JP4307321B2 - Dynamic shape measuring device - Google Patents

Dynamic shape measuring device Download PDF

Info

Publication number
JP4307321B2
JP4307321B2 JP2004145628A JP2004145628A JP4307321B2 JP 4307321 B2 JP4307321 B2 JP 4307321B2 JP 2004145628 A JP2004145628 A JP 2004145628A JP 2004145628 A JP2004145628 A JP 2004145628A JP 4307321 B2 JP4307321 B2 JP 4307321B2
Authority
JP
Japan
Prior art keywords
light
measured
light source
interference fringes
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004145628A
Other languages
Japanese (ja)
Other versions
JP2005326316A (en
Inventor
展弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004145628A priority Critical patent/JP4307321B2/en
Publication of JP2005326316A publication Critical patent/JP2005326316A/en
Application granted granted Critical
Publication of JP4307321B2 publication Critical patent/JP4307321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、可動物の動作性能評価分野、例えばポリゴンミラーの動的形状測定等の変位中の被測定物の表面形状を求める動的形状測定装置に関するものであり、特に可動物の性能評価を行う装置に関する。 The present invention relates to a field of motion performance evaluation of a movable object, for example, a dynamic shape measuring apparatus for obtaining a surface shape of a measured object during displacement such as dynamic shape measurement of a polygon mirror. Relates to the device to perform.

従来から、被測定物の周期運動に同期させてパルス光を被測定物に照射し、被測定物からの反射光と参照光とを干渉させた干渉縞を時間変調することにより被測定物の運動中における変位量をナノメータオーダで測定する技術は提案されている(例えば特許文献1参照)。
特許文献1においては、また、被測定物の運動周期と僅かに異なる周期でパルス光を被測定物に照射し、両者の周期の差異に伴う干渉縞の強度変化を検出することにより被測定物の運動中における変位量をナノメータオーダで測定することが開示されている。
尚、通常の干渉計測における干渉縞は被測定物が静止していると観測されるが、被測定物が動くと干渉縞が消えてしまって測定できなくなるため、上記の測定方法では、被測定物に照射する光をパルス化することによって、被測定物が動いていても干渉縞を観測可能とする。
また共振ミラーの動的形状と共振中のベースに対する角度とを同時に測定する振動物体の動的測定方法および装置も研究されており、この技術はパルス光干渉と位相シフト法、もしくはフーリエ変換法を応用させて測定する。
また、フーリエ変換法を用いた可動物の動的形状測定において、被測定物の非周期運動成分に起因する測定時間の増大、操作性の低下という課題を解決する可動物の動的形状測定装置および方法も研究されている。
さらに、フーリエ変換法を用いた可動物の動的形状測定において、被測定物の形状の符号(形状の凹凸)を明確にしたうえで、形状測定する可動物の動的形状測定装置および方法も研究されている。
特許第3150239号
Conventionally, the object to be measured is irradiated with pulsed light in synchronization with the periodic movement of the object to be measured, and the interference fringes obtained by causing interference between the reflected light from the object to be measured and the reference light are time-modulated. A technique for measuring the amount of displacement during movement on the order of nanometers has been proposed (see, for example, Patent Document 1).
In Patent Document 1, the object to be measured is also detected by irradiating the object to be measured with a period slightly different from the movement period of the object to be measured, and detecting the change in the intensity of the interference fringes accompanying the difference between the periods. It is disclosed that the amount of displacement during the movement of the robot is measured on the order of nanometers.
The interference fringes in normal interference measurement are observed when the object to be measured is stationary. However, if the object to be measured moves, the interference fringes disappear and measurement is not possible. By pulsing the light applied to the object, the interference fringes can be observed even when the object to be measured is moving.
In addition, a dynamic measuring method and apparatus for a vibrating object that simultaneously measures the dynamic shape of the resonant mirror and the angle with respect to the resonating base have been studied. This technology uses pulsed light interference and phase shift method or Fourier transform method. Apply and measure.
Moreover, in the dynamic shape measurement of movable objects using the Fourier transform method, the dynamic shape measurement device for movable objects solves the problems of increase in measurement time and decrease in operability due to non-periodic motion components of the object to be measured. And methods have also been studied.
Furthermore, in the dynamic shape measurement of a movable object using the Fourier transform method, the dynamic shape measurement apparatus and method for the movable object for measuring the shape after clarifying the sign (shape unevenness) of the shape of the object to be measured are also provided. It has been studied.
Japanese Patent No. 3150239

図16は本発明に関連する測定対象となる可動物の一例で、レーザプリンタやデジタルコピー機といった画像機器の書き込み光学系において使用されるポリゴンミラーである。
ポリゴンミラー1は軸心1bを軸にして高速で回転しながら光源からポリゴンミラー面(図の1a)に照射された光ビームを高速走査する。画像機器に要求される書き込み速度に応じてポリゴンミラーの回転数が決められる。
高速書き込みが要求され、高速回転が要求される近年のポリゴンミラーにおいては、回転に伴う熱や遠心力の影響等によりミラー面が変形を起こすことがある。変形した面により反射されたビームは所定の位置に結像しなくなるため、高速回転中のポリゴンミラーの面形状を正確に測定および評価したいという要求がある。
静止状態のポリゴンミラーの面形状測定には干渉計が使えるが、ミラー面が回転すると干渉縞が観察できなくなるため、回転中のポリゴンミラー面形状を測定することはできない。
ポリゴンミラーのような可動物の動的形状をナノメータオーダで測定可能な方法として、特許文献1に開示された微小周期振動変位の測定装置がある。この装置では被測定物に入力する信号の周期と光源をパルス発光させるための信号の周期との間にわずかな差を与え、被測定物の表面変位を前記両周期の差に基づくビート信号として測定することを特徴としている。
また、特許文献1の参考例に示されている方法では、信号に応じて変位する被測定物に与える信号と同期させて光源を瞬間的に発生させることにより、表面変位を静止画像データとして取り込んで測定する。
しかしながら、上記測定法においては、被測定物の動作速度に対するパルス光の時間幅が明確化されていないため、被測定物の動作速度がパルス光の時間幅に対して速くなったとき干渉縞が観測できなくなるという不具合がある。
フェムト秒パルス光源等の超短パルス光源を用いると多くの可動物の動作速度より十分短い時間幅のパルス光が得られるため干渉縞が観測できるが、被測定物によっては必要以上のパルス光の時間幅を用いていることになり、その分余分なコストが掛ってしまう。
同様のことが、現在研究されている上述した振動物体の動的測定方法および装置、可動物の動的形状測定装置および方法、および可動物の動的形状測定装置および方法でもいえる。
FIG. 16 shows an example of a movable object to be measured related to the present invention, which is a polygon mirror used in a writing optical system of an image device such as a laser printer or a digital copier.
The polygon mirror 1 rotates at high speed around the axis 1b, and scans the light beam irradiated from the light source onto the polygon mirror surface (1a in the figure) at high speed. The rotation speed of the polygon mirror is determined according to the writing speed required for the image equipment.
In recent polygon mirrors that require high-speed writing and high-speed rotation, the mirror surface may be deformed due to the influence of heat and centrifugal force accompanying rotation. Since the beam reflected by the deformed surface does not form an image at a predetermined position, there is a demand for accurately measuring and evaluating the surface shape of the polygon mirror during high-speed rotation.
An interferometer can be used to measure the surface shape of a polygon mirror in a stationary state. However, since the interference fringes cannot be observed when the mirror surface rotates, the polygon mirror surface shape during rotation cannot be measured.
As a method capable of measuring the dynamic shape of a movable object such as a polygon mirror on the order of nanometers, there is a measurement device for minute periodic vibration displacement disclosed in Patent Document 1. In this device, a slight difference is given between the period of the signal input to the object to be measured and the period of the signal for causing the light source to emit pulses, and the surface displacement of the object to be measured is used as a beat signal based on the difference between the two periods. It is characterized by measuring.
In the method shown in the reference example of Patent Document 1, surface displacement is captured as still image data by instantaneously generating a light source in synchronization with a signal given to an object to be measured that is displaced according to the signal. Measure with
However, in the above measurement method, since the time width of the pulsed light with respect to the operating speed of the object to be measured is not clarified, interference fringes are generated when the operating speed of the object to be measured becomes faster than the time width of the pulsed light. There is a defect that it becomes impossible to observe.
When an ultrashort pulse light source such as a femtosecond pulse light source is used, interference light can be observed because pulse light with a time width sufficiently shorter than the operating speed of many movable objects can be observed. The time width is used, and an extra cost is required accordingly.
The same applies to the above-described dynamic measurement method and apparatus for a vibrating object, dynamic shape measurement apparatus and method for a movable object, and dynamic shape measurement apparatus and method for a movable object that are currently being studied.

