WO2023120439A1 - Planetary-type rotary motion-linear motion conversion device - Google Patents

Planetary-type rotary motion-linear motion conversion device Download PDF

Info

Publication number
WO2023120439A1
WO2023120439A1 PCT/JP2022/046536 JP2022046536W WO2023120439A1 WO 2023120439 A1 WO2023120439 A1 WO 2023120439A1 JP 2022046536 W JP2022046536 W JP 2022046536W WO 2023120439 A1 WO2023120439 A1 WO 2023120439A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
planetary
linear motion
axis
rotation
Prior art date
Application number
PCT/JP2022/046536
Other languages
French (fr)
Japanese (ja)
Inventor
博 國松
貴之 國松
Original Assignee
博 國松
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022073696A external-priority patent/JP7190148B1/en
Priority claimed from JP2022073695A external-priority patent/JP7166575B1/en
Priority claimed from JP2022167152A external-priority patent/JP7344429B1/en
Application filed by 博 國松 filed Critical 博 國松
Publication of WO2023120439A1 publication Critical patent/WO2023120439A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Definitions

  • the present invention relates to a planetary rotation-linear motion conversion device.
  • a rotation-linear motion conversion device that converts rotation to linear motion, and as a highly efficient rotation-linear motion conversion device with rolling elements interposed, there are ball screw type and planetary type rotation-linear motion conversion devices. It has been known.
  • the ball screw type excels in two-way motion conversion of rotation-linear motion and linear motion-rotation.
  • the planetary type is good at converting rotation into fine linear motion, and the converted fine linear motion is amplified and can produce a powerful axial load.
  • the planetary rotation-to-linear motion converters disclosed in Patent Documents 1 and 2 below were discovered and disclosed with specifications capable of providing fine linear motion within the limits imposed.
  • a planetary mechanism composed of a sun shaft, a planetary shaft, and a ring shaft is provided with a screw gear and a helical gear, which are in mesh with each other.
  • a screw gear In rotational transmission by a two-system planetary mechanism, by providing a difference in the transmission rotation ratio between the screw gear and the helical gear, the screw gear is induced to lose rotational transmission, resulting in planetary motion.
  • Rotary-to-linear motion converters are known.
  • the sun shaft is provided with a spiral groove
  • the ring shaft is provided with an annular groove
  • the planetary shaft is provided with annular and screw engagement grooves in the same region.
  • Planetary rotary-to-linear motion converters that discreetly engage the ring shaft are known.
  • Patent Document 5 there is known a structure in which thrust bearings are mounted for rotation and revolution of the planetary shaft in order to receive the strong linear motion of the planetary rotation-linear motion converter. It is
  • the planetary rotation-linear motion converter is a mechanical element whose main purpose is to obtain fine linear motion. It is a device that converts the rotation of one of the shafts or the ring shaft into the linear motion of the other.
  • the sun axis which is the running axis
  • the planetary shaft with the spiral groove will move to the axis by pulling the spiral groove of the ring shaft due to its rotation.
  • the rotation of the planetary shaft is offset by the revolutional linear motion by twisting the spiral groove to pull back the planetary shaft by using the revolution of the planetary shaft. can be made immovable.
  • the planetary rotation-linear motion conversion device is composed of a sun axis, a planetary axis, and a ring axis, which are parallel to each other. Since the finer the grain, the more time it takes to process, there is a need to expand the options for processing means in order to achieve both high precision and high efficiency.
  • Patent Document 3 it is known to provide a means for obtaining fine linear motion by providing two series of planetary gears side by side. It is premised that the specifications are compatible with the two systems of the planetary mechanism, and it is not easy to select the specifications. The challenge is to simplify the configuration and increase the degree of freedom in selecting specifications.
  • the planetary shaft has a spiral groove that engages with the sun shaft and an annular groove that engages with the ring shaft in the same region, which reduces the strength of the engagement groove.
  • the planetary rotation-linear motion conversion device is characterized by fine linear motion conversion, and is also a device that produces a strong axial load.
  • direct motion is transmitted using the shaft end face of the planetary shaft that engages with the ring shaft.
  • the structure is inevitably complicated. The challenge is to simplify the reaction force support structure.
  • a planetary rotation-linear motion conversion mechanism that provides fine linear motion by providing two series of planetary gear mechanisms.
  • a planetary gear mechanism with a spur gear By adding a planetary gear mechanism with a spur gear to a planetary rotation-linear motion conversion mechanism with a spiral groove, one of the sun shaft or the ring shaft and the planetary shaft can break the immovable state of the axis and generate a linear motion.
  • the specifications of the spiral grooves and spur gears are set such that the axial positions of both the sun shaft and the ring shaft are fixed with respect to the planetary shafts.
  • Paragraph 0135 replaces the number of teeth of the sun shaft spur gear, and gives the specifications for direct movement of the planetary shaft with respect to the sun shaft. In other words, it is a configuration that allows slippage to occur in the spiral groove engagement between the shaft that generates direct motion and the planetary shaft, which is a factor that causes frictional resistance and a decrease in efficiency.
  • the present invention has been made in view of the above-mentioned problems in the conventional planetary rotation-linear motion conversion device.
  • one of the sun axis and the ring axis is set to be stationary with respect to the planetary axis.
  • This axis is referred to as the revolution axis.
  • the other shaft is axially translated to convert rotary motion into linear motion.
  • This axis is expressed as a travel axis.
  • one of the sun axis and the ring axis that drives is referred to as a drive axis, and the other whose motion is converted to linear motion is referred to as a driven axis.
  • the configuration for solving the above-mentioned major problem imposed on the planetary rotary-to-linear motion conversion device is the configuration of the first aspect, that is, the sun axis having parallel axes and the The planetary shaft engages with the respective engaging grooves, and the planetary shaft and the ring shaft having axes parallel to each other engage with the respective engaging grooves.
  • a planetary rotation-linear motion conversion device that converts the motion form with The engagement groove of the planetary shaft that engages with the sun shaft is a single dimension engagement groove, and the engagement groove of the planetary shaft that engages with the ring shaft engages with the sun shaft.
  • the method of simplifying the compound planetary mechanism for extracting fine linear motion by cooperating the engagement of the spiral groove or screw gear and the spur gear or helical gear is the configuration of the second aspect of the present invention. That is, the sun shaft and the planetary shaft having axes parallel to each other are engaged by respective spiral grooves, the planetary shaft and the ring shaft having axes parallel to each other are engaged by respective spiral grooves, and the sun A planetary type in which one of the shaft and the ring shaft and the planetary shaft are meshed by respective spur gears, and they cooperate to convert the motion form between rotary motion and linear motion.
  • the planetary shaft is provided with the helical groove and the spur gear having different reference diameters, and the sun shaft and the ring shaft are assigned to either a revolving shaft or a running shaft.
  • the product of the rotation ratio driven by the meshing of the spur gear and the number of spiral grooves provided on the planetary shaft is the number of spiral grooves of its own.
  • the running shaft is corrected to the same value as the number, the reference diameter ratio of the adopted spiral groove and the ratio of the spiral grooves applied to the planetary shaft It is achieved by a planetary rotation-to-linear motion conversion device in which the linear conversion is modified by the product of the number of threads and the difference between the number of threads of its own helical groove.
  • the next object is to easily support the reaction force of the linear motion by making use of the characteristics of the planetary rotation-linear motion conversion device.
  • the sun shaft and the planetary shaft having axes parallel to each other are engaged by their respective engaging grooves, and the planetary shaft and the ring shaft having axes parallel to each other are engaged by their respective engaging grooves,
  • a planetary rotation-linear motion conversion device that converts motion forms between rotary motion and linear motion
  • Rotational motion of a drive shaft which is one of the sun shaft and the ring shaft
  • a driven shaft which is the other of the sun shaft and the ring shaft
  • the driven shaft is , a support shaft which is coaxially and spaced apart and which engages itself and said planetary shaft by means of respective engagement grooves, whereby said rotational movement of said drive shaft is coupled to said driven shaft and said planetary shaft;
  • a planetary rotary-to-linear motion converter that converts to differential with the support shaft.
  • the conventional planetary rotation-linear motion conversion device has various limitations because the engagement groove of the planetary shaft is engaged with the engagement groove of the sun shaft and the engagement groove of the ring shaft with the same reference diameter. cause to receive.
  • the sun shaft and the planetary shaft having axes parallel to each other are engaged by respective spiral grooves, and the planetary shaft and the ring shaft having axes parallel to each other are engaged by respective spiral grooves.
  • a planetary rotation-linear motion conversion device that converts a motion form between rotary motion and linear motion by engaging with a spiral groove, the planet that is in contact with the reference diameter of the spiral groove of the sun shaft
  • the reference diameter of the spiral groove of the shaft and the reference diameter of the spiral groove of the planetary shaft that is in contact with the reference diameter of the spiral groove of the ring shaft are different.
  • the engaging groove in one of the sun shaft and the ring shaft of the planetary rotation-to-linear motion converter is replaced with an annular groove.
  • the effect is to increase the options for high-precision machining of the engagement groove.
  • a means for obtaining highly accurate spiral grooves is grinding, and a dedicated grinding machine is used for the purpose of spiral groove grinding. Grinding each groove along the spiral groove is a means of high precision, but it is difficult to say that it is highly efficient.
  • annular grooves that is, multi-groove surfaces
  • form grinding using a cylindrical grinder or centerless grinder is suitable, and means for achieving both high precision and high efficiency can be applied.
  • the axis position of the revolution shaft is fixed. constrained to be
  • the engagement groove between the sun shaft or the ring shaft and the planetary shaft is an annular groove as in the first aspect of the present invention, the axial position is unconditionally immovable, and this imposes an imposition on the specifications of the engagement groove. restrictions are circumvented. As a result, the degree of freedom in selecting the reference diameter is increased, and a reference diameter ratio of the engaging grooves that is advantageous for miniaturizing the linear motion conversion can be adopted.
  • the planetary shaft is provided with an engagement groove and a spur gear, the transmission between the revolution shaft and the planetary shaft is meshed by the spur gear, and the traveling shaft and the planetary shaft are engaged.
  • the transmission is performed by engagement with an engagement groove, and by separating the rotation transmission, it is possible to adjust the reference diameter ratio of the engagement grooves of the running shaft and the planetary shaft.
  • the specification of the engagement groove also allows the selection of an intermediate value of a decimal number, it is possible to set the required linear motion conversion.
  • Patent Document 3 uses a planetary gear mechanism with rotational transmission
  • the second aspect of this patent provides a simple configuration without relying on the second planetary gear mechanism.
  • the planetary shaft is engaged with the support shaft for supporting the reaction force of the linear motion.
  • the reaction force is transmitted through the driven shaft, the planetary shaft, and the support shaft, so that a large load is not applied to the drive shaft.
  • a planetary rotation-linear motion conversion device is a mechanism that produces a large axial load with a minute linear motion, that is, a small driving force. It is difficult to support.
  • the present invention provides a configuration that does not place a burden on the drive shaft.
  • the rotation ratio between the sun axis and the planetary shaft and the rotation ratio between the ring shaft and the planetary shaft are set individually.
  • the amount of linear motion can be freely adjusted in accordance with the difference between the rotation ratio and thread number ratio between the running shaft and the planetary shaft. It is possible to obtain a finer and desired linear motion conversion without being subject to the limitations of Patent Documents 1 and 2.
  • fine spiral grooves are used to make linear motion finer. can be obtained.
  • the engagement rotation of each shaft is configured to transmit rotation according to the reference diameter ratio.
  • FIG. 3 is a cross-sectional view showing an example of the planetary rotation-linear motion conversion device according to the first embodiment of the present invention, which is arrangement 1 of Table 2;
  • FIG. 4 is a cross-sectional view of arrangement 2 of Table 2, showing another example of a planetary rotary-to-linear motion converter according to the first aspect of the present invention;
  • FIG. 4 is a cross-sectional view showing an example of a planetary rotation-linear motion conversion device according to a second aspect of the present invention;
  • FIG. 3 FIG.
  • FIG. 4 is a cross-sectional view showing an example of a planetary rotation-linear motion conversion device according to a third aspect of the present invention, in which a support shaft is added to arrangement 2 of Table 2;
  • FIG. 4 is a cross-sectional view showing another example of a planetary rotation-to-linear motion conversion device according to the third aspect of the present invention;
  • FIG. 4 is a cross-sectional view showing a fourth aspect of the present invention;
  • (Embodiment 6) 7 is an enlarged cross-sectional view of an engagement portion between a spiral groove provided on the sun shaft and a spiral groove on the planetary shaft of FIG. 6;
  • FIG. 7 is an enlarged cross-sectional view of an engagement portion between a spiral groove provided on the ring shaft of FIG. 6 and a spiral groove of the planetary shaft;
  • FIG. 4 is a cross-sectional view showing an example of a planetary rotation-linear motion conversion device according to a third aspect of the present invention.
  • FIG. 4 is
  • the basic configuration of the planetary rotation-linear motion conversion device is that the spiral grooves of the sun shaft and the ring shaft engage with the spiral grooves of the planetary shaft to convert the motion form between rotary motion and linear motion. do.
  • the linear motion of the driven shaft is determined by a combination of the reference diameter (effective diameter) of each spiral groove, the number of threads of the spiral groove, the twisting direction of the spiral groove, and the engagement of the pitch. The principle is to keep the axis line position immovable with respect to the shaft, and this imposes various restrictions on specification selection.
  • Table 1 defines the specifications of the engagement grooves used in the following description.
  • the inner and outer diameters of the engaging groove are called “effective diameter” for engaging grooves such as spiral grooves, and “reference circle diameter” for spiral gears and spur gears.
  • Effective diameter for engaging grooves such as spiral grooves
  • reference circle diameter for spiral gears and spur gears.
  • Reference diameter shall be abbreviated and “reference diameter” shall be used as a generic term.
  • the arrangement of the prior art which is represented by Patent Document 1, is a configuration in which spiral grooves are formed on the running shaft, the planetary shaft, and the revolution shaft.
  • the principles or constraints are as follows. 1)
  • the reference diameter of each spiral groove has a relation of
  • 2dp. 2)
  • the reference diameter of the engagement groove of the revolution shaft is a multiple of the planetary shaft. Since the number of threads of the spiral groove is an integer value, the revolution axis and the planetary axis are integer multiples. In order to keep the axis position stationary, it is necessary to offset the linear motion of the planetary shaft, which moves to the axis due to the rotation of the planetary shaft, with the linear motion of the planetary shaft, which moves to the axis due to the revolution.
  • the number of planetary shafts is a divisor of the sum of the number of spiral grooves on the sun shaft and ring shaft. 5)
  • Table 2 shows the types and configurations of the engagement grooves provided on the traveling shaft, revolution shaft, and planetary shaft of the planetary rotation-linear motion converter.
  • Array 0 is a configuration based on the prior art, and arrays 1 and 2 are configurations according to the first aspect of the present invention.
  • Array 1 which is the configuration of the first aspect of the present invention, has an annular groove in the engagement groove of the running shaft, which is one of the sun shaft and the ring shaft, and spiral grooves in the revolving shaft and the planetary shaft. be.
  • Array 2 has annular grooves on the planetary shaft and revolution shaft, and spiral grooves on the running shaft. The principles and constraints of the specifications brought about by the configuration are described below. The definitions in Table 1 are used in the description using mathematical formulas.
  • an annular groove is provided in the engagement groove of the running shaft, and the main purpose is to efficiently machine the running shaft.
  • the reference diameter of each engagement groove is
  • 2dp.
  • the engagement groove between the planetary shaft and the revolution shaft, the number of revolution shaft threads and the reference diameter ratio are integer values.
  • d2/dp ⁇ Zp Rotational linear motion of planetary axis
  • Z2 Revolutionary linear motion of planetary axis.
  • the reference diameter of the spiral groove of the running shaft is a multiple of the planetary shaft.
  • the number of planetary shafts is a divisor of the number of spiral grooves provided on the revolution shaft.
  • the configuration of the second aspect of the present invention shows a measure for providing simple and fine translational motion conversion.
  • the planetary shaft is provided with an engaging groove and a spur gear, which are configured with different reference diameters.
  • the revolving shaft and the planetary shaft are engaged by spur gears, and the traveling shaft and the planetary shaft are engaged by engagement grooves.
