WO2020075787A1 - Mutant strain of trichoderma reesei, and protein manufacturing method - Google Patents

Mutant strain of trichoderma reesei, and protein manufacturing method Download PDF

Info

Publication number
WO2020075787A1
WO2020075787A1 PCT/JP2019/039933 JP2019039933W WO2020075787A1 WO 2020075787 A1 WO2020075787 A1 WO 2020075787A1 JP 2019039933 W JP2019039933 W JP 2019039933W WO 2020075787 A1 WO2020075787 A1 WO 2020075787A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
sequence represented
trichoderma reesei
acid sequence
Prior art date
Application number
PCT/JP2019/039933
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 加川
紳吾 平松
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019567762A priority Critical patent/JPWO2020075787A1/en
Publication of WO2020075787A1 publication Critical patent/WO2020075787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a mutant strain of Trichoderma reesei that improves protein production ability and a method for producing a protein using the mutant strain.
  • Trichoderma reesei has a high protein-producing ability, and studies on protein production using the filamentous fungus have been conducted so far. Trichoderma reesei is excellent in the ability to produce cellulase classified as a saccharifying enzyme among proteins, and for example, in order to further improve the production amount of cellulase, overexpression or deletion of a factor controlling cellulase production is performed. There is.
  • Non-Patent Document 1 among factors controlling the production of cellulase of Trichoderma reesei, a mutant strain of Trichoderma reesei having a high cellulase producing ability by reducing the function of Cre1, which is a transcription factor that suppresses the production of cellulase. Has been acquired.
  • the transcription factor which is one of the factors controlling the protein production of Trichoderma reesei, has been elucidated, but I think that this is only a part of the control mechanism. Therefore, in the present invention, a novel factor that controls the protein production of Trichoderma reesei is searched, and a mutant of Trichoderma reesei that has enhanced protein production ability is obtained and a method for producing a protein using the mutant of Trichoderma reesei. The challenge is to provide.
  • the present inventor believes that the production amount of Trichoderma reesei protein can be further improved if a novel regulatory factor that improves protein production, which has not been known so far, can be elucidated.
  • the present inventors have found that protein productivity can be improved by culturing a mutant strain of Trichoderma reesei having a mutation in the polypeptide having the amino acid sequence represented by the following, and have completed the present invention.
  • the present invention includes the following (1) to (6).
  • a mutant strain of Trichoderma reesei which has a mutation in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deleted or reduced.
  • the mutation is a deletion, substitution, or addition mutation of an amino acid residue in the fungal transcription factor regulatory regulatory region domain of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2, (1) The mutant strain described in.
  • a method for producing a protein which comprises a step of culturing the mutant strain according to any one of (1) to (3).
  • a method for producing cellulase which comprises a step of culturing the mutant strain according to any one of (1) to (3).
  • a method for producing sugar which comprises the step of producing cellulase by the method for producing cellulase according to (5) and the step of saccharifying a cellulose-containing biomass using the cellulase obtained in the above step.
  • the mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deficient or diminished, has an improved protein production ability and a higher protein content than the parent strain before the introduction of the mutation. It becomes possible to produce. Furthermore, when the protein to be produced is cellulase, an unexpected effect of improving various specific activities of cellulase is also obtained.
  • the present invention is characterized by further enhancing protein production ability by introducing a mutation into a parent strain of Trichoderma reesei, which is a microorganism originally excellent in protein production ability.
  • the present invention relates to a mutant strain of Trichoderma reesei, which is characterized in that the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deleted or reduced.
  • the parent strain of Trichoderma reesei used in the present invention is not limited to a wild strain, and a mutant strain improved so as to enhance protein production ability can also be preferably used as the parent strain, for example, a mutation treatment with a mutagen or ultraviolet irradiation.
  • the mutant strain having improved protein productivity can be used as the parent strain.
  • Specific examples of the above-mentioned parent strains include Trichoderma reesei QM6a strain (NBRC31326), QM9414 strain (NBRC31329), PC-3-7 strain (ATCC66589), QM9123 strain (NBRC31327), RutC-30 strain (ATCC56765), CL-847. Strain (Enzyme. Microbiol. Technol.
  • the QM6a strain, the QM9414 strain, and the QM9123 strain can be obtained from NBRC (NITE Biological Resource Center), and the PC-3-7 strain and the RutC-30 strain can be obtained from ATCC (American Type Culture Collection).
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a polypeptide having a total length of 774 amino acids possessed by Trichoderma reesei, and in the National Center for Biotechnology Information, it is also referred to as a predicted protein (EGR50030) possessed by the Trichoderma reesei QM6a strain. It is registered.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a polypeptide whose function is unknown, but according to the conserveed Domain Architectural Retrieval Tool of National Center for Biotechnology Information, the 280th to 710th amino acids from the N-terminal side remain. The group is disclosed as having a fungal transcription factor regularity middle homology region domain.
  • polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is at least involved in the transcriptional regulation of filamentous fungi.
  • a specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is the base sequence represented by SEQ ID NO: 1.
  • a method for deleting or reducing the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 includes total deletion of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2, fungal transcription factor regulatory middle There is a method of introducing a mutation that causes a partial deletion of the homology region domain and a partial deletion of the fungal transcription factor regulatory middle region region, specifically, the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2. Introduce frameshift mutations and stop codon mutations in the coding gene sequence by deleting, inserting, or replacing bases. How to, and the like.
  • a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or a fungal transcription factor regulatory middle region domain is a deletion of the polypeptide or domain, a part of the polypeptide or the domain disappears, a part of the amino acid changes to a different amino acid Refers to a different amino acid, or a combination thereof. More specifically, it means that the sequence identity with the amino acid sequence represented by SEQ ID NO: 2 is 80% or less, preferably 50% or less, more preferably 20% or less, still more preferably 10% or less. % Or less, more preferably 5% or less, further preferably 3% or less, further preferably 1% or less, and most preferably 0%.
  • the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deficient or diminished by mutation such as deletion, substitution, or addition in the amino acid sequence located in the fungal transcription factor regulatory regrowth homology region domain.
  • the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is preferably mutated to an amino acid residue other than serine, and particularly preferably mutated to phenylalanine. Is preferred.
  • a specific example of the nucleotide sequence encoding an amino acid sequence in which the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is mutated to an amino acid residue other than serine is represented by SEQ ID NO: 1.
  • SEQ ID NO: 1 A specific example of the nucleotide sequence encoding an amino acid sequence in which the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is mutated to an amino acid residue other than serine.
  • SEQ ID NO: 1 A specific example of the nucleotide sequence encoding an amino acid sequence in which the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is mutated to an amino acid residue other than serine.
  • the function of the polypeptide may be reduced by introducing a mutation that reduces the expression of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or eliminates the expression. Alternatively, it may be due to a decrease or disappearance of the expression level of the polypeptide due to a mutation in the promoter or terminator region of the gene encoding the amino acid sequence represented by SEQ ID NO: 2.
  • a promoter and terminator region correspond to both sides of several hundred bases before and after a gene involved in transcription and include a promoter and terminator involved in transcription of a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2. Specific examples of the sequence include the base sequence represented by SEQ ID NO: 1.
  • the mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 can be obtained by the following method.
  • the mutant strain in which all of the functions of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 are deleted or reduced, spores of Trichoderma reesei, which is a parent strain, are nitrosoguanidine (NTG), ethylmethanesulfonic acid (EMS). ), A gene mutation treatment is performed using ultraviolet rays, etc., the gene of the obtained mutant strain is analyzed, and a mutant strain having the above mutation is screened to obtain the mutant strain.
  • NVG nitrosoguanidine
  • EMS ethylmethanesulfonic acid
  • the mutant strain of the present invention Since the mutant strain of the present invention has improved protein production ability as compared with the parent strain before the mutation introduction, the culture solution of the mutant strain of the present invention is obtained before the mutation introduction under the same culture conditions.
  • the protein concentration is increased as compared to the culture medium of the parent strain.
  • the protein is an enzyme
  • the specific activity of the enzyme increases.
  • the increase rate of the protein concentration and the increase rate of the specific activity of the enzyme are not particularly limited as long as they are increased, but are preferably 20% or more.
  • the mutant strain of the present invention is not only a mutant in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deficient or diminished, but also the protein production amount is improved and / or the viscosity of the culture solution is decreased, so that May have a mutation that suppresses the decrease in the dissolved oxygen saturation level.
  • Specific examples include mutations in the polypeptide consisting of the amino acid sequence represented by any of SEQ ID NOs: 3, 5, 7, 9, 11, 13, and 15.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is a polypeptide possessed by Trichoderma reesei, and is registered in National Center for Biotechnology Information as EGR50654 of predicated protein possessed by the Trichoderma reesei QM6a strain.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of the National Center for Biotechnology Information, the remaining 95th to 277th amino acids from the N-terminal side.
  • MIF4G domain Middle domain of eukaryotic initiation factor 4G domain
  • MA-3 domain eukaryotic initiation factor 4G domain
  • Both MIF4G and MA-3 domains are known to have a function of binding to DNA or RNA (Biochem. 44, 12265-12272 (2005), Mol. Cell. Biol. 1, 147-156 (2007). )). From these descriptions, the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is presumed to have at least the function of binding to DNA and / or RNA.
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is the nucleotide sequence represented by SEQ ID NO: 4.
  • a gene mutation in which the function of EGR50654 is reduced or deleted includes all deletions of MIF4G domain and / or MA-3 domain possessed by EGR50654, partial deletion of MIF4G domain and / or MA-3 domain, MIF4G domain and MA-3 domain.
  • Gene mutations that change the configurational relationship with Furthermore, the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is a polypeptide possessed by Trichoderma reesei, and is registered as EGR44419 of predicated protein possessed by the strain of Trichoderma reesei QM6a in the National Center for Biotechnology Information.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, amino acid residues 26 to 499 from the N-terminal side. Is disclosed to have a Sugar (and other) Transporter domain. According to this description, the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is involved in sugar transport at least between the inside and outside of the bacterial cell. It is estimated that
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is the base sequence represented by SEQ ID NO: 6.
  • a gene mutation in which the function of EGR44419 is reduced or deleted refers to a total deletion of the Sugar (and other) Transporter domain, a partial deletion of the Sugar (and other) Transporter domain, and a configurational relationship of the Sugar (and other) Transporter domain.
  • the gene mutation which changes is mentioned.
  • the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5.
  • a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is lacking is a mutation in which 11 bases are inserted at the 1415th position in the base sequence represented by SEQ ID NO: 6.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is a polypeptide possessed by Trichoderma reesei, and in National Center for Biotechnology Information, the EGR registered as beta-adaptin large sub10 unit of Trichoderma reesei QM6a strain is registered. There is.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 constitutes an adapter protein that constitutes vesicles involved in intracellular and extracellular transport that bind to clathrin, which is widely conserved in eukaryotes. It is one of the proteins (Proc. Nati. Acad. Sci. USA. 101, 14108-14113 (2004)).
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is the nucleotide sequence represented by SEQ ID NO: 8.
  • Examples of the EGR48910 gene mutation include mutation of cytosine, which is the 1080th base in the base sequence represented by SEQ ID NO: 8, to adenine.
  • Trichoderma reesei which has no mutation in the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 by having a mutation in the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7, liquid culture At that time, the viscosity of the culture solution decreases.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is a polypeptide possessed by Trichoderma reesei, and is registered in National Center for Biotechnology Information as EGR45828 of predicated protein possessed by the Trichoderma reesei QM6a strain.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, the 86th to 186th amino acid residues are located from the N-terminal side. Is disclosed as a heat shock factor (HSF) -type DNA-binding domain.
  • HSF heat shock factor
  • the HSF-type DNA-binding domain is known to have the function of binding to the upstream region of the gene encoding HSF, which is a transcription factor that regulates the expression of heat shock proteins (Cell, 65 (3), 363). -366 (1991)).
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is the base sequence represented by SEQ ID NO: 10.
  • a gene mutation in which the function of EGR45828 is reduced or deleted refers to a total deletion of the HSF-type DNA-binding domain possessed by EGR45828, a partial deletion of the HSF-type DNA-binding domain, and a configurational relationship of the HSF-type DNA-binding domain.
  • the gene mutation which changes is mentioned.
  • the function of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 9 can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide.
  • a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is deficient is a mutation causing a frame shift in which one guanine nucleotide is inserted at the 85th position in the nucleotide sequence represented by SEQ ID NO: 10.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is a polypeptide possessed by Trichoderma reesei, and is also registered as a predicated protein (EGR47155) possessed by the Trichoderma reesei QM6a strain in the National Center for Biotechnology Information. .
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is a polypeptide of unknown function, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, the 362nd to 553rd amino acids from the N-terminal side are left.
  • the group is disclosed as the TLD domain.
  • the TLD domain has an unknown function.
  • a specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is the base sequence represented by SEQ ID NO: 12.
  • Examples of the gene mutation in which the function of EGR47155 is reduced or deleted include a total deletion of the TLD domain possessed by EGR47155, a partial deletion of the TLD domain, and a gene mutation in which the configurational relationship of the TLD domain is changed.
  • the function of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 11 can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide.
  • a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is lacking is a frame in which 46 bases represented by SEQ ID NO: 13 are inserted at the 6th position in the base sequence represented by SEQ ID NO: 12. Examples include shift mutations.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is a polypeptide possessed by Trichoderma reesei, and is also registered as a predicated protein (EGR48056) possessed by the Trichoderma reesei QM6a strain in National Center for Biotechnology Information. .
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, the remaining 130 to 172 amino acids from the N-terminal side.
  • the group is disclosed as the F-box domain.
  • the F-box domain is known to be a domain found in proteins that control the cell cycle (Proc. Natl.
  • a specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is the base sequence represented by SEQ ID NO: 15.
  • Examples of the gene mutation in which the function of EGR48056 is reduced or deleted include a total deletion of the F-box domain possessed by EGR48056, a partial deletion of the F-box domain, and a gene mutation in which the configurational relationship of the F-box domain is changed.
  • the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14.
  • a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is lacking is a frameshift mutation in which one base of cytosine at the 499th position in the nucleotide sequence represented by SEQ ID NO: 15 is deleted.
  • SEQ ID NO: 14 is not reduced or deleted due to the decrease or deletion of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14, Protein productivity is improved.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is a polypeptide possessed by Trichoderma reesei, and in the National Center for Biotechnology Information, the glycosyltransferase family4 (76), which is also registered as triglycerylferaseferase76, glycotransferase family of Trichoderma reesei QM6a strain is registered in National Center for Biotechnology Information. Has been done.
  • Glycosyltransferase family 41 is a protein (The EMBO Journal, 27, 2080-2788 (2008)) that is composed of a dimeric complex, and N in the process of nascent protein immediately after translation passing through the Golgi complex.
  • -It has a function of transferring acetylgalactosamine (GalNAc) to a serine or threonine residue which is an amino acid residue (Biochemistry, Fourth edition, 11,280-281 (1995)).
  • GalNAc acetylgalactosamine
  • SEQ ID NO: 16 A specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is the nucleotide sequence represented by SEQ ID NO: 17.