図17は被測定面の微小な変位を説明する概略図である。図18は図17と異なる被測定面の微小な変位を説明する概略図である。光源の発光時間、あるいは受光手段の受光時間内においても被測定面は微小に変位しており、発光、あるいは受光を開始するタイミングによって、その変位の仕方が異なる。
具体的に、図17および図18に変位の仕方の相違を示すが、図17では被測定面1a、基準軸(例えば照射光学系光軸)2で、この基準軸2に対して被測定面1aが垂直になったとき(図の実線1a)の変位量を0とする。
図17の上方への変位(図の点線1a’)を正の変位、下方への変位(図の一点鎖線1a’’)を負の変位として、発光、あるいは受光時間内における被測定面1aの変位量をAとしている。
図17では、被測定面1aが基準軸2に対して垂直になったとき(変位量0)に対して、被測定面1aが均等な変位量±A/2だけ変位している。一方、図18では、変位量0に対して正の方向にAだけ変位し、負の方向への変位が0となっている。
そのように発光、受光を開始するタイミングによって基準に対する被測定面の変位の仕方が異なり、変位の仕方の相違は参照面に対する被測定面の角度の相違となる。
参照面に対する被測定面の角度は干渉縞の間隔に影響し、干渉縞間隔が干渉縞を受光する手段における画素の整数倍となったとき最も正確な測定値が得られる。したがって干渉縞間隔が受光手段における画素の整数倍となるようなタイミングで、光源の発光、あるいは受光手段の受光を開始すると常に正確な測定ができる。
被測定物が略周期変位する物体の場合、変位の周期に同期をとって光を照射するが、変位の周期に誤差がある場合、すなわち周期が変動する場合、測定を実施することが困難になる。
本発明は、上述した実情を考慮して、光源の発光時間中、あるいは受光手段の受光時間中における被測定物の変位量が光源波長の半分以下になるような時間幅で、被測定物にパルス光を照射、あるいは前記干渉縞を受光することにより、動作中の被測定物の形状を反映した干渉縞を取得し、取得した干渉縞から被測定物形状を求める。それにより余分なコストを掛けることなく、確実に被測定物の動的形状を測定可能とする動的形状測定装置を提供することにある。
FIG. 17 is a schematic diagram for explaining a minute displacement of the surface to be measured. FIG. 18 is a schematic diagram for explaining a minute displacement of the surface to be measured different from FIG. Even during the light emission time of the light source or the light reception time of the light receiving means, the surface to be measured is slightly displaced, and the manner of displacement varies depending on the timing of starting light emission or light reception.
Specifically, FIG. 17 and FIG. 18 show the difference in displacement. In FIG. 17, the surface to be measured 1 a and the reference axis (for example, the irradiation optical system optical axis) 2, the surface to be measured with respect to the reference axis 2. The displacement amount when 1a becomes vertical (solid line 1a in the figure) is set to zero.
Assuming that the upward displacement (dotted line 1a ′ in FIG. 17) is a positive displacement and the downward displacement (dashed line 1a ″ in FIG. 17) is a negative displacement, The amount of displacement is A.
In FIG. 17, when the measured surface 1a is perpendicular to the reference axis 2 (displacement amount 0), the measured surface 1a is displaced by an equal displacement amount ± A / 2. On the other hand, in FIG. 18, it is displaced by A in the positive direction with respect to the displacement amount 0, and the displacement in the negative direction is zero.
As described above, the method of displacing the surface to be measured with respect to the reference differs depending on the timing at which light emission and light reception are started.
The angle of the surface to be measured with respect to the reference surface affects the interval between the interference fringes, and the most accurate measurement value can be obtained when the interference fringe interval is an integer multiple of the pixels in the means for receiving the interference fringes. Therefore, accurate measurement can always be performed when light emission from the light source or light reception by the light receiving means is started at a timing such that the interference fringe interval becomes an integral multiple of the pixels in the light receiving means.
When the object to be measured is an object that is displaced approximately periodically, light is emitted in synchronization with the displacement period, but if there is an error in the displacement period, that is, if the period fluctuates, it is difficult to perform measurement. Become.
In consideration of the above-described circumstances, the present invention provides a measurement object with a time width such that the amount of displacement of the measurement object during the light emission time of the light source or the light reception time of the light receiving means is less than half of the light source wavelength. By irradiating pulsed light or receiving the interference fringes, an interference fringe reflecting the shape of the object under measurement in operation is acquired, and the shape of the object to be measured is obtained from the acquired interference fringes. Accordingly, an object of the present invention is to provide a dynamic shape measuring apparatus that can reliably measure the dynamic shape of an object to be measured without incurring extra costs.

上記の課題を解決するために、請求項1に記載の発明は、変位中の被測定物に光を照射する第1の光源と、この第1の光源からの光を前記被測定物に照射するための照射光学系と、前記被測定物の変位とこの被測定物への光の照射とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、この干渉光学系による干渉縞を受光する受光手段と、前記干渉縞を受光面上で結像させる結像手段と、前記受光手段にて検出した前記干渉光学系による干渉縞から前記被測定物の表面形状を求める演算器とから構成される変位中の被測定物の表面形状を求める動的形状測定装置において、前記光源の発光時間中、あるいは前記受光手段の受光時間中における前記被測定物の変位量が前記光源の波長の半分以下になるような時間幅により、前記被測定物にパルス光を照射、あるいは前記干渉縞を受光し、得られる干渉縞から変位中の前記被測定物の形状輪郭を求めると共に、前記受光手段の受光面上における干渉縞の間隔が前記受光手段の画素の整数倍となるときの被測定面角度を基準に前記第1の光源の発光時間中、あるいは前記受光手段の受光時間中における被測定面の角度変化が略均等になるように、前記第1の光源の発光、あるいは前記受光手段の受光を開始させるように構成した動的形状測定装置を特徴とする。 In order to solve the above-described problem, the invention according to claim 1 is directed to a first light source that irradiates light to the object under displacement, and to irradiate the object to be measured with light from the first light source. An irradiation optical system, timing adjustment means for adjusting the timing of displacement of the object to be measured and light irradiation to the object to be measured, and reflected light from the object to be measured and reference light to interfere with each other Interference optical system, light receiving means for receiving interference fringes by the interference optical system, image forming means for imaging the interference fringes on a light receiving surface, and interference by the interference optical system detected by the light receiving means In a dynamic shape measuring apparatus for determining the surface shape of the object under displacement, comprising a computing unit for determining the surface shape of the object to be measured from fringes, during the light emission time of the light source or the light reception time of the light receiving means The amount of displacement of the object to be measured is the light By half to become such time width or less of the wavelength, the irradiation of the pulsed light to the measurement object, or receives the interference fringes, determine the shape contour of the object to be measured in the displacement from the resulting interference fringes Rutotomoni The light receiving time of the first light source or the light receiving time of the light receiving means with reference to the measured surface angle when the interval between the interference fringes on the light receiving surface of the light receiving means is an integral multiple of the pixels of the light receiving means The dynamic shape measuring apparatus is configured to start light emission of the first light source or light reception of the light receiving means so that the change in angle of the surface to be measured is substantially uniform .

また、請求項に記載の発明は、被測定面の照射光学系光軸に対する角度を検知するために前記被測定物に光を照射するための第2の光源と、前記被測定物により反射された前記第2の光源からの光を受光するための第2の受光手段と、前記第2の受光手段の出力に基づき干渉縞を作るための第1の光源から前記被測定物に光を照射するタイミング、あるいは干渉縞を受光する第1の受光手段により干渉縞を受光するタイミングを計算するための第2の演算器と、を更に備えた構成である請求項記載の動的形状測定装置を特徴とする。
また、請求項3に記載の発明は、前記第1の光源と前記第2の光源とで波長が異なるものとし、前記被測定物からの反射光の前記被測定物から前記第1の受光手段までの光路中に前記第1の光源の波長に近い光以外をカットするバンドパスフィルタを設けた請求項2記載の動的形状測定装置を特徴とする。
また、請求項に記載の発明は、前記第1の光源と前記第2の光源とで偏光方向を異なるものとし、前記被測定物からの反射光の光路中の、前記被測定物から前記第1の受光手段までの間の部分に前記第1の光源の偏光方向に近い光以外をカットする偏光フィルタを設けた請求項記載の動的形状測定装置を特徴とする。
また、請求項に記載の発明は、前記被測定物の変位と前記被測定物への光の照射とのタイミング調整手段に前記第1の光源から前記被測定物までの光路内に設置した遅延光学系を用いる請求項記載の動的形状測定装置を特徴とする。
また、請求項に記載の発明は、前記遅延光学系に光ファイバを用いた請求項記載の動的形状測定装置を特徴とする。
According to a second aspect of the present invention, there is provided a second light source for irradiating the object to be measured to detect an angle of the surface to be measured with respect to the optical axis of the irradiation optical system, and reflected by the object to be measured. The second light receiving means for receiving the light from the second light source and the first light source for producing interference fringes based on the output of the second light receiving means to the light to be measured dynamic shape measurement of the irradiation timing or the first and second operator for calculating a timing for receiving the interference fringe by the light receiving unit, further claim 1, wherein a configuration in which a for receiving interference fringes, Features the device.
According to a third aspect of the present invention, the first light source and the second light source have different wavelengths, and the first light receiving means from the measured object of reflected light from the measured object. The dynamic shape measuring apparatus according to claim 2, wherein a band-pass filter that cuts light other than light having a wavelength close to that of the first light source is provided in the optical path .
According to a fourth aspect of the present invention, the first light source and the second light source have different polarization directions, and the measurement object is in the optical path of the reflected light from the measurement object. The dynamic shape measuring apparatus according to claim 2 , wherein a polarizing filter that cuts light other than light close to a polarization direction of the first light source is provided in a portion between the first light receiving unit and the first light receiving unit .
According to a fifth aspect of the present invention, the timing adjustment means for the displacement of the object to be measured and the irradiation of light to the object to be measured is installed in the optical path from the first light source to the object to be measured. wherein the dynamic shape measuring apparatus according to claim 1, wherein using the delay optical system.
The invention described in claim 6 is characterized in that the dynamic shape measuring apparatus according to claim 5 uses an optical fiber for the delay optical system.