  • the planetary shaft and the revolving shaft are engaged with each other through a spiral groove, but the rotation transmission is mainly driven by the meshing of the spur gears.
  • the rotation of the planetary shaft and the running shaft is transmitted by the engagement of the spiral grooves. Direct motion is changed.
  • each spiral groove and spur gear have the following relationship.
  • ⁇ d1/dp and d2/dp accept non-integer values
  • dg/dpg ⁇ Zp is the rotational linear motion of the planetary shaft
  • Z2 is the number of spiral grooves on the revolution shaft and also the revolution linear motion of the planetary shaft.
  • Travel axis drive d1 ⁇ dpg/(d1 ⁇ dpg+dg ⁇ dp) ⁇ (d1/dp ⁇ Zp ⁇ Z1) ⁇ P
  • Revolution axis drive dg ⁇ dp /(d1 ⁇ dpg+dg ⁇ dp) ⁇ (d1/dp ⁇ Zp ⁇ Z1) ⁇ P 3)
  • the basic configuration 3 of the implementation does not show the specifications and arrangement of the engaging grooves, but rather relates to a mechanism for supporting the reaction force of the translational motion conversion.
  • a support shaft for supporting the reaction force of the linear motion is added to the planetary shaft, and the driven shaft and the support shaft are engaged with a space.
  • the differential can be drawn out by As a result, the reaction force is transmitted through the driven shaft, the planetary shaft, and the support shaft, so that the support shaft can receive the reaction force without imposing a heavy load on the drive shaft.
  • the reference diameter ratio of the ring axis to the sun axis is increased. It can support the reaction force.
  • Embodiment 4 has a configuration in which support shafts are added to array 2.
  • FIG. The direct motion conversion rate is expressed as d2/(d1+d2) ⁇ Z1 ⁇ P.
  • Embodiment 5 has a configuration in which a support shaft whose axial position is fixed by engagement of an annular groove is added to the planetary rotation-linear motion conversion device of the second aspect of the present invention.
  • the planetary shaft has an engaging groove and a spur gear with different reference diameters. Rotational transmission with one of the revolving shafts is meshed by spur gears, Rotational transmission with the other running shaft is configured to produce fine linear motion conversion by separate transmission due to engagement by the engagement grooves. That is, the mechanism of translational motion conversion is according to the second aspect of the present invention.
  • Engagement involving the support shaft is achieved by forming the engagement grooves of the support shaft and the planetary shaft with annular grooves. All are composed of spiral grooves to generate a differential between the support shaft and the ring shaft.
  • the direct motion conversion rate is expressed below. dg ⁇ dp/(d1 ⁇ dpg+dg ⁇ dp) ⁇ (d1/dp ⁇ Zp ⁇ Z1) ⁇ P
  • the planetary rotation-linear motion conversion device transmits rotation through the sun shaft, the planetary shaft, and the spiral grooves provided on the planetary shaft, and converts the rotary motion into the linear motion. And if the ring shaft and the planetary shaft have the same rotation ratio and thread number ratio, all the shafts remain in the same position in the axial direction and are nothing more than a rotary transmission mechanism. From this state, if the rotation ratio or thread number ratio of either the sun shaft or the ring shaft and the planetary shaft is broken to make them unequal, linear motion conversion can be generated.
  • Patent Documents 1 and 2 in order to obtain fine linear motion, the specifications of the spiral groove are adopted, and the pitch of the spiral groove is selected to be fine.
  • a coarse groove pitch is selected, and the height of the tooth height is used to determine the reference diameter of the planetary shaft spiral groove in contact with the sun shaft spiral groove and the planetary shaft spiral in contact with the ring shaft spiral groove.
  • a difference is provided in the reference diameter of the groove.
  • the spiral groove can be realized by engaging with a curved tooth profile such as an involute tooth profile, a trapezoidal tooth profile with a different pressure angle, or a tooth profile with a bent tip.
  • a fourth aspect of the present invention is that the linear motion conversion ratio can be adjusted by engaging the engagement grooves of the planetary shaft with different reference diameters with the engagement grooves of the sun shaft and the ring shaft. . Further, according to the planetary rotation-linear motion conversion device of Patent Document 3, the spiral groove between the running shaft and the planetary shaft is configured to cause slippage. It is a configuration that does not occur.
  • the engagement points between the traveling shaft and the planetary shaft are the reference diameters d1 and dp1
  • the points of engagement between the revolution shaft and the planetary shaft are reference diameters d2 and dp2.
  • dp1+dp2. 2) Direct motion conversion ratio is expressed by the following formula.
  • FIG. 1 is arrangement 1 of Table 2, which is an example of a planetary rotary-to-linear motion converter according to the first aspect of the present invention.
  • Table 5 supplements the engagement groove specifications and the engagement relationship in FIG.
  • the single joint engagement groove 2t of the planetary shaft 2 is engaged with the engagement groove 1t of the sun shaft 1 and the engagement groove 3t of the ring shaft 3.
  • the planetary shaft 2 has a single spiral groove 2t.
  • the engaging groove 1t of the sun shaft 1 has an annular groove, which has a reference diameter three times that of the engaging groove 2t of the planetary shaft 2.
  • the engagement groove 3t of the ring shaft 3 has five spiral grooves, and the reference diameter is five times that of the spiral groove of the planetary shaft 2.
  • the total number of planetary shafts 2 is 5, which is the same as the number of threads of the ring shaft 3. 6)
  • the planetary shaft 2 moves along the annular groove 1t of the sun shaft 1, and the axial position is displaced.
  • Rotation of the sun axis 1 is thereby converted into linear motion of the ring axis 3 .
  • the direct motion conversion ratio is ⁇ 1.1 (groove pitch is 1.) 8)
  • a plurality of planetary shafts 2 are distributed on the circumference, and the shaft portions 5 at both ends of the planetary shafts 2 are inserted into the retainer 4 and rotatably stopped on the ring shaft 3 by retaining rings 6. ing.
  • FIG. 2 is Array 2 of Table 2, another example of a planetary rotary-to-linear motion converter according to the first aspect of the invention.
  • the purpose of this embodiment is to ensure that the axial positions of the planetary shaft and the orbiting shaft are fixed by engaging the planetary shaft and the ring shaft with an annular groove, and that the reference diameter ratio is not a multiple. It is acceptable.
  • Table 6 supplements the engagement groove specifications and the engagement relationship in FIG.
  • the ⁇ mark has been added to indicate the supplementation of rotational transmission by the meshing of spur gears.
  • the ⁇ mark indicates the engagement of the engagement groove as described above.
  • the engagement groove 2t of the planetary shaft 2 is an annular groove of a single dimension, and is engaged with the engagement groove 1t of the sun shaft 1 and the engagement groove 3t of the ring shaft 3.
  • the engaging groove 1t of the sun shaft 1 is a triple spiral groove, and the engaging groove 2t of the planetary shaft 2 is an annular groove, and the axial position is displaced by engagement.
  • the ring shaft 3 is provided with an engagement groove 3t, which engages with the engagement groove 2t of the planetary shaft 2.
  • the reference diameter ratio is ⁇ 31:13>>, which is a non-integer multiple. is the engagement between the annular grooves, the axial position is immovable.
  • Spur gears (8, 7) are provided on the ring shaft 3 and the planetary shaft 2, which are revolution shafts, to complement the rotational transmission.
  • the spur gear 8 is fixed to the ring shaft 3 by fixing screws 10 at both ends of the ring shaft 3 .
  • the spur gears 7 at both ends of the planetary shaft 2 are gear-cut in the engagement grooves 2t of the planetary shaft 2. As shown in FIG. Rotational motion of the sun shaft 1 is converted into linear motion of the ring shaft 3 via the planetary shaft 2 .
  • the direct motion conversion ratio is ⁇ 0.42 (groove pitch is assumed to be 1) 6)
  • the planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shafts 5 are fitted in the retainer 4 .
  • Spur gears (7, 8) can also be replaced with helical gears.
  • the shape of the engagement groove can be replaced by a screw groove, a screw gear, a spherical groove, or the like.
  • FIG. 3 is an example of a planetary rotary-to-linear motion conversion device according to the second aspect of the present invention. It is a simple structure and a structure that generates fine linear motion.
  • Table 7 supplements the specifications of the engagement groove and the spur gear and their relationship.
  • the ⁇ mark in Table 7 indicates the transmission due to the engagement of the engagement groove.
  • a triangle mark indicates the engagement of the engagement groove.
  • the ⁇ mark indicates the driving force of rotation due to meshing of gears.
  • a specific example will be explained with reference to FIG. 3 and Table 7.
  • the planetary shaft 2 is provided with a spiral groove 2t ⁇ 13>> and a spur gear 7 ⁇ 12>> with different reference diameters.
  • Tracing the ⁇ mark shows that the spiral grooves (1t, 2t) of the sun shaft 1 and the planetary shaft 2 are engaged.
  • the spiral groove 3t of the ring shaft 3 and the spiral groove 2t of the planetary shaft 2 are engaged.
  • the transmission rotation ratio due to engagement is originally ⁇ 49:13>>.
  • the linear motion conversion rate is about 0.16 for the engaging groove pitch of 1; 7) If the specifications in parentheses in Table 7 are adopted, the product of the reference diameter ratio and the number of threads of the planetary shaft 2 will change from ⁇ 1.77>> to ⁇ 1.88>>, and the number of threads of the spiral groove of the sun shaft 2 will approach ⁇ 2>>. , the linear motion conversion ratio is halved to about 0.08. That is, when the rotation linear motion of the planetary shaft 2 approaches the revolution linear motion, the direct motion conversion rate is finely modified, and vice versa, it becomes rough.
  • the ring shaft 3 is split in order to adjust the axial clearance between the sun shaft 1 and the ring shaft 3 .
  • a pair of ring shafts 3 provided with a spiral groove 3t are tightened by sandwiching a spur gear 8 and a spacer 13 for clearance adjustment, and a key 14 prevents reverse movement.
  • the planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of the retainer 4, the shaft portion 5 of which fits into the retainer 4; The retaining ring 6 prevents the retainer 4 from coming off the ring shaft 3 .
  • Spur gears (7, 8) can also be replaced with helical gears.
  • the shape of the engagement groove can be replaced by a screw groove, a screw gear, a spherical groove, or the like.
  • FIG. 4 shows an example of a planetary rotation-linear motion conversion device according to the third aspect of the present invention, having a configuration in which support shafts are added to arrangement 2 in Table 2.
  • the reaction force received by the ring shaft 3, which is the driven shaft is transferred through the planetary shaft 2.
  • the support shaft 12 receives the sun shaft 1, so that the sun shaft 1 is not subjected to a large burden.
  • Table 8 supplements the engagement groove specifications and engagement relationship in FIG.
  • the engagement groove 2t of the planetary shaft 2 is engaged with the engagement groove 1t of the sun shaft 1, the engagement groove 3t of the ring shaft 3, and the engagement groove 12t of the support shaft 12.
  • the engagement grooves (1t, 2t, 12t) except for the ring shaft 3 are annular grooves, and the planetary shaft 2 is stationary with respect to the sun shaft 1 and the support shaft 12.
  • the ring shaft 3 is engaged with the planetary shaft 2 coaxially with the support shaft 12 with a space therebetween.
  • the ring shaft 3 is provided with six spiral grooves as the engagement grooves 3t, and the rotation of the planetary shaft 2 displaces the axial position of the ring shaft 3 with respect to the planetary shaft 2.
  • the direct motion conversion ratio is 2 (groove pitch is 1).
  • Driving the sun shaft 1 causes a differential between the support shaft 12 and the ring shaft 3;
  • the outer ring 11 is fitted to the inner diameter of the support shaft 12 and fixed to the support shaft 12 with the fixing screws 10 . The reason why the engagement groove 12t of the support shaft 12 is provided and separated from the outer ring 11 is to facilitate assembly.
  • the planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shafts 5 are fitted in the retainer 4 .
  • a stop ring 6 prevents the retainer 4 from coming off the sun shaft 1 .
  • FIG. 5 shows a planetary rotation-to-linear motion conversion device with a support shaft according to a third aspect of the present invention, which is an embodiment different from that of FIG. It is the structure provided with the mechanism of fine linear motion of the second aspect of the present patent and the support shaft whose axial position is fixed by the engagement of the annular groove described as the first aspect.
  • Table 9 supplements the engagement groove specifications and the engagement relationship in FIG.
  • the ⁇ mark in Table 9 indicates the transmission due to the engagement of the engagement groove.
  • the ⁇ mark indicates the driving force of rotation due to meshing of gears.
  • a triangle mark indicates the engagement of the engagement groove. Specifically, referring to FIG. 5 and Table 9, 1) If you trace the ⁇ marks in Table 9, the spur gear 8 of the sun shaft 1 and the spur gear 7 of the planetary shaft 2 are engaged to drive the rotation. 2) If you trace the ⁇ mark, the spiral groove 1t of the sun shaft 1 and the spiral groove 2t1 of the planetary shaft 2 are engaged.
  • the product of the rotation ratio ⁇ 2:1>> due to the engagement of the spur gears (8, 7) and the number of threads of the spiral groove 2t of the planetary shaft 2 ⁇ 1>> is the number of threads of the spiral groove 1t of the sun shaft 1 ⁇ 2>>
  • the planetary axis 2 and the sun axis 1 are stationary in their axial positions. That is, the rotational linear motion of the planetary shaft 2 is offset by the revolutional linear motion. 3) If you trace the upper ⁇ mark, the spiral groove 12t of the ring shaft 3 and the spiral groove 2t2 of the planetary shaft 2 are engaged.
  • the reference diameters of the spiral groove 2t2 of the planetary shaft 2 and the spur gear 7 are provided with an intended diameter difference.
  • the sun shaft 1 is driven and converted to a differential between the support shaft 12 and the ring shaft 3.
  • the direct motion conversion ratio is ⁇ 0.08 (groove pitch is assumed to be 1).
  • the spur gear 8 is fixed to the sun shaft 1 by means of a spur gear fixture 9.
  • the planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shaft portion 5 fits into the retainer 4 .
  • the spur gears (7, 8) can also be replaced with helical gears.
  • the shape of the engagement groove can be replaced by a screw groove, a screw gear, a spherical groove, or the like.
  • FIG. 6 shows an example of a planetary rotation-linear motion conversion device based on the principle of the fourth aspect of the present invention.
  • the ⁇ mark in Table 10 indicates rotational transmission due to the engagement of the helical groove.
  • indicates rotational transmission by meshing of spur gears. How to read Table 10 showing "spiral groove specifications and engagement relationship" in FIG. 6 will be explained.
  • ⁇ A circle mark at the intersection of a column and a row indicates a shaft in an engaged relationship.
  • ⁇ The upward direction of the row of ⁇ marks represents the planetary shaft 2, and the specifications of the spiral groove 2t. (That is, the groove type/number of threads, reference diameter ratio, and total number) are listed in order.
  • FIG. 7 is a cross section showing the engagement between the spiral groove 1t of the sun shaft 1 and the spiral groove 2t of the planetary shaft 2.
  • the engagement grooves 2t provided on the planetary shaft 2 are based on each other's involute tooth profile-like curved surfaces. Engaged at diameter 19. 2) If you trace the ⁇ mark in the lower row, the ring shaft 3 is provided with four spiral grooves 3t, and the planetary shaft 2 is engaged with the reference diameter 20 of the spiral grooves 2t.
  • FIG. 8 is a cross section showing engagement between the spiral groove 3t of the ring shaft 3 and the spiral groove 2t of the planetary shaft 2.
  • the reference diameter 20 of the spiral groove 2t of the planetary shaft 2 is moved to the tooth tip from the reference diameter 19 of the sun shaft 1 by selecting the pressure angle.
  • the number of threads of the spiral groove 3t of the ring shaft 3 and the rotation ratio of the ring shaft 3 and the planetary shaft 2 are the same, and the planetary shaft 2 and the ring shaft 3 are set so that their axial positions are immovable. 4) In this way, when a rotational motion is applied to the sun shaft 1, the motion is converted and the ring shaft 3 moves linearly.
  • the feature of the present invention is that the helical groove tooth profile is modified to freely set the three-axis engagement contact points, and by selecting a helical groove with a high tooth height, workability and processing accuracy are improved. .
  • the contact point of each helical groove can be shifted from various combinations such as trapezoidal teeth with different pressure angles, involute tooth profiles, curved surfaces, planetary shaft two-tooth profiles, and circles. 6) If you trace the ⁇ mark, the ring shaft 3 and the planetary shaft 2 are provided with spur gears (8, 7) that complement the rotational transmission. The immobility of the position is ensured, and the axial position is prevented from moving due to the error of the reference diameter of the spiral groove.
  • the reference diameter of the planetary shaft spur gear 7 is set to be the same as the reference diameter 20 of the spiral groove 2t. Both ends of the planetary shaft 2 are provided with spur gears 7 . Spur gears 8 are provided on both ends of the ring shaft 3, and are tooth-cut to avoid the spiral groove 3t.
  • the spur gears (7, 8) can be replaced with a helical gear, a cycloid tooth profile, or a positive rotation transmission means involving unevenness. 7)
  • the planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shanks 5 are fitted in the cages 4 .
  • the retaining ring 6 prevents the retainer 4 from coming off the ring shaft 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

[Problem] The main problem the present invention addresses is to provide a planetary-type rotary motion-linear motion conversion device with which minute linear motion can be realized with a simple configuration, and which has a high linear motion conversion efficiency. [Solution] In this planetary-type rotary motion-linear motion conversion device, the tooth height is higher compared to the prior art, and a spiral groove with a coarse pitch is selected. At a reference diameter in which the spiral groove of a planetary shaft differs due to the shape selection and combination of a tooth shape, the spiral groove of the planetary shaft engages with the spiral grooves of a sun shaft and a ring shaft, and minute linear motion is generated by adopting spiral groove dimensions which relax the axial position immobility of the planetary shaft and a traveling shaft. Provided is a planetary-type rotary motion-linear motion conversion device which achieves efficient conversion to linear motion without a mechanism that demands sliding in the engagement transmission of the traveling shaft and the planetary shaft and in the engagement transmission of a revolving shaft and the planetary shaft.