  • a gene mutation in which the function of EGR46476 is reduced or deleted is a total deletion of glycosyltransferase family 41, partial which EGR46476 has, a partial deletion of glycosyltranferase family mutated 41, a partial deletion of glycosyltranferase family mutated, and a partial deletion of glyceryl ferrycosylate.
  • the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16.
  • a stop codon is inserted by mutating cytosine at position 6261 to adenine in the nucleotide sequence represented by SEQ ID NO: 17. Mutations are included.
  • Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is not reduced or deleted due to the decrease or loss of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16, Protein productivity is improved.
  • the present invention also relates to a method for producing a protein, which comprises a step of culturing the mutant strain.
  • the culture method is not particularly limited, and for example, liquid culture using a centrifuge tube, flask, jar fermenter, tank or the like, or solid culture using a plate or the like can be used.
  • Trichoderma reesei is preferably cultivated under aerobic conditions, and among these culturing methods, a jar fermenter and a submerged culturing in which a tank is aerated and agitated are particularly preferable.
  • the ventilation amount is preferably about 0.1 to 2.0 vvm, more preferably 0.3 to 1.5 vvm, and particularly preferably 0.5 to 1.0 vvm.
  • the culture temperature is preferably about 25 to 35 ° C, more preferably 25 to 31 ° C.
  • the pH condition in the culture is preferably pH 3.0 to 7.0, more preferably pH 4.0 to 6.0.
  • the culturing time is carried out under the condition that the protein is produced until a recoverable amount of the protein is accumulated. Usually, it is 24 to 288 hours, preferably 24 to 240 hours, more preferably 36 to 240 hours, and further preferably 36 to 192 hours.
  • the protein produced in the present invention is not particularly limited, but it is possible to efficiently produce a protein secreted outside the cell, and among them, preferably an enzyme, more preferably cellulase, amylase, invertase, chitinase, pectinase. And the like, and more preferably cellulase.
  • an enzyme more preferably cellulase, amylase, invertase, chitinase, pectinase. And the like, and more preferably cellulase.
  • the cellulase produced in the present invention contains various hydrolases, including enzymes having a degrading activity for xylan, cellulose, and hemicellulose.
  • hydrolases including enzymes having a degrading activity for xylan, cellulose, and hemicellulose.
  • specific examples are cellobiose hydrolase (EC 3.2.1.91), which produces cellobiose by hydrolysis of cellulose chains, and endoglucanase (EC 3.2.1.4, which hydrolyzes from the central part of the cellulose chain).
  • Cellooligosaccharides and ⁇ -glucosidases that hydrolyze cellobiose EC 3.2.1.21
  • xylanases EC 3.2.1.8
  • Examples include ⁇ -xylosidase (EC 3.2.1.37) that hydrolyzes.
  • Trichoderma reesei mutant strain of the present invention has improved protein production ability as compared with the parent strain and that the specific activity of cellulase is improved is obtained by culturing the mutant strain and the parent strain under the same conditions.
  • the resulting culture solution is compared with the protein concentration, the specific activity of ⁇ -glucosidase, the specific activity of ⁇ -xylosidase, and the specific activity of cellobiohydrolase, which are measured by the following methods, by comparison with one or more of them. Confirm.
  • the protein concentration was determined by diluting the supernatant obtained by centrifuging the cultures of the mutant strain and the parent strain at 15,000 ⁇ g for 10 minutes, and diluting them to 250 ⁇ L of Quick Start Bradford protein assay (Bio-Rad). After adding 5 ⁇ L of the supernatant and allowing it to stand at room temperature for 15 minutes, the absorbance used at 595 nm is measured. Using the bovine serum albumin solution as a standard solution, the concentration of protein contained in the saccharifying enzyme solution is calculated based on the calibration curve.
  • the ⁇ -glucosidase specific activity was determined by adding 10 ⁇ L of the enzyme diluent to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -glucopyranoside (manufactured by Sigma-Aldrich Japan) at 30 React at 10 ° C for 10 minutes. Next, 10 ⁇ L of 2 M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated with the activity of liberating 1 ⁇ mol of p-nitrophenol per minute as 1 U.
  • the ⁇ -xylosidase specific activity was obtained by adding 10 ⁇ L of the enzyme diluent to 90 ⁇ L of a 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -xylopyranoside (manufactured by Sigma-Aldrich Japan) at 30 ° C. Then, the reaction is stopped by adding 10 ⁇ L of 2 M sodium carbonate and mixing well, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated with the activity of liberating 1 ⁇ mol of p-nitrophenol per minute as 1 U.
  • the cellobiohydrolase specific activity was calculated by adding 10 ⁇ L of the enzyme diluent to 90 ⁇ L of 50 mM acetate buffer containing 1 mM of p-nitrophenyl- ⁇ -lactopyranoside (manufactured by Sigma-Aldrich Japan) in the culture supernatant. The reaction is allowed to proceed at 60 ° C. for 60 minutes, then 10 ⁇ L of 2 M sodium carbonate is added and mixed well to stop the reaction, and an increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated with the activity of liberating 1 ⁇ mol of p-nitrophenol per minute as 1 U.
  • the composition of the medium used in the step of culturing the mutant strain of the present invention is not particularly limited as long as it has a medium composition that allows Trichoderma reesei to produce a protein, and a known medium composition of Trichoderma spp. it can.
  • the nitrogen source for example, polypeptone, gravy, CSL, soybean meal and the like can be used.
  • an inducer for producing a protein may be added to the medium.
  • the cellulase When the cellulase is produced according to the present invention, it can be cultured in a medium containing at least one or two or more inducers selected from the group consisting of lactose, cellulose and xylan. Further, as the cellulose or xylan, biomass containing cellulose or xylan may be added as an inducer. Specific examples of the biomass containing cellulose or xylan include seed plants, ferns, moss plants, algae, plants such as aquatic plants, and waste building materials. Seed plants are classified into gymnosperms and angiosperms, and both can be preferably used.
  • Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants, and specific examples of monocotyledonous plants include bagasse, switchgrass, napiergrass, Elianthus, corn stover, corncob, rice straw, and straw.
  • dicotyledon beet pulp, eucalyptus, oak, birch, etc. are preferably used.
  • pretreated one may be used as the biomass containing cellulose or xylan.
  • the pretreatment method is not particularly limited, but known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, fine pulverization treatment, and steam treatment can be used. Pulp may be used as the biomass containing cellulose or xylan that has been subjected to such pretreatment.
  • the method for recovering the protein contained in the culture solution in which the mutant strain is cultured is not particularly limited, but the protein can be recovered by removing the bacterial cells of the mutant strain from the culture solution.
  • the method for removing the bacterial cells include a centrifugal separation method, a membrane separation method, a filter press method and the like.
  • the mutant strain of Trichoderma reesei when it is cultivated, the bacterial cells are not removed from the culture solution, and when it is used as a protein solution, it is preferable to treat the mutant strain of Trichoderma reesei so that it cannot grow.
  • the method for treating the cells so that they cannot grow include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
  • the culture solution from which the bacterial cells have been removed or treated so as not to grow as described above can be directly used as an enzyme solution.
  • the cellulase can be used to saccharify the cellulose-containing biomass to produce sugar.
  • the cellulase obtained by culturing the mutant strain has a particularly high specific activity of ⁇ -glucosidase as compared with the cellulase obtained by culturing the parent strain before the introduction of the mutation, and thus efficiently decomposes the cellulose-containing biomass.
  • a sugar solution having a high glucose concentration can be obtained, and more sugar can be obtained.
  • the same biomass as the cellulose-containing biomass described as the above-mentioned inducer or a pretreated biomass can be used.
  • the conditions for the saccharification reaction are not particularly limited, but the temperature for the saccharification reaction is preferably in the range of 25 to 60 ° C, and more preferably in the range of 30 to 55 ° C.
  • the saccharification reaction time is preferably in the range of 2 hours to 200 hours.
  • the pH of the saccharification reaction is preferably in the range of pH 3.0 to 7.0, and more preferably in the range of pH 4.0 to 6.0. In the case of cellulase derived from Trichoderma, the optimum pH for the reaction is 5.0. Furthermore, since the pH changes during the hydrolysis process, it is preferable to add a buffer solution to the reaction solution or to carry out the reaction while maintaining a constant pH using an acid or an alkali.
  • the saccharified solution can be filtered through an ultrafiltration membrane or the like and collected on the non-permeate side. If necessary, the solid content can be collected from the saccharified solution as a pre-filtration step. It may be removed. The recovered enzyme can be used again in the saccharification reaction.
  • Protein concentration measurement reagent used Quick Start Bradford protein assay, manufactured by Bio-Rad Measurement conditions Measurement temperature: room temperature Protein concentration measurement reagent: 250 ⁇ L Filamentous culture medium: 5 ⁇ L Reaction time: 5 minutes Absorbance: 595 nm Standard product: BSA.
  • ⁇ Reference Example 2 Cellulase specific activity measurement conditions ( ⁇ -glucosidase specific activity measurement conditions) Substrate: p-nitrophenyl- ⁇ -glucopyranoside (manufactured by Sigma-Aldrich Japan) Reaction solution: 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -glucopyranoside Enzyme diluent: 10 ⁇ L Reaction temperature: 30 ° C Reaction time: 10 minutes Reaction terminator: 2M sodium carbonate 10 ⁇ L Absorbance: 405 nm.
  • ⁇ Reference Example 3 Saccharification test of cellulose-containing biomass
  • Arbocel registered trademark
  • B800 manufactured by Rettenmeyer
  • bagasse powdered to an average particle size of 100 ⁇ m was used.
  • the enzyme solution 1 mL of the culture solution of Trichoderma reesei or Trichoderma reesei mutant strain was collected, centrifuged, the supernatant from which the bacterial cells were removed was collected, and the filtrate filtered with a 0.22 ⁇ m filter was used. I was there.
  • the enzyme solution obtained by the flask culture using lactose was added in an amount of 350 ⁇ L when Arbocel (registered trademark) B800 was used as the saccharification target, and 400 ⁇ L when powdered bagasse was the saccharification target, so that the total amount was 1 mL.
  • a 2 mL tube was filled with sterile water.
  • the saccharification reaction is performed at a temperature of 50 ° C. for 24 hours, the supernatant obtained by centrifuging the saccharified product is recovered as a saccharification solution, and 1/10 amount of 1N NaOH solution of the recovered saccharification solution is added to conduct an enzymatic reaction Stopped.
  • the glucose concentration in the saccharified solution after the reaction was stopped was measured by UPLC shown below.
  • Glucose was quantitatively analyzed using the ACQUITY UPLC system (Waters) under the following conditions. Quantitative analysis was performed based on a calibration curve prepared from a glucose standard.
  • mutant strain of Trichoderma reesei deficient in polypeptide comprising amino acid sequence represented by SEQ ID NO: 2 Trichoderma deficient in function of polypeptide comprising amino acid sequence represented by SEQ ID NO: 2
  • the mutant strain of Resei is an acetamidase gene capable of degrading the gene represented by SEQ ID NO: 1 encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 as a selection marker and acetamide as a selection marker gene. It is destroyed by replacing it with (amdS).
  • a DNA fragment consisting of the gene sequence represented by SEQ ID NO: 18 was prepared, and the DNA fragment was transformed into Trichoderma reesei QM9414 strain.
  • a mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is prepared.
  • a mutant strain of Trichoderma reesei lacking the nucleotide sequence represented by SEQ ID NO: 1 can be obtained.
  • PCR was performed using genomic DNA extracted from Trichoderma reesei QM9414 strain according to a standard method and oligo DNAs represented by SEQ ID NOs: 19 and 20, and the obtained amplified fragment was treated with restriction enzymes PacI and NotI. Let the DNA fragment be an upstream DNA fragment. PCR is carried out using the oligo DNAs represented by SEQ ID NOs: 21 and 22, and the obtained amplified fragment is treated with restriction enzymes MluI and SpeI to obtain a downstream DNA fragment.
  • the upstream and downstream DNA fragments are introduced into the plasmid into which amdS has been inserted by using the restriction enzymes PacI and NotI, and MluI and SpeI, respectively, to construct a mutation-introducing plasmid.
  • the mutation-introducing plasmid is treated with restriction enzymes PacI and SpeI, and Trichoderma reesei QM9414 strain is transformed with the obtained DNA fragment represented by SEQ ID NO: 18.
  • the molecular biological method is performed as described in Molecular cloning, laboratory manual, 1st, 2nd, 3rd (1989). Further, the transformation is carried out by using the standard method, protoplast-PEG method, specifically, as described in Gene, 61, 165-176 (1987).
  • the mutant strain of Trichoderma reesei obtained according to the method described above was used as Trichoderma reesei mutant strain I in the following protein production test and experiments for protein concentration and cellulase specific activity measurement.
  • Example 2 Culture test of Trichoderma reesei mutant strain (pre-culture)
  • the spores of the Trichoderma reesei mutant strain prepared in Example 1 were diluted with physiological saline to a concentration of 1.0 ⁇ 10 7 / mL, and 2.5 mL of the diluted spore solution was attached to a 1 L baffle shown in Table 1.
  • 250 mL of the preculture medium placed in the flask is inoculated and cultured for 72 hours at 28 ° C. and 120 rpm in a shaking culture machine.
  • Trichoderma reesei QM9414 strain is used, and the same experiment operation is performed below.
  • Arbocel B800 (Rettenmeyer) is added to the main culture medium shown in Table 2 and a 5 L jar fermenter (manufactured by Biot) is used for deep culture examination.
  • the parent strain of the mutant strain I was cultured for 120 hours according to the above method as a comparison target.
  • saccharification reaction test According to the method described in Reference Example 3, the saccharification reaction test of the cellulose-containing biomass was performed using the culture solution of Trichoderma reesei mutant strain I 120 hours after the start of the flask culture as cellulase. Arbocel® B800 or powdered bagasse was used as the cellulose-containing biomass.
  • the cellulase of Trichoderma reesei QM9414 strain obtained by performing flask culture using Arbocel (registered trademark) B800 was used.
  • the glucose concentration contained in the saccharified solution is set to 1
  • the relative glucose concentration value of the saccharified solution when using the cellulase of Trichoderma reesei mutant I is 1.8, and it was obtained by flask culture using lactose.
  • the relative value of the glucose concentration contained in the saccharified solution when using the cellulase was also 1.6.
  • the glucose concentration contained in the saccharification solution when the cellulase of Trichoderma reesei QM9414 strain was used which was obtained by performing flask culture using Arbocel (registered trademark) B800.
  • Arbocel registered trademark
  • the relative value of the glucose concentration of the saccharified solution is 1.2, and the cellulase obtained by culturing the flask with lactose is used.
  • the relative value of the glucose concentration contained in the saccharified solution was also 1.3.
  • Example 3 Preparation of mutant strain of Trichoderma reesei having a mutation in the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2
  • the QM9414-E strain which is a passage strain of the Trichoderma reesei QM9414 strain, was subjected to gene mutation treatment to obtain the mutant strain QM9141-F.
  • spores of the QM9414-E strain were inoculated so as to give 1.0 ⁇ 10 5 spores per mL of the preculture medium shown in Table 1, 15 mL of the preculture medium was cultured for half a day, and then centrifuged to recover the spores. did.
  • the collected spores were suspended in Tris-maleic acid buffer (pH 6.0) to give a 10 mL spore solution, and dissolved therein with Tris-maleic acid buffer (pH 6.0) to 1.0 g / L. 0.5 mL of the prepared NTG solution was added, and gene mutation treatment was performed at 28 ° C. for 100 minutes.
  • the spores subjected to gene mutation treatment were recovered by centrifugation, washed with Tris-maleic acid buffer (pH 6.0) three times, and finally suspended in 10 mL of Tris-maleic acid buffer (pH 6.0). The spores were treated with gene mutation.
  • the gene-mutated spores were added to an agar medium prepared by adding crystalline cellulose, and the size of halo, which is a region for degrading crystalline cellulose by cellulase generated around the colony, was used as an index, and the QM9414-F strain having a large halo was identified. Selected.
  • QM9414-E and QM9414-F strains Genetic analysis of the QM9414-E and QM9414-F strains revealed that the QM9414-E strain retained the nucleotide sequence represented by SEQ ID NO: 1, but the QM9414-F strain represented by SEQ ID NO: 1.
  • the 2588th cytosine in the nucleotide sequence was mutated to thymine.
  • the mutation is a mutation for mutating the 677th serine residue of the amino acid sequence represented by SEQ ID NO: 2 encoded by the base sequence represented by SEQ ID NO: 1 into a phenylalanine residue.
  • Example 4 Protein production test using a mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 (measurement of protein concentration and various specific activities of cellulase)
  • the QM9414-F strain obtained in Example 3 was cultured in the same manner as in Example 2, and under the conditions of Reference Example 1 and Reference Example 2, the protein concentration and cellulase in the culture medium 120 hours after the start of the culture. was measured for specific activity.
  • the QM9414-E strain was used as a control. The results are shown in Table 3.
  • the QM9414-F strain had a 2.6 times higher protein concentration in the culture solution than the QM9414-E strain.
  • various specific activities of the QM9414-F strain were 3.1 times higher for ⁇ -glucosidase, 1.5 times higher for ⁇ -xylosidase, and 2.0 times higher for cellobiohydrolase than the QM9414-E strain. It was
  • saccharification reaction test According to the method described in Reference Example 3, the saccharification reaction test of the cellulose-containing biomass was performed using the culture solution 120 hours after the start of the culture of the Trichoderma reesei QM9414-F strain as cellulase. Arbocel® B800 or powdered bagasse was used as the cellulose-containing biomass.
  • the cellulase produced by the Trichoderma reesei QM9414-E strain has a higher enzymatic activity than the cellulase produced by the parent strain, and thus has an excellent ability to produce glucose from the cellulose-containing biomass.

