WO2023120137A1 - Wireless transmission system and electromagnetic wave reflection apparatus - Google Patents

Wireless transmission system and electromagnetic wave reflection apparatus Download PDF

Info

Publication number
WO2023120137A1
WO2023120137A1 PCT/JP2022/044751 JP2022044751W WO2023120137A1 WO 2023120137 A1 WO2023120137 A1 WO 2023120137A1 JP 2022044751 W JP2022044751 W JP 2022044751W WO 2023120137 A1 WO2023120137 A1 WO 2023120137A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
base station
transmission system
wireless transmission
wave reflector
Prior art date
Application number
PCT/JP2022/044751
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 神原
渉 石田
貴洋 北爪
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023120137A1 publication Critical patent/WO2023120137A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/23Combinations of reflecting surfaces with refracting or diffracting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a wireless transmission system and an electromagnetic wave reflector.
  • the 5G mobile communication standard provides a frequency band below 6 GHz called “sub-6” and a 28 GHz band classified as a millimeter wave band.
  • the next-generation 6G mobile communication standard is expected to extend to the sub-terahertz band. By using such a high-frequency band, the communication bandwidth can be greatly expanded, and a large amount of data can be communicated with low delay.
  • Radio waves in the millimeter wave band and sub-terahertz band are highly linear due to their high frequency, have short propagation distances, and have large propagation losses.
  • Indoor facilities such as factories, plants, and commercial facilities, and outdoor facilities such as railways and highways, have obstacles such as various devices and structures, making it difficult to maintain high communication quality.
  • the radio wave propagation environment can be improved by using the electromagnetic wave reflector, the position, size, number, etc. of obstacles differ from facility to facility, and the efficient placement of the electromagnetic wave reflector cannot be determined unconditionally.
  • the object of the present invention is to reduce the dead zone and improve the radio wave propagation environment in a radio transmission system that communicates in the gigahertz band.
  • the maximum gain of the antenna of the base station is 5dBi or more and 30dBi or less
  • the size of the reflecting surface between the base station and the dead zone is 10 cm x 10 cm or more and 3.0 m x 3.0 m.
  • An electromagnetic wave reflector comprising one or more of the following panels is arranged so that the reflection center is at a height of 0.5 m or more from the floor of the facility; A total distance of a straight line connecting the antenna of the base station and the electromagnetic wave reflecting device and a straight line distance connecting the electromagnetic wave reflecting device and the dead zone is 2.5 m or more and 100 m or less.
  • FIG. 1 is a schematic plan view of a facility to which the wireless transmission system of the embodiment is applied;
  • FIG. 1 is a schematic plan view of a facility to which the wireless transmission system of the embodiment is applied;
  • FIG. 4 is a diagram showing the positional relationship among a base station, an electromagnetic wave reflector, and a dead zone;
  • FIG. 2 is a diagram showing an arrangement configuration and received power distribution before installing an electromagnetic wave reflection device in the wireless transmission system of Example 1;
  • FIG. 4 is a diagram showing an arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 1;
  • It is a schematic diagram of the electromagnetic wave reflection apparatus used for calculation. It is a horizontal cross-sectional view of the panel of the electromagnetic wave reflector.
  • FIG. 10 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of the second embodiment;
  • FIG. 10 is a diagram showing the arrangement configuration and received power distribution when the electromagnetic wave reflection device is installed in the wireless transmission system of Example 2;
  • FIG. 10 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of Example 3;
  • FIG. 10 is a diagram showing the arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 3;
  • FIG. 10 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of Example 4;
  • FIG. 11 is a diagram showing the arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 4;
  • FIG. 12 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of Example 5;
  • FIG. 12 is a diagram showing the arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 5;
  • It is a model diagram of an example and a comparative example used in an electromagnetic field simulation in which the number of panels is changed.
  • FIG. 10 is a received power map of an example, comparative example 1, and comparative example 2.
  • FIG. FIG. 10 is a view of a received power map (A) of an example using 30 panels of an electromagnetic wave reflecting device and a received power map (B) of a comparative example 2;
  • FIG. 10 is a diagram of a received power map (A) of an example using 20 panels of the electromagnetic wave reflecting device and a received power map (B) of Comparative Example 2;
  • FIG. 10 is a diagram showing simulation results of Example, Comparative Example 1, and Comparative Example 2 when the number of panels is changed; It is a figure which shows the modification of the panel of an electromagnetic wave reflection apparatus.
  • FIG. 4 is a perspective view of an electromagnetic wave reflector using a hollow panel;
  • FIG. 10 is a perspective view of another electromagnetic wave reflector using a hollow panel;
  • Figure 6B illustrates the reflectivity of the hollow panel and the flat panel of Figure 6B;
  • FIG. 4 is a diagram showing an analysis space of reflection characteristics;
  • FIG. 4 is a diagram showing an analysis space of reflection characteristics; This is a model of a hollow panel used for analysis of reflection characteristics.
  • FIG. 12 is a diagram showing reflection properties of the hollow panel of Example 11;
  • FIG. 12 is a diagram showing reflection properties of the hollow panel of Example 12;
  • FIG. 13 is a diagram showing reflection properties of the hollow panel of Example 13;
  • FIG. 10 is a diagram showing reflection properties of the hollow panel of Example 14;
  • FIG. 12 is a diagram showing the reflection characteristics of the flat panel of Example 15;
  • FIG. 20 is a diagram showing reflection characteristics of the flat panel of Example 16;
  • FIG. 12 is a diagram showing the reflection characteristics of the flat panel of Example 17;
  • FIG. 1 is a schematic plan view of the interior of a facility to which the wireless transmission system 1 of the embodiment is applied.
  • FIG. 1A shows the state before the electromagnetic wave reflecting device 20 is installed
  • FIG. 1B shows the state after the electromagnetic wave reflecting device 20 is installed.
  • production facilities such as factories and plants are assumed in FIG. 1, the facilities are not limited to indoor facilities, and include outdoor facilities such as railways and highways.
  • production equipment 14 In the production facility shown in Fig. 1, there are structures 12 such as storage racks, racks, and manufacturing machines, and production equipment 14 such as automatic transport devices, robot arms, and assembly devices.
  • production equipment 14 also includes structures 12 that participate in production and transmit and receive radio waves to and from the base station 10 .
  • the base station 10 is located within the facility and transmits and receives radio waves to and from the production equipment 14 in a predetermined frequency band.
  • the production equipment 14 is an example of a target equipment that transmits and receives radio waves to and from the base station 10 .
  • the number of base stations 10 provided in the facility is not limited to one, but from the viewpoint of installation work and cost, it is desirable that a single base station 10 can cover a certain extent of service area.
  • the base station 10 and the production equipment 14 transmit and receive radio waves at a desired frequency selected from the frequency band of 24 GHz or more and 32 GHz or less.
  • the maximum gain of the antenna of base station 10 is, for example, 5 dBi or more and 30 dBi or less.
  • the maximum gain of the antenna of the base station 10 is expressed as an absolute gain with reference to a virtual isotropic antenna.
  • the structure 12 becomes an obstacle to radio wave propagation.
  • Metal structures such as ducts and pipes also exist at the production site, and radio waves are reflected and scattered by these structures 12 as well. Therefore, a dead zone 30 is generated in which the reception intensity of radio waves radiated from the antenna of the base station 10 is below a predetermined level.
  • the radio wave has strong straightness and little diffraction, so the radio wave from the base station 10 is difficult to reach.
  • the term "dead zone” refers to a zone where the reception strength is reduced by 10 dB or more compared to the surrounding unshielded reception environment due to the influence of a shield such as the structure 12. .
  • the dead zone 30 includes not only a two-dimensional area but also a three-dimensional space. When the production equipment 14 is in the dead zone 30, it becomes difficult to receive signals from the base station 10, which may reduce production efficiency. Therefore, as shown in FIG. 1B, an electromagnetic wave reflector 20 is introduced.
  • the reflecting surface 21 of the electromagnetic wave reflecting device 20 is made of any material that can maintain the electric field intensity of the incident radio wave as much as possible and reflect the radio wave toward the dead zone 30 .
  • it may be formed of a conductor film, a conductor mesh, a periodic pattern of conductors, etc. formed on or inside a dielectric.
  • the density of the conductor mesh and the period of the periodic pattern are designed to reflect radio waves of 28 GHz ⁇ 4 GHz, and have a pitch or period of 1/5 or less of the free space wavelength in this band.
  • the reflecting surface 21 of the electromagnetic wave reflecting device 20 may be a specular reflecting surface that reflects the radio wave at the same angle as the incident angle, or an artificial surface that reflects the radio wave in a desired direction at an angle different from the incident angle. good.
  • an artificial A smooth surface is preferred.
  • a specular reflection surface and an artificial surface may be mixed in the reflection surface 21 .
  • the arrangement configuration of FIG. 1B reduces the dead zone in the facility and improves the communication environment.
  • FIG. 2 is a schematic plan view of another facility to which the wireless transmission system 1 is applied.
  • FIG. 2A shows the state before the electromagnetic wave reflecting device 20 is installed
  • FIG. 2B shows the state after the electromagnetic wave reflecting device 20 is installed.
  • the frequency of radio waves emitted from the base station 10 is 24 GHz or more and 30 GHz or less
  • the maximum gain of the antenna of the base station 10 is 5 dBi or more and 30 dBi or less.
  • production equipment 14 such as a plurality of robot arms may be arranged in the line, and structures 12 such as fences and pillars 13 may be arranged outside.
  • a dead zone 30 can occur in the central portion along the longitudinal direction of the process line due to reflections and scattering from pillars, fences, and robot arms.
  • FIG. 2B by providing the electromagnetic wave reflector 20 along the process line, the radio waves from the base station 10 can reach the dead zone 30.
  • the location where the dead zone 30 occurs differs from facility to facility, and the optimal arrangement position of the electromagnetic wave reflector 20 also differs from facility to facility.
  • the electromagnetic wave reflection device 20 By arranging the electromagnetic wave reflection device 20 so as to satisfy a predetermined condition in relation to the base station 10 and the dead zone 30, the inventors have found that, regardless of the arrangement of the structures 12 in the facility, the efficiency can be improved to some extent. We examined and confirmed that the dead zone can be reduced.
  • FIG. 3 is a diagram showing the positional relationship among the base station 10, the electromagnetic wave reflector 20, and the dead zone 30.
  • FIG. A base station 10, an electromagnetic wave reflector 20, and a dead zone 30 are located in a plane parallel to the XY plane. "In a plane parallel to the XY plane" means that the base station 10 and the electromagnetic wave reflector 20 are not necessarily installed on the floor of the facility, and the dead zone 30 is not always generated on the floor of the facility. It is from.
  • the Z direction orthogonal to the XY plane is the height direction.
  • D1 be the straight line distance connecting the reflection center R of the radio waves incident on the electromagnetic wave reflector 20 and the boundary line of the dead zone 30 .
  • D2 be the straight line distance connecting the antenna of the base station 10 and the reflection center R of the electromagnetic wave reflector 20 . Given the frequency of radio waves emitted by the antenna of the base station 10 and the maximum gain of the antenna, the total length of D1 and D2 (D1+D2) satisfies a predetermined condition.
  • the electromagnetic wave reflector 20 is placed at a position other than the straight line connecting the base station 10 and the dead zone 30 . This is because, if the electromagnetic wave reflector 20 is on a straight line connecting the base station 10 and the dead zone 30, the electromagnetic wave reflector 20 becomes an obstacle.
  • the angle formed by the straight line connecting the antenna of the base station 10, the center of reflection R on the electromagnetic wave reflector 20, and the dead zone 30 is any angle that can reflect the radio waves radiated from the antenna of the base station 10 to the dead zone 30. is an angle, for example, greater than or equal to 5° and less than 180°. If the angle of incidence of radio waves from a base station on the electromagnetic wave reflector 20 is less than 5°, radio wave interference may occur.
  • the electromagnetic wave reflecting device 20 also has an electromagnetic wave shielding effect.
  • the electromagnetic wave shielding effect of the electromagnetic wave reflector prevents electromagnetic waves of frequencies other than the radio waves of the base station 10 from entering the propagation path between the base station 10 and the dead zone 30 (and the production equipment 14 existing in the dead zone 30). can.
  • the center position of the reflecting surface 21 of the electromagnetic wave reflector is at least 0.5 m above the floor of the facility, considering the size and position of the production equipment 14 and the position and height of the antenna of the base station 10. is desirable.
  • the base station 10 may be located 1.0 m to 3.0 m from the floor in order to ensure the widest possible service area within the facility.
  • the inclination of the reflecting surface 21 of the electromagnetic wave reflector 20 with respect to the floor surface and the angle with respect to the LOS (Line of Sight) of the base station 10 depend on the shape and direction of the beam formed by the antenna of the base station 10 and the direction of the production equipment 14. It is determined as appropriate according to the position of the reception point. Specific examples of indoor placement are described below, and conditions that can contribute to the reduction of the dead zone are examined based on the examples.
  • FIG. 4 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1A of the first embodiment.
  • FIG. 5 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1A of the first embodiment.
  • FIG. 4 is a schematic plan view showing the positional relationship between the base station 10 and the dead zone 30 .
  • FIG. 4B is a reception power map of radio waves radiated from the base station 10.
  • FIG. A base station 10 is placed near a corner of an area of length 11.0 m ⁇ width 7.5 m.
  • the base station 10 has an omnidirectional antenna with a height of 2.0 m from the floor and a maximum gain of 20 dBi.
  • the base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 17°.
  • the floors, ceilings and walls of an area of 11.0 m x 7.5 m shall comply with ITU-R (International Telecommunication Union-Radiocommunication sector) Recommendation P. It is made of a material conforming to 2040.
  • the height of the omni antenna placed at the receiving point is 0.7 m.
  • metal structures 12-1 and 12-2 with a length of 2.1m, a width of 0.7m and a height of 2.0m are placed.
  • the rear side of the structure 12-1 as viewed from the base station 10 is a dead zone 30 in which the received power is 10 dB lower than the surrounding area.
  • the presence of the dead zone 30 is also confirmed from the received power map of FIG. 4(B).
  • the problem is how to efficiently deliver radio waves to the production equipment 14.
  • FIG. 5 the electromagnetic wave reflector 20 is arranged to reduce the dead zone 30.
  • FIG. 5A is a schematic plan view of the electromagnetic wave reflecting device 20 arranged in an area
  • FIG. 5B is a received power map when the electromagnetic wave reflecting device 20 is used.
  • the reflective surface 21 of the electromagnetic wave reflector 20 is arranged at an angle of 45° to the LOS of the base station 10 .
  • FIG. 6A shows an example of the electromagnetic wave reflector 20 used in the wireless transmission system of the embodiment.
  • two electromagnetic wave reflection devices 20-1 and 20-2 each having a length of 2.0 m and a width of 1.0 m are horizontally connected to form a reflecting surface of 2.0 m ⁇ 2.0 m.
  • Each of the electromagnetic wave reflectors 20-1 and 20-2 includes a panel 200 and a frame 201 holding the panel 200.
  • the frame 201 may be provided with legs 202.
  • the panel 200 is supported at a predetermined height from the floor P by the frame 201 and legs 202 .
  • the height h1 from the floor P to the lower end of the panel 200 of the electromagnetic wave reflectors 20-1 and 20-2 is 13.5 cm, and the height from the floor P to the center of the reflecting surface 21 is 113.5 cm. .
  • FIG. 6B shows a configuration example of the panel 200 used in the electromagnetic wave reflector 20 in horizontal cross section.
  • Panel 200 has a conductive layer 215 sandwiched between dielectric layers 208 .
  • the conductive layer 215 may be held adhesively between the two dielectric layers 208 by an adhesive layer 216 .
  • the conductive layer 215 forms the reflecting surface 21 (see FIG. 5) of the electromagnetic wave reflector and has a predetermined conductive pattern that reflects radio waves in the range of 24 GHz to 32 GHz.
  • the conductive layers 215 are electrically connected inside the frame 201 between adjacent panels 200 .
  • the conductive layer 215 By making the conductive layer 215 electrically continuous, it is possible to form the reflective surface 21 in which the reflection potential is continuous between the plurality of panels 200 .
  • two polycarbonate plates are used as the dielectric layer 208 with a conductive layer 215 in between.
  • other resin transparent to electromagnetic waves of 28 GHz may be used, and the conductive layer 215 may be formed on the surface of one dielectric layer 208 .
  • the reception intensity behind the structure 12-1 is improved by about 5 dB to 10 dB, and the dead zone 30 is reduced. It is The reception strength is expressed as a relative strength with the omni-antenna as a reference.
  • the linear distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 4.2 m
  • the linear distance D1 from the boundary of the dead zone 30 to the reflection center R of the electromagnetic wave reflector 20 is 2.2 m. 1 m.
  • the total distance of D1 and D2 (D1+D2) is 6.3m. It is confirmed that under the conditions of Example 1, the dead zone 30 is reduced and the radio wave propagation environment is improved.
  • FIG. 7 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1B of the second embodiment.
  • FIG. 8 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1B of the second embodiment.
  • FIG. 7 is a schematic plan view showing the positional relationship between the base station 10 and the dead zone 30, and (B) of FIG. 7 is a received power map of radio waves emitted from the base station 10.
  • FIG. A base station 10 is placed near a corner of an area of length 11.0 m ⁇ width 7.5 m.
  • the base station 10 has an omnidirectional antenna with a height of 2.0 m from the floor and a maximum gain of 30 dBi.
  • the base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 90°. Compared with Example 1, the beam is sharp in the vertical direction and wide in the horizontal direction.
  • Floors, ceilings and walls in an area of 11.0m x 7.5m shall comply with ITU-R Recommendation P. It is made of a material conforming to 2040. The height of the receiving point is 0.7 m.
  • metal structures 12-1 and 12-2 with a length of 3.0m, a width of 0.5m and a height of 2.5m are placed.
  • the rear side of the structures 12-1 and 12-2 is a dead zone 30 in which the received power is about 10 dB to 60 dB lower than the surrounding area. The presence of the dead zone 30 is also confirmed from the received power map in FIG. 7B.
  • the electromagnetic wave reflection device 20 is placed in the area.
  • the electromagnetic wave reflecting device 20 has a configuration in which two electromagnetic wave reflecting devices 20-1 and 20-2 each having a width of 2.0 m and a width of 1.0 m are connected horizontally. It has a reflecting surface 21 of 0 m.
  • the height h1 of the reflecting surface 21, that is, the lower end of the panel 200 from the floor surface P is 13.5 cm, and the height from the floor surface P to the center of the reflecting surface 21 is 113.5 cm.
  • the production equipment 14 when viewed from the base station 10, the production equipment 14 (see FIG. 1) exists behind the structure 12-1, and the production equipment 14 does not exist behind the structure 12-2. It is assumed that An electromagnetic wave reflector 20 is introduced to reduce the dead zone 30 behind the structure 12-1.
  • the reflecting surface 21 of the electromagnetic wave reflector 20 is arranged at an angle of 45° with respect to the LOS of the base station 10 so as to face the structure 12-1.
  • the reception strength is improved by about 10 dB to 60 dB in the dead zone 30 on the rear side of the structure 12-1.
  • the straight line distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 14.5 m.
  • a straight line distance D1 from the boundary of the dead zone 30 to the reflection center R of the electromagnetic wave reflector 20 is 1.5 m.
  • the total distance (D1+D2) of D1 and D2 is 16.0 m.
  • FIG. 9 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1C of the third embodiment.
  • FIG. 10 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1C of the third embodiment.
  • FIG. 9 is a schematic plan view showing the positional relationship between the base station 10 and the dead zone 30, and (B) of FIG. 9 is a received power map of radio waves emitted from the base station 10.
  • FIG. A base station 10 is placed near a corner of an area of length 11.0 m ⁇ width 7.5 m.
  • the base station 10 has an omnidirectional antenna with a height of 2.0 m from the floor and a maximum gain of 15 dBi.
  • the base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 90°.
  • Floors, ceilings and walls in an area of 11.0m x 7.5m shall comply with ITU-R Recommendation P. It is made of a material conforming to 2040.
  • the height of the omni antenna placed at the receiving point is 0.7 m.
  • metal structures 12-1 and 12-2 with a length of 3.0m, a width of 0.5m and a height of 2.5m are placed.
  • the rear side of the structures 12-1 and 12-2 is a dead zone 30 in which the received power is about 10 dB to 60 dB lower than the surrounding area. Since the maximum gain of the antenna of the base station 10 is smaller than that of the second embodiment, the reception intensity in the dead zone 30 is even lower than that of the second embodiment. The presence of the dead zone 30 is also confirmed from the received power map in FIG. 9B.
  • the electromagnetic wave reflection device 20 is placed within the area.
  • the electromagnetic wave reflecting device 20 has a configuration in which two electromagnetic wave reflecting devices 20-1 and 20-2 each having a height of 2.0 m and a width of 1.0 m are connected horizontally. It has a reflecting surface 21 of 2.0 m.
  • the height h1 of the lower end of the reflecting surface 21 from the floor surface P is 13.5 cm, and the height from the floor surface P to the center of the reflecting surface 21 is 113.5 cm.
  • the production equipment 14 (see FIG. 1) exists behind the structure 12-1, and the production equipment 14 (see FIG. 1) exists behind the structure 12-2. It is assumed that the production equipment 14 does not exist in The reflecting surface 21 of the electromagnetic wave reflector 20 is arranged at an angle of 45° with respect to the LOS of the base station 10 so as to face the structure 12-1.
  • Example 3 It is confirmed that under the conditions of Example 3, the dead zone 30 is reduced in the area where the production equipment 14 exists, and the radio wave propagation environment is improved. From Example 2 and Example 3, it can be seen that even if there is a difference of 15 dBi in the maximum gain of the antenna of the base station 10, the dead zone can be reduced to the same degree. In the layout of the first embodiment, even when the maximum gain of the antenna of the base station 10 is 5 dBi, which is 15 dBi lower than 20 dBi, narrowing the beam width in the horizontal direction reduces the dead zone to the same extent as in FIG. effect is expected.
