WO2023120017A1 - Illumination device for inspection, and color inspection system - Google Patents

Illumination device for inspection, and color inspection system Download PDF

Info

Publication number
WO2023120017A1
WO2023120017A1 PCT/JP2022/043414 JP2022043414W WO2023120017A1 WO 2023120017 A1 WO2023120017 A1 WO 2023120017A1 JP 2022043414 W JP2022043414 W JP 2022043414W WO 2023120017 A1 WO2023120017 A1 WO 2023120017A1
Authority
WO
WIPO (PCT)
Prior art keywords
normalize
satisfies
color
inspection
illumination device
Prior art date
Application number
PCT/JP2022/043414
Other languages
French (fr)
Japanese (ja)
Inventor
亜希子 岡島
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Publication of WO2023120017A1 publication Critical patent/WO2023120017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to an inspection illumination device and a color inspection system using the same.
  • the present invention has been made to solve the above-described problems, and its main object is to improve the color distinguishability in color inspection.
  • the inspection illumination device of the present invention is used in a color inspection system for measuring the color of the workpiece by imaging a workpiece irradiated with light with an imaging device, and irradiates the workpiece with light,
  • the spectral sensitivity characteristics of the imaging device be x( ⁇ ), y( ⁇ ), and z( ⁇ ) in the order of RGB
  • the spectral distribution of the inspection illumination device be S( ⁇ )
  • x( ⁇ ), y( ⁇ ) ) and z( ⁇ ) are normalized by setting the maximum value to 1, and the values are Normalize(x( ⁇ )), Normalize(y( ⁇ )), and Normalize(z( ⁇ )), and S( ⁇ )x Normalize (S( ⁇ )x( ⁇ )), Normalize(S ( ⁇ ) x ( ⁇ )) and Normalize (S ( ⁇ ) x ( ⁇ )), characterized by having a spectral distribution S ( ⁇ ) that satisfies the following conditions (a) to (c) ( ⁇ is the wavelength ).
  • the wavelength bandwidth that satisfies Normalize(S( ⁇ )z( ⁇ )) ⁇ 0.5 is 50% or more of the wavelength bandwidth that satisfies Normalize(z( ⁇ )) ⁇ 0.5.
  • the inspection illumination device of the present invention preferably satisfies the conditions (a) to (c) in the wavelength region of 440 nm or more and 670 nm or less.
  • the color inspection system of the present invention comprises the above-described inspection illumination device, an imaging device for capturing an image of the workpiece illuminated by the inspection illumination device, and processing image data output from the imaging device. and an image processing device for measuring the color of the workpiece.
  • the inspection illumination device of the present invention configured as described above, in a color inspection system, loss of original information (reflectance) when converting spectral reflectance information of a workpiece into R, G, and B is suppressed. , it is possible to improve the color distinguishability in the color inspection.
  • FIG. 1 is a diagram schematically showing the configuration of a color inspection system according to this embodiment;
  • FIG. The graph which shows the spectral sensitivity characteristic of the imaging device used by simulation.
  • a graph showing the spectral intensity distribution of the light source used in the simulation.
  • a graph showing the spectral emissivity luminance distribution of the work used in the simulation.
  • a graph showing the results of the simulation.
  • a color inspection system 100 according to an embodiment of the present invention will be described below with reference to each drawing.
  • the color inspection system 100 identifies the color of the work W by irradiating the surface of the work W with light and processing the image data obtained by imaging the surface of the work W, and determines the color of the work W based on the identified color. It inspects the surface.
  • this color inspection system 100 as shown in FIG. and an image processing device 3 for processing image data output from the imaging device 2 .
  • the color inspection system 100 of this embodiment is configured to irradiate the workpiece W with the light emitted from the inspection illumination device 1 coaxially with the optical axis 2a of the imaging device 2 by using the half mirror 2M. In addition, it has a so-called coaxial epi-illumination structure.
  • the inspection illumination device 1 of this embodiment is a spot-type illumination device that emits inspection light from a light emission surface 1s formed at the tip of a housing 1C. and an optical system 12 are built in the illumination housing 1C.
  • the light source 11 is, for example, a multiplicity of LEDs arranged in a plane to emit surface light. Either bullet type or chip type LEDs may be used.
  • the optical system 12 is provided between the light source 11 and the light exit surface 1s, guides the light emitted from the light source 11 to the light exit surface 1s, and includes, for example, a collimating lens.
  • the imaging device 2 includes a camera body 21 having an imaging element, a camera lens 22 attached to the camera body 21 for forming an image of light reflected or scattered by the workpiece W, and an optical filter 23 provided in front of the imaging element.
  • the camera body 21 is a color camera equipped with an imaging device such as a CCD type or a CMOS type.
  • the camera lens 22 has, for example, a telecentric optical system configured such that the optical axis 2a and the principal ray are parallel, and has a cylindrical lens housing 2C extending along the optical axis direction (imaging direction). It has a plurality of lenses housed therein.
  • a half mirror 2M for reflecting the light emitted from the inspection illumination device 1 toward the work W is accommodated in the lens housing 2C.
  • the optical filter 23 receives reflected light or scattered light from the workpiece W and extracts light having desired spectral characteristics as transmitted light, and is, for example, a color filter.
  • the image processing device 3 is configured by a digital or analog electric circuit having a CPU, memory, etc., or is configured to use a general-purpose computer such as a personal computer for part or all.
  • a predetermined program is stored in the memory, and the functions of the color identification section 31 and the determination section 32 are exhibited by causing the CPU and the like to cooperate according to the program.
  • the color identification unit 31 is configured to process the image data obtained by the imaging device 2 and convert the spectral reflectance information of the workpiece W into RGB values.
  • the judging section 32 is configured to judge the quality of the workpiece W by comparing the RGB values output by the color identifying section 31 with predetermined judgment criteria.
  • the inspection illumination device 1 sets the spectral sensitivity characteristics of the imaging device 2 to x( ⁇ ), y( ⁇ ), and z( ⁇ ) in the order of RGB.
  • S( ⁇ ) be the spectral distribution of 1, and Normalize(x( ⁇ )), Normalize(y ( ⁇ )), Normalize (z ( ⁇ )), S ( ⁇ ) x ( ⁇ ), S ( ⁇ ) y ( ⁇ ), S ( ⁇ ) z ( ⁇ ) are each standardized with the maximum value of 1 Normalize (S ( ⁇ ) x ( ⁇ )), Normalize (S ( ⁇ ) x ( ⁇ )), Normalize (S ( ⁇ ) x ( ⁇ )), and the following conditions (a) to (c) ( ⁇ indicates wavelength).
  • ⁇ Condition (a) In the wavelength region that satisfies Normalize (x ( ⁇ )) ⁇ 0.5, The wavelength bandwidth that satisfies Normalize(S( ⁇ )x( ⁇ )) ⁇ 0.5 is 50% or more of the wavelength bandwidth that satisfies Normalize(x( ⁇ )) ⁇ 0.5.
  • ⁇ Condition (b) In the wavelength region that satisfies Normalize (y ( ⁇ )) ⁇ 0.5, The wavelength bandwidth that satisfies Normalize(S( ⁇ )y( ⁇ )) ⁇ 0.5 is 50% or more of the wavelength bandwidth that satisfies Normalize(y( ⁇ )) ⁇ 0.5.
  • the spectral sensitivity characteristic of the imaging device 2 means the spectral sensitivity characteristic of the imaging device 2 as a whole including the camera body 21, the camera lens 22 and the optical filter 23.
  • the color inspection system 100 desirably has a spectral distribution S( ⁇ ) that satisfies the above conditions (a) to (c) at least in the wavelength range of 440 nm or more and 670 nm or less.
  • the original information (reflectance) when converting the spectral reflectance information of the workpiece W into R, G, and B is can be suppressed, and the color distinguishability in color inspection can be improved.
  • the "bandwidth (%)" of each light source is the minimum bandwidth ratio among the bandwidth ratios shown in (i) to (iii) below.
  • FIG. 5 shows the color difference ⁇ E ab* for each band of the light source for each workpiece calculated by theoretical calculation.
  • the values on the vertical axis show the color difference for any workpiece when using a light source with a bandwidth of 50% or more, based on the color when a light source with a bandwidth of 100% is used. It was confirmed that ⁇ E ab * was within 20.
  • the inspection illumination device 1 of the above embodiment is a so-called spot illumination device, it is not limited to this.
  • the inspection illumination device 1 of another embodiment may be, for example, a ring-type illumination device having a ring-shaped light-emitting surface, or may be of another type. It may have any shape as long as it is configured to irradiate light having a spectral distribution S( ⁇ ) that satisfies the above conditions (a) to (c).
  • the light emitted from the inspection illumination device 1 and the light reflected by the workpiece W and received by the imaging device 2 are coaxial.
  • the surface of the workpiece W may be obliquely irradiated with light from the inspection illumination device 1, and the imaging device 2 may be provided on the optical path of the reflected light.
  • the imaging device 2 includes all of the camera body 21, the camera lens 22, and the optical filter 23, but the present invention is not limited to this. In other embodiments, the imaging device 2 may not have the optical filter 23 . Furthermore, in the above embodiment, the imaging device 2 and the image processing device 3 are provided separately, but they may be integrated.
  • the inspection illumination device of the present invention loss of original information (reflectance) when converting spectral reflectance information of a workpiece into R, G, and B is suppressed, and color distinguishability in color inspection is improved. be able to.

Abstract

This illumination device for inspection is to be used in a color inspection system for capturing, by an imaging device, an image of a workpiece irradiated with light to measure the color of the workpiece, and is for irradiating the workpiece with light. The illumination device for inspection has a spectral distribution S(λ) satisfying conditions of: (a) in a wavelength range satisfying Normalize (x(λ))≥0.5, the bandwidth of wavelengths satisfying Normalize (S(λ)x(λ))≥0.5 is 50% or more of the bandwidth of wavelengths satisfying Normalize (x(λ))≥0.5; (b) in a wavelength range satisfying Normalize (y(λ))≥0.5, the bandwidth of wavelengths satisfying Normalize (S(λ)y(λ))≥0.5 is 50% or more of the bandwidth of wavelengths satisfying Normalize (y(λ))≥0.5; and (c) in a wavelength range satisfying Normalize (z(λ))≥0.5, the bandwidth of wavelengths satisfying Normalize (S(λ)z(λ))≥0.5 is 50% or more of the bandwidth of wavelengths satisfying Normalize (z(λ))≥0.5.

Description

検査用照明装置及び色検査システムInspection lighting device and color inspection system
 本発明は、検査用照明装置及びこれを用いた色検査システムに関するものである。 The present invention relates to an inspection illumination device and a color inspection system using the same.
 従来、ワークの表面に光を照射し、その表面を撮像して得た画像データを処理することでワークの色を識別し、この識別した色に基づいてワークの表面を検査する色検査システムが知られている(例えば特許文献1)。 Conventionally, there is a color inspection system that irradiates the surface of a workpiece with light, processes the image data obtained by imaging the surface, identifies the color of the workpiece, and inspects the surface of the workpiece based on the identified color. known (for example, Patent Document 1).
特開2013-210227号公報JP 2013-210227 A
 このような色検査システムでは、検査工程においてワークの良否を正しく識別できるように、ワークの色を正しく識別できることが求められる。従来の色検査システムでは、ワークに光を照射する光源として一般的な白色LEDを使用したり、RGBの3つの単色光源を混色してそれぞれの光出力を調整して白色を作成できる光源を使用したりしており、光源の分光特性に偏りがあるため、ワークによってはその色を正しく識別することが困難であった。 In such a color inspection system, it is required to be able to correctly identify the color of the workpiece so that the quality of the workpiece can be correctly identified in the inspection process. Conventional color inspection systems use a standard white LED as the light source to illuminate the workpiece, or use a light source that can create white by mixing three monochromatic light sources (RGB) and adjusting the light output of each. Because of the bias in the spectral characteristics of the light source, it has been difficult to correctly identify the color of some workpieces.
 そこで本発明は、上述した課題を解決すべくなされたものであり、色検査における色識別性を向上させることをその主たる課題とするものである。 Accordingly, the present invention has been made to solve the above-described problems, and its main object is to improve the color distinguishability in color inspection.
 すなわち本発明の検査用照明装置は、光が照射されたワークを撮像装置により撮像して前記ワークの色を測定する色検査システムに用いられ、前記ワークに光を照射するものであって、前記撮像装置の分光感度特性を、RGBの順にx(λ)、y(λ)、z(λ)とし、前記検査用照明装置の分光分布をS(λ)とし、x(λ)、y(λ)、z(λ)をそれぞれの最大値を1として各々規格化した値をNormalize(x(λ))、Normalize(y(λ))、Normalize(z(λ))とし、S(λ)x(λ)、S(λ)y(λ)、S(λ)z(λ)をそれぞれの最大値を1として各々規格化した値をNormalize(S(λ)x(λ))、Normalize(S(λ)x(λ))、Normalize(S(λ)x(λ))として、下記条件(a)~(c)を満たす分光分布S(λ)を有することを特徴とする(λは波長を示す)。
(a)
 Normalize(x(λ))≧0.5を満たす波長領域において、
 Normalize(S(λ)x(λ))≧0.5を満たす波長の帯域幅が、
 Normalize(x(λ))≧0.5を満たす波長の帯域幅の50%以上である。
(b)
 Normalize(y(λ))≧0.5を満たす波長領域において、
 Normalize(S(λ)y(λ))≧0.5を満たす波長の帯域幅が、
 Normalize(y(λ))≧0.5を満たす波長の帯域幅の50%以上である。
(c)
 Normalize(z(λ))≧0.5を満たす波長領域において、
 Normalize(S(λ)z(λ))≧0.5を満たす波長の帯域幅が、
 Normalize(z(λ))≧0.5を満たす波長の帯域幅の50%以上である。
That is, the inspection illumination device of the present invention is used in a color inspection system for measuring the color of the workpiece by imaging a workpiece irradiated with light with an imaging device, and irradiates the workpiece with light, Let the spectral sensitivity characteristics of the imaging device be x(λ), y(λ), and z(λ) in the order of RGB, let the spectral distribution of the inspection illumination device be S(λ), and let x(λ), y(λ) ) and z(λ) are normalized by setting the maximum value to 1, and the values are Normalize(x(λ)), Normalize(y(λ)), and Normalize(z(λ)), and S(λ)x Normalize (S(λ)x(λ)), Normalize(S (λ) x (λ)) and Normalize (S (λ) x (λ)), characterized by having a spectral distribution S (λ) that satisfies the following conditions (a) to (c) (λ is the wavelength ).
(a)
In the wavelength region that satisfies Normalize (x (λ)) ≥ 0.5,
The wavelength bandwidth that satisfies Normalize(S(λ)x(λ))≧0.5 is
50% or more of the wavelength bandwidth that satisfies Normalize(x(λ))≧0.5.
(b)
In the wavelength region that satisfies Normalize (y (λ)) ≥ 0.5,
The wavelength bandwidth that satisfies Normalize(S(λ)y(λ))≧0.5 is
50% or more of the wavelength bandwidth that satisfies Normalize(y(λ))≧0.5.
(c)
In the wavelength region that satisfies Normalize (z (λ)) ≥ 0.5,
The wavelength bandwidth that satisfies Normalize(S(λ)z(λ))≧0.5 is
50% or more of the wavelength bandwidth that satisfies Normalize(z(λ))≧0.5.
 また本発明の検査用照明装置は、440nm以上670nm以下の波長領域において前記条件(a)~(c)を満たすのが好ましい。 Also, the inspection illumination device of the present invention preferably satisfies the conditions (a) to (c) in the wavelength region of 440 nm or more and 670 nm or less.
 また本発明の色検査システムは、前記した検査用照明装置と、前記検査用照明装置により光を照射されているワークを撮像する撮像装置と、前記撮像装置から出力される画像データを処理して前記ワークの色を測定する画像処理装置とを備えることを特徴とする。 Further, the color inspection system of the present invention comprises the above-described inspection illumination device, an imaging device for capturing an image of the workpiece illuminated by the inspection illumination device, and processing image data output from the imaging device. and an image processing device for measuring the color of the workpiece.
 このように構成した本発明の検査用照明装置によれば、色検査システムにおいて、ワークの分光反射率の情報をR、G、Bに変換する際の原情報(反射率)の欠落を抑制し、色検査における色識別性を向上させることができる。 According to the inspection illumination device of the present invention configured as described above, in a color inspection system, loss of original information (reflectance) when converting spectral reflectance information of a workpiece into R, G, and B is suppressed. , it is possible to improve the color distinguishability in the color inspection.
本実施形態の色検査システムの構成を模式的に示す図。1 is a diagram schematically showing the configuration of a color inspection system according to this embodiment; FIG. シミュレーションで使用した撮像装置の分光感度特性を示すグラフ。The graph which shows the spectral sensitivity characteristic of the imaging device used by simulation. シミュレーションで使用した光源の分光強度分布を示すグラフ。A graph showing the spectral intensity distribution of the light source used in the simulation. シミュレーションで使用したワークの分光放射率輝度分布を示すグラフ。A graph showing the spectral emissivity luminance distribution of the work used in the simulation. シミュレーションの結果を示すグラフ。A graph showing the results of the simulation.
 以下に、本発明の一実施形態に係る色検査システム100について各図を参照しながら説明する。 A color inspection system 100 according to an embodiment of the present invention will be described below with reference to each drawing.
 この色検査システム100は、ワークWの表面に光を照射し、その表面を撮像して得た画像データを処理することでワークWの色を識別し、この識別した色に基づいてワークWの表面を検査するものである。 The color inspection system 100 identifies the color of the work W by irradiating the surface of the work W with light and processing the image data obtained by imaging the surface of the work W, and determines the color of the work W based on the identified color. It inspects the surface.
 具体的にこの色検査システム100は、図1に示すように、製品であるワークWに光を照射する検査用照明装置1と、検査用照明装置1により光を照射されているワークWを撮像する撮像装置2と、撮像装置2から出力される画像データを処理する画像処理装置3とを備える。本実施形態の色検査システム100は、ハーフミラー2Mを使用することにより、検査用照明装置1から出射された光を撮像装置2の光軸2aと同軸上からワークWに照射するように構成された、所謂同軸落射構造をなしている。 Specifically, this color inspection system 100, as shown in FIG. and an image processing device 3 for processing image data output from the imaging device 2 . The color inspection system 100 of this embodiment is configured to irradiate the workpiece W with the light emitted from the inspection illumination device 1 coaxially with the optical axis 2a of the imaging device 2 by using the half mirror 2M. In addition, it has a so-called coaxial epi-illumination structure.
 本実施形態の検査用照明装置1は、筐体1Cの先端に形成された光出射面1sから検査光を出射するスポット型照明装置であり、光源11と、光源11の光出射方向前方に設けられた光学系12とを照明筐体1C内に内蔵している。この光源11は、例えば多数のLEDを平面的に配置して面発光するようにしたものである。LEDは、砲弾型又はチップ型のどちらを用いてもよい。光学系12は、光源11と光出射面1sとの間に設けられ、光源11から出射された光を光出射面1sに導くものであり、例えばコリメートレンズ等を含む。 The inspection illumination device 1 of this embodiment is a spot-type illumination device that emits inspection light from a light emission surface 1s formed at the tip of a housing 1C. and an optical system 12 are built in the illumination housing 1C. The light source 11 is, for example, a multiplicity of LEDs arranged in a plane to emit surface light. Either bullet type or chip type LEDs may be used. The optical system 12 is provided between the light source 11 and the light exit surface 1s, guides the light emitted from the light source 11 to the light exit surface 1s, and includes, for example, a collimating lens.
 撮像装置2は、撮像素子を備えるカメラ本体21と、カメラ本体21に取り付けられてワークWで反射又は散乱した光を結像するカメラレンズ22と、撮像素子の前方に設けられた光学フィルタ23とを備える。 The imaging device 2 includes a camera body 21 having an imaging element, a camera lens 22 attached to the camera body 21 for forming an image of light reflected or scattered by the workpiece W, and an optical filter 23 provided in front of the imaging element. Prepare.
 カメラ本体21は、CCD式又はCMOS式等の撮像素子を備えるカラーカメラである。 The camera body 21 is a color camera equipped with an imaging device such as a CCD type or a CMOS type.
 カメラレンズ22は、例えば光軸2aと主光線とが平行になるように構成されたテレセントリック光学系を有するものであり、光軸方向(撮像方向)に沿って延伸する円筒形状のレンズ筐体2C内に収容された複数のレンズを備えるものである。またレンズ筐体2C内には、検査用照明装置1から出射された光をワークWに向けて反射させるハーフミラー2Mが収容されている。 The camera lens 22 has, for example, a telecentric optical system configured such that the optical axis 2a and the principal ray are parallel, and has a cylindrical lens housing 2C extending along the optical axis direction (imaging direction). It has a plurality of lenses housed therein. A half mirror 2M for reflecting the light emitted from the inspection illumination device 1 toward the work W is accommodated in the lens housing 2C.
 光学フィルタ23は、ワークWからの反射光又は散乱光を入射させ、所望の分光特性を持った光を透過光として取り出すものであり、例えば色フィルタ等である。 The optical filter 23 receives reflected light or scattered light from the workpiece W and extracts light having desired spectral characteristics as transmitted light, and is, for example, a color filter.
 画像処理装置3は、CPUやメモリ等を有したデジタル又はアナログ電気回路で構成されたもの、または一部又は全部にパソコン等の汎用コンピュータを利用するようにしたものである。そして、メモリに所定のプログラムを格納し、そのプログラムにしたがってCPU等を協働動作させることによって、色識別部31及び判定部32としての機能を発揮する。 The image processing device 3 is configured by a digital or analog electric circuit having a CPU, memory, etc., or is configured to use a general-purpose computer such as a personal computer for part or all. A predetermined program is stored in the memory, and the functions of the color identification section 31 and the determination section 32 are exhibited by causing the CPU and the like to cooperate according to the program.
 色識別部31は、撮像装置2で得られた画像データに処理を施し、ワークWの分光反射率の情報をRGB値に変換するように構成されている。判定部32は、色識別部31により出力されるRGB値を所定の判定基準と比較して、ワークWの良否を判定するように構成されている。 The color identification unit 31 is configured to process the image data obtained by the imaging device 2 and convert the spectral reflectance information of the workpiece W into RGB values. The judging section 32 is configured to judge the quality of the workpiece W by comparing the RGB values output by the color identifying section 31 with predetermined judgment criteria.
 しかして本実施形態の色検査システム100は、検査用照明装置1が、撮像装置2の分光感度特性をRGBの順にx(λ)、y(λ)、z(λ)とし、検査用照明装置1の分光分布をS(λ)とし、x(λ)、y(λ)、z(λ)をそれぞれの最大値を1として各々規格化した値をNormalize(x(λ))、Normalize(y(λ))、Normalize(z(λ))とし、S(λ)x(λ)、S(λ)y(λ)、S(λ)z(λ)をそれぞれの最大値を1として各々規格化した値をNormalize(S(λ)x(λ))、Normalize(S(λ)x(λ))、Normalize(S(λ)x(λ))として、下記条件(a)~(c)の全部を満たす分光分布S(λ)を有することを特徴とする(λは波長を示す)。
・条件(a)
 Normalize(x(λ))≧0.5を満たす波長領域において、
 Normalize(S(λ)x(λ))≧0.5を満たす波長の帯域幅が、
 Normalize(x(λ))≧0.5を満たす波長の帯域幅の50%以上である。
・条件(b)
 Normalize(y(λ))≧0.5を満たす波長領域において、
 Normalize(S(λ)y(λ))≧0.5を満たす波長の帯域幅が、
 Normalize(y(λ))≧0.5を満たす波長の帯域幅の50%以上である。
・条件(c)
 Normalize(z(λ))≧0.5を満たす波長領域において、
 Normalize(S(λ)z(λ))≧0.5を満たす波長の帯域幅が、
 Normalize(z(λ))≧0.5を満たす波長の帯域幅の50%以上である。
Thus, in the color inspection system 100 of this embodiment, the inspection illumination device 1 sets the spectral sensitivity characteristics of the imaging device 2 to x(λ), y(λ), and z(λ) in the order of RGB. Let S(λ) be the spectral distribution of 1, and Normalize(x(λ)), Normalize(y (λ)), Normalize (z (λ)), S (λ) x (λ), S (λ) y (λ), S (λ) z (λ) are each standardized with the maximum value of 1 Normalize (S (λ) x (λ)), Normalize (S (λ) x (λ)), Normalize (S (λ) x (λ)), and the following conditions (a) to (c) (λ indicates wavelength).
・Condition (a)
In the wavelength region that satisfies Normalize (x (λ)) ≥ 0.5,
The wavelength bandwidth that satisfies Normalize(S(λ)x(λ))≧0.5 is
50% or more of the wavelength bandwidth that satisfies Normalize(x(λ))≧0.5.
・Condition (b)
In the wavelength region that satisfies Normalize (y (λ)) ≥ 0.5,
The wavelength bandwidth that satisfies Normalize(S(λ)y(λ))≧0.5 is
50% or more of the wavelength bandwidth that satisfies Normalize(y(λ))≧0.5.
・Condition (c)
In the wavelength region that satisfies Normalize (z (λ)) ≥ 0.5,
The wavelength bandwidth that satisfies Normalize(S(λ)z(λ))≧0.5 is
50% or more of the wavelength bandwidth that satisfies Normalize(z(λ))≧0.5.
 ここで、撮像装置2の分光感度特性とは、カメラ本体21、カメラレンズ22及び光学フィルタ23を含む撮像装置2全体としての分光感度特性を意味している。 Here, the spectral sensitivity characteristic of the imaging device 2 means the spectral sensitivity characteristic of the imaging device 2 as a whole including the camera body 21, the camera lens 22 and the optical filter 23.
 また色検査システム100は、少なくとも440nm以上670nm以下の波長領域において上記した条件(a)~(c)を満たす分光分布S(λ)を有するのが望ましい。 Also, the color inspection system 100 desirably has a spectral distribution S(λ) that satisfies the above conditions (a) to (c) at least in the wavelength range of 440 nm or more and 670 nm or less.
 このように構成した本実施形態の検査用照明装置1を用いた色検査システム100によれば、ワークWの分光反射率の情報をR、G、Bに変換する際の原情報(反射率)の欠落を抑制し、色検査における色識別性を向上させることができる。 According to the color inspection system 100 using the inspection illumination device 1 of the present embodiment configured as described above, the original information (reflectance) when converting the spectral reflectance information of the workpiece W into R, G, and B is can be suppressed, and the color distinguishability in color inspection can be improved.
<シミュレーション>
 本発明の実施形態にかかる色検査システム100の効果をシミュレーションにより検証した。
<Simulation>
The effect of the color inspection system 100 according to the embodiment of the present invention was verified by simulation.
(1)データの準備
 シミュレーションでは、撮像装置の感度特性、光源の分光分布及びワークの分光反射特性のデータを準備した。
(1) Preparation of Data In the simulation, data on the sensitivity characteristics of the imaging device, the spectral distribution of the light source, and the spectral reflection characteristics of the workpiece were prepared.
(1―1)撮像装置の感度特性
 撮像装置の分光感度特性を示すデータとして、市販のRGBカラーカメラのセンサ感度のカタログ値を使用した。具体的には、図2に示す分光感度特性(波長λ(nm)vs分光感度特性(a.u.))のものを入力するデータとして使用した。図2では、三原色のR、G、Bにそれぞれ対応する分光感度特性であるx(λ)、y(λ)、z(λ)を、それぞれ最大値を1として規格化した値を示している。
(1-1) Sensitivity Characteristics of Imaging Apparatus Catalog values of sensor sensitivities of commercially available RGB color cameras were used as data indicating the spectral sensitivity characteristics of the imaging apparatus. Specifically, the spectral sensitivity characteristics (wavelength λ (nm) vs. spectral sensitivity characteristics (a.u.)) shown in FIG. 2 were used as input data. FIG. 2 shows the normalized values of x(λ), y(λ), and z(λ), which are the spectral sensitivity characteristics corresponding to the three primary colors R, G, and B, respectively, with the maximum value being 1. .
(1-2)光源の分光分布
 ワークに光を照射する光源の分光分布S(λ)を示すデータとしては、図3に示すものを使用した。ここでは帯域(%)が異なる10個(100%、80%、75%、60%、50%、30%、20%、13%、5%、1%)の光源の分光分布のデータを準備した。また、いずれの帯域の光源もピーク波長が互いに同じ(具体的には、R:635.5nm, G:527.5nm, B:453nm)になるようにした。
(1-2) Spectral Distribution of Light Source As data showing the spectral distribution S(λ) of the light source that irradiates the workpiece with light, the data shown in FIG. 3 was used. Here, prepare spectral distribution data for 10 light sources (100%, 80%, 75%, 60%, 50%, 30%, 20%, 13%, 5%, 1%) with different bandwidths (%). bottom. In addition, the peak wavelengths of the light sources for all bands were the same (specifically, R: 635.5 nm, G: 527.5 nm, B: 453 nm).
 ここで、各光源の「帯域(%)」は、下の(i)~(iii)に示す帯域幅の割合のうち、最小となる帯域幅の割合としている。
(i)Normalize(x(λ))≧0.5を満たす波長領域において、Normalize(x(λ))≧0.5を満たす波長の帯域幅に対する、Normalize(S(λ)x(λ))≧0.5を満たす波長の帯域幅の割合。
(ii)Normalize(y(λ))≧0.5を満たす波長領域において、Normalize(y(λ))≧0.5を満たす波長の帯域幅に対する、Normalize(S(λ)y(λ))≧0.5を満たす波長の帯域幅の割合。
(iii)Normalize(z(λ))≧0.5を満たす波長領域において、Normalize(z(λ))≧0.5を満たす波長の帯域幅に対する、Normalize(S(λ)z(λ))≧0.5を満たす波長の帯域幅の割合。
 またいずれの光源も、RGBに対する各帯域幅がおよそ同程度の値となるようにその分光分布を設定した。
Here, the "bandwidth (%)" of each light source is the minimum bandwidth ratio among the bandwidth ratios shown in (i) to (iii) below.
(i) Normalize (S(λ)x(λ)) for a wavelength bandwidth that satisfies Normalize(x(λ))≧0.5 in a wavelength region that satisfies Normalize(x(λ))≧0.5 The fraction of the wavelength bandwidth that satisfies ≧0.5.
(ii) Normalize(S(λ)y(λ)) for a wavelength band that satisfies Normalize(y(λ))≧0.5 in a wavelength region that satisfies Normalize(y(λ))≧0.5 The fraction of the wavelength bandwidth that satisfies ≧0.5.
(iii) Normalize (S (λ) z (λ)) for a wavelength band that satisfies Normalize (z (λ)) ≥ 0.5 in a wavelength region that satisfies Normalize (z (λ)) ≥ 0.5 The fraction of the wavelength bandwidth that satisfies ≧0.5.
In addition, the spectral distribution of each light source was set so that each band width with respect to RGB has approximately the same value.
(1-3)ワークの分光反射特性
 ワークの分光反射特性データとしては、演色性の評価に使用される色票の分光放射輝度率データを使用した。具体的には、図4に示すように、「JISZ8726:光源の演色性評価方法」で定められているR1~R15の評価試験色の分光放射輝度率データを使用した。
(1-3) Spectral Reflection Characteristics of Work As the spectral reflection characteristics data of the work, the spectral radiance factor data of the color chart used for evaluating the color rendering properties was used. Specifically, as shown in FIG. 4, spectral radiance factor data of evaluation test colors R1 to R15 defined in "JISZ8726: Color rendering property evaluation method of light source" was used.
(2)色差ΔEab*の算出
 次に、準備したデータを用いて、各ワーク(R1~R15)に対して、光源の帯域(%)を異なるものに変えて光を照射する場合に、色差ΔEab*がどのように変化するかを理論計算により算出した。ここでいう色差ΔEab*とは、CIE1976により定められたものである。具体的には、CIE1976で定めるL色空間において、2つの測色値(L 、a 、b )、(L 、a 、b )を用いて、以下の式により示されるものである。
  ΔEab ={(L -L +(a -a +(b -b 1/2
(2) Calculation of color difference ΔE ab* Next, using the prepared data, when irradiating each workpiece (R1 to R15) with light by changing the band (%) of the light source, the color difference It was calculated by theoretical calculation how ΔE ab * changes. The color difference ΔE ab* referred to here is defined by CIE1976. Specifically, in the L * a * b * color space defined by CIE1976, two colorimetric values ( L1 * , a1 * , b1 * ), ( L2 * , a2 * , b2 * ) is shown by the following formula.
ΔE ab * = {(L 1 * - L 2 * ) 2 + (a 1 * - a 2 * ) 2 + (b 1 * - b 2 * ) 2 } 1/2
(3)効果の検証
 理論計算により算出した各ワークに対する光源の帯域毎の色差ΔEab*を図5に示す。ここでは、帯域が100%の光源を使用したときの色を、基準となる色(色差=0)としている。また縦軸の値としては、図5から分かるように、帯域が50%以上である光源を使用した場合は、いずれのワークも、帯域が100%の光源を使用したときの色を基準として色差ΔEab が20以内に収まっていることを確認できた。これにより、帯域が50%以上である光源を使用することで、ワークの分光反射率の情報をR,G,Bに変換する際に原情報(反射率)の欠落を抑制でき、色識別性を向上できることを確認できた。
(3) Verification of Effect FIG. 5 shows the color difference ΔE ab* for each band of the light source for each workpiece calculated by theoretical calculation. Here, the color when a light source with a band of 100% is used is used as a reference color (color difference=0). Also, as can be seen from FIG. 5, the values on the vertical axis show the color difference for any workpiece when using a light source with a bandwidth of 50% or more, based on the color when a light source with a bandwidth of 100% is used. It was confirmed that ΔE ab * was within 20. As a result, by using a light source with a bandwidth of 50% or more, loss of original information (reflectance) can be suppressed when information on the spectral reflectance of a workpiece is converted into R, G, and B, and color identification is improved. can be improved.
<その他の実施形態>
 なお、本発明は前記実施形態に限られるものではない。
<Other embodiments>
It should be noted that the present invention is not limited to the above embodiments.
 前記実施形態の検査用照明装置1は所謂スポット型照明装置であったがこれに限らない。他の実施形態の検査用照明装置1は、例えば発光面がリング状に形成されたリング型照明であってもよく、その他の形式のものであってもよい。上記した条件(a)~(c)を満たす分光分布S(λ)の光を照射するように構成されていれば、どのような形状であってもよい。 Although the inspection illumination device 1 of the above embodiment is a so-called spot illumination device, it is not limited to this. The inspection illumination device 1 of another embodiment may be, for example, a ring-type illumination device having a ring-shaped light-emitting surface, or may be of another type. It may have any shape as long as it is configured to irradiate light having a spectral distribution S(λ) that satisfies the above conditions (a) to (c).
 また前記実施形態の色検査システム100は、検査用照明装置1から射出される光と、ワークWで反射されて撮像装置2で受光される光が同軸となるように構成されていたが、これに限らない。例えば、ワークWの表面に対して斜めから検査用照明装置1により光を照射し、その反射光の光路上に撮像装置2を設けるようにしてもよい。 In the color inspection system 100 of the above embodiment, the light emitted from the inspection illumination device 1 and the light reflected by the workpiece W and received by the imaging device 2 are coaxial. is not limited to For example, the surface of the workpiece W may be obliquely irradiated with light from the inspection illumination device 1, and the imaging device 2 may be provided on the optical path of the reflected light.
 また前記実施形態では、撮像装置2はカメラ本体21、カメラレンズ22及び光学フィルタ23の全てを備えていたがこれに限らない。他の実施形態では撮像装置2は光学フィルタ23を備えていなくてもよい。さらに前記実施形態では、撮像装置2と画像処理装置3とが別々に設けられていたが、これらが一体となっていてもよい。 Also, in the above-described embodiment, the imaging device 2 includes all of the camera body 21, the camera lens 22, and the optical filter 23, but the present invention is not limited to this. In other embodiments, the imaging device 2 may not have the optical filter 23 . Furthermore, in the above embodiment, the imaging device 2 and the image processing device 3 are provided separately, but they may be integrated.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications are possible without departing from the spirit of the present invention.
 本発明の検査用照明装置によれば、ワークの分光反射率の情報をR、G、Bに変換する際の原情報(反射率)の欠落を抑制し、色検査における色識別性を向上させることができる。 According to the inspection illumination device of the present invention, loss of original information (reflectance) when converting spectral reflectance information of a workpiece into R, G, and B is suppressed, and color distinguishability in color inspection is improved. be able to.
100 ・・・色検査システム
1   ・・・検査用照明装置
2   ・・・撮像装置
2a  ・・・光軸
3   ・・・画像処理装置
31  ・・・色識別部
32  ・・・判定部
W   ・・・ワーク

 
100 ... Color inspection system 1 ... Inspection illumination device 2 ... Imaging device 2a ... Optical axis 3 ... Image processing device 31 ... Color identification unit 32 ... Judging unit W ... ·work

Claims (3)

  1.  光が照射されたワークを撮像装置により撮像して前記ワークの色を測定する色検査システムに用いられ、前記ワークに光を照射する検査用照明装置であって、
     前記撮像装置の分光感度特性を、RGBの順にx(λ)、y(λ)、z(λ)とし、
     前記検査用照明装置の分光分布をS(λ)とし、
     x(λ)、y(λ)、z(λ)をそれぞれの最大値を1として各々規格化した値をNormalize(x(λ))、Normalize(y(λ))、Normalize(z(λ))とし、
     S(λ)x(λ)、S(λ)y(λ)、S(λ)z(λ)をそれぞれの最大値を1として各々規格化した値をNormalize(S(λ)x(λ))、Normalize(S(λ)x(λ))、Normalize(S(λ)x(λ))として、
     下記条件(a)~(c)を満たす分光分布S(λ)を有する検査用照明装置。
    (a)
     Normalize(x(λ))≧0.5を満たす波長領域において、
     Normalize(S(λ)x(λ))≧0.5を満たす波長の帯域幅が、
     Normalize(x(λ))≧0.5を満たす波長の帯域幅の50%以上である。
    (b)
     Normalize(y(λ))≧0.5を満たす波長領域において、
     Normalize(S(λ)y(λ))≧0.5を満たす波長の帯域幅が、
     Normalize(y(λ))≧0.5を満たす波長の帯域幅の50%以上である。
    (c)
     Normalize(z(λ))≧0.5を満たす波長領域において、
     Normalize(S(λ)z(λ))≧0.5を満たす波長の帯域幅が、
     Normalize(z(λ))≧0.5を満たす波長の帯域幅の50%以上である。
    An inspection illumination device used in a color inspection system for measuring the color of the work by imaging a work irradiated with light with an imaging device, and for irradiating the work with light,
    Let the spectral sensitivity characteristics of the imaging device be x (λ), y (λ), and z (λ) in the order of RGB,
    Let the spectral distribution of the inspection illumination device be S(λ),
    Normalize (x(λ)), Normalize(y(λ)), Normalize(z(λ) )year,
    Normalize (S(λ)x(λ) ), Normalize(S(λ)x(λ)), Normalize(S(λ)x(λ)),
    An inspection illumination device having a spectral distribution S(λ) that satisfies the following conditions (a) to (c).
    (a)
    In the wavelength region that satisfies Normalize (x (λ)) ≥ 0.5,
    The wavelength bandwidth that satisfies Normalize(S(λ)x(λ))≧0.5 is
    50% or more of the wavelength bandwidth that satisfies Normalize(x(λ))≧0.5.
    (b)
    In the wavelength region that satisfies Normalize (y (λ)) ≥ 0.5,
    The wavelength bandwidth that satisfies Normalize(S(λ)y(λ))≧0.5 is
    50% or more of the wavelength bandwidth that satisfies Normalize(y(λ))≧0.5.
    (c)
    In the wavelength region that satisfies Normalize (z (λ)) ≥ 0.5,
    The wavelength bandwidth that satisfies Normalize(S(λ)z(λ))≧0.5 is
    50% or more of the wavelength bandwidth that satisfies Normalize(z(λ))≧0.5.
  2.  440nm以上670nm以下の波長領域において前記条件(a)~(c)を満たす請求項1に記載の検査用照明装置。 The inspection illumination device according to claim 1, which satisfies the conditions (a) to (c) in a wavelength range of 440 nm or more and 670 nm or less.
  3.  検査光をワークに照射する請求項1に記載の検査用照明装置と、
     前記検査用照明装置により光を照射されているワークを撮像する撮像装置と、
     前記撮像装置から出力される画像データを処理して前記ワークの色を測定する画像処理装置とを備える色検査システム。
    The inspection illumination device according to claim 1, which irradiates the workpiece with inspection light;
    an imaging device that captures an image of a workpiece illuminated by light from the inspection illumination device;
    and an image processing device that processes image data output from the imaging device and measures the color of the workpiece.
PCT/JP2022/043414 2021-12-23 2022-11-24 Illumination device for inspection, and color inspection system WO2023120017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209858 2021-12-23
JP2021-209858 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120017A1 true WO2023120017A1 (en) 2023-06-29

Family

ID=86902277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043414 WO2023120017A1 (en) 2021-12-23 2022-11-24 Illumination device for inspection, and color inspection system

Country Status (1)

Country Link
WO (1) WO2023120017A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229869A (en) * 1996-02-28 1997-09-05 Tomoe Corp Method and system apparatus for detecting internal corrosion inside tubes
JP2006090897A (en) * 2004-09-24 2006-04-06 National Univ Corp Shizuoka Univ Spectral reflectance estimating system using two kinds of light sources
JP2007212364A (en) * 2006-02-10 2007-08-23 Riyuukoku Univ Method and device for determining surface abnormality
JP2010517460A (en) * 2007-01-29 2010-05-20 ジョンイル パク Multispectral image acquisition method and apparatus
JP2012026867A (en) * 2010-07-23 2012-02-09 Nikon Corp Measuring apparatus
JP2012143348A (en) * 2011-01-11 2012-08-02 Fujifilm Corp Spectrometric system and spectrometry
JP2013210227A (en) * 2012-03-30 2013-10-10 Ushio Inc Visual inspection device for light transmitting molding
JP2017191116A (en) * 2011-05-10 2017-10-19 国立大学法人豊橋技術科学大学 Inspection apparatus and inspection method using functional light source, and functional light source and design method therefor
CN111750992A (en) * 2020-06-04 2020-10-09 武汉纺织大学 Spectrum estimation method based on self-adaptive weighted linear regression
JP6927210B2 (en) * 2016-06-27 2021-08-25 ソニーグループ株式会社 Observation device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229869A (en) * 1996-02-28 1997-09-05 Tomoe Corp Method and system apparatus for detecting internal corrosion inside tubes
JP2006090897A (en) * 2004-09-24 2006-04-06 National Univ Corp Shizuoka Univ Spectral reflectance estimating system using two kinds of light sources
JP2007212364A (en) * 2006-02-10 2007-08-23 Riyuukoku Univ Method and device for determining surface abnormality
JP2010517460A (en) * 2007-01-29 2010-05-20 ジョンイル パク Multispectral image acquisition method and apparatus
JP2012026867A (en) * 2010-07-23 2012-02-09 Nikon Corp Measuring apparatus
JP2012143348A (en) * 2011-01-11 2012-08-02 Fujifilm Corp Spectrometric system and spectrometry
JP2017191116A (en) * 2011-05-10 2017-10-19 国立大学法人豊橋技術科学大学 Inspection apparatus and inspection method using functional light source, and functional light source and design method therefor
JP2013210227A (en) * 2012-03-30 2013-10-10 Ushio Inc Visual inspection device for light transmitting molding
JP6927210B2 (en) * 2016-06-27 2021-08-25 ソニーグループ株式会社 Observation device
CN111750992A (en) * 2020-06-04 2020-10-09 武汉纺织大学 Spectrum estimation method based on self-adaptive weighted linear regression

Similar Documents

Publication Publication Date Title
US10732102B2 (en) Optical test apparatus and optical test method
US7466417B2 (en) Process for the colour measurement of printed samples including brighteners
US8288739B2 (en) Method and apparatus for measuring optical property of fluorescent sample
US5982493A (en) Apparatus and method for acquiring multiple images
US20080024868A1 (en) Illuminating Unit and Imaging Apparatus
JP4091079B2 (en) Multispectral imaging device, multispectral illumination device
JP2021081441A5 (en)
KR20090056858A (en) Apparatus for measuring optical property
WO2020195136A1 (en) Inspection device and inspection method
US6862090B2 (en) Coaxial illumination system
JP2002013981A (en) Photometer
WO2023120017A1 (en) Illumination device for inspection, and color inspection system
TWI719610B (en) Method of spectral analysing with a color camera
JP2007049127A (en) Device and method for inspecting surface of wafer
JP2008089599A (en) Multi-spectral imaging device, multi-spectral lighting system
JP2015178995A (en) Tone calibration device, imaging device and tone inspection device
WO2021145048A1 (en) Inspection apparatus and inspection method
JP2014215257A (en) Haze value measuring device
JP6984651B2 (en) A method for measuring the spectral radiation characteristics of a fluorescent whitening sample and a device for measuring the spectral radiation characteristics of a fluorescent whitening sample.
WO2020003673A1 (en) Spectral sensitivity measurement method for image sensors, inspection method for spectral sensitivity measurement devices, and spectral sensitivity measurement device
WO2018062412A1 (en) Image acquisition system and image acquisition method
JP6720429B1 (en) Inspection device and inspection method
CN210572012U (en) Coaxial light source device for industrial detection
JP6280429B2 (en) Color measuring apparatus and method
CN117309146A (en) Colorimeter and colorimetry method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569196

Country of ref document: JP