contained in the bagasse alkaline extract were quantified by comparison with standard products under the HPLC conditions shown below.
Column: Luna NH 2 (manufactured by Phenomenex)
Mobile phase: MilliQ: acetonitrile = 25:75 (flow rate 0.6 mL/min)
Reaction liquid: None Detection method: RI (differential refractive index)
Temperature: 30°C.
(参考例2)芳香族化合物の分析
バガスアルカリ抽出液に含まれる芳香族化合物は、下記に示すHPLC条件で、標品との比較により定量した。なお、各分析サンプルは、3500Gで10分間遠心分離を行い、その上清成分を下記分析に供した。
カラム:Synergi HidroRP 4.6mm×250mm(Phenomenex製)
移動相:アセトニトリル-0.1% H3PO4(流速1.0mL/min)検出方法:UV(283nm)
温度:40℃。 (Reference Example 2) Analysis of Aromatic Compounds Aromatic compounds contained in the bagasse alkaline extract were quantified by comparison with standard samples under the HPLC conditions shown below. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant components were subjected to the following analysis.
Column: Synergi HydroRP 4.6 mm × 250 mm (manufactured by Phenomenex)
Mobile phase: Acetonitrile-0.1% H 3 PO 4 (flow rate 1.0 mL/min) Detection method: UV (283 nm)
Temperature: 40°C.
バガスアルカリ抽出液に含まれる芳香族化合物は、下記に示すHPLC条件で、標品との比較により定量した。なお、各分析サンプルは、3500Gで10分間遠心分離を行い、その上清成分を下記分析に供した。
カラム:Synergi HidroRP 4.6mm×250mm(Phenomenex製)
移動相:アセトニトリル-0.1% H3PO4(流速1.0mL/min)検出方法:UV(283nm)
温度:40℃。 (Reference Example 2) Analysis of Aromatic Compounds Aromatic compounds contained in the bagasse alkaline extract were quantified by comparison with standard samples under the HPLC conditions shown below. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant components were subjected to the following analysis.
Column: Synergi HydroRP 4.6 mm × 250 mm (manufactured by Phenomenex)
Mobile phase: Acetonitrile-0.1% H 3 PO 4 (flow rate 1.0 mL/min) Detection method: UV (283 nm)
Temperature: 40°C.
バガスアルカリ抽出液に含まれる酢酸およびギ酸は、下記に示すHPLC条件で、標品との比較により定量した。なお、各分析サンプルは、3500Gで10分間遠心分離を行い、その上清成分を下記分析に供した。
カラム:Shim-PackとShim-Pack SCR101H(株式会社島津製作所製)の直列
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。 Acetic acid and formic acid contained in the bagasse alkaline extract were quantified by comparison with standard products under the HPLC conditions shown below. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant components were subjected to the following analysis.
Column: Series of Shim-Pack and Shim-Pack SCR101H (manufactured by Shimadzu Corporation) Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL/min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bis-Tris, 0.1 mM EDTA·2Na (flow rate 0.8 mL/min)
Detection method: electrical conductivity Temperature: 45°C.
カラム:Shim-PackとShim-Pack SCR101H(株式会社島津製作所製)の直列
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。 Acetic acid and formic acid contained in the bagasse alkaline extract were quantified by comparison with standard products under the HPLC conditions shown below. Each analysis sample was centrifuged at 3500 G for 10 minutes, and the supernatant components were subjected to the following analysis.
Column: Series of Shim-Pack and Shim-Pack SCR101H (manufactured by Shimadzu Corporation) Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL/min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bis-Tris, 0.1 mM EDTA·2Na (flow rate 0.8 mL/min)
Detection method: electrical conductivity Temperature: 45°C.
(実施例1)リグニン含有バイオマスのアルカリ処理
リグニン含有バイオマスとして、バガスを用意した。バガス128g(含水率22%、乾燥バガス100g相当)に14% NaOH溶液85g、RO水1787gを投入し混合した。すなわち、12gのNaOHを100gの乾燥バガスに添加したことになり、乾燥バガス1gあたりに添加されたNaOHの量は120mgとなる。また、バガス固形分の最終濃度は5wt%とした。その後、オートクレーブにて、90℃で2時間のアルカリ処理を行った。アルカリ処理後のバガスは、1mmスクリーンろ過に供し、その後、ろ液を212μmスクリーンろ過に供し、合計約1500gのアルカリ処理液を回収した。このときのpHは、12.7であった。前記アルカリ処理液1016gをpH調整に使用した。pHセンサーにて、pH変化をモニターしながら、6MのHClを19g添加し、pH5.2に調整した。その後、pH調整液を8500Gで6分間、遠心、上清をバガスアルカリ抽出液とした。 (Example 1) Alkali treatment of lignin-containing biomass Bagasse was prepared as lignin-containing biomass. 85 g of 14% NaOH solution and 1787 g of RO water were added to 128 g of bagasse (moisture content of 22%, equivalent to 100 g of dry bagasse) and mixed. That is, 12 g of NaOH was added to 100 g of dry bagasse, and the amount of NaOH added per 1 g of dry bagasse was 120 mg. The final concentration of bagasse solids was 5 wt %. After that, alkali treatment was performed at 90° C. for 2 hours in an autoclave. The bagasse after alkali treatment was subjected to 1 mm screen filtration, and then the filtrate was subjected to 212 μm screen filtration to recover a total of about 1500 g of alkali treated liquid. The pH at this time was 12.7. 1016 g of the alkaline treatment liquid was used for pH adjustment. While monitoring the pH change with a pH sensor, 19 g of 6M HCl was added to adjust the pH to 5.2. After that, the pH-adjusted liquid was centrifuged at 8500 G for 6 minutes, and the supernatant was used as a bagasse alkaline extract.
