WO2023120170A1 - Vibration analysis system, vibration analysis device, and vibration analysis method - Google Patents

Vibration analysis system, vibration analysis device, and vibration analysis method Download PDF

Info

Publication number
WO2023120170A1
WO2023120170A1 PCT/JP2022/044972 JP2022044972W WO2023120170A1 WO 2023120170 A1 WO2023120170 A1 WO 2023120170A1 JP 2022044972 W JP2022044972 W JP 2022044972W WO 2023120170 A1 WO2023120170 A1 WO 2023120170A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
sample
vibration analysis
micro
differential interference
Prior art date
Application number
PCT/JP2022/044972
Other languages
French (fr)
Japanese (ja)
Inventor
亜 張
未来 飯森
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Publication of WO2023120170A1 publication Critical patent/WO2023120170A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the present disclosure relates to a vibration analysis system, a vibration analysis device, and a vibration analysis method.
  • MEMS Micro Electro Mechanical Systems
  • a MEMS device has a total length in units of mm (millimeters) and its parts in units of ⁇ m (micrometers). Therefore, the scale of vibration analysis of such a MEMS device becomes nanometer (nm) or smaller.
  • Patent Document 1 is Japanese National Publication of International Patent Application No. 2016-501373.
  • Non-Patent Document 1 is "A. Bosseboeuf, et al., presented at the Microsystems Metrology and Inspection, 1999.”
  • Non-Patent Document 2 is "J. Reed, et al., Journal of Microelectromechanical Systems 16, 668 (2007).”
  • Non-Patent Document 3 is "I. Shavrin, et al., Opt.
  • the features common to this method include the following points.
  • the first common point is that the surface shape of the MEMS device is measured using an interference microscope, and the two-dimensional height of the MEMS device surface is measured by interference between the reference light and the measurement light.
  • the second common point is that a pulsed light source that is phase-locked to the vibration of the MEMS device is used to irradiate the element of the MEMS device, and the vibration shape is analyzed by sampling the high-speed vibration.
  • the prior art of two-dimensional vibration analysis of MEMS devices using conventional interference microscopes had the problem that it was difficult to adjust the optical system. Therefore, there is a problem that high-precision optical-mechanical parts are required for constructing the vibration analysis system, resulting in high cost.
  • the prior art has a problem that the measurement range is narrow, and there is a problem that sufficient measurement cannot be performed.
  • An object of the present disclosure is to provide a vibration analysis system, a vibration analysis apparatus, and a vibration analysis method that can perform vibration analysis of a sample that generates minute vibrations while suppressing construction costs.
  • the vibration analysis system of the present disclosure irradiates a pulsed light branched through a differential interference prism, and uses a differential interference microscope capable of measuring the protrusion shape and depression shape of the sample surface in a predetermined measurement range.
  • the sample driven by the voltage signal is irradiated with the pulsed light modulated in phase synchronization with the voltage signal, and a microscopic image of the sample is captured.
  • the vibration analysis apparatus of the present disclosure includes a differential interference microscope capable of irradiating a pulsed light branched through a differential interference prism and measuring the protrusion shape and depression shape of the sample surface in a predetermined measurement range, and a sample with a predetermined frequency. , a light source for irradiating the sample with the pulsed light modulated in phase synchronization with the voltage signal, and an optical system for capturing a microscope image of the sample.
  • the vibration analysis method of the present disclosure uses a differential interference microscope capable of measuring the shape of protrusions and depressions on the surface of the sample in a predetermined measurement range, and irradiates the sample with pulsed light branched through a differential interference prism. , applying a voltage signal of a predetermined frequency to the sample, irradiating the sample with the pulsed light modulated in synchronization with the voltage signal, and capturing a microscope image of the sample. include.
  • FIG. 4 is a schematic diagram for comparing methods of vibration analysis using a differential interference microscope; It is an image of a bent MEMS beam observed with a normal microscope. It is an image of a bent MEMS beam observed with a Michelson interference microscope. It is an image of a bent MEMS beam observed with a differential interference microscope. It is a figure which shows the structure of the vibration analysis system of this embodiment. It is a graph explaining the high-speed vibration by a pulse light source. It is a graph explaining the high-speed vibration by a pulse light source. It is a microscope image. 4 is a graph of light intensity; FIG.
  • FIG. 4 is a diagram showing a measurable frequency range; It is a figure which shows the pulse width of illumination light. It is a block diagram which shows the hardware constitutions of a control part. It is a figure which shows the flow of a process of a measurement program. It is an example of a measurement result of vibration amplitude. It is the measurement result of the mode shape. It is the measurement result of the mode shape. It is the measurement result of the mode shape. It is the measurement result of the mode shape.
  • the vibration analysis of MEMS devices which are micro-vibration devices
  • the method of vibration analysis of this embodiment enables measurement on a scale of nm units. Therefore, the vibration analysis method of the present embodiment can be similarly applied to other micro-vibration devices having minute sizes such as mm or ⁇ m in the height direction and in the horizontal direction, similarly to the MEMS device. be.
  • the method of vibration analysis of the present embodiment is applicable not only to micro-vibration devices, but also to substances, cells, and the like, as long as the samples are capable of generating minute vibrations.
  • the conventional interferometer since the conventional interferometer utilizes the interference fringes of the reference light and the measurement light, it is necessary to precisely align the surface of the device with the reference mirror.
  • the height of the sample must be adjusted with an accuracy of several tens of nanometers, and the tilt angle of the sample surface must be 0.01° or less.
  • Such settings require very difficult optical alignments and require high precision opto-mechanical components.
  • the cost associated with the optical system has increased.
  • the vibration received from the environment has a large effect on the stability of the interference fringes, strict vibration isolation was required. Therefore, the conventional vibration analysis system for MEMS devices has a problem of high construction costs.
  • the maximum value of measurable displacement is smaller than a quarter of the wavelength of the irradiated light (generally about 100 to 200 nm). was not within a sufficient measurable range in many studies such as Furthermore, if there is a structure with a large stepwise phase change on the surface of the MEMS device, there is a possibility that it cannot be measured accurately.
  • a vibration analysis system using a differential interference microscope is constructed in place of the conventional interference microscope, and two-dimensional vibration analysis of MEMS devices is performed.
  • FIG. 1 is a simple schematic diagram for comparing a vibration analysis method using a conventional interference microscope and a vibration analysis method using a differential interference microscope.
  • a reference mirror is used to reflect pulsed light to measure interference fringes.
  • a differential interference prism is used to branch the pulsed light without using a reference mirror.
  • the configuration includes an interference microscope (Ma), a camera (Mb), a light source (Mc), and a MEMS device (Md).
  • the MEMS device (Md) is irradiated with pulsed light (mc1) emitted from the light source (Mc) via the lens (ma1), the beam splitter (ma2), and the objective lens (ma3). is used as measurement light, and the reference light is reflected by the reference mirror (ma4).
  • the interference fringes of the phase difference that change according to the unevenness of the sample are measured.
  • the differential interference prism (ma5) is used to split the pulsed light into two beams, which are irradiated onto the sample.
  • a small shift in the lateral direction of the two beams of light is called a shear amount.
  • the amount of shear is determined by the differential interference prism and the objective lens. For example, when an Olympus differential interference prism U-DICR and an objective lens LMPlanFL10x are combined, the shear amount is approximately 2.5 ⁇ m. When there is such a difference in the optical paths, the intensity of the light is modulated and appears as interference fringes.
  • a differential interference contrast microscope does not use a reference beam, so it has the advantage of not requiring complicated adjustments between the reference beam and the measurement beam.
  • all the interference light is reflected from the surface of the sample, so the noise caused by environmental vibration and light, as well as the influence of the tilt of the sample, is greatly reduced, and no special anti-vibration or light shielding is required.
  • measurement with a differential interference contrast microscope has the advantage that there is almost no limit to the total amount of displacement since the deviation of displacement is measured. It has the advantage that the measuring range is more than ten times larger than that of the Michelson interference microscope.
  • Figure 2 compares the images of the bent MEMS beam observed with a normal microscope, a Michelson interference microscope, and a differential interference contrast microscope.
  • the MEMS beam is a MEMS device with a double-end beam structure.
  • (a) of FIG. 2A is an image observed with a normal microscope, and cannot show the surface shape of the bent MEMS beam in the portion (a1).
  • FIG. 2B (b) is an image observed with a conventional Michelson interference microscope, in which the bending shape of the MEMS beam is indicated by interference fringes.
  • the tilt angle of the MEMS device is adjusted to a very small angle of 0.05°, the interference fringes are strongly affected by the tilt angle.
  • the (b1) portion is the interference fringes due to bending
  • the (b2) portion is the interference fringes due to the inclination
  • the (b3) portion is the interference fringes due to the electrode.
  • the measurement displacement range is increased (10 times or more) compared to the conventional technology, and it is possible to measure a sample with a complicated surface. Furthermore, since an expensive and precise mechanical adjustment system is not required, differential interference contrast microscopes are less expensive than dedicated dual-beam interference microscopes and have cost advantages.
  • Fig. 3 shows the configuration of the vibration analysis system of this embodiment.
  • the vibration analysis system 1 includes a differential interference microscope 10, a digital camera 12, a light source 14 (pulse-modulated LED or laser light source), a function generator 16, and a controller .
  • the vibration analysis system 1 observes the MEMS device 20, which is the sample to be observed.
  • the vibration analysis system 1 is configured as the vibration analysis apparatus of the present disclosure by including all of these configurations.
  • the differential interference contrast microscope 10 visualizes information on the surface of the MEMS device on the nm scale.
  • the digital camera 12 captures an image recording the interference pattern of the differential interference microscope 10 .
  • the light source 14 emits periodic pulsed light (illumination light) synchronized with the driving voltage of the MEMS device.
  • the vibration analysis system 1 samples high-speed MEMS vibrations caused by pulses.
  • the function generator 16 provides phase-synchronized drive voltages to the pulse modulated LED 12 and the MEMS device 20;
  • the control unit 18 is a computer, includes analysis software and programs, and calculates the amplitude and vibration mode shape of the MEMS device 20 by controlling the measurement process. Each functional unit will be described below.
  • the differential interference microscope 10 includes a beam splitter 10a, a polarizing plate 10b, a differential interference prism 10c, and an objective lens 10d.
  • the beam splitter 10 a is installed so as to direct the pulsed light (Pu) incident from a lens (not shown) toward the MEMS device 20 .
  • the polarizing plate 10b converts the pulsed light (Pu) into polarized light.
  • the differential interference prism 10c splits the pulsed light (Pu1) incident through the polarizing plate 10b into two lights (Pu2).
  • the pulsed light before branching is (Pu1)
  • the pulsed light, which is the two light after branching is (Pu2). do.
  • the objective lens 10d irradiates the MEMS device with the two split lights (Pu2).
  • the differential interference microscope 10 irradiates the MEMS device 20 with pulsed light (Pu2) branched via a differential interference prism (10c), and is configured to measure the unevenness (protrusion shape and depression shape) of the surface of the MEMS device 20. If it is The measurement range of unevenness is usually 1 nm to several thousand nm, preferably 1 nm to 1000 nm.
  • the parameter that determines the measurement range of the unevenness is the differential displacement caused by the unevenness, and the parameter of the differential displacement caused by the unevenness is about 0.05 nm to 60 nm.
  • the digital camera 12 is attached to the differential interference microscope 10 and captures a microscopic image of the MEMS device 20 through the differential interference microscope 10 .
  • Digital camera 12 may be any color or monochrome CMOS or CCD camera.
  • Digital camera 12 is an example of an optical system for capturing microscopic images of samples of the present disclosure.
  • FIG. 4 shows graphs for explaining the high-speed vibration caused by the pulse light source.
  • the light source 14 pulse-modulated LED or laser light source
  • the light source 14 emits pulsed light (Pu) phase-locked with the excitation signal of the MEMS device 20 .
  • the pulsed light (Pu) is also synchronized with the MEMS vibration and the phase difference therebetween can be modulated.
  • ⁇ in (a) indicates a phase difference.
  • FIG. 5A and 5B shows a microscope image and a graph of light intensity.
  • the image in (a) of FIG. 5A is a microscope image of the MEMS device 20 and the vibration measurement point (a1).
  • the light intensity of (a1) is measured. Since the phase changes from 0° to 1080° in the graph of (b) of FIG. 5B, it can be seen that the light intensity changes periodically due to the vibration of the MEMS device 20 .
  • the light source 14 uses a pulse-modulated LED or laser light source whose pulse width satisfies a predetermined measurable frequency band of the resonator associated with the MEMS device 20 .
  • the principle of pulse width applied to the light source 14 is explained below.
  • FIG. 6 shows the measurable frequency range and the pulse width of illumination light.
  • (a) of FIG. 6A is a graph showing the frequency bandwidth of optical intensity modulation by vibration.
  • FIG. 6B is a graph showing the pulse width of the red LED (light source 14) used in the vibration analysis system 1.
  • ⁇ t can achieve a pulse width of approximately 30 ns, which corresponds to a frequency bandwidth of up to 16 MHz. Further, by using a commercially available LED having a frequency bandwidth of 70 MHz for the light source 14, a higher measurement frequency can be achieved.
  • the function generator 16 outputs (applies) two synchronous voltage signals, one voltage signal (vs1) for driving the MEMS device (vs1) and the other voltage signal (vs2) for the pulse light of the light source 14 ( Pu) is used for modulation. Therefore, the function generator 16 must be able to output voltage signals of at least two channels. In this embodiment, a device capable of outputting arbitrary signals of 25 MHz for two channels is used as the function generator 16 . It should be noted that 240 MHz signal output is also possible when a higher-level device is used.
  • Function generator 16 is an example of a signal source that applies a voltage signal of a predetermined frequency to the sample of the present disclosure.
  • the control unit 18 is a computer that executes various controls related to the vibration analysis system 1 .
  • the control unit 18 controls each of the imaging of the microscope image by the digital camera 12, the output of the voltage signal by the function generator 16, and the calculation of the amplitude using the microscope image.
  • the driving voltage and driving frequency of the resonator of the MEMS device 20 are set by the voltage signal output from the function generator 16, and the phase of the pulsed light (Pu) emitted from the light source 14 is set. set the sweep of This allows the vibration of the MEMS device 20 to have a specific phase.
  • the driving voltage causes the MEMS device 20 to vibrate.
  • the light intensity obtained by the differential interference microscope 10 is modulated by the change in the shape of the surface of the MEMS device 20 that occurs when the MEMS device 20 is displaced from the vibration equilibrium position of the MEMS device 20. be done.
  • the control unit 18 causes the digital camera 12 to capture a microscopic image for each phase as a specific phase of the MEMS device 20 .
  • the control unit 18 measures the entire vibration from the microscopic image for each phase.
  • the mode of measurement it is possible to perform measurement using two measurement programs, which will be described later.
  • FIG. 7 is a block diagram showing the hardware configuration of the control unit 18.
  • the control unit 18 includes a CPU (Central Processing Unit) 111, a ROM (Read Only Memory) 112, a RAM (Random Access Memory) 13, a storage 114, an input unit 115, a display interface (I/F) 116 and a communication interface (I/F) 117 .
  • Each component is communicatively connected to each other via a bus 119 .
  • the CPU 111 is a central processing unit that executes various programs and controls each section. That is, the CPU 11 reads a program from the ROM 112 or 1114 and executes the program using the RAM 13 as a work area. The CPU 111 performs various kinds of arithmetic processing related to the above control according to programs stored in the ROM 12 or the storage 114 . In this embodiment, the ROM 112 or storage 114 stores programs.
  • the ROM 112 stores various programs and various data.
  • the RAM 113 temporarily stores programs or data as a work area.
  • the storage 114 is configured by a storage device such as a HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
  • the input unit 115 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
  • the display interface 116 is, for example, a liquid crystal display, and displays various information.
  • the display interface 116 may employ a touch panel system and function as the input unit 115 .
  • the communication interface 117 is an interface for communicating with other devices such as terminals, and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark), for example.
  • FIG. 8 shows the flow of processing of the measurement program.
  • a first measurement program measures the resonance frequency of the MEMS device 20 .
  • the CPU 111 sets the drive voltage for the resonator of the MEMS device 20.
  • FIG. in step S ⁇ b>102 the CPU 111 sets the driving frequency range of the resonator of the MEMS device 20 .
  • the CPU 111 sets sweep parameters according to the drive frequency range and the phase of the pulsed light to be irradiated, and sweeps to each phase. Since the amplitude takes the maximum value at the time of resonance, the frequency of resonance of the MEMS device 20 is obtained using the calculated frequency function of the amplitude. That is, there are two sweep parameters for the first program, the set range of drive frequency and phase.
  • step S106 the CPU 111 captures an image of the surface of the MEMS device 20 with the digital camera 12 and obtains a microscope image showing resonance in each phase. Then, in step S108, the CPU 111 calculates the vibration amplitude at the driving frequency by using the microscope image showing the resonance in each phase as the calculation of the measurement object.
  • FIG. 9 shows vibration amplitude measurement results plotting resonance spectra of the MEMS beam measured when different drive voltages are applied to the MEMS device 20 .
  • the measured amplitude is the differential displacement of measuring point (a1) in FIG. 5 caused by vibration.
  • Excitation voltages are 20 mV, 40 mV, 60 mV, 80 mV, 100 mV. From the measurement results, it can be seen that the resonance frequency of the MEMS beam is approximately 696 kHz. It is also shown that increasing the driving voltage increases the frequency due to the nonlinear vibration of the MEMS beam, and the nonlinear vibration of the MEMS device 20 can also be analyzed by measurement.
  • the second measurement program measures the two-dimensional resonance mode shape of the MEMS device 20 . Since the flow is the same as that of the first measurement program, only steps with different differences will be described.
  • the CPU 111 sets the drive frequency of the MEMS device 20 to the resonance frequency of the MEMS device 20 in step S102.
  • the CPU 111 sets sweep parameters according to the drive frequency set to the resonance frequency and the phase of the pulsed light to be irradiated, and sweeps to each phase.
  • step S108 the CPU 111 calculates the resonance mode shape from the difference image of the vibration mode as the calculation of the measurement target using the microscope image showing the resonance in each phase.
  • FIG. 10 shows measurement results of mode shapes.
  • the shape of the first bending mode of the measured MEMS device is shown in (a) of FIG. 10A.
  • a simulation for comparison is shown in (b) of FIG. 10B. Comparing FIGS. 10A(a) and 10B(b), it can be confirmed that the measured results are in excellent agreement with the simulation results.
  • the measurement result of (a) of FIG. 10A is the difference in the mode shape of the vibration of the MEMS device 20, that is, the gradient of the displacement during vibration.
  • the slope of the displacement allows determination of the resonance mode, but the actual displacement can also be derived. Integrating the (a) difference result of FIG. 10A, the actual mode shape of (c) of FIG. 10C can be obtained. This also agrees well with the simulation result of (b) of FIG. 10B. Therefore, the second measurement program of the control unit 18 can analyze the two-dimensional shape of the resonance mode of the MEMS device 20 with high sensitivity.
  • the vibration analysis system 1 of the present embodiment it is possible to reduce the construction cost and perform vibration analysis of a sample that generates minute vibrations.
  • the vibration analysis system 1 can be used for analysis such as dynamic resonance analysis and static displacement measurement. These play an important role in processes such as characterization, operation confirmation, and failure analysis of the MEMS device 20 .
  • the vibration analysis system 1 described above has been described as a stand-alone configuration having each configuration with respect to the differential interference contrast microscope 10, it is not limited to this. Such a stand-alone configuration is an example of the vibration analysis device of the present disclosure.
  • the vibration analysis system 1 is compact, easy to use, inexpensive, and has high performance, so it can be used for research and development of the MEMS device 20 . Therefore, the vibration analysis system 1 can also be developed as an additional module of the differential interference contrast microscope 10.
  • digital camera 12, light source 14, and function generator 16 may be additional modules as well. Modularization in this way is also effective in disseminating the method of the present disclosure through the existing sales channels of microscope manufacturers.
  • vibration analysis system 10 differential interference microscope 12 digital camera 14 light source 16 function generator 18 controller 20 MEMS device