本発明によれば、光源の発光時間内での被測定物の変位量が、光源波長の半分以下になるように、被測定物の変位速度に合わせて前記光源の発光の時間幅を設定することにより、被測定物の動作速度に対して必要なパルス光の時間幅を明確化し、それにより余分なコストを掛けることなく、確実に干渉縞を観測でき、動的形状輪郭を測定可能とすることができる。   According to the present invention, the time width of light emission of the light source is set in accordance with the displacement speed of the object to be measured so that the amount of displacement of the object to be measured within the light emission time of the light source is equal to or less than half of the light source wavelength. This makes it possible to clarify the time width of the required pulsed light with respect to the operating speed of the object to be measured, thereby making it possible to reliably observe interference fringes and measure the dynamic shape contour without incurring extra costs. be able to.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明による動的形状測定装置の第1の実施形態の構成を示す概略図である。図1において、被測定物であるポリゴンミラー1はパルス発生器3からの所定周波数のパルス信号を受けてドライバ4により回転駆動される。
所定のパルス幅のパルス光を発光する光源(第1の光源)である半導体レーザ5はパルス発生器3からの信号をレーザドライバ6に外部トリガとして入力し、所定の発光周波数にて発光する。半導体レーザ5からの光の強度を調整するためのNDフィルタ7およびビームエキスパンダ8が設けられる。
ビームエキスパンダ8にて拡大された光の一部はビームスプリッタ9を透過し、一部はビームスプリッタ9で反射される。ビームスプリッタ9を透過した光は、被測定物であるポリゴンミラー1に照射される。
ポリゴンミラー(被測定物)1において反射された光は到来した光路を逆行して、ビームスプリッタ9にて反射され、結像レンズ10を介してCCDカメラ11に到達する。
一方、ビームスプリッタ9にて反射された光は、参照ミラー12に照射され、参照ミラー12にて反射された光は到来した光路を逆行して、ビームスプリッタ9を透過して、結像レンズ10を介してCCD11に到達する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a first embodiment of a dynamic shape measuring apparatus according to the present invention. In FIG. 1, a polygon mirror 1 which is an object to be measured is rotated by a driver 4 in response to a pulse signal having a predetermined frequency from a pulse generator 3.
A semiconductor laser 5, which is a light source (first light source) that emits pulsed light having a predetermined pulse width, inputs a signal from the pulse generator 3 to the laser driver 6 as an external trigger, and emits light at a predetermined emission frequency. An ND filter 7 and a beam expander 8 for adjusting the intensity of light from the semiconductor laser 5 are provided.
A part of the light expanded by the beam expander 8 passes through the beam splitter 9 and a part thereof is reflected by the beam splitter 9. The light that has passed through the beam splitter 9 is applied to the polygon mirror 1 that is the object to be measured.
The light reflected by the polygon mirror (object to be measured) 1 travels back along the incoming optical path, is reflected by the beam splitter 9, and reaches the CCD camera 11 via the imaging lens 10.
On the other hand, the light reflected by the beam splitter 9 is applied to the reference mirror 12, and the light reflected by the reference mirror 12 travels back through the optical path that has arrived, passes through the beam splitter 9, and forms the imaging lens 10. To the CCD 11 via

ポリゴンミラー1にて反射された物体光と参照ミラー12にて反射された参照光について、物体光の光路長と参照光の光路長との差を光源である半導体レーザ(第1の光源)5のコヒーレンス長以下に設定しておき、物体光と参照光の光軸を略一致させれば、両者は干渉を起こして干渉縞が発生する。
結像レンズ10は被測定物1の像がCCDカメラ11の撮像面上で結像するように、その位置が調整されている。物体光と参照光との間で発生した干渉縞はCCDカメラ11にて撮像される。
この干渉縞はフレームグラバ13にて捕捉されてコンピュータ14に転送され、コンピュータ14のメモリに記憶されるとともにコンピュータのモニタに表示される。なお、符号15はCCDドライバである。
CCDカメラ11にて撮像される干渉縞からポリゴンミラー面形状輪郭を求めるためには、例えば、ポリゴンミラー面と参照ミラー面との間に所定量の傾斜を与えて干渉縞に空間的な変調をかけてフーリエ変換法を実行する演算器(図示せず)を使用する。
または、参照ミラー12にこの参照ミラー12を光軸方向に微動させるためのピエゾアクチュエータを取り付け、干渉縞に時間変調をかけて位相シフト法を実行する演算器(図示せず)を使用すればよい。
For the object light reflected by the polygon mirror 1 and the reference light reflected by the reference mirror 12, the difference between the optical path length of the object light and the optical path length of the reference light is used as a light source semiconductor laser (first light source) 5 If the optical axes of the object beam and the reference beam are substantially coincided with each other, they cause interference and generate interference fringes.
The position of the imaging lens 10 is adjusted so that the image of the DUT 1 is formed on the imaging surface of the CCD camera 11. Interference fringes generated between the object light and the reference light are imaged by the CCD camera 11.
The interference fringes are captured by the frame grabber 13, transferred to the computer 14, stored in the memory of the computer 14, and displayed on the computer monitor. Reference numeral 15 denotes a CCD driver.
In order to obtain the polygon mirror surface shape contour from the interference fringes picked up by the CCD camera 11, for example, a predetermined amount of inclination is given between the polygon mirror surface and the reference mirror surface to spatially modulate the interference fringes. An arithmetic unit (not shown) that executes the Fourier transform method is used.
Alternatively, a piezo actuator for finely moving the reference mirror 12 in the direction of the optical axis may be attached to the reference mirror 12, and an arithmetic unit (not shown) that performs phase modulation by time-modulating the interference fringes may be used. .