リグニン含有バイオマスとして、バガスを用意した。バガス128g(含水率22%、乾燥バガス100g相当)に14% NaOH溶液85g、RO水1787gを投入し混合した。すなわち、12gのNaOHを100gの乾燥バガスに添加したことになり、乾燥バガス1gあたりに添加されたNaOHの量は120mgとなる。また、バガス固形分の最終濃度は5wt%とした。その後、オートクレーブにて、90℃で2時間のアルカリ処理を行った。アルカリ処理後のバガスは、1mmスクリーンろ過に供し、その後、ろ液を212μmスクリーンろ過に供し、合計約1500gのアルカリ処理液を回収した。このときのpHは、12.7であった。前記アルカリ処理液1016gをpH調整に使用した。pHセンサーにて、pH変化をモニターしながら、6MのHClを19g添加し、pH5.2に調整した。その後、pH調整液を8500Gで6分間、遠心、上清をバガスアルカリ抽出液とした。 (Example 1) Alkali treatment of lignin-containing biomass Bagasse was prepared as lignin-containing biomass. 85 g of 14% NaOH solution and 1787 g of RO water were added to 128 g of bagasse (moisture content of 22%, equivalent to 100 g of dry bagasse) and mixed. That is, 12 g of NaOH was added to 100 g of dry bagasse, and the amount of NaOH added per 1 g of dry bagasse was 120 mg. The final concentration of bagasse solids was 5 wt %. After that, alkali treatment was performed at 90° C. for 2 hours in an autoclave. The bagasse after alkali treatment was subjected to 1 mm screen filtration, and then the filtrate was subjected to 212 μm screen filtration to recover a total of about 1500 g of alkali treated liquid. The pH at this time was 12.7. 1016 g of the alkaline treatment liquid was used for pH adjustment. While monitoring the pH change with a pH sensor, 19 g of 6M HCl was added to adjust the pH to 5.2. After that, the pH-adjusted liquid was centrifuged at 8500 G for 6 minutes, and the supernatant was used as a bagasse alkaline extract.
前記バガスアルカリ抽出液の成分組成を表1に示す。
Table 1 shows the component composition of the bagasse alkali extract.
(実施例2)PobA酵素発現が欠損したシュードモナス属細菌(KT2440株ΔPobA株)の調製
シュードモナス・プチダ KT2440株のゲノム配列のうちpobA遺伝子の開始コドンの5’末端から上流1000bpの塩基配列とpobA遺伝子の終始コドンの3’末端から下流1000bpの塩基配列とを連結した塩基配列からなるDNA断片をBamHIとEcoRIで消化し、同じくBamHIとEcoRIで消化したpK18mobsacB(国立遺伝学研究所より入手)と連結して、pobA遺伝子を欠失させるための相同組換えベクター(pK18ΔpobA)を構築した。シュードモナス・プチダ(P.putida) KT2440株をLB液体培地10mLに接種し、30℃で16時間振盪培養した。培養液の一部を新しいLB液体培地5mLに接種し、OD600が0.3~0.5に達するまで、30℃で振盪培養した。得られた培養液から遠心分離(6,000×g,5min,4℃)により細胞を回収し、得られた細胞を冷却した10% Glycerol溶液で洗浄した。洗浄操作は3回繰り返した。洗浄後の細胞を遠心分離により回収し、0.1mLの冷却した10% Glycerol溶液に懸濁した。細胞懸濁液と1μgのpK18ΔpobAを混合し、エレクトロポレーションに供した(12.5KV)。1mLのSOC培地と混合し、30℃で1時間振盪培養した。遠心分離により細胞を回収し、0.1mLの生理食塩水に懸濁した。懸濁液を25mg/L カナマイシンを含むLB寒天培地に塗抹し、30℃で一晩静置培養した。形成されたカナマイシン耐性コロニーを、10%シュークロースを含むLB液体培地5mLに接種し、30℃で16時間振盪培養した。得られた培養液の一部を、10%シュークロースを含むLB液体培地5mLに接種し、30℃で16時間振盪培養する操作をさらに2回繰り返した。得られた培養液の一部をLB寒天培地に塗抹し、30℃で1晩静置培養した。形成されたコロニーのゲノムDNAを常法で抽出し、それを鋳型とし、配列番号3に記載の塩基配列からなるプライマー(配列番号1に記載の塩基配列のうち409~428番目の領域にアニールするプライマー)と配列番号4に記載の塩基配列からなるプライマー(pobA遺伝子の5’末端よりも約1.4kbase程度上流に位置する領域にアニールするプライマー)とからなるプライマーセットを用いたPCRにより、pobA遺伝子の欠失を確認した。この細菌を、PobA酵素発現が欠損したシュードモナス属細菌(KT2440株ΔPobA株)として、以下の実施例に使用した。 (Example 2) Preparation of a Pseudomonas bacterium lacking PobA enzyme expression (KT2440 strain ΔPobA strain) In the genome sequence of Pseudomonas putida strain KT2440, the base sequence of 1000 bp upstream from the 5' end of the start codon of the pobA gene and the pobA gene digested with BamHI and EcoRI, and ligated with pK18mobsacB (obtained from the National Institute of Genetics) similarly digested with BamHI and EcoRI. Then, a homologous recombination vector (pK18ΔpobA) for deleting the pobA gene was constructed. Pseudomonas putida (P. putida) strain KT2440 was inoculated into 10 mL of LB liquid medium and cultured with shaking at 30° C. for 16 hours. A portion of the culture was inoculated into 5 mL of fresh LB liquid medium and cultured with shaking at 30° C. until OD 600 reached 0.3-0.5. Cells were collected from the resulting culture medium by centrifugation (6,000×g, 5 min, 4° C.) and washed with a cooled 10% Glycerol solution. The washing operation was repeated 3 times. The washed cells were collected by centrifugation and suspended in 0.1 mL of chilled 10% Glycerol solution. Cell suspension and 1 μg of pK18ΔpobA were mixed and subjected to electroporation (12.5 KV). The mixture was mixed with 1 mL of SOC medium and cultured with shaking at 30° C. for 1 hour. Cells were harvested by centrifugation and suspended in 0.1 mL of saline. The suspension was smeared on an LB agar medium containing 25 mg/L kanamycin and statically cultured overnight at 30°C. The formed kanamycin-resistant colonies were inoculated into 5 mL of LB liquid medium containing 10% sucrose and cultured with shaking at 30° C. for 16 hours. A portion of the obtained