  • FIG. 11 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1D of the fourth embodiment.
  • FIG. 12 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1D of the fourth embodiment.
  • wireless transmission system 1D includes a process line in which part 125, robot arm 123, etc. reside.
  • a polycarbonate safety fence 121 is provided over a length of 45 m.
  • the electromagnetic wave reflection device 20 is arranged over the same length of 45 m.
  • a base station 10 is placed on one end side of a process line provided on a floor of 70m x 35m.
  • the base station 10 has an omnidirectional antenna with a height position of 3.0 m and a maximum gain of 20 dBi.
  • the base station 10 radiates radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 17°.
  • the floor, ceiling, walls and pillars of the floor are made of concrete.
  • the height of the receiving point is 1.0 m, and the receiving antenna is an omnidirectional antenna. From the received power distribution in FIG. 11B, the back of the structure away from the base station 10 is a dead zone where the received power is 10 to 60 dB lower than the surroundings.
  • the electromagnetic wave reflector 20 is used instead of the safety fence 121. Forty-five electromagnetic wave reflectors 20 each having a width of 1.0 m and a height of 2.0 m are connected and installed. The lower edge of the panel 200 is 0.15m above the floor and the center of reflection is above 0.15m above the floor. From the received power map of FIG. 12B, it can be seen that the received power is improved by about 10 dB to 20 dB inside the process line including the dead zone.
  • the linear distance D1 from the dead zone to the reflection center of the electromagnetic wave reflector 20 at this time is 5.0 m.
  • a straight line distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 55.0 m.
  • the total distance (D1+D2) of D1 and D2 is 60.0 m.
  • FIG. 13 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1E of the fifth embodiment.
  • FIG. 14 shows the arrangement configuration and received power distribution when the electromagnetic wave reflecting device 20 is installed in the wireless transmission system 1B of the fourth embodiment.
  • the base station 10 is arranged at the end of the floor of length 70.0 m ⁇ width 35.0 m.
  • the base station 10 has an omnidirectional antenna with a height of 3.0 m from the floor and a maximum gain of 20 dBi.
  • the base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 17°.
  • the floor, ceiling, walls and columns of the floor are concrete.
  • the height of the receiving point is 1.0 m, and the receiving antenna is an omnidirectional antenna.
  • a structure 12 with a length of 20.0 m, a width of 20.0 m, and a height of 3.0 m is placed on the floor. From the received power map in FIG. 13B, it can be seen that the rear side of the structure 12 as viewed from the base station 10 is a dead zone in which the received power is 10 dB to 50 dB lower than the surrounding area.
  • the electromagnetic wave reflector 20 is arranged at an oblique angle with respect to the structure 12 .
  • the electromagnetic wave reflecting device 20 is used by horizontally connecting 14 electromagnetic wave reflecting devices 20 having a length of 2.0 m and a width of 1.0 m shown in FIG. 6A.
  • the height of the lower end of the reflecting surface 21 (panel 200) from the floor surface P is 0.135 m.
  • the reception strength is improved by about 10 dB to 20 dB in the dead zone behind the structure 12 .
  • the linear distance D1 from the dead zone to the reflection center of the electromagnetic wave reflector 20 is 20.0 m.
  • a straight line distance D2 from the antenna of the base station 10 to the reflection center of the electromagnetic wave reflector 20 is 80.0 m.
  • the total distance (D1+D2) of D1 and D2 is 100.0 m.
  • the reception intensity in the dead zone 30 can be improved when the positional relationship among the base station 10, the electromagnetic wave reflector 20, and the dead zone 30 to be eliminated satisfies a predetermined condition.
  • the condition to be met by the positional relationship between the base station 10, the electromagnetic wave reflector 20, and the dead zone 30 varies, but within the range of 28 GHz ⁇ 4 GHz, more preferably: Within the range of 28 GHz ⁇ 2 GHz, there is no significant change in the conditions to be met.
  • the conditions of Examples 1 to 5 apply.
  • the electromagnetic wave reflector 20 does not have to have a configuration in which two electromagnetic wave reflectors 20-1 and 20-2 are combined as shown in FIG. 6A. Moreover, it does not necessarily have to be supported by the legs 202 . If the radio waves from the base station 10 can be reflected toward the dead zone 30, the electromagnetic wave reflecting device 20 without the legs 202 may be leaned on a desk, shelf, stand, or the like. The manner in which the electromagnetic wave reflector 20 is supported is not critical. Therefore, the legs 202 may be used as shown in FIG. 6A, or only the frame 201 surrounding the panel 200 of the electromagnetic wave reflector 20 may be used. As in the fourth and fifth embodiments, a required number of electromagnetic wave reflecting devices 20 may be connected and used. A configuration in which a plurality of electromagnetic wave reflectors 20 are connected is effective in reducing dead zones in the process lines shown in FIGS.
  • the size of the electromagnetic wave reflector 20 may be any size that allows the radio waves radiated from the base station 10 to reach the dead zone 30, and is a size that satisfies at least the first Fresnel zone of the radio wave propagation path.
  • the wavelength of radio waves in the 28 GHz band is approximately 11 mm, and the radius r is 5 cm to 50 cm, where D1 and D2 are the distances obtained in Examples 1-5.
  • the area of the reflecting surface 21 per panel of the electromagnetic wave reflector 20 is desirably at least 10 cm ⁇ 10 cm.
  • radio waves can be transmitted over a wide area with one panel.
  • the size of the panel 200 of the electromagnetic wave reflector 20 is desirably 3 m ⁇ 3 m or less. Therefore, the size of the panel 200 is 15 cm x 15 cm or more and 2.5 m x 2.5 m or less, or 20 cm x 20 cm or more and 2.0 m x 2.0 m or less. You can make an appropriate decision by taking into consideration the
  • the height of the central position of the reflecting surface 21 is determined by the height of the antenna of the base station 10 and the height of the receiving point.
  • the antenna of the base station 10 is arranged at a height of 2 to 3 m above the floor surface.
  • the antenna of station 10 may be placed at a position 1.5 m or more and 10 m or less from the floor.
  • the base station 10 can be installed near the ceiling, suspended from the ceiling, or installed on a pole installed on the floor. Assuming that the receiving antenna of the production equipment 14 is located at a position of 0.7 m or more and 2.0 m or less from the floor surface, the center of the reflection surface 21 of the electromagnetic wave reflector 20 is considered to ensure sufficient reception strength at the production equipment 14. , or the height of the reflection center R (see FIG.
  • the height of the center of reflection R may be lower than the height of the reception point of the production equipment 14 or higher than the height of the reception point. In the former case, radio waves from the base station 10 installed at a high position can be effectively delivered to the production equipment 14 located in the dead zone 30 .
  • the frequency band of radio waves radiated from the base station 10 placed in the facility is 24 GHz or more and 32 GHz or less, preferably 25 GHz or more and 31 GHz or less, more preferably 24 GHz or more and 30 GHz or less.
  • the maximum gain of the antenna of the base station 10 is 5dBi or more and 30dBi or less, and may be 10dBi or more and 30dBi or less from the viewpoint of the reach of radio waves.
  • the dead zone 30 is a zone where the reception strength is 10 dB or more lower than the surrounding propagation environment.
  • the size of the reflecting surface per panel of the electromagnetic wave reflecting device 20 is 10 cm x 10 cm or more and 3.0 m x 3.0 m or less. It can be set to 15 cm x 15 cm or more, 2.5 m x 2.5 m or less, 20 cm x 20 cm or more, or 2.0 m x 2.0 m or more.
  • the height of the reflection center from the floor surface P is 0.135 m or more, preferably 0.15 m or more, and more preferably 0.5 m or more.
  • the total length of D1 and D2 is 2.5m or more and 100m or less.
  • the height of the reflection center of the electromagnetic wave reflector 20 may be lower than the height of the receiving point of the production equipment 14 (target equipment).
  • the electromagnetic wave reflector 20 having the reflecting surface 21 of a predetermined size is used.
  • the sum of the linear distance D2 from the antenna of the base station 10 to the reflection center R (see FIG. 3) of the electromagnetic wave reflector 20 and the linear distance D1 from the reflection center R to the dead zone 30 is 2.5 m.
  • the sum of D1 and D2 is the distance from the transmit antenna, via the center of reflection R, to the receive antenna.
  • the value of D1+D2 matches the flying distance of radio waves in a specific frequency band from base station 10 . Assuming indoor use, D1+D2 should be up to 100 m. Under the above conditions, the dead zone 30 can be reduced indoors where there is a shield such as the structure 12, and the radio wave propagation environment can be improved.
  • the wireless transmission system described above is not limited to production facilities such as factories, but can also be applied to facilities such as soundproof walls used for railways and highways. Many blind zones can occur in event venues where many structures and shields are arranged, and road areas where there are many vehicle bodies and shields.
  • the dead zone can be reduced and the radio wave propagation environment can be improved.
  • ⁇ Examination of process line> 15A and 15B are model diagrams of an example and a comparative example used in an electromagnetic field simulation in which the number of panels 200 is changed.
  • electromagnetic wave reflectors 20 are provided along the length direction of one process line.
  • a part 125 and a structure such as a robot arm 123 are present inside the process line.
  • the electromagnetic wave reflecting device 20 has a structure in which a plurality of electromagnetic wave reflecting devices 20-1 to 20-n can be connected as shown in FIG. 6A.
  • One base station Tx is provided at one end of the process line.
  • the base station Tx has a directional antenna with a beamwidth of 17° and a maximum gain of 20dBi.
  • polycarbonate safety fences 121 are provided on both sides in the length direction of the process line. It includes Comparative Example 1 in which one base station Tx is provided at one end of the process line and Comparative Example 2 in which one base station Tx is placed on each side of the process line.
  • FIG. 16 is a received power map of the example, comparative example 1, and comparative example 2.
  • FIG. 16 In Comparative Example 1 of FIG. 16(B), the inside of the process line becomes a dead zone when away from the base station 10 .
  • the received strength is maintained high inside the process line even if the base station 10 is far away.
  • Comparative Example 2 of FIG. 16(C) since the base stations 10-1 and 10-2 are placed on both sides of the process line, the reception intensity is reduced in the central portion of the process line.
  • FIG. 17(A) is a received power map of the example when 30 panels 200 of the electromagnetic wave reflecting device 20 are arranged, 15 panels on each side, and FIG. 17(B) is a received power map of Comparative Example 2. is. It can be seen that by arranging 30 panels 200, the reception strength is improved compared to Comparative Example 2 in which the base stations 10-1 and 10-2 are arranged on both sides of the process line. To quantify this effect, the sum of the RSRPs of the area A2 enclosed by the dashed line in FIG. 17 is calculated.
  • FIG. 18(A) is a received power map of the example when 20 panels 200 of the electromagnetic wave reflecting device 20 are arranged, ten panels on each side, and FIG. 18(B) is a received power map of Comparative Example 2. is.
  • the number of panels 200 is 20
  • there is no significant difference in the reception intensity distribution between the configuration of the embodiment and the configuration of the comparative example 2 but the configuration is better than the configuration of the comparative example 1.
  • the sum of the RSRPs of the area A3 surrounded by the dashed line in FIG. 18 is calculated.
  • FIG. 19 shows the received power within the area of the example, comparative example 1, and comparative example 2 when the number of panels of the electromagnetic wave reflector 20 is changed from 16 to 80, that is, from 8 to 40 on one side. indicates the sum of As a panel, a panel 200 of 2 m ⁇ 1 m having the configuration shown in FIGS. 6A and 6B is used. The value of half the number of panels corresponds to the length (m) of the electromagnetic wave reflector 20 along the process line. "Number of structures" in the figure is the number of structures such as robot arms arranged in the process line. As the process line lengthens, the number of structures it contains increases. Accordingly, the number of panels 200 to be used is increased.
  • the example using a single base station 10 has a higher total reception than the comparative example 2 in the same area range. higher power. From the results of FIG. 19, when the length of the process line is longer than 12 m, by arranging a single base station 10 near the process line and arranging the electromagnetic wave reflectors 20 along the process line, two A dead zone can be reduced more than a configuration using a base station.
  • the length of the process line for obtaining good reflection characteristics in combination with 20 is 8 m or more and 80 m or less, more preferably 15 m or more and 80 m or less.
  • ⁇ Modified example of panel> In Examples 1 to 5, a flat transparent resin plate was used as the dielectric layer 208 .
  • This panel 200 is called a "flat panel".
  • the dielectric layer need not necessarily be a solid plate and may have a hollow inside.
  • the following modification provides an electromagnetic wave reflector having a hollow panel 200A using a dielectric layer 210 having a hollow 213 therein. "Hollow” literally means that a cavity exists inside the dielectric layer 210, and its shape does not matter.
  • FIG. 20 shows a modification of the panel of the electromagnetic wave reflector.
  • FIG. 20A is a schematic diagram showing part of the hollow panel 200A
  • FIG. 20B is a horizontal cross-sectional view along the II line of the hollow panel 200A.
  • the hollow panel 200A has a conductive layer 215 sandwiched between two dielectric layers 210 with an adhesive layer 216 interposed therebetween.
  • the conductive layer 215 is formed in a pattern that reflects radio waves in a frequency band of 24 GHz or more and 32 GHz or less.
  • Dielectric layer 210 has hollow 213 extending in a predetermined direction inside plate 211 .
  • the cross-sectional shape of the hollow 213 is not limited to rectangular, and may be polygonal, elliptical, circular, or the like. Having the hollow 213 inside reduces the weight of the hollow panel 200A and the dielectric constant of the dielectric layer 210 approaches that of air.
  • FIG. 21 is a perspective view of an electromagnetic wave reflector 20A using a hollow panel 200A.
  • the electromagnetic wave reflector 20A includes a hollow panel 200A and a frame 201 that holds the hollow panel 200A.
  • the frame 201 may be provided with legs 202.
  • a plurality of electromagnetic wave reflectors 20A are connected by the frame 201, and the hollow panel 200A is supported at a predetermined height from the floor surface by the legs 202 and the frame 201.
  • the conductive layers 215 of adjacent hollow panels 200A are electrically connected and maintained at the same reflected potential.
  • hollow panel 200A has a number of longitudinally extending hollows 213 (see FIG. 20).
  • the hollow 213 is indicated by vertical lines, but the hollow panel 200A is transparent to visible light and radio waves in the 28 GHz band. Hollows 213 may extend parallel to each other within panel 200A.
  • the extending direction of the hollow 213 is not limited to the vertical direction. As shown in FIG. 22, a plurality of hollows 213 may extend parallel to the lateral direction of hollow panel 200A. Again, the weight of the hollow panel 200A is reduced and the dielectric constant approaches that of air.
  • FIG. 23 shows the reflectivity (A) of the hollow panel 200A of FIG. 20 and the reflectivity (B) of the flat panel 200 of FIG. 6B.
  • the horizontal axis is the reflection angle
  • the vertical axis is the reflectivity represented by the scattering cross section (RCS: Radar Cross Section).
  • a plane wave of 28 GHz is incident on the hollow panel 200A and the flat panel 200, and reflected on the panel surface.
  • the scattering cross section is analyzed using general-purpose three-dimensional electromagnetic field simulation software.
  • the hollow panel 200A and the flat panel 200 have approximately the same main peak intensity when the incident angle is 0° (vertical incidence).
  • the hollow panel 200A compared to the flat panel 200, the symmetry of the spectrum shape of the main peak is maintained even if the absolute value of the incident angle is increased, and the peak intensity is increased over the range of ⁇ 45°. be improved.
  • the hollow panel 200A to an electromagnetic wave reflector, it is possible to reflect radio waves while maintaining the reflection intensity over a wider range of angles.
  • 24 and 25 are diagrams showing the analysis space 31 of the reflection characteristics of the embodiment described below.
  • the in-plane of the panel is the XY plane, and the thickness direction is the Z direction.
  • the analysis space is represented by (size in the X direction) ⁇ (size in the Y direction) ⁇ (size in the Z direction)
  • the size of the analysis space 31 when the frequency is 28 GHz is 100 mm ⁇ 100 mm ⁇ 21.7 mm.
  • the boundary condition is a design in which an electromagnetic wave absorber 32 is arranged around the analysis space 31 .
  • FIG. 26 is a model diagram of a hollow panel used in electromagnetic field simulation.
  • t1 be the thickness of the dielectric layer 210
  • t2 be the thickness of the plate wall
  • L1 be the thickness of the hollows 213
  • L2 be the lateral width of the hollows 213, that is, the pitch. change.
  • the dielectric layer 210 has a thickness t1 of 5.0 mm, a plate wall thickness t2 of 0.5 mm, a thickness L1 of the hollows 213 of 4.0 mm, and a pitch L2 of 3.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 70.0%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°. The direction of polarization is parallel to the direction in which the hollow 213 extends.
  • the dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section exceeding 10 dB is obtained in the range of ⁇ 20°, and substantially the same scattering cross section is obtained in the minus direction and the plus direction with 0° as the boundary.
  • the dielectric layer 210 has a thickness t1 of 5.0 mm, a plate wall thickness t2 of 1.5 mm, a hollow 213 thickness L1 of 3.0 mm, and a pitch L2 of 2.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 37.5%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°. The direction of polarization is parallel to the direction in which the hollow 213 extends. The dB value of the main peak of the scattering cross section is as shown in FIG.
  • a scattering cross section exceeding 10 dB is obtained in the range of ⁇ 20°, and substantially symmetrical scattering cross sections are obtained in the minus and plus directions with respect to 0°.
  • the scattering cross section is larger than that of Example 11 at an incident angle with an absolute value of 40° or more.
  • the dielectric layer 210 has a thickness t1 of 5.0 mm, a plate wall thickness t2 of 0.5 mm, a hollow 213 thickness L1 of 3.0 mm, and a pitch L2 of 2.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 70.0%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°. The direction of polarization is perpendicular to the direction in which hollow 213 extends.
  • the dB value of the main peak of the scattering cross section is as shown in FIG.
  • a scattering cross section of over 10 dB is obtained at normal incidence, and a scattering cross section of over 9.0 dB is obtained in the range of ⁇ 30°.
  • the dielectric layer 210 has a thickness t1 of 4.0 mm, a plate wall thickness t2 of 0.5 mm, a thickness L1 of the hollows 213 of 3.0 mm, and a pitch L2 of 3.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 65.6%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°. The direction of polarization is perpendicular to the direction in which hollow 213 extends. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section of over 10.0 dB is obtained over a range of ⁇ 20°. ⁇ Example 15>
  • FIG. 31 shows the reflection properties of the flat panel of Example 15.
  • FIG. 6B As a model, as shown in FIG. 6B, two pieces of polycarbonate having a thickness of 5.0 mm are pasted together with a conductive layer 215 interposed therebetween. The hollowness is 0%. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°. The dB value of the main peak of the scattering cross section is as shown in FIG. Compared to the hollow panel 200A, the peak intensity of the scattering cross section is smaller, but the scattering cross section exceeds 9.0 dB in the range of ⁇ 10°, and the scattering cross section exceeds 8.5 dB in the range of ⁇ 20°. area is obtained. A substantially uniform peak intensity is obtained on the negative side and the positive side of 0°. ⁇ Example 16>
  • FIG. 32 shows the reflection properties of the flat panel of Example 16.
  • FIG. Two pieces of polycarbonate having a thickness of 2.0 mm are pasted together with the conductive layer 215 interposed therebetween. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°.
  • the dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section exceeding 10.0 dB is obtained in the range from 0° to +20°, but the peak intensity becomes asymmetrical on the minus side and the plus side with respect to 0°.
  • the flat panel of Example 16 can also be effectively used depending on the position of the dead zone as seen from the base station. ⁇ Example 17>
  • FIG. 33 shows the flat panel reflection characteristics of Example 17. Two pieces of polycarbonate having a thickness of 4.0 mm are pasted together with the conductive layer 215 interposed therebetween. The simulation is performed by changing the incident angle from ⁇ 60° to +60° in increments of 10°.
  • the dB value of the main peak of the scattering cross section is as shown in FIG.
  • a scattering cross section of more than 10.0 dB is obtained in the range of ⁇ 20°, and similarly to Example 15, a substantially symmetrical scattering cross section is obtained on the minus side and the plus side with respect to 0°.
  • the cross-sectional hollowness of the hollow panel can be appropriately set in the range of 10% to 75% in consideration of the strength, weight, dielectric constant, etc. of the panel.
  • the panel size of the electromagnetic wave reflector used in the wireless transmission system is not limited to 2 m ⁇ 1 m, and is appropriately selected within the range of 10 cm ⁇ 10 cm to 3 m ⁇ 3 m as described above.
  • a frame 201 may be used to connect the adjacent panels so that the conductive layers are electrically connected.
  • hollow panel 200A is used, hollow 213 does not necessarily have to extend continuously from the top end to the bottom end of hollow panel 200A.
  • the hollow 213 may be provided in a partial region of the hollow panel 200A, or the hollow 213 may be provided separately in the upper half and the lower half of the hollow panel 200A.
  • the wireless transmission system of the embodiment is effectively used in facilities including process lines where production equipment and the like are present and where dead zones are likely to occur. In addition to the process line, it can be effectively used for indoor and outdoor event facilities where many exhibits and people are likely to line up.
  • Electromagnetic wave reflector 21 Reflective surface 30 Dead zone 200 Panel 200A Hollow panels 208, 210 Dielectric layer 211 Plate 213 Hollow 215 Conductive layer R Reflection center D1 From dead zone to electromagnetic wave reflector D2 Straight line distance from the base station antenna to the reflection center of the electromagnetic wave reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Provided is a wireless transmission system for performing communications in a gigahertz band, wherein a blind zone is reduced and a radio wave propagation environment is improved. In the wireless transmission system, a base station positioned in a facility and a target device transmit and receive radio waves to and from each other at a frequency selected from a frequency band of 24-32 GHz, wherein, when the maximum gain of an antenna of the base station is 5-30 dBi and the facility includes a blind zone in which the reception strength is lower than in the surrounding areas by 10 dB or more, an electromagnetic wave reflection device including one or more panels having a reflection surface measuring 10 cm × 10 cm or more and 3.0 m × 3.0 m or less is disposed between the base station and the blind zone, with the center of reflection located at a height of 0.5 m or more from the floor of the facility. The sum of the distance of a straight line connecting the antenna of the base station and the electromagnetic wave reflection device and the distance of a straight line connecting the electromagnetic wave reflection device and the blind zone is 2.5-100 m.