Abstract

The present invention is a mutant strain of Trichoderma reesei that has a mutation and in which a function of a polypeptide comprising the amino acid sequence shown in SEQ ID NO:2 is eliminated or reduced, as well as a method to mass produce a protein by cultivating said mutant strain.

Description

トリコデルマ・リーセイ変異株およびタンパク質の製造方法Trichoderma reesei mutant and protein production method
 本発明は、タンパク質製造能が向上するトリコデルマ・リーセイの変異株および当該変異株を用いたタンパク質の製造方法に関する。 The present invention relates to a mutant strain of Trichoderma reesei that improves protein production ability and a method for producing a protein using the mutant strain.
 トリコデルマ・リーセイは、高いタンパク質製造能を有していることが知られており、これまで同糸状菌を用いたタンパク質の製造の検討が行われてきた。トリコデルマ・リーセイは、タンパク質の中でも特に糖化酵素に分類されるセルラーゼを製造する能力に優れており、例えばセルラーゼ製造量をさらに向上させるため、セルラーゼ製造を制御する因子の過剰発現や欠損が行われている。 It is known that Trichoderma reesei has a high protein-producing ability, and studies on protein production using the filamentous fungus have been conducted so far. Trichoderma reesei is excellent in the ability to produce cellulase classified as a saccharifying enzyme among proteins, and for example, in order to further improve the production amount of cellulase, overexpression or deletion of a factor controlling cellulase production is performed. There is.
 非特許文献1では、トリコデルマ・リーセイのセルラーゼの製造を制御する因子の中でも、セルラーゼの製造を抑制する転写因子であるCre1の機能を低下させることにより高いセルラーゼ製造能を有するトリコデルマ・リーセイの変異株が取得されている。 In Non-Patent Document 1, among factors controlling the production of cellulase of Trichoderma reesei, a mutant strain of Trichoderma reesei having a high cellulase producing ability by reducing the function of Cre1, which is a transcription factor that suppresses the production of cellulase. Has been acquired.
 上記のとおり、トリコデルマ・リーセイのタンパク質製造を制御する因子の一つである転写因子が解明されているが、これは、制御機構の一部にすぎないと考える。そこで本発明では、トリコデルマ・リーセイのタンパク質製造を制御する新規因子を探索し、タンパク質製造能が強化されたトリコデルマ・リーセイの変異株の取得および当該トリコデルマ・リーセイの変異株を用いたタンパク質の製造方法を提供することを課題とする。 As mentioned above, the transcription factor, which is one of the factors controlling the protein production of Trichoderma reesei, has been elucidated, but I think that this is only a part of the control mechanism. Therefore, in the present invention, a novel factor that controls the protein production of Trichoderma reesei is searched, and a mutant of Trichoderma reesei that has enhanced protein production ability is obtained and a method for producing a protein using the mutant of Trichoderma reesei. The challenge is to provide.
 本発明者は、これまで知られていなかったタンパク質製造が向上する新規制御因子を解明できれば、トリコデルマ・リーセイのタンパク質の製造量をさらに向上させることができると考え、鋭意検討した結果、配列番号2で表されるアミノ酸配列からなるポリペプチド内に変異を有するトリコデルマ・リーセイの変異株を培養することにより、タンパク質生産性を向上させることができることを見出し、本発明を完成するに至った。 The present inventor believes that the production amount of Trichoderma reesei protein can be further improved if a novel regulatory factor that improves protein production, which has not been known so far, can be elucidated. The present inventors have found that protein productivity can be improved by culturing a mutant strain of Trichoderma reesei having a mutation in the polypeptide having the amino acid sequence represented by the following, and have completed the present invention.
 すなわち、本発明は以下の(1)~(6)で構成される。
(1)配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異を有する、トリコデルマ・リーセイの変異株。
(2)前記変異が、配列番号2で表されるアミノ酸配列からなるポリペプチドのfungal transcription factor regulatory middle homology regionドメイン内でのアミノ酸残基の欠失、置換または付加の変異である、(1)に記載の変異株。
(3)前記変異が、配列番号2で表されるアミノ酸配列のN末端側から677番目のセリン残基のセリン以外のアミノ酸残基への変異である、(1)または(2)に記載の変異株。
(4)(1)~(3)のいずれかに記載の変異株を培養する工程を含む、タンパク質の製造方法。
(5)(1)~(3)のいずれかに記載の変異株を培養する工程を含む、セルラーゼの製造方法。
(6)(5)に記載のセルラーゼの製造方法によりセルラーゼを製造する工程および前記工程で得られたセルラーゼを用いてセルロース含有バイオマスを糖化する工程を含む、糖の製造方法。
That is, the present invention includes the following (1) to (6).
(1) A mutant strain of Trichoderma reesei, which has a mutation in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deleted or reduced.
(2) The mutation is a deletion, substitution, or addition mutation of an amino acid residue in the fungal transcription factor regulatory regulatory region domain of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2, (1) The mutant strain described in.
(3) The mutation according to (1) or (2), wherein the mutation is a mutation at the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 to an amino acid residue other than serine. Mutant strain.
(4) A method for producing a protein, which comprises a step of culturing the mutant strain according to any one of (1) to (3).
(5) A method for producing cellulase, which comprises a step of culturing the mutant strain according to any one of (1) to (3).
(6) A method for producing sugar, which comprises the step of producing cellulase by the method for producing cellulase according to (5) and the step of saccharifying a cellulose-containing biomass using the cellulase obtained in the above step.
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下したトリコデルマ・リーセイの変異株は、当該変異導入前の親株と比較して、タンパク質の製造能が向上し、タンパク質を高生産することが可能となる。さらに、製造されるタンパク質がセルラーゼの場合には、セルラーゼの各種比活性も向上するという予想外の効果も得られる。 The mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deficient or diminished, has an improved protein production ability and a higher protein content than the parent strain before the introduction of the mutation. It becomes possible to produce. Furthermore, when the protein to be produced is cellulase, an unexpected effect of improving various specific activities of cellulase is also obtained.
 本発明は、もともとタンパク質の製造能に優れる微生物であるトリコデルマ・リーセイの親株に変異を導入することによって、さらにタンパク質製造能を高めることを特徴としている。具体的には、本発明はトリコデルマ・リーセイの変異株に関するものであり、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下することを特徴としている。 The present invention is characterized by further enhancing protein production ability by introducing a mutation into a parent strain of Trichoderma reesei, which is a microorganism originally excellent in protein production ability. Specifically, the present invention relates to a mutant strain of Trichoderma reesei, which is characterized in that the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deleted or reduced.
 本発明で用いるトリコデルマ・リーセイの親株は野生株には制限されず、タンパク質製造能が高まるように改良された変異株も親株として好ましく用いることができ、例えば、変異剤や紫外線照射などで変異処理を施し、タンパク質の製造性が向上した変異株を上記親株として利用することができる。上記親株の具体例としては、トリコデルマ・リーセイQM6a株(NBRC31326)、QM9414株(NBRC31329)、PC-3-7株(ATCC66589)、QM9123株(NBRC31327)、RutC-30株(ATCC56765)、CL-847株(Enzyme.Microbiol.Technol.10,341-346(1988))、MCG77株(Biotechnol.Bioeng.Symp.8, 89(1978))、MCG80株(Biotechnol.Bioeng.12,451-459(1982))及びこれらの派生株などが挙げられる。なお、QM6a株、QM9414株、QM9123株はNBRC(NITE Biological Resource Center)より、PC-3-7株、RutC-30株はATCC(American Type Culture Collection)より入手することができる。 The parent strain of Trichoderma reesei used in the present invention is not limited to a wild strain, and a mutant strain improved so as to enhance protein production ability can also be preferably used as the parent strain, for example, a mutation treatment with a mutagen or ultraviolet irradiation. The mutant strain having improved protein productivity can be used as the parent strain. Specific examples of the above-mentioned parent strains include Trichoderma reesei QM6a strain (NBRC31326), QM9414 strain (NBRC31329), PC-3-7 strain (ATCC66589), QM9123 strain (NBRC31327), RutC-30 strain (ATCC56765), CL-847. Strain (Enzyme. Microbiol. Technol. 10, 341-346 (1988)), MCG77 strain (Biotechnol. Bioeng. Symp. 8, 89 (1978)), MCG80 strain (Biotechnol. Bioeng. 12, 451-459 (1982)). ) And derivatives thereof. The QM6a strain, the QM9414 strain, and the QM9123 strain can be obtained from NBRC (NITE Biological Resource Center), and the PC-3-7 strain and the RutC-30 strain can be obtained from ATCC (American Type Culture Collection).
 配列番号2で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有する全長774アミノ酸のポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つpredicted protein(EGR50030)としても登録されている。配列番号2で表されるアミノ酸配列からなるポリペプチドは、機能未知のポリペプチドであるが、National Center for Biotechnology InformationのConserved Domain Architecture Retrieval Toolによれば、N末端側から280~710番目のアミノ酸残基はfungal transcription factor regulatory middle homology regionドメインを有すると開示されている。この記載により、配列番号2で表されるアミノ酸配列からなるポリペプチドは、少なくとも糸状菌の転写調節に関与していると推定される。配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号1で表される塩基配列が挙げられる。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a polypeptide having a total length of 774 amino acids possessed by Trichoderma reesei, and in the National Center for Biotechnology Information, it is also referred to as a predicted protein (EGR50030) possessed by the Trichoderma reesei QM6a strain. It is registered. The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a polypeptide whose function is unknown, but according to the Conserved Domain Architectural Retrieval Tool of National Center for Biotechnology Information, the 280th to 710th amino acids from the N-terminal side remain. The group is disclosed as having a fungal transcription factor regularity middle homology region domain. From this description, it is presumed that the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is at least involved in the transcriptional regulation of filamentous fungi. A specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is the base sequence represented by SEQ ID NO: 1.
 本発明における、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を欠損または低下させる方法としては、配列番号2で表されるアミノ酸配列からなるポリペプチドの全欠損、fungal transcription factor regulatory middle homology regionドメインの全欠損、fungal transcription factor regulatory middle homology regionドメインの一部欠損させるような変異を導入する方法が挙げられ、具体的には、配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子配列に対して、塩基の欠失、挿入、置換などによりフレームシフト変異やストップコドン変異を導入する方法が挙げられる。 In the present invention, a method for deleting or reducing the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 includes total deletion of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2, fungal transcription factor regulatory middle There is a method of introducing a mutation that causes a partial deletion of the homology region domain and a partial deletion of the fungal transcription factor regulatory middle region region, specifically, the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2. Introduce frameshift mutations and stop codon mutations in the coding gene sequence by deleting, inserting, or replacing bases. How to, and the like.
 配列番号2で表されるアミノ酸配列からなるポリペプチドまたはfungal transcription factor regulatory middle homology regionドメインの欠損とは、そのポリペプチドまたはドメインが全て無くなる、一部が無くなる、全てが異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる、またそれらの組み合わせのことを指す。さらに具体的には、配列番号2で表されるアミノ酸配列と配列同一性が80%以下になることを指し、好ましくは50%以下であり、さらに好ましくは20%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、さらに好ましくは1%以下であり、最も好ましくは0%である。 A polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or a fungal transcription factor regulatory middle region domain is a deletion of the polypeptide or domain, a part of the polypeptide or the domain disappears, a part of the amino acid changes to a different amino acid Refers to a different amino acid, or a combination thereof. More specifically, it means that the sequence identity with the amino acid sequence represented by SEQ ID NO: 2 is 80% or less, preferably 50% or less, more preferably 20% or less, still more preferably 10% or less. % Or less, more preferably 5% or less, further preferably 3% or less, further preferably 1% or less, and most preferably 0%.
 fungal transcription factor regulatory middle homology regionドメイン内に位置するアミノ酸配列に欠失、置換、または付加などの変異がおこることによって、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する具体例としては、配列番号2で表されるアミノ酸配列のN末端側から677番目のセリン残基が、セリン以外のアミノ酸残基に変異していることが好ましく、特に好ましくはフェニルアラニンへ変異していることが好ましい。 The function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deficient or diminished by mutation such as deletion, substitution, or addition in the amino acid sequence located in the fungal transcription factor regulatory regrowth homology region domain. As a specific example, the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is preferably mutated to an amino acid residue other than serine, and particularly preferably mutated to phenylalanine. Is preferred.
 配列番号2で表されるアミノ酸配列のN末端側から677番目のセリン残基がセリン以外のアミノ酸残基に変異したアミノ酸配列をコードする塩基配列の具体例としては、配列番号1で表される塩基配列において、2588番目の塩基であるシトシンがチミンへ変異した配列が挙げられる。当該変異により、配列番号2で表されるアミノ酸配列のN末端側から677番目のアミノ酸残基がセリンからフェニルアラニンへ変異する。 A specific example of the nucleotide sequence encoding an amino acid sequence in which the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is mutated to an amino acid residue other than serine is represented by SEQ ID NO: 1. In the base sequence, a sequence in which cytosine, which is the 2588th base, is mutated to thymine, can be mentioned. Due to the mutation, the amino acid residue at the 677th position from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 is mutated from serine to phenylalanine.
 また、配列番号2で表されるアミノ酸配列からなるポリペプチドの発現を低下させる、または発現を消失させる変異を導入することによっても、当該ポリペプチドの機能を低下させてもよく、具体的には、配列番号2で表されるアミノ酸配列をコードする遺伝子のプロモーターやターミネーター領域の変異によるポリペプチドの発現量の低下または消失によるものであってもよい。一般的にプロモーターとターミネーター領域は、転写に関与する遺伝子の前後数百塩基の両気に相当し、配列番号2で表されるアミノ酸配列からなるポリペプチドの転写に関与するプロモーターとターミネーターを含む塩基配列の具体例としては、配列番号1で表される塩基配列が挙げられる。 In addition, the function of the polypeptide may be reduced by introducing a mutation that reduces the expression of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or eliminates the expression. Alternatively, it may be due to a decrease or disappearance of the expression level of the polypeptide due to a mutation in the promoter or terminator region of the gene encoding the amino acid sequence represented by SEQ ID NO: 2. In general, a promoter and terminator region correspond to both sides of several hundred bases before and after a gene involved in transcription and include a promoter and terminator involved in transcription of a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2. Specific examples of the sequence include the base sequence represented by SEQ ID NO: 1.
 上記の遺伝子の変異導入は、当業者によって公知の変異剤または紫外線照射などによる変異処理、選択マーカーを用いた相同組換えなどの遺伝子組換え、あるいはトランスポゾンによる変異など、既存の遺伝子変異方法を用いることができる。 For the introduction of mutations into the above-mentioned genes, existing gene mutation methods such as mutation treatment known to those skilled in the art or mutation treatment with ultraviolet irradiation, gene recombination such as homologous recombination using a selection marker, or mutation with a transposon are used. be able to.
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株は以下の方法で取得することができる。 The mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 can be obtained by the following method.
 配列番号2で表されるアミノ酸配列からなるポリペプチドの全ての機能が欠損または低下した変異株は、親株となるトリコデルマ・リーセイの胞子に対して、ニトロソグアニジン(NTG)、エチルメタンスルホン酸(EMS)、紫外線などを用いて遺伝子変異処理を行い、得られた変異株の遺伝子を解析して、上記の変異を有する変異株をスクリーニングすることで、取得できる。 The mutant strain in which all of the functions of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 are deleted or reduced, spores of Trichoderma reesei, which is a parent strain, are nitrosoguanidine (NTG), ethylmethanesulfonic acid (EMS). ), A gene mutation treatment is performed using ultraviolet rays, etc., the gene of the obtained mutant strain is analyzed, and a mutant strain having the above mutation is screened to obtain the mutant strain.