culture solution was inoculated into 5 mL of LB liquid medium containing 10% sucrose, and shake culture was performed at 30° C. for 16 hours, which was repeated twice. A portion of the obtained culture solution was smeared on an LB agar medium and statically cultured at 30° C. overnight. The genomic DNA of the formed colony is extracted by a conventional method, and is used as a template. pobA by PCR using a primer set consisting of a primer) and a primer consisting of the nucleotide sequence shown in SEQ ID NO: 4 (a primer that anneals to a region located approximately 1.4 kbase upstream from the 5′ end of the pobA gene). Gene deletion was confirmed. This bacterium was used in the following examples as Pseudomonas bacterium (KT2440 strain ΔPobA strain) deficient in PobA enzyme expression.
シュードモナス・プチダ KT2440株のゲノム配列のうちpobA遺伝子の開始コドンの5’末端から上流1000bpの塩基配列とpobA遺伝子の終始コドンの3’末端から下流1000bpの塩基配列とを連結した塩基配列からなるDNA断片をBamHIとEcoRIで消化し、同じくBamHIとEcoRIで消化したpK18mobsacB(国立遺伝学研究所より入手)と連結して、pobA遺伝子を欠失させるための相同組換えベクター(pK18ΔpobA)を構築した。シュードモナス・プチダ(P.putida) KT2440株をLB液体培地10mLに接種し、30℃で16時間振盪培養した。培養液の一部を新しいLB液体培地5mLに接種し、OD600が0.3~0.5に達するまで、30℃で振盪培養した。得られた培養液から遠心分離(6,000×g,5min,4℃)により細胞を回収し、得られた細胞を冷却した10% Glycerol溶液で洗浄した。洗浄操作は3回繰り返した。洗浄後の細胞を遠心分離により回収し、0.1mLの冷却した10% Glycerol溶液に懸濁した。細胞懸濁液と1μgのpK18ΔpobAを混合し、エレクトロポレーションに供した(12.5KV)。1mLのSOC培地と混合し、30℃で1時間振盪培養した。遠心分離により細胞を回収し、0.1mLの生理食塩水に懸濁した。懸濁液を25mg/L カナマイシンを含むLB寒天培地に塗抹し、30℃で一晩静置培養した。形成されたカナマイシン耐性コロニーを、10%シュークロースを含むLB液体培地5mLに接種し、30℃で16時間振盪培養した。得られた培養液の一部を、10%シュークロースを含むLB液体培地5mLに接種し、30℃で16時間振盪培養する操作をさらに2回繰り返した。得られた培養液の一部をLB寒天培地に塗抹し、30℃で1晩静置培養した。形成されたコロニーのゲノムDNAを常法で抽出し、それを鋳型とし、配列番号3に記載の塩基配列からなるプライマー(配列番号1に記載の塩基配列のうち409~428番目の領域にアニールするプライマー)と配列番号4に記載の塩基配列からなるプライマー(pobA遺伝子の5’末端よりも約1.4kbase程度上流に位置する領域にアニールするプライマー)とからなるプライマーセットを用いたPCRにより、pobA遺伝子の欠失を確認した。この細菌を、PobA酵素発現が欠損したシュードモナス属細菌(KT2440株ΔPobA株)として、以下の実施例に使用した。 (Example 2) Preparation of a Pseudomonas bacterium lacking PobA enzyme expression (KT2440 strain ΔPobA strain) In the genome sequence of Pseudomonas putida strain KT2440, the base sequence of 1000 bp upstream from the 5' end of the start codon of the pobA gene and the pobA gene digested with BamHI and EcoRI, and ligated with pK18mobsacB (obtained from the National Institute of Genetics) similarly digested with BamHI and EcoRI. Then, a homologous recombination vector (pK18ΔpobA) for deleting the pobA gene was constructed. Pseudomonas putida (P. putida) strain KT2440 was inoculated into 10 mL of LB liquid medium and cultured with shaking at 30° C. for 16 hours. A portion of the culture was inoculated into 5 mL of fresh LB liquid medium and cultured with shaking at 30° C. until OD 600 reached 0.3-0.5. Cells were collected from the resulting culture medium by centrifugation (6,000×g, 5 min, 4° C.) and washed with a cooled 10% Glycerol solution. The washing operation was repeated 3 times. The washed cells were collected by centrifugation and suspended in 0.1 mL of chilled 10% Glycerol solution. Cell suspension and 1 μg of pK18ΔpobA were mixed and subjected to electroporation (12.5 KV). The mixture was mixed with 1 mL of SOC medium and cultured with shaking at 30° C. for 1 hour. Cells were harvested by centrifugation and suspended in 0.1 mL of saline. The suspension was smeared on an LB agar medium containing 25 mg/L kanamycin and statically cultured overnight at 30°C. The formed kanamycin-resistant colonies were inoculated into 5 mL of LB liquid medium containing 10% sucrose and cultured with shaking at 30° C. for 16 hours. A portion of the obtained culture solution was inoculated into 5 mL of LB liquid medium containing 10% sucrose, and shake culture was performed at 30° C. for 16 hours, which was repeated twice. A portion of the obtained culture solution was smeared on an LB agar medium and statically cultured at 30° C. overnight. The genomic DNA of the formed colony is extracted by a conventional method, and is used as a template. pobA by PCR using a primer set consisting of a primer) and a primer consisting of the nucleotide sequence shown in SEQ ID NO: 4 (a primer that anneals to a region located approximately 1.4 kbase upstream from the 5′ end of the pobA gene). Gene deletion was confirmed. This bacterium was used in the following examples as Pseudomonas bacterium (KT2440 strain ΔPobA strain) deficient in PobA enzyme expression.