Description

無線伝達システム、及び電磁波反射装置Wireless transmission system and electromagnetic wave reflector
 本発明は、無線伝達システム、及び電磁波反射装置に関する。 The present invention relates to a wireless transmission system and an electromagnetic wave reflector.
 製造プロセスやオフィスワークの自動化や、AI(Artificial Intelligence:人口知能)による制御・管理の導入により、工場、プラント、オフィス、商業施設などに屋内基地局が導入されている。5G移動通信規格では、「sub-6」と呼ばれる6GHz以下の周波数帯と、ミリ波帯に分類される28GHz帯が提供されている。次世代の6G移動通信規格では、サブテラヘルツ帯への拡張が見込まれている。このような高周波の帯域を用いることで、通信帯域幅が大幅に拡張され、大量のデータ通信を低遅延で行うことができる。 Due to the automation of manufacturing processes and office work, and the introduction of control and management using AI (Artificial Intelligence), indoor base stations have been introduced in factories, plants, offices, commercial facilities, etc. The 5G mobile communication standard provides a frequency band below 6 GHz called “sub-6” and a 28 GHz band classified as a millimeter wave band. The next-generation 6G mobile communication standard is expected to extend to the sub-terahertz band. By using such a high-frequency band, the communication bandwidth can be greatly expanded, and a large amount of data can be communicated with low delay.
 プロセスラインの少なくとも一部に沿って電磁波反射装置を配置する構成が提案されている(たとえば、特許文献1参照)。 A configuration has been proposed in which an electromagnetic wave reflector is arranged along at least a portion of the process line (see Patent Document 1, for example).
国際公開公報第2021/199504号WO2021/199504
 ミリ波帯やサブテラヘルツ帯の電波は、高周波ゆえに直進性が高く、伝搬距離が短く、伝搬損失が大きい。工場、プラント、商業施設などの屋内施設や、鉄道や高速道路などの屋外施設には、様々な機器、構造物などの障害物が存在し、通信品質を高く維持するのが難しい。電磁波反射装置を用いることで、電波伝搬環境は改善され得るが、施設ごとに障害物の位置、サイズ、数などが異なり、電磁波反射装置の効率的な配置は一概には決まらない。 Radio waves in the millimeter wave band and sub-terahertz band are highly linear due to their high frequency, have short propagation distances, and have large propagation losses. Indoor facilities such as factories, plants, and commercial facilities, and outdoor facilities such as railways and highways, have obstacles such as various devices and structures, making it difficult to maintain high communication quality. Although the radio wave propagation environment can be improved by using the electromagnetic wave reflector, the position, size, number, etc. of obstacles differ from facility to facility, and the efficient placement of the electromagnetic wave reflector cannot be determined unconditionally.
 一つの側面で、本発明は、ギガヘルツ帯で通信する無線伝達システムにおいて、不感地帯を低減し、電波伝搬環境を改善することを目的とする。 In one aspect, the object of the present invention is to reduce the dead zone and improve the radio wave propagation environment in a radio transmission system that communicates in the gigahertz band.
 一実施形態では、施設内に位置する基地局とターゲット機器とが24GHz以上、32GHz以下の周波数帯から選択される周波数で電波を送受信する無線伝達システムにおいて、
 前記基地局のアンテナの最大利得は5dBi以上、30dBi以下であり、
 前記施設内に、周囲よりも受信強度が10dB以上低い不感地帯が存在するときに、前記基地局と前記不感地帯の間に、反射面のサイズが10cm×10cm以上、3.0m×3.0m以下のパネルを1枚以上含む電磁波反射装置を、反射中心が前記施設の床から0.5m以上の高さにあるように配置し、
 前記基地局のアンテナと前記電磁波反射装置を結ぶ直線の距離と、前記電磁波反射装置と前記不感地帯を結ぶ直線の距離の合計が2.5m以上、100m以下である。
In one embodiment, in a wireless transmission system in which a base station located in a facility and a target device transmit and receive radio waves at a frequency selected from a frequency band of 24 GHz or more and 32 GHz or less,
The maximum gain of the antenna of the base station is 5dBi or more and 30dBi or less,
When there is a dead zone in the facility where the reception intensity is 10 dB or more lower than the surroundings, the size of the reflecting surface between the base station and the dead zone is 10 cm x 10 cm or more and 3.0 m x 3.0 m. An electromagnetic wave reflector comprising one or more of the following panels is arranged so that the reflection center is at a height of 0.5 m or more from the floor of the facility;
A total distance of a straight line connecting the antenna of the base station and the electromagnetic wave reflecting device and a straight line distance connecting the electromagnetic wave reflecting device and the dead zone is 2.5 m or more and 100 m or less.
 ギガヘルツ帯で通信する無線伝達システムにおいて、不感地帯が低減され、電波伝搬環境が改善される。 In wireless transmission systems that communicate in the gigahertz band, dead zones are reduced and the radio wave propagation environment is improved.
実施形態の無線伝達システムが適用される施設内の平面模式図である。1 is a schematic plan view of a facility to which the wireless transmission system of the embodiment is applied; FIG. 実施形態の無線伝達システムが適用される施設内の平面模式図である。1 is a schematic plan view of a facility to which the wireless transmission system of the embodiment is applied; FIG. 基地局と電磁波反射装置と不感地帯の位置関係を示す図である。FIG. 4 is a diagram showing the positional relationship among a base station, an electromagnetic wave reflector, and a dead zone; 実施例1の無線伝達システムで電磁波反射装置を設置する前の配置構成と受信電力分布を示す図である。FIG. 2 is a diagram showing an arrangement configuration and received power distribution before installing an electromagnetic wave reflection device in the wireless transmission system of Example 1; 実施例1の無線伝達システムで電磁波反射装置を設置したときの配置構成と受信電力分布を示す図である。FIG. 4 is a diagram showing an arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 1; 計算で用いた電磁波反射装置の模式図である。It is a schematic diagram of the electromagnetic wave reflection apparatus used for calculation. 電磁波反射装置のパネルの水平断面図である。It is a horizontal cross-sectional view of the panel of the electromagnetic wave reflector. 実施例2の無線伝達システムで電磁波反射装置を設置する前の配置構成と受信電力分布を示す図である。FIG. 10 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of the second embodiment; 実施例2の無線伝達システムで電磁波反射装置を設置したときの配置構成と受信電力分布を示す図である。FIG. 10 is a diagram showing the arrangement configuration and received power distribution when the electromagnetic wave reflection device is installed in the wireless transmission system of Example 2; 実施例3の無線伝達システムで電磁波反射装置を設置する前の配置構成と受信電力分布を示す図である。FIG. 10 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of Example 3; 実施例3の無線伝達システムで電磁波反射装置を設置したときの配置構成と受信電力分布を示す図である。FIG. 10 is a diagram showing the arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 3; 実施例4の無線伝達システムで電磁波反射装置を設置する前の配置構成と受信電力分布を示す図である。FIG. 10 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of Example 4; 実施例4の無線伝達システムで電磁波反射装置を設置したときの配置構成と受信電力分布を示す図である。FIG. 11 is a diagram showing the arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 4; 実施例5の無線伝達システムで電磁波反射装置を設置する前の配置構成と受信電力分布を示す図である。FIG. 12 is a diagram showing the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device in the wireless transmission system of Example 5; 実施例5の無線伝達システムで電磁波反射装置を設置したときの配置構成と受信電力分布を示す図である。FIG. 12 is a diagram showing the arrangement configuration and received power distribution when an electromagnetic wave reflection device is installed in the wireless transmission system of Example 5; パネルの数を変えた電磁界シミュレーションで用いる実施例と比較例のモデル図である。It is a model diagram of an example and a comparative example used in an electromagnetic field simulation in which the number of panels is changed. 実施例、比較例1、及び比較例2の受信電力マップである。FIG. 10 is a received power map of an example, comparative example 1, and comparative example 2. FIG. 電磁波反射装置のパネルを30枚用いた実施例の受信電力マップ(A)と、比較例2の受信電力マップ(B)の図である。FIG. 10 is a view of a received power map (A) of an example using 30 panels of an electromagnetic wave reflecting device and a received power map (B) of a comparative example 2; 電磁波反射装置のパネルを20枚用いた実施例の受信電力マップ(A)と、比較例2の受信電力マップ(B)の図である。FIG. 10 is a diagram of a received power map (A) of an example using 20 panels of the electromagnetic wave reflecting device and a received power map (B) of Comparative Example 2; パネル数を変えたときの実施例、比較例1、及び比較例2のシミュレーション結果を示す図である。FIG. 10 is a diagram showing simulation results of Example, Comparative Example 1, and Comparative Example 2 when the number of panels is changed; 電磁波反射装置のパネルの変形例を示す図である。It is a figure which shows the modification of the panel of an electromagnetic wave reflection apparatus. 中空パネルを用いた電磁波反射装置の斜視図である。FIG. 4 is a perspective view of an electromagnetic wave reflector using a hollow panel; 中空パネルを用いた別の電磁波反射装置の斜視図である。FIG. 10 is a perspective view of another electromagnetic wave reflector using a hollow panel; 中空パネルと図6Bの平板パネルの反射能力を示す図である。Figure 6B illustrates the reflectivity of the hollow panel and the flat panel of Figure 6B; 反射特性の解析空間を示す図である。FIG. 4 is a diagram showing an analysis space of reflection characteristics; 反射特性の解析空間を示す図である。FIG. 4 is a diagram showing an analysis space of reflection characteristics; 反射特性の解析で用いる中空パネルのモデルである。This is a model of a hollow panel used for analysis of reflection characteristics. 実施例11の中空パネルの反射特性を示す図である。FIG. 12 is a diagram showing reflection properties of the hollow panel of Example 11; 実施例12の中空パネルの反射特性を示す図である。FIG. 12 is a diagram showing reflection properties of the hollow panel of Example 12; 実施例13の中空パネルの反射特性を示す図である。FIG. 13 is a diagram showing reflection properties of the hollow panel of Example 13; 実施例14の中空パネルの反射特性を示す図である。FIG. 10 is a diagram showing reflection properties of the hollow panel of Example 14; 実施例15の平板パネルの反射特性を示す図である。FIG. 12 is a diagram showing the reflection characteristics of the flat panel of Example 15; 実施例16の平板パネルの反射特性を示す図である。FIG. 20 is a diagram showing reflection characteristics of the flat panel of Example 16; 実施例17の平板パネルの反射特性を示す図である。FIG. 12 is a diagram showing the reflection characteristics of the flat panel of Example 17;
 図1は、実施形態の無線伝達システム1が適用される施設内の平面模式図である。図1の(A)は、電磁波反射装置20を設置する前の状態、図1の(B)は、電磁波反射装置20を設置した状態である。図1では、工場、プラント等の生産施設を想定しているが、施設は屋内施設に限定されず、鉄道や高速道路等の屋外施設も含まれる。 FIG. 1 is a schematic plan view of the interior of a facility to which the wireless transmission system 1 of the embodiment is applied. FIG. 1A shows the state before the electromagnetic wave reflecting device 20 is installed, and FIG. 1B shows the state after the electromagnetic wave reflecting device 20 is installed. Although production facilities such as factories and plants are assumed in FIG. 1, the facilities are not limited to indoor facilities, and include outdoor facilities such as railways and highways.
 図1に示す生産施設内には、収納棚、ラック、製造機械などの構造体12や、自動搬送装置、ロボットアーム、組立て装置などの生産機器14が存在する。大型の製造機械のように生産に関与する構造物は、構造体12であるとともに、生産機器14にもなり得る。この明細書と特許請求の範囲では、構造体12のうち、生産に関与して基地局10との間で電波を送受信するものを生産機器14にも含める。 In the production facility shown in Fig. 1, there are structures 12 such as storage racks, racks, and manufacturing machines, and production equipment 14 such as automatic transport devices, robot arms, and assembly devices. A structure involved in production, such as a large manufacturing machine, can be both the structure 12 and the production equipment 14 . In this specification and claims, production equipment 14 also includes structures 12 that participate in production and transmit and receive radio waves to and from the base station 10 .
 基地局10は、施設内に配置されて、生産機器14と所定の周波数帯域で電波を送受信する。生産機器14は、基地局10との間で電波を送受信するターゲット機器の一例である。施設内に設けられる基地局10の数は1つに限定されないが、設置作業やコストの観点から、単一の基地局10で、ある程度の広さのサービスエリアをカバーできるのが望ましい。 The base station 10 is located within the facility and transmits and receives radio waves to and from the production equipment 14 in a predetermined frequency band. The production equipment 14 is an example of a target equipment that transmits and receives radio waves to and from the base station 10 . The number of base stations 10 provided in the facility is not limited to one, but from the viewpoint of installation work and cost, it is desirable that a single base station 10 can cover a certain extent of service area.
 基地局10と生産機器14は、24GHz以上、32GHz以下の周波数帯域から選択される所望の周波数で電波を送受信する。基地局10のアンテナの最大利得は、たとえば5dBi以上、30dBi以下である。基地局10のアンテナの最大利得は、仮想的な等方性アンテナを基準とする絶対利得で表されている。 The base station 10 and the production equipment 14 transmit and receive radio waves at a desired frequency selected from the frequency band of 24 GHz or more and 32 GHz or less. The maximum gain of the antenna of base station 10 is, for example, 5 dBi or more and 30 dBi or less. The maximum gain of the antenna of the base station 10 is expressed as an absolute gain with reference to a virtual isotropic antenna.
 基地局10と生産機器14の送受信の角度によっては、構造体12は電波伝搬の障害物となる。生産の現場には、ダクト、パイプなどの金属製の構造物も存在し、それらの構造体12によっても電波は反射され、散乱される。そのため、基地局10のアンテナから放射される電波の受信強度が所定レベル以下になる不感地帯30が発生する。特に、24GHz以上、32GHz以下の高周波帯域では、電波の直進性が強く、回折が少ないため、基地局10からの電波が届きにくい。 Depending on the transmission/reception angle between the base station 10 and the production equipment 14, the structure 12 becomes an obstacle to radio wave propagation. Metal structures such as ducts and pipes also exist at the production site, and radio waves are reflected and scattered by these structures 12 as well. Therefore, a dead zone 30 is generated in which the reception intensity of radio waves radiated from the antenna of the base station 10 is below a predetermined level. In particular, in the high frequency band of 24 GHz or more and 32 GHz or less, the radio wave has strong straightness and little diffraction, so the radio wave from the base station 10 is difficult to reach.
 この明細書と特許請求の範囲で、「不感地帯」とは、構造体12などの遮蔽物の影響により、遮蔽のない周囲の受信環境と比較して10dB以上、受信強度が低下する地帯をいう。不感地帯30は、2次元的な領域だけではなく3次元空間も含む。生産機器14が不感地帯30にあると、基地局10からの信号の受信が困難になり、生産効率が低下するおそれがある。そこで、図1の(B)のように、電磁波反射装置20を導入する。 In this specification and the scope of claims, the term "dead zone" refers to a zone where the reception strength is reduced by 10 dB or more compared to the surrounding unshielded reception environment due to the influence of a shield such as the structure 12. . The dead zone 30 includes not only a two-dimensional area but also a three-dimensional space. When the production equipment 14 is in the dead zone 30, it becomes difficult to receive signals from the base station 10, which may reduce production efficiency. Therefore, as shown in FIG. 1B, an electromagnetic wave reflector 20 is introduced.
 電磁波反射装置20を配置することで、基地局10からの電波を、不感地帯30に届けることができる。電磁波反射装置20の反射面21は、入射する電波の電界強度をできるだけ維持して、電波を不感地帯30に向けて反射することのできる任意の材料で形成されている。たとえば、誘電体の表面または内部に形成された導体膜、導体メッシュ、導体の周期パターンなどで形成され得る。導体メッシュの密度や、周期パターンの周期は、28GHz±4GHzの電波を反射するように設計されており、この帯域の自由空間波長の1/5以下のピッチまたは周期を有する。 By arranging the electromagnetic wave reflector 20, the radio waves from the base station 10 can be delivered to the dead zone 30. The reflecting surface 21 of the electromagnetic wave reflecting device 20 is made of any material that can maintain the electric field intensity of the incident radio wave as much as possible and reflect the radio wave toward the dead zone 30 . For example, it may be formed of a conductor film, a conductor mesh, a periodic pattern of conductors, etc. formed on or inside a dielectric. The density of the conductor mesh and the period of the periodic pattern are designed to reflect radio waves of 28 GHz±4 GHz, and have a pitch or period of 1/5 or less of the free space wavelength in this band.
 電磁波反射装置20の反射面21は、電波を入射角と同じ角度で反射する鏡面反射面であってもよいし、入射角と異なる角度で所望の方向に反射する人工的な表面であってもよい。特に、基地局10と不感地帯30の位置、及び、電磁波反射装置20を設置可能な空間位置から、鏡面反射で生産機器14に電波を届けるのが難しい場合は、所望の反射角度を実現する人工的な表面を用いるのが望ましい。反射面21の中に、鏡面反射面と人工的な表面が混在していてもよい。図1の(B)の配置構成により、施設内で不感地帯が低減され、通信環境が改善される。 The reflecting surface 21 of the electromagnetic wave reflecting device 20 may be a specular reflecting surface that reflects the radio wave at the same angle as the incident angle, or an artificial surface that reflects the radio wave in a desired direction at an angle different from the incident angle. good. In particular, when it is difficult to transmit radio waves to the production equipment 14 by specular reflection from the position of the base station 10 and the dead zone 30 and the spatial position where the electromagnetic wave reflector 20 can be installed, an artificial A smooth surface is preferred. A specular reflection surface and an artificial surface may be mixed in the reflection surface 21 . The arrangement configuration of FIG. 1B reduces the dead zone in the facility and improves the communication environment.
 図2は、無線伝達システム1が適用される別の施設内の平面模式図である。図2の(A)は、電磁波反射装置20を設置する前の状態、図2の(B)は、電磁波反射装置20を設置した状態である。図1と同様に、基地局10から放射される電波の周波数は、24GHz以上、30GHz以下、基地局10のアンテナの最大利得は、5dBi以上、30dBi以下である。 FIG. 2 is a schematic plan view of another facility to which the wireless transmission system 1 is applied. FIG. 2A shows the state before the electromagnetic wave reflecting device 20 is installed, and FIG. 2B shows the state after the electromagnetic wave reflecting device 20 is installed. As in FIG. 1, the frequency of radio waves emitted from the base station 10 is 24 GHz or more and 30 GHz or less, and the maximum gain of the antenna of the base station 10 is 5 dBi or more and 30 dBi or less.
 自動車、家電などを組み立てるプロセスラインでは、ライン内に複数のロボットアームなどの生産機器14が配置され、その外側にフェンス等の構造体12や柱13が配置される場合がある。柱やフェンス、ロボットアームによる反射、散乱により、プロセスラインの長手方向に沿った中央部分に不感地帯30が発生し得る。この場合、図2の(B)に示すように、プロセスラインに沿って電磁波反射装置20を設けることで、基地局10からの電波を不感地帯30に届けることができる。 In a process line for assembling automobiles, home appliances, etc., production equipment 14 such as a plurality of robot arms may be arranged in the line, and structures 12 such as fences and pillars 13 may be arranged outside. A dead zone 30 can occur in the central portion along the longitudinal direction of the process line due to reflections and scattering from pillars, fences, and robot arms. In this case, as shown in FIG. 2B, by providing the electromagnetic wave reflector 20 along the process line, the radio waves from the base station 10 can reach the dead zone 30. FIG.
 不感地帯30が発生する個所は施設によって異なり、電磁波反射装置20の最適な配置位置も施設ごとに異なる。発明者らは、基地局10と不感地帯30との関係で、電磁波反射装置20を所定の条件を満たすように配置することで、施設内の構造体12の配置に依らず、ある程度効率的に不感地帯を低減し得ることを検討し、確認した。 The location where the dead zone 30 occurs differs from facility to facility, and the optimal arrangement position of the electromagnetic wave reflector 20 also differs from facility to facility. By arranging the electromagnetic wave reflection device 20 so as to satisfy a predetermined condition in relation to the base station 10 and the dead zone 30, the inventors have found that, regardless of the arrangement of the structures 12 in the facility, the efficiency can be improved to some extent. We examined and confirmed that the dead zone can be reduced.
 図3は、基地局10と、電磁波反射装置20と、不感地帯30の位置関係を示す図である。XY面と平行な面内に、基地局10、電磁波反射装置20、及び不感地帯30が位置する。「XY面と平行な面内」というのは、基地局10と電磁波反射装置20は、施設の床面に設置されるとは限らず、不感地帯30も施設の床面に発生するとは限らないからである。XY面と直交するZ方向は、高さ方向である。 FIG. 3 is a diagram showing the positional relationship among the base station 10, the electromagnetic wave reflector 20, and the dead zone 30. FIG. A base station 10, an electromagnetic wave reflector 20, and a dead zone 30 are located in a plane parallel to the XY plane. "In a plane parallel to the XY plane" means that the base station 10 and the electromagnetic wave reflector 20 are not necessarily installed on the floor of the facility, and the dead zone 30 is not always generated on the floor of the facility. It is from. The Z direction orthogonal to the XY plane is the height direction.
 電磁波反射装置20に入射する電波の反射中心Rと、不感地帯30の境界線を結ぶ直線距離をD1とする。基地局10のアンテナと電磁波反射装置20の反射中心Rを結ぶ直線距離をD2とする。基地局10のアンテナが放射する電波の周波数と、アンテナの最大利得が与えられたときに、D1とD2の合計の長さ(D1+D2)は所定の条件を満たす。 Let D1 be the straight line distance connecting the reflection center R of the radio waves incident on the electromagnetic wave reflector 20 and the boundary line of the dead zone 30 . Let D2 be the straight line distance connecting the antenna of the base station 10 and the reflection center R of the electromagnetic wave reflector 20 . Given the frequency of radio waves emitted by the antenna of the base station 10 and the maximum gain of the antenna, the total length of D1 and D2 (D1+D2) satisfies a predetermined condition.