Abstract

The purpose of the present invention is to provide a vibration analysis system, a vibration analysis device, and a vibration analysis method that enable vibration analysis of samples that generate minute vibrations while keeping down construction costs. In this vibration analysis system, a differential interference microscope is used to irradiate a sample driven by a voltage signal of a prescribed frequency with pulsed light modulated in phase synchronization with the voltage signal and capture a microscopic image of the sample, the differential interference microscope being capable of emitting pulsed light split through a differential interference prism and measuring the protrusion shapes and depression shapes of a sample surface in a prescribed measurement range.

Description

振動解析システム、振動解析装置、及び振動解析方法Vibration analysis system, vibration analysis device, and vibration analysis method
 本開示は、振動解析システム、振動解析装置、及び振動解析方法に関する。 The present disclosure relates to a vibration analysis system, a vibration analysis device, and a vibration analysis method.
 従来より、MEMS(Micro Electro Mechanical Systems)デバイスのような微小振動デバイスの振動解析を行う技術がある。MEMSデバイスは、全長がmm(ミリメートル)単位で、その部品はμm(マイクロメートル)単位である。よって、このようなMEMSデバイスの振動解析のスケールはnm(ナノメートル)単位、あるいはそれ以下の微小なものになってくる。 Conventionally, there are technologies for vibration analysis of micro-vibration devices such as MEMS (Micro Electro Mechanical Systems) devices. A MEMS device has a total length in units of mm (millimeters) and its parts in units of μm (micrometers). Therefore, the scale of vibration analysis of such a MEMS device becomes nanometer (nm) or smaller.
 MEMSデバイスの振動解析は主に2種類の手法が用いられてきた。1つは、光学ドップラー効果に基づいたレーザードップラー振動計を用いた手法である。この手法は、高感度振動測定を実現できるが、同時に測定できるのが1点に限られており、2次元の振動解析が困難である。 There are mainly two types of methods used for vibration analysis of MEMS devices. One is a technique using a laser Doppler vibrometer based on the optical Doppler effect. Although this method can realize high-sensitivity vibration measurement, the number of points that can be measured simultaneously is limited to one point, and two-dimensional vibration analysis is difficult.
 もう1つの手法は、マイケルソン型干渉計などの両ビーム型の干渉顕微鏡を用いた手法である。この手法によるMEMSデバイスの2次元振動解析の技術は、以前よりいくつかの手法が提案され、実用化されている。この手法の技術は、特許文献1及び非特許文献1-3が参照される。特許文献1は、特表2016-501373号公報である。非特許文献1は、"A. Bosseboeuf, et al., presented at the Microsystems Metrology and Inspection, 1999."である。非特許文献2は、"J. Reed, et al., Journal of Microelectromechanical Systems 16, 668 (2007)."である。非特許文献3は、"I. Shavrin, et al., Opt. Express 21, 16901 (2013)."である。この手法に共通する特徴としては、次の点が挙げられる。第1の共通点は、干渉顕微鏡を用いてMEMSデバイスの表面形状を測定し、参照光と測定光との干渉によってMEMSデバイス表面の2次元の高さを測定する、ということである。第2の共通点は、MEMSデバイスの振動に位相同期したパルス光源を用いてMEMSデバイスの素子に照射し、高速振動をサンプリングすることによって振動形状を解析する、ということである。 Another method is to use a double-beam interference microscope such as a Michelson interferometer. Several methods have been proposed and put into practical use as techniques for two-dimensional vibration analysis of MEMS devices based on this method. See Patent Document 1 and Non-Patent Documents 1 to 3 for the technique of this method. Patent Document 1 is Japanese National Publication of International Patent Application No. 2016-501373. Non-Patent Document 1 is "A. Bosseboeuf, et al., presented at the Microsystems Metrology and Inspection, 1999." Non-Patent Document 2 is "J. Reed, et al., Journal of Microelectromechanical Systems 16, 668 (2007)." Non-Patent Document 3 is "I. Shavrin, et al., Opt. Express 21, 16901 (2013)." The features common to this method include the following points. The first common point is that the surface shape of the MEMS device is measured using an interference microscope, and the two-dimensional height of the MEMS device surface is measured by interference between the reference light and the measurement light. The second common point is that a pulsed light source that is phase-locked to the vibration of the MEMS device is used to irradiate the element of the MEMS device, and the vibration shape is analyzed by sampling the high-speed vibration.
 しかし、従来の干渉顕微鏡を用いたMEMSデバイスの2次元振動解析の先行技術には、光学系の調整が困難であるという問題があった。そのため振動解析システムを構築するための高精度な光学機械部品が必要となり、コストが高くなってしまうという課題があった。また、先行技術には、測定範囲が狭いという問題があり、十分な測定が行えていない、という課題があった。 However, the prior art of two-dimensional vibration analysis of MEMS devices using conventional interference microscopes had the problem that it was difficult to adjust the optical system. Therefore, there is a problem that high-precision optical-mechanical parts are required for constructing the vibration analysis system, resulting in high cost. In addition, the prior art has a problem that the measurement range is narrow, and there is a problem that sufficient measurement cannot be performed.
 本開示は、構築に係るコストを抑制して、微小な振動を生じる試料の振動解析ができる振動解析システム、振動解析装置、及び振動解析方法を提供することを目的とする。 An object of the present disclosure is to provide a vibration analysis system, a vibration analysis apparatus, and a vibration analysis method that can perform vibration analysis of a sample that generates minute vibrations while suppressing construction costs.
 本開示の振動解析システムは、微分干渉プリズムを介して分岐させたパルス光を照射し、試料表面の突起形状及び陥没形状を所定の測定範囲で測定可能な微分干渉顕微鏡を用いて、所定の周波数の電圧信号によって駆動させた試料に、前記電圧信号に位相同期して変調させた前記パルス光を照射し、前記試料の顕微鏡画像を撮像する、ように構成されている。 The vibration analysis system of the present disclosure irradiates a pulsed light branched through a differential interference prism, and uses a differential interference microscope capable of measuring the protrusion shape and depression shape of the sample surface in a predetermined measurement range. The sample driven by the voltage signal is irradiated with the pulsed light modulated in phase synchronization with the voltage signal, and a microscopic image of the sample is captured.
 本開示の振動解析装置は、微分干渉プリズムを介して分岐させたパルス光を照射し、試料表面の突起形状及び陥没形状を所定の測定範囲で測定可能な微分干渉顕微鏡と、試料に所定の周波数の電圧信号を印加する信号源と、前記試料に前記電圧信号に位相同期して変調された前記パルス光を照射する光源と、前記試料の顕微鏡画像を撮像する光学系と、を備えている。 The vibration analysis apparatus of the present disclosure includes a differential interference microscope capable of irradiating a pulsed light branched through a differential interference prism and measuring the protrusion shape and depression shape of the sample surface in a predetermined measurement range, and a sample with a predetermined frequency. , a light source for irradiating the sample with the pulsed light modulated in phase synchronization with the voltage signal, and an optical system for capturing a microscope image of the sample.
 本開示の振動解析方法は、試料表面の突起形状及び陥没形状を所定の測定範囲で測定可能な微分干渉顕微鏡を用いて、微分干渉プリズムを介して分岐させたパルス光を試料に照射するステップと、前記試料に所定の周波数の電圧信号を印加するステップと、前記試料に前記電圧信号に同期して変調された前記パルス光を照射するステップと、前記試料の顕微鏡画像を撮像するステップと、を含む。 The vibration analysis method of the present disclosure uses a differential interference microscope capable of measuring the shape of protrusions and depressions on the surface of the sample in a predetermined measurement range, and irradiates the sample with pulsed light branched through a differential interference prism. , applying a voltage signal of a predetermined frequency to the sample, irradiating the sample with the pulsed light modulated in synchronization with the voltage signal, and capturing a microscope image of the sample. include.
従来の干渉顕微鏡を用いた振動解析の手法の簡易な模式図である。It is a simple schematic diagram of the method of the vibration analysis using the conventional interference microscope. 微分干渉顕微鏡を用いた振動解析の手法を比較するための模式図である。FIG. 4 is a schematic diagram for comparing methods of vibration analysis using a differential interference microscope; 曲げられたMEMS梁を、通常の顕微鏡で観測した画像である。It is an image of a bent MEMS beam observed with a normal microscope. 曲げられたMEMS梁を、マイケルソン干渉顕微鏡で観測した画像である。It is an image of a bent MEMS beam observed with a Michelson interference microscope. 曲げられたMEMS梁を、微分干渉顕微鏡で観測した画像である。It is an image of a bent MEMS beam observed with a differential interference microscope. 本実施形態の振動解析システムの構成を示す図である。It is a figure which shows the structure of the vibration analysis system of this embodiment. パルス光源による高速振動を説明するグラフである。It is a graph explaining the high-speed vibration by a pulse light source. パルス光源による高速振動を説明するグラフである。It is a graph explaining the high-speed vibration by a pulse light source. 顕微鏡画像である。It is a microscope image. 光強度のグラフである。4 is a graph of light intensity; 測定可能な周波数範囲を示す図である。FIG. 4 is a diagram showing a measurable frequency range; 照明光のパルス幅を示す図である。It is a figure which shows the pulse width of illumination light. 制御部のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of a control part. 測定プログラムの処理の流れを示す図である。It is a figure which shows the flow of a process of a measurement program. 振動振幅の測定結果の一例である。It is an example of a measurement result of vibration amplitude. モード形状の測定結果である。It is the measurement result of the mode shape. モード形状の測定結果である。It is the measurement result of the mode shape. モード形状の測定結果である。It is the measurement result of the mode shape.