(実施例3)PobA酵素発現が欠損したシュードモナス属細菌(KT2440株ΔPobA株)の前培養
KT2440株ΔPobA株をLB寒天培地30℃で一晩静置培養した。寒天培地上に形成されたコロニーをLB液体培地10mLに接種し、30℃で16h振盪培養した。得られた培養液からOD600が5.0の細胞懸濁液(生理食塩水に懸濁)1mLを調製し、接種源とした。 (Example 3) Preculture of Pseudomonas bacterium (KT2440 strain ΔPobA strain) deficient in PobA enzyme expression KT2440 strain ΔPobA strain was statically cultured overnight at 30°C on an LB agar medium. A colony formed on the agar medium was inoculated into 10 mL of an LB liquid medium and cultured with shaking at 30° C. for 16 hours. 1 mL of a cell suspension (suspended in physiological saline) having an OD 600 of 5.0 was prepared from the obtained culture medium and used as an inoculum.
KT2440株ΔPobA株をLB寒天培地30℃で一晩静置培養した。寒天培地上に形成されたコロニーをLB液体培地10mLに接種し、30℃で16h振盪培養した。得られた培養液からOD600が5.0の細胞懸濁液(生理食塩水に懸濁)1mLを調製し、接種源とした。 (Example 3) Preculture of Pseudomonas bacterium (KT2440 strain ΔPobA strain) deficient in PobA enzyme expression KT2440 strain ΔPobA strain was statically cultured overnight at 30°C on an LB agar medium. A colony formed on the agar medium was inoculated into 10 mL of an LB liquid medium and cultured with shaking at 30° C. for 16 hours. 1 mL of a cell suspension (suspended in physiological saline) having an OD 600 of 5.0 was prepared from the obtained culture medium and used as an inoculum.
(実施例4)シュードモナス属細菌をアルカリ抽出液に作用させて4HBAに変換する工程の一例
表1の組成の抽出液をpH7に調整した後、9mLを4HBA変換に使用し、さらに10×MM(342.0g/L Na2HPO4・12H2O,60.0g/L KH2PO4,20.0g/L NH4Cl)を1mL添加し、100×Metal(49.0g/L MgSO4・7H2O,0.5g/L FeSO4・7H2O,1.5g/L CaCl2・2H2O)を0.1mL添加し、合計10.1mLの抽出液を調製した。ここに、実施例3で得た接種源を0.1mL添加し、30℃で振とう培養を行った。培養開始時のOD600は0、培養開始24時間後のOD600は1.2であった。培養開始時および培養開始24時間後の成分比較を表2に示す。 (Example 4) An example of the process of converting Pseudomonas bacteria into 4HBA by acting on an alkaline extract solution. 1 mL of 342.0 g/L Na 2 HPO 4 .12H 2 O, 60.0 g/L KH 2 PO 4 , 20.0 g/L NH 4 Cl) was added, and 100×Metal (49.0 g/L MgSO 4 . 7H 2 O, 0.5 g/L FeSO 4 .7H 2 O, 1.5 g/L CaCl 2 .2H 2 O) was added in 0.1 mL to prepare a total of 10.1 mL of extract. 0.1 mL of the inoculum obtained in Example 3 was added thereto, and cultured with shaking at 30°C. The OD600 at the start of culture was 0, and the OD600 24 hours after the start of culture was 1.2. Table 2 shows a comparison of components at the start of culture and 24 hours after the start of culture.
表1の組成の抽出液をpH7に調整した後、9mLを4HBA変換に使用し、さらに10×MM(342.0g/L Na2HPO4・12H2O,60.0g/L KH2PO4,20.0g/L NH4Cl)を1mL添加し、100×Metal(49.0g/L MgSO4・7H2O,0.5g/L FeSO4・7H2O,1.5g/L CaCl2・2H2O)を0.1mL添加し、合計10.1mLの抽出液を調製した。ここに、実施例3で得た接種源を0.1mL添加し、30℃で振とう培養を行った。培養開始時のOD600は0、培養開始24時間後のOD600は1.2であった。培養開始時および培養開始24時間後の成分比較を表2に示す。 (Example 4) An example of the process of converting Pseudomonas bacteria into 4HBA by acting on an alkaline extract solution. 1 mL of 342.0 g/L Na 2 HPO 4 .12H 2 O, 60.0 g/L KH 2 PO 4 , 20.0 g/L NH 4 Cl) was added, and 100×Metal (49.0 g/L MgSO 4 . 7H 2 O, 0.5 g/L FeSO 4 .7H 2 O, 1.5 g/L CaCl 2 .2H 2 O) was added in 0.1 mL to prepare a total of 10.1 mL of extract. 0.1 mL of the inoculum obtained in Example 3 was added thereto, and cultured with shaking at 30°C. The OD600 at the start of culture was 0, and the OD600 24 hours after the start of culture was 1.2. Table 2 shows a comparison of components at the start of culture and 24 hours after the start of culture.