図2はポリゴンミラードライバに供給するパルス電圧信号と半導体レーザドライバに供給するパルス電圧信号とのタイミングを示す図である。共通のパルス発生器3から両ドライバに信号を供給することにより、ポリゴンミラー1の回転と半導体レーザ5の発光とは同期が取れる。
同じパルス発生器3の異なるチャンネルからそれぞれのドライバに信号を供給する場合、半導体レーザ用信号の周波数をポリゴンミラー用信号の周波数と一致させるか、もしくは約数に設定し、チャンネル間での信号の位相を調整すれば、前記回転と発光との間で、同期を取ったうえでタイミング調整ができる。
信号のタイミング調整により、ポリゴンミラー1に光が照射された瞬間におけるポリゴンミラー面の測定光学系光軸に対する角度が調整できるため、ポリゴンミラー面が測定光学系の光軸に対して略垂直になるように信号のタイミングを調整すれば、ポリゴンミラー1からの反射光と参照光とが干渉を起こし干渉縞が発生し、CCDカメラ11にて干渉縞を撮像できる。
半導体レーザ5の発光周波数がCCDカメラ11の撮像周波数より低い場合は、半導体レーザドライバ6への供給信号と同期の取れた同じ周波数の信号をCCDドライバ15とフレームグラバ13に供給して外部トリガを掛けるとよく、その場合CCDカメラ11の露光時間中に半導体レーザ5が発光するようにタイミングを調整する。
半導体レーザ5の発光周波数がCCDカメラ11の撮像周波数より高い場合は、CCDカメラ11の内部同期で撮像を行えばよいが、その場合は半導体レーザ5の発光周波数をCCDカメラ11の撮像周波数で割った商だけの回数の平均化強度画像が得られることになる。
半導体レーザ5の発光の時間幅とポリゴンミラー1の回転速度について、回転に伴うポリゴンミラー面の光学系光軸方向への変位速度をV(x)とし、発光の時間幅をtとすると、発光時間中にポリゴンミラー面は光学系光軸方向にV(x)・tだけ変位する。
xはポリゴンミラー面の長手方向における位置を表し、ポリゴンミラー面の中心を0とし、ミラー面の最端を±xmaxとすると、V(0)はゼロであり、V(±xmax)は最大となる。
FIG. 2 is a diagram showing the timing of the pulse voltage signal supplied to the polygon mirror driver and the pulse voltage signal supplied to the semiconductor laser driver. By supplying a signal to both drivers from the common pulse generator 3, the rotation of the polygon mirror 1 and the light emission of the semiconductor laser 5 can be synchronized.
When signals are supplied to the respective drivers from different channels of the same pulse generator 3, the frequency of the signal for the semiconductor laser is made to coincide with the frequency of the signal for the polygon mirror, or set to a divisor, and the signal between the channels is If the phase is adjusted, the timing can be adjusted after synchronization between the rotation and the light emission.
By adjusting the timing of the signal, the angle of the polygon mirror surface with respect to the optical axis of the measurement optical system at the moment when the polygon mirror 1 is irradiated with light can be adjusted, so that the polygon mirror surface is substantially perpendicular to the optical axis of the measurement optical system. by adjusting the timing of the signal as a reflected light and the reference light interference fringe Shi may cause interference occurs from the polygon mirror 1 can image the interference pattern at the CCD camera 11.
When the emission frequency of the semiconductor laser 5 is lower than the imaging frequency of the CCD camera 11, a signal having the same frequency synchronized with the supply signal to the semiconductor laser driver 6 is supplied to the CCD driver 15 and the frame grabber 13 to trigger an external trigger. In this case, the timing is adjusted so that the semiconductor laser 5 emits light during the exposure time of the CCD camera 11.
When the emission frequency of the semiconductor laser 5 is higher than the imaging frequency of the CCD camera 11, the imaging may be performed in synchronization with the CCD camera 11. In this case, the emission frequency of the semiconductor laser 5 is divided by the imaging frequency of the CCD camera 11. As a result, an averaged intensity image is obtained as many times as the quotient.
Regarding the time width of light emission of the semiconductor laser 5 and the rotation speed of the polygon mirror 1, assuming that the displacement speed in the optical axis direction of the polygon mirror surface accompanying the rotation is V (x) and the light emission time width is t, light emission During the time, the polygon mirror surface is displaced by V (x) · t in the optical system optical axis direction.
x represents the position in the longitudinal direction of the polygon mirror surface, where the center of the polygon mirror surface is 0 and the extreme end of the mirror surface is ± xmax, V (0) is zero and V (± xmax) is the maximum. Become.

図3は半導体レーザの発光の時間幅がポリゴンミラー面の光学系光軸方向への変位速度に対して十分短いとき得られる干渉縞を示す模式図である。図4は発光時間幅が変位速度に対して十分短くなっていないときに得られる干渉縞画像を示す模式図である。
図3および図4において、符号16で表したモニタ画面において、1aは図16と同様なミラー面、1bは回転軸で、1dは干渉縞を示している。図4において、ポリゴンミラー面上の中心付近の光軸方向への変位速度が小さい領域では干渉縞が観察される。
しかし、ポリゴンミラー面の長手方向において端に近づくにつれ変位速度が速くなり、それに伴い干渉縞1dのコントラストが低下してしまい(1d’参照)、やがて正常に観察できなくなることを示している。正常に干渉縞が観察できないと形状輪郭を求めることはできない。
図5は光学系光軸に対してポリゴンミラー面が略垂直になったとき得られる干渉縞のポリゴンミラー長手方向に対する断面強度分布のシミュレーション例を示す図である。図6は角度が90度から僅かにずれたときの断面強度分布のシミュレーション例を示す図である。
ポリゴンミラー1は回転中に光学系光軸に対する角度を変化させるため、光学系光軸に対してポリゴンミラー面が垂直に近いときの干渉縞の半導体レーザ発光時間中における合成が干渉縞画像として観察されることになる。
図7は半導体レーザ発光時間中における合成干渉縞の断面強度分布のシミュレーション例を示す図である。図8はポリゴンミラーの長手方向の最端部分において、光源発光時間中におけるポリゴンミラー面の変位が光源波長の半分より小さいときの合成干渉縞の断面強度分布のシミュレーション例を示す図である。
FIG. 3 is a schematic diagram showing interference fringes obtained when the time width of light emission of the semiconductor laser is sufficiently shorter than the displacement speed of the polygon mirror surface in the optical system optical axis direction. FIG. 4 is a schematic diagram showing an interference fringe image obtained when the light emission time width is not sufficiently short with respect to the displacement speed.
3 and 4, on the monitor screen represented by reference numeral 16, 1a is a mirror surface similar to that in FIG. 16, 1b is a rotation axis, and 1d is an interference fringe. In FIG. 4, interference fringes are observed in a region where the displacement speed in the optical axis direction near the center on the polygon mirror surface is small.
However, the displacement speed increases as approaching the end in the longitudinal direction of the polygon mirror surface, and accordingly, the contrast of the interference fringe 1d is lowered (see 1d ′), and it becomes impossible to observe normally. If the interference fringes cannot be observed normally, the shape contour cannot be obtained.
FIG. 5 is a diagram showing a simulation example of the cross-sectional intensity distribution in the longitudinal direction of the polygon mirror of the interference fringes obtained when the polygon mirror surface is substantially perpendicular to the optical axis of the optical system. FIG. 6 is a diagram showing a simulation example of the cross-sectional intensity distribution when the angle is slightly deviated from 90 degrees.
Since the polygon mirror 1 changes the angle with respect to the optical axis of the optical system during rotation, the synthesis of the interference fringes during the semiconductor laser emission time when the polygon mirror surface is nearly perpendicular to the optical axis of the optical system is observed as an interference fringe image. Will be.
FIG. 7 is a diagram showing a simulation example of the cross-sectional intensity distribution of the synthetic interference fringes during the semiconductor laser emission time. FIG. 8 is a diagram showing a simulation example of the cross-sectional intensity distribution of the synthetic interference fringe when the displacement of the polygon mirror surface during the light source emission time is smaller than half of the light source wavelength at the end portion in the longitudinal direction of the polygon mirror.

図9は半導体レーザ発光時間中におけるポリゴンミラー面の変位が光源波長の半分より大きいときの合成干渉縞の断面強度分布のシミュレーション例を示す図である。
しかし、図9におけるポリゴンミラー1の端部のように半導体レーザ発光時間中におけるポリゴンミラー面の変位が半導体レーザ5の波長の半分より大きくなったとき干渉縞のコントラストが失われる。
そのためポリゴンミラー1の仕様から最高速度Vmaxを求め、次の(1)式を満足するようなパルス発光時間幅を有する半導体レーザを、光源として用いればよい。
Vmax・t<λ/2・・・・(1)
光源には、半導体レーザ以外でパルス光を発光するものを用いてもよいし、光源にHe―NeレーザなどのCW光を用い、それを回転チョッパなどの外部パルス変調器で変調して所定時間幅のパルス光を得てもよい。
また、CW光源を用い、CCDカメラの露光時間を調整することにより、光源のパルス発光時間幅を調整することと同様の効果を得てもよい。その場合(1)式におけるtはCCDカメラの露光時間に相当する。
フーリエ変換法のように空間的に変調した干渉縞を1ショット画像として収録し、被測定物1の形状を求める測定法では、干渉縞の間隔がCCDカメラ等の受光手段の画素の整数倍のとき最も正確な測定値が得られる。例えば干渉縞が3.5画素に1本観察されるときより3画素に1本観察されるときのほうが正確な測定結果が得られる。
FIG. 9 is a diagram showing a simulation example of the sectional intensity distribution of the synthetic interference fringes when the displacement of the polygon mirror surface during the semiconductor laser emission time is larger than half of the light source wavelength.
However, the contrast of the interference fringes is lost when the displacement of the polygon mirror surface during the semiconductor laser emission time becomes larger than half the wavelength of the semiconductor laser 5 as in the end portion of the polygon mirror 1 in FIG.
Therefore, the maximum speed Vmax is obtained from the specifications of the polygon mirror 1, and a semiconductor laser having a pulse emission time width that satisfies the following equation (1) may be used as the light source.
Vmax · t <λ / 2 (1)
A light source other than a semiconductor laser that emits pulsed light may be used, or a CW light such as a He-Ne laser is used as a light source, which is modulated by an external pulse modulator such as a rotating chopper for a predetermined time. You may obtain the pulsed light of width.
Further, by using a CW light source and adjusting the exposure time of the CCD camera, the same effect as adjusting the pulse emission time width of the light source may be obtained. In that case, t in equation (1) corresponds to the exposure time of the CCD camera.
In the measurement method in which interference fringes that are spatially modulated as in the Fourier transform method are recorded as a one-shot image and the shape of the DUT 1 is determined, the interval between the interference fringes is an integral multiple of the pixels of the light receiving means such as a CCD camera. Sometimes the most accurate measurement is obtained. For example, a more accurate measurement result can be obtained when one interference fringe is observed per 3.5 pixels than when one interference fringe is observed per 3.5 pixels.