 電磁波反射装置20は、基地局10と不感地帯30を結ぶ直線上を除く位置に配置される。電磁波反射装置20が基地局10と不感地帯30を結ぶ直線上にあると、電磁波反射装置20が障害となるからである。基地局10のアンテナと、電磁波反射装置20上の反射中心Rと、不感地帯30とを結ぶ直線が成す角度は、基地局10のアンテナから放射された電波を、不感地帯30に反射できる任意の角度であり、たとえば、5°以上、180°未満である。電磁波反射装置20への基地局からの電波の入射角が5°未満になると、電波の干渉が生じる場合がある。 The electromagnetic wave reflector 20 is placed at a position other than the straight line connecting the base station 10 and the dead zone 30 . This is because, if the electromagnetic wave reflector 20 is on a straight line connecting the base station 10 and the dead zone 30, the electromagnetic wave reflector 20 becomes an obstacle. The angle formed by the straight line connecting the antenna of the base station 10, the center of reflection R on the electromagnetic wave reflector 20, and the dead zone 30 is any angle that can reflect the radio waves radiated from the antenna of the base station 10 to the dead zone 30. is an angle, for example, greater than or equal to 5° and less than 180°. If the angle of incidence of radio waves from a base station on the electromagnetic wave reflector 20 is less than 5°, radio wave interference may occur.
 電磁波反射装置と電磁波シールドの構成は基本的に同じであるから、電磁波反射装置20は電磁波シールド効果も有する。電磁波反射装置の電磁波シールド効果により、基地局10の電波以外の周波数の電磁波が、基地局10と不感地帯30(および不感地帯30に存在する生産機器14)の間の伝搬経路に入り込むのを防止できる。 Since the configurations of the electromagnetic wave reflecting device and the electromagnetic wave shield are basically the same, the electromagnetic wave reflecting device 20 also has an electromagnetic wave shielding effect. The electromagnetic wave shielding effect of the electromagnetic wave reflector prevents electromagnetic waves of frequencies other than the radio waves of the base station 10 from entering the propagation path between the base station 10 and the dead zone 30 (and the production equipment 14 existing in the dead zone 30). can.
 電磁波反射装置の反射面21の中心位置は、生産機器14のサイズと位置、及び、基地局10のアンテナの位置と高さを考慮して、施設の床から0.5m以上の高さにあることが望ましい。基地局10は、施設内にできるだけ広いサービスエリアを確保するために、床から1.0mから3.0mの位置に配置されてもよい。電磁波反射装置20の反射面21の床面に対する傾き、及び基地局10のLOS(Line of Sight:見通し線)に対する角度は、基地局10のアンテナが形成するビームの形状と方向、生産機器14の受信点の位置などに応じて、適宜決定される。以下で、屋内配置の具体的な実施例を述べ、実施例に基づいて、不感地帯の低減に寄与し得る条件を検討する。 The center position of the reflecting surface 21 of the electromagnetic wave reflector is at least 0.5 m above the floor of the facility, considering the size and position of the production equipment 14 and the position and height of the antenna of the base station 10. is desirable. The base station 10 may be located 1.0 m to 3.0 m from the floor in order to ensure the widest possible service area within the facility. The inclination of the reflecting surface 21 of the electromagnetic wave reflector 20 with respect to the floor surface and the angle with respect to the LOS (Line of Sight) of the base station 10 depend on the shape and direction of the beam formed by the antenna of the base station 10 and the direction of the production equipment 14. It is determined as appropriate according to the position of the reception point. Specific examples of indoor placement are described below, and conditions that can contribute to the reduction of the dead zone are examined based on the examples.
 <実施例1> <Example 1>
 図4は、実施例1の無線伝達システム1Aで、電磁波反射装置20を設置する前の配置構成と受信電力分布を示す。図5は、実施例1の無線伝達システム1Aで、電磁波反射装置20を設置したときの配置構成と受信電力分布を示す。 FIG. 4 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1A of the first embodiment. FIG. 5 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1A of the first embodiment.
 図4の(A)は、基地局10と不感地帯30の位置関係を示す平面模式図である。図4の(B)は、基地局10から放射される電波の受信電力マップである。長さ11.0m×幅7.5mのエリアのコーナー付近に、基地局10を配置する。基地局10は無指向性アンテナを備え、アンテナの高さは床から2.0m、最大利得は20dBiである。 (A) of FIG. 4 is a schematic plan view showing the positional relationship between the base station 10 and the dead zone 30 . FIG. 4B is a reception power map of radio waves radiated from the base station 10. FIG. A base station 10 is placed near a corner of an area of length 11.0 m×width 7.5 m. The base station 10 has an omnidirectional antenna with a height of 2.0 m from the floor and a maximum gain of 20 dBi.
 基地局10は、垂直方向ビーム幅17°、水平方向ビーム幅17°で、28GHz帯の電波を放射する。11.0m×7.5mのエリアの床、天井、及び壁は、ITU-R(International Telecommunication Union-Radiocommunication sector:国際電気通信連合の無線通信部門)勧告P.2040に沿った材質で形成されている。受信点におかれるオムニアンテナの高さは、0.7mである。 The base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 17°. The floors, ceilings and walls of an area of 11.0 m x 7.5 m shall comply with ITU-R (International Telecommunication Union-Radiocommunication sector) Recommendation P. It is made of a material conforming to 2040. The height of the omni antenna placed at the receiving point is 0.7 m.
 エリア内に、長さ2.1m、幅0.7m、高さ2.0mの金属製の構造体12-1と12-2が配置されている。基地局10から見て構造体12-1の後ろ側は、周囲と比べて10dB受信電力が低い不感地帯30となっている。不感地帯30の存在は、図4の(B)の受信電力マップからも確認される。基地局10と信号を送受信する生産機器14(図1参照)が不感地帯30に存在する場合に、いかに効率的に生産機器14に電波を届けるかが課題となる。 Within the area, metal structures 12-1 and 12-2 with a length of 2.1m, a width of 0.7m and a height of 2.0m are placed. The rear side of the structure 12-1 as viewed from the base station 10 is a dead zone 30 in which the received power is 10 dB lower than the surrounding area. The presence of the dead zone 30 is also confirmed from the received power map of FIG. 4(B). When the base station 10 and the production equipment 14 (see FIG. 1) that transmits and receives signals are present in the dead zone 30, the problem is how to efficiently deliver radio waves to the production equipment 14. FIG.
 図5では、電磁波反射装置20を配置して、不感地帯30を低減する。図5の(A)はエリア内に電磁波反射装置20を配置した平面模式図、図5の(B)は、電磁波反射装置20を用いたときの受信電力マップである。このレイアウトで、電磁波反射装置20の反射面21は、基地局10のLOSに対して45°の角度で配置されている。 In FIG. 5, the electromagnetic wave reflector 20 is arranged to reduce the dead zone 30. FIG. 5A is a schematic plan view of the electromagnetic wave reflecting device 20 arranged in an area, and FIG. 5B is a received power map when the electromagnetic wave reflecting device 20 is used. In this layout, the reflective surface 21 of the electromagnetic wave reflector 20 is arranged at an angle of 45° to the LOS of the base station 10 .
 図6Aは、実施例の無線伝達システムで用いられる電磁波反射装置20の一例を示す。実施例1では、縦が2.0m、横が1.0mの電磁波反射装置20-1と20-2を横に2枚連結して、2.0m×2.0mの反射面を形成する。電磁波反射装置20-1と20-2の各々は、パネル200と、パネル200を保持するフレーム201を含む。電磁波反射装置20-1、20-2を床面に設置する場合は、フレーム201に脚部202が設けられていてもよい。フレーム201と脚部202により、パネル200は床面Pから所定の高さに支持されている。床面Pから電磁波反射装置20-1と20-2のパネル200の下端までの高さh1は、13.5cm、床面Pから反射面21の中心までの高さは、113.5cmである。 FIG. 6A shows an example of the electromagnetic wave reflector 20 used in the wireless transmission system of the embodiment. In Example 1, two electromagnetic wave reflection devices 20-1 and 20-2 each having a length of 2.0 m and a width of 1.0 m are horizontally connected to form a reflecting surface of 2.0 m×2.0 m. Each of the electromagnetic wave reflectors 20-1 and 20-2 includes a panel 200 and a frame 201 holding the panel 200. FIG. When the electromagnetic wave reflecting devices 20-1 and 20-2 are installed on the floor, the frame 201 may be provided with legs 202. FIG. The panel 200 is supported at a predetermined height from the floor P by the frame 201 and legs 202 . The height h1 from the floor P to the lower end of the panel 200 of the electromagnetic wave reflectors 20-1 and 20-2 is 13.5 cm, and the height from the floor P to the center of the reflecting surface 21 is 113.5 cm. .
 図6Bは、電磁波反射装置20で用いられるパネル200の構成例を水平断面で示す。パネル200は、誘電体層208に挟み込まれた導電層215を有する。導電層215は接着層216により2つの誘電体層208の間に接着保持されていてもよい。導電層215は電磁波反射装置の反射面21(図5参照)を形成し、24GHzから32GHzの範囲の電波を反射する所定の導体パターンを有している。図6Aのように複数の電磁波反射装置20が連結されるときは、隣接するパネル200間で、導電層215はフレーム201の内側で電気的に接続されている。導電層215を電気的に連続させることで、複数のパネル200間で反射の電位が連続した反射面21を形成できる。シミュレーションでは、誘電体層208として2枚のポリカーボネートプレートを用いて間に導電層215を挟む。実際の運用では、28GHzの電磁波に対して透明なその他の樹脂を用いてもよいし、1つの誘電体層208の表面に導電層215が形成されていてもよい。 FIG. 6B shows a configuration example of the panel 200 used in the electromagnetic wave reflector 20 in horizontal cross section. Panel 200 has a conductive layer 215 sandwiched between dielectric layers 208 . The conductive layer 215 may be held adhesively between the two dielectric layers 208 by an adhesive layer 216 . The conductive layer 215 forms the reflecting surface 21 (see FIG. 5) of the electromagnetic wave reflector and has a predetermined conductive pattern that reflects radio waves in the range of 24 GHz to 32 GHz. When a plurality of electromagnetic wave reflectors 20 are connected as shown in FIG. 6A, the conductive layers 215 are electrically connected inside the frame 201 between adjacent panels 200 . By making the conductive layer 215 electrically continuous, it is possible to form the reflective surface 21 in which the reflection potential is continuous between the plurality of panels 200 . In the simulation, two polycarbonate plates are used as the dielectric layer 208 with a conductive layer 215 in between. In actual operation, other resin transparent to electromagnetic waves of 28 GHz may be used, and the conductive layer 215 may be formed on the surface of one dielectric layer 208 .
 図5に戻って、図5の(B)に示すように、電磁波反射装置20を置くことで、構造体12-1の後ろ側で受信強度が5dBから10dB程度改善され、不感地帯30が低減されている。受信強度は、オムニアンテナを基準とする相対強度で表されている。このときの基地局10のアンテナから電磁波反射装置20の反射中心Rまでの直線距離D2は4.2m、不感地帯30の境界から電磁波反射装置20の反射中心Rまでの直線距離D1は、2.1mである。D1とD2の合計距離(D1+D2)は、6.3mである。実施例1の条件で、不感地帯30が低減され、電波伝搬環境が改善されることが確認される。 Returning to FIG. 5, as shown in FIG. 5B, by placing the electromagnetic wave reflector 20, the reception intensity behind the structure 12-1 is improved by about 5 dB to 10 dB, and the dead zone 30 is reduced. It is The reception strength is expressed as a relative strength with the omni-antenna as a reference. At this time, the linear distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 4.2 m, and the linear distance D1 from the boundary of the dead zone 30 to the reflection center R of the electromagnetic wave reflector 20 is 2.2 m. 1 m. The total distance of D1 and D2 (D1+D2) is 6.3m. It is confirmed that under the conditions of Example 1, the dead zone 30 is reduced and the radio wave propagation environment is improved.
 <実施例2> <Example 2>
 図7は、実施例2の無線伝達システム1Bで、電磁波反射装置20を設置する前の配置構成と受信電力分布を示す。図8は、実施例2の無線伝達システム1Bで、電磁波反射装置20を設置したときの配置構成と受信電力分布を示す。 FIG. 7 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1B of the second embodiment. FIG. 8 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1B of the second embodiment.
 図7の(A)は、基地局10と不感地帯30の位置関係を示す平面模式図、図7の(B)は、基地局10から放射される電波の受信電力マップである。長さ11.0m×幅7.5mのエリアのコーナー付近に基地局10を配置する。基地局10は無指向性アンテナを備え、アンテナの高さは床から2.0m、最大利得は30dBiである。 (A) of FIG. 7 is a schematic plan view showing the positional relationship between the base station 10 and the dead zone 30, and (B) of FIG. 7 is a received power map of radio waves emitted from the base station 10. FIG. A base station 10 is placed near a corner of an area of length 11.0 m×width 7.5 m. The base station 10 has an omnidirectional antenna with a height of 2.0 m from the floor and a maximum gain of 30 dBi.
 基地局10は、垂直方向ビーム幅17°、水平方向ビーム幅90°で、28GHz帯の電波を放射する。実施例1と比較して、垂直方向に鋭く、水平方向には幅広のビームとなる。11.0m×7.5mのエリアの床、天井、及び壁は、ITU-R勧告P.2040に沿った材質で形成されている。受信点の高さは、0.7mである。 The base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 90°. Compared with Example 1, the beam is sharp in the vertical direction and wide in the horizontal direction. Floors, ceilings and walls in an area of 11.0m x 7.5m shall comply with ITU-R Recommendation P. It is made of a material conforming to 2040. The height of the receiving point is 0.7 m.
 エリア内に、長さ3.0m、幅0.5m、高さ2.5mの金属製の構造体12-1と12-2が配置されている。基地局10から見て、構造体12-1と12-2の後ろ側は、周囲と比べて10dBから60dB程度、受信電力が低い不感地帯30となっている。不感地帯30の存在は、図7の(B)の受信電力マップからも確認される。 Within the area, metal structures 12-1 and 12-2 with a length of 3.0m, a width of 0.5m and a height of 2.5m are placed. As viewed from the base station 10, the rear side of the structures 12-1 and 12-2 is a dead zone 30 in which the received power is about 10 dB to 60 dB lower than the surrounding area. The presence of the dead zone 30 is also confirmed from the received power map in FIG. 7B.
 図8の(A)で、エリア内に電磁波反射装置20を配置する。電磁波反射装置20は、図6Aに示したように、2.0m、幅1.0mの電磁波反射装置20-1と20-2を横に2枚連結した構成であり、2.0m×2.0mの反射面21を有する。反射面21、すなわちパネル200の下端の床面Pからの高さh1は、13.5cm、床面Pから反射面21の中心までの高さは113.5cmである。 In (A) of FIG. 8, the electromagnetic wave reflection device 20 is placed in the area. As shown in FIG. 6A, the electromagnetic wave reflecting device 20 has a configuration in which two electromagnetic wave reflecting devices 20-1 and 20-2 each having a width of 2.0 m and a width of 1.0 m are connected horizontally. It has a reflecting surface 21 of 0 m. The height h1 of the reflecting surface 21, that is, the lower end of the panel 200 from the floor surface P is 13.5 cm, and the height from the floor surface P to the center of the reflecting surface 21 is 113.5 cm.
 実施例2のレイアウトは、基地局10から見て、構造体12-1の後ろ側に生産機器14(図1参照)が存在し、構造体12-2の後ろ側に生産機器14は存在しないことを前提としている。構造体12-1の後ろ側の不感地帯30を低減するために、電磁波反射装置20が導入される。電磁波反射装置20の反射面21は、基地局10のLOSに対して45°の角度で、構造体12-1の方向を向くように配置される。 In the layout of the second embodiment, when viewed from the base station 10, the production equipment 14 (see FIG. 1) exists behind the structure 12-1, and the production equipment 14 does not exist behind the structure 12-2. It is assumed that An electromagnetic wave reflector 20 is introduced to reduce the dead zone 30 behind the structure 12-1. The reflecting surface 21 of the electromagnetic wave reflector 20 is arranged at an angle of 45° with respect to the LOS of the base station 10 so as to face the structure 12-1.
 図8の(B)から、構造体12-1の後ろ側の不感地帯30で、受信強度が10dBから60dB程度改善されていることがわかる。このとき、基地局10のアンテナから電磁波反射装置20の反射中心Rまでの直線距離D2は、14.5mである。不感地帯30の境界から電磁波反射装置20の反射中心Rまでの直線距離D1は、1.5mである。D1とD2の合計距離(D1+D2)は、16.0mとなる。 From (B) of FIG. 8, it can be seen that the reception strength is improved by about 10 dB to 60 dB in the dead zone 30 on the rear side of the structure 12-1. At this time, the straight line distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 14.5 m. A straight line distance D1 from the boundary of the dead zone 30 to the reflection center R of the electromagnetic wave reflector 20 is 1.5 m. The total distance (D1+D2) of D1 and D2 is 16.0 m.
 実施例2の条件で、生産機器14が存在するエリアで不感地帯30が低減され、電波伝搬環境が改善されることが確認される。 It is confirmed that under the conditions of Example 2, the dead zone 30 is reduced in the area where the production equipment 14 exists, and the radio wave propagation environment is improved.
 <実施例3> <Example 3>
 図9は、実施例3の無線伝達システム1Cで、電磁波反射装置20を設置する前の配置構成と受信電力分布を示す。図10は、実施例3の無線伝達システム1Cで、電磁波反射装置20を設置したときの配置構成と受信電力分布を示す。 FIG. 9 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1C of the third embodiment. FIG. 10 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1C of the third embodiment.
 図9の(A)は、基地局10と不感地帯30の位置関係を示す平面模式図、図9の(B)は、基地局10から放射される電波の受信電力マップである。長さ11.0m×幅7.5mのエリアのコーナー付近に基地局10を配置する。基地局10は無指向性アンテナを備え、アンテナの高さは床から2.0m、最大利得は15dBiである。 (A) of FIG. 9 is a schematic plan view showing the positional relationship between the base station 10 and the dead zone 30, and (B) of FIG. 9 is a received power map of radio waves emitted from the base station 10. FIG. A base station 10 is placed near a corner of an area of length 11.0 m×width 7.5 m. The base station 10 has an omnidirectional antenna with a height of 2.0 m from the floor and a maximum gain of 15 dBi.
 基地局10は、垂直方向ビーム幅17°、水平方向ビーム幅90°で、28GHz帯の電波を放射する。11.0m×7.5mのエリアの床、天井、及び壁は、ITU-R勧告P.2040に沿った材質で形成されている。受信点におかれるオムニアンテナの高さは0.7mである。 The base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 90°. Floors, ceilings and walls in an area of 11.0m x 7.5m shall comply with ITU-R Recommendation P. It is made of a material conforming to 2040. The height of the omni antenna placed at the receiving point is 0.7 m.
 エリア内に、長さ3.0m、幅0.5m、高さ2.5mの金属製の構造体12-1と12-2が配置されている。基地局10から見て、構造体12-1と12-2の後ろ側は、周囲と比べて10dBから60dB程度、受信電力が低い不感地帯30となっている。実施例2と比較して、基地局10のアンテナの最大利得が小さい分、不感地帯30での受信強度が、実施例2よりもさらに低くなっている。不感地帯30の存在は、図9の(B)の受信電力マップからも確認される。 Within the area, metal structures 12-1 and 12-2 with a length of 3.0m, a width of 0.5m and a height of 2.5m are placed. As viewed from the base station 10, the rear side of the structures 12-1 and 12-2 is a dead zone 30 in which the received power is about 10 dB to 60 dB lower than the surrounding area. Since the maximum gain of the antenna of the base station 10 is smaller than that of the second embodiment, the reception intensity in the dead zone 30 is even lower than that of the second embodiment. The presence of the dead zone 30 is also confirmed from the received power map in FIG. 9B.
 図10の(A)で、エリア内に電磁波反射装置20を配置する。電磁波反射装置20は、図6Aに示したように、高さ2.0m、幅1.0mの電磁波反射装置20-1と20-2を横に2枚連結した構成であり、2.0m×2.0mの反射面21を有する。反射面21の下端の床面Pからの高さh1は、13.5cm、床面Pから反射面21の中心までの高さは113.5cmである。 In (A) of FIG. 10, the electromagnetic wave reflection device 20 is placed within the area. As shown in FIG. 6A, the electromagnetic wave reflecting device 20 has a configuration in which two electromagnetic wave reflecting devices 20-1 and 20-2 each having a height of 2.0 m and a width of 1.0 m are connected horizontally. It has a reflecting surface 21 of 2.0 m. The height h1 of the lower end of the reflecting surface 21 from the floor surface P is 13.5 cm, and the height from the floor surface P to the center of the reflecting surface 21 is 113.5 cm.
 実施例3のレイアウトは、実施例2と同様に、基地局10から見て、構造体12-1の後ろ側に生産機器14(図1参照)が存在し、構造体12-2の後ろ側に生産機器14は存在しないことを前提としている。電磁波反射装置20の反射面21は、基地局10のLOSに対して45°の角度で、構造体12-1の方向を向くように配置される。 In the layout of the third embodiment, as in the second embodiment, when viewed from the base station 10, the production equipment 14 (see FIG. 1) exists behind the structure 12-1, and the production equipment 14 (see FIG. 1) exists behind the structure 12-2. It is assumed that the production equipment 14 does not exist in The reflecting surface 21 of the electromagnetic wave reflector 20 is arranged at an angle of 45° with respect to the LOS of the base station 10 so as to face the structure 12-1.
 図10の(B)から、構造体12-1の後ろ側の不感地帯30で、受信強度が10dBから60dB程度、改善されていることがわかる。このときの基地局10のアンテナから電磁波反射装置20の反射中心Rまでの直線距離D2は、14.5である。不感地帯30の境界から電磁波反射装置20の反射中心Rまでの直線距離D1は、1.5mである。D1とD2の合計距離(D1+D2)は、16.0mとなる。 From (B) of FIG. 10, it can be seen that the reception strength is improved by about 10 dB to 60 dB in the dead zone 30 on the rear side of the structure 12-1. At this time, the straight line distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 14.5. A straight line distance D1 from the boundary of the dead zone 30 to the reflection center R of the electromagnetic wave reflector 20 is 1.5 m. The total distance (D1+D2) of D1 and D2 is 16.0 m.
 実施例3の条件で、生産機器14が存在するエリアで不感地帯30が低減され、電波伝搬環境が改善されることが確認される。実施例2と実施例3から、基地局10のアンテナの最大利得に15dBiの差があっても、不感地帯を同程度にまで低減できることがわかる。実施例1のレイアウトにおいて、基地局10のアンテナの最大利得が、20dBiよりも15dBi低い5dBiのときも、水平方向のビーム幅を絞ることで、図5の(B)と同程度の不感地帯低減の効果が期待される。 It is confirmed that under the conditions of Example 3, the dead zone 30 is reduced in the area where the production equipment 14 exists, and the radio wave propagation environment is improved. From Example 2 and Example 3, it can be seen that even if there is a difference of 15 dBi in the maximum gain of the antenna of the base station 10, the dead zone can be reduced to the same degree. In the layout of the first embodiment, even when the maximum gain of the antenna of the base station 10 is 5 dBi, which is 15 dBi lower than 20 dBi, narrowing the beam width in the horizontal direction reduces the dead zone to the same extent as in FIG. effect is expected.
 <実施例4> <Example 4>
 図11は、実施例4の無線伝達システム1Dで、電磁波反射装置20を設置する前の配置構成と受信電力分布を示す。図12は、実施例4の無線伝達システム1Dで、電磁波反射装置20を設置したときの配置構成と受信電力分布を示す。図11の(A)の配置構成で、無線伝達システム1Dは、部品125、ロボットアーム123等が存在するプロセスラインを含む。プロセスラインに沿って、ポリカーボネートの安全柵121が長さ45mにわたって設けられている。図12では、安全柵121に替えて、電磁波反射装置20が同じ長さ45mにわたって配置されている。 FIG. 11 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1D of the fourth embodiment. FIG. 12 shows the arrangement configuration and received power distribution when the electromagnetic wave reflector 20 is installed in the wireless transmission system 1D of the fourth embodiment. In the arrangement of FIG. 11A, wireless transmission system 1D includes a process line in which part 125, robot arm 123, etc. reside. Along the process line, a polycarbonate safety fence 121 is provided over a length of 45 m. In FIG. 12, instead of the safety fence 121, the electromagnetic wave reflection device 20 is arranged over the same length of 45 m.
 70m×35mのフロアに設けられるプロセスラインの一端側に、基地局10が置かれる。基地局10は無指向性のアンテナを備え、アンテナの高さ位置は3.0m、最大利得は20dBiである。基地局10は、垂直方向ビーム幅17°、水平方向ビーム幅17°で、28GHz帯の電波を放射する。フロアの床、天井、及び壁、柱はコンクリートである。受信点の高さは1.0m、受信アンテナは無指向性アンテナとする。図11の(B)の受信電力分布から、基地局10から離れた構造物の背後が、周囲よりも10~60dB受信電力が低い不感地帯となっている。 A base station 10 is placed on one end side of a process line provided on a floor of 70m x 35m. The base station 10 has an omnidirectional antenna with a height position of 3.0 m and a maximum gain of 20 dBi. The base station 10 radiates radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 17°. The floor, ceiling, walls and pillars of the floor are made of concrete. The height of the receiving point is 1.0 m, and the receiving antenna is an omnidirectional antenna. From the received power distribution in FIG. 11B, the back of the structure away from the base station 10 is a dead zone where the received power is 10 to 60 dB lower than the surroundings.
 図12の(A)で、安全柵121に替えて、電磁波反射装置20を用いる。幅1.0m、高さ2.0mの電磁波反射装置20を45枚連結して設置する。パネル200の下端は床から0.15mの高さであり、反射中心は、床から0.15m以上の高さにある。図12の(B)の受信電力マップから、不感地帯を含むプロセスラインの内部で、受信強度が10dBから20dB程度、改善されていることがわかる。このときの不感地帯から電磁波反射装置20の反射中心までの直線距離D1は、5.0mである。基地局10のアンテナから電磁波反射装置20の反射中心Rまでの直線距離D2は、55.0mである。D1とD2の合計距離(D1+D2)は、60.0mとなる。 In (A) of FIG. 12, the electromagnetic wave reflector 20 is used instead of the safety fence 121. Forty-five electromagnetic wave reflectors 20 each having a width of 1.0 m and a height of 2.0 m are connected and installed. The lower edge of the panel 200 is 0.15m above the floor and the center of reflection is above 0.15m above the floor. From the received power map of FIG. 12B, it can be seen that the received power is improved by about 10 dB to 20 dB inside the process line including the dead zone. The linear distance D1 from the dead zone to the reflection center of the electromagnetic wave reflector 20 at this time is 5.0 m. A straight line distance D2 from the antenna of the base station 10 to the reflection center R of the electromagnetic wave reflector 20 is 55.0 m. The total distance (D1+D2) of D1 and D2 is 60.0 m.
 <実施例5> <Example 5>
 図13は、実施例5の無線伝達システム1Eで、電磁波反射装置20を設置する前の配置構成と受信電力分布を示す。図14は、実施例4の無線伝達システム1Bで、電磁波反射装置20を設置したときの配置構成と受信電力分布を示す。図13の(A)の配置構成で、長さ70.0m×幅35.0mのフロアの端部に基地局10を配置する。基地局10は無指向性アンテナを備え、アンテナの高さは床から3.0m、最大利得は20dBiである。 FIG. 13 shows the arrangement configuration and received power distribution before installing the electromagnetic wave reflection device 20 in the wireless transmission system 1E of the fifth embodiment. FIG. 14 shows the arrangement configuration and received power distribution when the electromagnetic wave reflecting device 20 is installed in the wireless transmission system 1B of the fourth embodiment. In the arrangement configuration of FIG. 13A, the base station 10 is arranged at the end of the floor of length 70.0 m×width 35.0 m. The base station 10 has an omnidirectional antenna with a height of 3.0 m from the floor and a maximum gain of 20 dBi.
 基地局10は、垂直方向ビーム幅17°、水平方向ビーム幅17°で、28GHz帯の電波を放射する。フロアの床、天井、壁、及び柱はコンクリートである。受信点の高さは1.0m、受信アンテナは無指向性アンテナとする。 The base station 10 emits radio waves in the 28 GHz band with a vertical beam width of 17° and a horizontal beam width of 17°. The floor, ceiling, walls and columns of the floor are concrete. The height of the receiving point is 1.0 m, and the receiving antenna is an omnidirectional antenna.
 フロアに、長さ20.0m、幅20.0m、高さ3.0mの構造体12が配置されている。図13の(B)の受信電力マップから、基地局10から見て構造体12の後ろ側は、周囲と比べて10dBから50dB受信電力が低い不感地帯となっていることがわかる。 A structure 12 with a length of 20.0 m, a width of 20.0 m, and a height of 3.0 m is placed on the floor. From the received power map in FIG. 13B, it can be seen that the rear side of the structure 12 as viewed from the base station 10 is a dead zone in which the received power is 10 dB to 50 dB lower than the surrounding area.
 図14の(A)で、構造体12に対して斜めの角度で電磁波反射装置20を配置する。電磁波反射装置20は、図6Aに示した長さ2.0m、幅1.0mの電磁波反射装置20を横に14枚連結して用いる。反射面21(パネル200)の下端の床面Pからの高さは、0.135mである。図14の(B)から、構造体12の後ろ側の不感地帯で、受信強度が10dBから20dB程度改善されていることがわかる。このとき、不感地帯から電磁波反射装置20の反射中心までの直線距離D1は、20.0mである。基地局10のアンテナから電磁波反射装置20の反射中心までの直線距離D2は、80.0mである。D1とD2の合計距離(D1+D2)は、100.0mとなる。 In (A) of FIG. 14, the electromagnetic wave reflector 20 is arranged at an oblique angle with respect to the structure 12 . The electromagnetic wave reflecting device 20 is used by horizontally connecting 14 electromagnetic wave reflecting devices 20 having a length of 2.0 m and a width of 1.0 m shown in FIG. 6A. The height of the lower end of the reflecting surface 21 (panel 200) from the floor surface P is 0.135 m. From FIG. 14B, it can be seen that the reception strength is improved by about 10 dB to 20 dB in the dead zone behind the structure 12 . At this time, the linear distance D1 from the dead zone to the reflection center of the electromagnetic wave reflector 20 is 20.0 m. A straight line distance D2 from the antenna of the base station 10 to the reflection center of the electromagnetic wave reflector 20 is 80.0 m. The total distance (D1+D2) of D1 and D2 is 100.0 m.
 実施例1~5で、基地局10と、電磁波反射装置20と、解消したい不感地帯30との位置関係が所定の条件を満たすときに、不感地帯30での受信強度を改善できる。基地局10から放射される電波の周波数帯域によって、基地局10と、電磁波反射装置20と、不感地帯30との位置関係が満たすべき条件が変わるが、28GHz±4GHzの範囲内、より好ましくは、28GHz±2GHzの範囲内では、満たすべき条件に大きな変化はない。24GHz以上、32GHz以下の範囲、好ましくは25GHz以上、31GHz以下、より好ましくは26GHz以上、30GHz以下の範囲内で、実施例1~5の条件が当てはまる。 In Examples 1 to 5, the reception intensity in the dead zone 30 can be improved when the positional relationship among the base station 10, the electromagnetic wave reflector 20, and the dead zone 30 to be eliminated satisfies a predetermined condition. Depending on the frequency band of radio waves radiated from the base station 10, the condition to be met by the positional relationship between the base station 10, the electromagnetic wave reflector 20, and the dead zone 30 varies, but within the range of 28 GHz±4 GHz, more preferably: Within the range of 28 GHz±2 GHz, there is no significant change in the conditions to be met. Within the range of 24 GHz to 32 GHz, preferably 25 GHz to 31 GHz, more preferably 26 GHz to 30 GHz, the conditions of Examples 1 to 5 apply.
 電磁波反射装置20は、図6Aのように2つの電磁波反射装置20-1と20-2を結合した構成でなくてもよい。また、必ずしも脚部202で支持されていなくてもよい。基地局10からの電波を不感地帯30に向けて反射できれば、脚部202のない電磁波反射装置20を、デスク、棚、台などの上に立て掛けて配置してもよい。電磁波反射装置20をどのように支持するかの態様は、それほど重要ではない。したがって、図6Aのように脚部202を用いてもよいし、電磁波反射装置20のパネル200の周囲を取り囲むフレーム201だけを用いてもよい。実施例4、5のように、必要な枚数の電磁波反射装置20を連結して用いてもよい。複数の電磁波反射装置20を連結する構成は、図2、及び図12で示したプロセスラインでの不感地帯の低減に有効である。 The electromagnetic wave reflector 20 does not have to have a configuration in which two electromagnetic wave reflectors 20-1 and 20-2 are combined as shown in FIG. 6A. Moreover, it does not necessarily have to be supported by the legs 202 . If the radio waves from the base station 10 can be reflected toward the dead zone 30, the electromagnetic wave reflecting device 20 without the legs 202 may be leaned on a desk, shelf, stand, or the like. The manner in which the electromagnetic wave reflector 20 is supported is not critical. Therefore, the legs 202 may be used as shown in FIG. 6A, or only the frame 201 surrounding the panel 200 of the electromagnetic wave reflector 20 may be used. As in the fourth and fifth embodiments, a required number of electromagnetic wave reflecting devices 20 may be connected and used. A configuration in which a plurality of electromagnetic wave reflectors 20 are connected is effective in reducing dead zones in the process lines shown in FIGS.
 電磁波反射装置20のサイズは、基地局10から放射された電波を不感地帯30に届けることができるサイズであればよく、少なくとも電波伝搬路の第1フレネルゾーンを満たすサイズである。第1フレネルゾーンの半径rは、直線距離D1、D2と、波長λを用いて、
   r=[λ×D1×D2/(D1+D2)]1/2
で表される。28GHz帯の電波の波長は約11mm、D1とD2を実施例1~5で得られた距離とすると、半径rは5cm~50cmである。電磁波反射装置20のパネル1枚当たりの反射面21の面積は、少なくとも10cm×10cmであるのが望ましい。パネル1枚当たりの反射面21のサイズを大きくすることで、1枚で広い範囲に電波を届けることができるが、パネル200の面積があまりに大きいと、搬送、設置時の取り扱いの容易性が損なわれる場合がある。電磁波反射装置20のパネル200のサイズは、3m×3m以下であるのが望ましい。したがって、パネル200のサイズは、15cm×15cm以上、2.5m×2.5m以下、あるいは、20cm×20cm以上、2.0m×2.0m以下など、電磁波反射装置の重さ、強度、取り扱い易さを勘案して、適切に決めることができる。
The size of the electromagnetic wave reflector 20 may be any size that allows the radio waves radiated from the base station 10 to reach the dead zone 30, and is a size that satisfies at least the first Fresnel zone of the radio wave propagation path. The radius r of the first Fresnel zone is obtained using the linear distances D1 and D2 and the wavelength λ as
r=[λ×D1×D2/(D1+D2)] 1/2
is represented by The wavelength of radio waves in the 28 GHz band is approximately 11 mm, and the radius r is 5 cm to 50 cm, where D1 and D2 are the distances obtained in Examples 1-5. The area of the reflecting surface 21 per panel of the electromagnetic wave reflector 20 is desirably at least 10 cm×10 cm. By increasing the size of the reflective surface 21 per panel, radio waves can be transmitted over a wide area with one panel. may be The size of the panel 200 of the electromagnetic wave reflector 20 is desirably 3 m×3 m or less. Therefore, the size of the panel 200 is 15 cm x 15 cm or more and 2.5 m x 2.5 m or less, or 20 cm x 20 cm or more and 2.0 m x 2.0 m or less. You can make an appropriate decision by taking into consideration the
 反射面21の中心位置の高さは、基地局10のアンテナの高さと受信点の高さによって決まる。実施例1~5で、基地局10のアンテナは床面から2~3mの高さに配置されているが、工場、商業施設などの屋内施設の一般的な天井の高さを考えると、基地局10のアンテナは床面から1.5m以上、10m以下の位置に配置され得る。基地局10は、天井近傍に設置する以外に、天井から吊り下げることもできるし、床面に設置されたポール上にも設置できる。生産機器14の受信アンテナが床面から0.7m以上、2.0m以下の位置にあるとすると、生産機器14で十分な受信強度を確保する観点から、電磁波反射装置20の反射面21の中心、または反射中心R(図3参照)の高さは、0.5m以上であるのが望ましい。この場合、基地局10の位置に応じて、反射中心Rの高さは、生産機器14の受信点の高さよりも低くてもよいし、受信点の高さ以上であってもよい。前者の場合、高い位置に設置された基地局10からの電波を、不感地帯30にある生産機器14に効果的に届けることができる。 The height of the central position of the reflecting surface 21 is determined by the height of the antenna of the base station 10 and the height of the receiving point. In Examples 1 to 5, the antenna of the base station 10 is arranged at a height of 2 to 3 m above the floor surface. The antenna of station 10 may be placed at a position 1.5 m or more and 10 m or less from the floor. The base station 10 can be installed near the ceiling, suspended from the ceiling, or installed on a pole installed on the floor. Assuming that the receiving antenna of the production equipment 14 is located at a position of 0.7 m or more and 2.0 m or less from the floor surface, the center of the reflection surface 21 of the electromagnetic wave reflector 20 is considered to ensure sufficient reception strength at the production equipment 14. , or the height of the reflection center R (see FIG. 3) is preferably 0.5 m or more. In this case, depending on the position of the base station 10, the height of the center of reflection R may be lower than the height of the reception point of the production equipment 14 or higher than the height of the reception point. In the former case, radio waves from the base station 10 installed at a high position can be effectively delivered to the production equipment 14 located in the dead zone 30 .
 実施例1~5のシミュレーション結果に基づくと、以下の条件が導かれる。
(1)施設内に配置される基地局10から放射される電波の周波数帯域は、24GHz以上、32GHz以下、好ましくは、25GHz以上、31GHz以下、より好ましくは24GHz以上、30GHz以下である。
(2)基地局10のアンテナの最大利得は5dBi以上、30dBi以下である、電波の到達距離の観点から10dBi以上、30dBi以下であってもよい。
(3)不感地帯30は、周囲の伝搬環境よりも受信強度が10dB以上低くなる地帯である。
(4)電磁波反射装置20のパネル1枚当たりの反射面のサイズは、10cm×10cm以上、3.0m×3.0m以下であり、パネルの重さ、強度、取り扱い易さ等の観点から、15cm×15cm以上、2.5m×2.5m以下、20cm×20cm以上、2.0m×2.0m以上に設定し得る。反射中心の床面Pからの高さは0.135m以上、好ましくは、0.15m以上、さらに好ましくは0.5m以上である。
(5)D1とD2の合計の長さは、2.5m以上、100m以下である。
(6)電磁波反射装置20の反射中心の高さは、生産機器14(ターゲット機器)の受信点の高さ以下にあってもよい。
Based on the simulation results of Examples 1-5, the following conditions are derived.
(1) The frequency band of radio waves radiated from the base station 10 placed in the facility is 24 GHz or more and 32 GHz or less, preferably 25 GHz or more and 31 GHz or less, more preferably 24 GHz or more and 30 GHz or less.
(2) The maximum gain of the antenna of the base station 10 is 5dBi or more and 30dBi or less, and may be 10dBi or more and 30dBi or less from the viewpoint of the reach of radio waves.
(3) The dead zone 30 is a zone where the reception strength is 10 dB or more lower than the surrounding propagation environment.
(4) The size of the reflecting surface per panel of the electromagnetic wave reflecting device 20 is 10 cm x 10 cm or more and 3.0 m x 3.0 m or less. It can be set to 15 cm x 15 cm or more, 2.5 m x 2.5 m or less, 20 cm x 20 cm or more, or 2.0 m x 2.0 m or more. The height of the reflection center from the floor surface P is 0.135 m or more, preferably 0.15 m or more, and more preferably 0.5 m or more.
(5) The total length of D1 and D2 is 2.5m or more and 100m or less.
(6) The height of the reflection center of the electromagnetic wave reflector 20 may be lower than the height of the receiving point of the production equipment 14 (target equipment).
 このように、施設内で、基地局10が扱う電波の周波数帯と、基地局10のアンテナの最大利得が特定されるときに、所定サイズの反射面21を有する電磁波反射装置20を用いる。電磁波反射装置20は、基地局10のアンテナから電磁波反射装置20の反射中心R(図3参照)までの直線距離D2と、反射中心Rから不感地帯30までの直線距離D1の和が2.5m以上、100m以下の条件を満たす位置に配置される。D1とD2の和は、送信アンテナから、反射中心Rを介して、受信アンテナまでの距離である。D1+D2の値は、基地局10からの特定の周波数帯の電波の飛距離と一致する。屋内での使用を想定すると、D1+D2は、最大100mが妥当である。上記の条件により、構造体12等の遮蔽物が存在する屋内で不感地帯30を低減し、電波伝搬環境を改善できる。 Thus, when the frequency band of radio waves handled by the base station 10 and the maximum gain of the antenna of the base station 10 are specified in the facility, the electromagnetic wave reflector 20 having the reflecting surface 21 of a predetermined size is used. In the electromagnetic wave reflector 20, the sum of the linear distance D2 from the antenna of the base station 10 to the reflection center R (see FIG. 3) of the electromagnetic wave reflector 20 and the linear distance D1 from the reflection center R to the dead zone 30 is 2.5 m. Above, it arranges in the position which satisfies the condition of 100m or less. The sum of D1 and D2 is the distance from the transmit antenna, via the center of reflection R, to the receive antenna. The value of D1+D2 matches the flying distance of radio waves in a specific frequency band from base station 10 . Assuming indoor use, D1+D2 should be up to 100 m. Under the above conditions, the dead zone 30 can be reduced indoors where there is a shield such as the structure 12, and the radio wave propagation environment can be improved.
 上述した無線伝達システムは、工場などの生産施設に限定されず、鉄道や高速道路に用いられる防音壁のような施設にも適用できる。構造物や遮蔽物が多く配置されるイベント会場や車体や遮蔽物が多く存在する道路内のエリアでは、不感地帯が多く発生し得る。実施形態の無線伝達システムを用いることで、不感地帯を低減して電波伝搬環境を改善できる。 The wireless transmission system described above is not limited to production facilities such as factories, but can also be applied to facilities such as soundproof walls used for railways and highways. Many blind zones can occur in event venues where many structures and shields are arranged, and road areas where there are many vehicle bodies and shields. By using the wireless transmission system of the embodiment, the dead zone can be reduced and the radio wave propagation environment can be improved.
 <プロセスラインの検討>
 図15は、パネル200の数を変えた電磁界シミュレーションで用いる実施例と比較例のモデル図である。実施例のモデルでは、ひとつのプロセスラインの長さ方向に沿って電磁波反射装置20が設けられる。プロセスラインの内部には、部品125や、ロボットアーム123のような構造体が存在する。電磁波反射装置20は、図6Aのように複数の電磁波反射装置20-1~20-nが連結可能な構成である。プロセスラインの一方の端部に、基地局Тxが一つ設けられる。基地局Txは、ビーム幅17°の指向性アンテナを有し、最大利得は20dBiである。
<Examination of process line>
15A and 15B are model diagrams of an example and a comparative example used in an electromagnetic field simulation in which the number of panels 200 is changed. In the model of the embodiment, electromagnetic wave reflectors 20 are provided along the length direction of one process line. A part 125 and a structure such as a robot arm 123 are present inside the process line. The electromagnetic wave reflecting device 20 has a structure in which a plurality of electromagnetic wave reflecting devices 20-1 to 20-n can be connected as shown in FIG. 6A. One base station Tx is provided at one end of the process line. The base station Tx has a directional antenna with a beamwidth of 17° and a maximum gain of 20dBi.
 比較例のモデルは、電磁波反射装置20に替えて、プロセスラインの長さ方向の両側にポリカーボネートの安全柵121が設けられる。プロセスラインの一方の端部に1つの基地局Txが設けられる比較例1と、プロセスラインの両側に基地局Txがひとつずつ置かれる比較例2を含む。 In the model of the comparative example, instead of the electromagnetic wave reflector 20, polycarbonate safety fences 121 are provided on both sides in the length direction of the process line. It includes Comparative Example 1 in which one base station Tx is provided at one end of the process line and Comparative Example 2 in which one base station Tx is placed on each side of the process line.
 図16は、実施例、比較例1、及び比較例2の受信電力マップである。図16の(B)の比較例1で、基地局10から離れるとプロセスラインの内部が不感地帯となっている。これに対し、図16の(A)の実施例では、基地局10から離れても、プロセスラインの内側で受信強度が高く維持されている。図16の(C)の比較例2では、プロセスラインの両側に基地局10-1と10-2が置かれているため、プロセスラインの中央部で受信強度が低下している。実施例と、比較例1と、比較例2の電波環境の改善効果を数値化するために、それぞれのモデルで、破線で囲んだ領域A1のエリアサイズを変えて、基準信号受信電力(RSRP:Reference Signal Received Power)の総和を計算する。計算の結果は後述する。 FIG. 16 is a received power map of the example, comparative example 1, and comparative example 2. FIG. In Comparative Example 1 of FIG. 16(B), the inside of the process line becomes a dead zone when away from the base station 10 . On the other hand, in the embodiment of FIG. 16A, the received strength is maintained high inside the process line even if the base station 10 is far away. In Comparative Example 2 of FIG. 16(C), since the base stations 10-1 and 10-2 are placed on both sides of the process line, the reception intensity is reduced in the central portion of the process line. In order to quantify the effect of improving the radio wave environment in the example, comparative example 1, and comparative example 2, in each model, the area size of the area A1 surrounded by the broken line is changed, and the reference signal received power (RSRP: Calculate the sum of Reference Signal Received Power). The calculation result will be described later.
 図17の(A)は、電磁波反射装置20のパネル200を30枚、片側に15枚ずつ並べたときの実施例の受信電力マップ、図17の(B)は、比較例2の受信電力マップである。パネル200を30枚並べることで、プロセスラインの両側に基地局10-1、10-2を配置した比較例2よりも受信強度が向上していることがわかる。この効果を数値化するために、図17の破線で囲んだ領域A2のRSRPの総和を計算する。 FIG. 17(A) is a received power map of the example when 30 panels 200 of the electromagnetic wave reflecting device 20 are arranged, 15 panels on each side, and FIG. 17(B) is a received power map of Comparative Example 2. is. It can be seen that by arranging 30 panels 200, the reception strength is improved compared to Comparative Example 2 in which the base stations 10-1 and 10-2 are arranged on both sides of the process line. To quantify this effect, the sum of the RSRPs of the area A2 enclosed by the dashed line in FIG. 17 is calculated.
 図18の(A)は、電磁波反射装置20のパネル200を20枚、片側に10枚ずつ並べたときの実施例の受信電力マップ、図18の(B)は、比較例2の受信電力マップである。パネル200の数が20枚だと、実施例と比較例2の構成で、受信強度分布に大きな違いがないが、比較例1よりも良好である。このときの電波受信状態を数値化するために、図18の破線で囲んだ領域A3のRSRPの総和を計算する。 FIG. 18(A) is a received power map of the example when 20 panels 200 of the electromagnetic wave reflecting device 20 are arranged, ten panels on each side, and FIG. 18(B) is a received power map of Comparative Example 2. is. When the number of panels 200 is 20, there is no significant difference in the reception intensity distribution between the configuration of the embodiment and the configuration of the comparative example 2, but the configuration is better than the configuration of the comparative example 1. In order to quantify the radio wave reception state at this time, the sum of the RSRPs of the area A3 surrounded by the dashed line in FIG. 18 is calculated.