培養開始時および培養開始24時間後の成分比較から、クマル酸が消費され、4-ヒドロキシ安息香酸が蓄積されたことを確認した。クマル酸から、4-ヒドロキシ安息香酸への変換収率は100.4モル%であった。一方で、フェルラ酸、バニリン酸などの他の芳香族化合物、酢酸、ギ酸、乳酸などの有機酸が減少しており、これらはシュードモナス属細菌の生育炭素源として利用されたことが確認できた。
By comparing the components at the start of culture and 24 hours after the start of culture, it was confirmed that coumaric acid was consumed and 4-hydroxybenzoic acid was accumulated. The conversion yield from coumaric acid to 4-hydroxybenzoic acid was 100.4 mol %. On the other hand, other aromatic compounds such as ferulic acid and vanillic acid and organic acids such as acetic acid, formic acid and lactic acid decreased, confirming that they were used as carbon sources for the growth of Pseudomonas bacteria.
(実施例5)シュードモナス属細菌をアルカリ抽出液に作用させて4HBAに変換する工程の別例(グルコース存在下)
表1の組成の抽出液をpH7に調整した後、9mLを4HBA変換に使用し、さらに10×MM(342.0g/L Na2HPO4・12H2O,60.0g/L KH2PO4,20.0g/L NH4Cl)を1mL添加し、100×Metal(49.0g/L MgSO4・7H2O,0.5g/L FeSO4・7H2O,1.5g/L CaCl2・2H2O)を0.1mL添加し、合計10.1mLの抽出液を調製した。またさらに、グルコースを最終濃度10g/Lとなるように添加した。ここに、実施例3で得た接種源を0.1mL添加し、30℃で振とう培養を行った。培養開始時のOD600は0、培養開始24時間後のOD600は2.5であり、実施例4よりも良好な菌体増殖を確認した。培養開始時および培養開始24時間後の成分比較を表3に示す。 (Example 5) Another example of the process of converting Pseudomonas bacteria into 4HBA by acting on an alkaline extract (in the presence of glucose)
After adjusting the extract of the composition in Table 1 to pH 7, 9 mL was used for 4HBA conversion , plus 10 x MM (342.0 g/L Na2HPO4.12H2O , 60.0 g/L KH2PO4 , 20.0 g/L NH 4 Cl) was added to 1 mL, and 100×Metal (49.0 g/L MgSO 4 .7H 2 O, 0.5 g/L FeSO 4 .7H 2 O, 1.5 g/L CaCl 2 . 2H 2 O) was added to prepare a total of 10.1 mL of extract. Furthermore, glucose was added to a final concentration of 10 g/L. 0.1 mL of the inoculum obtained in Example 3 was added thereto, and cultured with shaking at 30°C. The OD600 at the start of culture was 0, and the OD600 24 hours after the start of culture was 2.5, confirming better cell growth than in Example 4. Table 3 shows a comparison of components at the start of culture and 24 hours after the start of culture.
表1の組成の抽出液をpH7に調整した後、9mLを4HBA変換に使用し、さらに10×MM(342.0g/L Na2HPO4・12H2O,60.0g/L KH2PO4,20.0g/L NH4Cl)を1mL添加し、100×Metal(49.0g/L MgSO4・7H2O,0.5g/L FeSO4・7H2O,1.5g/L CaCl2・2H2O)を0.1mL添加し、合計10.1mLの抽出液を調製した。またさらに、グルコースを最終濃度10g/Lとなるように添加した。ここに、実施例3で得た接種源を0.1mL添加し、30℃で振とう培養を行った。培養開始時のOD600は0、培養開始24時間後のOD600は2.5であり、実施例4よりも良好な菌体増殖を確認した。培養開始時および培養開始24時間後の成分比較を表3に示す。 (Example 5) Another example of the process of converting Pseudomonas bacteria into 4HBA by acting on an alkaline extract (in the presence of glucose)
After adjusting the extract of the composition in Table 1 to pH 7, 9 mL was used for 4HBA conversion , plus 10 x MM (342.0 g/L Na2HPO4.12H2O , 60.0 g/L KH2PO4 , 20.0 g/L NH 4 Cl) was added to 1 mL, and 100×Metal (49.0 g/L MgSO 4 .7H 2 O, 0.5 g/L FeSO 4 .7H 2 O, 1.5 g/L CaCl 2 . 2H 2 O) was added to prepare a total of 10.1 mL of extract. Furthermore, glucose was added to a final concentration of 10 g/L. 0.1 mL of the inoculum obtained in Example 3 was added thereto, and cultured with shaking at 30°C. The OD600 at the start of culture was 0, and the OD600 24 hours after the start of culture was 2.5, confirming better cell growth than in Example 4. Table 3 shows a comparison of components at the start of culture and 24 hours after the start of culture.