Description

遊星式回転-直動運動変換装置Planetary rotation-linear motion converter
本発明は、遊星式回転-直動運動変換装置に関するものである。 The present invention relates to a planetary rotation-linear motion conversion device.
回転を直動に変換する回転-直動運動変換装置であって、転動体を介在させた高効率な回転―直動運動変換装置としては、ボールネジ式と遊星式の回転-直動運動変換装置が知られている。ボールネジ式は回転-直動、及び直動-回転の双方向運動変換に優れている。他方遊星式は、回転を微細直動への運動変換に長けていて、変換された微細直動は、増幅され強大な軸線荷重を生み出すことが出来る。
下記の特許文献1及び2に開示された遊星式回転-直動運動変換装置は、課せられた制約の範囲で、微細な直動運動を提供できる諸元を見出して、開示したものである。
A rotation-linear motion conversion device that converts rotation to linear motion, and as a highly efficient rotation-linear motion conversion device with rolling elements interposed, there are ball screw type and planetary type rotation-linear motion conversion devices. It has been known. The ball screw type excels in two-way motion conversion of rotation-linear motion and linear motion-rotation. On the other hand, the planetary type is good at converting rotation into fine linear motion, and the converted fine linear motion is amplified and can produce a powerful axial load.
The planetary rotation-to-linear motion converters disclosed in Patent Documents 1 and 2 below were discovered and disclosed with specifications capable of providing fine linear motion within the limits imposed.
また下記の特許文献3に開示された如く、太陽軸と遊星軸及びリング軸で構成される遊星機構に、ネジ状歯車とはすば歯車とが併設され噛合している。2系統の遊星機構による回転伝動に於いて、ネジ状歯車とはすば歯車との伝動回転比に差を設けることによって、ネジ状歯車に回転伝動の崩れを誘発して、直動を得る遊星式回転-直動運動変換装置が知られている。 Further, as disclosed in Patent Document 3 below, a planetary mechanism composed of a sun shaft, a planetary shaft, and a ring shaft is provided with a screw gear and a helical gear, which are in mesh with each other. In rotational transmission by a two-system planetary mechanism, by providing a difference in the transmission rotation ratio between the screw gear and the helical gear, the screw gear is induced to lose rotational transmission, resulting in planetary motion. Rotary-to-linear motion converters are known.
また下記特許文献4に開示された如く、太陽軸には螺旋溝、リング軸には環状溝、遊星軸には、同一領域に環状及び螺条の係合溝が併設されていて、太陽軸及びリング軸と分別して係合する遊星式回転-直動運動変換装置が知られている。 Further, as disclosed in Patent Document 4 below, the sun shaft is provided with a spiral groove, the ring shaft is provided with an annular groove, and the planetary shaft is provided with annular and screw engagement grooves in the same region. Planetary rotary-to-linear motion converters that discreetly engage the ring shaft are known.
また下記の特許文献5に開示された如く、遊星式回転-直動運動変換装置の強大な直動を受けるために、遊星軸の自転用と公転用に、各々スラスト軸受を装着した構造が知られている。 Further, as disclosed in Patent Document 5 below, there is known a structure in which thrust bearings are mounted for rotation and revolution of the planetary shaft in order to receive the strong linear motion of the planetary rotation-linear motion converter. It is
特開平10-196757Japanese Patent Laid-Open No. 10-196757 特開2007-051684JP 2007-051684 特許4186969Patent 4186969 特開平08-338461Japanese Patent Laid-Open No. 08-338461 特開2007-032717JP 2007-032717
遊星式回転-直動運動変換装置は、微細な直動運動を得ることを主眼とする機械要素だが、構造的には太陽軸とリング軸の間に転動体である遊星軸を介在させ、太陽軸またはリング軸の一方の回転を他方の直動に運動変換させる装置であって、使い勝手から、遊星軸を太陽軸またはリング軸の一方に対して、軸線位置が不動であることを求められる。
具体例で説明すると、走行軸である太陽軸に回転を与えると想定すれば、螺旋溝を施した遊星軸は、自転によってリング軸の螺旋溝を手繰って軸線に移動するが、他方でリング軸の多条螺旋溝には、遊星軸の公転を利用して、遊星軸を引き戻す捩じりを螺旋溝に施すことによって、遊星軸の自転直動を公転直動で相殺されて、遊星軸の軸線移動を不動とすることが出来る。この軸線位置不動の条件他を満たすために、3軸各々の螺旋溝諸元の選定にはさまざまな制約が課せられている。
遊星式回転-直動運動変換装置の主たる役割は、特許文献1及び2でも開示されているように、直動変換の微細化であって、微細化を妨げる制約こそが最大の障壁であり、打ち破るべき課題である。
The planetary rotation-linear motion converter is a mechanical element whose main purpose is to obtain fine linear motion. It is a device that converts the rotation of one of the shafts or the ring shaft into the linear motion of the other.
To give a concrete example, if it is assumed that the sun axis, which is the running axis, is rotated, the planetary shaft with the spiral groove will move to the axis by pulling the spiral groove of the ring shaft due to its rotation. In the multi-threaded spiral groove of the shaft, the rotation of the planetary shaft is offset by the revolutional linear motion by twisting the spiral groove to pull back the planetary shaft by using the revolution of the planetary shaft. can be made immovable. Various restrictions are imposed on the selection of the spiral groove specifications for each of the three shafts in order to satisfy the conditions such as the axial position immobility.
As disclosed in Patent Documents 1 and 2, the main role of the planetary rotation-linear motion conversion device is the miniaturization of the linear motion conversion, and the restriction that hinders the miniaturization is the biggest obstacle. This is a challenge that must be overcome.
また遊星式回転-直動運動変換装置は、互いに平行軸である太陽軸、遊星軸及びリング軸が構成要件だが、各軸の螺旋溝に研削による高精度な螺旋溝を施す場合、溝のピッチを細かくする程加工に時間を要するので、高精度と高能率を両立させるために、加工手段の選択肢を拡げる課題がある。 In addition, the planetary rotation-linear motion conversion device is composed of a sun axis, a planetary axis, and a ring axis, which are parallel to each other. Since the finer the grain, the more time it takes to process, there is a need to expand the options for processing means in order to achieve both high precision and high efficiency.
また上記の特許文献3に開示された如く、2系列の遊星機構を併設して、微細直動を得る手段を提供していることが知られている。
2系列の遊星機構が両立する諸元が前提であって、諸元の選択は容易ではない。課題は、構成の簡素化と諸元採択の自由度を増やすことである。
Further, as disclosed in the above-mentioned Patent Document 3, it is known to provide a means for obtaining fine linear motion by providing two series of planetary gears side by side.
It is premised that the specifications are compatible with the two systems of the planetary mechanism, and it is not easy to select the specifications. The challenge is to simplify the configuration and increase the degree of freedom in selecting specifications.
また上記の特許文献4に開示された如く、遊星軸には太陽軸と係合する螺旋溝とリング軸に係合する環状溝とが同一領域に併設されており、係合溝強度を低下させる欠点がある。また僅かな違いに設定された係合溝を、同じ領域に施すことは難しく、係合溝諸元は制限される。 Further, as disclosed in the above Patent Document 4, the planetary shaft has a spiral groove that engages with the sun shaft and an annular groove that engages with the ring shaft in the same region, which reduces the strength of the engagement groove. There are drawbacks. In addition, it is difficult to form the engagement grooves that are slightly different in the same area, and the dimensions of the engagement grooves are limited.
また遊星式回転-直動運動変換装置は、微細直動の運動変換が特徴であって、強大な軸線荷重を生み出す装置でもある。上記の特許文献5に開示された如く、リング軸と係合する遊星軸の軸端面を使って直動を伝達している。しかしながら遊星軸は、自転しながら公転するので、構造は複雑にならざるを得ない。反力支持構造の簡素化が課題である。 The planetary rotation-linear motion conversion device is characterized by fine linear motion conversion, and is also a device that produces a strong axial load. As disclosed in the above Patent Document 5, direct motion is transmitted using the shaft end face of the planetary shaft that engages with the ring shaft. However, since the planetary shaft revolves while rotating, the structure is inevitably complicated. The challenge is to simplify the reaction force support structure.
特許文献3によれば、2系列の遊星歯車機構を併設して、微細直動を提供する遊星式回転-直動運動変換機構が知られている。螺旋溝による遊星式回転-直動運動変換機構に平歯車による遊星歯車機構を加えることによって、太陽軸またはリング軸の内の一方と遊星軸の軸線不動の状態を崩して直動運動を発生させている。明細書段落0134の説明によると、螺旋溝と平歯車の諸元設定は、遊星軸に対して太陽軸、リング軸共に軸線位置不動の状態である。段落0135では太陽軸平歯車の歯数を置換して、太陽軸に対し遊星軸が直動する諸元が与えられている。言い換えれば、直動を発生させる軸と遊星軸との螺旋溝係合に滑りが発生することを容認する構成であり、摩擦抵抗や効率低下を引き起こす要因である。 According to Patent Document 3, a planetary rotation-linear motion conversion mechanism is known that provides fine linear motion by providing two series of planetary gear mechanisms. By adding a planetary gear mechanism with a spur gear to a planetary rotation-linear motion conversion mechanism with a spiral groove, one of the sun shaft or the ring shaft and the planetary shaft can break the immovable state of the axis and generate a linear motion. ing. According to the description in paragraph 0134 of the specification, the specifications of the spiral grooves and spur gears are set such that the axial positions of both the sun shaft and the ring shaft are fixed with respect to the planetary shafts. Paragraph 0135 replaces the number of teeth of the sun shaft spur gear, and gives the specifications for direct movement of the planetary shaft with respect to the sun shaft. In other words, it is a configuration that allows slippage to occur in the spiral groove engagement between the shaft that generates direct motion and the planetary shaft, which is a factor that causes frictional resistance and a decrease in efficiency.
本発明は、従来の遊星式回転-直動運動変換装置に於ける上述の問題点に鑑みてなされたものであり、本発明の主要な課題は、従来技術によって縛られる制約を打破し、微細直動を発生させる構成と強大な反力を簡便な構成で支持する遊星式回転-直動運動変換装置を提供することである。 The present invention has been made in view of the above-mentioned problems in the conventional planetary rotation-linear motion conversion device. To provide a planetary rotation-linear motion conversion device that supports a structure for generating a linear motion and a powerful reaction force with a simple structure.
以降の説明に於いて、遊星軸に対して、太陽軸またはリング軸の一方を、軸線位置不動に設定する。この軸を公転軸と表す。他方の軸は軸線に移動することによって、回転運動が直動運動に変換される。この軸を走行軸と表現する。また駆動する、太陽軸またはリング軸の一方を駆動軸と表し、直動に運動変換される他方を従動軸と表現する。 In the following description, one of the sun axis and the ring axis is set to be stationary with respect to the planetary axis. This axis is referred to as the revolution axis. The other shaft is axially translated to convert rotary motion into linear motion. This axis is expressed as a travel axis. Also, one of the sun axis and the ring axis that drives is referred to as a drive axis, and the other whose motion is converted to linear motion is referred to as a driven axis.
上述の主要な課題である遊星式回転-直動運動変換装置に課せられた制約を解消する構成は、本発明によれば、第一の態様の構成、即ち互いに平行な軸線を有する太陽軸と遊星軸とが、それぞれの係合溝により係合し、互いに平行な軸線を有する遊星軸とリング軸とが、それぞれの係合溝により係合することにより、回転運動と直動運動との間で運動形態を変換する、遊星式回転-直動運動変換装置において、
前記太陽軸と係合する前記遊星軸の係合溝は、単一諸元の係合溝であり、前記リング軸と係合する前記遊星軸の係合溝は、前記太陽軸と係合する前記遊星軸の係合溝と同一の係合溝であり、前記太陽軸と前記リング軸との内の一方に設けた係合溝が環状溝である、遊星式回転-直動運動変換装置によって達成される。
According to the present invention, the configuration for solving the above-mentioned major problem imposed on the planetary rotary-to-linear motion conversion device is the configuration of the first aspect, that is, the sun axis having parallel axes and the The planetary shaft engages with the respective engaging grooves, and the planetary shaft and the ring shaft having axes parallel to each other engage with the respective engaging grooves. In a planetary rotation-linear motion conversion device that converts the motion form with
The engagement groove of the planetary shaft that engages with the sun shaft is a single dimension engagement groove, and the engagement groove of the planetary shaft that engages with the ring shaft engages with the sun shaft. By a planetary rotation-linear motion conversion device, wherein the engagement groove is the same as the engagement groove of the planetary shaft, and the engagement groove provided in one of the sun shaft and the ring shaft is an annular groove achieved.
また螺旋溝或いはネジ状歯車と平歯車或いははすば歯車の噛合が協働して、微細直動を引き出す複合遊星機構を簡素化する方策は、本発明によれば、第二の態様の構成、即ち互いに平行な軸線を有する太陽軸と遊星軸とが、それぞれの螺旋溝により係合し、互いに平行な軸線を有する遊星軸とリング軸とが、それぞれの螺旋溝により係合し、前記太陽軸と前記リング軸との内の一方と前記遊星軸とが、それぞれの平歯車により噛合し、それらが協働して、回転運動と直動運動との間で運動形態を変換する、遊星式回転-直動運動変換装置において、
前記遊星軸には、前記螺旋溝と前記平歯車とが、異なった基準径で設けられ、前記太陽軸と前記リング軸には、公転軸、走行軸何れかの役目が振分けられ、前記公転軸は、前記遊星軸との軸線位置を不動にするために、前記平歯車の噛合により主動する回転比と、前記遊星軸に施した螺旋溝の条数との積が、自身の螺旋溝の条数と同値に矯正され、前記走行軸は、前記遊星軸と係合し、任意の直動変換に誘導するために、採択される螺旋溝の基準径比と前記遊星軸に施した螺旋溝の条数との積と、自身の螺旋溝の条数との差異により、直動変換が改変される、遊星式回転-直動運動変換装置によって達成される。
In addition, according to the present invention, the method of simplifying the compound planetary mechanism for extracting fine linear motion by cooperating the engagement of the spiral groove or screw gear and the spur gear or helical gear is the configuration of the second aspect of the present invention. That is, the sun shaft and the planetary shaft having axes parallel to each other are engaged by respective spiral grooves, the planetary shaft and the ring shaft having axes parallel to each other are engaged by respective spiral grooves, and the sun A planetary type in which one of the shaft and the ring shaft and the planetary shaft are meshed by respective spur gears, and they cooperate to convert the motion form between rotary motion and linear motion. In the rotary-linear motion conversion device,
The planetary shaft is provided with the helical groove and the spur gear having different reference diameters, and the sun shaft and the ring shaft are assigned to either a revolving shaft or a running shaft. In order to make the axial position with the planetary shaft immovable, the product of the rotation ratio driven by the meshing of the spur gear and the number of spiral grooves provided on the planetary shaft is the number of spiral grooves of its own. In order to engage with the planetary shaft and induce arbitrary linear motion conversion, the running shaft is corrected to the same value as the number, the reference diameter ratio of the adopted spiral groove and the ratio of the spiral grooves applied to the planetary shaft It is achieved by a planetary rotation-to-linear motion conversion device in which the linear conversion is modified by the product of the number of threads and the difference between the number of threads of its own helical groove.
また次なる課題は、遊星式回転-直動運動変換装置の特性を生かして、簡便に直動の反力を支持することであって、本発明によれば、第三の態様の構成、即ち互いに平行な軸線を有する太陽軸と遊星軸とが、それぞれの係合溝により係合し、互いに平行な軸線を有する遊星軸とリング軸とが、それぞれの係合溝により係合することにより、回転運動と直動運動との間で運動形態を変換する、遊星式回転-直動運動変換装置において、
 前記太陽軸と前記リング軸との内の一方である駆動軸の回転運動が、前記太陽軸と前記リング軸との内の他方である従動軸の直動運動に変換され、前記従動軸とは、同軸にかつ間隙を置いて配置され、自身と前記遊星軸とが、それぞれの係合溝により係合する支持軸を備え、それにより、前記駆動軸の前記回転運動が、前記従動軸と前記支持軸との差動に変換される、遊星式回転-直動運動変換装置によって達成される。