 本発明の変異株は、当該変異導入前の親株と比較し、タンパク質の製造能が向上するため、本発明の変異株の培養液は、同一の培養条件にて得られた当該変異導入前の親株の培養液と比較して、タンパク質濃度が増加する。また、タンパク質が酵素の場合には、酵素の比活性が増加する。ここで、タンパク質濃度の増加率や酵素の比活性の増加率は、増加していれば特に限定はされないが、20%以上であることが好ましい。 Since the mutant strain of the present invention has improved protein production ability as compared with the parent strain before the mutation introduction, the culture solution of the mutant strain of the present invention is obtained before the mutation introduction under the same culture conditions. The protein concentration is increased as compared to the culture medium of the parent strain. When the protein is an enzyme, the specific activity of the enzyme increases. Here, the increase rate of the protein concentration and the increase rate of the specific activity of the enzyme are not particularly limited as long as they are increased, but are preferably 20% or more.
 本発明の変異株は、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異以外にも、タンパク質製造量の向上および/または培養液の粘度が低下し培養液中の溶存酸素飽和度の低下が抑制される変異を有していてもよい。具体例としては、配列番号3、5、7、9、11、13、15のいずれかで表されるアミノ酸配列からなるポリペプチドの変異が挙げられる。 The mutant strain of the present invention is not only a mutant in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deficient or diminished, but also the protein production amount is improved and / or the viscosity of the culture solution is decreased, so that May have a mutation that suppresses the decrease in the dissolved oxygen saturation level. Specific examples include mutations in the polypeptide consisting of the amino acid sequence represented by any of SEQ ID NOs: 3, 5, 7, 9, 11, 13, and 15.
 配列番号3で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つpredicted proteinのEGR50654として登録されている。配列番号3で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から95番目~277番目のアミノ酸残基はMiddle domain of eukaryotic initiation factor 4Gドメイン(以降MIF4Gドメインと記載する。)、N末端側から380番目~485番目のアミノ酸残基はMA-3ドメインを有すると開示されている。MIF4GおよびMA-3の両ドメインは、DNAまたはRNAに結合する機能を有することが知られている(Biochem.44,12265-12272(2005)、Mol.Cell.Biol.1,147-156(2007))。これらの記載により配列番号3で表されるアミノ酸配列からなるポリペプチドは、少なくともDNAおよび/またはRNAに結合する機能を有すると推定される。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is a polypeptide possessed by Trichoderma reesei, and is registered in National Center for Biotechnology Information as EGR50654 of predicated protein possessed by the Trichoderma reesei QM6a strain. The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of the National Center for Biotechnology Information, the remaining 95th to 277th amino acids from the N-terminal side. It is disclosed that the group has a Middle domain of eukaryotic initiation factor 4G domain (hereinafter referred to as MIF4G domain), and the 380th to 485th amino acid residues from the N-terminal side have a MA-3 domain. Both MIF4G and MA-3 domains are known to have a function of binding to DNA or RNA (Biochem. 44, 12265-12272 (2005), Mol. Cell. Biol. 1, 147-156 (2007). )). From these descriptions, the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is presumed to have at least the function of binding to DNA and / or RNA.
 配列番号3で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号4で表される塩基配列が挙げられる。EGR50654の機能が低下または欠損する遺伝子変異とは、EGR50654が有するMIF4Gドメインおよび/またはMA-3ドメインの全欠損、MIF4Gドメインおよび/またはMA-3ドメインの一部欠損、MIF4GドメインとMA-3ドメインとの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号3で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下または欠損させることができる。配列番号3で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号4で表される塩基配列において、1039番目から1044番目のいずれかの塩基が欠失する変異が挙げられる。 A specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is the nucleotide sequence represented by SEQ ID NO: 4. A gene mutation in which the function of EGR50654 is reduced or deleted includes all deletions of MIF4G domain and / or MA-3 domain possessed by EGR50654, partial deletion of MIF4G domain and / or MA-3 domain, MIF4G domain and MA-3 domain. Gene mutations that change the configurational relationship with Furthermore, the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3. As a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is lacking, a mutation in the base sequence represented by SEQ ID NO: 4 in which any of the 1039th to 1044th bases is deleted is Can be mentioned.
 配列番号3で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損することにより、配列番号3で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損しないトリコデルマ・リーセイと比較し、タンパク質の生産性が向上する。 Compared with Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3 is not decreased or deleted due to the decrease or loss of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 3, Protein productivity is improved.
 配列番号5で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つpredicted proteinのEGR44419として登録されている。配列番号5で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から26~499番目のアミノ酸残基は「Sugar(and other) Transporterドメインを有すると開示されている。この記載により配列番号5で表されるアミノ酸配列からなるポリペプチドは、少なくとも菌体の内側と外側の間における糖の輸送に関与していると推定される。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is a polypeptide possessed by Trichoderma reesei, and is registered as EGR44419 of predicated protein possessed by the strain of Trichoderma reesei QM6a in the National Center for Biotechnology Information. The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, amino acid residues 26 to 499 from the N-terminal side. Is disclosed to have a Sugar (and other) Transporter domain. According to this description, the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is involved in sugar transport at least between the inside and outside of the bacterial cell. It is estimated that
 配列番号5で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号6で表される塩基配列が挙げられる。EGR44419の機能が低下または欠損する遺伝子変異とは、EGR44419が有するSugar(and other) Transporterドメインの全欠損、Sugar(and other) Transporterドメインの一部欠損、Sugar(and other) Transporterドメインの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号5で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下または欠損させることができる。配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号6で表される塩基配列での1415番目に11塩基が挿入する変異が挙げられる。 A specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is the base sequence represented by SEQ ID NO: 6. A gene mutation in which the function of EGR44419 is reduced or deleted refers to a total deletion of the Sugar (and other) Transporter domain, a partial deletion of the Sugar (and other) Transporter domain, and a configurational relationship of the Sugar (and other) Transporter domain. The gene mutation which changes is mentioned. Furthermore, the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5. A specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is lacking is a mutation in which 11 bases are inserted at the 1415th position in the base sequence represented by SEQ ID NO: 6.
 配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損することにより、配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損しないトリコデルマ・リーセイと比較し、タンパク質の生産性およびβ-グルコシダーゼの比活性が向上する。 Compared with Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is not decreased or deleted due to the decrease or loss of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5, The productivity of the protein and the specific activity of β-glucosidase are improved.
 配列番号7で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つbeta-adaptin large subunitのEGR48910として登録されている。配列番号7で表されるアミノ酸配列からなるポリペプチドは、真核生物に広く保存されているクラスリンと結合する細胞内外や菌体内外の輸送に関与する小胞を構成するアダプタープロテインを構成するタンパク質のひとつである(Proc.Nati.Acad.Sci.USA.101,14108-14113(2004))。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is a polypeptide possessed by Trichoderma reesei, and in National Center for Biotechnology Information, the EGR registered as beta-adaptin large sub10 unit of Trichoderma reesei QM6a strain is registered. There is. The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 constitutes an adapter protein that constitutes vesicles involved in intracellular and extracellular transport that bind to clathrin, which is widely conserved in eukaryotes. It is one of the proteins (Proc. Nati. Acad. Sci. USA. 101, 14108-14113 (2004)).
 配列番号7で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号8で表される塩基配列が挙げられる。EGR48910の遺伝子変異とは、配列番号8で表される塩基配列での1080番目の塩基であるシトシンのアデニンへの変異が挙げられる。 A specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is the nucleotide sequence represented by SEQ ID NO: 8. Examples of the EGR48910 gene mutation include mutation of cytosine, which is the 1080th base in the base sequence represented by SEQ ID NO: 8, to adenine.
 配列番号7で表されるアミノ酸配列からなるポリペプチド内に変異を有することにより、配列番号7で表されるアミノ酸配列からなるポリペプチド内に変異を有さないトリコデルマ・リーセイと比較し、液体培養時の培養液の粘性が低下する。 Compared with Trichoderma reesei, which has no mutation in the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 by having a mutation in the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7, liquid culture At that time, the viscosity of the culture solution decreases.
 配列番号9で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つpredicted proteinのEGR45828として登録されている。配列番号9で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から86~186番目のアミノ酸残基はheat shock factor(HSF)-type DNA-bindingドメインと開示されている。HSF-type DNA-bindingドメインは、ヒートショックプロテインの発現を制御する転写因子であるHSFをコードする遺伝子の上流域に結合する機能を有することが知られている(Cell,65(3),363-366(1991))。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is a polypeptide possessed by Trichoderma reesei, and is registered in National Center for Biotechnology Information as EGR45828 of predicated protein possessed by the Trichoderma reesei QM6a strain. The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, the 86th to 186th amino acid residues are located from the N-terminal side. Is disclosed as a heat shock factor (HSF) -type DNA-binding domain. The HSF-type DNA-binding domain is known to have the function of binding to the upstream region of the gene encoding HSF, which is a transcription factor that regulates the expression of heat shock proteins (Cell, 65 (3), 363). -366 (1991)).
 配列番号9で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号10で表される塩基配列が挙げられる。EGR45828の機能が低下または欠損する遺伝子変異とは、EGR45828が有するHSF-type DNA-bindingドメインの全欠損、HSF-type DNA-bindingドメインの一部欠損、HSF-type DNA-bindingドメインの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号9で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下または欠損させることができる。配列番号9で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号10で表される塩基配列において、85番目にグアニン1塩基が挿入するフレームシフトを引き起こす変異が挙げられる。 A specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is the base sequence represented by SEQ ID NO: 10. A gene mutation in which the function of EGR45828 is reduced or deleted refers to a total deletion of the HSF-type DNA-binding domain possessed by EGR45828, a partial deletion of the HSF-type DNA-binding domain, and a configurational relationship of the HSF-type DNA-binding domain. The gene mutation which changes is mentioned. Furthermore, the function of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 9 can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide. A specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is deficient is a mutation causing a frame shift in which one guanine nucleotide is inserted at the 85th position in the nucleotide sequence represented by SEQ ID NO: 10. To be
 配列番号9で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損することにより、配列番号9で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損しないトリコデルマ・リーセイと比較し、タンパク質の生産性が向上する。 Compared with Trichoderma reesei, in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is reduced or deleted due to the decrease or loss of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9, Protein productivity is improved.
 配列番号11で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つpredicted protein(EGR47155)としても登録されている。配列番号11で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から362番目~553番目のアミノ酸残基はTLDドメインと開示されている。TLDドメインは機能未知である。配列番号11で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号12で表される塩基配列が挙げられる。EGR47155の機能が低下または欠損する遺伝子変異とは、EGR47155が有するTLDドメインの全欠損、TLDドメインの一部欠損、TLDドメインの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号11で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下または欠損させることができる。配列番号11で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号12で表される塩基配列において、6番目に配列番号13で表される46塩基が挿入するフレームシフト変異が挙げられる。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is a polypeptide possessed by Trichoderma reesei, and is also registered as a predicated protein (EGR47155) possessed by the Trichoderma reesei QM6a strain in the National Center for Biotechnology Information. . The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is a polypeptide of unknown function, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, the 362nd to 553rd amino acids from the N-terminal side are left. The group is disclosed as the TLD domain. The TLD domain has an unknown function. A specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is the base sequence represented by SEQ ID NO: 12. Examples of the gene mutation in which the function of EGR47155 is reduced or deleted include a total deletion of the TLD domain possessed by EGR47155, a partial deletion of the TLD domain, and a gene mutation in which the configurational relationship of the TLD domain is changed. Furthermore, the function of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 11 can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide. A specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is lacking is a frame in which 46 bases represented by SEQ ID NO: 13 are inserted at the 6th position in the base sequence represented by SEQ ID NO: 12. Examples include shift mutations.
 配列番号11で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損することにより、配列番号11で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損しないトリコデルマ・リーセイと比較し、タンパク質の生産性が向上する。 Compared to Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is not reduced or deleted due to the decrease or loss of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11, Protein productivity is improved.
 配列番号14で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つpredicted protein(EGR48056)としても登録されている。配列番号14で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から130番目~172番目のアミノ酸残基はF-boxドメインと開示されている。F-boxドメインは、細胞周期を制御するタンパク質内に見られるドメインであることが知られている(Proc.Natl.Acad.Sci.,95,2417-2422(1998))。配列番号14で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号15で表される塩基配列が挙げられる。EGR48056の機能が低下または欠損する遺伝子変異とは、EGR48056が有するF-boxドメインの全欠損、F-boxドメインの一部欠損、F-boxドメインの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号14で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下または欠損させることができる。配列番号14で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号15で表される塩基配列において、499番目のシトシンが一塩基欠損するフレームシフト変異が挙げられる。配列番号14で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損することにより、配列番号14で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損しないトリコデルマ・リーセイと比較し、タンパク質の生産性が向上する。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is a polypeptide possessed by Trichoderma reesei, and is also registered as a predicated protein (EGR48056) possessed by the Trichoderma reesei QM6a strain in National Center for Biotechnology Information. . The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is a polypeptide whose function is unknown, but according to the Censored Domain Retrieval Tool of National Center for Biotechnology Information, the remaining 130 to 172 amino acids from the N-terminal side. The group is disclosed as the F-box domain. The F-box domain is known to be a domain found in proteins that control the cell cycle (Proc. Natl. Acad. Sci., 95, 2417-2422 (1998)). A specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is the base sequence represented by SEQ ID NO: 15. Examples of the gene mutation in which the function of EGR48056 is reduced or deleted include a total deletion of the F-box domain possessed by EGR48056, a partial deletion of the F-box domain, and a gene mutation in which the configurational relationship of the F-box domain is changed. Furthermore, the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14. A specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is lacking is a frameshift mutation in which one base of cytosine at the 499th position in the nucleotide sequence represented by SEQ ID NO: 15 is deleted. Compared with Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14 is not reduced or deleted due to the decrease or deletion of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14, Protein productivity is improved.
 配列番号16で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Informationでは、トリコデルマ・リーセイ QM6a株が持つglycosyltransferase family 41,partial(EGR46476)としても登録されている。glycosyltransferase family 41は、2量体の複合体で構成されているタンパク質(The EMBO Journal,27,2080-2788(2008))であり、翻訳直後の新生タンパク質がゴルジ複合体を通過する過程において、N-アセチルガラクトサミン(GalNAc)をアミノ酸残基であるセリンまたはスレオニン残基に転移させる機能(Biochemistry,Fourth edition,11,280-281(1995))を有している。配列番号16で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号17で表される塩基配列が挙げられる。 The polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is a polypeptide possessed by Trichoderma reesei, and in the National Center for Biotechnology Information, the glycosyltransferase family4 (76), which is also registered as triglycerylferaseferase76, glycotransferase family of Trichoderma reesei QM6a strain is registered in National Center for Biotechnology Information. Has been done. Glycosyltransferase family 41 is a protein (The EMBO Journal, 27, 2080-2788 (2008)) that is composed of a dimeric complex, and N in the process of nascent protein immediately after translation passing through the Golgi complex. -It has a function of transferring acetylgalactosamine (GalNAc) to a serine or threonine residue which is an amino acid residue (Biochemistry, Fourth edition, 11,280-281 (1995)). A specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is the nucleotide sequence represented by SEQ ID NO: 17.
 EGR46476の機能が低下または欠損する遺伝子変異とは、EGR46476が有するglycosyltransferase family 41,partialの全欠損、glycosyltransferase family 41,partialの一部欠損、glycosyltransferase family 41,partialの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号16で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下または欠損させることができる。配列番号16で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号17で表される塩基配列において、6261番目のシトシンがアデニンへ変異することによりストップコドンが挿入する変異が挙げられる。配列番号16で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損することにより、配列番号16で表されるアミノ酸配列からなるポリペプチドの機能が低下または欠損しないトリコデルマ・リーセイと比較し、タンパク質の生産性が向上する。 A gene mutation in which the function of EGR46476 is reduced or deleted is a total deletion of glycosyltransferase family 41, partial which EGR46476 has, a partial deletion of glycosyltranferase family mutated 41, a partial deletion of glycosyltranferase family mutated, and a partial deletion of glyceryl ferrycosylate. Can be mentioned. Furthermore, the function of the polypeptide can be reduced or deleted by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16. As a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is deficient, a stop codon is inserted by mutating cytosine at position 6261 to adenine in the nucleotide sequence represented by SEQ ID NO: 17. Mutations are included. Compared with Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16 is not reduced or deleted due to the decrease or loss of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 16, Protein productivity is improved.
 また、本発明は前記変異株を培養する工程を含むタンパク質の製造方法に関する。 The present invention also relates to a method for producing a protein, which comprises a step of culturing the mutant strain.
 培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養や、プレートなどを用いた固体培養などで培養することができる。トリコデルマ・リーセイは、好気的条件で培養することが好ましく、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。通気量は、0.1~2.0vvm程度が好ましく、0.3~1.5vvmがより好ましく0.5~1.0vvmが特に好ましい。培養温度は、25~35℃程度が好ましく、25~31℃がより好ましい。培養におけるpHの条件は、pH3.0~7.0が好ましく、pH4.0~6.0がより好ましい。培養時間は、タンパク質が生産される条件で、回収可能な量のタンパク質が蓄積されるまで行う。通常、24~288時間、好ましくは24~240時間、より好ましくは36~240時間、さらに好ましくは36~192時間である。 The culture method is not particularly limited, and for example, liquid culture using a centrifuge tube, flask, jar fermenter, tank or the like, or solid culture using a plate or the like can be used. Trichoderma reesei is preferably cultivated under aerobic conditions, and among these culturing methods, a jar fermenter and a submerged culturing in which a tank is aerated and agitated are particularly preferable. The ventilation amount is preferably about 0.1 to 2.0 vvm, more preferably 0.3 to 1.5 vvm, and particularly preferably 0.5 to 1.0 vvm. The culture temperature is preferably about 25 to 35 ° C, more preferably 25 to 31 ° C. The pH condition in the culture is preferably pH 3.0 to 7.0, more preferably pH 4.0 to 6.0. The culturing time is carried out under the condition that the protein is produced until a recoverable amount of the protein is accumulated. Usually, it is 24 to 288 hours, preferably 24 to 240 hours, more preferably 36 to 240 hours, and further preferably 36 to 192 hours.
 本発明で製造するタンパク質は特に制限はないが、菌体外に分泌されるタンパク質を効率的に製造することができ、中でも好ましくは酵素であり、より好ましくはセルラーゼ、アミラーゼ、インベルターゼ、キチナーゼ、ペクチナーゼ等の糖化酵素であり、さらに好ましくはセルラーゼである。 The protein produced in the present invention is not particularly limited, but it is possible to efficiently produce a protein secreted outside the cell, and among them, preferably an enzyme, more preferably cellulase, amylase, invertase, chitinase, pectinase. And the like, and more preferably cellulase.
 本発明で製造されるセルラーゼには、様々な加水分解酵素が含まれており、キシラン、セルロース、ヘミセルロースに対する分解活性を持つ酵素などが含まれている。具体例としては、セルロース鎖の加水分解によりセロビオースを製造するセロビオハイドラーゼ(EC 3.2.1.91)、セルロース鎖の中央部分から加水分解するエンドグルカナーゼ(EC 3.2.1.4)、セロオリゴ糖およびセロビオースを加水分解するβ-グルコシダーゼ(EC 3.2.1.21)、ヘミセルロースや特にキシランに作用することを特徴とするキシラナーゼ(EC 3.2.1.8)、キシロオリゴ糖を加水分解するβ-キシロシダーゼ(EC 3.2.1.37)などが挙げられる。 The cellulase produced in the present invention contains various hydrolases, including enzymes having a degrading activity for xylan, cellulose, and hemicellulose. Specific examples are cellobiose hydrolase (EC 3.2.1.91), which produces cellobiose by hydrolysis of cellulose chains, and endoglucanase (EC 3.2.1.4, which hydrolyzes from the central part of the cellulose chain). ), Cellooligosaccharides and β-glucosidases that hydrolyze cellobiose (EC 3.2.1.21), xylanases (EC 3.2.1.8) characterized by acting on hemicellulose and especially xylan, xylooligosaccharides Examples include β-xylosidase (EC 3.2.1.37) that hydrolyzes.
 本発明のトリコデルマ・リーセイ変異株が親株と比較してタンパク質の製造能が向上していることや、セルラーゼの比活性が向上していることは、変異株および親株を同じ条件で培養して得られる培養液を以下の方法により測定されるタンパク質濃度やβ-グルコシダーゼ比活性、β-キシロシダーゼ比活性およびセロビオハイドロラーゼ比活性からなる群から選択されるいずれか1種以上の比活性の比較により確認する。 The fact that the Trichoderma reesei mutant strain of the present invention has improved protein production ability as compared with the parent strain and that the specific activity of cellulase is improved is obtained by culturing the mutant strain and the parent strain under the same conditions. The resulting culture solution is compared with the protein concentration, the specific activity of β-glucosidase, the specific activity of β-xylosidase, and the specific activity of cellobiohydrolase, which are measured by the following methods, by comparison with one or more of them. Confirm.
 タンパク質濃度は、変異株および親株の培養液を15,000×gで10分間遠心分離して得られた上清を希釈し、Quick Start Bradford プロテインアッセイ(Bio-Rad社製)250μLに希釈した上清を5μL添加し、室温で15分間静置後の595nmで用いる吸光度を測定する。牛血清アルブミン溶液を標準液とし、検量線に基づいて糖化酵素溶液に含まれるタンパク質濃度を算出する。 The protein concentration was determined by diluting the supernatant obtained by centrifuging the cultures of the mutant strain and the parent strain at 15,000 × g for 10 minutes, and diluting them to 250 μL of Quick Start Bradford protein assay (Bio-Rad). After adding 5 μL of the supernatant and allowing it to stand at room temperature for 15 minutes, the absorbance used at 595 nm is measured. Using the bovine serum albumin solution as a standard solution, the concentration of protein contained in the saccharifying enzyme solution is calculated based on the calibration curve.
 β-グルコシダーゼ比活性は、前記培養液上清に、まず、1mMのp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して30℃で10分間反応させる。次に2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。 The β-glucosidase specific activity was determined by adding 10 μL of the enzyme diluent to 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-glucopyranoside (manufactured by Sigma-Aldrich Japan) at 30 React at 10 ° C for 10 minutes. Next, 10 μL of 2 M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated with the activity of liberating 1 μmol of p-nitrophenol per minute as 1 U.
 β-キシロシダーゼ比活性は、前記培養液上清に、まず、1mMのp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で30分間反応させ、次に、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。 The β-xylosidase specific activity was obtained by adding 10 μL of the enzyme diluent to 90 μL of a 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-xylopyranoside (manufactured by Sigma-Aldrich Japan) at 30 ° C. Then, the reaction is stopped by adding 10 μL of 2 M sodium carbonate and mixing well, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated with the activity of liberating 1 μmol of p-nitrophenol per minute as 1 U.
 セロビオハイドロラーゼ比活性は、前記培養液上清に、まず、1mMのp-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で60分間反応させ、次に、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に、1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。本発明の変異株の培養工程に用いる培地の組成は、トリコデルマ・リーセイがタンパク質を製造できるような培地組成となっていれば特に制限はなく、トリコデルマ属菌の周知の培地組成を採用することができる。窒素源としては、例えば、ポリペプトン、肉汁、CSL、大豆かすなどを用いることができる。また、培地には、タンパク質を製造させるための誘導物質を添加してもよい。 The cellobiohydrolase specific activity was calculated by adding 10 μL of the enzyme diluent to 90 μL of 50 mM acetate buffer containing 1 mM of p-nitrophenyl-β-lactopyranoside (manufactured by Sigma-Aldrich Japan) in the culture supernatant. The reaction is allowed to proceed at 60 ° C. for 60 minutes, then 10 μL of 2 M sodium carbonate is added and mixed well to stop the reaction, and an increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated with the activity of liberating 1 μmol of p-nitrophenol per minute as 1 U. The composition of the medium used in the step of culturing the mutant strain of the present invention is not particularly limited as long as it has a medium composition that allows Trichoderma reesei to produce a protein, and a known medium composition of Trichoderma spp. it can. As the nitrogen source, for example, polypeptone, gravy, CSL, soybean meal and the like can be used. In addition, an inducer for producing a protein may be added to the medium.
 本発明によりセルラーゼを製造する場合には、培地にラクトース、セルロースおよびキシランからなる群から選択される少なくとも1種類または2種類以上の誘導剤を含む培地で培養することができる。また、セルロースやキシランは、セルロースやキシランを含むバイオマスを誘導物質として添加してもよい。セルロールやキシランを含有するバイオマスの具体例としては、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類されるが、単子葉植物の具体例としては、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としては、ビートパルプ、ユーカリ、ナラ、シラカバなどが好ましく用いられる。 When the cellulase is produced according to the present invention, it can be cultured in a medium containing at least one or two or more inducers selected from the group consisting of lactose, cellulose and xylan. Further, as the cellulose or xylan, biomass containing cellulose or xylan may be added as an inducer. Specific examples of the biomass containing cellulose or xylan include seed plants, ferns, moss plants, algae, plants such as aquatic plants, and waste building materials. Seed plants are classified into gymnosperms and angiosperms, and both can be preferably used. Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants, and specific examples of monocotyledonous plants include bagasse, switchgrass, napiergrass, Elianthus, corn stover, corncob, rice straw, and straw. As specific examples of the dicotyledon, beet pulp, eucalyptus, oak, birch, etc. are preferably used.
 また、セルロースやキシランを含むバイオマスは、前処理されたものを用いてもよい。前処理方法は特に限定されないが、例えば、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理、など公知の手法を用いることができる。このような前処理をされたセルロールやキシランを含むバイオマスとして、パルプを用いてもよい。 Also, as the biomass containing cellulose or xylan, pretreated one may be used. The pretreatment method is not particularly limited, but known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, fine pulverization treatment, and steam treatment can be used. Pulp may be used as the biomass containing cellulose or xylan that has been subjected to such pretreatment.
 前記変異株を培養した培養液に含まれるタンパク質を回収する方法は特に限定されないが、前記変異株の菌体を培養液から除去し、タンパク質を回収することができる。菌体の除去方法としては、遠心分離法、膜分離法、フィルタープレス法などが例として挙げられる。 The method for recovering the protein contained in the culture solution in which the mutant strain is cultured is not particularly limited, but the protein can be recovered by removing the bacterial cells of the mutant strain from the culture solution. Examples of the method for removing the bacterial cells include a centrifugal separation method, a membrane separation method, a filter press method and the like.
 また、前記変異株を培養した培養液から菌体を除去せずに、タンパク質の溶解液として利用する場合には、培養液中でトリコデルマ・リーセイの変異株が生育できないように処理することが好ましい。菌体が生育できないように処理する方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。 Further, when the mutant is cultivated, the bacterial cells are not removed from the culture solution, and when it is used as a protein solution, it is preferable to treat the mutant strain of Trichoderma reesei so that it cannot grow. . Examples of the method for treating the cells so that they cannot grow include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
 タンパク質が酵素の場合には、上記のように菌体を除去又は生育していないように処理した培養液を、そのまま酵素液として利用することができる。 When the protein is an enzyme, the culture solution from which the bacterial cells have been removed or treated so as not to grow as described above can be directly used as an enzyme solution.