 図19は、電磁波反射装置20のパネルの数を16枚から80枚まで、すなわち片側で8枚から40枚まで変えたときの実施例、比較例1、及び比較例2のエリア内の受信電力の総和を示す。パネルとして、図6Aと図6Bに示した構成の2m×1mのパネル200を用いている。パネルの数の半分の値は、プロセスラインに沿った電磁波反射装置20の長さ(m)に対応する。図中の「構造体の数」はプロセスラインに配置されているロボットアーム等の構造体の数である。プロセスラインが長くなると、そこに含まれる構造体の数が増える。それに合わせて、用いるパネル200の数を増やす。 FIG. 19 shows the received power within the area of the example, comparative example 1, and comparative example 2 when the number of panels of the electromagnetic wave reflector 20 is changed from 16 to 80, that is, from 8 to 40 on one side. indicates the sum of As a panel, a panel 200 of 2 m×1 m having the configuration shown in FIGS. 6A and 6B is used. The value of half the number of panels corresponds to the length (m) of the electromagnetic wave reflector 20 along the process line. "Number of structures" in the figure is the number of structures such as robot arms arranged in the process line. As the process line lengthens, the number of structures it contains increases. Accordingly, the number of panels 200 to be used is increased.
 実施例の構成は、比較例1よりも不感地帯を低減できることは、図16からも明らかなので、主として、実施例と比較例2について検討する。パネルの数が24枚までは、実施例と比較例2の総受信電力はほとんど変わらないが、比較例2の方が、わずかに総受信電力が高い。単一の基地局10を用い、電磁波反射装置20を配置することで、2つの基地局10-1と10-2を設けた比較例2に劣らない電波改善効果が得られる。 Since it is clear from FIG. 16 that the configuration of the example can reduce the dead zone more than the comparative example 1, the example and the comparative example 2 will be mainly examined. When the number of panels is up to 24, the total received power is almost the same between the example and the comparative example 2, but the total received power of the comparative example 2 is slightly higher. By using a single base station 10 and arranging the electromagnetic wave reflector 20, a radio wave improvement effect comparable to that of Comparative Example 2 in which two base stations 10-1 and 10-2 are provided can be obtained.
 パネルの数が24枚を超えると、すなわち、プロセスラインの長さが12mよりも長くなると、同じエリア範囲で、単一の基地局10を用いる実施例の方が、比較例2よりも総受信電力が高くなる。図19の結果から、プロセスラインの長さが12mよりも長いときに、プロセスラインの近傍に単一の基地局10を配置し、プロセスラインに沿って電磁波反射装置20を並べることで、2つの基地局を用いる構成よりも不感地帯を低減できる。基地局10からプロセスライン内の生産機器の受信アンテナまでの最大飛距離を100mとして(実施例1~5参照)、基地局10の設置位置も勘案すると、単一の基地局10と電磁波反射装置20との組み合わせで良好な反射特性が得られるプロセスラインの長さは、8m以上、80m以下、より好ましくは15m以上、80m以下である。 When the number of panels exceeds 24, that is, when the length of the process line is longer than 12 m, the example using a single base station 10 has a higher total reception than the comparative example 2 in the same area range. higher power. From the results of FIG. 19, when the length of the process line is longer than 12 m, by arranging a single base station 10 near the process line and arranging the electromagnetic wave reflectors 20 along the process line, two A dead zone can be reduced more than a configuration using a base station. Assuming that the maximum flight distance from the base station 10 to the receiving antenna of the production equipment in the process line is 100 m (see Examples 1 to 5), and considering the installation position of the base station 10, a single base station 10 and an electromagnetic wave reflector The length of the process line for obtaining good reflection characteristics in combination with 20 is 8 m or more and 80 m or less, more preferably 15 m or more and 80 m or less.
 <パネルの変形例>
 実施例1~5では、誘電体層208として平坦な透明樹脂プレートを用いた。このパネル200を「平坦パネル」と呼ぶ。誘電体層は、必ずしも固体プレートである必要はなく内部に中空を有していてもよい。以下の変形例では、内部に中空213を有する誘電体層210を用いた中空パネル200Aを有する電磁波反射装置を提供する。「中空」とは、文字通り、誘電体層210の内部に空洞が存在することを意味し、その形状は問わない。
<Modified example of panel>
In Examples 1 to 5, a flat transparent resin plate was used as the dielectric layer 208 . This panel 200 is called a "flat panel". The dielectric layer need not necessarily be a solid plate and may have a hollow inside. The following modification provides an electromagnetic wave reflector having a hollow panel 200A using a dielectric layer 210 having a hollow 213 therein. "Hollow" literally means that a cavity exists inside the dielectric layer 210, and its shape does not matter.
 図20は、電磁波反射装置のパネルの変形例を示す。図20の(A)は中空パネル200Aの一部を示す模式図、(B)は中空パネル200AのI-Iラインに沿った水平断面図である。中空パネル200Aは、2枚の誘電体層210の間に、接着層216を介して挟まれた導電層215を有する。導電層215は、24GHz以上、32GHz以下の周波数帯の電波を反射するパターンに形成されている。誘電体層210は、プレート211の内部に、所定の方向に延びる中空213を有する。中空213の断面形状は矩形に限定されず、多角形、楕円形、円形等であってもよい。内部に中空213を有することで、中空パネル200Aの重量が軽減され、誘電体層210の誘電率は空気の誘電率に近づく。 FIG. 20 shows a modification of the panel of the electromagnetic wave reflector. FIG. 20A is a schematic diagram showing part of the hollow panel 200A, and FIG. 20B is a horizontal cross-sectional view along the II line of the hollow panel 200A. The hollow panel 200A has a conductive layer 215 sandwiched between two dielectric layers 210 with an adhesive layer 216 interposed therebetween. The conductive layer 215 is formed in a pattern that reflects radio waves in a frequency band of 24 GHz or more and 32 GHz or less. Dielectric layer 210 has hollow 213 extending in a predetermined direction inside plate 211 . The cross-sectional shape of the hollow 213 is not limited to rectangular, and may be polygonal, elliptical, circular, or the like. Having the hollow 213 inside reduces the weight of the hollow panel 200A and the dielectric constant of the dielectric layer 210 approaches that of air.
 図21は、中空パネル200Aを用いた電磁波反射装置20Aの斜視図である。電磁波反射装置20Aは、中空パネル200Aと、中空パネル200Aを保持するフレーム201を含む。図21のように、電磁波反射装置20Aを床面に設置する場合は、フレーム201に脚部202が設けられていてもよい。フレーム201により複数の電磁波反射装置20Aが連結され、脚部202とフレーム201によって、中空パネル200Aは床面から所定の高さに支持されている。また、フレーム201の内側で、隣接する中空パネル200Aの導電層215は電気的に接続されて、同じ反射電位に維持されている。図21では、中空パネル200Aは縦方向に延びる多数の中空213(図20参照)を有する。図示の便宜上、中空213を縦線で示しているが、中空パネル200Aは、可視光及び28GHz帯の電波に対して透明である。中空213はパネル200Aの内部で互いに平行に延設されていてもよい。 FIG. 21 is a perspective view of an electromagnetic wave reflector 20A using a hollow panel 200A. The electromagnetic wave reflector 20A includes a hollow panel 200A and a frame 201 that holds the hollow panel 200A. As shown in FIG. 21, when the electromagnetic wave reflecting device 20A is installed on the floor, the frame 201 may be provided with legs 202. A plurality of electromagnetic wave reflectors 20A are connected by the frame 201, and the hollow panel 200A is supported at a predetermined height from the floor surface by the legs 202 and the frame 201. FIG. Also, inside the frame 201, the conductive layers 215 of adjacent hollow panels 200A are electrically connected and maintained at the same reflected potential. In FIG. 21, hollow panel 200A has a number of longitudinally extending hollows 213 (see FIG. 20). For convenience of illustration, the hollow 213 is indicated by vertical lines, but the hollow panel 200A is transparent to visible light and radio waves in the 28 GHz band. Hollows 213 may extend parallel to each other within panel 200A.
 中空パネル200Aで、中空213の延びる方向は縦方向に限定されない。図22のように、複数の中空213が、中空パネル200Aの横方向に平行に伸びていてもよい。この場合も、中空パネル200Aの重量が軽減され、誘電率が空気の誘電率に近くなる。 In the hollow panel 200A, the extending direction of the hollow 213 is not limited to the vertical direction. As shown in FIG. 22, a plurality of hollows 213 may extend parallel to the lateral direction of hollow panel 200A. Again, the weight of the hollow panel 200A is reduced and the dielectric constant approaches that of air.
 図23は、図20の中空パネル200Aの反射能力(A)と、図6Bの平板のパネル200の反射能力(B)を示す。横軸は反射角度、縦軸は、散乱断面積(RCS:Rader Cross Section)で表される反射能力である。中空パネル200A、及び平板のパネル200に、28GHzの平面波を入射し、パネル面で反射させる。汎用の3次元電磁界シミュレーションソフトウェアを用いて散乱断面積を解析する。 FIG. 23 shows the reflectivity (A) of the hollow panel 200A of FIG. 20 and the reflectivity (B) of the flat panel 200 of FIG. 6B. The horizontal axis is the reflection angle, and the vertical axis is the reflectivity represented by the scattering cross section (RCS: Radar Cross Section). A plane wave of 28 GHz is incident on the hollow panel 200A and the flat panel 200, and reflected on the panel surface. The scattering cross section is analyzed using general-purpose three-dimensional electromagnetic field simulation software.
 中空パネル200Aと平板のパネル200で、入射角が0°(垂直入射)のときのメインピークの強度は同程度である。中空パネル200Aを用いることで、平板のパネル200と比較して、入射角の絶対値が大きくなってもメインピークのスペクトル形状の対称性が維持され、かつ、±45°の範囲にわたってピーク強度が改善される。中空パネル200Aを電磁波反射装置に適用することで、より広い角度範囲にわたって反射強度を維持して電波を反射できる。 The hollow panel 200A and the flat panel 200 have approximately the same main peak intensity when the incident angle is 0° (vertical incidence). By using the hollow panel 200A, compared to the flat panel 200, the symmetry of the spectrum shape of the main peak is maintained even if the absolute value of the incident angle is increased, and the peak intensity is increased over the range of ±45°. be improved. By applying the hollow panel 200A to an electromagnetic wave reflector, it is possible to reflect radio waves while maintaining the reflection intensity over a wider range of angles.
 図24と図25は、以下で述べる実施例の反射特性の解析空間31を示す図である。パネルの面内をX-Y面、厚さ方向をZ方向とする。解析空間を(X方向のサイズ)×(Y方向のサイズ)×(Z方向のサイズ)で表すと、周波数が28GHzのときの解析空間31のサイズは、100mm×100mm×21.7mmとする。図25に示すように、境界条件は、解析空間31の周囲に電磁波吸収体32を配置した設計とする。 24 and 25 are diagrams showing the analysis space 31 of the reflection characteristics of the embodiment described below. The in-plane of the panel is the XY plane, and the thickness direction is the Z direction. When the analysis space is represented by (size in the X direction)×(size in the Y direction)×(size in the Z direction), the size of the analysis space 31 when the frequency is 28 GHz is 100 mm×100 mm×21.7 mm. As shown in FIG. 25 , the boundary condition is a design in which an electromagnetic wave absorber 32 is arranged around the analysis space 31 .
 図26は、電磁界シミュレーションで用いる中空パネルのモデル図である。誘電体層210の厚さをt1、プレート壁の厚さをt2、中空213の厚さをL1、中空213の横方向の幅、すなわちピッチをL2とし、これらのパラメータ値を変えて中空率を変化させる。
<実施例11>
FIG. 26 is a model diagram of a hollow panel used in electromagnetic field simulation. Let t1 be the thickness of the dielectric layer 210, t2 be the thickness of the plate wall, L1 be the thickness of the hollows 213, and L2 be the lateral width of the hollows 213, that is, the pitch. change.
<Example 11>
 図27は、実施例11の中空パネルの反射特性を示す。実施例11で、誘電体層210は、厚さt1が5.0mm、プレート壁の厚さt2が0.5mm、中空213の厚さL1が4.0mm、ピッチL2が3.5mmに設定されており、断面の中空率70.0%のポリカーボネートで形成されている。このポリカーボネート2枚の間に導電層215(図20参照)を挟んだパネルを用いる。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。偏波の方向は、中空213が延びる方向と平行とする。散乱断面積のメインピークのdB値は、図27に示すとおりである。±20°の範囲で10dBを超える散乱断面積が得られ、0°を境にして、マイナス方向とプラス方向で、ほぼ同じ散乱断面積が得られている。
<実施例12>
27 shows the reflection properties of the hollow panel of Example 11. FIG. In Example 11, the dielectric layer 210 has a thickness t1 of 5.0 mm, a plate wall thickness t2 of 0.5 mm, a thickness L1 of the hollows 213 of 4.0 mm, and a pitch L2 of 3.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 70.0%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The direction of polarization is parallel to the direction in which the hollow 213 extends. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section exceeding 10 dB is obtained in the range of ±20°, and substantially the same scattering cross section is obtained in the minus direction and the plus direction with 0° as the boundary.
<Example 12>
 図28は、実施例12の中空パネルの反射特性を示す。実施例12で、誘電体層210は、厚さt1が5.0mm、プレート壁の厚さt2が1.5mm、中空213の厚さL1が3.0mm、ピッチL2が2.5mmに設定されており、断面の中空率37.5%のポリカーボネートで形成されている。このポリカーボネート2枚の間に導電層215(図20参照)を挟んだパネルを用いる。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。偏波の方向は、中空213が延びる方向と平行とする。散乱断面積のメインピークのdB値は、図28に示すとおりである。±20°の範囲で10dBを超える散乱断面積が得られ、0°を境にして、マイナス方向とプラス方向で、ほぼ対称の散乱断面積が得られている。特に、絶対値が40°以上の入射角で実施例11よりも散乱断面積が大きい。
<実施例13>
28 shows the reflection properties of the hollow panel of Example 12. FIG. In Example 12, the dielectric layer 210 has a thickness t1 of 5.0 mm, a plate wall thickness t2 of 1.5 mm, a hollow 213 thickness L1 of 3.0 mm, and a pitch L2 of 2.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 37.5%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The direction of polarization is parallel to the direction in which the hollow 213 extends. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section exceeding 10 dB is obtained in the range of ±20°, and substantially symmetrical scattering cross sections are obtained in the minus and plus directions with respect to 0°. In particular, the scattering cross section is larger than that of Example 11 at an incident angle with an absolute value of 40° or more.
<Example 13>
 図29は、実施例13の中空パネルの反射特性を示す。実施例13で、誘電体層210は、厚さt1が5.0mm、プレート壁の厚さt2が0.5mm、中空213の厚さL1が3.0mm、ピッチL2が2.5mmに設定されており、断面の中空率70.0%のポリカーボネートで形成されている。このポリカーボネート2枚の間に導電層215(図20参照)を挟んだパネルを用いる。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。偏波の方向は、中空213が延びる方向と垂直とする。散乱断面積のメインピークのdB値は、図29に示すとおりである。垂直入射で10dBを超える散乱断面積が得られ、±30°の範囲で9.0dBを超える散乱断面積が得られる。
<実施例14>
29 shows the reflection properties of the hollow panel of Example 13. FIG. In Example 13, the dielectric layer 210 has a thickness t1 of 5.0 mm, a plate wall thickness t2 of 0.5 mm, a hollow 213 thickness L1 of 3.0 mm, and a pitch L2 of 2.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 70.0%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The direction of polarization is perpendicular to the direction in which hollow 213 extends. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section of over 10 dB is obtained at normal incidence, and a scattering cross section of over 9.0 dB is obtained in the range of ±30°.
<Example 14>
 図30は、実施例14の中空パネルの反射特性を示す。実施例14で、誘電体層210は、厚さt1が4.0mm、プレート壁の厚さt2が0.5mm、中空213の厚さL1が3.0mm、ピッチL2が3.5mmに設定されており、断面の中空率65.6%のポリカーボネートで形成されている。このポリカーボネート2枚の間に導電層215(図20参照)を挟んだパネルを用いる。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。偏波の方向は、中空213が延びる方向と垂直とする。散乱断面積のメインピークのdB値は、図30に示すとおりである。±20°の範囲で10.0dBを超える散乱断面積が得られる。
<実施例15>
30 shows the reflection properties of the hollow panel of Example 14. FIG. In Example 14, the dielectric layer 210 has a thickness t1 of 4.0 mm, a plate wall thickness t2 of 0.5 mm, a thickness L1 of the hollows 213 of 3.0 mm, and a pitch L2 of 3.5 mm. It is made of polycarbonate with a cross-sectional hollowness of 65.6%. A panel in which a conductive layer 215 (see FIG. 20) is sandwiched between two polycarbonate sheets is used. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The direction of polarization is perpendicular to the direction in which hollow 213 extends. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section of over 10.0 dB is obtained over a range of ±20°.
<Example 15>
 図31は、実施例15の平板パネルの反射特性を示す。モデルとして、図6Bのように、厚さ5.0mmのポリカーボネートを2枚、間に導電層215を挟んで貼り合わせる。中空率は0%である。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。散乱断面積のメインピークのdB値は、図31に示すとおりである。中空パネル200Aと比較して、散乱断面積のピーク強度が小さくなるが、±10°の範囲で9.0dBを超える散乱断面積が得られ、±20°の範囲で8.5dBを超える散乱断面積が得られる。0°を境にマイナス側とプラス側で、ほぼ均一のピーク強度が得られる。
<実施例16>
31 shows the reflection properties of the flat panel of Example 15. FIG. As a model, as shown in FIG. 6B, two pieces of polycarbonate having a thickness of 5.0 mm are pasted together with a conductive layer 215 interposed therebetween. The hollowness is 0%. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The dB value of the main peak of the scattering cross section is as shown in FIG. Compared to the hollow panel 200A, the peak intensity of the scattering cross section is smaller, but the scattering cross section exceeds 9.0 dB in the range of ±10°, and the scattering cross section exceeds 8.5 dB in the range of ±20°. area is obtained. A substantially uniform peak intensity is obtained on the negative side and the positive side of 0°.
<Example 16>
 図32は、実施例16の平板パネルの反射特性を示す。厚さ2.0mmのポリカーボネートを2枚、間に導電層215を挟んで貼り合わせる。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。散乱断面積のメインピークのdB値は図32に示すとおりである。0°から+20°の範囲で10.0dBを超える散乱断面積が得られるが、0°を境としてマイナス側とプラス側でピーク強度が非対称となる。基地局から見た不感地帯の位置によっては、実施例16の平板パネルも有効に用いられる。
<実施例17>
32 shows the reflection properties of the flat panel of Example 16. FIG. Two pieces of polycarbonate having a thickness of 2.0 mm are pasted together with the conductive layer 215 interposed therebetween. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section exceeding 10.0 dB is obtained in the range from 0° to +20°, but the peak intensity becomes asymmetrical on the minus side and the plus side with respect to 0°. The flat panel of Example 16 can also be effectively used depending on the position of the dead zone as seen from the base station.
<Example 17>
 図33は、実施例17の平板パネル反射特性を示す。厚さ4.0mmのポリカーボネートを2枚、間に導電層215を挟んで貼り合わせる。入射角を-60°から+60°まで10°刻みで変化させてシミュレーションを行う。散乱断面積のメインピークのdB値は、図33に示すとおりである。±20°の範囲で10.0dBを超える散乱断面積が得られ、実施例15と同様に、0°を境としてマイナス側とプラス側でほぼ対称の散乱断面積が得られる。 FIG. 33 shows the flat panel reflection characteristics of Example 17. Two pieces of polycarbonate having a thickness of 4.0 mm are pasted together with the conductive layer 215 interposed therebetween. The simulation is performed by changing the incident angle from −60° to +60° in increments of 10°. The dB value of the main peak of the scattering cross section is as shown in FIG. A scattering cross section of more than 10.0 dB is obtained in the range of ±20°, and similarly to Example 15, a substantially symmetrical scattering cross section is obtained on the minus side and the plus side with respect to 0°.
 以上、特定の実施例に基づいて本発明を説明したが、本発明は上記の構成例に限定されない。中空パネルの断面中空率は、パネルの強度、重量、誘電率等を考慮して、10%~75%の範囲で適宜、設定できる。無線伝達システムで用いる電磁波反射装置のパネルサイズは2m×1mに限定されず、上述したように、10cm×10cmから3m×3mの範囲で適宜選択される。複数のパネルを連結して用いる場合は、フレーム201を用いて、隣接するパネル間で導電層が電気的に接続されるように連結すればよい。中空パネル200Aを用いる場合、中空213は必ずしも中空パネル200Aの上端から下端まで連続して延設される必要はない。中空パネル200Aの一部領域に中空213が設けられてもよいし、中空パネル200Aの上半分と下半分で、別々に中空213が設けられていてもよい。実施形態の無線伝達システムは、生産機器等が存在し、不感地帯が生じやすいプロセスラインを含む施設内で有効に用いられる。プロセスライン以外にも、多数の展示物や人の列ができやすい屋内、屋外のイベント施設にも有効に用いられる。 Although the present invention has been described based on specific embodiments, the present invention is not limited to the above configuration examples. The cross-sectional hollowness of the hollow panel can be appropriately set in the range of 10% to 75% in consideration of the strength, weight, dielectric constant, etc. of the panel. The panel size of the electromagnetic wave reflector used in the wireless transmission system is not limited to 2 m×1 m, and is appropriately selected within the range of 10 cm×10 cm to 3 m×3 m as described above. When a plurality of panels are connected and used, a frame 201 may be used to connect the adjacent panels so that the conductive layers are electrically connected. When hollow panel 200A is used, hollow 213 does not necessarily have to extend continuously from the top end to the bottom end of hollow panel 200A. The hollow 213 may be provided in a partial region of the hollow panel 200A, or the hollow 213 may be provided separately in the upper half and the lower half of the hollow panel 200A. The wireless transmission system of the embodiment is effectively used in facilities including process lines where production equipment and the like are present and where dead zones are likely to occur. In addition to the process line, it can be effectively used for indoor and outdoor event facilities where many exhibits and people are likely to line up.
 この出願は、2021年12月20日に出願された日本国特許出願第2021-206520号に基づいて、その優先権を主張するものであり、この日本国特許出願の全内容を含む。 This application claims priority based on Japanese Patent Application No. 2021-206520 filed on December 20, 2021, and includes the entire contents of this Japanese Patent Application.
1、1A~1E 無線伝達システム
10 基地局
12、12-1、12-2 構造体(遮蔽物)
14 生産機器(ターゲット機器)
20、20-1、20-2、20A、20B 電磁波反射装置
21 反射面
30 不感地帯
200 パネル
200A 中空パネル
208、210 誘電体層
211 プレート
213 中空
215 導電層
R 反射中心
D1 不感地帯から電磁波反射装置の反射中心までの直線距離
D2 基地局アンテナから電磁波反射装置の反射中心までの直線距離
1, 1A to 1E wireless transmission system 10 base station 12, 12-1, 12-2 structure (shield)
14 production equipment (target equipment)
20, 20-1, 20-2, 20A, 20B Electromagnetic wave reflector 21 Reflective surface 30 Dead zone 200 Panel 200A Hollow panels 208, 210 Dielectric layer 211 Plate 213 Hollow 215 Conductive layer R Reflection center D1 From dead zone to electromagnetic wave reflector D2 Straight line distance from the base station antenna to the reflection center of the electromagnetic wave reflector