The next object is to easily support the reaction force of the linear motion by making use of the characteristics of the planetary rotation-linear motion conversion device. The sun shaft and the planetary shaft having axes parallel to each other are engaged by their respective engaging grooves, and the planetary shaft and the ring shaft having axes parallel to each other are engaged by their respective engaging grooves, In a planetary rotation-linear motion conversion device that converts motion forms between rotary motion and linear motion,
Rotational motion of a drive shaft, which is one of the sun shaft and the ring shaft, is converted into linear motion of a driven shaft, which is the other of the sun shaft and the ring shaft, and the driven shaft is , a support shaft which is coaxially and spaced apart and which engages itself and said planetary shaft by means of respective engagement grooves, whereby said rotational movement of said drive shaft is coupled to said driven shaft and said planetary shaft; This is accomplished by a planetary rotary-to-linear motion converter that converts to differential with the support shaft.
従来技術における遊星式回転-直動運動変換装置は、遊星軸の係合溝が同じ基準径で太陽軸の係合溝及びリング軸の係合溝と係合しているために様々な制限を受ける原因となっている。
本発明の第四の態様によれば、互いに平行な軸線を有する太陽軸と遊星軸とが、それぞれの螺旋溝により係合し、互いに平行な軸線を有する遊星軸とリング軸とが、それぞれの螺旋溝により係合することにより、回転運動と直動運動との間で運動形態を変換する、遊星式回転-直動運動変換装置において、前記太陽軸の前記螺旋溝の基準径と接する前記遊星軸の前記螺旋溝の基準径と、前記リング軸の前記螺旋溝の基準径と接する前記遊星軸の前記螺旋溝の基準径とが異なる遊星式回転-直動運動変換装置によって達成される。
The conventional planetary rotation-linear motion conversion device has various limitations because the engagement groove of the planetary shaft is engaged with the engagement groove of the sun shaft and the engagement groove of the ring shaft with the same reference diameter. cause to receive.
According to the fourth aspect of the present invention, the sun shaft and the planetary shaft having axes parallel to each other are engaged by respective spiral grooves, and the planetary shaft and the ring shaft having axes parallel to each other are engaged by respective spiral grooves. In a planetary rotation-linear motion conversion device that converts a motion form between rotary motion and linear motion by engaging with a spiral groove, the planet that is in contact with the reference diameter of the spiral groove of the sun shaft This is achieved by a planetary rotation-linear motion conversion device in which the reference diameter of the spiral groove of the shaft and the reference diameter of the spiral groove of the planetary shaft that is in contact with the reference diameter of the spiral groove of the ring shaft are different.
本発明の第一の態様の構成によれば、遊星式回転-直動運動変換装置の太陽軸またはリング軸の内の一方の係合溝は、環状溝に置換される。効果は、係合溝の高精度加工の選択肢を増やすことである。
高精度の螺旋溝を得る手段は、研削加工であって、螺旋溝研削を目的とした、専用研削盤が使われる。螺旋溝に沿って1溝毎に研削する点で、高精度に徹した手段だが、高能率とは言い難い。これに対し環状溝、即ち多溝面の研削には、円筒研削盤や心なし研削盤を使った総形研削が適しており、高精度と高能率を両立させる手段が適応できる。
According to the configuration of the first aspect of the present invention, the engaging groove in one of the sun shaft and the ring shaft of the planetary rotation-to-linear motion converter is replaced with an annular groove. The effect is to increase the options for high-precision machining of the engagement groove.
A means for obtaining highly accurate spiral grooves is grinding, and a dedicated grinding machine is used for the purpose of spiral groove grinding. Grinding each groove along the spiral groove is a means of high precision, but it is difficult to say that it is highly efficient. On the other hand, for the grinding of annular grooves, that is, multi-groove surfaces, form grinding using a cylindrical grinder or centerless grinder is suitable, and means for achieving both high precision and high efficiency can be applied.
また従来構成の遊星式回転-直動運動変換装置では、遊星軸の係合溝基準径に対して、太陽軸、リング軸に設ける係合溝の基準径選定には、公転軸を軸線位置不動にするために制約を受ける。
これに対して、本発明の第一の態様の如く、太陽軸またはリング軸と遊星軸の係合溝を環状溝にすれば、無条件で軸線位置不動となり、係合溝諸元に課された制限は回避される。
これによって、基準径選定の自由度が増し、直動変換を微細化するために有利な係合溝の基準径比が採択できる。
In addition, in the conventional planetary rotation-linear motion conversion device, when selecting the reference diameter of the engagement grooves provided on the sun shaft and the ring shaft with respect to the reference diameter of the engagement grooves of the planetary shaft, the axis position of the revolution shaft is fixed. constrained to be
On the other hand, if the engagement groove between the sun shaft or the ring shaft and the planetary shaft is an annular groove as in the first aspect of the present invention, the axial position is unconditionally immovable, and this imposes an imposition on the specifications of the engagement groove. restrictions are circumvented.
As a result, the degree of freedom in selecting the reference diameter is increased, and a reference diameter ratio of the engaging grooves that is advantageous for miniaturizing the linear motion conversion can be adopted.
また本発明の第二の態様の構成によれば、遊星軸に係合溝と平歯車とを併設し、公転軸と遊星軸との伝動は、平歯車による噛合とし、走行軸と遊星軸の伝動は、係合溝による係合とし、回転伝動を分別することによって、走行軸と遊星軸の係合溝の基準径比の調整を可能にしている。
これによって、特許文献1及び2ほどの制限を受けず、より微細な直動変換を得ることが出来る。係合溝の諸元は、小数の中間値の選択も許容するので、必要とする直動変換に設定することも可能である。また特許文献3は、回転伝動を併設した遊星歯車機構を併設しているが、本特許の第二の態様は、第2の遊星歯車機構に頼らず、簡素な構成を提供している。
According to the configuration of the second aspect of the present invention, the planetary shaft is provided with an engagement groove and a spur gear, the transmission between the revolution shaft and the planetary shaft is meshed by the spur gear, and the traveling shaft and the planetary shaft are engaged. The transmission is performed by engagement with an engagement groove, and by separating the rotation transmission, it is possible to adjust the reference diameter ratio of the engagement grooves of the running shaft and the planetary shaft.
As a result, it is possible to obtain a finer direct-motion conversion without being subject to the limitations of Patent Documents 1 and 2. Since the specification of the engagement groove also allows the selection of an intermediate value of a decimal number, it is possible to set the required linear motion conversion. In addition, although Patent Document 3 uses a planetary gear mechanism with rotational transmission, the second aspect of this patent provides a simple configuration without relying on the second planetary gear mechanism.
また本発明の第三の態様の構成によれば、直動の反力を支持するための支持軸を遊星軸に係合させて担わせている。これによって、反力は従動軸-遊星軸-支持軸と伝達されるので、駆動軸に大きな負荷を掛けない。
遊星式回転-直動運動変換装置は、微細な直動、即ち少ない駆動力によって、大きな軸線方向の荷重を生み出す機構であるので、小さい駆動力である駆動軸によって、大きな軸線方向の反力を支持することには困難を伴う。本発明では、駆動軸には負担を掛けない構成を提供している。
Further, according to the configuration of the third aspect of the present invention, the planetary shaft is engaged with the support shaft for supporting the reaction force of the linear motion. As a result, the reaction force is transmitted through the driven shaft, the planetary shaft, and the support shaft, so that a large load is not applied to the drive shaft.
A planetary rotation-linear motion conversion device is a mechanism that produces a large axial load with a minute linear motion, that is, a small driving force. It is difficult to support. The present invention provides a configuration that does not place a burden on the drive shaft.
また本発明の第四の態様によれば、太陽軸と遊星軸との回転比、リング軸と遊星軸との回転比は個別に設定されることが特徴である。これによって走行軸と遊星軸の回転比と条数比に差の大きさに応じて自在に直動運動量を調整することができる。
特許文献1及び2ほどの制限を受けず、より微細で且つ求める直動変換を得ることが出来る。従来技術では直動を微細にするために、細目の螺旋溝が使われる例が見られるが微細直動によって増幅される強大な軸線荷重に見合う螺旋溝ピッチを適応しても、微細な直動を得ることができる。本発明の第四の態様では、それぞれの軸の係合回転は、基準径比に準じて回転伝動する構成であるので、特許文献3で起きる不必要な滑りが発生しない構成である。
Further, according to the fourth aspect of the present invention, the rotation ratio between the sun axis and the planetary shaft and the rotation ratio between the ring shaft and the planetary shaft are set individually. As a result, the amount of linear motion can be freely adjusted in accordance with the difference between the rotation ratio and thread number ratio between the running shaft and the planetary shaft.
It is possible to obtain a finer and desired linear motion conversion without being subject to the limitations of Patent Documents 1 and 2. In the conventional technology, fine spiral grooves are used to make linear motion finer. can be obtained. In the fourth aspect of the present invention, the engagement rotation of each shaft is configured to transmit rotation according to the reference diameter ratio.
表2の配列1であって、本発明の第一の態様による遊星式回転-直動運動変換装置の一例を示した断面図である。(実施形態1)FIG. 3 is a cross-sectional view showing an example of the planetary rotation-linear motion conversion device according to the first embodiment of the present invention, which is arrangement 1 of Table 2; (Embodiment 1) 表2の配列2であって、本発明の第一の態様による、遊星式回転-直動運動変換装置の別の例を示した断面図である。(実施形態2)FIG. 4 is a cross-sectional view of arrangement 2 of Table 2, showing another example of a planetary rotary-to-linear motion converter according to the first aspect of the present invention; (Embodiment 2) 本発明の第二の態様による、遊星式回転-直動運動変換装置の一例を示した断面図である。(実施形態3)FIG. 4 is a cross-sectional view showing an example of a planetary rotation-linear motion conversion device according to a second aspect of the present invention; (Embodiment 3) 表2の配列2に支持軸を加えた、本発明の第三の態様による、遊星式回転-直動運動変換装置の一例を示した断面図である。(実施形態4)FIG. 4 is a cross-sectional view showing an example of a planetary rotation-linear motion conversion device according to a third aspect of the present invention, in which a support shaft is added to arrangement 2 of Table 2; (Embodiment 4) 本発明の第三の態様による、遊星式回転-直動運動変換装置の別の例を示した断面図である。(実施形態5)FIG. 4 is a cross-sectional view showing another example of a planetary rotation-to-linear motion conversion device according to the third aspect of the present invention; (Embodiment 5) 本発明の第四の態様を示した断面図である。(実施形態6)FIG. 4 is a cross-sectional view showing a fourth aspect of the present invention; (Embodiment 6) 図6の太陽軸に設けた螺旋溝と遊星軸の螺旋溝の係合部を拡大した断面図である。7 is an enlarged cross-sectional view of an engagement portion between a spiral groove provided on the sun shaft and a spiral groove on the planetary shaft of FIG. 6; FIG. 図6のリング軸に設けた螺旋溝と遊星軸の螺旋溝の係合部を拡大した断面図である。7 is an enlarged cross-sectional view of an engagement portion between a spiral groove provided on the ring shaft of FIG. 6 and a spiral groove of the planetary shaft; FIG.
 〔原則と制約〕
 〔従来技術の基本構成〕
遊星式回転-直動運動変換装置の基本構成は、太陽軸とリング軸の螺旋溝が、遊星軸の螺旋溝と係合することにより、回転運動と直動運動との間で運動形態を変換する。
従動軸の直動は、各々の螺旋溝の基準径(有効径の意)、螺旋溝の条数、螺旋溝の捩じり方向及びピッチの係合の組み合わせで決まるが、公転軸は、遊星軸に対して軸線位置を不動にすることが原則であり、このことが、諸元選定に様々な制約を与えている。
[Principles and Constraints]
[Basic configuration of conventional technology]
The basic configuration of the planetary rotation-linear motion conversion device is that the spiral grooves of the sun shaft and the ring shaft engage with the spiral grooves of the planetary shaft to convert the motion form between rotary motion and linear motion. do.
The linear motion of the driven shaft is determined by a combination of the reference diameter (effective diameter) of each spiral groove, the number of threads of the spiral groove, the twisting direction of the spiral groove, and the engagement of the pitch. The principle is to keep the axis line position immovable with respect to the shaft, and this imposes various restrictions on specification selection.
 以下の説明に使用する係合溝の諸元を表1に定義する。
尚係合溝の内外径の呼称は、螺旋溝などの係合溝なら「有効径」、螺条歯車や平歯車なら「基準円直径」と呼称するが、以下の説明に於いては「基準円直径」を略して、「基準径」を総称として使用するものとする。
Table 1 defines the specifications of the engagement grooves used in the following description.
The inner and outer diameters of the engaging groove are called "effective diameter" for engaging grooves such as spiral grooves, and "reference circle diameter" for spiral gears and spur gears. "Circle diameter" shall be abbreviated and "reference diameter" shall be used as a generic term.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
特許文献1を代表例とする従来技術の配列は、走行軸、遊星軸及び公転軸に螺旋溝を施した構成である。原則或いは制約は下記の通りである。
1) 各螺旋溝の基準径は、|d1-d2|=2dpの関係にある。
2) 遊星軸に対し、公転軸の係合溝の基準径は倍数である。
螺旋溝の条数は整数値なので、公転軸と遊星軸とは、整数倍となる。
遊星軸と公転軸とは、軸線位置を不動にするために、遊星軸が自転によって、軸線に移動する自転直動を、遊星軸が公転によって軸線に移動する、公転直動により相殺する必要がある。
数式では Z2=d2/dp・Zp=n(nは整数値) 
3) 遊星軸に対し、走行軸の係合溝の基準径は倍数である。
1)、2)項から走行軸の螺旋溝の基準径は、d1=(2±n)dpで表される。
4) 遊星軸個数は、太陽軸とリング軸の螺旋溝条数の合算値の約数である。
5) 太陽軸またはリング軸1回転当たりの直動運動量(直動変換率)は、次式で表される。
走行軸駆動 =d1/(d1+d2)・(d1/dp・Zp±Z1)・P または
公転軸駆動 =d2/(d1+d2)・(d1/dp・Zp±Z1)・Pで表される。
The arrangement of the prior art, which is represented by Patent Document 1, is a configuration in which spiral grooves are formed on the running shaft, the planetary shaft, and the revolution shaft. The principles or constraints are as follows.
1) The reference diameter of each spiral groove has a relation of |d1-d2|=2dp.
2) The reference diameter of the engagement groove of the revolution shaft is a multiple of the planetary shaft.
Since the number of threads of the spiral groove is an integer value, the revolution axis and the planetary axis are integer multiples.
In order to keep the axis position stationary, it is necessary to offset the linear motion of the planetary shaft, which moves to the axis due to the rotation of the planetary shaft, with the linear motion of the planetary shaft, which moves to the axis due to the revolution. be.
In the formula, Z2=d2/dp・Zp=n (n is an integer value)
3) The reference diameter of the engagement groove of the running shaft is a multiple of the planetary shaft.
From items 1) and 2), the reference diameter of the spiral groove of the running shaft is expressed by d1=(2±n)dp.
4) The number of planetary shafts is a divisor of the sum of the number of spiral grooves on the sun shaft and ring shaft.
5) The linear momentum (linear conversion rate) per rotation of the sun axis or ring axis is expressed by the following equation.
Travel axis drive =d1/(d1+d2)・(d1/dp・Zp±Z1)・P Or revolution axis drive =d2/(d1+d2)・(d1/dp・Zp±Z1)・P be.
[実施の基本構成1]
遊星式回転-直動運動変換装置の走行軸、公転軸及び遊星軸に施された係合溝の種類と構成を表2に示す。配列0は従来技術に基づく構成であり、配列1及び2が本発明の第一の態様の構成である。
[Basic configuration of implementation 1]
Table 2 shows the types and configurations of the engagement grooves provided on the traveling shaft, revolution shaft, and planetary shaft of the planetary rotation-linear motion converter. Array 0 is a configuration based on the prior art, and arrays 1 and 2 are configurations according to the first aspect of the present invention.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明の第一の態様の構成である配列1は、太陽軸またはリング軸の内の一方である走行軸の係合溝に環状溝、公転軸と遊星軸には螺旋溝を配置したものである。配列2は、遊星軸と公転軸に環状溝、走行軸には螺旋溝を施したものである。その構成がもたらす諸元の原則や制約を下記に述べる。尚、数式を使った説明では、表1の定義を使用する。 Array 1, which is the configuration of the first aspect of the present invention, has an annular groove in the engagement groove of the running shaft, which is one of the sun shaft and the ring shaft, and spiral grooves in the revolving shaft and the planetary shaft. be. Array 2 has annular grooves on the planetary shaft and revolution shaft, and spiral grooves on the running shaft. The principles and constraints of the specifications brought about by the configuration are described below. The definitions in Table 1 are used in the description using mathematical formulas.
配列1では、走行軸の係合溝に環状の溝を設けるもので、走行軸の効率的な加工が主目的である。
直動への運動変換を小さくするには、公転軸と遊星軸の螺旋溝の基準径の差を少なくすることである。
1) 各係合溝の基準径は、|d1-d2|=2dpの関係にある。 
2) 遊星軸と公転軸の係合溝、公転軸条数と基準径比は整数値である。
d2/dp・Zp=Z2=n(nは整数値)
d2/dp・Zp:遊星軸の自転直動、Z2:遊星軸の公転直動でもある。
3) 遊星軸に対し、走行軸の螺旋溝の基準径は倍数である。
4) 遊星軸個数は、公転軸に設けた螺旋溝条数の約数である。
5) 駆動軸1回転当たりの直動運動量、即ち直動変換率を下記に示す。
走行軸駆動 =d1/(d1+d2)・d1/dp・Zp・Pまたは
公転軸駆動 =d2/(d1+d2)・d1/dp・Zp・Pで表される。
In arrangement 1, an annular groove is provided in the engagement groove of the running shaft, and the main purpose is to efficiently machine the running shaft.
In order to reduce the motion conversion to linear motion, it is necessary to reduce the difference between the reference diameters of the spiral grooves of the revolution shaft and the planetary shaft.
1) The reference diameter of each engagement groove is |d1-d2|=2dp.
2) The engagement groove between the planetary shaft and the revolution shaft, the number of revolution shaft threads and the reference diameter ratio are integer values.
d2/dp・Zp=Z2=n (n is an integer value)
d2/dp・Zp: Rotational linear motion of planetary axis, Z2: Revolutionary linear motion of planetary axis.
3) The reference diameter of the spiral groove of the running shaft is a multiple of the planetary shaft.
4) The number of planetary shafts is a divisor of the number of spiral grooves provided on the revolution shaft.
5) The amount of linear motion per rotation of the drive shaft, that is, the conversion rate of linear motion is shown below.
Travel axis drive =d1/(d1+d2)・d1/dp・Zp・P or revolution axis drive =d2/(d1+d2)・d1/dp・Zp・P.
配列2の原則と制約は下記の通りである。
環状溝の採用で、公転軸と遊星軸の係合溝・基準径の比率の制約が解除されることによって直動変換率に有利な諸元が選定できる。
1) 各係合溝の基準径は、|d1-d2|=2dpの関係にある。
2) 走行軸の螺旋溝条数は、遊星軸数の倍数である。
3) 直動変換率は、次式で表される。
走行軸駆動 =d1/(d1+d2)・Z1・P  または
公転軸駆動 =d2/(d1+d2)・Z1・P 
The principles and constraints of array 2 are as follows.
By adopting the annular groove, the restrictions on the ratio of the engagement grooves and the reference diameters of the revolution shaft and the planetary shaft are lifted, making it possible to select specifications that are advantageous for the direct motion conversion ratio.
1) The reference diameter of each engagement groove is |d1-d2|=2dp.
2) The number of spiral grooves on the running shaft is a multiple of the number of planetary shafts.
3) Direct motion conversion ratio is expressed by the following formula.
Travel axis drive =d1/(d1+d2)・Z1・P or revolution axis drive =d2/(d1+d2)・Z1・P
[実施の基本構成2]
本発明の第二の態様の構成は、簡便でかつ微細な直動運動変換を提供する方策を示したものである。
先ず遊星軸には、係合溝と平歯車が併設されていて、異なった基準径で構成されている。公転軸と遊星軸は、平歯車の噛合により、走行軸と遊星軸は係合溝の係合とする分別伝動である。
遊星軸と公転軸とは、螺旋溝によって係合しているが、回転伝動は平歯車の噛合が主動する。一方で遊星軸と走行軸は、螺旋溝の係合によって回転が伝わり、走行軸と遊星軸の基準径比と遊星軸の螺旋溝条数の積と走行軸の螺旋溝条数の差によって、直動が改変される。
即ち、遊星軸が自転によって軸線に移動する自転直動と、遊星軸が公転することによって軸線に移動する公転直動の差によって、直動が改変されることを意味している。走行軸と遊星軸との螺旋溝諸元を採択する際に、基準径比の値によって、自転直動を公転直動に近づけると直動運動変換は微細化し、遠ざけると粗くなる。
特許文献3では、2系列の遊星歯車機構を施しているが、本発明の第二の態様では、簡便な構造で、自在に直動を調整することが出来る。
[Basic configuration of implementation 2]
The configuration of the second aspect of the present invention shows a measure for providing simple and fine translational motion conversion.
First, the planetary shaft is provided with an engaging groove and a spur gear, which are configured with different reference diameters. The revolving shaft and the planetary shaft are engaged by spur gears, and the traveling shaft and the planetary shaft are engaged by engagement grooves.
The planetary shaft and the revolving shaft are engaged with each other through a spiral groove, but the rotation transmission is mainly driven by the meshing of the spur gears. On the other hand, the rotation of the planetary shaft and the running shaft is transmitted by the engagement of the spiral grooves. Direct motion is changed.
That is, it means that the linear motion is modified by the difference between the rotational linear motion in which the planetary shaft moves to the axis line due to its rotation and the revolutional linear motion in which the planetary shaft moves to the axis line by revolving. When adopting the helical groove specifications of the running shaft and the planetary shaft, depending on the value of the reference diameter ratio, if the rotation linear motion is brought closer to the revolution linear motion, the linear motion conversion becomes finer, and if it is moved away, it becomes coarser.
In Patent Document 3, a two-system planetary gear mechanism is used, but in the second aspect of the present invention, the simple structure can freely adjust the linear motion.
説明に使用する諸元を表3に定義する。
Figure JPOXMLDOC01-appb-T000003
The specifications used for explanation are defined in Table 3.
Figure JPOXMLDOC01-appb-T000003
基本構成2の原則と制約を以下に示す。
1) 各螺旋溝及び平歯車の諸元は、次の関係にある。
・ d1/dp及びd2/dpは非整数値も許容する
・ dg/dpg・Zp=Z2 は整数値
dg/dpg・Zpは、遊星軸の自転直動であり、
Z2は、公転軸の螺旋溝の条数であり、遊星軸の公転直動でもある。
・ 公転軸がリング軸の時: d1+dp=dg-dpg、d2-d1=2dp
公転軸が太陽軸の時 : d1-dp=dg+dpg、d1-d2=2dp
2) 直動変換率は、次式で表される。
走行軸駆動 =d1・dpg/(d1・dpg+dg・dp)・(d1/dp・Zp±Z1)・P
公転軸駆動 =dg・dp /(d1・dpg+dg・dp)・(d1/dp・Zp±Z1)・P
3) 走行軸と遊星軸の係合溝の基準径比(d1/dp)と遊星軸の螺旋溝、条数の積と走行軸の条数Z1の差を少なくすると直動は微細化し、大きく設定すれば粗くなる。係合溝の基準径比を任意に設定することが出来る。
The principles and constraints of basic configuration 2 are shown below.
1) The specifications of each spiral groove and spur gear have the following relationship.
・ d1/dp and d2/dp accept non-integer values ・ dg/dpg・Zp=Z2 is an integer value
dg/dpg・Zp is the rotational linear motion of the planetary shaft,
Z2 is the number of spiral grooves on the revolution shaft and also the revolution linear motion of the planetary shaft.
・ When the revolution axis is a ring axis: d1+dp=dg-dpg, d2-d1=2dp
When the orbital axis is the sun axis: d1-dp=dg+dpg, d1-d2=2dp
2) Direct motion conversion ratio is expressed by the following formula.
Travel axis drive =d1・dpg/(d1・dpg+dg・dp)・(d1/dp・Zp±Z1)・P
Revolution axis drive =dg・dp /(d1・dpg+dg・dp)・(d1/dp・Zp±Z1)・P
3) By reducing the difference between the reference diameter ratio (d1/dp) of the engagement grooves of the running shaft and the planetary shaft, the product of the number of spiral grooves and threads of the planetary shaft, and the number of threads Z1 of the running shaft, the linear motion becomes finer and larger. If you set it, it will be rough. The reference diameter ratio of the engagement groove can be set arbitrarily.
 [実施の基本構成3] 
実施の基本構成3は、係合溝の諸元とその配列を示したものではなく、直動運動変換の反力を支持する仕組みに関するものである。
実施の基本構成1の配列0、1及び2を基本にして、直動運動の反力を支持するための支持軸を遊星軸に追加し、従動軸と支持軸とを間隔を置いて係合させることで差動を引き出すことが出来る。
これによって、反力は従動軸-遊星軸-支持軸と伝達されるので、駆動軸に強大な負荷を掛けることなく支持軸が反力を受け止めることが出来る。直動の微細化のために、太陽軸に対するリング軸基準径比を大きくし、太陽軸を駆動する構成においては、反力を受けきれない太陽軸であっても、大きな影響を与えずに、反力を支持することが出来る。
実施の形態4は、配列2に支持軸を加えた構成である。
直動変換率は、 d2/(d1+d2)・Z1・Pで表される。
 実施の形態5は、本発明の第二の態様の遊星式回転-直動運動変換装置に、環状溝の係合によって、軸線位置不動とされた支持軸を加えた構成である。遊星軸には、基準径の異なる係合溝と平歯車とを併設していて、
一方の公転軸との回転伝動は、平歯車による噛合とし、
他方の走行軸との回転伝動は、係合溝による係合による分別伝動によって、微細な直動変換を生み出す構成である。
即ち直動運動変換の仕組みは、本発明の第二の態様によるものである。
支持軸が関わる係合は、支持軸及び遊星軸の係合溝を環状溝で構成し、従動軸であるリング軸に関わる係合は、リング軸自身、太陽軸及び遊星軸の係合溝の全てを螺旋溝で構成して、支持軸とリング軸の間で差動を発生させている。直動変換率は、下記で表される。
dg・dp /(d1・dpg+dg・dp)・(d1/dp・Zp±Z1)・P
[Basic configuration of implementation 3]
The basic configuration 3 of the implementation does not show the specifications and arrangement of the engaging grooves, but rather relates to a mechanism for supporting the reaction force of the translational motion conversion.
Based on the arrangement 0, 1 and 2 of the basic configuration 1 of the implementation, a support shaft for supporting the reaction force of the linear motion is added to the planetary shaft, and the driven shaft and the support shaft are engaged with a space. The differential can be drawn out by
As a result, the reaction force is transmitted through the driven shaft, the planetary shaft, and the support shaft, so that the support shaft can receive the reaction force without imposing a heavy load on the drive shaft. In order to make the linear motion finer, the reference diameter ratio of the ring axis to the sun axis is increased. It can support the reaction force.
Embodiment 4 has a configuration in which support shafts are added to array 2. FIG.
The direct motion conversion rate is expressed as d2/(d1+d2)·Z1·P.
Embodiment 5 has a configuration in which a support shaft whose axial position is fixed by engagement of an annular groove is added to the planetary rotation-linear motion conversion device of the second aspect of the present invention. The planetary shaft has an engaging groove and a spur gear with different reference diameters.
Rotational transmission with one of the revolving shafts is meshed by spur gears,
Rotational transmission with the other running shaft is configured to produce fine linear motion conversion by separate transmission due to engagement by the engagement grooves.
That is, the mechanism of translational motion conversion is according to the second aspect of the present invention.
Engagement involving the support shaft is achieved by forming the engagement grooves of the support shaft and the planetary shaft with annular grooves. All are composed of spiral grooves to generate a differential between the support shaft and the ring shaft. The direct motion conversion rate is expressed below.
dg・dp/(d1・dpg+dg・dp)・(d1/dp・Zp±Z1)・P
[実施の基本構成4] 
遊星式回転-直動運動変換装置は、太陽軸、遊星軸、遊星軸に設けた螺旋溝によって回転を伝動し回転運動を直動運動に変換するがその原理原則によると、太陽軸と遊星軸及びリング軸と遊星軸それぞれの回転比と条数比が同じであると全ての軸は、軸線方向の位置が不変であり、単なる回転伝動機構でしかない。
この状態から太陽軸またはリング軸の何れか一方と遊星軸の回転比または条数比を崩して不等にすると直動変換を発生させることができる。
特許文献1、2は微細直動を得るために、螺旋溝の諸元を採択し、螺旋溝ピッチは細目を選んでいる。
本発明の第四の態様では逆に粗い溝ピッチを選んでいて、歯丈の高さを利用して太陽軸螺旋溝と接する遊星軸螺旋溝の基準径とリング軸螺旋溝と接する遊星軸螺旋溝の基準径に差を設けている。また螺旋溝の歯丈を高くすることによって、高精度で自在な歯形に成形することを可能にしている。基準径を変える方法として、例えば螺旋溝をインボリュート歯形などの曲面歯形と圧力角の異なる台形歯形、或いは歯先が屈折する歯形との係合などによって、実現できる。
本発明の第四の態様は、遊星軸の係合溝が異なった基準径で、太陽軸及びリング軸の係合溝と係合することによって、直動変換率を調整することができることである。
また特許文献3の遊星式回転-直動運動変換装置によれば、走行軸と遊星軸との螺旋溝は、滑りを生ずる構成であるが、本発明の第四の態様では、原則として滑りが発生しない構成である。
[Basic configuration of implementation 4]
The planetary rotation-linear motion conversion device transmits rotation through the sun shaft, the planetary shaft, and the spiral grooves provided on the planetary shaft, and converts the rotary motion into the linear motion. And if the ring shaft and the planetary shaft have the same rotation ratio and thread number ratio, all the shafts remain in the same position in the axial direction and are nothing more than a rotary transmission mechanism.
From this state, if the rotation ratio or thread number ratio of either the sun shaft or the ring shaft and the planetary shaft is broken to make them unequal, linear motion conversion can be generated.
In Patent Documents 1 and 2, in order to obtain fine linear motion, the specifications of the spiral groove are adopted, and the pitch of the spiral groove is selected to be fine.
In the fourth aspect of the present invention, on the contrary, a coarse groove pitch is selected, and the height of the tooth height is used to determine the reference diameter of the planetary shaft spiral groove in contact with the sun shaft spiral groove and the planetary shaft spiral in contact with the ring shaft spiral groove. A difference is provided in the reference diameter of the groove. In addition, by increasing the tooth height of the spiral groove, it is possible to form a highly precise and flexible tooth profile. As a method for changing the reference diameter, for example, the spiral groove can be realized by engaging with a curved tooth profile such as an involute tooth profile, a trapezoidal tooth profile with a different pressure angle, or a tooth profile with a bent tip.
A fourth aspect of the present invention is that the linear motion conversion ratio can be adjusted by engaging the engagement grooves of the planetary shaft with different reference diameters with the engagement grooves of the sun shaft and the ring shaft. .
Further, according to the planetary rotation-linear motion conversion device of Patent Document 3, the spiral groove between the running shaft and the planetary shaft is configured to cause slippage. It is a configuration that does not occur.
説明に使用する諸元を表4に定義する。
Figure JPOXMLDOC01-appb-T000004