図10は干渉縞間隔が画素の整数倍のときに求めたポリゴンミラーの長手方向断面形状のシミュレーション例を示す図である。図11は干渉縞間隔が画素の整数倍でないときに求めた形状のシミュレーション例を示す図である。
しかし、図10に対して図11に測定誤差が生じている。干渉縞の間隔は被測定物1の反射光の光軸と参照光の光軸との傾きにより決まるため、被測定物1を静止させた状態で干渉縞が画素の整数倍になるように物体反射光と参照光との角度を調整しておき、その後被測定物1を変位させて測定を行うとよい。
しかしながら、図17および図18の例に示したように、被測定物1に照射する光の発光タイミングにより参照光に対する物体反射光の傾きが変わるため、それに応じて干渉縞の間隔が若干変わってしまう。本発明では、誤差が最小になるように、常に図18の状態で測定する。
例えばポリゴンミラー1を静止させた状態でほぼ照射光学系光軸に対して垂直になるようにセットして、そのとき観察される干渉縞間隔がCCD画素の整数倍になるように参照光用のミラーの傾きを調整しておく。その後ポリゴンミラー1を回転させる。
パルス発生器3のチャンネル間位相調整による信号遅延の分解能が要求される第1の光源(半導体レーザ)5のパルス発光時間幅より小さい場合に、ポリゴンミラー1と半導体レーザ5のそれぞれのドライバ4、6にパルス発生器3から信号を供給し、CCD画像のモニタに干渉縞が観察されるまでチャンネル間位相を調整する。
干渉縞が観察されたらチャンネル間位相をさらに微調整し、干渉縞が観察され得るチャンネル間位相の上限と下限を、モニタした干渉縞を見ながら確認し、上限と下限の中心に位相を合わせる。
すると、被測定面1aが照射光学系光軸2に対して垂直になったとき(変位量0)に対して、被測定面1aが基準に対して均等な変位量±A/2だけ変位することになる。したがってそのような状態にしてから干渉縞を収録して測定を行うようにすれば、常に図10の状態で測定ができ、測定誤差を低減することができる。
FIG. 10 is a diagram showing a simulation example of the longitudinal sectional shape of the polygon mirror obtained when the interference fringe interval is an integral multiple of the pixel. FIG. 11 is a diagram showing a simulation example of the shape obtained when the interference fringe interval is not an integer multiple of the pixel.
However, a measurement error occurs in FIG. 11 with respect to FIG. Since the interval between the interference fringes is determined by the inclination between the optical axis of the reflected light of the object to be measured 1 and the optical axis of the reference light, the object so that the interference fringes are an integer multiple of the pixels while the object to be measured 1 is stationary. The angle between the reflected light and the reference light may be adjusted, and then the measurement object 1 may be displaced to perform measurement.
However, as shown in the examples of FIGS. 17 and 18, since the inclination of the object reflected light with respect to the reference light changes depending on the light emission timing of the light irradiating the DUT 1, the interval between the interference fringes slightly changes accordingly. End up. In the present invention, measurement is always performed in the state of FIG. 18 so that the error is minimized.
For example, the polygon mirror 1 is set in a stationary state so as to be substantially perpendicular to the optical axis of the irradiation optical system, and the interference fringe interval observed at that time is an integer multiple of the CCD pixel. Adjust the mirror tilt. Thereafter, the polygon mirror 1 is rotated.
When the resolution of the signal delay by the phase adjustment between the channels of the pulse generator 3 is smaller than the pulse emission time width of the first light source (semiconductor laser) 5, the respective drivers 4 of the polygon mirror 1 and the semiconductor laser 5, 6 is supplied with a signal from the pulse generator 3, and the phase between channels is adjusted until interference fringes are observed on the monitor of the CCD image.
When the interference fringes are observed, the phase between the channels is further finely adjusted, and the upper and lower limits of the inter-channel phase where the interference fringes can be observed are confirmed while observing the monitored interference fringes, and the phases are aligned with the centers of the upper and lower limits.
Then, when the measured surface 1a is perpendicular to the optical axis 2 of the irradiation optical system (displacement amount 0), the measured surface 1a is displaced by a uniform displacement amount ± A / 2 with respect to the reference. It will be. Therefore, if interference fringes are recorded after measurement in such a state, measurement can always be performed in the state of FIG. 10, and measurement errors can be reduced.

図12は本発明による動的形状測定装置の第2の実施の形態の構成を示す概略図である。図12において図1と同じ番号の部品は図1と共通であり、作用も等しい。
図12において、回転中の被測定ポリゴンミラー1にCWレーザ光を照射するための半導体レーザ(第2の光源)17は略平行光7/9を照射する。半導体レーザ17はレーザドライバ18によって駆動される。
半導体レーザ17からの光は回転中のポリゴンミラー1により反射、走査されて、走査された光のうち一部がフォトダイオード(第2の受光手段)19で受光される。フォトダイオード19はポリゴンミラー1の各面により反射された光をパルスとして検出できるように高速で応答するものが望ましい。
変換器20はフォトダイオード19からの出力を電流−電圧変換し、カウンタ21はフォトダイオード19の出力をカウントする。ポリゴンミラー1の回転に伴いフォトダイオード19により検出されるパルス状の信号をカウンタ21でカウントし、所定回数カウントしたのちパルス発生器3にパルス信号を発生させるためのトリガ信号を出力する。
例えば図12のポリゴンミラー1は6面体であるため、6つのパルス信号出力をカウントするたびにパルス発生器3にトリガ信号を出力すればよく、ポリゴンミラー1の回転の数周期で1回の光源パルス発光を行う場合は、それに応じてカウント回数を増やせばよい。
電流−電圧変換した信号はアナログ状であるため、信号にノイズがある場合はフィルタやコンパレータを用いてパルス波形を整形するとよい。ポリゴンミラー1を回転させながらフォトダーオード19の出力によりトリガを掛けて半導体レーザ17を発光させる。
干渉縞が観察できるように、トリガ信号に対する半導体レーザ5の発光の遅延を調整する。干渉縞が観察できたら前述したように、パルス発生器3のチャンネル間位相の調整により遅延量をさらに微調整する。
干渉縞が観察され得る遅延量の上限と下限を、モニタした干渉縞を見ながら確認して、上限と下限の中心に遅延量を合わせると、被測定面1aが照射光学系光軸2に対して垂直になったとき(変位量0)に対して、被測定面1aが対称な変位量±A/2だけ変位することになる。
それによりポリゴンミラー1の回転周波数が変動する場合においても常に図10の状態で測定ができ、測定誤差を低減することができる。
FIG. 12 is a schematic diagram showing the configuration of the second embodiment of the dynamic shape measuring apparatus according to the present invention. In FIG. 12, the parts having the same numbers as those in FIG. 1 are the same as those in FIG.
In FIG. 12, a semiconductor laser (second light source) 17 for irradiating the rotating polygon mirror 1 to be measured with CW laser light irradiates substantially parallel light 7/9. The semiconductor laser 17 is driven by a laser driver 18.
Light from the semiconductor laser 17 is reflected and scanned by the rotating polygon mirror 1, and part of the scanned light is received by a photodiode (second light receiving means) 19. It is desirable that the photodiode 19 responds at a high speed so that light reflected by each surface of the polygon mirror 1 can be detected as a pulse.
The converter 20 performs current-voltage conversion on the output from the photodiode 19, and the counter 21 counts the output of the photodiode 19. A pulse-like signal detected by the photodiode 19 with the rotation of the polygon mirror 1 is counted by the counter 21. After counting a predetermined number of times, a trigger signal for generating a pulse signal is output to the pulse generator 3.
For example, since the polygon mirror 1 in FIG. 12 is a hexahedron, it is only necessary to output a trigger signal to the pulse generator 3 every time six pulse signal outputs are counted. When performing pulsed light emission, the number of counts may be increased accordingly.
Since the current-voltage converted signal is analog, if the signal has noise, the pulse waveform may be shaped using a filter or a comparator. While the polygon mirror 1 is rotated, a trigger is applied by the output of the photodiode 19 to cause the semiconductor laser 17 to emit light.
The delay of light emission of the semiconductor laser 5 with respect to the trigger signal is adjusted so that the interference fringes can be observed. If the interference fringes can be observed, the delay amount is further finely adjusted by adjusting the phase between channels of the pulse generator 3 as described above.
When the upper and lower limits of the delay amount at which the interference fringes can be observed are confirmed while observing the monitored interference fringes, and the delay amount is adjusted to the center between the upper and lower limits, the surface to be measured 1a is positioned with respect to the optical axis 2 of the irradiation optical system. The measured surface 1a is displaced by a symmetrical displacement amount ± A / 2 with respect to the vertical direction (the displacement amount is 0).
As a result, even when the rotational frequency of the polygon mirror 1 fluctuates, measurement can always be performed in the state shown in FIG. 10, and measurement errors can be reduced.