 以下、図面を参照して本開示の実施形態を詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 本開示の実施形態について説明する前に、微小振動デバイスであるMEMSデバイスの振動解析について、上記課題において挙げた(1)光学系の調整が困難であるという問題、及び(2)測定範囲が狭い問題、について説明する。なお、以下の説明では、MEMSデバイスを試料として、本実施形態の振動解析の手法を適用する場合を例に説明するが、これに限定されるものではない。本実施形態の振動解析の手法はnm単位のスケールで測定が可能である。よって、本実施形態の振動解析の手法は、MEMSデバイスと同様に、高さ方向及び横方向のサイズがmm単位又はμm単位等の微小なサイズの他の微小振動デバイスにも同様に適用可能である。また、本実施形態の振動解析の手法は、微小な振動を生じ得る試料であれば微小振動デバイスに限らず、物質、細胞等にも適用可能である。 Before describing the embodiments of the present disclosure, regarding the vibration analysis of MEMS devices, which are micro-vibration devices, (1) the problem that the optical system is difficult to adjust and (2) the measurement range is narrow. explain the problem. In the following description, a case where the method of vibration analysis of the present embodiment is applied using a MEMS device as a sample will be described as an example, but the present invention is not limited to this. The method of vibration analysis of this embodiment enables measurement on a scale of nm units. Therefore, the vibration analysis method of the present embodiment can be similarly applied to other micro-vibration devices having minute sizes such as mm or μm in the height direction and in the horizontal direction, similarly to the MEMS device. be. In addition, the method of vibration analysis of the present embodiment is applicable not only to micro-vibration devices, but also to substances, cells, and the like, as long as the samples are capable of generating minute vibrations.
 (1)について、従来の干渉計では、参照光と測定光の干渉縞を利用しているため、デバイスの表面と基準とする参照ミラーを精密に合わせる必要があった。試料の高さは数十nmの精度で調整しなければならず、試料表面の傾き角を0.01°以下にしなければならない。このようなセッティングには、非常に難しい光学的調整が必要であり、高精度な光学機械部品が必要となる。そのため光学系に係る費用が高くなってしまっていた。また
、環境から受ける振動などは干渉縞の安定性に及ぼす影響が大きいため、厳しい防振も必要であった。そのため、従来のMEMSデバイスの振動解析システムは、構築に係るコストが高いという課題があった。
Regarding (1), since the conventional interferometer utilizes the interference fringes of the reference light and the measurement light, it is necessary to precisely align the surface of the device with the reference mirror. The height of the sample must be adjusted with an accuracy of several tens of nanometers, and the tilt angle of the sample surface must be 0.01° or less. Such settings require very difficult optical alignments and require high precision opto-mechanical components. As a result, the cost associated with the optical system has increased. In addition, since the vibration received from the environment has a large effect on the stability of the interference fringes, strict vibration isolation was required. Therefore, the conventional vibration analysis system for MEMS devices has a problem of high construction costs.
(2)について、従来の2次元の振動解析では、測定可能な変位の最大値は照射する光の波長の4分の1より小さく(一般には100~200nm程度)、MEMSデバイスの非線形振動の測定などの多くの研究において十分な測定可能範囲ではなかった。さらに、MEMSデバイスの表面において、段階的な位相の変化が大きい構造がある場合、正確に測定できない可能性があった。 Regarding (2), in conventional two-dimensional vibration analysis, the maximum value of measurable displacement is smaller than a quarter of the wavelength of the irradiated light (generally about 100 to 200 nm). was not within a sufficient measurable range in many studies such as Furthermore, if there is a structure with a large stepwise phase change on the surface of the MEMS device, there is a possibility that it cannot be measured accurately.
 これら2つの問題を解決するため、従来の干渉顕微鏡に代えて微分干渉顕微鏡を用いた振動解析システムを構築し、MEMSデバイスの2次元の振動解析を行う。 In order to solve these two problems, a vibration analysis system using a differential interference microscope is constructed in place of the conventional interference microscope, and two-dimensional vibration analysis of MEMS devices is performed.
 図1(図1A、図1B)は、従来の干渉顕微鏡を用いた振動解析の手法と、微分干渉顕微鏡を用いた振動解析の手法とを比較するための簡易な模式図である。図1Aに示すように、(A)の従来の干渉顕微鏡を用いた手法では、参照ミラーを用いてパルス光を反射させて干渉縞を測定する構成となっている。一方で、図1Bの(B)の本実施形態の微分干渉顕微鏡を用いた手法では、参照ミラーを用いずに、微分干渉プリズムを用いてパルス光を分岐させる構成としている。 FIG. 1 (FIGS. 1A and 1B) is a simple schematic diagram for comparing a vibration analysis method using a conventional interference microscope and a vibration analysis method using a differential interference microscope. As shown in FIG. 1A, in the conventional technique using an interference microscope (A), a reference mirror is used to reflect pulsed light to measure interference fringes. On the other hand, in the method using a differential interference microscope according to the present embodiment shown in FIG. 1B, a differential interference prism is used to branch the pulsed light without using a reference mirror.
 (A)の従来の干渉顕微鏡を用いた振動解析の手法では、構成として、干渉顕微鏡(Ma)、カメラ(Mb)、光源(Mc)、MEMSデバイス(Md)がある。干渉顕微鏡(Ma)では、光源(Mc)から照射されたパルス光(mc1)を、レンズ(ma1)、ビームスプリッタ(ma2)、対物レンズ(ma3)を介して、MEMSデバイス(Md)に照射して測定光とし、参照ミラー(ma4)によって参照光を反射する。これにより試料の凹凸に合わせて変化する位相差の干渉縞を測定する。(B)の本実施形態の微分干渉顕微鏡を用いた振動解析の手法では、構成として、微分干渉顕微鏡(Ma2)、カメラ(Mb)、光源(Mc)、MEMSデバイス(Md)がある。参照ミラー(ma4)を用いずに、微分干渉プリズム(ma5)を用いてパルス光を2本の光に分岐させて試料に照射する。2本の光の横方向の小さいずれをシャー量という。シャー量は微分干渉プリズム及び対物レンズにより決まっている。例えば、オリンパス製の微分干渉プリズムU-DICR及び対物レンズLMPlanFL10xを組み合わせた場合、シャー量はおよそ2.5μmである。このように光路に差があるとき光の強度が変調され、干渉縞として表れる。 In (A) the vibration analysis method using a conventional interference microscope, the configuration includes an interference microscope (Ma), a camera (Mb), a light source (Mc), and a MEMS device (Md). In the interference microscope (Ma), the MEMS device (Md) is irradiated with pulsed light (mc1) emitted from the light source (Mc) via the lens (ma1), the beam splitter (ma2), and the objective lens (ma3). is used as measurement light, and the reference light is reflected by the reference mirror (ma4). Thereby, the interference fringes of the phase difference that change according to the unevenness of the sample are measured. In the method of vibration analysis using the differential interference microscope of this embodiment of (B), there are a differential interference microscope (Ma2), a camera (Mb), a light source (Mc), and a MEMS device (Md) as configurations. Without using the reference mirror (ma4), the differential interference prism (ma5) is used to split the pulsed light into two beams, which are irradiated onto the sample. A small shift in the lateral direction of the two beams of light is called a shear amount. The amount of shear is determined by the differential interference prism and the objective lens. For example, when an Olympus differential interference prism U-DICR and an objective lens LMPlanFL10x are combined, the shear amount is approximately 2.5 μm. When there is such a difference in the optical paths, the intensity of the light is modulated and appears as interference fringes.
 微分干渉顕微鏡を用いる場合、次の利点がある。微分干渉顕微鏡は、参照光を使用しないため、参照光と測定光の間の複雑な調整が必要ない、という利点がある。また、微分干渉顕微鏡は、干渉光の全ては試料表面から反射されるため、環境振動や環境光による雑音や試料の傾きの影響が非常に少なくなり、特別な防振や遮光が必要ない、という利点がある。また、微分干渉顕微鏡での測定は、変位の偏差を測定するため、総変位量の制限はほとんどない、という利点がある。測定範囲はマイケルソン干渉顕微鏡と比べて10倍以上大きくなる、という利点がある。  When using a differential interference contrast microscope, there are the following advantages. A differential interference contrast microscope does not use a reference beam, so it has the advantage of not requiring complicated adjustments between the reference beam and the measurement beam. In addition, in a differential interference contrast microscope, all the interference light is reflected from the surface of the sample, so the noise caused by environmental vibration and light, as well as the influence of the tilt of the sample, is greatly reduced, and no special anti-vibration or light shielding is required. There are advantages. In addition, measurement with a differential interference contrast microscope has the advantage that there is almost no limit to the total amount of displacement since the deviation of displacement is measured. It has the advantage that the measuring range is more than ten times larger than that of the Michelson interference microscope.
 図2(図2A、図2B、図2C)は、曲げられたMEMS梁を、通常の顕微鏡、マイケルソン干渉顕微鏡、及び微分干渉顕微鏡で観測した画像を比較したものである。MEMS梁はMEMSデバイスを両持ち梁構造としたものである。図2Aの(a)は通常の顕微鏡で観測した画像であり、(a1)部分の曲がったMEMS梁の表面形状を示すことはできない。図2Bの(b)は従来のマイケルソン干渉顕微鏡で観測した画像であり、MEMS梁の曲げ形状が干渉縞で示されている。しかし、MEMSデバイスの傾き角を0.05°の非常に小さい角度までに調整しても、干渉縞は傾き角の影響を強く受ける。(b1)部分が曲げによる干渉縞、(b2)部分が傾きによる干渉縞、(b3)部分が電極による干渉縞である。さらに、試料の振動によって測定光路長が常に変わると、干渉縞を生じるに必要不可欠なゼロ光路長差の条件を維持できないため、長時間の測定は非常に困難である。一方、図2Cの(c)の微分干渉顕微鏡で観測した画像は、MEMSデバイスの小さな傾き角の影響を全く受けず、非常に安定している。素子の傾き等の調整は全くしていないものの、(c1)部分のMEMS梁の曲がりによる光強度の変化が明確に観測されており、装置の傾きや、(b)のような表面の電極による「背景干渉」はほとんどない。 Figure 2 (Figures 2A, 2B, and 2C) compares the images of the bent MEMS beam observed with a normal microscope, a Michelson interference microscope, and a differential interference contrast microscope. The MEMS beam is a MEMS device with a double-end beam structure. (a) of FIG. 2A is an image observed with a normal microscope, and cannot show the surface shape of the bent MEMS beam in the portion (a1). FIG. 2B (b) is an image observed with a conventional Michelson interference microscope, in which the bending shape of the MEMS beam is indicated by interference fringes. However, even if the tilt angle of the MEMS device is adjusted to a very small angle of 0.05°, the interference fringes are strongly affected by the tilt angle. The (b1) portion is the interference fringes due to bending, the (b2) portion is the interference fringes due to the inclination, and the (b3) portion is the interference fringes due to the electrode. Furthermore, if the measurement optical path length constantly changes due to the vibration of the sample, the condition of zero optical path length difference, which is essential for generating interference fringes, cannot be maintained, making long-term measurement extremely difficult. On the other hand, the image observed by the differential interference microscope in (c) of FIG. 2C is very stable without being affected by the small tilt angle of the MEMS device. Although the tilt of the device was not adjusted at all, the change in the light intensity due to the bending of the MEMS beam in the portion (c1) was clearly observed, and the tilt of the device and the electrode on the surface as in (b) There is very little "background interference".
 以上の従来の干渉顕微鏡と微分干渉顕微鏡の比較から、微分干渉顕微鏡を用いることで以下の特徴を利点として有する振動解析システムが実現できる。 From the above comparison between conventional interference microscopes and differential interference microscopes, a vibration analysis system with the following advantages can be realized by using a differential interference microscope.
 従来の干渉顕微鏡では、試料表面を参照面に合わせて完全に調整する必要がある。一方、微分干渉顕微鏡を採用することで、試料表面からの反射光のみを干渉に用いることでほとんどの光学調整が必要ない。よって、複雑な光干渉(ゼロ点・傾き)の調整が不要となり、これにより利便性が向上する。
 また、微分干渉顕微鏡は試料表面からの反射光のみを使用するため、従来技術に比べ、環境振動が干渉縞に影響しにくい。よって振動にも非敏感となり、防振性能を備えるための防振台も不要である。さらに専用の干渉顕微鏡より安価な市販の微分干渉顕微鏡を利用できる。そのため振動解析システムを構成するために必要なコストを抑制できる。
 また、従来技術に比べ、測定変位範囲が大きくなり(10倍以上)、複雑な表面を持つ試料の測定も可能である。
 さらに、高価で精密な機械的調整システムが不要となるため、微分干渉顕微鏡は専用の両ビーム型の干渉顕微鏡に比べて安価であり、コストメリットも有する。
Conventional interference microscopy requires the sample surface to be perfectly aligned with the reference plane. On the other hand, by adopting a differential interference microscope, almost no optical adjustment is required because only the reflected light from the sample surface is used for interference. Therefore, complicated adjustment of optical interference (zero point/tilt) becomes unnecessary, thereby improving convenience.
In addition, since differential interference contrast microscopes use only reflected light from the sample surface, environmental vibrations are less likely to affect the interference fringes compared to conventional techniques. Therefore, it is insensitive to vibration, and does not require a vibration isolating table for providing anti-vibration performance. Furthermore, a commercially available differential interference contrast microscope can be used, which is cheaper than a dedicated interference microscope. Therefore, the cost required to configure the vibration analysis system can be suppressed.
In addition, the measurement displacement range is increased (10 times or more) compared to the conventional technology, and it is possible to measure a sample with a complicated surface.
Furthermore, since an expensive and precise mechanical adjustment system is not required, differential interference contrast microscopes are less expensive than dedicated dual-beam interference microscopes and have cost advantages.
 以下、本開示の実施形態の振動解析システムの構成について説明する。 The configuration of the vibration analysis system according to the embodiment of the present disclosure will be described below.
 図3に、本実施形態の振動解析システムの構成を示す。図3に示すように、振動解析システム1は、微分干渉顕微鏡10、デジタルカメラ12、光源14(パルス変調LED又はレーザー光源)、ファンクションジェネレータ16、制御部18により構成されている。振動解析システム1は、この構成において、観測対象の試料であるMEMSデバイス20を観測する。なお、振動解析システム1は、これらの構成全てを備えることにより、本開示の振動解析装置として構成される。 Fig. 3 shows the configuration of the vibration analysis system of this embodiment. As shown in FIG. 3, the vibration analysis system 1 includes a differential interference microscope 10, a digital camera 12, a light source 14 (pulse-modulated LED or laser light source), a function generator 16, and a controller . In this configuration, the vibration analysis system 1 observes the MEMS device 20, which is the sample to be observed. Note that the vibration analysis system 1 is configured as the vibration analysis apparatus of the present disclosure by including all of these configurations.
 振動解析システム1の構成の各機能部は、次のように機能する。(1)微分干渉顕微鏡10はnmスケールでMEMSデバイスの表面の情報を可視化する。(2)デジタルカメラ12は微分干渉顕微鏡10の干渉パターンを記録した画像を撮像する。(3)光源14は、MEMSデバイスの駆動電圧に同期した周期的なパルス光(照明光)を入射する。振動解析システム1では、パルスにより生じる高速なMEMS振動をサンプリングする。(4)ファンクションジェネレータ16はパルス変調LED12とMEMSデバイス20に位相を同期した駆動電圧を供給する。(5)制御部18はコンピュータであり、解析用のソフトウェア及びプログラムを含み、測定プロセスを制御することでMEMSデバイス20の振幅や、振動のモード形状を算出する。以下、各機能部について説明する。 Each functional part of the configuration of the vibration analysis system 1 functions as follows. (1) The differential interference contrast microscope 10 visualizes information on the surface of the MEMS device on the nm scale. (2) The digital camera 12 captures an image recording the interference pattern of the differential interference microscope 10 . (3) The light source 14 emits periodic pulsed light (illumination light) synchronized with the driving voltage of the MEMS device. The vibration analysis system 1 samples high-speed MEMS vibrations caused by pulses. (4) the function generator 16 provides phase-synchronized drive voltages to the pulse modulated LED 12 and the MEMS device 20; (5) The control unit 18 is a computer, includes analysis software and programs, and calculates the amplitude and vibration mode shape of the MEMS device 20 by controlling the measurement process. Each functional unit will be described below.
 微分干渉顕微鏡10は、ビームスプリッタ10aと、偏光板10bと、微分干渉プリズム10cと、対物レンズ10dと、を含んで構成されている。ビームスプリッタ10aは、レンズ(図示省略)から入射されたパルス光(Pu)をMEMSデバイス20に向けるように設置されている。偏光板10bは、パルス光(Pu)を偏向に変換させる。微分干渉プリズム10cは、偏光板10bを経て入射されたパルス光(Pu1)を2つの光(Pu2)に分岐させる。なお、以下の説明において、分岐前後を区別する場合は分岐前のパルス光は(Pu1)、分岐後の2つの光であるパルス光は(Pu2)とし、区別しない場合は単に(Pu)と記載する。対物レンズ10dは、分岐された2つの光(Pu2)をMEMSデバイスに照射する。なお、微分干渉顕微鏡10の構成は、これに限定されるもの
ではなく、顕微鏡の設計に応じて適宜構成されていてよい。微分干渉顕微鏡10は、微分干渉プリズム(10c)を介して分岐させたパルス光(Pu2)をMEMSデバイス20に照射し、MEMSデバイス20の表面の凹凸(突起形状及び陥没形状)を測定可能な構成であればよい。凹凸の測定範囲は、通常1nmから数千nm、好ましくは1nmから1000nmである。なお、凹凸の測定範囲を決定づけるパラメータは当該凹凸によって生じる差分変位であり、当該凹凸によって生じる差分変位のパラメータは、およそ0.05nmから60nmである。
The differential interference microscope 10 includes a beam splitter 10a, a polarizing plate 10b, a differential interference prism 10c, and an objective lens 10d. The beam splitter 10 a is installed so as to direct the pulsed light (Pu) incident from a lens (not shown) toward the MEMS device 20 . The polarizing plate 10b converts the pulsed light (Pu) into polarized light. The differential interference prism 10c splits the pulsed light (Pu1) incident through the polarizing plate 10b into two lights (Pu2). In the following description, when distinguishing before and after branching, the pulsed light before branching is (Pu1), and the pulsed light, which is the two light after branching, is (Pu2). do. The objective lens 10d irradiates the MEMS device with the two split lights (Pu2). Note that the configuration of the differential interference contrast microscope 10 is not limited to this, and may be configured appropriately according to the design of the microscope. The differential interference microscope 10 irradiates the MEMS device 20 with pulsed light (Pu2) branched via a differential interference prism (10c), and is configured to measure the unevenness (protrusion shape and depression shape) of the surface of the MEMS device 20. If it is The measurement range of unevenness is usually 1 nm to several thousand nm, preferably 1 nm to 1000 nm. The parameter that determines the measurement range of the unevenness is the differential displacement caused by the unevenness, and the parameter of the differential displacement caused by the unevenness is about 0.05 nm to 60 nm.
 デジタルカメラ12は微分干渉顕微鏡10に取り付け、微分干渉顕微鏡10を通してMEMSデバイス20の顕微鏡画像を撮像する。デジタルカメラ12はカラー又はモノクロのCMOS又はCCDカメラであればどのようなカメラを用いてもよい。デジタルカメラ12が、本開示の試料の顕微鏡画像を撮像する光学系の一例である。 The digital camera 12 is attached to the differential interference microscope 10 and captures a microscopic image of the MEMS device 20 through the differential interference microscope 10 . Digital camera 12 may be any color or monochrome CMOS or CCD camera. Digital camera 12 is an example of an optical system for capturing microscopic images of samples of the present disclosure.