The specifications used for explanation are defined in Table 4.
Figure JPOXMLDOC01-appb-T000004
本発明第四の態様の原則と制約を以下に示す。
走行軸と遊星軸との係合点は、基準径d1と dp1であり、
公転軸と遊星軸との係合点は、基準径d2とdp2である。
1) 各螺旋溝の諸元は、次の関係にある。
・d2/dp2は整数値であり、d1/dp1の非整値である。
・d2/dp2=Z2/Zp である。
・|d1-d2|=dp1+dp2である。
2) 直動変換率は、次式で表される。
走行軸駆動 =d1・dp2/(d1・dp2+d2・dp1)・(d1/dp1・Zp±Z1)・P
公転軸駆動 =d2・dp1/(d1・dp2+d2・dp1)・(d1/dp1・Zp±Z1)・P
The principles and limitations of the fourth aspect of the invention are set forth below.
The engagement points between the traveling shaft and the planetary shaft are the reference diameters d1 and dp1,
The points of engagement between the revolution shaft and the planetary shaft are reference diameters d2 and dp2.
1) The specifications of each spiral groove have the following relationships.
• d2/dp2 is an integer value and a non-integer value of d1/dp1.
・d2/dp2=Z2/Zp.
・|d1-d2|=dp1+dp2.
2) Direct motion conversion ratio is expressed by the following formula.
Travel axis drive =d1・dp2/(d1・dp2+d2・dp1)・(d1/dp1・Zp±Z1)・P
Revolution axis drive =d2・dp1/(d1・dp2+d2・dp1)・(d1/dp1・Zp±Z1)・P
 [実施の形態1] 
図1は表2の配列1であって、本発明の第一の態様による遊星式回転-直動運動変換装置の一例である。
[Embodiment 1]
FIG. 1 is arrangement 1 of Table 2, which is an example of a planetary rotary-to-linear motion converter according to the first aspect of the present invention.
表5は図1の係合溝諸元と係合関係を補足したものである。 
Figure JPOXMLDOC01-appb-T000005
Table 5 supplements the engagement groove specifications and the engagement relationship in FIG.
Figure JPOXMLDOC01-appb-T000005
図1の「係合溝諸元と係合関係」を示す表4の見方を説明する。
・ 列と行の交点にある〇印は、係合関係にある軸を示している。
・ 〇印列の上方向は、遊星軸2を表し、係合溝2tの諸元
(即ち、溝形式・条数、基準径比、総数)が順に記載されている。
・ 〇印行の左方向は、上段の太陽軸1の係合溝1t及び下段のリング軸3係合溝3tの(溝形式・条数、基準径比、総数)が順に記載されている。
尚「係合溝諸元と係合関係」は以降の説明にも使用されている。
1) 〇印の個数が示すように、遊星軸2の単一緒元による係合溝2tが、太陽軸1の係合溝1t及びリング軸3の係合溝3tと係合している。
2) 〇印を上へなぞると、遊星軸2には1条の螺旋溝2tが施されている。
3) 上段の〇印を左になぞると、太陽軸1の係合溝1tには環状の溝が施されており、遊星軸2の係合溝2tに対し、3倍の基準径である。
4) 下段の〇印を左になぞると、リング軸3の係合溝3tには5条螺旋溝が施されていて、遊星軸2の螺旋溝に対し、5倍の基準径である。
5) 遊星軸2の総数は5個であって、リング軸3の条数と同数である。
6) 遊星軸2とリング軸3の係合溝(2t,3t)の基準径比《5/1》と遊星軸2の螺旋溝2tの条数《1》との積、即ち遊星軸2の自転による直動は、リング軸3の係合溝3tの条数《5》、即ち遊星軸2の公転による直動と同じであり、遊星軸2とリング軸3との軸線位置は不動である。
7) 遊星軸2は、太陽軸1の環状溝1tを軌道にして軸線位置は変位する。
これによって、太陽軸1の回転が、リング軸3の直動に変換される。
参考までに、直動変換率は≒1.1 (溝ピッチは1とする。)
8) 複数の遊星軸2が円周に分配されていて、遊星軸2の両端の軸部5が保持器4に差し込まれ、回転自在に、止輪6によってリング軸3に回転自在に止められている。
How to read Table 4 showing "engagement groove specifications and engagement relations" in FIG. 1 will be explained.
・ The circles at the intersections of the columns and rows indicate the axes that are engaged.
・ The upward direction of the 〇 mark indicates the planetary shaft 2, and the specifications of the engagement groove 2t.
(That is, the groove type/number of threads, reference diameter ratio, and total number) are listed in order.
・To the left of the 〇 mark, the engagement groove 1t of the upper sun shaft 1 and the engagement groove 3t of the lower ring shaft 3 (groove type, number of threads, reference diameter ratio, total number) are described in order.
Note that the terms "engagement groove specifications and engagement relationship" are also used in the following description.
1) As indicated by the number of circles, the single joint engagement groove 2t of the planetary shaft 2 is engaged with the engagement groove 1t of the sun shaft 1 and the engagement groove 3t of the ring shaft 3.
2) If you trace the ○ mark upward, the planetary shaft 2 has a single spiral groove 2t.
3) If you trace the circle mark in the upper row to the left, you will see that the engaging groove 1t of the sun shaft 1 has an annular groove, which has a reference diameter three times that of the engaging groove 2t of the planetary shaft 2.
4) If you trace the circle mark at the bottom to the left, you will see that the engagement groove 3t of the ring shaft 3 has five spiral grooves, and the reference diameter is five times that of the spiral groove of the planetary shaft 2.
5) The total number of planetary shafts 2 is 5, which is the same as the number of threads of the ring shaft 3.
6) The product of the reference diameter ratio <<5/1>> of the engagement grooves (2t, 3t) of the planetary shaft 2 and the ring shaft 3 and the number of spiral grooves 2t of the planetary shaft 2 <<1>>, that is, the The linear motion due to rotation is the same as the linear motion due to the revolution of the planetary shaft 2, that is, the number of threads of the engagement groove 3t of the ring shaft 3 is <<5, and the axial position between the planetary shaft 2 and the ring shaft 3 is immovable. .
7) The planetary shaft 2 moves along the annular groove 1t of the sun shaft 1, and the axial position is displaced.
Rotation of the sun axis 1 is thereby converted into linear motion of the ring axis 3 .
For reference, the direct motion conversion ratio is ≒ 1.1 (groove pitch is 1.)
8) A plurality of planetary shafts 2 are distributed on the circumference, and the shaft portions 5 at both ends of the planetary shafts 2 are inserted into the retainer 4 and rotatably stopped on the ring shaft 3 by retaining rings 6. ing.
[実施の形態2]
図2は表2の配列2であって、本発明の第一の態様による、遊星式回転-直動運動変換装置の別の例である。
本実施の形態が意図するところは、遊星軸とリング軸を環状の溝と係合とすることによって、遊星軸と公転軸との軸線位置不動を確実にすること及び基準径比は倍数以外でも許容されることである。
[Embodiment 2]
FIG. 2 is Array 2 of Table 2, another example of a planetary rotary-to-linear motion converter according to the first aspect of the invention.
The purpose of this embodiment is to ensure that the axial positions of the planetary shaft and the orbiting shaft are fixed by engaging the planetary shaft and the ring shaft with an annular groove, and that the reference diameter ratio is not a multiple. It is acceptable.
表6は図2の係合溝諸元と係合関係を補足したものである。
Figure JPOXMLDOC01-appb-T000006
Table 6 supplements the engagement groove specifications and the engagement relationship in FIG.
Figure JPOXMLDOC01-appb-T000006
表6には、◇印が追加されていて、平歯車の噛合による回転伝動の補完を示している。〇印は、前述の如く係合溝の係合を示している。
1) 遊星軸2の係合溝2tは、単一諸元の環状溝であって、太陽軸1の係合溝1tとリング軸3の係合溝3tに係合している。
2) 太陽軸1の係合溝1tは3条螺旋溝であり、遊星軸2の係合溝2tは環状溝であって、係合によって軸線位置が変位する。
3) リング軸3には、係合溝3tが施されて、遊星軸2の係合溝2tと係合していて、基準径比は《31:13》と非整数倍であるが、互いが環状溝同士の係合であるので、軸線位置は不動である。
4) 公転軸であるリング軸3と遊星軸2に、平歯車(8,7)が設けられていて、回転伝動を補完している。
5) 平歯車8は、リング軸3の両端に固定ネジ10によってリング軸3に固定されている。遊星軸2の両端の平歯車7は、遊星軸2の係合溝2tに歯切りを施したものである。太陽軸1の回転運動が、遊星軸2を介してリング軸3の直動運動に変換している。
参考までに、直動変換率は≒ 0.42(溝ピッチは1とする)
6) 遊星軸2は、軸部5が保持器4に嵌合し、保持器4によって、太陽軸1の円周に分配されている。
尚 平歯車(7,8)ははすば歯車でも置き換えが可能である。係合溝形状はネジ溝、ネジ状歯車、球面溝等でも置き換えが出来る。
In Table 6, the ⋄ mark has been added to indicate the supplementation of rotational transmission by the meshing of spur gears. The ◯ mark indicates the engagement of the engagement groove as described above.
1) The engagement groove 2t of the planetary shaft 2 is an annular groove of a single dimension, and is engaged with the engagement groove 1t of the sun shaft 1 and the engagement groove 3t of the ring shaft 3.
2) The engaging groove 1t of the sun shaft 1 is a triple spiral groove, and the engaging groove 2t of the planetary shaft 2 is an annular groove, and the axial position is displaced by engagement.
3) The ring shaft 3 is provided with an engagement groove 3t, which engages with the engagement groove 2t of the planetary shaft 2. The reference diameter ratio is <<31:13>>, which is a non-integer multiple. is the engagement between the annular grooves, the axial position is immovable.
4) Spur gears (8, 7) are provided on the ring shaft 3 and the planetary shaft 2, which are revolution shafts, to complement the rotational transmission.
5) The spur gear 8 is fixed to the ring shaft 3 by fixing screws 10 at both ends of the ring shaft 3 . The spur gears 7 at both ends of the planetary shaft 2 are gear-cut in the engagement grooves 2t of the planetary shaft 2. As shown in FIG. Rotational motion of the sun shaft 1 is converted into linear motion of the ring shaft 3 via the planetary shaft 2 .
For reference, the direct motion conversion ratio is ≒ 0.42 (groove pitch is assumed to be 1)
6) The planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shafts 5 are fitted in the retainer 4 .
Spur gears (7, 8) can also be replaced with helical gears. The shape of the engagement groove can be replaced by a screw groove, a screw gear, a spherical groove, or the like.
[実施の形態3]
 図3は、本発明の第二の態様による、遊星式回転-直動運動変換装置の一例である。簡便な構成で、微細な直動を発生させる構成である。
[Embodiment 3]
FIG. 3 is an example of a planetary rotary-to-linear motion conversion device according to the second aspect of the present invention. It is a simple structure and a structure that generates fine linear motion.
表7は、係合溝と平歯車の諸元及びその係わりを補足している。
Figure JPOXMLDOC01-appb-T000007
Table 7 supplements the specifications of the engagement groove and the spur gear and their relationship.
Figure JPOXMLDOC01-appb-T000007
表7の〇印は、係合溝の係合による、伝動を示す。
△印は、係合溝の係合を示す。
☆印は、歯車の噛合による回転主動を示す。
図3と表7によって具体例で説明すると、
1) 遊星軸2には、基準径の異なる螺旋溝2t《13》と平歯車7《12》が設けられている。
2) 〇印をなぞると、太陽軸1と遊星軸2の螺旋溝(1t,2t)が係合している。その基準径比《23:13》と遊星軸2の螺旋溝2t条数《1》の積、即ち遊星軸2の自転直動は《1.77》で、太陽軸1の螺旋溝1tの条数《2》即ち遊星軸2の公転直動を僅かに外した値である。
3) △印をなぞると、リング軸3の螺旋溝3tと遊星軸2の螺旋溝2tとが係合している。係合による伝動回転比は、本来《49:13》である。
4) ☆印をなぞれば、リング軸3の平歯車8と遊星軸2の平歯車7とが噛合して、回転比は《4:1》であって、遊星軸2の螺旋溝2tの条数《1》との積《4》とリング軸3の条数《4》とが同じであって、リング軸3と遊星軸2との軸線位置は不動である。即ち平歯車(7,8)の噛合で遊星軸2の自転直動が矯正され、公転直動によって相殺される。
5) このようにして、リング軸3を駆動すると、その回転運動が太陽軸1の直動運動に運動変換される。
6) 太陽軸1と遊星軸2の係合溝の基準径比《23/13》を採択した時の、直動運動変換率は、係合溝ピッチが1に対して約0.16である。
7) 表7の( )内諸元を採択すれば、基準径比と遊星軸2の条数の積が
《1.77》から《1.88》と太陽軸2の螺旋溝の条数《2》に近づき、直動運動変換率は約0.08と半減する。即ち遊星軸2の自転直動が公転直動に近づけると、直動変換率は微細に改変され、逆だと粗くなる。
8) 本実施の形態では、太陽軸1とリング軸3間の軸線方向の間隙を調整するために、リング軸3が分割されている。
螺旋溝3tを設けた一対のリング軸3が、平歯車8と隙間調整用の間座13を挟んで締め込み、キー14によって、逆戻を止めている。
9) 遊星軸2は、軸部5が保持器4に嵌合し、保持器4によって、太陽軸1の円周に分配されている。止輪6は保持器4がリング軸3から外れることを防止している。尚 平歯車(7,8)ははすば歯車でも置き換えが可能である。係合溝形状はネジ溝、ネジ状歯車、球面溝等でも置き換えが出来る。
The ◯ mark in Table 7 indicates the transmission due to the engagement of the engagement groove.
A triangle mark indicates the engagement of the engagement groove.
The ☆ mark indicates the driving force of rotation due to meshing of gears.
A specific example will be explained with reference to FIG. 3 and Table 7.
1) The planetary shaft 2 is provided with a spiral groove 2t <<13>> and a spur gear 7 <<12>> with different reference diameters.
2) Tracing the ○ mark shows that the spiral grooves (1t, 2t) of the sun shaft 1 and the planetary shaft 2 are engaged. The product of the reference diameter ratio <<23:13>> and the number of spiral grooves 2t of the planetary shaft 2 <<1>>, that is, the rotational linear motion of the planetary shaft 2 is <<1.77>>, and the number of spiral grooves 1t of the sun shaft 1 <<1.77>>. 2>> That is, it is a value obtained by slightly removing the revolution linear motion of the planetary shaft 2.
3) When tracing the Δ mark, the spiral groove 3t of the ring shaft 3 and the spiral groove 2t of the planetary shaft 2 are engaged. The transmission rotation ratio due to engagement is originally <<49:13>>.
4) If you trace the ☆ mark, the spur gear 8 of the ring shaft 3 and the spur gear 7 of the planetary shaft 2 are meshed, the rotation ratio is <<4:1>>, and the spiral groove 2t of the planetary shaft 2 is The product "4" with the number of threads "1" and the number of threads "4" of the ring shaft 3 are the same, and the axial positions of the ring shaft 3 and the planetary shaft 2 are immovable. That is, the rotational linear motion of the planetary shaft 2 is corrected by the meshing of the spur gears (7, 8), and is canceled by the revolutional linear motion.
5) In this way, when the ring shaft 3 is driven, its rotational motion is converted into linear motion of the sun shaft 1.
6) When the standard diameter ratio of the engaging grooves of the sun shaft 1 and the planetary shaft 2 is <<23/13>>, the linear motion conversion rate is about 0.16 for the engaging groove pitch of 1;
7) If the specifications in parentheses in Table 7 are adopted, the product of the reference diameter ratio and the number of threads of the planetary shaft 2 will change from <<1.77>> to <<1.88>>, and the number of threads of the spiral groove of the sun shaft 2 will approach <<2>>. , the linear motion conversion ratio is halved to about 0.08. That is, when the rotation linear motion of the planetary shaft 2 approaches the revolution linear motion, the direct motion conversion rate is finely modified, and vice versa, it becomes rough.
8) In this embodiment, the ring shaft 3 is split in order to adjust the axial clearance between the sun shaft 1 and the ring shaft 3 .
A pair of ring shafts 3 provided with a spiral groove 3t are tightened by sandwiching a spur gear 8 and a spacer 13 for clearance adjustment, and a key 14 prevents reverse movement.
9) The planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of the retainer 4, the shaft portion 5 of which fits into the retainer 4; The retaining ring 6 prevents the retainer 4 from coming off the ring shaft 3 . Spur gears (7, 8) can also be replaced with helical gears. The shape of the engagement groove can be replaced by a screw groove, a screw gear, a spherical groove, or the like.
[実施の形態4]
図4は表2の配列2に支持軸を加えた構成であって、本発明の第三の態様による、遊星式回転-直動運動変換装置の一例である。
従来技術が、太陽軸1とリング軸3の間で、直動を取り出しているのに対し、本実施の形態は、従動軸であるリング軸3が受ける反力を、遊星軸2を介して、支持軸12が受けるので、太陽軸1に大きな負担を掛けない特徴がある。
[Embodiment 4]
FIG. 4 shows an example of a planetary rotation-linear motion conversion device according to the third aspect of the present invention, having a configuration in which support shafts are added to arrangement 2 in Table 2. In FIG.
Whereas the prior art takes out the linear motion between the sun shaft 1 and the ring shaft 3, in the present embodiment, the reaction force received by the ring shaft 3, which is the driven shaft, is transferred through the planetary shaft 2. , the support shaft 12 receives the sun shaft 1, so that the sun shaft 1 is not subjected to a large burden.
表8は図4の係合溝諸元と係合関係を補足したものである。
Figure JPOXMLDOC01-appb-T000008
Table 8 supplements the engagement groove specifications and engagement relationship in FIG.
Figure JPOXMLDOC01-appb-T000008
図4と表8によって具体的に説明すると、
1) 〇印が示すように、遊星軸2の係合溝2tが、太陽軸1の係合溝1t、リング軸3の係合溝3t及び支持軸12の係合溝12tに係合している。
2) リング軸3を除く係合溝(1t,2t,12t)は、環状溝であって、遊星軸2は、太陽軸1及び支持軸12に対して軸線位置は不動である。
3) 遊星軸2には、支持軸12と同軸でかつ間隔を置いて、リング軸3が係合している。リング軸3には係合溝3tとして、6条螺旋溝が設けられ、遊星軸2の回転によって、リング軸3は遊星軸2に対し軸線位置が変位する。参考までに、直動変換率は=2(溝ピッチは1とする)。
4) 太陽軸1を駆動すると支持軸12とリング軸3の間で差動が起きる。
5) 外輪11は、支持軸12内径に嵌合し、固定ネジ10によって支持軸12に固定されている。支持軸12の係合溝12tを外輪11に設けて分離しているのは、組み立てを容易にすることが目的である。
係合溝部分を薄肉の外輪11として分けることによって、弾性変形を 利用して遊星軸2を組み立てる、或いは2分割した外輪11を使うことも可能である。
6) 遊星軸2は、軸部5が保持器4に嵌合し、保持器4によって、太陽軸1の円周に分配されている。
止輪6は保持器4が太陽軸1から外れることを防止している。
Specifically, referring to FIG. 4 and Table 8,
1) As indicated by the circles, the engagement groove 2t of the planetary shaft 2 is engaged with the engagement groove 1t of the sun shaft 1, the engagement groove 3t of the ring shaft 3, and the engagement groove 12t of the support shaft 12. there is
2) The engagement grooves (1t, 2t, 12t) except for the ring shaft 3 are annular grooves, and the planetary shaft 2 is stationary with respect to the sun shaft 1 and the support shaft 12.
3) The ring shaft 3 is engaged with the planetary shaft 2 coaxially with the support shaft 12 with a space therebetween. The ring shaft 3 is provided with six spiral grooves as the engagement grooves 3t, and the rotation of the planetary shaft 2 displaces the axial position of the ring shaft 3 with respect to the planetary shaft 2. As shown in FIG. For reference, the direct motion conversion ratio is 2 (groove pitch is 1).
4) Driving the sun shaft 1 causes a differential between the support shaft 12 and the ring shaft 3;
5) The outer ring 11 is fitted to the inner diameter of the support shaft 12 and fixed to the support shaft 12 with the fixing screws 10 . The reason why the engagement groove 12t of the support shaft 12 is provided and separated from the outer ring 11 is to facilitate assembly.
It is also possible to assemble the planetary shaft 2 using elastic deformation by dividing the engagement groove portion as a thin outer ring 11, or to use the outer ring 11 divided into two.
6) The planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shafts 5 are fitted in the retainer 4 .
A stop ring 6 prevents the retainer 4 from coming off the sun shaft 1 .
[実施の形態5]
 図5は、本発明の第三の態様による、支持軸を備えた遊星式回転-直動運動変換装置で、図4とは別の実施の形態である。
本特許第二の態様の微細直動の仕組みと第一の態様として述べた、環状溝の係合による軸線位置不動とされた支持軸を備えた構成である。
[Embodiment 5]
FIG. 5 shows a planetary rotation-to-linear motion conversion device with a support shaft according to a third aspect of the present invention, which is an embodiment different from that of FIG.
It is the structure provided with the mechanism of fine linear motion of the second aspect of the present patent and the support shaft whose axial position is fixed by the engagement of the annular groove described as the first aspect.
表9は図5の係合溝諸元と係合関係を補足したものである。
Figure JPOXMLDOC01-appb-T000009
Table 9 supplements the engagement groove specifications and the engagement relationship in FIG.
Figure JPOXMLDOC01-appb-T000009
表9の〇印は、係合溝の係合による、伝動を示す。
☆印は、歯車の噛合による回転主動を示す。
△印は、係合溝の係合を示す。
図5と表9によって具体的に説明すると、
1) 表9の☆印をなぞれば、太陽軸1の平歯車8と遊星軸2の平歯車7とが噛合して、回転を主動している。
2) △印をなぞれば、太陽軸1の螺旋溝1tと遊星軸2の螺旋溝2t1とが係合している。
平歯車(8,7)の噛合による回転比《2:1》と、遊星軸2の螺旋溝2tの条数《1》の積は、太陽軸1の螺旋溝1tの条数《2》と同じであって、遊星軸2と太陽軸1とは、軸線位置が不動である。
即ち 遊星軸2の自転直動を公転直動によって相殺されている。
3) 上段の〇印をなぞれば、リング軸3の螺旋溝12tと遊星軸2の螺旋溝2t2とが係合している。遊星軸2の螺旋溝2t2と平歯車7との基準径に、意図した直径差を設けている。リング軸3の螺旋溝3tと遊星軸2の螺旋溝2t2との基準径比
《49:13》に遊星軸2の螺旋溝2tの条数《1》の積《3.77》は、リング軸3の条数《4》を外した値である。
即ち遊星軸2の自転直動と公転直動とに差を設けている。
4) 下段の〇印をなぞれば、支持軸12の環状溝12tと遊星軸2の環状溝2t1が係合し、支持軸12と遊星軸2とは軸線位置が不動である。
5) それらによって、太陽軸1を駆動して、支持軸12とリング軸3の間で差動に変換する構成である。
参考までに、直動変換率は≒0.08(溝ピッチは1とする)。
6) 平歯車8は、平歯車固定具9によって太陽軸1に固定されている。
遊星軸2は、軸部5が保持器4に嵌合し、保持器4によって、太陽軸1の円周に分配されている。
尚 平歯車(7,8)は、はすば歯車でも置き換えが可能である。係合溝形状はネジ溝、ネジ状歯車、球面溝等でも置き換えが出来る。 
The ◯ mark in Table 9 indicates the transmission due to the engagement of the engagement groove.
The ☆ mark indicates the driving force of rotation due to meshing of gears.
A triangle mark indicates the engagement of the engagement groove.
Specifically, referring to FIG. 5 and Table 9,
1) If you trace the ☆ marks in Table 9, the spur gear 8 of the sun shaft 1 and the spur gear 7 of the planetary shaft 2 are engaged to drive the rotation.
2) If you trace the Δ mark, the spiral groove 1t of the sun shaft 1 and the spiral groove 2t1 of the planetary shaft 2 are engaged.
The product of the rotation ratio <<2:1>> due to the engagement of the spur gears (8, 7) and the number of threads of the spiral groove 2t of the planetary shaft 2 <<1>> is the number of threads of the spiral groove 1t of the sun shaft 1 <<2>> Equivalently, the planetary axis 2 and the sun axis 1 are stationary in their axial positions.
That is, the rotational linear motion of the planetary shaft 2 is offset by the revolutional linear motion.
3) If you trace the upper ◯ mark, the spiral groove 12t of the ring shaft 3 and the spiral groove 2t2 of the planetary shaft 2 are engaged. The reference diameters of the spiral groove 2t2 of the planetary shaft 2 and the spur gear 7 are provided with an intended diameter difference. The product of the reference diameter ratio <<49:13>> between the spiral groove 3t of the ring shaft 3 and the spiral groove 2t2 of the planetary shaft 2 <<1>>, the number of threads of the spiral groove 2t of the planetary shaft 2 <<1>> is This value excludes the number of articles <<4>>.
That is, a difference is provided between the rotation linear motion and the revolution linear motion of the planetary shaft 2 .
4) If you trace the ◯ mark in the lower row, the annular groove 12t of the support shaft 12 and the annular groove 2t1 of the planetary shaft 2 are engaged, and the axial positions of the support shaft 12 and the planetary shaft 2 are immovable.
5) By means of them, the sun shaft 1 is driven and converted to a differential between the support shaft 12 and the ring shaft 3.
For reference, the direct motion conversion ratio is ≒ 0.08 (groove pitch is assumed to be 1).
6) The spur gear 8 is fixed to the sun shaft 1 by means of a spur gear fixture 9.
The planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shaft portion 5 fits into the retainer 4 .
The spur gears (7, 8) can also be replaced with helical gears. The shape of the engagement groove can be replaced by a screw groove, a screw gear, a spherical groove, or the like.
[実施の形態6] 
本発明第四の態様の原理に基づく遊星式回転-直動運動変換装置の一例を図6に示す。
[Embodiment 6]
FIG. 6 shows an example of a planetary rotation-linear motion conversion device based on the principle of the fourth aspect of the present invention.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
表10の〇印は、螺旋溝の係合による回転伝動を示す。
☆印は平歯車の噛合による回転伝動を示す。
図6の「螺旋溝諸元と係合関係」を示す表10の見方を説明する。
・列と行の交点にある〇印は、係合関係にある軸を示している。
・〇印列の上方向は、遊星軸2を表し、螺旋溝2tの諸元
(即ち、溝形式・条数、基準径比、総数)が順に記載されている。
・〇印行の左方向は、上段の太陽軸1の螺旋溝1t及び下段のリング軸3螺旋溝3tの溝形式・条数、基準径(比)、総数)が順に記載されている。
・☆印列の上方向は、遊星軸2の平歯車7の基準径比・歯数比が示され、行の左方向は、リング軸3の平歯車8の基準径比・歯数比が順に記載されている。図6、図7、図8と表10によって具体例で説明する。
1) 上段の〇印をなぞると、太陽軸1は2条の螺旋溝1tが設けられていて、遊星軸2の螺旋溝2tと基準径19で係合している。
図7は太陽軸1の螺旋溝1tと遊星軸2の螺旋溝2tの係合を示した断面であって、互いがインボリュ-ト歯形様の曲面によって遊星軸2に備える係合溝2tの基準径19で係合している。
2) 下段の〇印をなぞると、リング軸3は4条の螺旋溝3tが設けられていて、遊星軸2に備える螺旋溝2tの基準径20で係合している。
図8はリング軸3の螺旋溝3tと遊星軸2の螺旋溝2tの係合を示した断面である。リング軸3の螺旋溝3tの歯形は圧力角の選定によって、遊星軸2の螺旋溝2tの基準径20は、太陽軸1との基準径19より歯先に移っている。
3) リング軸3の螺旋溝3tの条数とリング軸3と遊星軸2の回転比が同じであって、遊星軸2とリング軸3とが軸線位置不動に設定されている。
4) このようにして、太陽軸1に回転運動を加えると、運動変換されてリング軸3が直動運動する。遊星軸2螺旋溝2tに対する太陽軸1螺旋溝1tの基準径比が、太陽軸1螺旋溝1tの条数に近いほど直動は微細になり、遠ざかると粗くなる。
5) 太陽軸1と遊星軸2の螺旋溝の基準径比《25/11》を採択した時の、直動運動変換率は、螺旋溝ピッチが《1》において僅か《≒0.1》である。直動変換が微細であるので、ピッチ《3》を採用しても直動変換は《≒0.3》である。
本発明の特徴は、螺旋溝歯形に細工を加えて3軸の係合接点を自在に設定することであり、歯丈が高い螺旋溝を選定することによって、加工性や加工精度を高めている。各々の螺旋溝の接点を移す方法には、圧力角の異なる台形歯やインボリュ-ト歯形や曲面或いは遊星軸2歯形を屈折させた歯形、円形など多様な組み合わせの中から選ぶことができる。
6)☆印をなぞるとリング軸3及び遊星軸2には、回転伝動を補完する平歯車(8、7)で設けられていて、回転伝動の補完によって遊星軸2とリング軸3とは軸線位置の不動が担保され、螺旋溝の基準径の誤差によって軸線位置が移動することを防止している。尚遊星軸の平歯車7の基準径は、螺旋溝2tの基準径20と同径に設定されている。
遊星軸2の両端は、平歯車7が併設されている。リング軸3の両端には平歯車8が設けられ、螺旋溝3t部分を避けて歯切りされている。
尚 平歯車(7,8)ははすば歯車やサイクロイド歯形或いは、凹凸が絡む確動形の回転伝動手段で置き換えが可能である。
7) 遊星軸2は、軸部5が保持器4に嵌合し、保持器4によって、太陽軸1の円周に分配されている。
止輪6は保持器4がリング軸3から外れることを防止している。
The ◯ mark in Table 10 indicates rotational transmission due to the engagement of the helical groove.
☆ indicates rotational transmission by meshing of spur gears.
How to read Table 10 showing "spiral groove specifications and engagement relationship" in FIG. 6 will be explained.
・A circle mark at the intersection of a column and a row indicates a shaft in an engaged relationship.
・The upward direction of the row of 〇 marks represents the planetary shaft 2, and the specifications of the spiral groove 2t.
(That is, the groove type/number of threads, reference diameter ratio, and total number) are listed in order.
・To the left of the 〇 mark, the groove type/number of spiral grooves 1t of the upper sun shaft 1 and the spiral groove 3t of the lower ring shaft 3, the reference diameter (ratio), and the total number) are described in order.
・The upper direction of the star column indicates the reference diameter ratio/tooth ratio of the spur gear 7 of the planetary shaft 2, and the left direction of the row indicates the reference diameter ratio/tooth ratio of the spur gear 8 of the ring shaft 3. listed in order. A specific example will be described with reference to FIGS. 6, 7, 8 and Table 10.
1) If you trace the circle mark on the upper row, the sun shaft 1 is provided with two spiral grooves 1t, and is engaged with the spiral groove 2t of the planetary shaft 2 with a reference diameter 19.
FIG. 7 is a cross section showing the engagement between the spiral groove 1t of the sun shaft 1 and the spiral groove 2t of the planetary shaft 2. The engagement grooves 2t provided on the planetary shaft 2 are based on each other's involute tooth profile-like curved surfaces. Engaged at diameter 19.
2) If you trace the ◯ mark in the lower row, the ring shaft 3 is provided with four spiral grooves 3t, and the planetary shaft 2 is engaged with the reference diameter 20 of the spiral grooves 2t.
FIG. 8 is a cross section showing engagement between the spiral groove 3t of the ring shaft 3 and the spiral groove 2t of the planetary shaft 2. FIG. As for the tooth profile of the spiral groove 3t of the ring shaft 3, the reference diameter 20 of the spiral groove 2t of the planetary shaft 2 is moved to the tooth tip from the reference diameter 19 of the sun shaft 1 by selecting the pressure angle.
3) The number of threads of the spiral groove 3t of the ring shaft 3 and the rotation ratio of the ring shaft 3 and the planetary shaft 2 are the same, and the planetary shaft 2 and the ring shaft 3 are set so that their axial positions are immovable.
4) In this way, when a rotational motion is applied to the sun shaft 1, the motion is converted and the ring shaft 3 moves linearly. The closer the reference diameter ratio of the sun shaft 1 spiral groove 1t to the planetary shaft 2 spiral groove 2t is to the number of threads of the sun shaft 1 spiral groove 1t, the finer the linear motion becomes, and the farther away, the coarser.
5) When the standard diameter ratio of the spiral grooves of the sun axis 1 and the planetary axis 2 is <<25/11>>, the linear motion conversion rate is only <<0.1>> when the spiral groove pitch is <<1>>. Since the rectilinear transformation is minute, even if the pitch <<3>> is adopted, the rectilinear transformation is <<≈0.3>>.
The feature of the present invention is that the helical groove tooth profile is modified to freely set the three-axis engagement contact points, and by selecting a helical groove with a high tooth height, workability and processing accuracy are improved. . The contact point of each helical groove can be shifted from various combinations such as trapezoidal teeth with different pressure angles, involute tooth profiles, curved surfaces, planetary shaft two-tooth profiles, and circles.
6) If you trace the ☆ mark, the ring shaft 3 and the planetary shaft 2 are provided with spur gears (8, 7) that complement the rotational transmission. The immobility of the position is ensured, and the axial position is prevented from moving due to the error of the reference diameter of the spiral groove. The reference diameter of the planetary shaft spur gear 7 is set to be the same as the reference diameter 20 of the spiral groove 2t.
Both ends of the planetary shaft 2 are provided with spur gears 7 . Spur gears 8 are provided on both ends of the ring shaft 3, and are tooth-cut to avoid the spiral groove 3t.
The spur gears (7, 8) can be replaced with a helical gear, a cycloid tooth profile, or a positive rotation transmission means involving unevenness.
7) The planetary shafts 2 are distributed around the circumference of the sun shaft 1 by means of which the shanks 5 are fitted in the cages 4 .
The retaining ring 6 prevents the retainer 4 from coming off the ring shaft 3 .
1    太陽軸     1t   太陽軸の係合溝  2    遊星軸
2t   遊星軸の係合溝  2t1  遊星軸の係合溝
2t2 遊星軸の係合溝    3   リング軸    3t  リング軸の係合溝
4    保持器     5   遊星軸々部           6   止輪
7   遊星軸の平歯車    8 公転軸の平歯車    9 平歯車固定具
10   固定ネジ    11  外輪  12   支持軸     12t  支持軸の係合溝
13   間座          14   キー   19   基準径     20  基準径 