図13は本発明による動的形状測定装置の第3の実施の形態の構成を示す概略図である。図13において図12と同じ番号の部品は図12と共通であり、作用も等しい。
図13において、所定の波長の光のみを透過させる波長フィルタ22が示されている。例えばポリゴンミラー面の形状を測定するための半導体レーザ5の光の波長を635nmとし、ポリゴンミラーの回転周波数変動をモニタするための半導体レーザ17の光の波長を405nmとする。
そこで波長フィルタ22に635nm近傍の波長の光のみを透過させるフィルタを用いると、CCDカメラ11では形状測定のための干渉縞のみが観察される。ノイズ光が防げるため正確な測定が可能となる。
図14は本発明による動的形状測定装置の第4の実施の形態の構成を示す概略図である。図14において図1と同じ番号の部品は図1と共通で作用も同様である。
図14において、第1の光源(半導体レーザ)5からの光を折り返して取り出すためのミラー23が示されている。このミラー23によって取り出された光はミラー24により折り返され、リトロリフレクタ25によって到来した方向に折り返される。
リトロリフレクタ25により折り返された光は、ミラー26、27で反射され、被測定物1に照射する計測光となる。ミラー23からミラー27までの光路の分だけ計測光に時間遅延が与えられる。リトロリフレクタ25を矢印方向に進退させることにより遅延量を連続的に変えられる。
FIG. 13 is a schematic view showing the configuration of the third embodiment of the dynamic shape measuring apparatus according to the present invention. 13, parts having the same numbers as those in FIG. 12 are the same as those in FIG.
FIG. 13 shows a wavelength filter 22 that transmits only light of a predetermined wavelength. For example, the wavelength of the light of the semiconductor laser 5 for measuring the shape of the polygon mirror surface is 635 nm, and the wavelength of the light of the semiconductor laser 17 for monitoring the rotational frequency fluctuation of the polygon mirror is 405 nm.
Therefore, when a filter that transmits only light having a wavelength in the vicinity of 635 nm is used as the wavelength filter 22, only interference fringes for shape measurement are observed in the CCD camera 11. Since noise light can be prevented, accurate measurement is possible.
FIG. 14 is a schematic view showing the configuration of the fourth embodiment of the dynamic shape measuring apparatus according to the present invention. 14, parts having the same numbers as those in FIG. 1 have the same functions as those in FIG.
In FIG. 14, a mirror 23 for turning back and extracting light from the first light source (semiconductor laser) 5 is shown. The light extracted by the mirror 23 is folded back by the mirror 24 and folded in the direction of arrival by the retro-reflector 25.
The light reflected by the retro-reflector 25 is reflected by the mirrors 26 and 27 and becomes measurement light that irradiates the DUT 1. A time delay is given to the measurement light by an amount corresponding to the optical path from the mirror 23 to the mirror 27. The amount of delay can be changed continuously by moving the retro-reflector 25 back and forth in the direction of the arrow.

図15は本発明による動的形状測定装置の第5の実施の形態の構成を示す概略図である。図15において図1と同じ番号の部品は図1と共通で、その作用も同様である。
図15において、光源5からの光を折り返して取り出すためのミラー23が示されており、このミラー23により照射光学系光路から取り出された光はカップリングレンズ29により光ファイバ30に導かれ、カップリングレンズ31により光ファイバ30から取り出され、ミラー27により照射光学系光路に戻される。
ミラー27により反射された光は測定物1に照射される計測光となる。光は1ナノ秒で約30cm進むため、光ファイバ30の長さを指定することにより、被測定物1に照射する光のタイミングをナノ秒水準で調整できる。
光ファイバ端をFCコネクタ等で規格化しておけば、容易に交換ができるため、長さの異なる光ファイバを幾つか用意しておけば、必要な遅延量に合わせた調整が可能となる。
パルス発生器3等を用いた電気的な時間遅延と光ファイバ30による遅延を併用して、電気的な遅延の分解能以下での遅延の調整を、光ファイバ30により補完すれば、より正確なタイミング調整が可能となる。
上述した光ファイバ30と同様の伝送長の考え方で、パルス発生器3と光源(半導体レーザ)ドライバ6とを繋ぐ電気ケーブルの長さによりタイミング調整してもよい。
前述したリトロリフレクタ25による遅延光学系を併用して、大きな遅延量を光ファイバ30により与え、小さな遅延をリトロリフレクタ25により与えれば、高分解能で広いレンジの遅延を、装置を大型化することなく得ることができる。
FIG. 15 is a schematic view showing the configuration of the fifth embodiment of the dynamic shape measuring apparatus according to the present invention. 15, parts having the same numbers as those in FIG. 1 are the same as those in FIG. 1, and their functions are also the same.
FIG. 15 shows a mirror 23 for turning back and extracting light from the light source 5, and the light extracted from the irradiation optical system optical path by this mirror 23 is guided to the optical fiber 30 by the coupling lens 29, It is taken out from the optical fiber 30 by the ring lens 31 and returned to the irradiation optical system optical path by the mirror 27 .
The light reflected by the mirror 27 becomes measurement light irradiated on the measurement object 1. Since the light travels about 30 cm in 1 nanosecond, the timing of the light applied to the DUT 1 can be adjusted at the nanosecond level by specifying the length of the optical fiber 30.
If the end of the optical fiber is standardized with an FC connector or the like, it can be easily replaced. Therefore, if several optical fibers having different lengths are prepared, adjustment according to the required delay amount becomes possible.
More accurate timing can be achieved by using the optical fiber 30 to complement the adjustment of the delay below the resolution of the electrical delay by using the electrical time delay using the pulse generator 3 and the like and the delay by the optical fiber 30 together. Adjustment is possible.
The timing may be adjusted by the length of the electric cable connecting the pulse generator 3 and the light source (semiconductor laser) driver 6 based on the transmission length concept similar to that of the optical fiber 30 described above.
If the delay optical system by the retroreflector 25 described above is used in combination and a large delay amount is given by the optical fiber 30 and a small delay is given by the retroreflector 25, high resolution and a wide range of delay can be achieved without increasing the size of the apparatus. Obtainable.