 また、製造対象であるタンパク質がセルラーゼの場合には、当該セルラーゼを用いて、セルロース含有バイオマスを糖化して、糖を製造することができる。また、前記変異株を培養して得られるセルラーゼは、前記変異導入前の親株を培養して得られるセルラーゼと比較して特にβ-グルコシダーゼの比活性が高いため、効率的にセルロース含有バイオマスを分解してグルコース濃度の高い糖液を得ることができ、より多くの糖を得ることができる。 If the protein to be produced is cellulase, the cellulase can be used to saccharify the cellulose-containing biomass to produce sugar. In addition, the cellulase obtained by culturing the mutant strain has a particularly high specific activity of β-glucosidase as compared with the cellulase obtained by culturing the parent strain before the introduction of the mutation, and thus efficiently decomposes the cellulose-containing biomass. Thus, a sugar solution having a high glucose concentration can be obtained, and more sugar can be obtained.
 本発明で用いるセルロース含有バイオマスは、上記の誘導剤として記載したセルロースを含むバイオマスと同様のバイオマスや、前処理されたバイオマスを用いることができる。 As the cellulose-containing biomass used in the present invention, the same biomass as the cellulose-containing biomass described as the above-mentioned inducer or a pretreated biomass can be used.
 糖化反応の条件は、特に限定されないが、糖化反応の温度は、25~60℃の範囲であることが好ましく、特に30~55℃の範囲であることがより好ましい。糖化反応の時間は、2時間~200時間の範囲であることが好ましい。糖化反応のpHは、pH3.0~7.0の範囲が好ましく、pH4.0~6.0の範囲であることがさらに好ましい。トリコデルマ属由来セルラーゼの場合、その反応最適pHは5.0である。さらに、加水分解の過程でpHの変化が起きるため、反応液に緩衝液を添加する、あるいは酸やアルカリを用いて一定pHを保持しながら実施することが好ましい。 The conditions for the saccharification reaction are not particularly limited, but the temperature for the saccharification reaction is preferably in the range of 25 to 60 ° C, and more preferably in the range of 30 to 55 ° C. The saccharification reaction time is preferably in the range of 2 hours to 200 hours. The pH of the saccharification reaction is preferably in the range of pH 3.0 to 7.0, and more preferably in the range of pH 4.0 to 6.0. In the case of cellulase derived from Trichoderma, the optimum pH for the reaction is 5.0. Furthermore, since the pH changes during the hydrolysis process, it is preferable to add a buffer solution to the reaction solution or to carry out the reaction while maintaining a constant pH using an acid or an alkali.
 糖化液から酵素を分離回収する場合には、糖化液を限外ろ過膜などでろ過し、非透過側に回収することができる、必要に応じてろ過の前工程として、糖化液から固形分を取り除いておいてもよい。回収した酵素は、再び糖化反応に用いることができる。 When the enzyme is separated and collected from the saccharified solution, the saccharified solution can be filtered through an ultrafiltration membrane or the like and collected on the non-permeate side. If necessary, the solid content can be collected from the saccharified solution as a pre-filtration step. It may be removed. The recovered enzyme can be used again in the saccharification reaction.
 以下に実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.
 <参考例1>タンパク質濃度測定条件
使用するタンパク質濃度測定試薬:Quick Start Bradfordプロテインアッセイ、Bio-Rad製
測定条件
測定温度:室温
タンパク質濃度測定試薬:250μL
糸状菌の培養液:5μL
反応時間:5分
吸光度:595nm
標準品:BSA。
<Reference Example 1> Protein concentration measurement conditions Protein concentration measurement reagent used: Quick Start Bradford protein assay, manufactured by Bio-Rad Measurement conditions Measurement temperature: room temperature Protein concentration measurement reagent: 250 μL
Filamentous culture medium: 5 μL
Reaction time: 5 minutes Absorbance: 595 nm
Standard product: BSA.
 <参考例2>セルラーゼの比活性の測定条件
 (β-グルコシダーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-グルコピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
<Reference Example 2> Cellulase specific activity measurement conditions (β-glucosidase specific activity measurement conditions)
Substrate: p-nitrophenyl-β-glucopyranoside (manufactured by Sigma-Aldrich Japan)
Reaction solution: 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-glucopyranoside
Enzyme diluent: 10 μL
Reaction temperature: 30 ° C
Reaction time: 10 minutes Reaction terminator: 2M sodium carbonate 10 μL
Absorbance: 405 nm.
 (β-キシロシダーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-キシロピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
(Conditions for measuring β-xylosidase specific activity)
Substrate: p-nitrophenyl-β-xylopyranoside (manufactured by Sigma-Aldrich Japan)
Reaction solution: 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-xylopyranoside
Enzyme diluent: 10 μL
Reaction temperature: 30 ° C
Reaction time: 10 minutes Reaction terminator: 2M sodium carbonate 10 μL
Absorbance: 405 nm.
 (セロビオハイドロラーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-ラクトピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
(Conditions for measuring cellobiohydrolase specific activity)
Substrate: p-nitrophenyl-β-lactopyranoside (manufactured by Sigma-Aldrich Japan)
Reaction solution: 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-lactopyranoside
Enzyme diluent: 10 μL
Reaction temperature: 30 ° C
Reaction time: 10 minutes Reaction terminator: 2M sodium carbonate 10 μL
Absorbance: 405 nm.
 <参考例3>セルロース含有バイオマスの糖化試験
 セルロース含有バイオマスとして、Arbocel(登録商標) B800(レッテンマイヤー社製)または平均粒径100μmに粉末化したバガスを用いた。酵素液としては、トリコデルマ・リーセイまたはトリコデルマ・リーセイ変異株の培養液を1mL採取して遠心分離し、菌体を除去した上清を回収し、さらに0.22μmのフィルターでろ過したろ液を用いた。
<Reference Example 3> Saccharification test of cellulose-containing biomass As the cellulose-containing biomass, Arbocel (registered trademark) B800 (manufactured by Rettenmeyer) or bagasse powdered to an average particle size of 100 μm was used. As the enzyme solution, 1 mL of the culture solution of Trichoderma reesei or Trichoderma reesei mutant strain was collected, centrifuged, the supernatant from which the bacterial cells were removed was collected, and the filtrate filtered with a 0.22 μm filter was used. I was there.
 (糖化反応)
 糖化反応の緩衝液として1M 酢酸ナトリウムバッファー100μL、雑菌の繁殖防止として50g/L エリスロマイシン溶液2μL、糖化対象物として、Arbocel(登録商標)B800(レッテンマイヤー株式会社製)または平均粒径100μmに粉末化したバガスをそれぞれ0.1g用いた。また、酵素液は、Arbocel(登録商標) B800を用いたフラスコ培養により得られた酵素液は、Arbocel(登録商標) B800を糖化対象物とした場合は450μL、粉末バガスを糖化対象物とした場合は400μL用いた。ラクトースを用いたフラスコ培養により得られた酵素液は、Arbocel(登録商標) B800を糖化対象物とした場合は350μL、粉末バガスを糖化対象物とした場合は400μLそれぞれ添加し、計1mLになるよう滅菌水でメスアップしたものを2mLチューブに入れた。50℃の温度条件で24時間糖化反応を行い、糖化物を遠心分離した上清を糖化液として回収し、回収した糖化液の10分の1量の1N NaOH溶液を添加して、酵素反応を停止させた。反応停止後の糖化液中のグルコース濃度を下記に示すUPLCで測定した。
(Saccharification reaction)
100 μL of 1 M sodium acetate buffer as a buffer for saccharification reaction, 2 μL of 50 g / L erythromycin solution as a preventive against the growth of various bacteria, Arbocel (registered trademark) B800 (manufactured by Rettenmeier Co., Ltd.) or powdered to an average particle size of 100 μm 0.1 g of each bagasse was used. Further, the enzyme solution obtained by the flask culture using Arbocel (registered trademark) B800 is 450 μL when Arbocel (registered trademark) B800 is the saccharification target, and the powdered bagasse is the saccharification target. Was used at 400 μL. The enzyme solution obtained by the flask culture using lactose was added in an amount of 350 μL when Arbocel (registered trademark) B800 was used as the saccharification target, and 400 μL when powdered bagasse was the saccharification target, so that the total amount was 1 mL. A 2 mL tube was filled with sterile water. The saccharification reaction is performed at a temperature of 50 ° C. for 24 hours, the supernatant obtained by centrifuging the saccharified product is recovered as a saccharification solution, and 1/10 amount of 1N NaOH solution of the recovered saccharification solution is added to conduct an enzymatic reaction Stopped. The glucose concentration in the saccharified solution after the reaction was stopped was measured by UPLC shown below.
 (グルコース濃度の測定)
 グルコースは、ACQUITY UPLC システム(Waters)を用いて、以下の条件で定量分析した。グルコースの標品で作製した検量線をもとに、定量分析した。
カラム:AQUITY UPLC BEH Amide 1.7μm 2.1×100mm Column
分離法:HILIC
移動相:移動相A:80%アセトニトリル、0.2%TEA水溶液、移動相B:30%アセトニトリル、0.2%TEA水溶液とし、下記グラジエントに従った。グラジエントは下記の時間に対応する混合比に到達する直線的なグラジエントとした。
開始条件:(A99.90%、B0.10%)、開始2分後:(A96.70%、B3.30%)、開始3.5分後:(A95.00%、B5.00%)、開始3.55分後:(A99.90%、B0.10%)、開始6分後:(A99.90%、B0.10%)。
検出方法:ELSD(蒸発光散乱検出器)
流速:0.3mL/min
温度:55℃。
(Measurement of glucose concentration)
Glucose was quantitatively analyzed using the ACQUITY UPLC system (Waters) under the following conditions. Quantitative analysis was performed based on a calibration curve prepared from a glucose standard.
Column: AQUITY UPLC BEH Amide 1.7 μm 2.1 × 100 mm Column
Separation method: HILIC
Mobile phase: Mobile phase A: 80% acetonitrile, 0.2% TEA aqueous solution, mobile phase B: 30% acetonitrile, 0.2% TEA aqueous solution, and the following gradient was followed. The gradient was a linear gradient that reached the mixing ratio corresponding to the time below.
Starting condition: (A99.90%, B0.10%), 2 minutes after the start: (A96.70%, B3.30%), 3.5 minutes after the start: (A95.00%, B5.00%) 3.55 minutes after the start: (A99.90%, B0.10%), and 6 minutes after the start: (A99.90%, B0.10%).
Detection method: ELSD (evaporative light scattering detector)
Flow rate: 0.3 mL / min
Temperature: 55 ° C.
 <実施例1>配列番号2で表されるアミノ酸配列からなるポリペプチドを欠損させたトリコデルマ・リーセイの変異株の作製
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株は、配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする配列番号1で表される遺伝子を選択マーカーとしてアセトアミド、選択マーカー遺伝子としてアセトアミドを分解することができるアセトアミダーゼ遺伝子(amdS)と置き換えることで破壊する。配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を欠損させるため、配列番号18で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をトリコデルマ・リーセイ QM9414株に形質転換して配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株を作製する。この方法により、配列番号1で表される塩基配列が欠損したトリコデルマ・リーセイの変異株が得られる。amdSを含むDNA配列の上流および下流に、上記の配列番号1で表される塩基配列からなるDNA断片を導入するために、トリコデルマ・リーセイ QM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製する。
<Example 1> Preparation of mutant strain of Trichoderma reesei deficient in polypeptide comprising amino acid sequence represented by SEQ ID NO: 2 Trichoderma deficient in function of polypeptide comprising amino acid sequence represented by SEQ ID NO: 2 The mutant strain of Resei is an acetamidase gene capable of degrading the gene represented by SEQ ID NO: 1 encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 as a selection marker and acetamide as a selection marker gene. It is destroyed by replacing it with (amdS). In order to delete the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2, a DNA fragment consisting of the gene sequence represented by SEQ ID NO: 18 was prepared, and the DNA fragment was transformed into Trichoderma reesei QM9414 strain. A mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is prepared. By this method, a mutant strain of Trichoderma reesei lacking the nucleotide sequence represented by SEQ ID NO: 1 can be obtained. In order to introduce a DNA fragment consisting of the nucleotide sequence represented by SEQ ID NO: 1 above and downstream of the amdS-containing DNA sequence, a portion homologous to the gene sequence of Trichoderma reesei QM9414 strain should be added. Create a mutation-introducing plasmid.
 具体的には、トリコデルマ・リーセイ QM9414株から定法に従って抽出したゲノムDNAと配列番号19および20で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素PacIとNotIで処理したDNA断片を上流DNA断片とする。また、配列番号21および22で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流DNA断片とする。そして、上流及び下流DNA断片をPacIとNotI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築する。そして、変異導入用プラスミドを制限酵素PacIとSpeIで処理し、配列番号18で示す得られたDNA断片でトリコデルマ・リーセイ QM9414株を形質転換する。分子生物学的手法は、Molecular cloning,laboratory manual,1st,2nd,3rd(1989)の記載通りに行う。また、形質転換は、標準的な手法であるプロトプラスト-PEG法を用い、具体的にはGene,61,165-176(1987)の記載通りに行う。 Specifically, PCR was performed using genomic DNA extracted from Trichoderma reesei QM9414 strain according to a standard method and oligo DNAs represented by SEQ ID NOs: 19 and 20, and the obtained amplified fragment was treated with restriction enzymes PacI and NotI. Let the DNA fragment be an upstream DNA fragment. PCR is carried out using the oligo DNAs represented by SEQ ID NOs: 21 and 22, and the obtained amplified fragment is treated with restriction enzymes MluI and SpeI to obtain a downstream DNA fragment. Then, the upstream and downstream DNA fragments are introduced into the plasmid into which amdS has been inserted by using the restriction enzymes PacI and NotI, and MluI and SpeI, respectively, to construct a mutation-introducing plasmid. Then, the mutation-introducing plasmid is treated with restriction enzymes PacI and SpeI, and Trichoderma reesei QM9414 strain is transformed with the obtained DNA fragment represented by SEQ ID NO: 18. The molecular biological method is performed as described in Molecular cloning, laboratory manual, 1st, 2nd, 3rd (1989). Further, the transformation is carried out by using the standard method, protoplast-PEG method, specifically, as described in Gene, 61, 165-176 (1987).
 (変異株の作製・評価)
 前述の方法に従って取得したトリコデルマ・リーセイの変異株をトリコデルマ・リーセイ 変異株Iとして、以下のタンパク質製造試験並びにタンパク質濃度およびセルラーゼ比活性測定の実験に用いた。
(Preparation and evaluation of mutants)
The mutant strain of Trichoderma reesei obtained according to the method described above was used as Trichoderma reesei mutant strain I in the following protein production test and experiments for protein concentration and cellulase specific activity measurement.
 <実施例2>トリコデルマ・リーセイ変異株の培養試験
 (前培養)
 実施例1で作製したトリコデルマ・リーセイの変異株の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液2.5mLを表1に示した1Lバッフル付フラスコへ入れた250mLの前培養培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて72時間培養を行う。コントロールとして、トリコデルマ・リーセイ QM9414株を用い、以下同様の実験操作を行う。
<Example 2> Culture test of Trichoderma reesei mutant strain (pre-culture)
The spores of the Trichoderma reesei mutant strain prepared in Example 1 were diluted with physiological saline to a concentration of 1.0 × 10 7 / mL, and 2.5 mL of the diluted spore solution was attached to a 1 L baffle shown in Table 1. 250 mL of the preculture medium placed in the flask is inoculated and cultured for 72 hours at 28 ° C. and 120 rpm in a shaking culture machine. As a control, Trichoderma reesei QM9414 strain is used, and the same experiment operation is performed below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (本培養)
 Arbocel B800(レッテンマイヤー社)を表2で示した本培養培地に添加し、5Lジャーファーメンター(バイオット社製)を用い、深部培養検討を行う。
(Main culture)
Arbocel B800 (Rettenmeyer) is added to the main culture medium shown in Table 2 and a 5 L jar fermenter (manufactured by Biot) is used for deep culture examination.
 トリコデルマ・リーセイ QM9414株および実施例1で作製したトリコデルマ・リーセイの変異株の前培養液200mLをArbocel B800が添加された本培養培地2.5Lに接種する。 Inoculate 2.5 mL of the main culture medium supplemented with Arbocel B800 with 200 mL of the preculture liquid of the Trichoderma reesei QM9414 strain and the mutant strain of Trichoderma reesei prepared in Example 1.
 培養条件は、本培養培地に前培養培地を接種後、28℃、700rpm、通気量100mL/minの培養条件にて、pH5.0に制御しながら深部培養を行う。 Regarding the culture conditions, after inoculating the main culture medium with the pre-culture medium, deep culture is performed under the culture conditions of 28 ° C., 700 rpm, and aeration rate of 100 mL / min while controlling the pH to 5.0.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (培養液の採取)