 ここで、振動解析システム1の測定の原理について説明する。デジタルカメラ12を搭載した微分干渉顕微鏡10を用いた振動解析システム1は、原理的にMEMSデバイス20の動きを観察できる。しかし、ほとんどのデジタルカメラのフレームレートは数十Hz程度であり、MEMSデバイスの動作可能な周波数帯域(数十kHzから数十MHz)より遥かに遅い。図4(図4A、図4B)に、パルス光源による高速振動を説明するグラフを示す。図4Aの(a)に示すように、光源14(パルス変調LED又はレーザー光源)はMEMSデバイス20の励起信号に位相同期したパルス光(Pu)を照射する。MEMSデバイス20の振動は励起信号と同じ周波数であるため、パルス光(Pu)もMEMS振動に同期しており、その間の位相差は変調できる。(a)のθは位相差を示す。MEMSデバイス20の振動において、平衡位置からずれる時、MEMSデバイス20の表面の形状が変化し、微分干渉顕微鏡10によって得られる光強度が変調される。このような変調されたパルス光(Pu)を照射することで、MEMSデバイス20の振動の特定の位相で顕微鏡画像を撮像することができる。また、照射するパルス光(Pu)の位相を変調することで、振動全体の測定をすることができる。図5(図5A、図5B)に、顕微鏡画像、及び光強度のグラフを示す。図5Aの(a)の画像は、MEMSデバイス20の顕微鏡画像、及び振動の測定点(a1)である。(a1)の光強度が測定される。図5Bの(b)のグラフでは、位相が0°から1080°まで変化していることから、MEMSデバイス20の振動によって光強度が周期的に変化していることがわかる。 Here, the principle of measurement by the vibration analysis system 1 will be explained. The vibration analysis system 1 using the differential interference microscope 10 equipped with the digital camera 12 can observe the movement of the MEMS device 20 in principle. However, the frame rate of most digital cameras is on the order of tens of Hz, which is much slower than the operable frequency band of MEMS devices (tens of kHz to tens of MHz). FIG. 4 (FIGS. 4A and 4B) shows graphs for explaining the high-speed vibration caused by the pulse light source. As shown in (a) of FIG. 4A, the light source 14 (pulse-modulated LED or laser light source) emits pulsed light (Pu) phase-locked with the excitation signal of the MEMS device 20 . Since the vibration of the MEMS device 20 is at the same frequency as the excitation signal, the pulsed light (Pu) is also synchronized with the MEMS vibration and the phase difference therebetween can be modulated. θ in (a) indicates a phase difference. When the MEMS device 20 vibrates and deviates from the equilibrium position, the shape of the surface of the MEMS device 20 changes and the light intensity obtained by the differential interference microscope 10 is modulated. By irradiating such modulated pulsed light (Pu), a microscopic image can be captured at a specific phase of vibration of the MEMS device 20 . Further, by modulating the phase of the pulsed light (Pu) to be irradiated, the entire vibration can be measured. FIG. 5 (FIGS. 5A and 5B) shows a microscope image and a graph of light intensity. The image in (a) of FIG. 5A is a microscope image of the MEMS device 20 and the vibration measurement point (a1). The light intensity of (a1) is measured. Since the phase changes from 0° to 1080° in the graph of (b) of FIG. 5B, it can be seen that the light intensity changes periodically due to the vibration of the MEMS device 20 .
 光源14は、パルス幅がMEMSデバイス20に係る共振器の測定可能な所定の周波数帯域を満たすパルス変調LED又はレーザー光源を用いる。以下に、光源14に適用されるパルス幅の原理を説明する。 The light source 14 uses a pulse-modulated LED or laser light source whose pulse width satisfies a predetermined measurable frequency band of the resonator associated with the MEMS device 20 . The principle of pulse width applied to the light source 14 is explained below.
 MEMSデバイス20の共振運動をサンプリングするためには、幅の狭いパルス光を用いることが理想的である。振動動作の測定はパルス光を入射した時間で平均化されるため、パルス幅を大きくすると、振動による光強度の変調が低下する。図6(図6A、図6B)に、測定可能な周波数範囲と照明光のパルス幅を示す。図6Aの(a)は、振動による光強度変調の周波数帯域幅を示すグラフである。周波数帯域幅(a1)は、1/(30ns×2)=約17MHzである。光源14のパルス幅ΔTはMEMSデバイス20の共振器の周期Tの半分(T/2)より小さくする必要がある。従って、測定可能な周波数帯域幅は以下(1)式で与えられる。
 周波数帯域幅=1/(2Δt) ・・・(1)
Ideally, a narrow pulse of light is used to sample the resonant motion of the MEMS device 20 . Since the measurement of the vibrational motion is averaged over the time that the pulsed light is incident, increasing the pulse width reduces the modulation of the light intensity due to the vibration. FIG. 6 (FIGS. 6A and 6B) shows the measurable frequency range and the pulse width of illumination light. (a) of FIG. 6A is a graph showing the frequency bandwidth of optical intensity modulation by vibration. The frequency bandwidth (a1) is 1/(30ns*2)=about 17MHz. The pulse width ΔT of the light source 14 should be less than half the period T of the cavity of the MEMS device 20 (T/2). Therefore, the measurable frequency bandwidth is given by equation (1) below.
Frequency bandwidth=1/(2Δt) (1)
 図6Bの(b)は、振動解析システム1で利用する赤色LED(光源14)のパルス幅を示すグラフである。(b)に示すように、Δtはおおよそ30nsのパルス幅を実現することができ、これは、16MHzまでの周波数帯域幅に対応する。また、光源14に、一般的に市販されている70MHzの周波数帯域幅を持つLEDを用いることで、より高い
測定周波数を実現できる。
(b) of FIG. 6B is a graph showing the pulse width of the red LED (light source 14) used in the vibration analysis system 1. FIG. As shown in (b), Δt can achieve a pulse width of approximately 30 ns, which corresponds to a frequency bandwidth of up to 16 MHz. Further, by using a commercially available LED having a frequency bandwidth of 70 MHz for the light source 14, a higher measurement frequency can be achieved.
 ファンクションジェネレータ16は、2つの同期した電圧信号を出力(印加)し、1つの電圧信号(vs1)をMEMSデバイスの駆動用(vs1)、もう1つの電圧信号(vs2)を光源14のパルス光(Pu)の変調用に使用する。そのため、ファンクションジェネレータ16は、最低でも2つのチャンネルの電圧信号を出力できる必要がある。本実施形態では、2チャンネルが25MHzの任意信号を出力することができる機器をファンクションジェネレータ16に使用する。なお、より上位の機器を使用した場合、240MHzの信号出力も可能である。ファンクションジェネレータ16が、本開示の試料に所定の周波数の電圧信号を印加する信号源の一例である。 The function generator 16 outputs (applies) two synchronous voltage signals, one voltage signal (vs1) for driving the MEMS device (vs1) and the other voltage signal (vs2) for the pulse light of the light source 14 ( Pu) is used for modulation. Therefore, the function generator 16 must be able to output voltage signals of at least two channels. In this embodiment, a device capable of outputting arbitrary signals of 25 MHz for two channels is used as the function generator 16 . It should be noted that 240 MHz signal output is also possible when a higher-level device is used. Function generator 16 is an example of a signal source that applies a voltage signal of a predetermined frequency to the sample of the present disclosure.
 制御部18は、振動解析システム1に係る各種制御を実行するコンピュータである。制御部18は、デジタルカメラ12による顕微鏡画像の撮像、ファンクションジェネレータ16による電圧信号の出力、及び顕微鏡画像を用いた振幅に関する計算のそれぞれに関する制御を実行する。制御部18によるファンクションジェネレータ16の制御により、ファンクションジェネレータ16から出力された電圧信号により、MEMSデバイス20の共振器の駆動電圧と駆動周波数を設定し、光源14から照射するパルス光(Pu)の位相の掃引を設定する。これにより、MEMSデバイス20の振動を特定の位相とすることができる。駆動電圧によって、MEMSデバイス20の振動が生じる。上記測定の原理において説明したように、MEMSデバイス20の振動平衡位置から当該MEMSデバイス20がずれる時に生じる、当該MEMSデバイス20の表面の形状の変化により、微分干渉顕微鏡10によって得られる光強度が変調される。制御部18は、このようにMEMSデバイス20の特定の位相として、デジタルカメラ12に位相ごとの顕微鏡画像を撮像させる。また、制御部18は、位相ごとの顕微鏡画像から振動全体を測定する。測定の態様については、後述する2つの測定プログラムによる測定が可能である。 The control unit 18 is a computer that executes various controls related to the vibration analysis system 1 . The control unit 18 controls each of the imaging of the microscope image by the digital camera 12, the output of the voltage signal by the function generator 16, and the calculation of the amplitude using the microscope image. By controlling the function generator 16 by the control unit 18, the driving voltage and driving frequency of the resonator of the MEMS device 20 are set by the voltage signal output from the function generator 16, and the phase of the pulsed light (Pu) emitted from the light source 14 is set. set the sweep of This allows the vibration of the MEMS device 20 to have a specific phase. The driving voltage causes the MEMS device 20 to vibrate. As described in the principle of measurement above, the light intensity obtained by the differential interference microscope 10 is modulated by the change in the shape of the surface of the MEMS device 20 that occurs when the MEMS device 20 is displaced from the vibration equilibrium position of the MEMS device 20. be done. As such, the control unit 18 causes the digital camera 12 to capture a microscopic image for each phase as a specific phase of the MEMS device 20 . Also, the control unit 18 measures the entire vibration from the microscopic image for each phase. As for the mode of measurement, it is possible to perform measurement using two measurement programs, which will be described later.
 図7は、制御部18のハードウェア構成を示すブロック図である。図7に示すように、制御部18は、CPU(Central Processing Unit)111、ROM(Read Only Memory)112、RAM(Random Access Memory)13、ストレージ114、入力部115、表示インタフェース(I/F)116及び通信インタフェース(I/F)117を有する。各構成は、バス119を介して相互に通信可能に接続されている。 FIG. 7 is a block diagram showing the hardware configuration of the control unit 18. As shown in FIG. As shown in FIG. 7, the control unit 18 includes a CPU (Central Processing Unit) 111, a ROM (Read Only Memory) 112, a RAM (Random Access Memory) 13, a storage 114, an input unit 115, a display interface (I/F) 116 and a communication interface (I/F) 117 . Each component is communicatively connected to each other via a bus 119 .
 CPU111は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM112又は1114からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU111は、ROM12又はストレージ114に記憶されているプログラムに従って、上記制御に係る各種の演算処理を行う。本実施形態では、ROM112又はストレージ114には、プログラムが格納されている。 The CPU 111 is a central processing unit that executes various programs and controls each section. That is, the CPU 11 reads a program from the ROM 112 or 1114 and executes the program using the RAM 13 as a work area. The CPU 111 performs various kinds of arithmetic processing related to the above control according to programs stored in the ROM 12 or the storage 114 . In this embodiment, the ROM 112 or storage 114 stores programs.
 ROM112は、各種プログラム及び各種データを格納する。RAM113は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ114は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。 The ROM 112 stores various programs and various data. The RAM 113 temporarily stores programs or data as a work area. The storage 114 is configured by a storage device such as a HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores various programs including an operating system and various data.
 入力部115は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。表示インタフェース116は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示インタフェース116は、タッチパネル方式を採用して、入力部115として機能してもよい。通信インタフェース117は、端末等の他の
機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。
The input unit 115 includes a pointing device such as a mouse and a keyboard, and is used for various inputs. The display interface 116 is, for example, a liquid crystal display, and displays various information. The display interface 116 may employ a touch panel system and function as the input unit 115 . The communication interface 117 is an interface for communicating with other devices such as terminals, and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark), for example.