本発明によれば、照射光学系光軸に対して略垂直となったときの被測定面に対して発光、あるいは受光の時間内での被測定面の変位量が略対称となるタイミングで、被測定物1に光を照射、あるいは被測定物1からの反射光を受光することにより、発光、あるいは受光時間内での被測定面の変位量が正、負均等になるようにし、それにより形状測定結果における誤差を最小にすることができる。
本発明によれば、タイミング調整手段を、被測定物1に光を照射する第1の光源5と、この第1の光源5の被測定物1からの反射光を受光する受光手段19と、前記受光手段19の出力に基づき第1の光源5(干渉縞をつくるための光源)から被測定物1への光の照射タイミングを演算する演算器(カウンタ)21とから構成する。
被測定物1の変位周期変動に追従しながら前記所定タイミングで被測定物1に光を照射、あるいは被測定物1からの反射光を受光することにより、被測定物1の変位周期に変動があってもその影響を抑えて被測定面の照射光学系光軸に対する角度検知を実施可能とすることができる。
本発明によれば、形状測定用の第1の光源5と周波数変動検知用の第2の光源17とで波長が異なるものを用い、被測定物1からの反射光の被測定物1から受光手段9までの光路中に前記形状測定用の光源5の波長に近い光以外をカットするバンドパスフィルタ22を設ける。
それにより前記形状測定用の光源5からの光が受光手段9に入射しないようにする。それにより形状測定のためにはノイズ光となる第2の光源17からの光を干渉縞画像から除去し、より正確な形状測定を実現することができる。
本発明によれば、形状測定用の光源5と周波数変動検知用の第2の光源17とで光の偏光方向を異なる方向とし、被測定物(形状測定用の光源)1からの反射光の光路中の、被測定物1から受光手段9までの間の部分に、前記形状測定用の第1の光源5の偏光方向に近い光以外をカットする偏光フィルタを設ける。
これによって第2の光源17からの光が受光手段に入射しないようにする。それにより形状測定のためにはノイズ光となる第2の光源17からの光を干渉縞画像から除去し、より正確な形状測定を実現することができる。
本発明によれば、第1の光源5から被測定物1の間の光路内に光路長を長くするための光学系を設置し、被測定物に照射する光のタイミングに光路長が長くなった分だけの遅延を与えることにより前記タイミング調整を行う。それにより装置コストを低減することができる。
前述した遅延光学系に光ファイバ30を用いることにより、装置を大型化することなく大きな光学遅延量を得ることができる。
According to the present invention, the displacement of the measured surface within the time of light emission or light reception with respect to the measured surface when substantially perpendicular to the optical axis of the irradiation optical system is substantially symmetric, By irradiating light to the object to be measured 1 or receiving light reflected from the object to be measured 1, the amount of displacement of the surface to be measured within the light emission or light reception time is made positive and negative equal, thereby The error in the shape measurement result can be minimized.
According to the present invention, the timing adjustment means includes a first light source 5 that irradiates light to the object 1 to be measured, and a light receiving means 19 that receives reflected light from the object 1 to be measured by the first light source 5; An arithmetic unit (counter) 21 that calculates the irradiation timing of light from the first light source 5 (light source for generating interference fringes) to the DUT 1 based on the output of the light receiving means 19 is configured.
By irradiating light to the object 1 or receiving reflected light from the object 1 at the predetermined timing while following the displacement period fluctuation of the object 1 to be measured, the displacement period of the object 1 varies. Even if it exists, the influence can be suppressed and the angle detection with respect to the irradiation optical system optical axis of a to-be-measured surface can be implemented.
According to the present invention, the first light source 5 for shape measurement and the second light source 17 for frequency fluctuation detection are used with different wavelengths, and the reflected light from the device under test 1 is received from the device under test 1. A band pass filter 22 for cutting light other than light having a wavelength close to that of the light source 5 for shape measurement is provided in the optical path to the means 9.
Thereby, the light from the light source 5 for shape measurement is prevented from entering the light receiving means 9. Thereby, for shape measurement, light from the second light source 17 that becomes noise light is removed from the interference fringe image, and more accurate shape measurement can be realized.
According to the present invention, the light polarization direction of the light is different between the light source 5 for shape measurement and the second light source 17 for frequency fluctuation detection, and the reflected light from the object to be measured (light source for shape measurement) 1 is reflected. A polarizing filter that cuts light other than light close to the polarization direction of the first light source 5 for shape measurement is provided in a portion between the measured object 1 and the light receiving means 9 in the optical path .
This prevents the light from the second light source 17 from entering the light receiving means. Thereby, for shape measurement, light from the second light source 17 that becomes noise light is removed from the interference fringe image, and more accurate shape measurement can be realized.
According to the present invention, an optical system for increasing the optical path length is installed in the optical path between the first light source 5 and the object to be measured 1, and the optical path length becomes longer at the timing of the light irradiating the object to be measured. The timing adjustment is performed by giving a delay corresponding to that amount. Thereby, the apparatus cost can be reduced.
By using the optical fiber 30 in the delay optical system described above, a large optical delay amount can be obtained without increasing the size of the apparatus.

本発明による動的形状測定装置の第1の実施の形態の構成を示す概略図。Schematic which shows the structure of 1st Embodiment of the dynamic shape measuring apparatus by this invention. ポリゴンミラードライバに供給するパルス電圧信号と半導体レーザドライバに供給するパルス電圧信号とのタイミングを示す図。The figure which shows the timing of the pulse voltage signal supplied to a polygon mirror driver, and the pulse voltage signal supplied to a semiconductor laser driver. 半導体レーザの発光の時間幅がポリゴンミラー面の光学系光軸方向への変位速度に対して十分短いとき得られる干渉縞を示す模式図。The schematic diagram which shows the interference fringe obtained when the time width | variety of light emission of a semiconductor laser is sufficiently short with respect to the displacement speed to the optical system optical axis direction of a polygon mirror surface. 発光時間幅が変位速度に対して十分短くなっていないときに得られる干渉縞画像を示す模式図。The schematic diagram which shows the interference fringe image obtained when the light emission time width is not sufficiently short with respect to the displacement speed. 光学系光軸に対してポリゴンミラー面が略垂直になったとき得られる干渉縞のポリゴンミラー長手方向に対する断面強度分布のシミュレーション例を示す図。The figure which shows the example of a simulation of the cross-sectional intensity distribution with respect to the polygon mirror longitudinal direction of the interference fringe obtained when a polygon mirror surface becomes substantially perpendicular | vertical with respect to an optical system optical axis. 角度が90度から僅かにずれたときの断面強度分布のシミュレーション例を示す図。The figure which shows the example of a simulation of cross-sectional intensity distribution when an angle has shifted | deviated slightly from 90 degree | times. 半導体レーザ発光時間中における合成干渉縞の断面強度分布のシミュレーション例を示す図。The figure which shows the example of a simulation of the cross-sectional intensity distribution of the synthetic | combination interference fringe during semiconductor laser light emission time. ポリゴンミラーの長手方向の最端部分において、光源発光時間中におけるポリゴンミラー面の変位が光源波長の半分より小さいときの合成干渉縞の断面強度分布のシミュレーション例を示す図。The figure which shows the example of a simulation of the cross-sectional intensity | strength distribution of a synthetic | combination interference fringe when the displacement of the polygon mirror surface in light source light emission time is smaller than half of the light source wavelength in the extreme end part of the longitudinal direction of a polygon mirror. 半導体レーザ発光時間中におけるポリゴンミラー面の変位が光源波長の半分より大きいときの合成干渉縞の断面強度分布のシミュレーション例を示す図。The figure which shows the example of a simulation of the cross-sectional intensity distribution of a synthetic | combination interference fringe when the displacement of the polygon mirror surface in a semiconductor laser light emission time is larger than half of a light source wavelength. 干渉縞間隔が画素の整数倍のときに求めたポリゴンミラーの長手方向断面形状のシミュレーション例を示す図。The figure which shows the simulation example of the longitudinal direction cross-sectional shape of the polygon mirror calculated | required when the interference fringe space | interval is an integral multiple of a pixel. 干渉縞間隔が画素の整数倍でないときに求めた形状のシミュレーション例を示す図。The figure which shows the example of a simulation of the shape calculated | required when the interference fringe space | interval is not an integer multiple of a pixel. 本発明による動的形状測定装置の第2の実施の形態の構成を示す概略図。Schematic which shows the structure of 2nd Embodiment of the dynamic shape measuring apparatus by this invention. 本発明による動的形状測定装置の第3の実施の形態の構成を示す概略図。Schematic which shows the structure of 3rd Embodiment of the dynamic shape measuring apparatus by this invention. 本発明による動的形状測定装置の第4の実施の形態の構成を示す概略図。Schematic which shows the structure of 4th Embodiment of the dynamic shape measuring apparatus by this invention. 本発明による動的形状測定装置の第5の実施の形態の構成を示す概略図。Schematic which shows the structure of 5th Embodiment of the dynamic shape measuring apparatus by this invention. 本発明に関連する測定対象となる可動物の一例で、レーザプリンタやデジタルコピー機といった画像機器の書き込み光学系において使用されるポリゴンミラーを示す図。The figure which shows the polygon mirror used in the writing optical system of imaging devices, such as a laser printer and a digital copy machine, in an example of the movable object used as the measuring object relevant to this invention. 被測定面の微小な変位を説明する概略図。Schematic explaining the minute displacement of a to-be-measured surface. 図17と異なる被測定面の微小な変位を説明する概略図。FIG. 18 is a schematic diagram for explaining a minute displacement of a measured surface different from FIG. 17.