 
1 Sun shaft 1t Engagement groove of sun shaft 2 Planetary shaft
2t planetary shaft engagement groove 2t1 planetary shaft engagement groove
2t2 Planetary shaft engagement groove 3 Ring shaft 3t Ring shaft engagement groove
4 Cage 5 Planetary axle 6 Retaining ring
7 Spur gear of planetary shaft 8 Spur gear of revolution shaft 9 Spur gear fixture
10 Fixing screw 11 Outer ring 12 Support shaft 12t Engagement groove of support shaft
13 Spacer 14 Key 19 Reference diameter 20 Reference diameter

Claims (5)

  1. 互いに平行な回転軸線を有する太陽軸(1)、遊星軸(2)、リング軸(3)を有し、
    公転軸(3または1)、走行軸(1または3)何れかの役目に振分けられる前記太陽軸(1)と前記リング軸(3)、及び前記遊星軸(2)は、それぞれ互いに協働して遊星式回転-直動運動変換機構を構成し、
    前記公転軸(3または1)に平歯車(8)及び螺旋溝(3tまたは1t)、
    前記遊星軸(2)に平歯車(7)及び螺旋溝(2t)、
    前記走行軸(1または3)に螺旋溝(1tまたは3t)が設けられ、
    前記公転軸(3または1)と前記遊星軸(2)との回転伝動手段が、
    それぞれの前記平歯車(8、7)による噛合であり、
    前記走行軸(1または3)と前記遊星軸(2)との回転伝動手段が、
    それぞれの前記螺旋溝(1tまたは3t、2t)による係合であり、
    前記遊星軸(2)の前記螺旋溝(2t)に与えられる基準径は前記平歯車(7)の基準径と差異があり、
    前記差異の大きさに応じて公転軸(3または1)に対する走行軸(1または3)の移動量が異なる
    遊星式回転-直動運動変換装置。
    having a sun axis (1), a planetary axis (2) and a ring axis (3) with axes of rotation parallel to each other;
    The sun shaft (1), the ring shaft (3), and the planetary shaft (2), which are assigned to either the revolving shaft (3 or 1) or the traveling shaft (1 or 3), cooperate with each other. to constitute a planetary rotation-linear motion conversion mechanism,
    a spur gear (8) and a spiral groove (3t or 1t) on the revolution axis (3 or 1);
    a spur gear (7) and a spiral groove (2t) on the planetary shaft (2);
    A spiral groove (1t or 3t) is provided on the running shaft (1 or 3),
    The rotation transmission means between the revolution shaft (3 or 1) and the planetary shaft (2) is
    meshing by the respective spur gears (8, 7);
    The rotation transmission means between the traveling shaft (1 or 3) and the planetary shaft (2) is
    Engagement by each said spiral groove (1t or 3t, 2t),
    The reference diameter given to the spiral groove (2t) of the planetary shaft (2) is different from the reference diameter of the spur gear (7),
    A planetary rotation-linear motion conversion device in which the amount of movement of the traveling axis (1 or 3) with respect to the revolving axis (3 or 1) varies according to the magnitude of the difference.
  2. 前記遊星軸(2)に設ける前記螺旋溝(2t)は、前記公転軸(3または1)の前記螺旋溝(3tまたは1t)と係合する基準径(20)と前記走行軸(1または3)の前記螺旋溝
    (1tまたは3t)と係合する基準径(19)に差異があり、
    前記遊星軸(2)の前記平歯車(7)の基準径は、前記公転軸(3または1)の前記螺旋溝(3tまたは1t)と係合する前記遊星軸(2)に設ける前記螺旋溝(2t)の前記基準径(20)と同径である、請求項1に記載の遊星式回転-直動運動変換装置。

     
    The spiral groove (2t) provided in the planetary shaft (2) has a reference diameter (20) that engages with the spiral groove (3t or 1t) of the revolution shaft (3 or 1) and the running shaft (1 or 3). ) has a difference in the reference diameter (19) that engages with the spiral groove (1t or 3t),
    The reference diameter of the spur gear (7) of the planetary shaft (2) is the spiral groove provided on the planetary shaft (2) that engages with the spiral groove (3t or 1t) of the revolution shaft (3 or 1). 2. A planetary rotation-to-linear motion converter according to claim 1, which has the same diameter as said reference diameter (20) of (2t).

  3. 互いに平行な回転軸を有する太陽軸(1)、遊星軸(2)、リング軸(3)、支持軸(12)を有し、公転軸(3または1)、走行軸(1または3)何れかの役目に振分けられる前記太陽軸(1)と前記リング軸(3)、及び前記遊星軸(2)がそれぞれ互いに共働して構成する第一の遊星式回転-直動運動変換機構と
    前記公転軸(3または1)、前記遊星軸(2)、前記支持軸(12)がそれぞれ互いに協働して構成する第二の遊星式回転-直動運動変換機構とが同軸かつ間隔を置いて配置され、
    前記公転軸(3または1)と前記遊星軸(2)とは、前記第一及び第二の遊星式回転-直動機構の双方おいて、それぞれに設けられる環状溝(3tまたは1t、2t)により係合し、
    前記走行軸(3)は、自身に設けられる螺旋溝(3t)と前記遊星軸(2)に設けられる環状溝(2t)とが係合し、
    前記支持軸(12)は、自身に設けられる環状溝(12t)と前記遊星軸(2)に設けられる環状溝(2t)とが係合し、
    これにより前記公転軸(3または1)、前記走行軸(1または3)及び前記支持軸(12)の内の何れかに加えた回転運動が前記走行軸(1または3)と前記支持軸(12)との差動に変換される遊星式回転-直動運動変換装置。
    It has a sun axis (1), a planetary axis (2), a ring axis (3), a support axis (12), which have rotation axes parallel to each other, and either a revolving axis (3 or 1) or a running axis (1 or 3). The first planetary rotation-linear motion conversion mechanism and the A second planetary rotation-linear motion conversion mechanism formed by cooperating with the orbital shaft (3 or 1), the planetary shaft (2), and the support shaft (12) is coaxially spaced from the placed and
    The revolving shaft (3 or 1) and the planetary shaft (2) are annular grooves (3t or 1t, 2t) respectively provided in both the first and second planetary rotation-linear motion mechanisms. engaged by
    A spiral groove (3t) provided on the running shaft (3) engages with an annular groove (2t) provided on the planetary shaft (2),
    An annular groove (12t) provided in the support shaft (12) engages with an annular groove (2t) provided in the planetary shaft (2),
    As a result, rotational motion applied to any one of the revolving shaft (3 or 1), the running shaft (1 or 3) and the support shaft (12) is controlled by the running shaft (1 or 3) and the support shaft (12). 12) Planetary rotary-to-linear motion converter that is converted to differential with.
  4. 前記支持軸(12)内径に係合溝(12t)を備え、前記支持軸(12)の内径に固定される外輪(11)が、弾性変形可能な部材或いは分割可能な構成である、
    請求項3に記載の遊星式回転-直動運動変換装置。
    An engagement groove (12t) is provided in the inner diameter of the support shaft (12), and the outer ring (11) fixed to the inner diameter of the support shaft (12) is an elastically deformable member or can be divided.
    The planetary rotation-linear motion conversion device according to claim 3.
  5. 互いに平行な回転軸を有する太陽軸(1)、遊星軸(2)、リング軸(3)、支持軸(12)を有し、公転軸(3または1)、走行軸(1または3)何れかの役目に振分けられる前記太陽軸(1)と前記リング軸(3)、及び前記遊星軸(2)がそれぞれ互いに共働して構成する第一の遊星式回転-直動運動変換機構と
    前記公転軸(3または1)、前記遊星軸(2)、前記支持軸(12)がそれぞれ互いに協働して構成する第二の遊星式回転-直動運動変換機構とが同軸かつ間隔を置いて配置され、
    前記公転軸(3または1)及び前記遊星軸(2)はそれぞれが、前記第一、第二の遊星式回転-直動運動変換機構それぞれを構成する個別の平歯車(8、7)と個別の係合溝(3tまたは1t、2t1、2t2)とを備え、これらを連接する同一軸であって、それぞれが前記平歯車(8、7)により噛合し、
    前記走行軸(1または3)及び前記支持軸(12)はそれぞれが備える係合溝(1tまたは3t、12t)と前記遊星軸(2)の前記係合溝(2t1、2t2)とにより係合し、
    これにより前記公転軸(3または1)、前記走行軸(1または3)、及び前記支持軸(12)の内の何れかに加えた回転運動が前記走行軸(1または3)と前記支持軸(12)との差動に変換される遊星式回転-直動運動変換装置。

     
    It has a sun axis (1), a planetary axis (2), a ring axis (3), a support axis (12), which have rotation axes parallel to each other, and either a revolving axis (3 or 1) or a running axis (1 or 3). The first planetary rotation-linear motion conversion mechanism and the A second planetary rotation-linear motion conversion mechanism formed by cooperating with the revolution shaft (3 or 1), the planetary shaft (2), and the support shaft (12) is coaxially spaced from the placed and
    The orbital shaft (3 or 1) and the planetary shaft (2) are individually separated from the individual spur gears (8, 7) respectively constituting the first and second planetary rotation-linear motion conversion mechanisms. of engagement grooves (3t or 1t, 2t1, 2t2), the same shaft connecting them, each meshing with the spur gears (8, 7),
    The running shaft (1 or 3) and the support shaft (12) are engaged by engagement grooves (1t or 3t, 12t) respectively provided with the engagement grooves (2t1, 2t2) of the planetary shaft (2). death,
    Thereby, the rotational motion applied to any one of the revolving shaft (3 or 1), the running shaft (1 or 3) and the support shaft (12) is controlled by the running shaft (1 or 3) and the support shaft (12). Planetary rotary-to-linear motion converter converted to differential with (12).

PCT/JP2022/046536 2021-12-20 2022-12-16 Planetary-type rotary motion-linear motion conversion device WO2023120439A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021206287 2021-12-20
JP2021-206287 2021-12-20
JP2022-073695 2022-04-27
JP2022-073696 2022-04-27
JP2022073696A JP7190148B1 (en) 2021-12-20 2022-04-27 Planetary rotation-linear motion converter
JP2022073695A JP7166575B1 (en) 2021-12-20 2022-04-27 Planetary rotation-linear motion converter
JP2022167152A JP7344429B1 (en) 2022-10-18 2022-10-18 Planetary rotation-linear motion conversion device
JP2022-167152 2022-10-18

Publications (1)

Publication Number Publication Date
WO2023120439A1 true WO2023120439A1 (en) 2023-06-29

Family

ID=86902706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046536 WO2023120439A1 (en) 2021-12-20 2022-12-16 Planetary-type rotary motion-linear motion conversion device

Country Status (1)

Country Link
WO (1) WO2023120439A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098479A (en) * 1997-08-23 2000-08-08 Hoermansdoerfer; Gerd Linear actuator and preferred application
JP2007056952A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Planetary rotation/linear motion converter
JP2010156453A (en) * 2008-12-05 2010-07-15 Thk Co Ltd Planetary rotation/linear motion converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098479A (en) * 1997-08-23 2000-08-08 Hoermansdoerfer; Gerd Linear actuator and preferred application
JP2007056952A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Planetary rotation/linear motion converter
JP2010156453A (en) * 2008-12-05 2010-07-15 Thk Co Ltd Planetary rotation/linear motion converter

Similar Documents

Publication Publication Date Title
CN100585220C (en) Gear mechanism, planetary gear system, swivel bearing device, and unusual epicyclic reduction gear unit
JP4186969B2 (en) Planetary rotation-linear motion converter
EP0133300B1 (en) Stabilized apparatus for converting rotational motion to linear motion
US8789437B2 (en) Eccentrically cycloidal engagement of toothed profiles having curved teeth
CN101907149B (en) Double cycloid single-stage reducer of industrial robot
EA015293B1 (en) Toothed wheel gearing (variants) and a planetary toothed mechanism based thereon (variants)
WO2013018121A1 (en) Internally-toothed gear unit with composite roller bearing, and wave gear device
EP2479455B1 (en) Large-ratio speed changing apparatus
CN109210164A (en) Planet roller screw mechanism, automobile hydraulic separation system and automobile
CN113309842B (en) Cycloidal pin gear harmonic speed reducer
CN104728354A (en) Prepressing compensation anti-backlash speed reducer
WO2023120439A1 (en) Planetary-type rotary motion-linear motion conversion device
CN111779810B (en) Planetary roller screw
JP2010090907A (en) Rotary reduction gear
JP7190148B1 (en) Planetary rotation-linear motion converter
JP7166575B1 (en) Planetary rotation-linear motion converter
CN107035831B (en) Separated time precision gear transmission mechanism
CN104675980B (en) Automatic plane-enveloping internal-meshing worm and worm gear clearance elimination device
US10781900B2 (en) Planetary roller screw mechanism
JP2014059050A (en) Planetary gear mechanism of high transmission gear ratio type speed reducer with removed backlash
CN108757865B (en) Transmission mechanism and transmission device
JP7344429B1 (en) Planetary rotation-linear motion conversion device
JP2007255517A (en) Differential planetary gear reduction gear
KR102336717B1 (en) Reducer having dual eccentric rotating shaft
JP2010156453A (en) Planetary rotation/linear motion converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911142

Country of ref document: EP

Kind code of ref document: A1