Claims (10)

  1.  施設内に位置する基地局とターゲット機器とが24GHz以上、32GHz以下の周波数帯から選択される周波数で電波を送受信する無線伝達システムにおいて、
     前記基地局のアンテナの最大利得は5dBi以上、30dBi以下であり、
     前記施設内に、周囲よりも受信強度が10dB以上低い不感地帯が存在するときに、前記基地局と前記不感地帯の間に、反射面のサイズが10cm×10cm以上、3.0m×3.0m以下のパネルを1枚以上含む電磁波反射装置を、反射中心が前記施設の床から0.5m以上の高さにあるように配置し、
     前記基地局のアンテナと前記電磁波反射装置を結ぶ直線の距離と、前記電磁波反射装置と前記不感地帯を結ぶ直線の距離の合計が2.5m以上、100m以下である無線伝達システム。
    In a wireless transmission system in which a base station located in a facility and a target device transmit and receive radio waves at a frequency selected from a frequency band of 24 GHz or more and 32 GHz or less,
    The maximum gain of the antenna of the base station is 5dBi or more and 30dBi or less,
    When there is a dead zone in the facility where the reception intensity is 10 dB or more lower than the surroundings, the size of the reflecting surface between the base station and the dead zone is 10 cm x 10 cm or more and 3.0 m x 3.0 m. An electromagnetic wave reflector comprising one or more of the following panels is arranged so that the reflection center is at a height of 0.5 m or more from the floor of the facility;
    A wireless transmission system according to claim 1, wherein the total distance of a straight line connecting the antenna of said base station and said electromagnetic wave reflector and a straight line distance connecting said electromagnetic wave reflector and said dead zone is 2.5 m or more and 100 m or less.
  2.  前記施設内に、前記不感地帯と前記ターゲット機器が存在するプロセスラインが設けられ、
     前記プロセスラインの長手方向に沿って、長さ8m以上、80m以下の前記電磁波反射装置が設けられ、
     前記プロセスラインの近傍に単一の前記基地局が設けられる、
    請求項1に記載の無線伝達システム。
    A process line is provided within the facility in which the dead zone and the target equipment reside;
    The electromagnetic wave reflector having a length of 8 m or more and 80 m or less is provided along the longitudinal direction of the process line,
    A single base station is provided in the vicinity of the process line,
    A wireless transmission system according to claim 1.
  3.  前記基地局から放射される前記電波の水平方向のビーム幅は10°以上、180°以下である、
    請求項1または2に記載の無線伝達システム。
    The horizontal beam width of the radio waves radiated from the base station is 10° or more and 180° or less.
    3. A wireless transmission system according to claim 1 or 2.
  4.  前記電磁波反射装置の前記反射面は、前記電波を入射角と同じ角度で反射する鏡面反射面と、前記入射角と異なる角度で反射する人工的な表面の少なくとも一方を有する、
    請求項1から3のいずれか1項に記載の無線伝達システム。
    The reflective surface of the electromagnetic wave reflecting device has at least one of a specular reflective surface that reflects the radio wave at an angle that is the same as the incident angle, and an artificial surface that reflects the radio wave at an angle different from the incident angle,
    A wireless transmission system according to any one of claims 1-3.
  5.  前記電磁波反射装置の前記反射中心の高さは、前記ターゲット機器の受信点の高さ以下である、
    請求項1から4のいずれか1項に記載の無線伝達システム。
    The height of the center of reflection of the electromagnetic wave reflector is equal to or lower than the height of the receiving point of the target device.
    A wireless transmission system according to any one of claims 1-4.
  6.  前記電磁波反射装置の前記パネルは、内部に中空を有する、
    請求項1から5のいずれか1項に記載の無線伝達システム。
    The panel of the electromagnetic wave reflector has a hollow inside,
    A wireless transmission system according to any one of claims 1-5.
  7.  前記パネルの断面中空率は10%以上、75%以下である、
    請求項6に記載の無線伝達システム。
    The panel has a cross-sectional hollowness of 10% or more and 75% or less.
    A wireless transmission system according to claim 6.
  8.  誘電体層と、
     24GHz以上、32GHz以下の周波数帯の電波を反射する導電層と
    を有し、
     前記誘電体層は内部に中空を有する、
    電磁波反射装置。
    a dielectric layer;
    and a conductive layer that reflects radio waves in a frequency band of 24 GHz or more and 32 GHz or less,
    The dielectric layer has a hollow inside,
    Electromagnetic wave reflector.
  9.  前記中空は、前記誘電体層の内部で平行に延びる複数の中空を含む、
    請求項8に記載の電磁波反射装置。
    the hollow includes a plurality of hollows extending in parallel inside the dielectric layer;
    The electromagnetic wave reflector according to claim 8.
  10.  前記誘電体層の中空率は10%以上、75%以下である、
    請求項8または9に記載の電磁波反射装置。
    The dielectric layer has a hollowness of 10% or more and 75% or less.
    The electromagnetic wave reflector according to claim 8 or 9.
PCT/JP2022/044751 2021-12-20 2022-12-05 Wireless transmission system and electromagnetic wave reflection apparatus WO2023120137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021206520 2021-12-20
JP2021-206520 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120137A1 true WO2023120137A1 (en) 2023-06-29

Family

ID=86902193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044751 WO2023120137A1 (en) 2021-12-20 2022-12-05 Wireless transmission system and electromagnetic wave reflection apparatus

Country Status (1)

Country Link
WO (1) WO2023120137A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113803A (en) * 1984-06-29 1986-01-22 Showa Denko Kk Manufacture of reflecting plate for circularly polarized wave antenna
JP2000315911A (en) * 1999-04-30 2000-11-14 Kishimoto Sangyo Co Ltd Reflection panel of radar reflector
JP2002009481A (en) * 2000-06-22 2002-01-11 Konoshima Chemical Co Ltd Electric-wave absorbing board, manufacturing method thereof, and electric-wave absorbing fireproof wall material
JP2020184739A (en) * 2019-04-26 2020-11-12 パナソニックIpマネジメント株式会社 Wireless system capable of using shared frequency, wireless resource allocation method in radio communication using shared frequency, and base station
WO2021199504A1 (en) * 2020-03-31 2021-10-07 Agc株式会社 Wireless transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113803A (en) * 1984-06-29 1986-01-22 Showa Denko Kk Manufacture of reflecting plate for circularly polarized wave antenna
JP2000315911A (en) * 1999-04-30 2000-11-14 Kishimoto Sangyo Co Ltd Reflection panel of radar reflector
JP2002009481A (en) * 2000-06-22 2002-01-11 Konoshima Chemical Co Ltd Electric-wave absorbing board, manufacturing method thereof, and electric-wave absorbing fireproof wall material
JP2020184739A (en) * 2019-04-26 2020-11-12 パナソニックIpマネジメント株式会社 Wireless system capable of using shared frequency, wireless resource allocation method in radio communication using shared frequency, and base station
WO2021199504A1 (en) * 2020-03-31 2021-10-07 Agc株式会社 Wireless transmission system

Similar Documents

Publication Publication Date Title
WO2021199504A1 (en) Wireless transmission system
RU2542719C2 (en) Multichannel cable networks for radio frequency signal distribution
CN110943295B (en) Multi-beam antenna array, base station antenna and antenna array decoupling method
US9742060B2 (en) Ceiling assembly with integrated repeater antenna
US20230420864A1 (en) Electromagnetic wave reflector, reflected electromagnetic wave fence, and method of assembling electromagnetic wave reflector
KR20220043213A (en) Meta-structured wireless infrastructure for beamforming system
KR20220011188A (en) Meta-structure-based reflective arrays for advanced wireless applications
CN110719596B (en) Base station antenna design method for greatly improving ground-air communication signal coverage quality
US20230023706A1 (en) Electromagnetic wave reflector, electromagnetic wave reflective fence, and method of assembling electromagnetic wave reflector
EP3477771B1 (en) Printed dipole antenna, array antenna, and communications device
KR20160031860A (en) Non-feeding reradiate repeater and method for manufacturing of the same
CN110139287B (en) Millimeter wave indoor passive coverage method
WO2023120137A1 (en) Wireless transmission system and electromagnetic wave reflection apparatus
WO2023120138A1 (en) Wireless transfer system and electromagnetic wave reflection device
SE1930410A1 (en) An antenna arrangement with a low-ripple radiation pattern
CN108511922B (en) Multi-beam high-directivity three-side included angle reflector antenna based on super surface
CN110300416B (en) Millimeter wave indoor passive coverage method
WO2023218887A1 (en) Electromagnetic wave reflection device and electromagnetic wave reflection fence
KR101104371B1 (en) Omni antenna
WO2024038775A1 (en) Reflective panel, electromagnetic wave reflection device, and electromagnetic wave reflection fence
WO2024038682A1 (en) Wireless transmission system
WO2024127942A1 (en) Wireless transmission system
WO2022097581A1 (en) Antenna set
CN215299515U (en) 5G-based multi-channel vertical large-opening-angle spotlight antenna
WO2024135455A1 (en) Reflective panel and electromagnetic wave reflecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569259

Country of ref document: JP

Kind code of ref document: A