 培養開始120時間経過後にそれぞれ20mLの培養液を採取する。採取した培養液の1部は、15,000×g、4℃の条件下で10分間遠心分離を行い、上清を得る。その上清を0.22μmのフィルターでろ過し、そのろ液をセルラーゼ溶液として、以下の実験に用いる。
(Collection of culture solution)
After 120 hours from the start of culturing, 20 mL of each culture solution is collected. A part of the collected culture solution is centrifuged for 10 minutes at 15,000 × g and 4 ° C. to obtain a supernatant. The supernatant is filtered through a 0.22 μm filter, and the filtrate is used as a cellulase solution in the following experiment.
 (タンパク質濃度の測定)
 参考例1の条件で、培養開始120時間経過時に採取した培養液におけるタンパク質濃度を測定する。その結果、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株の培養液におけるタンパク質濃度は、トリコデルマ・リーセイ QM9414株の培養液におけるタンパク質濃度と比較して高くなる。
(Measurement of protein concentration)
Under the conditions of Reference Example 1, the protein concentration in the culture solution collected 120 hours after the start of culture is measured. As a result, the protein concentration in the culture broth of the mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was compared with that in the culture broth of the Trichoderma reesei QM9414 strain. Get higher
 (酵素活性の測定)
 参考例2の条件で、培養開始120時間経過時に採取した培養液におけるセルラーゼの比活性として、β-グルコシダーゼ、β-キシロシダーゼ、セロビオハイドラーゼの比活性をそれぞれ測定する。比活性は、405nmの吸光度の増加を測定し、1分間あたり1μmolの基質を遊離する活性を1Uとして算出する。その結果、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株の培養液における上記3種類の比活性は、トリコデルマ・リーセイ QM9414株の培養液における比活性と比較して高くなる。
(Measurement of enzyme activity)
Under the conditions of Reference Example 2, the specific activities of β-glucosidase, β-xylosidase, and cellobiohydrolase are measured as the specific activities of cellulase in the culture solution collected 120 hours after the start of the culture. The specific activity is calculated by measuring the increase in absorbance at 405 nm and assuming 1 U as the activity of releasing 1 μmol of substrate per minute. As a result, the three types of specific activities in the culture solution of the mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 were found to be the specific activities in the culture solution of Trichoderma reesei QM9414 strain. Will be higher than
 (フラスコ培養)
 実施例1で作製したトリコデルマ・リーセイ 変異株Iの胞子を、1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表3に示したArbocel(登録商標) B800(レッテンマイヤー社)またはラクトースが含まれる50mLバッフル付フラスコへ入れた10mLのフラスコ培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて120時間培養を行った。
(Flask culture)
The spores of Trichoderma reesei mutant strain I prepared in Example 1 were diluted with physiological saline to a concentration of 1.0 × 10 7 / mL, and 0.1 mL of the diluted spore solution was added to Arbocel (Table 3). (Registered trademark) B800 (Rettenmeyer) or lactose was inoculated into a 10 mL flask medium placed in a 50 mL baffled flask and cultured for 120 hours at 28 ° C. and 120 rpm in a shaking culture machine.
 また、変異株Iの変異導入前の親株であるトリコデルマ・リーセイ QM9414株についても比較対象として前述の方法に従って120時間培養を行った。 Also, the parent strain of the mutant strain I, the parent strain of Trichoderma reesei QM9414, was cultured for 120 hours according to the above method as a comparison target.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (培養液の採取)
 フラスコ培養開始120時間後に1mL培養液を採取した。培養液を15,000×g、4℃の条件下で10分間遠心分離を行い、上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液を以下の各種実験に用いた。
(Collection of culture solution)
120 hours after the start of flask culture, 1 mL of culture solution was collected. The culture was centrifuged at 15,000 xg and 4 ° C for 10 minutes to obtain a supernatant. The supernatant was filtered with a 0.22 μm filter, and the filtrate was used in various experiments described below.
 (タンパク質濃度の測定)
 Arbocel(登録商標) B800を用いた培養では、トリコデルマ・リーセイ QM9414株を培養した培養液に含まれるタンパク質濃度を1とした場合、トリコデルマ・リーセイ 変異株Iの培養液に含まれるタンパク質濃度の相対値は1.2であり、変異株のタンパク質製造能は親株よりも向上することを確認した。
(Measurement of protein concentration)
In the culture using Arbocel (registered trademark) B800, when the protein concentration contained in the culture medium in which the Trichoderma reesei QM9414 strain was cultured was 1, the relative value of the protein concentration contained in the culture medium of Trichoderma reesei mutant I Was 1.2, and it was confirmed that the protein-producing ability of the mutant strain was higher than that of the parent strain.
 ラクトースを用いた培養でも、トリコデルマ・リーセイ QM9414株を培養した培養液に含まれるタンパク質濃度を1とした場合、トリコデルマ・リーセイ 変異株Iの培養液に含まれるタンパク質濃度の相対値は1.2であり、変異株のタンパク質製造能は親株よりも向上することを確認した。 Even when culturing with lactose, if the protein concentration contained in the culture solution of Trichoderma reesei QM9414 strain was set to 1, the relative value of the protein concentration contained in the culture solution of Trichoderma reesei mutant I was 1.2. Yes, it was confirmed that the protein-producing ability of the mutant strain was improved over that of the parent strain.
 (セルラーゼ各種比活性の測定)
 Arbocel(登録商標) B800を用いた培養では、トリコデルマ・リーセイ QM9414株を培養した培養液のセルラーゼの各種比活性を1とした場合、トリコデルマ・リーセイ 変異株Iを培養した培養液のセルラーゼの各種比活性の相対値は、β-グルコシダーゼ比活性は1.4、β-キシロシダーゼ比活性は1.5、セロビオハイドロラーゼ比活性は1.8であり、セルラーゼの各種比活性も向上するという予想外の効果が得られることを確認した。
(Measurement of various specific activities of cellulase)
In the culture using Arbocel (registered trademark) B800, when various specific activities of cellulase in the culture solution in which the Trichoderma reesei QM9414 strain was cultivated were set to 1, various ratios of the cellulase in the culture solution in which the Trichoderma reesei mutant strain I was cultured were set. The relative activities were β-glucosidase specific activity of 1.4, β-xylosidase specific activity of 1.5, and cellobiohydrolase specific activity of 1.8, which is an unexpected improvement of various specific activities of cellulase. It was confirmed that the effect of was obtained.
 ラクトースを用いた培養でも、トリコデルマ・リーセイ QM9414株を培養した培養液のセルラーゼの各種比活性を1とした場合、トリコデルマ・リーセイ 変異株Iを培養した培養液のセルラーゼの各種比活性の相対値は、β-グルコシダーゼ比活性は1.4、β-キシロシダーゼ比活性は2.0、セロビオハイドロラーゼ比活性は1.6でありセルラーゼの各種比活性も向上するという予想外の効果が得られることを確認した。 Even when culturing with lactose, when the various specific activities of cellulase in the culture solution in which the Trichoderma reesei QM9414 strain was cultivated were set to 1, the relative values of the various specific activities of the cellulase in the culture solution in which the Trichoderma reesei mutant strain I was cultivated were , Β-glucosidase specific activity is 1.4, β-xylosidase specific activity is 2.0, cellobiohydrolase specific activity is 1.6, and unexpected effects that various specific activities of cellulase are improved can be obtained. It was confirmed.
 (糖化反応試験)
 参考例3で記載した手法に従い、トリコデルマ・リーセイ 変異株Iのフラスコ培養開始から120時間目の培養液をセルラーゼとして用いて、セルロース含有バイオマスの糖化反応試験を行った。セルロース含有バイオマスとして、Arbocel(登録商標) B800または粉末バガスを用いた。
(Saccharification reaction test)
According to the method described in Reference Example 3, the saccharification reaction test of the cellulose-containing biomass was performed using the culture solution of Trichoderma reesei mutant strain I 120 hours after the start of the flask culture as cellulase. Arbocel® B800 or powdered bagasse was used as the cellulose-containing biomass.
 その結果、Arbocel(登録商標) B800を糖化対象物とした場合の糖化反応において、Arbocel(登録商標) B800を用いてフラスコ培養することにより得られたトリコデルマ・リーセイ QM9414株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、トリコデルマ・リーセイ 変異株Iのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.8、ラクトースを用いてフラスコ培養することにより得られたセルラーゼを用いた場合の糖化液に含まれるグルコース濃度の相対値も1.6であった。 As a result, in the saccharification reaction when Arbocel (registered trademark) B800 was used as the saccharification target, the cellulase of Trichoderma reesei QM9414 strain obtained by performing flask culture using Arbocel (registered trademark) B800 was used. When the glucose concentration contained in the saccharified solution is set to 1, the relative glucose concentration value of the saccharified solution when using the cellulase of Trichoderma reesei mutant I is 1.8, and it was obtained by flask culture using lactose. The relative value of the glucose concentration contained in the saccharified solution when using the cellulase was also 1.6.
 粉末バガスを糖化対象物とした場合の糖化反応において、Arbocel(登録商標) B800を用いてフラスコ培養することにより得られたトリコデルマ・リーセイ QM9414株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、トリコデルマ・リーセイ 変異株Iのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.2、ラクトースを用いてフラスコ培養することにより得られたセルラーゼを用いた場合の糖化液に含まれるグルコース濃度の相対値も1.3であった。 In the saccharification reaction when powdered bagasse was used as the saccharification target, the glucose concentration contained in the saccharification solution when the cellulase of Trichoderma reesei QM9414 strain was used, which was obtained by performing flask culture using Arbocel (registered trademark) B800. When the cellulase of Trichoderma reesei mutant I is used, the relative value of the glucose concentration of the saccharified solution is 1.2, and the cellulase obtained by culturing the flask with lactose is used. The relative value of the glucose concentration contained in the saccharified solution was also 1.3.
 この結果より、トリコデルマ・リーセイ 変異株Iが生産するセルラーゼは、親株が生産するセルラーゼよりも酵素活性に優れ、それによりセルロース含有バイオマスからのグルコースを製造する能力が優れることを確認した。 From these results, it was confirmed that the cellulase produced by Trichoderma reesei mutant strain I has a higher enzymatic activity than the cellulase produced by the parent strain, and as a result, the ability to produce glucose from the cellulose-containing biomass is superior.
 <実施例3>配列番号2で表されるアミノ酸配列からなるポリペプチド内に変異を有するトリコデルマ・リーセイの変異株の作製その2
 トリコデルマ・リーセイQM9414株の継代株であるQM9414-E株に対し、遺伝子変異処理を行って変異株であるQM9141-F株を取得した。遺伝子変異処理は、QM9414-E株の胞子を、表1に示す前培養培地1mLあたり1.0x10胞子になるよう接種し、前培養培地15mLを半日培養した後に遠心分離を行い、胞子を回収した。そして、回収した胞子をトリス-マレイン酸バッファー(pH6.0)にて10mLの胞子溶液になるよう懸濁し、そこへトリス-マレイン酸バッファー(pH6.0)で1.0g/Lになるよう溶解させたNTG溶液を0.5mL添加し、28℃、100分間、遺伝子変異処理を行った。遺伝子変異処理した胞子は、遠心分離にて回収した後に、トリス-マレイン酸バッファー(pH6.0)で3回洗浄し、最終的にトリス-マレイン酸バッファー(pH6.0)10mLにて懸濁したものを遺伝子変異処理胞子とした。
<Example 3> Preparation of mutant strain of Trichoderma reesei having a mutation in the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2
The QM9414-E strain, which is a passage strain of the Trichoderma reesei QM9414 strain, was subjected to gene mutation treatment to obtain the mutant strain QM9141-F. For the gene mutation treatment, spores of the QM9414-E strain were inoculated so as to give 1.0 × 10 5 spores per mL of the preculture medium shown in Table 1, 15 mL of the preculture medium was cultured for half a day, and then centrifuged to recover the spores. did. Then, the collected spores were suspended in Tris-maleic acid buffer (pH 6.0) to give a 10 mL spore solution, and dissolved therein with Tris-maleic acid buffer (pH 6.0) to 1.0 g / L. 0.5 mL of the prepared NTG solution was added, and gene mutation treatment was performed at 28 ° C. for 100 minutes. The spores subjected to gene mutation treatment were recovered by centrifugation, washed with Tris-maleic acid buffer (pH 6.0) three times, and finally suspended in 10 mL of Tris-maleic acid buffer (pH 6.0). The spores were treated with gene mutation.
 その遺伝子変異処理胞子を、結晶セルロースを添加して調製した寒天培地へ添加し、コロニー周囲に生じるセルラーゼによる結晶セルロース分解領域であるハロの大きさを指標とし、ハロの大きかったQM9414-F株を選抜した。 The gene-mutated spores were added to an agar medium prepared by adding crystalline cellulose, and the size of halo, which is a region for degrading crystalline cellulose by cellulase generated around the colony, was used as an index, and the QM9414-F strain having a large halo was identified. Selected.
 QM9414-E株とQM9414-F株の遺伝子解析を行ったところ、QM9414-E株では配列番号1で表される塩基配列が保持されていたが、QM9414-F株では配列番号1で表される塩基配列の2588番目のシトシンがチミンへ変異していた。当該変異は、配列番号1で表される塩基配列がコードする配列番号2で表されるアミノ酸配列の677番目のセリン残基をフェニルアラニン残基へ変異させる変異である。 Genetic analysis of the QM9414-E and QM9414-F strains revealed that the QM9414-E strain retained the nucleotide sequence represented by SEQ ID NO: 1, but the QM9414-F strain represented by SEQ ID NO: 1. The 2588th cytosine in the nucleotide sequence was mutated to thymine. The mutation is a mutation for mutating the 677th serine residue of the amino acid sequence represented by SEQ ID NO: 2 encoded by the base sequence represented by SEQ ID NO: 1 into a phenylalanine residue.
 <実施例4>配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株を用いたタンパク質の製造試験
 (タンパク質濃度とセルラーゼ各種比活性の測定)
 実施例3で取得したQM9414-F株について、実施例2と同様の方法で培養を行い、参考例1と参考例2の条件で、培養開始から120時間経過時の培養液におけるタンパク質濃度とセルラーゼの比活性を測定した。コントロールには、QM9414-E株を用いた。結果を表3に示す。
Example 4 Protein production test using a mutant strain of Trichoderma reesei lacking the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 (measurement of protein concentration and various specific activities of cellulase)
The QM9414-F strain obtained in Example 3 was cultured in the same manner as in Example 2, and under the conditions of Reference Example 1 and Reference Example 2, the protein concentration and cellulase in the culture medium 120 hours after the start of the culture. Was measured for specific activity. The QM9414-E strain was used as a control. The results are shown in Table 3.
 これらの結果、QM9414-E株と比較して、QM9414-F株は、2.6倍培養液中のタンパク質濃度が高くなった。また、QM9414-E株と比較して、QM9414-F株の各種比活性は、β-グルコシダーゼは3.1倍、β-キシロシダーゼは1.5倍、セロビオハイドロラーゼは2.0倍高くなった。 As a result, the QM9414-F strain had a 2.6 times higher protein concentration in the culture solution than the QM9414-E strain. In addition, various specific activities of the QM9414-F strain were 3.1 times higher for β-glucosidase, 1.5 times higher for β-xylosidase, and 2.0 times higher for cellobiohydrolase than the QM9414-E strain. It was
 (糖化反応試験)
 参考例3で記載した手法に従い、トリコデルマ・リーセイ QM9414-F株の培養開始から120時間目の培養液をセルラーゼとして用いて、セルロース含有バイオマスの糖化反応試験を行った。セルロース含有バイオマスとして、Arbocel(登録商標) B800または粉末バガスを用いた。
(Saccharification reaction test)
According to the method described in Reference Example 3, the saccharification reaction test of the cellulose-containing biomass was performed using the culture solution 120 hours after the start of the culture of the Trichoderma reesei QM9414-F strain as cellulase. Arbocel® B800 or powdered bagasse was used as the cellulose-containing biomass.
 その結果、トリコデルマ・リーセイ QM9414-E株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、トリコデルマ・リーセイ QM9414-F株のセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は、Arbocel(登録商標) B800を糖化対象物とした場合は1.1、粉末バガスを糖化対象物とした場合の糖化反応においては1.2であった。 As a result, when the glucose concentration contained in the saccharified solution using Trichoderma reesei QM9414-E cellulase was set to 1, the glucose concentration of the saccharified solution using Trichoderma reesei QM9414-F cellulase was determined. The relative value was 1.1 when Arbocel (registered trademark) B800 was the saccharification target, and 1.2 in the saccharification reaction when powdered bagasse was the saccharification target.
 この結果より、トリコデルマ・リーセイ QM9414-E株が生産するセルラーゼは、親株が生産するセルラーゼよりも酵素活性に優れ、それによりセルロース含有バイオマスからのグルコースを製造する能力が優れることを確認した。 From these results, it was confirmed that the cellulase produced by the Trichoderma reesei QM9414-E strain has a higher enzymatic activity than the cellulase produced by the parent strain, and thus has an excellent ability to produce glucose from the cellulose-containing biomass.