実施例5でも、実施例4と同じく、クマル酸が消費され、4-ヒドロキシ安息香酸が蓄積されたことを確認した。クマル酸から、4-ヒドロキシ安息香酸への変換収率は88.2モル%となり、実施例4よりは収率低下した。また、フェルラ酸、バニリン酸などの他の芳香族化合物、酢酸、ギ酸、乳酸などの有機酸が減少していたものの実施例4に比べると、未利用のまま残されることを確認した。すなわち、グルコースは5g/L未満、さらに言えば添加しない方が、培養後の不純物を減らして4-ヒドロキシ安息香酸の変換効率を高めることができるため好ましいことが確認された。
In Example 5, as in Example 4, it was confirmed that coumaric acid was consumed and 4-hydroxybenzoic acid was accumulated. The conversion yield from coumaric acid to 4-hydroxybenzoic acid was 88.2 mol %, lower than that of Example 4. In addition, it was confirmed that other aromatic compounds such as ferulic acid and vanillic acid and organic acids such as acetic acid, formic acid and lactic acid were reduced but remained unused compared to Example 4. That is, it was confirmed that less than 5 g/L of glucose, or even no addition of glucose, is preferable because impurities after culture can be reduced and conversion efficiency of 4-hydroxybenzoic acid can be increased.
(実施例6)シュードモナス属細菌をアルカリ抽出液に作用させて4HBAに変換する工程の別例
(pHの影響)
表1の組成の抽出液をpH4.5、pH5.0、pH6.0、pH7.0、およびpH8.0、の5条件に調整した後、9mLを4HBA変換に使用し、さらに10×MM(342.0g/L Na2HPO4・12H2O,60.0g/L KH2PO4,20.0g/L NH4Cl)を1mL添加し、100×Metal(49.0g/L MgSO4・7H2O,0.5g/L FeSO4・7H2O,1.5g/L CaCl2・2H2O)を0.1mL添加し、合計10.1mLの抽出液を調製した。ここに、実施例3で得た接種源を0.1mL添加し、30℃で振とう培養を行った。培養開始時のOD600を0とし、培養開始24時間後のOD600を表4に示す。シュードモナス属細菌をアルカリ抽出液に作用させて4HBAに変換する工程におけるpH条件はpH5~7の範囲が好ましいことが確認できた。
(Example 6) Another example of the process of converting Pseudomonas bacteria into 4HBA by acting on an alkaline extract (effect of pH)
After adjusting the extract having the composition shown in Table 1 to five conditions of pH 4.5, pH 5.0, pH 6.0, pH 7.0, and pH 8.0, 9 mL was used for 4HBA conversion, and 10 × MM ( 1 mL of 342.0 g/L Na 2 HPO 4 .12H 2 O, 60.0 g/L KH 2 PO 4 , 20.0 g/L NH 4 Cl) was added, and 100×Metal (49.0 g/L MgSO 4 . 7H 2 O, 0.5 g/L FeSO 4 .7H 2 O, 1.5 g/L CaCl 2 .2H 2 O) was added in 0.1 mL to prepare a total of 10.1 mL of extract. 0.1 mL of the inoculum obtained in Example 3 was added thereto, and cultured with shaking at 30°C. Table 4 shows the OD 600 after 24 hours from the start of the culture, with the OD 600 at the start of the culture set to 0. It was confirmed that the pH range of pH 5 to 7 is preferable for the pH condition in the step of converting Pseudomonas bacterium into 4HBA by acting on the alkaline extract.
(pHの影響)
表1の組成の抽出液をpH4.5、pH5.0、pH6.0、pH7.0、およびpH8.0、の5条件に調整した後、9mLを4HBA変換に使用し、さらに10×MM(342.0g/L Na2HPO4・12H2O,60.0g/L KH2PO4,20.0g/L NH4Cl)を1mL添加し、100×Metal(49.0g/L MgSO4・7H2O,0.5g/L FeSO4・7H2O,1.5g/L CaCl2・2H2O)を0.1mL添加し、合計10.1mLの抽出液を調製した。ここに、実施例3で得た接種源を0.1mL添加し、30℃で振とう培養を行った。培養開始時のOD600を0とし、培養開始24時間後のOD600を表4に示す。シュードモナス属細菌をアルカリ抽出液に作用させて4HBAに変換する工程におけるpH条件はpH5~7の範囲が好ましいことが確認できた。
After adjusting the extract having the composition shown in Table 1 to five conditions of pH 4.5, pH 5.0, pH 6.0, pH 7.0, and pH 8.0, 9 mL was used for 4HBA conversion, and 10 × MM ( 1 mL of 342.0 g/L Na 2 HPO 4 .12H 2 O, 60.0 g/L KH 2 PO 4 , 20.0 g/L NH 4 Cl) was added, and 100×Metal (49.0 g/L MgSO 4 . 7H 2 O, 0.5 g/L FeSO 4 .7H 2 O, 1.5 g/L CaCl 2 .2H 2 O) was added in 0.1 mL to prepare a total of 10.1 mL of extract. 0.1 mL of the inoculum obtained in Example 3 was added thereto, and cultured with shaking at 30°C. Table 4 shows the OD 600 after 24 hours from the start of the culture, with the OD 600 at the start of the culture set to 0. It was confirmed that the pH range of pH 5 to 7 is preferable for the pH condition in the step of converting Pseudomonas bacterium into 4HBA by acting on the alkaline extract.
(比較例1)シュードモナス属細菌をモデル抽出液に作用させて4HBAに変換する工程
モデル抽出液として、各芳香族化合物の試薬を混合し、表5に示す組成のモデル抽出液を調製した。抽出液を表5のモデル抽出液に変更した点を除き実施例4と同様にして、培養試験を行った。培養開始24後に、OD600=0.2までしかシュードモナス属細菌が増殖できなかった。 (Comparative Example 1) Step of converting Pseudomonas bacteria to model extract to convert to 4HBA As a model extract, reagents for each aromatic compound were mixed to prepare a model extract having the composition shown in Table 5. A culture test was performed in the same manner as in Example 4, except that the extract was changed to the model extract in Table 5. Pseudomonas bacteria could grow only to OD 600 =0.2 24 days after the start of culture.