 制御部18において実行可能な2つの測定プログラムについて説明する。2つの測定プログラムに共通する処理の流れとして、図8に測定プログラムの処理の流れを示す。 Two measurement programs that can be executed by the control unit 18 will be described. As a flow of processing common to the two measurement programs, FIG. 8 shows the flow of processing of the measurement program.
 第1の測定プログラムは、MEMSデバイス20の共振周波数測定を行う。図8に示すように、ステップS100で、CPU111は、MEMSデバイス20の共振器の駆動電圧を設定する。ステップS102で、CPU111は、MEMSデバイス20の共振器の駆動周波数の範囲を設定する。ステップS104で、CPU111は、駆動周波数の範囲、及び照射するパルス光の位相による掃引パラメータを設定し、各位相となるように掃引する。共振の時に振幅は最大値をとるため、算出された振幅の周波数関数を利用してMEMSデバイス20の共振の周波数を求める。すなわち、第1プログラムの掃引パラメータは2つあり、設定された範囲の駆動周波数、及び位相である。設定された各駆動周波数、各駆動周波数に対する位相で掃引する。ステップS106で、CPU111は、デジタルカメラ12でMEMSデバイス20の表面を撮像し、各位相での共振を示す顕微鏡画像を取得する。そして、ステップS108で、CPU111は、各位相での共振を示す顕微鏡画像を用いて、測定対象の算出として、駆動周波数での振動振幅を算出する。 A first measurement program measures the resonance frequency of the MEMS device 20 . As shown in FIG. 8, in step S100, the CPU 111 sets the drive voltage for the resonator of the MEMS device 20. FIG. In step S<b>102 , the CPU 111 sets the driving frequency range of the resonator of the MEMS device 20 . In step S104, the CPU 111 sets sweep parameters according to the drive frequency range and the phase of the pulsed light to be irradiated, and sweeps to each phase. Since the amplitude takes the maximum value at the time of resonance, the frequency of resonance of the MEMS device 20 is obtained using the calculated frequency function of the amplitude. That is, there are two sweep parameters for the first program, the set range of drive frequency and phase. It sweeps at each set drive frequency and the phase for each drive frequency. In step S106, the CPU 111 captures an image of the surface of the MEMS device 20 with the digital camera 12 and obtains a microscope image showing resonance in each phase. Then, in step S108, the CPU 111 calculates the vibration amplitude at the driving frequency by using the microscope image showing the resonance in each phase as the calculation of the measurement object.
 顕微鏡画像は、1周期の間に少なくとも3つの位相(0°,120°,240°など)が撮像されるように制御する。測定する位相数を増やすことで、信号雑音比の向上ができる。なお、位相数の増加に応じて測定時間も長くなる。図9は、MEMSデバイス20に異なる駆動電圧をかけた場合に測定されたMEMS梁の共振スペクトルをプロットした振動振幅の測定結果である。測定された振幅は振動による生じる図5の測定点(a1)の差分変位である。励起電圧は20mV、40mV、60mV、80mV、100mVである。測定結果から、当該MEMS梁の共振周波数がおよそ696kHzであることが分かる。また、駆動電圧を増やすと、MEMS梁の非線形振動による周波数が増加することも示されており、測定によりMEMSデバイス20の非線形振動も解析できる。 The microscope image is controlled so that at least three phases (0°, 120°, 240°, etc.) are captured during one cycle. By increasing the number of phases to be measured, the signal-to-noise ratio can be improved. It should be noted that the measurement time also becomes longer as the number of phases increases. FIG. 9 shows vibration amplitude measurement results plotting resonance spectra of the MEMS beam measured when different drive voltages are applied to the MEMS device 20 . The measured amplitude is the differential displacement of measuring point (a1) in FIG. 5 caused by vibration. Excitation voltages are 20 mV, 40 mV, 60 mV, 80 mV, 100 mV. From the measurement results, it can be seen that the resonance frequency of the MEMS beam is approximately 696 kHz. It is also shown that increasing the driving voltage increases the frequency due to the nonlinear vibration of the MEMS beam, and the nonlinear vibration of the MEMS device 20 can also be analyzed by measurement.
 第2の測定プログラムは、MEMSデバイス20の2次元共振のモード形状の測定を行う。なお、流れは第1の測定プログラムと同様であるため、異なる差分のステップのみ説明する。第2の測定プログラムでは、ステップS102で、CPU111は、MEMSデバイス20の駆動周波数をMEMSデバイス20の共振周波数に設定する。ステップS104で、CPU111は、共振周波数に設定した駆動周波数、及び照射するパルス光の位相による掃引パラメータを設定し、各位相となるように掃引する。ステップS108で、CPU111は、各位相での共振を示す顕微鏡画像を用いて、測定対象の算出として、振動モードの差分像から、共振のモード形状を算出する。 The second measurement program measures the two-dimensional resonance mode shape of the MEMS device 20 . Since the flow is the same as that of the first measurement program, only steps with different differences will be described. In the second measurement program, the CPU 111 sets the drive frequency of the MEMS device 20 to the resonance frequency of the MEMS device 20 in step S102. In step S104, the CPU 111 sets sweep parameters according to the drive frequency set to the resonance frequency and the phase of the pulsed light to be irradiated, and sweeps to each phase. In step S108, the CPU 111 calculates the resonance mode shape from the difference image of the vibration mode as the calculation of the measurement target using the microscope image showing the resonance in each phase.
 第2の測定プログラムでは、撮像する顕微鏡画像の複数のフレームを平均化することで測定の信号雑音比を向上させることができる。図10(図10A、図10B、図10C)は、モード形状の測定結果である。測定したMEMSデバイスの第1曲げモードの形状を図10Aの(a)に示す。比較のためシミュレーションしたものを図10Bの(b)に示す。図10A(a)及び図10B(b)を比較すると、測定結果はシミュレーション結果と非常に一致していることが確認できる。また、図10Aの(a)の測定結果がMEMSデバイス20の振動のモード形状の差分、つまり、振動中の変位の勾配である。一般に、変位の勾配によって共振モードの判定が可能であるが、実際の変位も導き出すことが可能である。図10Aの(a)差分結果を積分すると、図10Cの(c)の実際のモード形状を得ることができる。これも図10Bの(b)のシミュレーション結果とよく一致している。よって、制御部18の第2の測定プログラムは、MEMSデバイス20の共振モードの2次元形状を高感度で解析できる。 In the second measurement program, the signal-to-noise ratio of the measurement can be improved by averaging multiple frames of the captured microscope image. FIG. 10 (FIGS. 10A, 10B, and 10C) shows measurement results of mode shapes. The shape of the first bending mode of the measured MEMS device is shown in (a) of FIG. 10A. A simulation for comparison is shown in (b) of FIG. 10B. Comparing FIGS. 10A(a) and 10B(b), it can be confirmed that the measured results are in excellent agreement with the simulation results. The measurement result of (a) of FIG. 10A is the difference in the mode shape of the vibration of the MEMS device 20, that is, the gradient of the displacement during vibration. In general, the slope of the displacement allows determination of the resonance mode, but the actual displacement can also be derived. Integrating the (a) difference result of FIG. 10A, the actual mode shape of (c) of FIG. 10C can be obtained. This also agrees well with the simulation result of (b) of FIG. 10B. Therefore, the second measurement program of the control unit 18 can analyze the two-dimensional shape of the resonance mode of the MEMS device 20 with high sensitivity.
 以上説明したように、本実施形態の振動解析システム1によれば、構築に係るコストを抑制して、微小な振動を生じる試料の振動解析ができる。 As described above, according to the vibration analysis system 1 of the present embodiment, it is possible to reduce the construction cost and perform vibration analysis of a sample that generates minute vibrations.
 また、振動解析システム1は、動的な共振解析や静的変位測定などの解析に使用することができる。これらはMEMSデバイス20の特性評価、動作確認、及び故障解析等の工程で重要な役割を果たす。 In addition, the vibration analysis system 1 can be used for analysis such as dynamic resonance analysis and static displacement measurement. These play an important role in processes such as characterization, operation confirmation, and failure analysis of the MEMS device 20 .
 上述した振動解析システム1は、微分干渉顕微鏡10に対して各構成を備えたスタンドアロンな構成として説明したが、これに限定されるものではない。このようなスタンドアロンな構成は本開示の振動解析装置の一例である。本開示の技術の実用化において、当該振動解析システム1はコンパクトで使いやすく、安価で高性能であるため、MEMSデバイス20の研究や開発に活用し得る。よって、振動解析システム1は、微分干渉顕微鏡10の追加モジュールとして開発することも可能である。振動解析システム1のコストの大部が微分干渉顕微鏡10であるため、顕微鏡メーカーとの共同研究を通して、既存の微分干渉顕微鏡10に、制御部18の振動解析機能を追加すれば、振動解析システム1全体のコストを更に低減することができる。また、デジタルカメラ12、光源14、及びファンクションジェネレータ16も同様に追加モジュールとすることができる。このようにモジュール化することにより、顕微鏡メーカーの既存の販売ルート等を通じて、本開示の手法の普及においても有効である。 Although the vibration analysis system 1 described above has been described as a stand-alone configuration having each configuration with respect to the differential interference contrast microscope 10, it is not limited to this. Such a stand-alone configuration is an example of the vibration analysis device of the present disclosure. In the practical application of the technology of the present disclosure, the vibration analysis system 1 is compact, easy to use, inexpensive, and has high performance, so it can be used for research and development of the MEMS device 20 . Therefore, the vibration analysis system 1 can also be developed as an additional module of the differential interference contrast microscope 10. FIG. Since most of the cost of the vibration analysis system 1 is the differential interference microscope 10, if the vibration analysis function of the control unit 18 is added to the existing differential interference microscope 10 through joint research with a microscope manufacturer, the vibration analysis system 1 Overall costs can be further reduced. Also, digital camera 12, light source 14, and function generator 16 may be additional modules as well. Modularization in this way is also effective in disseminating the method of the present disclosure through the existing sales channels of microscope manufacturers.
 なお、本開示は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 It should be noted that the present disclosure is not limited to the above-described embodiments, and various modifications and applications are possible without departing from the gist of the present invention.
 2021年12月22日に出願された日本国特許出願2021-208457号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-208457 filed on December 22, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.
1 振動解析システム
10 微分干渉顕微鏡
12 デジタルカメラ
14 光源
16 ファンクションジェネレータ
18 制御部
20 MEMSデバイス
1 vibration analysis system 10 differential interference microscope 12 digital camera 14 light source 16 function generator 18 controller 20 MEMS device

Claims (12)

  1.  微分干渉プリズムを介して分岐させたパルス光を照射し、試料表面の突起形状及び陥没形状を所定の測定範囲で測定可能な微分干渉顕微鏡を用いて、
     所定の周波数の電圧信号によって駆動させた試料に、前記電圧信号に位相同期して変調させた前記パルス光を照射し、
     前記試料の顕微鏡画像を撮像する、
     振動解析システム。
    Using a differential interference microscope capable of irradiating a pulsed light branched through a differential interference prism and measuring the protrusion shape and depression shape of the sample surface in a predetermined measurement range,
    irradiating a sample driven by a voltage signal of a predetermined frequency with the pulsed light modulated in phase synchronization with the voltage signal;
    capturing a microscopic image of the sample;
    vibration analysis system.
  2.  前記試料は、高さ方向及び横方向のサイズがミリメートル単位又はマイクロメートル単位の微小振動デバイスである請求項1に記載の振動解析システム。  The vibration analysis system according to claim 1, wherein the sample is a micro-vibration device whose size in the height direction and the width direction is in units of millimeters or micrometers.
  3.  前記パルス光の光源として、パルス幅が前記試料に係る共振器の測定可能な所定の周波数帯域を満たすパルス変調LED又はレーザー光源を用いる請求項1又は請求項2に記載の振動解析システム。 The vibration analysis system according to claim 1 or 2, wherein a pulse-modulated LED or laser light source whose pulse width satisfies a predetermined measurable frequency band of the resonator related to the sample is used as the light source of the pulsed light.
  4.  予め定められた制御を行う制御部を含み、
     前記制御部によって、カメラによる前記顕微鏡画像の撮像、ファンクションジェネレータによる前記電圧信号の出力による前記試料である微小振動デバイスの駆動及び前記パルス光の変調、並びに前記顕微鏡画像を用いた振幅に関する計算のそれぞれに関する制御を行わせる請求項1又は請求項2に記載の振動解析システム。
    Including a control unit that performs predetermined control,
    By the control unit, the imaging of the microscope image by the camera, the driving of the micro-oscillating device that is the sample by the output of the voltage signal by the function generator, the modulation of the pulsed light, and the calculation of the amplitude using the microscope image. 3. The vibration analysis system according to claim 1 or 2, wherein the control for
  5.  前記制御において、
     前記ファンクションジェネレータから出力された前記電圧信号により、前記微小振動デバイスの共振器の駆動電圧と駆動周波数を設定し、照射する前記パルス光の位相の掃引を設定することで、当該微小振動デバイスの振動を特定の位相とし、
     当該微小振動デバイスの振動によって、平衡位置から当該微小振動デバイスがずれる時に生じる、当該微小振動デバイスの表面の形状の変化により、前記微分干渉顕微鏡によって得られる光強度が変調され、
     前記カメラに位相ごとの前記顕微鏡画像を撮像させ、
     位相ごとの前記顕微鏡画像から振動全体を測定する、請求項4に記載の振動解析システム。
    In the control,
    By setting the driving voltage and the driving frequency of the resonator of the micro-oscillating device according to the voltage signal output from the function generator, and setting the sweep of the phase of the pulsed light to be irradiated, the micro-oscillating device vibrates. Let be a particular phase, and
    light intensity obtained by the differential interference microscope is modulated by a change in the shape of the surface of the micro-oscillating device that occurs when the micro-oscillating device is displaced from an equilibrium position due to vibration of the micro-oscillating device;
    causing the camera to capture the microscope image for each phase;
    5. The vibration analysis system of claim 4, wherein the total vibration is measured from the phase-by-phase microscopic images.
  6.  前記制御において、前記駆動周波数は前記微小振動デバイスの共振周波数に設定し、
     前記測定において、前記顕微鏡画像を用いた振幅に関する計算として、前記共振周波数における、振動振幅を測定する請求項5に記載の振動解析システム。
    In the control, the drive frequency is set to the resonance frequency of the micro vibration device;
    6. The vibration analysis system according to claim 5, wherein in the measurement, the vibration amplitude at the resonance frequency is measured as the amplitude calculation using the microscope image.
  7.  前記制御において、前記駆動周波数は前記微小振動デバイスの共振周波数に設定し、
     前記測定において、前記顕微鏡画像を用いた振幅に関する計算として、前記共振周波数における、前記顕微鏡画像における前記微小振動デバイスの振動モードの差分像から、共振のモード形状を測定する請求項5に記載の振動解析システム。
    In the control, the drive frequency is set to the resonance frequency of the micro vibration device;
    6. The vibration according to claim 5, wherein, in the measurement, the resonance mode shape is measured from the difference image of the vibration mode of the micro vibration device in the microscopic image at the resonance frequency as the calculation regarding the amplitude using the microscopic image. analysis system.
  8.  微分干渉プリズムを介して分岐させたパルス光を照射し、試料表面の突起形状及び陥没形状を所定の測定範囲で測定可能な微分干渉顕微鏡と、
     試料に所定の周波数の電圧信号を印加する信号源と、
     前記試料に前記電圧信号に位相同期して変調された前記パルス光を照射する光源と、
     前記試料の顕微鏡画像を撮像する光学系と、
     を備えた振動解析装置。
    a differential interference microscope capable of irradiating a pulsed light branched through a differential interference prism and measuring the protrusion shape and depression shape of the sample surface in a predetermined measurement range;
    a signal source that applies a voltage signal of a predetermined frequency to the sample;
    a light source that irradiates the sample with the pulsed light modulated in phase synchronization with the voltage signal;
    an optical system for capturing a microscope image of the sample;
    Vibration analysis equipment with
  9.  前記試料は、高さ方向及び横方向のサイズがミリメートル単位又はマイクロメートル単
    位の微小振動デバイスである請求項8に記載の振動解析装置。
    9. The vibration analysis apparatus according to claim 8, wherein the sample is a micro-vibration device with dimensions in millimeters or micrometers in the height and width directions.
  10.  前記光源は発光ダイオード又はレーザー光源を含む請求項8又は請求項9に記載の振動解析装置。 The vibration analysis device according to claim 8 or 9, wherein the light source includes a light emitting diode or a laser light source.
  11.  予め定められた制御を行う制御部を含み、
     前記制御部によって、カメラによる前記顕微鏡画像の撮像、ファンクションジェネレータによる前記電圧信号の出力による前記試料である微小振動デバイスの駆動及び前記パルス光の変調、並びに前記顕微鏡画像を用いた振幅に関する計算のそれぞれに関する制御を行わせる請求項8又は請求項9に記載の振動解析装置。
    Including a control unit that performs predetermined control,
    By the control unit, the imaging of the microscope image by the camera, the driving of the micro-oscillating device that is the sample by the output of the voltage signal by the function generator, the modulation of the pulsed light, and the calculation of the amplitude using the microscope image. 10. The vibration analysis apparatus according to claim 8 or 9, wherein the control for
  12.  試料表面の突起形状及び陥没形状を所定の測定範囲で測定可能な微分干渉顕微鏡を用いて、微分干渉プリズムを介して分岐させたパルス光を試料に照射するステップと、
     前記試料に所定の周波数の電圧信号を印加するステップと、
     前記試料に前記電圧信号に同期して変調された前記パルス光を照射するステップと、
     前記試料の顕微鏡画像を撮像するステップと、
     を含む振動解析方法。
    irradiating the sample with pulsed light branched via a differential interference prism using a differential interference microscope capable of measuring the shape of protrusions and depressions on the surface of the sample within a predetermined measurement range;
    applying a voltage signal of a predetermined frequency to the sample;
    irradiating the sample with the pulsed light modulated in synchronization with the voltage signal;
    capturing a microscopic image of the sample;
    vibration analysis methods, including
PCT/JP2022/044972 2021-12-22 2022-12-06 Vibration analysis system, vibration analysis device, and vibration analysis method WO2023120170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-208457 2021-12-22
JP2021208457 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120170A1 true WO2023120170A1 (en) 2023-06-29

Family

ID=86902210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044972 WO2023120170A1 (en) 2021-12-22 2022-12-06 Vibration analysis system, vibration analysis device, and vibration analysis method

Country Status (1)

Country Link
WO (1) WO2023120170A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073042A1 (en) * 2002-02-27 2003-09-04 The Government Of The United States Of America As Represented By The Secretary Of The Navy Nanoscale vibrometric measurement apparatus and method
US20090180124A1 (en) * 2008-01-11 2009-07-16 Industrial Technology Research Institute Method and apparatus for identifying dynamic characteristics of a vibratory object
JP2016501373A (en) * 2012-12-05 2016-01-18 オプトノール アーエス Vibration measuring method and interferometer
WO2017221324A1 (en) * 2016-06-21 2017-12-28 株式会社島津製作所 Sound-wave-propagation visualization device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073042A1 (en) * 2002-02-27 2003-09-04 The Government Of The United States Of America As Represented By The Secretary Of The Navy Nanoscale vibrometric measurement apparatus and method
US20090180124A1 (en) * 2008-01-11 2009-07-16 Industrial Technology Research Institute Method and apparatus for identifying dynamic characteristics of a vibratory object
JP2016501373A (en) * 2012-12-05 2016-01-18 オプトノール アーエス Vibration measuring method and interferometer
WO2017221324A1 (en) * 2016-06-21 2017-12-28 株式会社島津製作所 Sound-wave-propagation visualization device and method

Similar Documents

Publication Publication Date Title
Rembe et al. Optical measurement methods to study dynamic behavior in MEMS
JP3224778U (en) Dual beam interference calibration device for laser vibrometer and its calibration method
JP5336921B2 (en) Vibration measuring apparatus and vibration measuring method
US7965394B2 (en) Method and apparatus for identifying dynamic characteristics of a vibratory object
US20130135615A1 (en) Stimulated raman scattering measurement apparatus
CN106767473B (en) Cavity length measuring device for optical resonant cavity
CN111307269B (en) Laser confocal/differential confocal Raman spectrum vibration parameter measuring method
Li et al. Quasi-4D laser diagnostics using an acousto-optic deflector scanning system
Lawrence et al. MEMS characterization using laser Doppler vibrometry
Zhong et al. A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS
Na et al. Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging
WO2023120170A1 (en) Vibration analysis system, vibration analysis device, and vibration analysis method
Ngoi et al. Two-axis-scanning laser Doppler vibrometer for microstructure
CN112729135B (en) Area array frequency sweep distance measuring/thickness measuring device and method with active optical anti-shake function
KR100956853B1 (en) Method and apparatus for fast measurement of 3-dimensional object
Novak et al. Dynamic MEMS measurement using a strobed interferometric system with combined coherence sensing and phase information
CN112731345B (en) Vibration-resistant type area array sweep frequency distance measurement/thickness measurement device and method with active optical anti-shake function
JPH0460538B2 (en)
KR101581534B1 (en) System to detect defect with high speed
Merlijn van Spengen et al. Characterization and failure analysis of MEMS: high resolution optical investigation of small out-of-plane movements and fast vibrations
KR101085061B1 (en) Viration-insensitive interferometer using high-speed camera and continuous phase-scanning method
CN115667841A (en) Method and device for measuring distance
US10436570B1 (en) High speed Michelson interferometer microscope
JP4307321B2 (en) Dynamic shape measuring device
WO2023058710A1 (en) Method and system for acquiring cars spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910884

Country of ref document: EP

Kind code of ref document: A1