Claims (6)

  1.  配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異を有する、トリコデルマ・リーセイの変異株。 A mutant strain of Trichoderma reesei, which has a mutation in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is deleted or reduced.
  2.  前記変異が、配列番号2で表されるアミノ酸配列からなるポリペプチドのfungal transcription factor regulatory middle homology regionドメイン内でのアミノ酸残基の欠失、置換または付加の変異である、請求項1に記載の変異株。 2. The mutation according to claim 1, wherein the mutation is a deletion, substitution or addition mutation of an amino acid residue in the fungal transcription factor regulatory regulatory middle region domain of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2. Mutant strain.
  3.  前記変異が、配列番号2で表されるアミノ酸配列のN末端側から677番目のセリン残基のセリン以外のアミノ酸残基への変異である、請求項1または2に記載の変異株。 The mutant strain according to claim 1 or 2, wherein the mutation is a mutation at the 677th serine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 2 to an amino acid residue other than serine.
  4.  請求項1~3のいずれかに記載の変異株を培養する工程を含む、タンパク質の製造方法。 A method for producing a protein, comprising a step of culturing the mutant strain according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかに記載の変異株を培養する工程を含む、セルラーゼの製造方法。 A method for producing cellulase, comprising the step of culturing the mutant strain according to any one of claims 1 to 3.
  6.  請求項5に記載のセルラーゼの製造方法によりセルラーゼを製造する工程および前記工程で得られたセルラーゼを用いてセルロース含有バイオマスを糖化する工程を含む、糖の製造方法。 A method for producing sugar, which comprises the step of producing cellulase by the method for producing cellulase according to claim 5 and the step of saccharifying a cellulose-containing biomass using the cellulase obtained in the step.
PCT/JP2019/039933 2018-10-11 2019-10-10 Mutant strain of trichoderma reesei, and protein manufacturing method WO2020075787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567762A JPWO2020075787A1 (en) 2018-10-11 2019-10-10 Trichoderma Risei mutant strain and protein production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018192640 2018-10-11
JP2018-192640 2018-10-11

Publications (1)

Publication Number Publication Date
WO2020075787A1 true WO2020075787A1 (en) 2020-04-16

Family

ID=70164625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039933 WO2020075787A1 (en) 2018-10-11 2019-10-10 Mutant strain of trichoderma reesei, and protein manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2020075787A1 (en)
WO (1) WO2020075787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778864A4 (en) * 2018-03-26 2021-12-15 Toray Industries, Inc. Trichoderma reesei mutant and protein production method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB [online] 10 October 2018 (2018-10-10), Database accession no. AOA2T4BM94 *
DATABASE UniProtKB [online] 10 October 2018 (2018-10-10), Database accession no. AOA2T4CF06 *
DATABASE UniProtKB [online] 23 May 2018 (2018-05-23), Database accession no. A0A024SDW2 *
DATABASE UniProtKB [online] 25 April 2018 (2018-04-25), Database accession no. GORGD9 *
KOIKE HIDEAKI ET AL.: "Comparative Genomics Analysis of Trichoderma reesei Strains", INDUSTRIAL BIOTECHNOLOGY, vol. 9, no. 6, 2013, pages 352 - 367, XP055701195 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778864A4 (en) * 2018-03-26 2021-12-15 Toray Industries, Inc. Trichoderma reesei mutant and protein production method
US11492603B2 (en) 2018-03-26 2022-11-08 Toray Industries, Inc. Trichoderma reesei mutant and protein production method

Also Published As

Publication number Publication date
JPWO2020075787A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP7007645B2 (en) Trichoderma fungus having a mutant BXL1 gene and a method for producing xylooligosaccharide and glucose using it.
JP7388195B2 (en) Trichoderma reesei mutant strain and protein production method
WO2020075787A1 (en) Mutant strain of trichoderma reesei, and protein manufacturing method
CN112513249A (en) Mutant strain of Trichoderma filamentous fungus and method for producing protein
JP7388194B2 (en) Mutant strain of Trichoderma reesei and method for producing protein using the same
JP7400468B2 (en) Trichoderma filamentous fungus mutant strain and protein production method
CN112805366A (en) Mutant strain of trichoderma reesei and method for producing protein
JP7334620B2 (en) Trichoderma reesei mutant strain and method for producing protein
WO2021153587A1 (en) Filamentous fungus trichoderma mutant strain
CN110892072A (en) Novel β -glucosidase, enzyme composition containing the same, and method for producing sugar solution using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567762

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870514

Country of ref document: EP

Kind code of ref document: A1