モデル抽出液として、各芳香族化合物の試薬を混合し、表5に示す組成のモデル抽出液を調製した。抽出液を表5のモデル抽出液に変更した点を除き実施例4と同様にして、培養試験を行った。培養開始24後に、OD600=0.2までしかシュードモナス属細菌が増殖できなかった。 (Comparative Example 1) Step of converting Pseudomonas bacteria to model extract to convert to 4HBA As a model extract, reagents for each aromatic compound were mixed to prepare a model extract having the composition shown in Table 5. A culture test was performed in the same manner as in Example 4, except that the extract was changed to the model extract in Table 5. Pseudomonas bacteria could grow only to OD 600 =0.2 24 days after the start of culture.
バイオマスなどを原料として、高純度な4-ヒドロキシ安息香酸を少ない精製ステップで製造することができる。
Using biomass as a raw material, it is possible to produce high-purity 4-hydroxybenzoic acid with a small number of purification steps.
Claims (6)
- 以下の工程(1)および(2)を含む、4-ヒドロキシ安息香酸の製造方法。
工程(1):クマル酸およびフェルラ酸を含む水溶液を準備する工程
工程(2):工程(1)で準備された前記水溶液にPobA酵素発現が欠損した細菌を作用させ、前記細菌により前記フェルラ酸を生育炭素源として代謝させるとともに、前記細菌により前記クマル酸を4-ヒドロキシ安息香酸に変換させる工程 A method for producing 4-hydroxybenzoic acid, comprising the following steps (1) and (2).
Step (1): Preparing an aqueous solution containing coumaric acid and ferulic acid Step (2): Bacteria deficient in PobA enzyme expression are allowed to act on the aqueous solution prepared in Step (1), and the bacteria produce ferulic acid. as a growing carbon source, and converting the coumaric acid to 4-hydroxybenzoic acid by the bacterium - 前記工程(1)が、リグニン含有バイオマスをアルカリ処理し、クマル酸およびフェルラ酸を含む抽出液を前記水溶液として得る工程である、請求項1に記載の4-ヒドロキシ安息香酸の製造方法。 The method for producing 4-hydroxybenzoic acid according to claim 1, wherein the step (1) is a step of subjecting lignin-containing biomass to alkali treatment to obtain an extract containing coumaric acid and ferulic acid as the aqueous solution.
- 前記工程(1)で準備される前記水溶液の糖濃度が5g/L未満である、請求項1または2に記載の4-ヒドロキシ安息香酸の製造方法。 The method for producing 4-hydroxybenzoic acid according to claim 1 or 2, wherein the aqueous solution prepared in step (1) has a sugar concentration of less than 5 g/L.
- 前記工程(1)で準備される前記水溶液が、酢酸、ギ酸および乳酸からなる群から選択される1種または2種以上の有機酸を含む、請求項1から3のいずれか一項に記載の4-ヒドロキシ安息香酸の製造方法。 4. The method according to any one of claims 1 to 3, wherein the aqueous solution prepared in step (1) contains one or more organic acids selected from the group consisting of acetic acid, formic acid and lactic acid. A method for producing 4-hydroxybenzoic acid.
- 前記工程(2)で使用される前記細菌がシュードモナス属細菌である、請求項1から4のいずれか一項に記載の4-ヒドロキシ安息香酸の製造方法。 The method for producing 4-hydroxybenzoic acid according to any one of claims 1 to 4, wherein the bacterium used in the step (2) is Pseudomonas bacterium.
- 前記工程(2)において、前記細菌をpH5~7の条件で前記水溶液に作用させる、請求項1から5のいずれか一項に記載の4-ヒドロキシ安息香酸の製造方法。 The method for producing 4-hydroxybenzoic acid according to any one of claims 1 to 5, wherein in the step (2), the bacteria are allowed to act on the aqueous solution under pH 5-7 conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023512010A JPWO2023120538A1 (en) | 2021-12-21 | 2022-12-20 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021207303 | 2021-12-21 | ||
JP2021-207303 | 2021-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023120538A1 true WO2023120538A1 (en) | 2023-06-29 |
Family
ID=86902546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046954 WO2023120538A1 (en) | 2021-12-21 | 2022-12-20 | Method for producing 4-hydroxybenzoic acid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023120538A1 (en) |
WO (1) | WO2023120538A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016526896A (en) * | 2013-07-22 | 2016-09-08 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Pseudomonas putida KT2440 genetic engineering for rapid and high yield production of vanillin from ferulic acid |
WO2017170549A1 (en) * | 2016-03-29 | 2017-10-05 | 東レ株式会社 | Method for producing hydroxycinnamic acid |
-
2022
- 2022-12-20 WO PCT/JP2022/046954 patent/WO2023120538A1/en active Application Filing
- 2022-12-20 JP JP2023512010A patent/JPWO2023120538A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016526896A (en) * | 2013-07-22 | 2016-09-08 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Pseudomonas putida KT2440 genetic engineering for rapid and high yield production of vanillin from ferulic acid |
WO2017170549A1 (en) * | 2016-03-29 | 2017-10-05 | 東レ株式会社 | Method for producing hydroxycinnamic acid |
Non-Patent Citations (8)
Title |
---|
AKUTSU, MIHO; KAMIMURA, NAOHUMI; MASAI, EIJI; SONOKI, TOMONORI: "2A16a13 Application of Pseudomonas sp. NGC7 to the production of 4-hydroxybenzoic acid from lignin", ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY (JSBBA2020); MARCH 25 - 28, 2020, vol. 2020, 1 January 2020 (2020-01-01) - 28 March 2020 (2020-03-28), pages 272, XP009547239 * |