符号の説明Explanation of symbols

1 被測定物(ポリゴンミラー)
3 タイミング調整手段(パルス発生器)
5 第1の光源(半導体レーザ)
7 照射光学系(NDフィルタ)
8 照射光学系(ビームエキスパンダ)
9 照射光学系(ビームスプリッタ)
10 結像手段(決像レンズ)
11 受光手段(CCDカメラ)
12 干渉光学系
17 第2の光源(半導体レーザ)
19 第2の受光手段
22 バンドパスフィルタ
30 遅延光学系(タイミング調整手段、光ファイバ)
1 Object to be measured (polygon mirror)
3 Timing adjustment means (pulse generator)
5 First light source (semiconductor laser)
7 Irradiation optical system (ND filter)
8 Irradiation optical system (beam expander)
9 Irradiation optics (beam splitter)
10 Imaging means (resolution lens)
11 Light receiving means (CCD camera)
12 Interferometric optical system 17 Second light source (semiconductor laser)
19 Second light receiving means 22 Band pass filter 30 Delay optical system (timing adjusting means, optical fiber)

Claims (6)

変位中の被測定物に光を照射する第1の光源と、この第1の光源からの光を前記被測定物に照射するための照射光学系と、前記被測定物の変位とこの被測定物への光の照射とのタイミングを調整するタイミング調整手段と、前記被測定物からの反射光と参照光とを干渉させるための干渉光学系と、この干渉光学系による干渉縞を受光する受光手段と、前記干渉縞を受光面上で結像させる結像手段と、前記受光手段にて検出した前記干渉光学系による干渉縞から前記被測定物の表面形状を求める演算器とから構成される変位中の被測定物の表面形状を求める動的形状測定装置において、前記光源の発光時間中、あるいは前記受光手段の受光時間中における前記被測定物の変位量が前記光源の波長の半分以下になるような時間幅により、前記被測定物にパルス光を照射、あるいは前記干渉縞を受光し、得られる干渉縞から変位中の前記被測定物の形状輪郭を求めると共に、前記受光手段の受光面上における干渉縞の間隔が前記受光手段の画素の整数倍となるときの被測定面角度を基準に前記第1の光源の発光時間中、あるいは前記受光手段の受光時間中における被測定面の角度変化が略均等になるように、前記第1の光源の発光、あるいは前記受光手段の受光を開始させるように構成したことを特徴とする動的形状測定装置。 A first light source for irradiating light to the object under displacement, an irradiation optical system for irradiating the object with light from the first light source, a displacement of the object to be measured, and the object to be measured Timing adjustment means for adjusting the timing of light irradiation to the object, an interference optical system for causing the reflected light from the object to be measured and the reference light to interfere, and light reception for receiving interference fringes by the interference optical system Means, an imaging means for forming an image of the interference fringe on the light receiving surface, and an arithmetic unit for obtaining the surface shape of the object to be measured from the interference fringes by the interference optical system detected by the light receiving means. In the dynamic shape measuring apparatus for determining the surface shape of the object under displacement, the amount of displacement of the object measured during the light emission time of the light source or during the light reception time of the light receiving means is less than half of the wavelength of the light source. Depending on the time span Irradiating the pulsed light on an object, or receives the interference fringes, Rutotomoni determined the shape contour of the object to be measured in the displacement from the resulting interference fringes, the spacing of the interference fringes on the light receiving surface of said light receiving means the light The angle change of the measured surface during the light emission time of the first light source or the light receiving time of the light receiving means is made substantially equal with respect to the measured surface angle when it becomes an integer multiple of the pixel of the means, A dynamic shape measuring apparatus configured to start light emission of the first light source or light reception of the light receiving means . 被測定面の照射光学系光軸に対する角度を検知するために前記被測定物に光を照射するための第2の光源と、前記被測定物により反射された前記第2の光源からの光を受光するための第2の受光手段と、前記第2の受光手段の出力に基づき干渉縞を作るための第1の光源から前記被測定物に光を照射するタイミング、あるいは干渉縞を受光する第1の受光手段により干渉縞を受光するタイミングを計算するための第2の演算器と、を更に備えたことを特徴とする請求項記載の動的形状測定装置。 A second light source for irradiating light to said object to be measured in order to detect the angle with respect to the irradiation optical axis of the optical system of the surface to be measured, the light from the second light source reflected by the object to be measured The timing of irradiating the object to be measured from the second light receiving means for receiving light and the first light source for creating interference fringes based on the output of the second light receiving means, or the first light receiving the interference fringes dynamic shape measuring apparatus according to claim 1, wherein the second operator for calculating a timing for receiving the interference fringes by the first receiving means, further comprising a. 前記第1の光源と前記第2の光源とで波長が異なるものとし、前記被測定物からの反射光の前記被測定物から前記第1の受光手段までの光路中に前記第1の光源の波長に近い光以外をカットするバンドパスフィルタを設けたことを特徴とする請求項記載の動的形状測定装置。 It is assumed that the first light source and the second light source have different wavelengths, and the reflected light from the object to be measured is in the optical path from the object to be measured to the first light receiving unit. 3. The dynamic shape measuring apparatus according to claim 2, further comprising a bandpass filter that cuts light other than light having a wavelength close to that of the wavelength. 前記第1の光源と前記第2の光源とで偏光方向を異なるものとし、前記被測定物からの反射光の光路中の、前記被測定物から前記第1の受光手段までの間の部分に前記第1の光源の偏光方向に近い光以外をカットする偏光フィルタを設けたことを特徴とする請求項記載の動的形状測定装置。 The first light source and the second light source have different polarization directions, and in a portion between the measured object and the first light receiving means in the optical path of reflected light from the measured object. The dynamic shape measuring apparatus according to claim 2, further comprising a polarizing filter that cuts light other than light close to a polarization direction of the first light source. 前記被測定物の変位と前記被測定物への光の照射とのタイミング調整手段に前記第1の光源から前記被測定物までの光路内に設置した遅延光学系を用いることを特徴とする請求項記載の動的形状測定装置。 A delay optical system installed in an optical path from the first light source to the object to be measured is used as timing adjustment means for the displacement of the object to be measured and the irradiation of light to the object to be measured. Item 3. The dynamic shape measuring apparatus according to Item 1 . 前記遅延光学系に光ファイバを用いたことを特徴とする請求項記載の動的形状測定装置。 6. The dynamic shape measuring apparatus according to claim 5, wherein an optical fiber is used for the delay optical system.
JP2004145628A 2004-05-14 2004-05-14 Dynamic shape measuring device Expired - Fee Related JP4307321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145628A JP4307321B2 (en) 2004-05-14 2004-05-14 Dynamic shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145628A JP4307321B2 (en) 2004-05-14 2004-05-14 Dynamic shape measuring device

Publications (2)

Publication Number Publication Date
JP2005326316A JP2005326316A (en) 2005-11-24
JP4307321B2 true JP4307321B2 (en) 2009-08-05

Family

ID=35472780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145628A Expired - Fee Related JP4307321B2 (en) 2004-05-14 2004-05-14 Dynamic shape measuring device

Country Status (1)

Country Link
JP (1) JP4307321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240344A (en) * 2006-03-09 2007-09-20 Fujitsu Ltd Dynamic shape measuring method and dynamic shape measuring device
KR101545849B1 (en) * 2014-04-28 2015-08-24 에스엔유 프리시젼 주식회사 Scanning synchronization method in interferometry
JP6799751B2 (en) * 2016-09-28 2020-12-16 パナソニックIpマネジメント株式会社 Imaging device

Also Published As

Publication number Publication date
JP2005326316A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
Rembe et al. Measuring MEMS in motion by laser Doppler vibrometry
US7312876B2 (en) Optical image measuring apparatus
JP5336921B2 (en) Vibration measuring apparatus and vibration measuring method
US20110261347A1 (en) Method for interferometric detection of surfaces
CN110869696B (en) Vibration-resistant white light interference microscope and vibration influence removing method thereof
US7283250B2 (en) Measurement of object deformation with optical profiler
JP6979391B2 (en) Distance measuring device, distance measuring method, and three-dimensional shape measuring device
JP6360051B2 (en) Projection exposure apparatus for microlithography with optical distance measurement system
CN113056650B (en) Method and apparatus for in situ process monitoring
JP4761817B2 (en) Interferometer, Fourier spectrometer
JP2008003597A (en) Scanning microscope for optically measuring an object
US20100085575A1 (en) Method for determining vibration displacement and vibrating frequency and apparatus using the same
JP5514641B2 (en) Laser interference bump measuring instrument
JP4307321B2 (en) Dynamic shape measuring device
Novak et al. Dynamic MEMS measurement using a strobed interferometric system with combined coherence sensing and phase information
CN112731345B (en) Vibration-resistant type area array sweep frequency distance measurement/thickness measurement device and method with active optical anti-shake function
JP6570343B2 (en) Optical coherence tomography, surface emitting laser
JP4468153B2 (en) Terahertz imaging apparatus and terahertz imaging method
KR101085061B1 (en) Viration-insensitive interferometer using high-speed camera and continuous phase-scanning method
JP2006162523A (en) Speed-measuring apparatus and displacement measurement apparatus for periodically movable object
JP2006119099A (en) Device for measuring displacement of periodically movable object
JPH0772005A (en) Apparatus for measuring fine periodic vibration displacement
JP5894464B2 (en) Measuring device
JPH1089930A (en) Method for adjusting focus and form measuring device using it
KR101545491B1 (en) Scanning synchronization method in interferometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees