WO2023120074A1 - Antenna device and communication terminal apparatus - Google Patents

Antenna device and communication terminal apparatus Download PDF

Info

Publication number
WO2023120074A1
WO2023120074A1 PCT/JP2022/044150 JP2022044150W WO2023120074A1 WO 2023120074 A1 WO2023120074 A1 WO 2023120074A1 JP 2022044150 W JP2022044150 W JP 2022044150W WO 2023120074 A1 WO2023120074 A1 WO 2023120074A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
terminal
coil
antenna device
switch
Prior art date
Application number
PCT/JP2022/044150
Other languages
French (fr)
Japanese (ja)
Inventor
冬夢 田邊
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023120074A1 publication Critical patent/WO2023120074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present disclosure relates to technology of antenna devices and communication terminal devices.
  • the antenna device disclosed in Patent Document 1 the first radiation element connected directly or indirectly to the feeding circuit and the second radiation element connected to the ground (GND) are multi-resonated.
  • the first coil to be connected and the second coil to be connected to the second radiation element are magnetically coupled.
  • the antenna device can be adjusted to a resonance frequency that can be used in Low-Band (0.7 to 0.96 GHz).
  • the antenna device in order to widen the usable frequency band in the direction of lower frequencies, it is necessary to increase the length of the radiating element. However, it has been difficult to secure an area for providing a longer radiating element in the limited area within the communication terminal device.
  • An object of the present invention is to provide an antenna device and a communication terminal device that can
  • An antenna device is an antenna device comprising a first antenna and a second antenna.
  • the first antenna includes a first radiating element that is directly or indirectly connected to a feeding circuit that transmits and receives high frequency signals, and a first coil that is connected to the first radiating element.
  • the second antenna includes a second radiating element and a second coil connected to the second radiating element.
  • the antenna device further includes a switch for switching the connection state between the first coil and the second coil. The switch magnetically couples the first coil and the second coil to a first connection state in which resonance points of the first antenna and the second antenna are set as resonance bands, and the first coil and the second coil. are connected in series to form a third antenna in which the first radiating element and the second radiating element form one monopole antenna.
  • a communication terminal device includes a feeding circuit and the antenna device described above.
  • FIG. 1 is a schematic diagram of an antenna device according to an embodiment; FIG. It is a figure which shows the frequency characteristic of the reflection coefficient of the antenna device in embodiment.
  • 1 is a schematic diagram showing a communication terminal device in an embodiment;
  • FIG. FIG. 4 is a diagram showing frequency characteristics of reflection coefficients of an antenna device to be compared in a second connection state and an antenna device according to an embodiment;
  • FIG. 4 is a diagram showing frequency characteristics of reflection coefficients of an antenna device to be compared in a first connection state and an antenna device according to an embodiment;
  • FIG. 10 is a schematic diagram of an antenna device in Modification 1;
  • FIG. 11 is a schematic diagram of an antenna device in Modification 2;
  • FIG. 11 is a schematic diagram of an antenna device in Modification 3;
  • FIG. 1 is a schematic diagram of an antenna device 100 according to an embodiment.
  • the antenna device 100 includes a first antenna ANT1 and a second antenna ANT2.
  • the first antenna ANT1 includes a first radiating element 11 directly connected to the feeding circuit 30 and a first coil L1 connected to the first radiating element 11 .
  • the first antenna ANT1 functions as a loop antenna when connected to GND via the switch 40 .
  • the second antenna ANT2 includes a second radiating element 12 and a second coil L2 connected to the second radiating element 12.
  • the second coil L2 is magnetically coupled to the first coil L1 and functions as a parasitic antenna that is not fed by the feeding circuit 30.
  • the antenna device 100 includes a switch 40 that switches the connection state between the first coil L1 and the second coil L2.
  • the first coil L1 has a first terminal L1a connected to the first radiation element 11 and a second terminal L1b connected to the switch 40 .
  • the second coil L2 has a third terminal L2a connected to the second radiating element 12 and a fourth terminal L2b connected to the switch 40 .
  • the switch 40 connects the terminal 41 to which the second terminal L1b and the fourth terminal L2b are connected to the GND terminal 42, thereby switching to the first connection state in which the first coil L1 and the second coil L2 are directly grounded. can be done.
  • the first coil L1 and the second coil L2 are grounded, the first coil L1 and the second coil L2 are magnetically coupled, and the first coil L1 and the second coil L2 function as a transformer.
  • the first coil L1 and the second coil L2 are mounted on the antenna device 100 as the antenna coupling element 20, for example.
  • the antenna coupling element 20 is a rectangular parallelepiped chip component.
  • the antenna coupling element 20 forms a part of the conductor pattern of the first coil L1 and the second coil L2 on each insulating base material (for example, liquid crystal polymer, low temperature co-fired ceramics, etc.), and each insulating base material is It is constructed by stacking.
  • the switch 40 can connect the terminal 41 to terminals 43 and 44 provided with an impedance adjusting element (for example, an inductor) between the GND.
  • an impedance adjusting element for example, an inductor
  • the switch 40 can be switched to the first connection state in which the first coil L1 and the second coil L2 are grounded via the impedance adjusting element. That is, the switch 40 can be switched to the first connection state by connecting the terminal 41 to the terminals 42 to 44 at a predetermined potential (including the GND potential).
  • the impedance of the impedance adjustment element 61 connected to the terminal 43 and the impedance adjustment element 62 connected to the terminal 44 are different.
  • the impedance of the impedance adjustment element 61 is approximately 10 nH
  • the impedance of the impedance adjustment element 62 is approximately 30 nH.
  • Antenna device 100 changes the magnitude of impedance by impedance adjustment elements 61 and 62 connected to terminal 41 to change the resonance frequencies of first antenna ANT1 and second antenna ANT2.
  • the antenna device 100 may have a configuration in which the impedance adjustment elements 61 and 62 are not provided.
  • the second coil L2 is magnetically coupled to the first coil L1 by switching to the first connection state with the switch 40, and the power feeding antenna (first antenna ANT1) fed by the power feeding circuit 30; It is composed of a parasitic antenna (second antenna ANT2) that is not fed by the feeding circuit 30.
  • the usable frequency band can be widened due to the multiple resonance of the first antenna ANT1 and the second antenna ANT2.
  • switching to the first connection state by the switch 40 includes not only the state in which the terminal 41 is directly grounded as described above, but also the state in which the terminal 41 is indirectly grounded via the impedance adjustment element. That is, in the first connection state, the first radiating element 11 and the second radiating element 12 operate as separate antennas, and there are two resonance frequencies corresponding to the fundamental wave corresponding to the first radiating element and the second radiating element. is in a certain state.
  • the switch 40 connects the first coil L1 and the second coil L2 in series by connecting the terminal 41 to which the second terminal L1b and the fourth terminal L2b are connected to the open terminal 45 .
  • the switch 40 connects the first coil L1 and the second coil L2 in series and opens the GND terminal so that the GND terminal is not connected, thereby switching to the second connection state.
  • the antenna device 100 functions as a third antenna ANT3 in which the first radiating element 11 and the second radiating element 12 form one monopole antenna.
  • a long monopole antenna connecting the first radiating element 11 and the second radiating element 12 is formed.
  • the frequency is lower than the resonance frequency of the two antennas ANT2.
  • the second connection state is a state in which the first radiating element 11 and the second radiating element 12 are treated as one monopole (the fundamental wave has one resonance frequency).
  • the antenna device 100 magnetically couples the first coil L1 and the second coil L2, causes the two radiation elements (the first radiation element 11 and the second radiation element 12) to double-resonate, and widens the frequency band.
  • the first coil L1 and the second coil L2 are connected in series to connect two radiating elements to form one radiating element, thereby widening the frequency band to lower frequencies.
  • FIG. 2 is a diagram showing the frequency characteristics of the reflection coefficient of the antenna device 100 according to the embodiment.
  • the horizontal axis is frequency and the vertical axis is reflection coefficient.
  • the reflection coefficient A is a simulation result when the switch 40 in the antenna device 100 is switched to the second connection state.
  • the reflection coefficient B is a simulation result when the switch 40 in the antenna device 100 is switched to the first connection state.
  • resonance occurs at the resonance frequency (approximately 0.5 GHz) of the fundamental wave of the third antenna ANT3, which has the first radiating element 11 and the second radiating element 12 as one monopole antenna. Note that with the reflection coefficient A, resonance occurs even at the resonance frequency (approximately 1.5 GHz) of the harmonics of the third antenna ANT3.
  • the antenna device 100 connects the switch 40 to the terminal 42, that is, the short circuit, and sets the first connection state, thereby causing the first antenna ANT1 and the second antenna ANT2 to resonate multiple times, thereby causing the frequency band is broadband. Furthermore, in FIG. 2, the antenna device 100 opens the switch 40 so as not to connect the GND terminal to the second connection state, thereby widening the frequency band to a lower frequency (for example, about 0.5 GHz). I understand.
  • FIG. 3 is a schematic diagram showing communication terminal device 200 in the embodiment.
  • Communication terminal device 200 shown in FIG. 3 is capable of communication in a band including, for example, approximately 0.6 GHz to approximately 0.96 GHz. Therefore, the communication terminal device 200 is provided with the antenna device 100 including the first radiation element 11 of the first antenna ANT1, the second radiation element 12 of the second antenna ANT2, the antenna coupling element 20, and the switch 40.
  • the communication terminal device 200 is, for example, a mobile phone, a smart phone, a tablet, or a PC (personal computer) having a communication function.
  • An antenna coupling element 20, a feeding circuit 30, and a switch 40 are provided on the substrate 210 on which the first radiating element 11 and the second radiating element 12 are provided.
  • Antenna coupling element 20 is connected to first radiating element 11 and second radiating element 12 .
  • a switch 40 is connected to the antenna coupling element 20 .
  • the first radiation element 11 is directly electrically connected to the feeding circuit 30, the second radiation element 12 is electrically connected to the feeding circuit 30 via the antenna coupling element 20. It is
  • the first radiating element 11 and the second radiating element 12 are provided on the long side of the communication terminal device 200 .
  • the length of the first radiating element 11 is set to, for example, the length of the first radiating element 11 and the second radiating element 12 shown in FIG. must be the sum of the lengths of In that case, the antenna device cannot be accommodated on the long side of communication terminal device 200, and an additional area for providing the antenna device is required.
  • the switch 40 is provided so that the first radiating element 11 and the second radiating element 12 can be configured as one monopole antenna in the second connection state. It is not necessary to secure a new area within communication terminal apparatus 200 in order to widen the usable frequency band in the direction of .
  • FIG. 4 is a diagram showing the frequency characteristics of the reflection coefficient when the impedance is adjusted in the antenna device 100 according to the embodiment.
  • the horizontal axis is frequency
  • the vertical axis is reflection coefficient.
  • the reflection coefficient A is a simulation result when the terminal 41 of the switch 40 is connected to the open terminal 45 in the antenna device 100 (second connection state).
  • the reflection coefficient B is a simulation result when the terminal 41 of the switch 40 is connected to the GND terminal 42 in the antenna device 100 (first connection state).
  • the reflection coefficient B1 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to the terminal 43 connected to GND via an inductor of approximately 10 nH (first connection state).
  • the reflection coefficient B2 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to the terminal 44 connected to GND via an inductor of approximately 30 nH (first connection state).
  • the reflection coefficient B3 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to a terminal (not shown) connected to GND via an inductor of approximately 50 nH (first connection state).
  • the reflection coefficient B4 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to a terminal (not shown) connected to GND via an inductor of approximately 100 nH (first connection state).
  • resonance occurs at the resonance frequency (approximately 1.0 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, with the reflection coefficient B1, resonance occurs at the resonance frequency (approximately 1.73 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna. At the reflection coefficient B2, resonance occurs at the resonance frequency (approximately 0.8 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, in the reflection coefficient B2, resonance occurs at the resonance frequency (approximately 1.59 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna.
  • resonance occurs at the resonance frequency (approximately 0.72 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, at the reflection coefficient B3, resonance occurs at the resonance frequency (approximately 1.55 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna. At the reflection coefficient B4, resonance occurs at the resonance frequency (approximately 0.62 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, at the reflection coefficient B4, resonance occurs at the resonance frequency (approximately 1.51 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna.
  • the terminal 41 of the switch 40 by connecting the terminal 41 of the switch 40 to the terminals 43 and 44 other than the GND terminal 42, the terminal 41 can be switched to ground via the impedance adjustment element.
  • the switch 40 can select one of the plurality of impedance adjusting elements 61 and 62. Via the selected impedance adjusting element, Terminal 41 is grounded.
  • the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be changed.
  • the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be lowered as the impedance of the impedance adjustment element is increased. Specifically, by changing the impedance of the impedance adjustment element to about 10 nH to about 100 nH, the resonance frequency of the first antenna ANT1 can be changed to about 1.0 GHz to about 0.62 GHz. Also, by changing the impedance of the impedance adjustment element to approximately 10 nH to approximately 100 nH, the resonance frequency of the second antenna ANT2 can be changed to approximately 1.73 GHz to approximately 1.51 GHz.
  • FIG. 5 is a schematic diagram of an antenna device 100Z for comparison. Unlike the antenna device 100, the antenna device 100Z does not have the second antenna ANT2. Specifically, the antenna device 100Z does not have the second radiating element 12 and the second coil L2 connected to the second radiating element 12, unlike the antenna device 100 shown in FIG. The shape of the first antenna ANT1 and the inductance of the first coil L1 are the same as those of the antenna device 100.
  • FIG. 5 is a schematic diagram of an antenna device 100Z for comparison. Unlike the antenna device 100, the antenna device 100Z does not have the second antenna ANT2. Specifically, the antenna device 100Z does not have the second radiating element 12 and the second coil L2 connected to the second radiating element 12, unlike the antenna device 100 shown in FIG. The shape of the first antenna ANT1 and the inductance of the first coil L1 are the same as those of the antenna device 100.
  • FIG. 5 is a schematic diagram of an antenna device 100Z for comparison. Unlike the antenna device 100, the antenna device 100Z does not have
  • the switch 40 can cause the first antenna ANT1 to function as a loop antenna by connecting the terminal 41 to which the second terminal L1b is connected to the GND terminal 42 (first connection state). However, since it does not have the second coil L2, the first coil L1 is not magnetically coupled with the second coil L2. On the other hand, the switch 40 can cause the first antenna ANT1 to function as a monopole antenna by connecting the terminal 41 to the open terminal 45 (second connection state). However, since it does not have the second coil L2, it becomes a monopole antenna having only the length of the first radiation element 11.
  • FIG. 6 is a diagram showing the frequency characteristics of the reflection coefficients of the antenna device 100Z to be compared in the second connection state and the antenna device 100 according to the embodiment.
  • the horizontal axis is frequency and the vertical axis is reflection coefficient.
  • the reflection coefficient A is a simulation result when the switch 40 in the antenna device 100 is switched to the second connection state.
  • the reflection coefficient A9 is a simulation result when the switch 40 is switched to the second connection state in the antenna device 100Z.
  • resonance occurs at the resonance frequency (approximately 0.5 GHz) of the fundamental wave of the third antenna ANT3, which has the first radiating element 11 and the second radiating element 12 as one monopole antenna.
  • resonance occurs at the resonance frequency (approximately 0.56 GHz) of the fundamental wave of the monopole antenna of the first radiation element 11 only. That is, since the monopole antenna of the antenna device 100 is longer than that of the antenna device 100Z by the length of the second radiation element 12, it is possible to widen the usable frequency band in the direction of lower frequencies.
  • FIG. 7 is a diagram showing the frequency characteristics of the reflection coefficients of the antenna device 100Z to be compared in the first connection state and the antenna device 100 according to the embodiment.
  • the horizontal axis is frequency
  • the vertical axis is reflection coefficient.
  • the reflection coefficient B is a simulation result when the switch 40 in the antenna device 100 is switched to the first connection state.
  • the reflection coefficient B9 is a simulation result when the switch 40 is switched to the first connection state in the antenna device 100Z.
  • the reflection coefficient B With the reflection coefficient B, resonance occurs at the resonance frequency (about 1.2 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna due to the magnetic field coupling between the first coil L1 and the second coil L2. Resonance occurs at the resonance frequency (approximately 2.2 GHz) of the fundamental wave of the two antennas ANT2. However, with the reflection coefficient B9, since there is no second coil L2 magnetically coupled with the first coil L1, resonance occurs only at the resonance frequency (approximately 1.2 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. That is, the antenna device 100 can widen the frequency band by multiple resonance with the second antenna ANT2 compared to the antenna device 100Z.
  • the antenna device 100 in the embodiment is an antenna device including the first antenna ANT1 and the second antenna ANT2.
  • the first antenna ANT1 includes a first radiation element 11 directly connected to a feeding circuit 30 that transmits and receives high frequency signals, and a first coil L1 connected to the first radiation element 11 .
  • a second antenna ANT2 includes a second radiating element 12 and a second coil L2 connected to the second radiating element 12 .
  • a switch 40 for switching the connection state between the first coil L1 and the second coil L2 is further provided.
  • the switch 40 uses the second antenna ANT2 as a parasitic antenna by magnetically coupling the first coil L1 and the second coil L2 and grounding them with GND, thereby switching between the first antenna ANT1 and the second antenna ANT2.
  • the switch 40 connects the first coil L1 and the second coil L2 in series to form a third antenna ANT3 that uses the first radiating element 11 and the second radiating element 12 as one monopole antenna. 2 can be switched to the connected state.
  • the antenna device 100 uses the switch 40 to magnetically couple the first coil L1 and the second coil l2, uses the first antenna ANT as a loop antenna, and uses the second antenna ANT2 as a parasitic antenna. It is possible to switch to the first connection state in which the respective resonance points of the antenna ANT1 and the second antenna ANT2 are used as resonance bands. Also, the switch 40 can switch between a second connection state that configures the third antenna ANT3 in which the first radiating element 11 and the second radiating element 12 are one monopole antenna. Therefore, the antenna device 100 can widen the usable frequency band in the direction of low frequencies even when the area where the antenna device 100 can be installed is limited.
  • the first coil L1 has a first terminal L1a connected to the first radiation element 11 and a second terminal L1b connected to the switch 40.
  • the second coil L2 has a third terminal L2a connected to the second radiating element 12 and a fourth terminal L2b connected to the switch 40 .
  • the switch 40 connects the terminal to which the second terminal L1b and the fourth terminal L2b are connected to the terminals 42 to 44 at a predetermined potential to establish a first connection state, and the second terminal L1b and the fourth terminal L2b are connected. It is preferable to connect the terminal 41 to the open terminal 45 to set the second connection state.
  • the switch 40 has a state in which the second terminal L1b and the fourth terminal L2b are directly grounded, and a state in which the second terminal L1b and the fourth terminal l2b are grounded via the impedance adjustment elements 61 and 62. , is preferably switched. Thereby, the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be changed.
  • a plurality of impedance adjusting elements 61 and 62 having different impedances are provided, and the switch 40 can select one of the plurality of impedance adjusting elements 61 and 62.
  • the second It is preferable to ground the second terminal L1b and the fourth terminal L2b. Thereby, the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be changed according to the magnitude of the impedance.
  • the first antenna ANT1 is a loop antenna
  • the second antenna ANT2 is a parasitic antenna
  • the resonance frequency of the fundamental wave of the third antenna ANT3 in the second connection state is the same as that of the first connection state. It is preferably lower than the resonant frequencies of the first antenna ANT1 and the second antenna ANT2 under normal conditions.
  • the antenna coupling element 20 may have four terminals corresponding to L1a, L1b, L2a, and L2b, or may have three terminals connecting L1b and L2b in the antenna coupling element.
  • the communication terminal device 200 preferably includes the feeding circuit 30 and the antenna devices 100, 100A to 100C in the present disclosure. Even if the area in which antenna devices 100 and 100A to 100C can be installed in communication terminal apparatus 200 is limited, it is possible to widen the usable frequency band in the direction of low frequencies. Further, although not shown in FIG. 3, the substrate 210 is not installed at the location facing the first radiation element 11 and the second radiation element 12, or the radiation efficiency is improved by modifying such that no ground pattern is provided. Also good.
  • FIG. 8 is a schematic diagram of an antenna device 100A in Modification 1. As shown in FIG. The antenna device 100A has the same configuration as the antenna device 100 except that the first radiation element 11 has a branched portion. In antenna device 100A shown in FIG. 8, the same components as those of antenna device 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the first antenna ANT1 includes a first radiation element 11 directly connected to the feeding circuit 30 and a first coil L1 connected to the first radiation element 11.
  • the portion (first portion) between the feeding circuit 30 and the first coil L1 functions as a loop antenna.
  • the first radiation element 11 has, in addition to the first portion, second portions 11a and 11b branched from the first portion. The second portions 11a and 11b each have a resonance frequency.
  • the portion of the first radiation element 11 extending from the feeding circuit 30 to the second portion 11a functions as a monopole antenna, and resonates at the resonant frequency of the fundamental wave according to its length. Also, the portion of the first radiation element 11 extending from the feeding circuit 30 to the second portion 11b functions as a monopole antenna, and resonates at the resonant frequency of the fundamental wave according to its length.
  • the antenna device 100A in Modification 1 has the first portion between the feeding circuit 30 and the first coil L1, and the second portions 11a and 11b branched from the first portion. , a frequency that resonates in the first antenna ANT1 can be added, and the band can be widened.
  • FIG. 9 is a schematic diagram of an antenna device 100B in Modification 2.
  • the antenna device 100B has the same configuration as the antenna device 100 except that the first radiation element 11 has an impedance changing element that changes the impedance.
  • antenna device 100B shown in FIG. 9 the same components as those of antenna device 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the first antenna ANT1 includes a first radiation element 11 directly connected to the feeding circuit 30 and a first coil L1 connected to the first radiation element 11.
  • the first antenna ANT1 further includes an impedance changing element 50 that changes the impedance connected to the first radiating element 11 .
  • the impedance changing element 50 is provided between the feeding circuit 30 and the first radiating element 11, and includes a switch 50a and inductors 50b and 50c. By providing a plurality of inductors 50b and 50c having different impedances, the switch 50a can select one of the plurality of inductors 50b and 50c, and the first radiation is transmitted through the selected inductors 50b and 50c.
  • the element 11 is connected to the feeding circuit 30 .
  • the antenna device 100B in Modification 2 further includes the impedance changing element 50 for changing the impedance connected to the first radiating element 11, and the impedance changing element 50 changes the impedance connected to the first radiating element 11.
  • the resonant frequency of the first antenna ANT1 can be adjusted without changing the resonant frequency of the second antenna ANT2.
  • the antenna device 100B shown in FIG. 9 is provided with the impedance adjustment elements 61 and 62, the configuration may be such that the impedance adjustment elements 61 and 62 are not provided.
  • the first antenna ANT1 is connected to GND via the switch 40 and functions as a loop antenna.
  • the first antenna ANT1 may not be connected to GND via the switch 40 and may function as an antenna other than the loop antenna.
  • FIG. 10 is a schematic diagram of an antenna device 100C according to Modification 3.
  • the antenna device 100C has the same configuration as the antenna device 100 except that the connection between the first radiation element 13 and the switch 40 is different.
  • antenna device 100C shown in FIG. 10 the same components as those of antenna device 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the first antenna ANT1 includes a first radiation element 13 and a first coil L1 connected between the first radiation element 13 and the feeding circuit 30. That is, the first radiating element 13 is indirectly connected to the feeding circuit 30 .
  • the first radiating element 13 has one terminal 41a of the switch 40 at the end opposite to the connection with the first coil L1.
  • the switch 40 can be switched to the first connection state in which the first coil L1 and the second coil L2 are grounded.
  • the first coil L1 and the second coil L2 are magnetically coupled, and the first coil L1 and the second coil L2 function as a transformer.
  • the switch 40 may connect the terminal 41b to a terminal 43 provided with an impedance adjusting element (for example, an inductor) between the first coil L1 and the first coil L1.
  • an impedance adjusting element for example, an inductor
  • 2 coil L2 can be grounded via an impedance adjustment element.
  • the antenna device 100C is switched to the first connection state by the switch 40, so that the second coil L2 is magnetically coupled to the first coil L1, and a feeding antenna (first antenna ANT1) fed by the feeding circuit 30; It is composed of a parasitic antenna (second antenna ANT2) that is not fed by the feeding circuit 30.
  • first antenna ANT1 functions as a monopole antenna instead of a loop antenna.
  • the switch 40 connects the first coil L1 and the second coil L2 in series by connecting the terminal 41b to the terminal 41a.
  • the switch 40 can be switched to a second connection state in which the first coil L1 and the second coil L2 are connected in series.
  • the antenna device 100C functions as a third antenna ANT3 in which the first radiating element 11 and the second radiating element 12 form one monopole antenna.
  • the switch 40 allows the first coil L1 and the second coil L2 to be connected to each other.
  • the frequency band can be widened.

Abstract

Provided are an antenna device and a communication terminal apparatus which are capable of widening a usable frequency band toward a low frequency band even when installable areas are limited. An antenna device (100) according to the present disclosure comprises: a first antenna (ANT1); a second antenna (ANT2); and a switch (40). The first antenna (ANT1) includes a first radiation element (11) and a first coil (L1). The second antenna (ANT2) includes a second radiation element (12) and a second coil (L2). The switch (40) performs switching between a first connection state where the first coil (L1) and the second coil (L2) are magnetically coupled so as to have resonance points of the first antenna (ANT1) and the second antenna (ANT2) as the resonance band and a second connection state where the first coil (L1) and the second coil (L2) are connected in series to form a third antenna (ANT3) in which the first radiation element (11) and the second radiation element (12) function as one monopole antenna.

Description

アンテナ装置、および通信端末装置Antenna device and communication terminal device
 本開示は、アンテナ装置、および通信端末装置の技術に関する。 The present disclosure relates to technology of antenna devices and communication terminal devices.
 近年、携帯電話などの通信端末装置では、Low-Bandと呼ばれる周波数帯域(例えば、0.7GHz~0.96GHz)において広帯域化が求められている。当該通信端末装置に用いられるアンテナ装置おいて、使用可能な周波数帯域を広帯域化する方法として、給電するアンテナと無給電のアンテナとの2つのアンテナを複共振させたアンテナ装置が特許第5505561号公報(特許文献1)に示されている。 In recent years, communication terminal devices such as mobile phones are required to widen the frequency band called Low-Band (for example, 0.7 GHz to 0.96 GHz). In the antenna device used in the communication terminal device, as a method for widening the usable frequency band, an antenna device in which two antennas, a feeding antenna and a non-feeding antenna, are multi-resonated is disclosed in Japanese Patent No. 5505561. (Patent Document 1).
特許第5505561号公報Japanese Patent No. 5505561
 特許文献1に示すアンテナ装置では、給電回路に直接もしくは間接的に接続される第1放射素子と、グランド(GND)に接続される第2放射素子とを複共振させるため、第1放射素子に接続される第1コイルと、第2放射素子に接続される第2コイルとを磁界結合させている。これにより、当該アンテナ装置は、Low-Band(0.7~0.96GHz)で使用できる共振周波数に調整することができる。 In the antenna device disclosed in Patent Document 1, the first radiation element connected directly or indirectly to the feeding circuit and the second radiation element connected to the ground (GND) are multi-resonated. The first coil to be connected and the second coil to be connected to the second radiation element are magnetically coupled. Thereby, the antenna device can be adjusted to a resonance frequency that can be used in Low-Band (0.7 to 0.96 GHz).
 当該アンテナ装置おいて、さらに低い周波数の方向に使用可能な周波数帯域を広帯域化するには、放射素子の長さをより長くする必要がある。しかし、限られた通信端末装置内の領域において、さらに長い放射素子を設ける領域を確保することは困難であった。 In the antenna device, in order to widen the usable frequency band in the direction of lower frequencies, it is necessary to increase the length of the radiating element. However, it has been difficult to secure an area for providing a longer radiating element in the limited area within the communication terminal device.
 本開示は、このような課題を解決するためになされたものであり、その目的は設置できる領域が限られる場合であっても、低い周波数の方向に使用可能な周波数帯域を広帯域化することができるアンテナ装置、および通信端末装置を提供することである。 The present disclosure has been made to solve such problems, and its purpose is to widen the usable frequency band in the direction of low frequencies even when the installation area is limited. An object of the present invention is to provide an antenna device and a communication terminal device that can
 本開示に従うアンテナ装置は、第1アンテナと第2アンテナとを備えるアンテナ装置である。第1アンテナは、高周波信号を送受信する給電回路に直接もしくは間接的に接続される第1放射素子と、第1放射素子と接続される第1コイルと、を含む。第2アンテナは、第2放射素子と、第2放射素子に接続される第2コイルと、を含む。アンテナ装置は、第1コイルと第2コイルとの接続状態を切り換えるスイッチをさらに備える。スイッチは、第1コイルと第2コイルとを磁気結合させて前記第1アンテナと前記第2アンテナとのそれぞれの共振点を共振帯域としてもつ第1接続状態と、第1コイルと第2コイルとを直列に接続して、第1放射素子と第2放射素子とを1つのモノポールアンテナとする第3アンテナを構成する第2接続状態と、を切り換え可能である。 An antenna device according to the present disclosure is an antenna device comprising a first antenna and a second antenna. The first antenna includes a first radiating element that is directly or indirectly connected to a feeding circuit that transmits and receives high frequency signals, and a first coil that is connected to the first radiating element. The second antenna includes a second radiating element and a second coil connected to the second radiating element. The antenna device further includes a switch for switching the connection state between the first coil and the second coil. The switch magnetically couples the first coil and the second coil to a first connection state in which resonance points of the first antenna and the second antenna are set as resonance bands, and the first coil and the second coil. are connected in series to form a third antenna in which the first radiating element and the second radiating element form one monopole antenna.
 本開示に従う通信端末装置は、給電回路と、上記のアンテナ装置と、を備える。 A communication terminal device according to the present disclosure includes a feeding circuit and the antenna device described above.
 本開示によるアンテナ装置においては、スイッチにより、第1コイルと第2コイルとを磁気結合させて第1アンテナと第2アンテナとのそれぞれの共振点を共振帯域としてもつ第1接続状態と、第1放射素子と第2放射素子とを1つのモノポールアンテナとする第3アンテナを構成する第2接続状態と、を切り換え可能であることができるので、設置できる領域が限られる場合であっても、低い周波数の方向に使用可能な周波数帯域を広帯域化することができる。 In the antenna device according to the present disclosure, a first connection state in which the switch magnetically couples the first coil and the second coil to have resonance bands of the respective resonance points of the first antenna and the second antenna; Since it is possible to switch between the second connection state constituting the third antenna in which the radiating element and the second radiating element form one monopole antenna, even if the installation area is limited, It is possible to widen the usable frequency band in the direction of low frequencies.
実施の形態におけるアンテナ装置の概略図である。1 is a schematic diagram of an antenna device according to an embodiment; FIG. 実施の形態におけるアンテナ装置の反射係数の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the reflection coefficient of the antenna device in embodiment. 実施の形態における通信端末装置を示す概略図である。1 is a schematic diagram showing a communication terminal device in an embodiment; FIG. 実施の形態におけるアンテナ装置においてインピーダンスを調整した場合の反射係数の周波数特性を示す図である。FIG. 4 is a diagram showing frequency characteristics of reflection coefficients when impedance is adjusted in the antenna device according to the embodiment; 比較対象のアンテナ装置の概略図である。1 is a schematic diagram of an antenna device for comparison; FIG. 第2接続状態における比較対象のアンテナ装置と実施の形態におけるアンテナ装置との反射係数の周波数特性を示す図である。FIG. 4 is a diagram showing frequency characteristics of reflection coefficients of an antenna device to be compared in a second connection state and an antenna device according to an embodiment; 第1接続状態における比較対象のアンテナ装置と実施の形態におけるアンテナ装置との反射係数の周波数特性を示す図である。FIG. 4 is a diagram showing frequency characteristics of reflection coefficients of an antenna device to be compared in a first connection state and an antenna device according to an embodiment; 変形例1におけるアンテナ装置の概略図である。FIG. 10 is a schematic diagram of an antenna device in Modification 1; 変形例2におけるアンテナ装置の概略図である。FIG. 11 is a schematic diagram of an antenna device in Modification 2; 変形例3におけるアンテナ装置の概略図である。FIG. 11 is a schematic diagram of an antenna device in Modification 3;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 [実施の形態]
 図1は、実施の形態におけるアンテナ装置100の概略図である。アンテナ装置100は、第1アンテナANT1と第2アンテナANT2とを備える。第1アンテナANT1は、給電回路30に直接的に接続される第1放射素子11と、第1放射素子11に接続される第1コイルL1と、を含む。第1アンテナANT1は、スイッチ40を介してGNDに接続されている場合、ループアンテナとして機能する。
[Embodiment]
FIG. 1 is a schematic diagram of an antenna device 100 according to an embodiment. The antenna device 100 includes a first antenna ANT1 and a second antenna ANT2. The first antenna ANT1 includes a first radiating element 11 directly connected to the feeding circuit 30 and a first coil L1 connected to the first radiating element 11 . The first antenna ANT1 functions as a loop antenna when connected to GND via the switch 40 .
 第2アンテナANT2は、第2放射素子12と、第2放射素子12に接続される第2コイルL2と、を含む。第2アンテナANT2は、スイッチ40を介してGNDに接続されている場合、第2コイルL2が第1コイルL1に対して磁気結合し、給電回路30により給電されない無給電アンテナとして機能する。 The second antenna ANT2 includes a second radiating element 12 and a second coil L2 connected to the second radiating element 12. When the second antenna ANT2 is connected to GND via the switch 40, the second coil L2 is magnetically coupled to the first coil L1 and functions as a parasitic antenna that is not fed by the feeding circuit 30.
 アンテナ装置100は、第1コイルL1と第2コイルL2との接続状態を切り換えるスイッチ40を備えている。第1コイルL1は、第1放射素子11と接続する第1端子L1aと、スイッチ40と接続する第2端子L1bと、を有している。第2コイルL2は、第2放射素子12と接続する第3端子L2aと、スイッチ40と接続する第4端子L2bと、を有している。 The antenna device 100 includes a switch 40 that switches the connection state between the first coil L1 and the second coil L2. The first coil L1 has a first terminal L1a connected to the first radiation element 11 and a second terminal L1b connected to the switch 40 . The second coil L2 has a third terminal L2a connected to the second radiating element 12 and a fourth terminal L2b connected to the switch 40 .
 スイッチ40は、第2端子L1bおよび第4端子L2bが接続された端子41をGND端子42に接続することで、第1コイルL1と第2コイルL2とを直接接地させる第1接続状態に切り換えることができる。第1コイルL1と第2コイルL2とを接地させた場合、第1コイルL1と第2コイルL2とが磁気結合し、第1コイルL1および第2コイルL2はトランスとして機能する。 The switch 40 connects the terminal 41 to which the second terminal L1b and the fourth terminal L2b are connected to the GND terminal 42, thereby switching to the first connection state in which the first coil L1 and the second coil L2 are directly grounded. can be done. When the first coil L1 and the second coil L2 are grounded, the first coil L1 and the second coil L2 are magnetically coupled, and the first coil L1 and the second coil L2 function as a transformer.
 具体的に、第1コイルL1と第2コイルL2とは、例えば、アンテナ結合素子20としてアンテナ装置100に実装される。アンテナ結合素子20は、直方体状のチップ部品である。アンテナ結合素子20は、各々の絶縁基材(例えば、液晶ポリマー、低温同時焼成セラミックスなど)に、第1コイルL1および第2コイルL2の一部の導体パターンを形成し、各々の絶縁基材を積層することで構成されている。 Specifically, the first coil L1 and the second coil L2 are mounted on the antenna device 100 as the antenna coupling element 20, for example. The antenna coupling element 20 is a rectangular parallelepiped chip component. The antenna coupling element 20 forms a part of the conductor pattern of the first coil L1 and the second coil L2 on each insulating base material (for example, liquid crystal polymer, low temperature co-fired ceramics, etc.), and each insulating base material is It is constructed by stacking.
 また、スイッチ40は、端子41をGND端子42に接続する以外に、GNDとの間にインピーダンス調整素子(例えば、インダクタ)を設けた端子43,44に端子41を接続することができる。スイッチ40は、端子41を端子43,44に接続することで、第1コイルL1と第2コイルL2とをインピーダンス調整素子を介して接地させる第1接続状態に切り換えることができる。つまり、スイッチ40は、端子41を所定の電位(GND電位を含む)の端子42~44に接続して第1接続状態に切り換えることができる。 In addition to connecting the terminal 41 to the GND terminal 42, the switch 40 can connect the terminal 41 to terminals 43 and 44 provided with an impedance adjusting element (for example, an inductor) between the GND. By connecting the terminal 41 to the terminals 43 and 44, the switch 40 can be switched to the first connection state in which the first coil L1 and the second coil L2 are grounded via the impedance adjusting element. That is, the switch 40 can be switched to the first connection state by connecting the terminal 41 to the terminals 42 to 44 at a predetermined potential (including the GND potential).
 後述するが、端子43に接続されるインピーダンス調整素子61と、端子44に接続されるインピーダンス調整素子62とはインピーダンスが異なる。例えば、インピーダンス調整素子61のインピーダンスは約10nH、インピーダンス調整素子62のインピーダンスは約30nHである。アンテナ装置100は、端子41と接続するインピーダンス調整素子61,62によりインピーダンスの大きさを変更して、第1アンテナANT1および第2アンテナANT2の共振周波数を変更する。なお、アンテナ装置100は、インピーダンス調整素子61,62を設けない構成であってもよい。 As will be described later, the impedance of the impedance adjustment element 61 connected to the terminal 43 and the impedance adjustment element 62 connected to the terminal 44 are different. For example, the impedance of the impedance adjustment element 61 is approximately 10 nH, and the impedance of the impedance adjustment element 62 is approximately 30 nH. Antenna device 100 changes the magnitude of impedance by impedance adjustment elements 61 and 62 connected to terminal 41 to change the resonance frequencies of first antenna ANT1 and second antenna ANT2. Note that the antenna device 100 may have a configuration in which the impedance adjustment elements 61 and 62 are not provided.
 アンテナ装置100は、スイッチ40で第1接続状態に切り換えることで、第1コイルL1に対して第2コイルL2が磁気結合し、給電回路30により給電される給電アンテナ(第1アンテナANT1)と、給電回路30により給電されない無給電アンテナ(第2アンテナANT2)とで構成される。これにより、アンテナ装置100では、第1アンテナANT1と第2アンテナANT2との複共振により、使用可能な周波数帯域を広帯域化することができる。 In the antenna device 100, the second coil L2 is magnetically coupled to the first coil L1 by switching to the first connection state with the switch 40, and the power feeding antenna (first antenna ANT1) fed by the power feeding circuit 30; It is composed of a parasitic antenna (second antenna ANT2) that is not fed by the feeding circuit 30. FIG. Thereby, in the antenna device 100, the usable frequency band can be widened due to the multiple resonance of the first antenna ANT1 and the second antenna ANT2.
 なお、本実施の形態において、スイッチ40で第1接続状態に切り換えるとは、前述したように端子41を直接接地させる状態だけでなく、インピーダンス調整素子を介して間接接地させる状態も含む。つまり、第1接続状態は、第1放射素子11と第2放射素子12が別々のアンテナとして動作し、基本波に対応する共振周波数が第1放射素子と第2放射素子に対応して2つある状態である。 In the present embodiment, switching to the first connection state by the switch 40 includes not only the state in which the terminal 41 is directly grounded as described above, but also the state in which the terminal 41 is indirectly grounded via the impedance adjustment element. That is, in the first connection state, the first radiating element 11 and the second radiating element 12 operate as separate antennas, and there are two resonance frequencies corresponding to the fundamental wave corresponding to the first radiating element and the second radiating element. is in a certain state.
 一方、スイッチ40は、第2端子L1bおよび第4端子L2bが接続された端子41を開放端子45に接続することで、第1コイルL1と第2コイルL2とを直列接続させる。スイッチ40は、第1コイルL1と第2コイルL2とを直列接続させてGND端子を接続させないオープンとし、第2接続状態に切り換えることができる。アンテナ装置100は、スイッチ40で第2接続状態に切り換えることで、第1放射素子11と第2放射素子12とを1つのモノポールアンテナとする第3アンテナANT3として機能する。 On the other hand, the switch 40 connects the first coil L1 and the second coil L2 in series by connecting the terminal 41 to which the second terminal L1b and the fourth terminal L2b are connected to the open terminal 45 . The switch 40 connects the first coil L1 and the second coil L2 in series and opens the GND terminal so that the GND terminal is not connected, thereby switching to the second connection state. By switching the switch 40 to the second connection state, the antenna device 100 functions as a third antenna ANT3 in which the first radiating element 11 and the second radiating element 12 form one monopole antenna.
 スイッチ40を第2接続状態に切り換えた場合、第1放射素子11と第2放射素子12とを繋げた長いモノポールアンテナとなるので、第3アンテナANT3の共振周波数は、ループアンテナとして機能する第2アンテナANT2の共振周波数より低い周波数となる。 When the switch 40 is switched to the second connection state, a long monopole antenna connecting the first radiating element 11 and the second radiating element 12 is formed. The frequency is lower than the resonance frequency of the two antennas ANT2.
 なお、本実施の形態において、第2接続状態とは、第1放射素子11と第2放射素子12を1つのモノポールとして扱う状態(基本波の共振周波数は1つ)である。 In the present embodiment, the second connection state is a state in which the first radiating element 11 and the second radiating element 12 are treated as one monopole (the fundamental wave has one resonance frequency).
 このように、アンテナ装置100は、第1コイルL1と第2コイルL2とを磁界結合し、二つの放射素子(第1放射素子11および第2放射素子12)を複共振させて周波数帯域を広帯域化しているだけではなく、第1コイルL1と第2コイルL2とを直列に接続して二つの放射素子を繋げて一つの放射素子にして、より低い周波数まで周波数帯域を広帯域化している。 In this way, the antenna device 100 magnetically couples the first coil L1 and the second coil L2, causes the two radiation elements (the first radiation element 11 and the second radiation element 12) to double-resonate, and widens the frequency band. In addition, the first coil L1 and the second coil L2 are connected in series to connect two radiating elements to form one radiating element, thereby widening the frequency band to lower frequencies.
 具体的に、図2は、実施の形態におけるアンテナ装置100の反射係数の周波数特性を示す図である。図2において、横軸は周波数、縦軸は反射係数である。ここで、反射係数Aは、アンテナ装置100においてスイッチ40を第2接続状態に切り換えた場合におけるシミュレーション結果である。また、反射係数Bは、アンテナ装置100においてスイッチ40を第1接続状態に切り換えた場合におけるシミュレーション結果である。 Specifically, FIG. 2 is a diagram showing the frequency characteristics of the reflection coefficient of the antenna device 100 according to the embodiment. In FIG. 2, the horizontal axis is frequency and the vertical axis is reflection coefficient. Here, the reflection coefficient A is a simulation result when the switch 40 in the antenna device 100 is switched to the second connection state. Also, the reflection coefficient B is a simulation result when the switch 40 in the antenna device 100 is switched to the first connection state.
 反射係数Aでは、第1放射素子11と第2放射素子12とを1つのモノポールアンテナとする第3アンテナANT3の基本波の共振周波数(約0.5GHz)で共振が生じている。なお、反射係数Aでは、第3アンテナANT3の高調波の共振周波数(約1.5GHz)でも共振が生じている。 At the reflection coefficient A, resonance occurs at the resonance frequency (approximately 0.5 GHz) of the fundamental wave of the third antenna ANT3, which has the first radiating element 11 and the second radiating element 12 as one monopole antenna. Note that with the reflection coefficient A, resonance occurs even at the resonance frequency (approximately 1.5 GHz) of the harmonics of the third antenna ANT3.
 一方、反射係数Bでは、ループアンテナの第1アンテナANT1の基本波の共振周波数(約1.2GHz)で共振が生じている。さらに、反射係数Bでは、無給電アンテナの第2アンテナANT2の基本波の共振周波数(約2.2GHz)で共振が生じている。つまり、図2では、アンテナ装置100がスイッチ40を端子42、すなわち、ショート回路に接続し、第1接続状態とすることで第1アンテナANT1と第2アンテナANT2とを複共振させることで周波数帯域を広帯域化していることが分かる。さらに、図2では、アンテナ装置100がスイッチ40をGND端子を接続させないオープンとし、第2接続状態とすることで、より低い周波数(例えば、約0.5GHz)まで周波数帯域を広帯域化していることが分かる。 On the other hand, with the reflection coefficient B, resonance occurs at the resonance frequency (approximately 1.2 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, with the reflection coefficient B, resonance occurs at the resonance frequency (approximately 2.2 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna. In other words, in FIG. 2, the antenna device 100 connects the switch 40 to the terminal 42, that is, the short circuit, and sets the first connection state, thereby causing the first antenna ANT1 and the second antenna ANT2 to resonate multiple times, thereby causing the frequency band is broadband. Furthermore, in FIG. 2, the antenna device 100 opens the switch 40 so as not to connect the GND terminal to the second connection state, thereby widening the frequency band to a lower frequency (for example, about 0.5 GHz). I understand.
 次に、アンテナ装置100を通信端末装置に実装した場合について説明する。図3は、実施の形態における通信端末装置200を示す概略図である。図3に示す通信端末装置200は、例えば、約0.6GHz~約0.96GHzを含む帯域で通信が可能である。そのため、通信端末装置200には、第1アンテナANT1の第1放射素子11と、第2アンテナANT2の第2放射素子12と、アンテナ結合素子20と、スイッチ40とを含むアンテナ装置100が設けてある。なお、通信端末装置200は、例えば、携帯電話、スマートフォン、タブレットあるいは通信機能を持つPC(パーソナルコンピューター)などである。 Next, a case where the antenna device 100 is mounted in a communication terminal device will be described. FIG. 3 is a schematic diagram showing communication terminal device 200 in the embodiment. Communication terminal device 200 shown in FIG. 3 is capable of communication in a band including, for example, approximately 0.6 GHz to approximately 0.96 GHz. Therefore, the communication terminal device 200 is provided with the antenna device 100 including the first radiation element 11 of the first antenna ANT1, the second radiation element 12 of the second antenna ANT2, the antenna coupling element 20, and the switch 40. be. Note that the communication terminal device 200 is, for example, a mobile phone, a smart phone, a tablet, or a PC (personal computer) having a communication function.
 第1放射素子11および第2放射素子12が設けられた基板210には、アンテナ結合素子20、給電回路30、およびスイッチ40が設けてある。アンテナ結合素子20は、第1放射素子11および第2放射素子12と接続されている。スイッチ40は、アンテナ結合素子20に接続されている。なお、第1放射素子11は、給電回路30に対して直接電気的に接続されているが、第2放射素子12は、給電回路30に対してアンテナ結合素子20を経由して電気的に接続されている。 An antenna coupling element 20, a feeding circuit 30, and a switch 40 are provided on the substrate 210 on which the first radiating element 11 and the second radiating element 12 are provided. Antenna coupling element 20 is connected to first radiating element 11 and second radiating element 12 . A switch 40 is connected to the antenna coupling element 20 . Although the first radiation element 11 is directly electrically connected to the feeding circuit 30, the second radiation element 12 is electrically connected to the feeding circuit 30 via the antenna coupling element 20. It is
 図3に示すように、第1放射素子11および第2放射素子12は、通信端末装置200の長辺側に設けられている。ここで、スイッチ40を設けずに、第2接続状態で第1放射素子11と第2放射素子12とを1つのモノポールアンテナとして構成することができないアンテナ装置について考える。当該アンテナ装置では、さらに低い周波数の方向に使用可能な周波数帯域を広帯域化するには、第1放射素子11の長さを、例えば、図3に示す第1放射素子11と第2放射素子12とを足し合わせた長さにする必要がある。そうすると、通信端末装置200の長辺側に当該アンテナ装置が収まらず、当該アンテナ装置を設けるための領域がさらに必要となる。しかし、実施の形態におけるアンテナ装置100では、スイッチ40を設け、第2接続状態で第1放射素子11と第2放射素子12とを1つのモノポールアンテナとして構成することができるので、さらに低い周波数の方向に使用可能な周波数帯域を広帯域化するために新たな領域を通信端末装置200内に確保する必要がない。 As shown in FIG. 3 , the first radiating element 11 and the second radiating element 12 are provided on the long side of the communication terminal device 200 . Here, consider an antenna device in which the switch 40 is not provided and the first radiating element 11 and the second radiating element 12 cannot be configured as one monopole antenna in the second connection state. In this antenna device, in order to widen the usable frequency band in the direction of lower frequencies, the length of the first radiating element 11 is set to, for example, the length of the first radiating element 11 and the second radiating element 12 shown in FIG. must be the sum of the lengths of In that case, the antenna device cannot be accommodated on the long side of communication terminal device 200, and an additional area for providing the antenna device is required. However, in the antenna device 100 according to the embodiment, the switch 40 is provided so that the first radiating element 11 and the second radiating element 12 can be configured as one monopole antenna in the second connection state. It is not necessary to secure a new area within communication terminal apparatus 200 in order to widen the usable frequency band in the direction of .
 次に、端子41をGND端子42に接続する以外に、GNDとの間にインピーダンス調整素子を設けた端子43,44に端子41を接続した場合のアンテナ装置100の反射係数について説明する。図4は、実施の形態におけるアンテナ装置100においてインピーダンスを調整した場合の反射係数の周波数特性を示す図である。図4において、横軸は周波数、縦軸は反射係数である。ここで、反射係数Aは、アンテナ装置100においてスイッチ40の端子41を開放端子45に接続した場合(第2接続状態)のシミュレーション結果である。また、反射係数Bは、アンテナ装置100においてスイッチ40の端子41をGND端子42に接続した場合(第1接続状態)のシミュレーション結果である。 Next, in addition to connecting the terminal 41 to the GND terminal 42, the reflection coefficient of the antenna device 100 will be described when the terminal 41 is connected to the terminals 43 and 44 provided with impedance adjusting elements between the terminal 41 and GND. FIG. 4 is a diagram showing the frequency characteristics of the reflection coefficient when the impedance is adjusted in the antenna device 100 according to the embodiment. In FIG. 4, the horizontal axis is frequency, and the vertical axis is reflection coefficient. Here, the reflection coefficient A is a simulation result when the terminal 41 of the switch 40 is connected to the open terminal 45 in the antenna device 100 (second connection state). Also, the reflection coefficient B is a simulation result when the terminal 41 of the switch 40 is connected to the GND terminal 42 in the antenna device 100 (first connection state).
 反射係数B1は、アンテナ装置100においてスイッチ40の端子41を約10nHのインダクタを介してGNDに接続する端子43に接続した場合(第1接続状態)のシミュレーション結果である。反射係数B2は、アンテナ装置100においてスイッチ40の端子41を約30nHのインダクタを介してGNDに接続する端子44に接続した場合(第1接続状態)のシミュレーション結果である。反射係数B3は、アンテナ装置100においてスイッチ40の端子41を約50nHのインダクタを介してGNDに接続する端子(図示せず)に接続した場合(第1接続状態)のシミュレーション結果である。反射係数B4は、アンテナ装置100においてスイッチ40の端子41を約100nHのインダクタを介してGNDに接続する端子(図示せず)に接続した場合(第1接続状態)のシミュレーション結果である。 The reflection coefficient B1 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to the terminal 43 connected to GND via an inductor of approximately 10 nH (first connection state). The reflection coefficient B2 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to the terminal 44 connected to GND via an inductor of approximately 30 nH (first connection state). The reflection coefficient B3 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to a terminal (not shown) connected to GND via an inductor of approximately 50 nH (first connection state). The reflection coefficient B4 is a simulation result when the terminal 41 of the switch 40 in the antenna device 100 is connected to a terminal (not shown) connected to GND via an inductor of approximately 100 nH (first connection state).
 反射係数B1では、ループアンテナの第1アンテナANT1の基本波の共振周波数(約1.0GHz)で共振が生じている。さらに、反射係数B1では、無給電アンテナの第2アンテナANT2の基本波の共振周波数(約1.73GHz)で共振が生じている。反射係数B2では、ループアンテナの第1アンテナANT1の基本波の共振周波数(約0.8GHz)で共振が生じている。さらに、反射係数B2では、無給電アンテナの第2アンテナANT2の基本波の共振周波数(約1.59GHz)で共振が生じている。 With the reflection coefficient B1, resonance occurs at the resonance frequency (approximately 1.0 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, with the reflection coefficient B1, resonance occurs at the resonance frequency (approximately 1.73 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna. At the reflection coefficient B2, resonance occurs at the resonance frequency (approximately 0.8 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, in the reflection coefficient B2, resonance occurs at the resonance frequency (approximately 1.59 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna.
 反射係数B3では、ループアンテナの第1アンテナANT1の基本波の共振周波数(約0.72GHz)で共振が生じている。さらに、反射係数B3では、無給電アンテナの第2アンテナANT2の基本波の共振周波数(約1.55GHz)で共振が生じている。反射係数B4では、ループアンテナの第1アンテナANT1の基本波の共振周波数(約0.62GHz)で共振が生じている。さらに、反射係数B4では、無給電アンテナの第2アンテナANT2の基本波の共振周波数(約1.51GHz)で共振が生じている。 At the reflection coefficient B3, resonance occurs at the resonance frequency (approximately 0.72 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, at the reflection coefficient B3, resonance occurs at the resonance frequency (approximately 1.55 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna. At the reflection coefficient B4, resonance occurs at the resonance frequency (approximately 0.62 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. Furthermore, at the reflection coefficient B4, resonance occurs at the resonance frequency (approximately 1.51 GHz) of the fundamental wave of the second antenna ANT2 of the parasitic antenna.
 アンテナ装置100では、スイッチ40の端子41をGND端子42以外の端子43,44に接続することで、インピーダンス調整素子を介して、端子41を接地させる状態に切り換えることができる。インピーダンスが異なる複数のインピーダンス調整素子61,62を設けておくことで、スイッチ40は、複数のインピーダンス調整素子61,62の中から1つを選択可能であり、この選択したインピーダンス調整素子を介して端子41を接地させる。このように、端子41に接続するインピーダンス調整素子のインピーダンスの大きさを変更することで、第1アンテナANT1および第2アンテナANT2の共振周波数を変更することができる。 In the antenna device 100, by connecting the terminal 41 of the switch 40 to the terminals 43 and 44 other than the GND terminal 42, the terminal 41 can be switched to ground via the impedance adjustment element. By providing a plurality of impedance adjusting elements 61 and 62 having different impedances, the switch 40 can select one of the plurality of impedance adjusting elements 61 and 62. Via the selected impedance adjusting element, Terminal 41 is grounded. By changing the magnitude of the impedance of the impedance adjustment element connected to the terminal 41 in this manner, the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be changed.
 図4に示したように、インピーダンス調整素子のインピーダンスを大きくするに従い、第1アンテナANT1および第2アンテナANT2の共振周波数を低くすることができる。具体的に、インピーダンス調整素子のインピーダンスを約10nH~約100nHに変更することで、第1アンテナANT1の共振周波数は約1.0GHz~約0.62GHzに変更することができる。また、インピーダンス調整素子のインピーダンスを約10nH~約100nHに変更することで、第2アンテナANT2の共振周波数は約1.73GHz~約1.51GHzに変更することができる。 As shown in FIG. 4, the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be lowered as the impedance of the impedance adjustment element is increased. Specifically, by changing the impedance of the impedance adjustment element to about 10 nH to about 100 nH, the resonance frequency of the first antenna ANT1 can be changed to about 1.0 GHz to about 0.62 GHz. Also, by changing the impedance of the impedance adjustment element to approximately 10 nH to approximately 100 nH, the resonance frequency of the second antenna ANT2 can be changed to approximately 1.73 GHz to approximately 1.51 GHz.
 次に、第2アンテナANT2を設けないアンテナ装置(比較対象)と、実施の形態におけるアンテナ装置100とを比較する。図5は、比較対象のアンテナ装置100Zの概略図である。アンテナ装置100Zは、アンテナ装置100と比べて第2アンテナANT2を有していない。具体的に、アンテナ装置100Zは、図1に示したアンテナ装置100と比べ、第2放射素子12と、第2放射素子12に接続される第2コイルL2と、を有していない。第1アンテナANT1の形状や第1コイルL1のインダクタンスはアンテナ装置100と同じである。 Next, an antenna device without the second antenna ANT2 (comparison target) and the antenna device 100 according to the embodiment will be compared. FIG. 5 is a schematic diagram of an antenna device 100Z for comparison. Unlike the antenna device 100, the antenna device 100Z does not have the second antenna ANT2. Specifically, the antenna device 100Z does not have the second radiating element 12 and the second coil L2 connected to the second radiating element 12, unlike the antenna device 100 shown in FIG. The shape of the first antenna ANT1 and the inductance of the first coil L1 are the same as those of the antenna device 100. FIG.
 そのため、スイッチ40は、第2端子L1bが接続された端子41をGND端子42に接続すること(第1接続状態)で、第1アンテナANT1をループアンテナとして機能させることはできる。しかし、第2コイルL2を有していないため、第1コイルL1は、第2コイルL2と磁気結合することはない。一方、スイッチ40は、端子41を開放端子45に接続すること(第2接続状態)で、第1アンテナANT1をモノポールアンテナとして機能させることはできる。しかし、第2コイルL2を有していないため、第1放射素子11の長さのみのモノポールアンテナとなる。 Therefore, the switch 40 can cause the first antenna ANT1 to function as a loop antenna by connecting the terminal 41 to which the second terminal L1b is connected to the GND terminal 42 (first connection state). However, since it does not have the second coil L2, the first coil L1 is not magnetically coupled with the second coil L2. On the other hand, the switch 40 can cause the first antenna ANT1 to function as a monopole antenna by connecting the terminal 41 to the open terminal 45 (second connection state). However, since it does not have the second coil L2, it becomes a monopole antenna having only the length of the first radiation element 11. FIG.
 図6は、第2接続状態における比較対象のアンテナ装置100Zと実施の形態におけるアンテナ装置100との反射係数の周波数特性を示す図である。図6において、横軸は周波数、縦軸は反射係数である。ここで、反射係数Aは、アンテナ装置100においてスイッチ40を第2接続状態に切り換えた場合のシミュレーション結果である。また、反射係数A9は、アンテナ装置100Zにおいてスイッチ40を第2接続状態に切り換えた場合のシミュレーション結果である。 FIG. 6 is a diagram showing the frequency characteristics of the reflection coefficients of the antenna device 100Z to be compared in the second connection state and the antenna device 100 according to the embodiment. In FIG. 6, the horizontal axis is frequency and the vertical axis is reflection coefficient. Here, the reflection coefficient A is a simulation result when the switch 40 in the antenna device 100 is switched to the second connection state. Also, the reflection coefficient A9 is a simulation result when the switch 40 is switched to the second connection state in the antenna device 100Z.
 反射係数Aでは、第1放射素子11と第2放射素子12とを1つのモノポールアンテナとする第3アンテナANT3の基本波の共振周波数(約0.5GHz)で共振が生じている。しかし、反射係数A9では、第1放射素子11のみのモノポールアンテナの基本波の共振周波数(約0.56GHz)で共振が生じている。つまり、アンテナ装置100は、アンテナ装置100Zに比べて第2放射素子12の長さだけモノポールアンテナが長くなるので、さらに低い周波数の方向に使用可能な周波数帯域を広帯域化できる。 At the reflection coefficient A, resonance occurs at the resonance frequency (approximately 0.5 GHz) of the fundamental wave of the third antenna ANT3, which has the first radiating element 11 and the second radiating element 12 as one monopole antenna. However, with the reflection coefficient A9, resonance occurs at the resonance frequency (approximately 0.56 GHz) of the fundamental wave of the monopole antenna of the first radiation element 11 only. That is, since the monopole antenna of the antenna device 100 is longer than that of the antenna device 100Z by the length of the second radiation element 12, it is possible to widen the usable frequency band in the direction of lower frequencies.
 図7は、第1接続状態における比較対象のアンテナ装置100Zと実施の形態におけるアンテナ装置100との反射係数の周波数特性を示す図である。図7において、横軸は周波数、縦軸は反射係数である。ここで、反射係数Bは、アンテナ装置100においてスイッチ40を第1接続状態に切り換えた場合のシミュレーション結果である。また、反射係数B9は、アンテナ装置100Zにおいてスイッチ40を第1接続状態に切り換えた場合のシミュレーション結果である。 FIG. 7 is a diagram showing the frequency characteristics of the reflection coefficients of the antenna device 100Z to be compared in the first connection state and the antenna device 100 according to the embodiment. In FIG. 7, the horizontal axis is frequency, and the vertical axis is reflection coefficient. Here, the reflection coefficient B is a simulation result when the switch 40 in the antenna device 100 is switched to the first connection state. Also, the reflection coefficient B9 is a simulation result when the switch 40 is switched to the first connection state in the antenna device 100Z.
 反射係数Bでは、第1コイルL1と第2コイルL2との磁界結合により、ループアンテナの第1アンテナANT1の基本波の共振周波数(約1.2GHz)で共振が生じるとともに、無給電アンテナの第2アンテナANT2の基本波の共振周波数(約2.2GHz)で共振が生じている。しかし、反射係数B9では、第1コイルL1と磁界結合する第2コイルL2がないため、ループアンテナの第1アンテナANT1の基本波の共振周波数(約1.2GHz)のみで共振が生じる。つまり、アンテナ装置100は、アンテナ装置100Zに比べて第2アンテナANT2との複共振により周波数帯域を広帯域化できる。 With the reflection coefficient B, resonance occurs at the resonance frequency (about 1.2 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna due to the magnetic field coupling between the first coil L1 and the second coil L2. Resonance occurs at the resonance frequency (approximately 2.2 GHz) of the fundamental wave of the two antennas ANT2. However, with the reflection coefficient B9, since there is no second coil L2 magnetically coupled with the first coil L1, resonance occurs only at the resonance frequency (approximately 1.2 GHz) of the fundamental wave of the first antenna ANT1 of the loop antenna. That is, the antenna device 100 can widen the frequency band by multiple resonance with the second antenna ANT2 compared to the antenna device 100Z.
 以上のように、実施の形態におけるアンテナ装置100は、第1アンテナANT1と第2アンテナANT2とを備えるアンテナ装置である。第1アンテナANT1は、高周波信号を送受信する給電回路30に直接的に接続される第1放射素子11と、第1放射素子11と接続される第1コイルL1と、を含む。第2アンテナANT2は、第2放射素子12と、第2放射素子12に接続される第2コイルL2と、を含む。第1コイルL1と第2コイルL2との接続状態を切り換えるスイッチ40をさらに備える。スイッチ40は、第1コイルL1と第2コイルL2とを磁気結合させ、GNDと接地することにより第2アンテナANT2を無給電アンテナとして使用することで、第1アンテナANT1と第2アンテナANT2とのそれぞれの共振点を共振帯域としてもつ第1接続状態に切り換えることができる。また、スイッチ40は、第1コイルL1と第2コイルL2とを直列接続させて、第1放射素子11と第2放射素子12とを1つのモノポールアンテナとする第3アンテナANT3を構成する第2接続状態に切り換えることができる。 As described above, the antenna device 100 in the embodiment is an antenna device including the first antenna ANT1 and the second antenna ANT2. The first antenna ANT1 includes a first radiation element 11 directly connected to a feeding circuit 30 that transmits and receives high frequency signals, and a first coil L1 connected to the first radiation element 11 . A second antenna ANT2 includes a second radiating element 12 and a second coil L2 connected to the second radiating element 12 . A switch 40 for switching the connection state between the first coil L1 and the second coil L2 is further provided. The switch 40 uses the second antenna ANT2 as a parasitic antenna by magnetically coupling the first coil L1 and the second coil L2 and grounding them with GND, thereby switching between the first antenna ANT1 and the second antenna ANT2. It is possible to switch to the first connection state having each resonance point as a resonance band. Further, the switch 40 connects the first coil L1 and the second coil L2 in series to form a third antenna ANT3 that uses the first radiating element 11 and the second radiating element 12 as one monopole antenna. 2 can be switched to the connected state.
 これにより、実施の形態におけるアンテナ装置100は、スイッチ40により、第1コイルL1と第2コイルl2とを磁気結合させ、第1アンテナANTをループアンテナ、第2アンテナANT2を無給電アンテナとして第1アンテナANT1と第2アンテナANT2とのそれぞれの共振点を共振帯域としてもつ第1接続状態に切り換えることができる。また、スイッチ40は、第1放射素子11と第2放射素子12とを1つのモノポールアンテナとする第3アンテナANT3を構成する第2接続状態と、を切り換えることができる。そのため、アンテナ装置100は、設置できる領域が限られる場合であっても、低い周波数の方向に使用可能な周波数帯域を広帯域化することができる。 As a result, the antenna device 100 according to the embodiment uses the switch 40 to magnetically couple the first coil L1 and the second coil l2, uses the first antenna ANT as a loop antenna, and uses the second antenna ANT2 as a parasitic antenna. It is possible to switch to the first connection state in which the respective resonance points of the antenna ANT1 and the second antenna ANT2 are used as resonance bands. Also, the switch 40 can switch between a second connection state that configures the third antenna ANT3 in which the first radiating element 11 and the second radiating element 12 are one monopole antenna. Therefore, the antenna device 100 can widen the usable frequency band in the direction of low frequencies even when the area where the antenna device 100 can be installed is limited.
 第1コイルL1は、第1放射素子11と接続する第1端子L1aと、スイッチ40と接続する第2端子L1bと、を有する。第2コイルL2は、第2放射素子12と接続する第3端子L2aと、スイッチ40と接続する第4端子L2bと、を有する。スイッチ40は、第2端子L1bおよび第4端子L2bが接続された端子を所定の電位の端子42~44に接続して第1接続状態とし、第2端子L1bおよび第4端子L2bが接続された端子41を開放端子45に接続して第2接続状態とすることが好ましい。 The first coil L1 has a first terminal L1a connected to the first radiation element 11 and a second terminal L1b connected to the switch 40. The second coil L2 has a third terminal L2a connected to the second radiating element 12 and a fourth terminal L2b connected to the switch 40 . The switch 40 connects the terminal to which the second terminal L1b and the fourth terminal L2b are connected to the terminals 42 to 44 at a predetermined potential to establish a first connection state, and the second terminal L1b and the fourth terminal L2b are connected. It is preferable to connect the terminal 41 to the open terminal 45 to set the second connection state.
 スイッチ40は、第1接続状態において、第2端子L1bおよび第4端子L2bを直接接地させる状態と、インピーダンス調整素子61,62を介して、第2端子L1bおよび第4端子l2bを接地させる状態と、を切り換えることが好ましい。これにより、第1アンテナANT1および第2アンテナANT2の共振周波数を変更することができる。 In the first connection state, the switch 40 has a state in which the second terminal L1b and the fourth terminal L2b are directly grounded, and a state in which the second terminal L1b and the fourth terminal l2b are grounded via the impedance adjustment elements 61 and 62. , is preferably switched. Thereby, the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be changed.
 インピーダンスが異なる複数のインピーダンス調整素子61,62を設け、スイッチ40は、複数のインピーダンス調整素子61,62の中から1つを選択可能であり、選択したインピーダンス調整素子61,62を介して、第2端子L1bおよび第4端子L2bを接地させることが好ましい。これにより、第1アンテナANT1および第2アンテナANT2の共振周波数をインピーダンスの大きさに応じて変更することができる。 A plurality of impedance adjusting elements 61 and 62 having different impedances are provided, and the switch 40 can select one of the plurality of impedance adjusting elements 61 and 62. Through the selected impedance adjusting element 61 and 62, the second It is preferable to ground the second terminal L1b and the fourth terminal L2b. Thereby, the resonance frequencies of the first antenna ANT1 and the second antenna ANT2 can be changed according to the magnitude of the impedance.
 第1接続状態において、第1アンテナANT1は、ループアンテナであり、第2アンテナANT2は、無給電アンテナであり、第2接続状態での第3アンテナANT3の基本波の共振周波数は、第1接続状態での第1アンテナANT1および第2アンテナANT2の共振周波数より低いことが好ましい。 In the first connection state, the first antenna ANT1 is a loop antenna, the second antenna ANT2 is a parasitic antenna, and the resonance frequency of the fundamental wave of the third antenna ANT3 in the second connection state is the same as that of the first connection state. It is preferably lower than the resonant frequencies of the first antenna ANT1 and the second antenna ANT2 under normal conditions.
 アンテナ結合素子20はL1a、L1b、L2a、L2bに該当する4端子のものでも良いし、アンテナ結合素子の中でL1bとL2bとを接続した3端子としても良い。 The antenna coupling element 20 may have four terminals corresponding to L1a, L1b, L2a, and L2b, or may have three terminals connecting L1b and L2b in the antenna coupling element.
 通信端末装置200は、給電回路30と、本開示におけるアンテナ装置100,100A~100Cと、を備えることが好ましい。通信端末装置200内において、アンテナ装置100,100A~100Cが設置できる領域が限られる場合であっても、低い周波数の方向に使用可能な周波数帯域を広帯域化することができる。また、図3には示していないが、第1放射素子11と第2放射素子12と対向する箇所には基板210は設置されない、もしくはグランドパターンを設けないなどの変形によって放射効率を向上させても良い。 The communication terminal device 200 preferably includes the feeding circuit 30 and the antenna devices 100, 100A to 100C in the present disclosure. Even if the area in which antenna devices 100 and 100A to 100C can be installed in communication terminal apparatus 200 is limited, it is possible to widen the usable frequency band in the direction of low frequencies. Further, although not shown in FIG. 3, the substrate 210 is not installed at the location facing the first radiation element 11 and the second radiation element 12, or the radiation efficiency is improved by modifying such that no ground pattern is provided. Also good.
 (変形例1)
 次に、アンテナ装置100の変形例について説明する。図8は、変形例1におけるアンテナ装置100Aの概略図である。アンテナ装置100Aは、第1放射素子11が分岐する部分を有している点でアンテナ装置100と異なる以外、同じ構成を有している。なお、図8に示すアンテナ装置100Aにおいて、図1に示すアンテナ装置100と同じ構成については同じ符号を付して詳細な説明は繰り返さない。
(Modification 1)
Next, a modified example of the antenna device 100 will be described. FIG. 8 is a schematic diagram of an antenna device 100A in Modification 1. As shown in FIG. The antenna device 100A has the same configuration as the antenna device 100 except that the first radiation element 11 has a branched portion. In antenna device 100A shown in FIG. 8, the same components as those of antenna device 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 第1アンテナANT1は、給電回路30に直接的に接続される第1放射素子11と、第1放射素子11に接続される第1コイルL1と、を含む。第1アンテナANT1は、スイッチ40を介してGNDに接続されている場合、給電回路30と第1コイルL1との間の部分(第1部分)がループアンテナとして機能する。第1放射素子11は、第1部分以外に、当該第1部分から分岐した第2部分11a、11bを有する。第2部分11a、11bは、それぞれ共振周波数を有する。 The first antenna ANT1 includes a first radiation element 11 directly connected to the feeding circuit 30 and a first coil L1 connected to the first radiation element 11. When the first antenna ANT1 is connected to GND via the switch 40, the portion (first portion) between the feeding circuit 30 and the first coil L1 functions as a loop antenna. The first radiation element 11 has, in addition to the first portion, second portions 11a and 11b branched from the first portion. The second portions 11a and 11b each have a resonance frequency.
 給電回路30から第2部分11aに至る第1放射素子11の部分は、モノポールアンテナとして機能し、その長さに応じて基本波の共振周波数で共振を生じる。また、給電回路30から第2部分11bに至る第1放射素子11の部分は、モノポールアンテナとして機能し、その長さに応じて基本波の共振周波数で共振を生じる。 The portion of the first radiation element 11 extending from the feeding circuit 30 to the second portion 11a functions as a monopole antenna, and resonates at the resonant frequency of the fundamental wave according to its length. Also, the portion of the first radiation element 11 extending from the feeding circuit 30 to the second portion 11b functions as a monopole antenna, and resonates at the resonant frequency of the fundamental wave according to its length.
 このように、変形例1におけるアンテナ装置100Aでは、給電回路30と第1コイルL1との間の部分である第1部分と、第1部分から分岐した第2部分11a,11bとを有することで、第1アンテナANT1において共振する周波数を追加することができ、広帯域化できる。 As described above, the antenna device 100A in Modification 1 has the first portion between the feeding circuit 30 and the first coil L1, and the second portions 11a and 11b branched from the first portion. , a frequency that resonates in the first antenna ANT1 can be added, and the band can be widened.
 (変形例2)
 次に、図9は、変形例2におけるアンテナ装置100Bの概略図である。アンテナ装置100Bは、第1放射素子11にインピーダンスを変更するインピーダンス変更素子を有している点でアンテナ装置100と異なる以外、同じ構成を有している。なお、図9に示すアンテナ装置100Bにおいて、図1に示すアンテナ装置100と同じ構成については同じ符号を付して詳細な説明は繰り返さない。
(Modification 2)
Next, FIG. 9 is a schematic diagram of an antenna device 100B in Modification 2. As shown in FIG. The antenna device 100B has the same configuration as the antenna device 100 except that the first radiation element 11 has an impedance changing element that changes the impedance. In antenna device 100B shown in FIG. 9, the same components as those of antenna device 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 第1アンテナANT1は、給電回路30に直接的に接続される第1放射素子11と、第1放射素子11に接続される第1コイルL1と、を含む。第1アンテナANT1は、第1放射素子11に接続するインピーダンスを変更するインピーダンス変更素子50をさらに含む。インピーダンス変更素子50は、給電回路30と第1放射素子11との間に設けられ、スイッチ50aとインダクタ50b,50cとを含む。インピーダンスが異なる複数のインダクタ50b,50cを設けておくことで、スイッチ50aは、複数のインダクタ50b,50cの中から1つを選択可能であり、この選択したインダクタ50b,50cを介して第1放射素子11を給電回路30に接続させる。 The first antenna ANT1 includes a first radiation element 11 directly connected to the feeding circuit 30 and a first coil L1 connected to the first radiation element 11. The first antenna ANT1 further includes an impedance changing element 50 that changes the impedance connected to the first radiating element 11 . The impedance changing element 50 is provided between the feeding circuit 30 and the first radiating element 11, and includes a switch 50a and inductors 50b and 50c. By providing a plurality of inductors 50b and 50c having different impedances, the switch 50a can select one of the plurality of inductors 50b and 50c, and the first radiation is transmitted through the selected inductors 50b and 50c. The element 11 is connected to the feeding circuit 30 .
 このように、変形例2におけるアンテナ装置100Bでは、第1放射素子11に接続するインピーダンスを変更するインピーダンス変更素子50をさらに含み、インピーダンス変更素子50で第1放射素子11に接続するインピーダンスを変更することで、第2アンテナANT2において共振する周波数を変えることなく、第1アンテナANT1において共振する周波数を調整することができる。なお、図9に示すアンテナ装置100Bでは、インピーダンス調整素子61,62を設けているが、インピーダンス調整素子61,62を設けない構成であってもよい。 As described above, the antenna device 100B in Modification 2 further includes the impedance changing element 50 for changing the impedance connected to the first radiating element 11, and the impedance changing element 50 changes the impedance connected to the first radiating element 11. Thus, the resonant frequency of the first antenna ANT1 can be adjusted without changing the resonant frequency of the second antenna ANT2. Although the antenna device 100B shown in FIG. 9 is provided with the impedance adjustment elements 61 and 62, the configuration may be such that the impedance adjustment elements 61 and 62 are not provided.
 (変形例3)
 前述のアンテナ装置100,100A,100Bでは、第1アンテナANT1がスイッチ40を介してGNDに接続されループアンテナとして機能すると説明した。しかし、本開示におけるアンテナ装置では、第1アンテナANT1がスイッチ40を介してGNDに接続されず、ループアンテナ以外のアンテナとして機能してもよい。
(Modification 3)
In the antenna devices 100, 100A, and 100B described above, the first antenna ANT1 is connected to GND via the switch 40 and functions as a loop antenna. However, in the antenna device according to the present disclosure, the first antenna ANT1 may not be connected to GND via the switch 40 and may function as an antenna other than the loop antenna.
 図10は、変形例3におけるアンテナ装置100Cの概略図である。アンテナ装置100Cは、第1放射素子13とスイッチ40との接続についてアンテナ装置100と異なる以外、同じ構成を有している。なお、図10に示すアンテナ装置100Cにおいて、図1に示すアンテナ装置100と同じ構成については同じ符号を付して詳細な説明は繰り返さない。 FIG. 10 is a schematic diagram of an antenna device 100C according to Modification 3. FIG. The antenna device 100C has the same configuration as the antenna device 100 except that the connection between the first radiation element 13 and the switch 40 is different. In antenna device 100C shown in FIG. 10, the same components as those of antenna device 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will not be repeated.
 第1アンテナANT1は、第1放射素子13と、第1放射素子13と給電回路30との間に接続される第1コイルL1と、を含む。つまり、第1放射素子13は、間接的に給電回路30と接続されている。第1放射素子13は、第1コイルL1と接続する反対側の端部がスイッチ40の端子41aの一つになっている。 The first antenna ANT1 includes a first radiation element 13 and a first coil L1 connected between the first radiation element 13 and the feeding circuit 30. That is, the first radiating element 13 is indirectly connected to the feeding circuit 30 . The first radiating element 13 has one terminal 41a of the switch 40 at the end opposite to the connection with the first coil L1.
 スイッチ40は、第2コイルL2に接続された端子41bをGND端子42に接続することで、第1コイルL1と第2コイルL2とを接地させる第1接続状態に切り換えることができる。第1コイルL1と第2コイルL2とを接地させた場合、第1コイルL1と第2コイルL2とが磁気結合し、第1コイルL1および第2コイルL2はトランスとして機能する。 By connecting the terminal 41b connected to the second coil L2 to the GND terminal 42, the switch 40 can be switched to the first connection state in which the first coil L1 and the second coil L2 are grounded. When the first coil L1 and the second coil L2 are grounded, the first coil L1 and the second coil L2 are magnetically coupled, and the first coil L1 and the second coil L2 function as a transformer.
 また、スイッチ40は、端子41bをGND端子42に接続する以外に、GNDとの間にインピーダンス調整素子(例えば、インダクタ)を設けた端子43に端子41bを接続しても第1コイルL1と第2コイルL2とをインピーダンス調整素子を介して接地することができる。 In addition to connecting the terminal 41b to the GND terminal 42, the switch 40 may connect the terminal 41b to a terminal 43 provided with an impedance adjusting element (for example, an inductor) between the first coil L1 and the first coil L1. 2 coil L2 can be grounded via an impedance adjustment element.
 アンテナ装置100Cは、スイッチ40で第1接続状態に切り換えることで、第1コイルL1に対して第2コイルL2が磁気結合し、給電回路30により給電される給電アンテナ(第1アンテナANT1)と、給電回路30により給電されない無給電アンテナ(第2アンテナANT2)とで構成される。これにより、アンテナ装置100Cでは、第1アンテナANT1と第2アンテナANT2との複共振により、使用可能な周波数帯域を広帯域化することができる。なお、第1アンテナANT1は、ループアンテナではなくモノポールアンテナとして機能する。 The antenna device 100C is switched to the first connection state by the switch 40, so that the second coil L2 is magnetically coupled to the first coil L1, and a feeding antenna (first antenna ANT1) fed by the feeding circuit 30; It is composed of a parasitic antenna (second antenna ANT2) that is not fed by the feeding circuit 30. FIG. Thereby, in the antenna device 100C, the usable frequency band can be widened due to the multiple resonance of the first antenna ANT1 and the second antenna ANT2. Note that the first antenna ANT1 functions as a monopole antenna instead of a loop antenna.
 一方、スイッチ40は、端子41bを端子41aに接続することで、第1コイルL1と第2コイルL2とを直列接続させる。スイッチ40は、第1コイルL1と第2コイルL2とを直列接続させる第2接続状態に切り換えることができる。アンテナ装置100Cは、スイッチ40で第2接続状態に切り換えることで、第1放射素子11と第2放射素子12とを1つのモノポールアンテナとする第3アンテナANT3として機能する。 On the other hand, the switch 40 connects the first coil L1 and the second coil L2 in series by connecting the terminal 41b to the terminal 41a. The switch 40 can be switched to a second connection state in which the first coil L1 and the second coil L2 are connected in series. By switching the switch 40 to the second connection state, the antenna device 100C functions as a third antenna ANT3 in which the first radiating element 11 and the second radiating element 12 form one monopole antenna.
 このように、変形例3におけるアンテナ装置100Cでは、第1アンテナANT1がスイッチ40を介してGNDに接続されず、モノポールアンテナとして機能しても、スイッチ40で第1コイルL1と第2コイルL2とを磁気結合させて第1アンテナANT1と第2アンテナANT2とのそれぞれの共振点を共振帯域としてもつか、直列接続するかを切り換えて周波数帯域を広帯域化することができる。 As described above, in the antenna device 100C according to the modification 3, even if the first antenna ANT1 is not connected to GND via the switch 40 and functions as a monopole antenna, the switch 40 allows the first coil L1 and the second coil L2 to be connected to each other. By magnetically coupling the resonance points of the first antenna ANT1 and the second antenna ANT2 as resonance bands, or by connecting them in series, the frequency band can be widened.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 11,13 第1放射素子、12 第2放射素子、30 給電回路、40,50a スイッチ、50 インピーダンス変更素子、61,62 インピーダンス調整素子、100,100A~100C,100Z アンテナ装置、200 通信端末装置。 11, 13 first radiation element, 12 second radiation element, 30 feeding circuit, 40, 50a switch, 50 impedance changing element, 61, 62 impedance adjusting element, 100, 100A to 100C, 100Z antenna device, 200 communication terminal device.

Claims (11)

  1.  第1アンテナと第2アンテナとを備えるアンテナ装置であって、
     前記第1アンテナは、
      高周波信号を送受信する給電回路に直接もしくは間接的に接続される第1放射素子と、
      前記第1放射素子と接続される第1コイルと、を含み、
     前記第2アンテナは、
      第2放射素子と、
      前記第2放射素子に接続される第2コイルと、を含み、
      前記第1コイルと前記第2コイルとの接続状態を切り換えるスイッチをさらに備え、
     前記スイッチは、
      前記第1コイルと前記第2コイルとを磁気結合させて前記第1アンテナと前記第2アンテナとのそれぞれの共振点を共振帯域としてもつ第1接続状態と、
      前記第1コイルと前記第2コイルとを直列接続させて、前記第1放射素子と前記第2放射素子とを1つのモノポールアンテナとする第3アンテナを構成する第2接続状態と、を切り換え可能である、アンテナ装置。
    An antenna device comprising a first antenna and a second antenna,
    The first antenna is
    a first radiating element directly or indirectly connected to a feeding circuit that transmits and receives high-frequency signals;
    a first coil connected to the first radiating element;
    The second antenna is
    a second radiating element;
    a second coil connected to the second radiating element;
    further comprising a switch for switching a connection state between the first coil and the second coil;
    The switch is
    a first connection state in which the first coil and the second coil are magnetically coupled to each of the resonance points of the first antenna and the second antenna as a resonance band;
    Switching between a second connection state in which the first coil and the second coil are connected in series to form a third antenna in which the first radiating element and the second radiating element form one monopole antenna. Possible, antenna device.
  2.  前記第1コイルは、前記第1放射素子と接続する第1端子と、前記スイッチと接続する第2端子と、を有し、
     前記第2コイルは、前記第2放射素子と接続する第3端子と、前記スイッチと接続する第4端子と、を有し、
     前記スイッチは、前記第2端子および前記第4端子が接続された端子を所定の電位の端子に接続して前記第1接続状態とし、前記第2端子および前記第4端子が接続された端子を開放端子に接続して前記第2接続状態とする、請求項1に記載のアンテナ装置。
    the first coil has a first terminal connected to the first radiation element and a second terminal connected to the switch;
    the second coil has a third terminal connected to the second radiation element and a fourth terminal connected to the switch,
    The switch connects the terminal to which the second terminal and the fourth terminal are connected to a terminal of a predetermined potential to be in the first connection state, and connects the terminal to which the second terminal and the fourth terminal are connected. 2. The antenna device according to claim 1, wherein said second connection state is established by connecting to an open terminal.
  3.  前記第1コイルと前記第2コイルが一体ものの素子であり、前記第1端子~前記第4端子の4端子から構成される、請求項2に記載のアンテナ装置。 The antenna device according to claim 2, wherein the first coil and the second coil are integrated elements, and are composed of four terminals of the first terminal to the fourth terminal.
  4.  前記第1コイルと前記第2コイルが一体ものの素子であり、前記第2端子と前記第4端子とが内部で結合されて、3端子から構成される、請求項2に記載のアンテナ装置。 3. The antenna device according to claim 2, wherein the first coil and the second coil are integrated elements, and the second terminal and the fourth terminal are internally coupled to form three terminals.
  5.  前記スイッチは、前記第1接続状態において、前記第2端子および前記第4端子を直接接地させる状態と、インピーダンス調整素子を介して、前記第2端子および前記第4端子を接地させる状態と、を切り換え可能である、請求項2~請求項4のいずれか1項に記載のアンテナ装置。 In the first connection state, the switch has a state in which the second terminal and the fourth terminal are directly grounded, and a state in which the second terminal and the fourth terminal are grounded via an impedance adjustment element. An antenna device according to any one of claims 2 to 4, which is switchable.
  6.  インピーダンスが異なる複数の前記インピーダンス調整素子を設け、
     前記スイッチは、複数の前記インピーダンス調整素子の中から1つを選択可能であり、選択した前記インピーダンス調整素子を介して、前記第2端子および前記第4端子を接地させる、請求項5に記載のアンテナ装置。
    providing a plurality of the impedance adjustment elements having different impedances,
    6. The switch according to claim 5, wherein said switch is capable of selecting one from among a plurality of said impedance adjusting elements, and grounds said second terminal and said fourth terminal via said selected impedance adjusting element. antenna device.
  7.  前記第1放射素子は、前記給電回路と前記第1コイルとの間の部分である第1部分と、前記第1部分から分岐した第2部分とを有する、請求項1~請求項6のいずれか1項に記載のアンテナ装置。 7. The first radiating element according to any one of claims 1 to 6, wherein the first radiation element has a first portion that is a portion between the feeding circuit and the first coil, and a second portion branched from the first portion. 1. An antenna device according to claim 1.
  8.  前記第1アンテナは、前記第1放射素子に接続するインピーダンスを変更するインピーダンス変更素子をさらに含む、請求項1~請求項7のいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 7, wherein said first antenna further includes an impedance changing element for changing impedance connected to said first radiation element.
  9.  前記第1接続状態において、前記第1アンテナは、ループアンテナであり、前記第2アンテナは、無給電アンテナである、請求項1~請求項8のいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 8, wherein in the first connection state, the first antenna is a loop antenna and the second antenna is a parasitic antenna.
  10.  前記第2接続状態での前記第3アンテナの基本波の共振周波数は、前記第1接続状態での前記第1アンテナおよび前記第2アンテナの共振周波数より低い、請求項9に記載のアンテナ装置。 10. The antenna device according to claim 9, wherein the resonance frequency of the fundamental wave of said third antenna in said second connection state is lower than the resonance frequencies of said first antenna and said second antenna in said first connection state.
  11.  前記給電回路と、
     請求項1~請求項10のいずれか1項に記載の前記アンテナ装置と、を備える、通信端末装置。
    the power supply circuit;
    A communication terminal device comprising the antenna device according to any one of claims 1 to 10.
PCT/JP2022/044150 2021-12-22 2022-11-30 Antenna device and communication terminal apparatus WO2023120074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021208178 2021-12-22
JP2021-208178 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120074A1 true WO2023120074A1 (en) 2023-06-29

Family

ID=86902139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044150 WO2023120074A1 (en) 2021-12-22 2022-11-30 Antenna device and communication terminal apparatus

Country Status (1)

Country Link
WO (1) WO2023120074A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033548A (en) * 2007-07-27 2009-02-12 Toshiba Corp Antenna device and radio equipment
WO2011024280A1 (en) * 2009-08-27 2011-03-03 株式会社 東芝 Antenna device and communication device
JP2012109875A (en) * 2010-11-18 2012-06-07 Fujitsu Ltd Antenna device and wireless communication device
WO2017065142A1 (en) * 2015-10-16 2017-04-20 株式会社村田製作所 Antenna circuit and communication device
WO2020012885A1 (en) * 2018-07-09 2020-01-16 株式会社村田製作所 Antenna device and electronic apparatus
WO2020137375A1 (en) * 2018-12-28 2020-07-02 株式会社村田製作所 Antenna device
WO2021153215A1 (en) * 2020-01-28 2021-08-05 株式会社村田製作所 Antenna device and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033548A (en) * 2007-07-27 2009-02-12 Toshiba Corp Antenna device and radio equipment
WO2011024280A1 (en) * 2009-08-27 2011-03-03 株式会社 東芝 Antenna device and communication device
JP2012109875A (en) * 2010-11-18 2012-06-07 Fujitsu Ltd Antenna device and wireless communication device
WO2017065142A1 (en) * 2015-10-16 2017-04-20 株式会社村田製作所 Antenna circuit and communication device
WO2020012885A1 (en) * 2018-07-09 2020-01-16 株式会社村田製作所 Antenna device and electronic apparatus
WO2020137375A1 (en) * 2018-12-28 2020-07-02 株式会社村田製作所 Antenna device
WO2021153215A1 (en) * 2020-01-28 2021-08-05 株式会社村田製作所 Antenna device and electronic apparatus

Similar Documents

Publication Publication Date Title
KR101533126B1 (en) Antenna with active elements
US7084823B2 (en) Integrated front end antenna
EP1346436B1 (en) Antenna arrangement
JP5321290B2 (en) Antenna structure
US8421702B2 (en) Multi-layer reactively loaded isolated magnetic dipole antenna
US10622716B1 (en) Balanced antenna
KR20100017955A (en) Multimode antenna structure
KR20050007557A (en) Antenna arrangement and module including the arrangement
CN101715615A (en) Antenna configured for low frequency applications
CN114447583B (en) Antenna and electronic equipment
JP6791460B2 (en) Antenna device and electronic equipment
JP5616955B2 (en) Multimode antenna structure
JP5908486B2 (en) MIMO antenna system
JP2004530383A (en) Wireless communication device provided with slot antenna
CN107112629B (en) Wireless electronic device
US20080136730A1 (en) Antennas For Ultra-Wideband Applications
JP2005020266A (en) Multiple frequency antenna system
WO2023120074A1 (en) Antenna device and communication terminal apparatus
US20100259457A1 (en) Multi-frequency, noise optimized active antenna
US20200373083A1 (en) Antenna coupling element, antenna device, and communication terminal device
JPH09232854A (en) Small planar antenna system for mobile radio equipment
KR20020087139A (en) Wireless terminal
KR100563841B1 (en) Wide band patch antenna using Inverted F Strip line
WO2023176637A1 (en) Antenna device and communication apparatus
WO2020004130A1 (en) Antenna device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910791

Country of ref document: EP

Kind code of ref document: A1