CHRISTOPHER W. JOHNSON, ET AL.: "Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity", METABOLIC ENGINEERING COMMUNICATIONS, ELSEVIER, NL, vol. 3, 1 December 2016 (2016-12-01), NL , pages 111 - 119, XP055537131, ISSN: 2214-0301, DOI: 10.1016/j.meteno.2016.04.002 * |
KARLEN STEVEN D., FASAHATI PEYMAN, MAZAHERI MONA, SERATE JOSE, SMITH REBECCA A., SIROBHUSHANAM SIRISHA, CHEN MINGJIE, TYMOKHIN VIT: "Assessing the Viability of Recovery of Hydroxycinnamic Acids from Lignocellulosic Biorefinery Alkaline Pretreatment Waste Streams", CHEMSUSCHEM, WILEY-VCH, DE, vol. 13, no. 8, 21 April 2020 (2020-04-21), DE , pages 2012 - 2024, XP093074000, ISSN: 1864-5631, DOI: 10.1002/cssc.201903345 * |
NONAKA KAZUHIRO, OHTA HIROYUKI, SATO YOSHINORI, HOSOKAWA KEIICHI: "Utilization of Phenylpropanoids by Pseudomonas putida Soil Isolates and Its Probable Taxonomic Significance", MICROBES AND ENVIRONMENTS, vol. 23, no. 4, 1 January 2008 (2008-01-01), pages 360 - 364, XP093073993, ISSN: 1342-6311, DOI: 10.1264/jsme2.ME08545 * |
VERHOEF, S. RUIJSSENAARS, H.J. DE BONT, J.A.M. WERY, J.: "Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12", JOURNAL OF BIOTECHNOLOGY, ELSEVIER, AMSTERDAM NL, vol. 132, no. 1, 5 October 2007 (2007-10-05), Amsterdam NL , pages 49 - 56, XP022285747, ISSN: 0168-1656, DOI: 10.1016/j.jbiotec.2007.08.031 * |
WADA AYUMU, PRATES ÉRICA T., HIRANO RYO, WERNER ALLISON Z., KAMIMURA NAOFUMI, JACOBSON DANIEL A., BECKHAM GREGG T., MASAI EIJI: "Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics", METABOLIC ENGINEERING, ACADEMIC PRESS, AMSTERDAM, NL, vol. 64, 1 March 2021 (2021-03-01), AMSTERDAM, NL, pages 167 - 179, XP093073986, ISSN: 1096-7176, DOI: 10.1016/j.ymben.2021.01.013 * |
WANG WEI, CHEN XIAOWEN, KATAHIRA RUI, TUCKER MELVIN: "Characterization and Deconstruction of Oligosaccharides in Black Liquor From Deacetylation Process of Corn Stover", FRONTIERS IN ENERGY RESEARCH, vol. 7, XP093073997, DOI: 10.3389/fenrg.2019.00054 * |
XU, F. SUN, R.C. SUN, J.X. LIU, C.F. HE, B.H. FAN, J.S.: "Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse", ANALYTICA CHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 552, no. 1-2, 3 November 2005 (2005-11-03), AMSTERDAM, NL , pages 207 - 217, XP005116955, ISSN: 0003-2670, DOI: 10.1016/j.aca.2005.07.037 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023120538A1 (en) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Joo et al. | Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process | |
KR101395971B1 (en) | Use of sucrose as substrate for fermentative production of 1,2-propanediol | |
JP2009538118A (en) | Enzymatic production of 2-hydroxy-2-methylcarboxylic acid | |
EA025990B1 (en) | Polypeptides having oxidoreductase activity and their uses | |
CN107406821B (en) | Mutant host cells for the production of 3-hydroxypropionic acid | |
JP2010207094A (en) | Method for producing protocatechuic acid | |
CN108949852B (en) | Method for preparing xylitol by whole-cell catalysis | |
KR20140033495A (en) | Method for producing useful chemical substance from terephthalic acid potassium salt | |
EP2738266B1 (en) | Fermentation process for producing chemicals | |
US9206445B2 (en) | Biocatalysts with enhanced inhibitor tolerance | |
JP5268064B2 (en) | Plasmid, transformant, and method for producing 3-carboxymuconolactone | |
KR101521045B1 (en) | Recombinant microorganisms for producing organic acids | |
KR102090063B1 (en) | New microorganism having ability to produce aldonic acid and producing method for aldonic acid using the same | |
WO2023120538A1 (en) | Method for producing 4-hydroxybenzoic acid | |
KR101541034B1 (en) | Escherichia coli for high production of d―galactonate and use thereof | |
WO2020045472A1 (en) | Mutant strain of trichoderma reesei and method for producing protein using same | |
WO2020075787A1 (en) | Mutant strain of trichoderma reesei, and protein manufacturing method | |
JP6558767B2 (en) | Method for producing pyruvic acid using halomonas bacteria | |
JP2008283917A (en) | Method for producing lactic acid | |
JP7070161B2 (en) | Manufacturing method of myo-inositol | |
JP2006230232A (en) | Method for producing fumaric acid | |
CN112251390A (en) | Genetically engineered bacterium for synthesizing vanillin by converting lignin-containing biomass and application thereof | |
JP2023160200A (en) | Method for producing biomass-derived muconic acid | |
US20200010862A1 (en) | Long-chain dibasic acid with low content of fatty acid impurity and a method of producing the same | |
WO2012137771A1 (en) | Process for producing adipic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023512010 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22911240 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |