WO2023119926A1 - アルミニウム押出線 - Google Patents

アルミニウム押出線 Download PDF

Info

Publication number
WO2023119926A1
WO2023119926A1 PCT/JP2022/041760 JP2022041760W WO2023119926A1 WO 2023119926 A1 WO2023119926 A1 WO 2023119926A1 JP 2022041760 W JP2022041760 W JP 2022041760W WO 2023119926 A1 WO2023119926 A1 WO 2023119926A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
section
extruded wire
aluminum
region
Prior art date
Application number
PCT/JP2022/041760
Other languages
English (en)
French (fr)
Inventor
浩介 星河
章 永田
侑治 久保田
奈々 荒井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280083440.0A priority Critical patent/CN118401688A/zh
Priority to EP22910645.5A priority patent/EP4455324A1/en
Publication of WO2023119926A1 publication Critical patent/WO2023119926A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present disclosure relates to aluminum extruded wires.
  • Non-Patent Document 1 discloses that an extrusion temperature of 400 to 500° C. and a container temperature of 360 to 460° C. are suitable for extrusion molding of an AA1100 series aluminum alloy.
  • Patent Document 1 relates to a high-purity aluminum sputtering target, and describes that extruded products having a crystal grain size of 100 ⁇ m or less can be obtained by extruding high-purity aluminum at a low temperature of 300° C. or less.
  • Patent Document 2 discloses that the extrusion temperature is 300 to 450.degree.
  • Patent Document 3 relates to a method for manufacturing a rod for aluminum wire, and aluminum containing Ni: 40 to 60 ppm and Si: 5 to 10 ppm can be extruded at a billet temperature of 360 to 380 ° C. and a container temperature of 380 to 420 ° C. disclosed.
  • strength is determined by precipitation strengthening and solid-solution strengthening by added elements, so by keeping the chemical composition constant, the strength can be made constant over the entire length of the aluminum alloy extruded wire.
  • Electric wires such as overhead power lines, superconducting stabilizers, and aluminum extruded wires used for thin wire processing are, for example, high-purity aluminum of 4N or more, with a specific chemical component of 1000 mass ppm or less intentionally added. Aluminum material is used. Such an aluminum extruded wire tends to have low strength due to the small amount of additive elements. In addition, the strength cannot be controlled by adding elements, and the strength may fluctuate along the length direction of the aluminum extruded wire.
  • the extruded wire extruded immediately after the start of extrusion has a relatively high strength, and then the strength gradually decreases, and the extruded wire formed at the end of extrusion (extrusion end) (sometimes referred to as the "line tail") sometimes had a significant drop in intensity.
  • an object of one embodiment of the present invention is to provide an aluminum extruded wire made of aluminum with a small amount of alloying elements added, and having high strength and high strength uniformity in the longitudinal direction. do.
  • Aspect 1 of the present invention is Fe, Cu, Ti, Mn, Mg, Cr, B, Ga, V and Zn with a total content of 0.01% by mass or less; and one or more selected from the group consisting of Ni, Y and Si,
  • the balance consists of Al and unavoidable impurities, In a cross section perpendicular to the longitudinal direction of the extrusion line, both the central measurement area including the center point of the cross section and the peripheral measurement area contacting the outer periphery of the cross section, the average grain size measured by backscattered electron diffraction is Aluminum extruded wire, 15-50 ⁇ m.
  • Aspect 2 of the present invention is An aluminum extruded wire according to aspect 1, satisfying the following formula (1).
  • Aspect 3 of the present invention is The aluminum extrusion according to aspect 1 or 2, wherein in both the central measurement region and the peripheral measurement region, the area ratio of the region having a local misorientation in the crystal grain of 0.2° or more is 15 to 30%, respectively. is a line.
  • Aspect 4 of the present invention is An aluminum extruded wire according to any one of aspects 1 to 3, satisfying the following formula (2).
  • Aspect 5 of the present invention is The aluminum extruded wire according to any one of aspects 1 to 4, which satisfies the following formula (3) when the local misorientation in the crystal grain in the cross section is measured by backscattered electron diffraction.
  • Aspect 6 of the present invention is The aluminum extruded wire according to any one of aspects 1 to 5, wherein the total content of one or more selected from the group consisting of Ni, Y and Si is 10 to 2000 mass ppm.
  • Aspect 7 of the present invention is 7.
  • Aspect 8 of the present invention is The aluminum extruded wire according to any one of aspects 1 to 7, which is used for aluminum wiring of semiconductor elements.
  • Aspect 9 of the present invention is The aluminum extruded wire according to any one of aspects 1 to 8, which is for a superconducting stabilizer used at 20K or less.
  • the present inventors focused on the fact that an aluminum extruded wire with a small amount of alloying elements added tends to have a low strength, and that the strength tends to vary in the length direction of the extruded wire (strength non-uniformity). did research. As a result, in such an aluminum extruded wire, precipitation strengthening and solid-solution strengthening are difficult to occur due to the small amount of alloying elements added, and the grain size is a dominant factor in the strength of the aluminum extruded wire. I found out.
  • the strength of the aluminum extruded wire can be appropriately controlled, as a result, the strength variation in the length direction can be suppressed, and the strength uniformity in the length direction can be improved.
  • the precipitation effect and grain boundary strengthening which are general strengthening mechanisms, and work hardening act during extrusion, and the extruded wires have high strength. become Therefore, the influence of the change in strength due to the crystal grain size is small. Therefore, according to conventional knowledge, the crystal grain size is not considered when examining the strength uniformity in the length direction of the extruded wire.
  • [Aluminum extruded wire] 1. Chemical component composition
  • the chemical components of the aluminum extruded wire according to the embodiment are: Fe, Cu, Ti, Mn, Mg, Cr, B, Ga, V and Zn with a total content of 0.01% by mass or less; and one or more selected from the group consisting of Ni, Y and Si,
  • the balance consists of Al and unavoidable impurities.
  • the unavoidable impurities mean trace impurities contained in aluminum raw materials (primary ingots, etc.).
  • the intentionally added components are Ni, Y and Si. These elements are fine precipitation strengthening elements.
  • the chemical components excluding this intentionally added component contain Fe, Cu, Ti, Mn, Mg, Cr, B, Ga, V and Zn in a total content of 0.01% by mass or less, and the balance is Al and unavoidable Impurities. In other words, it is high-purity aluminum of 4N (99.99% by mass) or more when intentionally added components are excluded.
  • the total content of one or more intentionally added components selected from the group consisting of Ni, Y and Si is preferably 10 to 2000 mass ppm, more preferably 30 to 300 mass ppm.
  • Each intentionally added component is preferably contained in the following range in order to exhibit the effect of fine precipitation strengthening.
  • the Ni content can be 10 to 1000 ppm by weight, preferably 30 to 300 ppm by weight, particularly preferably 30 to 100 ppm by weight.
  • the Y content can be 10 to 2000 ppm by weight, can be 30 to 1000 ppm by weight, and is particularly preferably 50 to 300 ppm by weight.
  • Si is included as an intentionally added component, the Si content can be 10 to 100 ppm by weight.
  • high-purity aluminum base material a material obtained by adding a predetermined additive component to high-purity aluminum (4N or higher) is sometimes referred to as a "high-purity aluminum base material".
  • Crystal structure The aluminum extruded wire according to the embodiment has the following crystal structure.
  • the aluminum extruded wire according to the embodiment has a backscattered electron diffraction (EBSD: Electron The average grain size measured by Back Scatter Diffraction is 15 to 50 ⁇ m, respectively.
  • EBSD backscattered electron diffraction
  • a preferable range of the average crystal grain size is 27.5 to 50 ⁇ m, a more preferable range is 28 to 46 ⁇ m, and a particularly preferable range is 29 to 40 ⁇ m.
  • the present inventors have discovered for the first time that an extruded wire having such a crystal grain size is an aluminum extruded wire made of aluminum with a small amount of alloying elements added and has high strength uniformity in the length direction. Found it.
  • the center point of the cross section perpendicular to the longitudinal direction is the center point of the circle if the outer circumference of the cross section is circular, and the intersection of the major and minor axes if the cross section is elliptical.
  • the center point of the cross section is the intersection of diagonals if they intersect at one point, or the center of the circumscribed circle of the polygon if diagonals do not intersect at one point.
  • the central measurement area is preferably positioned so that the intersection of the diagonal lines of the central measurement area overlaps the center point of the cross section.
  • the central measurement area is, for example, a rectangular area of 0.46 mm ⁇ 0.61 mm.
  • the diameter of the aluminum extruded wire is small, the dimension of the central measurement area may be reduced.
  • the central measurement area shall be a rectangular area of 0.23 mm x 0.31 mm, and when it is larger than 1.6 mm, it may be a rectangular area of 0.46 mm x 0.61 mm. good.
  • the peripheral measurement area is preferably positioned so that both ends of one of two opposing long sides of the peripheral measurement area are in contact with the outer circumference of the cross section.
  • the peripheral measurement area is, for example, a rectangular area of 0.46 mm ⁇ 0.61 mm.
  • the dimension of the peripheral measurement area may be reduced. If the diameter of the aluminum extruded wire is 1.6 mm or less, the peripheral measurement area is a rectangular area of 0.23 mm x 0.31 mm, and if it is larger than 1.6 mm, a rectangular area of 0.46 mm x 0.61 mm good.
  • the outer peripheral shape may be defined by excluding the sagging portion.
  • the presence or absence of sag is judged to be sag when the peripheral measurement area is not evenly focused in observation with a scanning electron microscope (SEM), which will be described later.
  • the EBSD method is widely used as a technique for analyzing the orientation distribution of crystal texture.
  • the EBSD method is typically performed using a scanning electron microscope (SEM) equipped with a backscattered electron diffraction detector.
  • SEM scanning electron microscope
  • a backscattered electron diffraction detector for example, Symmetry manufactured by Oxford Instruments Co., Ltd. can be used.
  • An observation sample of a predetermined length (for example, 25 mm in length) is cut from the extruded wire by cutting it along a cross section orthogonal to the longitudinal direction of the extruded wire.
  • the cut observation sample is embedded in resin, and the cross section is polished and etched. After that, the cross section is scanned with an electron beam, and the diffraction pattern of the backscattered electrons is read by a device.
  • the diffraction pattern of backscattered electrons read into the apparatus is input into a computer, and the sample surface is scanned while performing crystal orientation analysis using analysis software.
  • the crystal is indexed at each measurement point, and the crystal orientation at each measurement point is obtained.
  • a continuous region having the same crystal orientation is defined as one crystal grain, and a mapping image, that is, a grain map, regarding the distribution of crystal grains is obtained.
  • a mapping image that is, a grain map, regarding the distribution of crystal grains is obtained.
  • the angle difference between the crystal orientations of adjacent crystals is 10° or less, the crystal orientation is the same. Accordingly, an image of the crystal grain is recorded in the computer based on the crystal orientation calculated at each measurement point.
  • the average of the equivalent circle diameters is determined by the area weighted average, and this is defined as the "average crystal grain size”.
  • the aluminum extruded wire according to the embodiment preferably satisfies the following formula (1).
  • the strength in the length direction of the extruded wire is increased. It can be made more uniform. Although the reason why such an effect is obtained is not clear, it is presumed to be the following mechanism.
  • the obtained aluminum extruded wire there is a large difference in grain size between the central measurement area and the peripheral measurement area in the cross section perpendicular to the longitudinal direction.
  • the difference in grain size is remarkable in the tail of the extruded line.
  • the strength of an aluminum extruded wire with a small amount of alloying elements added is greatly affected by the crystal grain size, so it is considered that the strength uniformity in the length direction of the extruded wire decreases.
  • the difference in aluminum flow rate between the central portion and the peripheral portion can be reduced.
  • the variation in strength along the length of the extruded wire can be greatly suppressed. That is, by improving the uniformity of grain size in the cross section orthogonal to the longitudinal direction of the extruded wire, the uniformity of strength in the longitudinal direction of the extruded wire can be improved.
  • the container temperature of the extruder during extrusion molding to 20 to 80°C lower than the billet temperature, the difference in aluminum flow rate between the central portion and the peripheral portion can be reduced. .
  • the area ratio of the region having a local misorientation of 0.2° or more in the crystal grain is preferably 15% to 30%, and a more preferable range is 15% for each. to 25%, and a more preferred range is 15 to 20%, respectively.
  • KAM Kernel Average Misorientation
  • a sample prepared by the same procedure as the sample for cross-sectional measurement by the EBSD method described above is measured using the same apparatus.
  • the measurement step is 0.2 ⁇ m/pix.
  • the obtained diffraction pattern of the backscattered electrons was analyzed with the analysis software AZtec, and the cumulative frequency of regions with a local misorientation of 0.2° or more (high local misorientation regions) was calculated and used as the area of the high strain region.
  • the area of the high strain region is divided by the area of the measurement region (eg, 0.28 mm 2 ) to obtain the area ratio of the high strain region.
  • KAM is 10° or more, it is recognized as a crystal grain boundary and excluded from the calculation of the area ratio.
  • the extruded wire preferably further satisfies the following formula (2).
  • Formula (2) is the area ratio Rc of the region (high strain region) with a local misorientation of 0.2° or more in the central measurement region in the cross section, and the region (high strain region) with a local misorientation of 0.2° or more in the peripheral measurement region region) have similar values to the area ratio Rp.
  • the high strain regions can contribute to increased strength due to work hardening. Therefore, since the area ratio of the high-strain region is relatively uniform within the cross section, the strength within the cross section becomes relatively uniform, and the strength uniformity over the entire extruded wire can be further improved.
  • the container temperature of the extruder during extrusion molding is set to 20 to 80°C lower than the billet temperature, the difference in aluminum flow rate between the central portion and the peripheral portion can be reduced.
  • the standard deviation of each KAM is small, and the difference (absolute value) of each standard deviation is also small.
  • Expression (3) variations in KAM between the central measurement area and the peripheral measurement area of the cross section are reduced. Since the area ratio of the high strain region is relatively uniform within the cross section, the strength within the cross section is relatively uniform, and the strength uniformity over the entire extruded wire can be further improved.
  • the container temperature of the extruder during extrusion molding is set to 20 to 80°C lower than the billet temperature, the difference in aluminum flow rate between the central portion and the peripheral portion can be reduced.
  • the aluminum extruded wire can have any size and shape depending on the application, and may have a diameter of 1 to 10 mm, for example.
  • the aluminum extruded wire according to the embodiment is made of a high-purity aluminum base material, it is suitable for aluminum wiring of semiconductor devices, superconducting stabilizer used at 20K or less, and the like. In addition, it is preferable to control the kind and content of the intentionally added component added to the aluminum extruded wire according to the application.
  • a predetermined amount of an intentionally added component (one or more of Ni, Y, and Si) is added to a raw material of high-purity aluminum (for example, Al with a purity of 99.99% (4N) or higher), and stirred, dissolved, and held. . After that, the billet is cast by a standard method and further processed to produce an extrusion billet of desired dimensions.
  • an intentionally added component one or more of Ni, Y, and Si
  • a raw material of high-purity aluminum for example, Al with a purity of 99.99% (4N) or higher
  • billet temperature After heating the billet for extrusion to the billet preheating temperature (referred to as “billet temperature"), extrusion molding is performed with an extrusion device.
  • the billet temperature may be within the range of billet temperatures used in general extrusion molding.
  • the heating temperature of the container of the extrusion device (this is referred to as the "container temperature”) is made 20 to 80°C lower than the billet temperature. That is, the billet temperature BL and the container temperature C are set such that (billet temperature BL-container temperature C) is 20 to 80.degree.
  • the average crystal grain size of the central measurement region and the peripheral measurement region of the cross section perpendicular to the longitudinal direction of the extrusion line can be 15 to 50 ⁇ m
  • the difference in average crystal grain size Dp can be 20 ⁇ m or less.
  • the area ratio of the high strain region in the central measurement region and the peripheral measurement region of the cross section can be 15 to 30%.
  • a difference ⁇ R between the area ratio Rc of the high strain region in the measurement region and the area ratio Rp of the high strain region in the peripheral measurement region can be set to 5% or less.
  • the difference in the standard deviation of the local misorientation (KAM) between the central measurement area and the peripheral measurement area of the cross section can be 0.02 or less.
  • a more preferable range of (billet temperature BL-container temperature C) is 25 to 45°C, and a more preferable range is 30 to 40°C.
  • the container temperature was kept at about the same level as the billet temperature (normally, the temperature difference was within 10°C).
  • the container temperature is set 20° C. to 80° C. lower than the billet temperature, thereby causing moderate strain in the crystal grains of the obtained extruded wire. Thereby, an extruded wire having a desired grain size can be obtained.
  • a sample for measurement of aluminum extruded wire was created according to the following procedure.
  • High-purity aluminum (purity 99.999% Al) obtained by a three-layer electrolysis method was used as an Al raw material.
  • a high-purity aluminum raw material is charged in a graphite crucible, Ni is added as an intentional additive component, stirred and degassed (700 ° C. for 2 hours while being held in vacuum), and then a graphite mold with an inner diameter of 100 mm (inner diameter 100 mm x height inside A billet was cast at 740° C. using a 230 mm dimension.
  • the obtained billet was processed to prepare an extrusion billet having a size of ⁇ 70 mm and a length of 180 mm. Thereafter, the billet for extrusion was extruded to obtain an extruded wire of ⁇ 2 mm ⁇ about 50 m in length.
  • Extruded wires of Examples 1-3 and Comparative Examples 1-4 were produced by controlling the filling.
  • the billet temperature BL during extrusion molding was set to 350 to 390° C., which is a general billet temperature during extrusion molding of high-purity aluminum materials.
  • the content of 12 elements was measured by solid-state emission spectrometry.
  • Ni was 50 mass ppm
  • the total content of Si, Fe, Cu, Ti, Mn, Mg, Cr, B, Ga, V and Zn was 18 mass ppm.
  • the 2m at the start of extrusion and the 2m at the end (tail) of the extrusion line are removed as unsteady parts. After that, samples were cut out from the end of the extruded wire on the extrusion start side and the end on the extrusion end side (tail side). First, from each end, a metal wire (200 mm) for creating a tensile test piece (sample) for tensile strength testing is cut out, and then a sample (25 mm) for crystal grain size measurement is cut from the end of the extrusion. cut out.
  • the crystal structure was observed by the backscattered electron diffraction image method (EBSD method).
  • EBSD method backscattered electron diffraction image method
  • a sample having a length of 25 mm was cut from the end of the extruded wire at a cross section orthogonal to the longitudinal direction of the extruded wire.
  • the cut sample was embedded in resin and the cross section was polished and etched. After that, the cross section was scanned with an electron beam, and the diffraction pattern of backscattered electrons was read with an apparatus.
  • the cross section of each sample was measured by the EBSD method according to the procedure described in the embodiment, and the average crystal grain size of the crystal grains was determined.
  • JSM-7900F manufactured by JEOL Ltd. was used as a scanning electron microscope, and Symmetry manufactured by Oxford Instruments Co., Ltd. was used as a backscattered electron diffraction detector.
  • Table 2 lists the average grain size of the central measurement area and the peripheral measurement area of the cross section for each of Examples 1 to 3 and Comparative Examples 1 to 4. In addition, it was evaluated whether or not the average crystal grain size satisfies the requirements of the embodiment (average crystal grain size of 15 to 50 ⁇ m). Furthermore, the difference (absolute value) ⁇ D between the average crystal grain size Dc in the central measurement region and the average crystal grain size Dp in the peripheral measurement region was calculated and shown in Table 2. In addition, it was evaluated whether or not ⁇ D satisfies the preferred range ( ⁇ D ⁇ 20 ⁇ m) of the embodiment.
  • the local misorientation (KAM) in the crystal grain in the cross section of each sample was measured, and the area ratio of the region (high strain region) where the KAM was 0.2° or more was obtained.
  • Table 3 lists the area ratios of the high strain regions in the central measurement region and peripheral measurement region of the cross section for each of Examples 1 to 3 and Comparative Examples 1 to 4. In addition, it is evaluated whether the area ratio of the high strain region satisfies the preferred range of the embodiment (the area ratio of the high strain region is 15 to 30%). bottom.
  • the average value, standard deviation, and mode of KAM were obtained from the measured values of KAM in the crystal grains in the cross section of each sample.
  • Table 4 lists the average value, standard deviation, and mode of KAM of the central and peripheral measurement regions of the cross section for each of Examples 1-3 and Comparative Examples 1-4.
  • the difference (absolute value) ⁇ STD between the standard deviation STD1 of the central measurement area and the standard deviation STD2 of the peripheral measurement area was calculated and shown in Table 4. Also, it was evaluated whether or not ⁇ STD satisfies the preferred range ( ⁇ STD ⁇ 0.02) of the embodiment.
  • a metal wire having a length of 200 mm was cut out from each of the extrusion start side end and the extrusion end side (tail side) end of the extruded wire.
  • the cut metal wire was processed to obtain a tensile test piece (sample).
  • the shape and dimensions of the tensile test piece were as in No. 4 test piece of JIS Z 2241:2011.
  • the tensile test was conducted in accordance with JIS Z 2241:2011. Both ends of 50 mm of the tensile test piece were gripped with a chuck, and a tensile test was performed at a tensile speed of 20 mm/min to measure the tensile strength. The tensile test method was performed according to JIS Z 2241:2011.
  • Table 5 lists the tensile strength TS1 of the sample on the extrusion start side and the tensile strength TS2 of the sample on the extrusion end side (tail side) for each of Examples 1 to 3 and Comparative Examples 1 to 4.
  • TS2 was classified as A when 53.5 MPa or more, B when 52 MPa or more and less than 53.5 MPa, and C when less than 52 MPa.
  • ⁇ TS TS1-TS2
  • TS1-TS2 tensile strength TS1 of the sample on the extrusion start side
  • TS2 tensile strength TS2 of the sample on the extrusion end side
  • a comprehensive evaluation was made for each sample based on the TS2 evaluation results and the ⁇ TS evaluation results.
  • the overall evaluation was set to C, and when both evaluations were A, the overall evaluation was set to A.
  • the overall evaluation was set to B.
  • the difference between the billet temperature BL and the container temperature C during extrusion molding was 20 to 80 ° C., so the central measurement area and the peripheral measurement of the cross section of the extrusion wire
  • the average crystal grain sizes Dc and Dp of the regions were both 15 to 50 ⁇ m, and the difference ⁇ D between the average crystal grain sizes Dc and Dp was 20 ⁇ m or less (Table 2). Therefore, the tensile strength of the extruded wire at the end of extrusion (tail) of the extruded wire was high, and the difference in tensile strength between the beginning of extrusion and the end of extrusion (tail) was small. That is, the extruded wires of Examples 1 to 3 not only had high strength, but also had little variation in strength in the length direction, resulting in high strength uniformity.
  • the difference between the billet temperature BL and the container temperature C was 20 to 60 ° C., so the local orientation difference in the crystal grain in the central measurement region and the peripheral measurement region is 0.2 ° or more.
  • the area ratios Rc and Rp of are both 15 to 30%, the difference ⁇ R between the area ratios Rc and Rp is 5% or less, and the measured value (°) of the local orientation difference between the central measurement region and the peripheral measurement region
  • the difference ⁇ STD between the standard deviations STD1 and STD2 was 0.02 or less.
  • Comparative Example 1 the difference between the billet temperature BL and the container temperature C was -20°C, and the container temperature was higher than the billet temperature. Therefore, the average crystal grain size in the peripheral measurement area exceeded 50 ⁇ m. As a result, the tensile strength of the extruded wire at the end (tail) of the extruded wire was low, and the difference in tensile strength between the beginning and the end (tail) of extrusion was large.
  • Comparative Example 4 as in Comparative Example 3, the difference between the billet temperature BL and the container temperature C was as large as 90°C. Therefore, the average crystal grain size in the central measurement region was less than 15 ⁇ m. As a result, the tensile strength of the extruded wire was low at the extrusion end (tail) of the extruded wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

合計含有量が0.01質量%以下のFe、Cu、Ti、Mn、Mg、Cr、B、Ga、VおよびZnと、Ni、YおよびSiから成る群から選択される1種以上と、を含み、残部がAlおよび不可避不純物から成り、押出線の長手方向と直交する断面において、当該断面の中心点を含む中央測定領域と、前記断面の外周に接する周辺測定領域の両方で、後方散乱電子回折によって測定した平均結晶粒径が、それぞれ15~50μmである、アルミニウム押出線。

Description

アルミニウム押出線
 本開示は、アルミニウム押出線に関する。
 押出成形技術で製造したアルミニウム押出品は古くから知られている。
 例えば非特許文献1には、AA1100系アルミニウム合金の押出成形では、押出温度400~500℃、コンテナ温度360~460℃が好適であることが開示されている。
 特許文献1は、高純度アルミニウムスパッタリングターゲットに関し、高純度アルミニウムを300℃以下の低温押出することで、結晶粒径が100μm以下の押出品が得られることが記載されている。
 特許文献2は、高電気伝導性・耐熱性鉄含有軽質アルミワイヤーに関し、押出温度が300~450℃であることが開示されている。
 特許文献3は、アルミニウム線用のロッドの製造方法に関し、Ni:40~60ppmとSi:5~10ppmを含むアルミニウムを、ビレット温度360~380℃、コンテナ温度380~420℃で押出成形することが開示されている。
特開2008-156694号公報 特開2019-512050号公報 中国特許第105803268号明細書
アルミニウム加工技術便覧、日刊工業新聞社、1970年、p128
 一般的なアルミニウム合金では、添加元素による析出強化および固溶強化によって強度が決定されるため、成分組成を一定にすることにより、アルミニウム合金押出線の全長にわたって強度を一定にすることができる。
 架空送電線などの電線、超電導安定化材、および細線加工用として使用されるアルミニウム押出線は、例えば4N以上の高純度アルミニウムに、1000質量ppm以下で、特定の化学成分を意図的に添加したアルミニウム材料が使用される。
 このようなアルミニウム押出線では、添加元素が微量であるため、強度が低くなりやすい。また、添加元素による強度の制御ができず、アルミニウム押出線の長さ方向に沿って強度が変動するおそれがある。例えば、押出成形の開始直後(押出始)に押出成形された押出線は比較的強度が高く、その後徐々に強度が下がり、押出成形の終盤(押出終)に押出成形された押出線(「押出線の尾部」と称することがある)は強度が顕著に低下することがあった。
 しかしながら、非特許文献1および特許文献1~3のいずれにおいても、アルミニウム押出線の長さ方向における強度均一性について考慮されていない。
 そこで、本発明の一実施形態は、合金元素の添加量が少ないアルミニウムからなるアルミニウム押出線であって、高い強度と、長さ方向において高い強度均一性とを有するものを提供することを目的とする。
 本発明の態様1は、
 合計含有量が0.01質量%以下のFe、Cu、Ti、Mn、Mg、Cr、B、Ga、VおよびZnと、
 Ni、YおよびSiから成る群から選択される1種以上と、を含み、
 残部がAlおよび不可避不純物から成り、
 押出線の長手方向と直交する断面において、当該断面の中心点を含む中央測定領域と、前記断面の外周に接する周辺測定領域の両方で、後方散乱電子回折によって測定した平均結晶粒径が、それぞれ15~50μmである、アルミニウム押出線である。
 本発明の態様2は、
 以下の式(1)を満たす、態様1に記載のアルミニウム押出線である。

  |Dp-Dc|≦20(μm)・・・(1)

 ここで、
Dcは、前記断面の中央測定領域における平均結晶粒径(μm)であり、
Dpは、前記断面の周辺測定領域における平均結晶粒径(μm)である。
 本発明の態様3は、
 前記中央測定領域と前記周辺測定領域の両方で、結晶粒内の局所方位差が0.2°以上の領域の面積率が、それぞれ15~30%である、態様1または2に記載のアルミニウム押出線である。
 本発明の態様4は、
 以下の式(2)を満たす、態様1~3のいずれか1つに記載のアルミニウム押出線である。

  |Rc-Rp|≦5(%)・・・(2)

 ここで、
Rcは、前記断面の中央測定領域における局所方位差0.2°以上の領域の面積率(%)であり、
Rpは、前記断面の周辺測定領域における局所方位差0.2°以上の領域の面積率(%)である。
 本発明の態様5は、
 後方散乱電子回折により、前記断面における結晶粒内の局所方位差を測定したとき、以下の式(3)を満たす、態様1~4のいずれか1つに記載のアルミニウム押出線である。

  |STD1-STD2|≦0.02・・・(3)

 ここで、
STD1は、前記断面の前記中央測定領域における局所方位差の測定値(°)の標準偏差であり、
STD2は、前記断面の前記周辺測定領域における局所方位差の測定値(°)の標準偏差である。
 本発明の態様6は、
 Ni、YおよびSiから成る群から選択される1種以上の合計含有量が、10~2000質量ppmである、態様1~5のいずれか1つに記載のアルミニウム押出線である。
 本発明の態様7は、
 直径が1~10mmである、態様1~6のいずれか1つに記載のアルミニウム押出線である。
 本発明の態様8は、
 半導体素子のアルミニウム配線用である、態様1~7のいずれか1つに記載のアルミニウム押出線である。
 本発明の態様9は、
 20K以下で使用する超電導安定化材用である、態様1~8のいずれか1つに記載のアルミニウム押出線である。
 本発明の一実施形態によれば、合金元素の添加量が少ないアルミニウムからなるアルミニウム押出線であって、高い強度と、長さ方向において高い強度均一性とを有するものを提供することができる。
Al押出線の長手方向と直交する断面の中央測定領域で測定したEBSD-KAMマップである。 Al押出線の長手方向と直交する断面の周辺測定領域で測定したEBSD-KAMマップである。
 本発明者らは、合金元素の添加量が少ないアルミニウム押出線は、強度が低くなりやすいこと、および押出線の長さ方向における強度のばらつき(強度不均一)が生じやすいことに着目して鋭意研究を行った。その結果、そのようなアルミニウム押出線では、合金元素の添加量が少ないために析出強化および固溶強化が発現しにくく、結晶粒径が、アルミニウム押出線の強度の支配的要因になっていることが分かった。その知見に基づいてさらに検討を行った結果、アルミニウム押出線の長手方向と直交する断面における、中央測定領域の結晶粒径と周辺測定領域の結晶粒径の両方を適正な範囲に制御することにより、アルミニウム押出線の強度を適切に制御でき、その結果、長さ方向における強度のばらつきが抑制され、長さ方向における強度均一性を向上できることを見出して、本発明を完成するに至った。
 なお、通常のアルミニウム(AA1100系)およびアルミニウム合金の押出線では、押出成形の際に、一般的な強化機構である析出効果および粒界強化、ならびに加工硬化が作用して、押出線が高強度化する。そのため、結晶粒径に起因する強度の変化の影響が小さい。そのため、従来の知見からすれば、押出線の長さ方向の強度均一性を検討する際に、結晶粒径に着目することはない。
 以下に、本発明の実施形態に係るアルミニウム押出線について説明する。
[アルミニウム押出線]
1.化学成分組成
 実施形態に係るアルミニウム押出線(以下、単に「押出線」と称することがある)の化学成分は、
 合計含有量が0.01質量%以下のFe、Cu、Ti、Mn、Mg、Cr、B、Ga、VおよびZnと、
 Ni、YおよびSiから成る群から選択される1種以上と、を含み、
 残部がAlおよび不可避不純物から成る。不可避不純物とは、アルミニウム原料(一次地金等)に含まれる微量不純物を意味する。
 実施形態に係る押出線では、高純度アルミニウムに、特定の元素を意図的に添加している。ここで、意図的に添加している成分(これを「意図的添加成分」または単に「添加成分」と称することがある)は、Ni、YおよびSiである。これらの元素は、微細析出強化元素である。
 この意図的添加成分を除く化学成分では、Fe、Cu、Ti、Mn、Mg、Cr、B、Ga、VおよびZnを、合計含有量0.01質量%以下で含有し、残部はAlおよび不可避不純物である。つまり、意図的添加成分を除いた場合、4N(99.99質量%)以上の高純度アルミニウムである。
 意図的添加成分であるNi、YおよびSiから成る群から選択される1種以上の合計含有量は、10~2000質量ppmであることが好ましく、30~300質量ppmあることがより好ましい。
 各意図的添加成分は、微細析出強化の効果を発揮するために、以下の範囲で含有することが好ましい。
 意図的添加成分としてNiを含有する場合、Ni含有量は、10~1000重量ppmとすることができ、30~300重量ppmであることが好ましく、特に30~100重量ppmであることが好ましい。
 意図的添加成分としてYを含有する場合、Y含有量は、10~2000重量ppmとすることができ、30~1000重量ppmとすることもでき、特に50~300重量ppmであることが好ましい。
 意図的添加成分としてSiを含有する場合、Si含有量は、10~100重量ppmとすることができる。
 本明細書においては、高純度アルミニウム(4N以上)に所定の意図的添加成分を添加した材料のことを「高純度アルミニウムベース材料」と称することがある。
2.結晶組織
 実施形態に係るアルミニウム押出線は、以下のような結晶組織を有する。
(結晶粒径)
 実施形態に係るアルミニウム押出線は、長手方向と直交する断面において、当該断面の中心点を含む中央測定領域と、前記断面の外周に接する周辺測定領域の両方で、後方散乱電子回折(EBSD:Electron Back Scatter Diffraction)によって測定した平均結晶粒径が、それぞれ15~50μmである。平均結晶粒径の好ましい範囲は、27.5~50μmであり、より好ましい範囲は、28~46μmであり、特に好ましい範囲は29~40μmである。
 このような結晶粒径を有する押出線であると、合金元素の添加量が少ないアルミニウムからなるアルミニウム押出線であって、長さ方向において高い強度均一性を有することを、本発明者らは初めて見出した。
 このような効果が得られる理由は定かではないが、高純度アルミニウムベース材料の粒界強化機構には結晶粒径の最適範囲があり、結晶粒径が最適範囲よりも大きいと粒界強化が不十分となり、結晶粒径が最適範囲よりも小さいと、加工の際に再結晶が容易に生じて結晶粒径が局所的に大きくなり、粒界強化機構が十分に機能しないためであると推測される。
 長手方向と直交する断面の中心点は、断面の外周が円形の場合は円の中心点、楕円形の場合は長径と短径の交点である。多角形の場合、断面の中心点は、複数の対角線が1点に交わる場合はその交点であり、複数の対角線が1点に交わらない場合は多角形の外接円の中心点である。
 中央測定領域は、中央測定領域の対角線の交点が、断面の中心点と重なるように位置決めされていることが好ましい。中央測定領域は、例えば0.46mm×0.61mmの矩形領域とする。なお、アルミニウム押出線の直径が小さい場合には、中央測定領域の寸法を小さくしてもよい。アルミニウム押出線の直径が1.6mm以下の場合、中央測定領域は、0.23mm×0.31mmの矩形領域とし、1.6mmより大きい場合は、0.46mm×0.61mmの矩形領域としてもよい。
 周辺測定領域は、周辺測定領域の対向する2つの長辺の一方の両端が、断面の外周に接するように位置決めされていることが好ましい。周辺測定領域は、例えば0.46mm×0.61mmの矩形領域とする。なお、アルミニウム押出線の直径が小さい場合には、周辺測定領域の寸法を小さくしてもよい。アルミニウム押出線の直径が1.6mm以下の場合、周辺測定領域は、0.23mm×0.31mmの矩形領域とし、1.6mmより大きい場合は、0.46mm×0.61mmの矩形領域としてもよい。
 なお、断面の外周がダレている場合は、ダレている部分を除いて外周形状を規定してもよい。
 ダレの有無の判断は、後述する走査型電子顕微鏡(SEM)観察において、周辺測定領域内の焦点が均等に合わない場合に、ダレていると判断する。
 EBSD法による断面の測定は、以下のように行う。
 EBSD法は、結晶集合組織の方位分布を解析する手法として汎用されている。通常、EBSD法は、走査型電子顕微鏡(SEM)に後方散乱電子回折検出器を搭載した装置を用いて実施する。後方散乱電子回折検出器としては、例えば、オックスフォード・インストゥルメント株式会社製のSymmetryが使用できる。
 押出線から、所定長さの観察試料(例えば、長さ25mm)を、押出線の長手方向と直交する断面で切断して切り出す。切り出した観察試料を樹脂に埋包し、断面を研磨およびエッチングする。その後、断面に電子線を走査し、後方散乱電子の回折パターンを装置で読み取る。
 具体的には、まず、装置に読み込まれた後方散乱電子の回折パターンをコンピュータに取り込み、解析ソフトで結晶方位解析を実施しながら試料表面を走査する。これによって、各測定点での結晶の指数付けが行われ、各測定点での結晶方位が求まる。この際、同じ結晶方位を有する連続した領域を一つの結晶粒として定義し、結晶粒の分布に関するマッピング像、つまりグレインマップを取得する。なお、一つの結晶粒を定義するにあたり、隣り合う結晶の結晶方位の角度差が10°以下の場合を同じ結晶方位とする。
 これによって、各測定点において算出された結晶方位をもとに結晶粒の画像がコンピュータに記録される。
 さらに画像処理を行って、結晶粒径の円相当径の測定値を得る。円相当径の平均を面積荷重平均で求め、これを「平均結晶粒径」とする。
 実施形態に係るアルミニウム押出線は、以下の式(1)を満たすことが好ましい。

  |Dp-Dc|≦20(μm)・・・(1)

 ここで、
Dcは、前記断面の中央測定領域における平均結晶粒径(μm)であり、
Dpは、前記断面の周辺測定領域における平均結晶粒径(μm)である。
 断面の中央測定領域における平均結晶粒径Dcと、周辺測定領域における平均結晶粒径Dpとの差(絶対値)が20μm以下となるように制御することにより、押出線の長さ方向の強度をさらに均一にすることができる。そのような効果が得られる理由は定かではないが、以下のようなメカニズムであると推測される。
 上述したように、合金元素の添加量が少ないアルミニウム押出線では、析出強化および固溶強化を無視でき、結晶粒径が、押出線の強度の支配的要因である。また、合金元素の添加量が少ないアルミニウム押出線では、加工温度の影響が大きい。
 押出成形では、長手方向と直交する断面内において、中央部分と周辺部分におけるアルミニウムの流動速度が大きく異なる。アルミニウムの押出用ビレットでは、コンテナに接触する周辺部分は、摩擦により拘束されるため、周辺部分のアルミニウムの流動速度は、中央部分よりも小さくなる。流動速度の差により、せん断変形領域が部分的に形成される。その結果、得られたアルミニウム押出線では、長手方向と直交する断面において、中央測定領域と周辺測定領域における結晶粒径が大きく相違する。特に、押出線の尾部では、結晶粒径の相違が著しい。合金元素の添加量が少ないアルミニウム押出線の強度は、結晶粒径の影響が大きいため、押出線の長さ方向の強度均一性が低下してしまうと考えられる。
 そこで、押出成形の押出初から押出終までに亘って、中央部分と周辺部分におけるアルミニウムの流動速度の差を小さくすることにより、中央測定領域と周辺測定領域における結晶粒径の差を小さくできるため、押出線の長さ方向における強度の変動を大幅に抑制できる。すなわち、押出線の長手方向と直交する断面における結晶粒径の均等性を向上することにより、押出線の長さ方向の強度均一性を向上することができる。
 なお、後述するように、押出成形時の押出成形機のコンテナ温度を、ビレット温度よりも20~80℃低くすることにより、中央部分と周辺部分におけるアルミニウムの流動速度の差を小さくすることができる。
(結晶粒内の局所方位差)
 中央測定領域と周辺測定領域の両方で、結晶粒内の局所方位差が0.2°以上の領域の面積率が、それぞれ15~30%であることが好ましく、よりの好ましい範囲は、それぞれ15~25%であり、更に好ましい範囲は、それぞれ15~20%である。
 高歪領域を適度に含むことにより、加工硬化による強度上昇が期待でき、かつ強度上昇の効果が押出線の長さ方向において均一に発揮されやすい。そのため、さらに高い強度、かつさらに高い強度均一性を有する押出線を得ることができる。
 局所方位差(KAM:Kernel Average Misorientation)は、EBSDの解析方法の1つであり、測定点とその近傍とにおける結晶方位の差を測定する。局所方位差が大きいほど、その結晶粒内のひずみが大きいといえる。
 局所方位差(KAM)が0.2°以上の領域(「高局所方位差領域」または「高歪領域」とも称することがある)の面積率とは、測定範囲の面積(例えば、0.46mm×0.61mm=0.28mm)を100%としたときの、KAMが0.2°以上の領域(高歪領域)の面積の比率のことである。高歪領域の面積率が高いと、加工硬化の効果が高くなる。
 上述したEBSD法による断面の測定用試料と同様の手順で調製した試料を、同様の装置を用いて測定する。測定のステップは0.2μm/pixとする。得られた後方散乱電子の回折パターンを解析ソフトAZtecで解析して、局所方位差0.2°以上の領域(高局所方位差領域)の累積頻度を計算し、高歪領域の面積とした。高歪領域の面積を、測定領域の面積(例えば、0.28mm)で割って、高歪領域の面積率を求める。
 なお、このとき結晶粒界を排除するために、KAMが10°以上の場合は、結晶粒界であると認定して、上記面積率の計算から除外する。
 押出線は、さらに、以下の式(2)を満たすことが好ましい。

  |Rc-Rp|≦5(%)・・・(2)

 ここで、
Rcは、前記断面の中央測定領域における局所方位差0.2°以上の領域の面積率(%)であり、
Rpは、前記断面の周辺測定領域における局所方位差0.2°以上の領域の面積率(%)である。
 式(2)は、断面における中央測定領域における局所方位差0.2°以上の領域(高歪領域)の面積率Rcと、周辺測定領域における局所方位差0.2°以上の領域(高歪領域)の面積率Rpとが近い値を有することを示唆している。
 上述したように、高歪領域は加工硬化による強度上昇に寄与し得る。そのため、断面内において、高歪領域の面積率が比較的均一であることにより、断面内における強度が比較的均一になり、押出線全体における強度均一性をさらに向上することができる。
 なお、後述するように、押出成形時の押出成形機のコンテナ温度を、ビレット温度よりも20~80℃低くすることにより、中央部分と周辺部分におけるアルミニウムの流動速度の差を小さくすることができる。
 後方散乱電子回折により、前記断面における結晶粒内の局所方位差(KAM)を測定したとき、以下の式(3)を満たす事が好ましい。

  |STD1-STD2|≦0.02・・・(3)

 ここで、
STD1は、前記断面の前記中央測定領域における局所方位差の測定値(°)の標準偏差であり、
STD2は、前記断面の前記周辺測定領域における局所方位差の測定値(°)の標準偏差である。
 断面の中央測定領域および周辺測定領域の局所方位差(KAM)の分布が均一なときは、それぞれのKAMの標準偏差が小さくなり、かつそれぞれの標準偏差の差(絶対値)も小さくなる。つまり、式(3)を満たすことにより、断面の中央測定領域および周辺測定領域のKAMのばらつきが小さくなる。断面内において、高歪領域の面積率が比較的均一であることにより、断面内における強度が比較的均一になり、押出線全体における強度均一性をさらに向上することができる。
 なお、後述するように、押出成形時の押出成形機のコンテナ温度を、ビレット温度よりも20~80℃低くすることにより、中央部分と周辺部分におけるアルミニウムの流動速度の差を小さくすることができる。
 アルミニウム押出線は、用途に応じて任意の寸法形状とすることができ、例えば直径が1~10mmであってもよい。
 実施形態に係るアルミニウム押出線は、高純度アルミニウムベース材料から成るので、半導体素子のアルミニウム配線用、20K以下で使用する超電導安定化材用などに好適である。
 なお、用途に合わせて、アルミニウム押出線に添加する意図的添加成分の種類、含有量を制御することが好ましい。
(アルミニウム押出線の製造方法)
 実施形態に係るアルミニウムの押出線を製造する方法を説明する。なお、本願の開示に接した当業者であれば、それらの記載に基づいて、実施形態に係るアルミニウムの押出線を製造可能な異なる方法に到達することもあり得る。
 高純度アルミニウム(例えば、純度99.99%(4N)以上のAl)の原料に、意図的添加成分(Ni、Y、Siの1種以上)を所定量で添加し、攪拌、溶解保持を行う。その後、定法によりビレットを鋳造し、さらに加工して、所望の寸法の押出用ビレットを作成する。
 押出用ビレットを、ビレット予備加熱温度(「ビレット温度」と称する)まで加熱した後、押出装置にて押出成形を行う。ビレット温度は、一般的な押出成形で用いられるビレット温度の範囲内とすればよい。
 押出成形のとき、押出装置のコンテナの加熱温度(これを「コンテナ温度」と称する)をビレット温度よりも20~80℃低くする。つまり、(ビレット温度BL-コンテナ温度C)が20~80℃となるように、ビレット温度BLとコンテナ温度Cと設定する。これにより、押出線の長手方向と直交する断面の中央測定領域および周辺測定領域の平均結晶粒径を15~50μmとすることができ、かつ中央測定領域の平均結晶粒径Dcと周辺測定領域の平均結晶粒径Dpの差を20μm以下にすることができる。
 さらに、(ビレット温度BL-コンテナ温度C)を20~60℃にすることにより、断面の中央測定領域および周辺測定領域の高歪領域の面積率を15~30%とすることができ、かつ中央測定領域の高歪領域の面積率Rcと周辺測定領域の高歪領域の面積率Rpの差ΔRを5%以下にすることができる。さらに、断面の中央測定領域および周辺測定領域における局所方位差(KAM)の標準偏差の差を0.02以下にすることもできる。(ビレット温度BL-コンテナ温度C)のより好ましい範囲は、25~45℃であり、さらに好ましい範囲は30~40℃である。
 従来は、ビレット温度を保持するために、コンテナ温度はビレット温度と同程度(通常は、温度差は10℃以内)にしていた。ところが、実施形態に係るアルミニウム押出線は、コンテナ温度をビレット温度よりも20℃~80℃低くすることにより、得られた押出線の結晶粒内に適度なひずみを生じさせている。これにより、所望の結晶粒径を有する押出線を得ることができる。
 以下の手順でアルミニウム押出線の測定用試料を作成した。
(1)測定用試料の作製
 Al原料として、三層電解法で得られた高純度アルミニウム(純度99.999%Al)を用いた。
 高純度アルミニウム原料を黒鉛坩堝に仕込み、意図的添加成分としてNiを添加し、攪拌、脱ガス(真空保持して700℃×2時間)したのち、内径100mmの黒鉛鋳型(内径100mm×高さ内寸230mm)を用いて740℃でビレットを鋳造した。
 得られたビレットを加工して寸法φ70mm×長さ180mmの押出用ビレットを作製した。その後、押出用ビレットを押出成形して、φ2mm×長さ約50mの押出線を得た。
 押出成形時のビレット温度BLとコンテナ温度Cは、表1に示す「押出成形時のビレット温度BLとコンテナ温度Cの差ΔT(=ビレット温度B(℃)-コンテナ温度C(℃))」を満たすように制御して、実施例1~3および比較例1~4の押出線を作製した。なお、押出成形時のビレット温度BLは、高純度アルミニウム材料の押出成形時の一般的なビレット温度である、350~390℃とした。
 得られた各押出線について、固体発光分光分析により12元素の含有量を測定した。すべての測定用試料において、Niが50質量ppm、Si、Fe、Cu、Ti、Mn、Mg、Cr、B、Ga、VおよびZnの合計含有量が18質量ppmであった。
 押出線のうち押出始の2mと、押出終(尾部)の2mは、非定常部として除去する。その後、押出線の押出始側の端部と、押出終側(尾部側)の端部とから、それぞれ試料を切り出した。まず、それぞれの端部から、引張強度試験用の引張試験片(試料)を作成するための金属線(200mm)を切り出し、その後、押出終側から、結晶粒径測定用の試料(25mm)を切り出した。
Figure JPOXMLDOC01-appb-T000001
(結晶粒径の測定)
 後方散乱電子回折像法(EBSD法)により、結晶組織を観察した。
 押出終側の端部から長さ25mmの試料を、押出線の長手方向と直交する断面で切断して切り出した。切り出した試料を樹脂に埋包し、断面を研磨およびエッチングした。その後、断面に電子線を走査し、後方散乱電子の回折パターンを装置で読み取った。
 実施形態で説明した手順により、各試料の断面をEBSD法で測定し、結晶粒径の平均結晶粒径を求めた。走査型電子顕微鏡は、日本電子株式会社製のJSM-7900Fを使用し、後方散乱電子回折検出器として、オックスフォード・インストゥルメント株式会社製のSymmetryを使用した。
 表2に、実施例1~3および比較例1~4の各々について、断面の中央測定領域および周辺測定領域の平均結晶粒径を記載した。また、平均結晶粒径が実施形態の要件(平均結晶粒径が15~50μm)を満たすかどうか評価し、満たす場合は「〇」、満たさない場合は「×」と記載した。
 さらに、中央測定領域の平均結晶粒径Dcと周辺測定領域の平均結晶粒径Dpの差(絶対値)ΔDを計算し、表2に記載した。また、ΔDが、実施形態の好ましい範囲(ΔD≦20μm)を満たすかどうか評価し、満たす場合は「〇」、満たさない場合は「×」と記載した。
(結晶粒内の局所方位差の測定)
 実施形態で説明した手順により、各試料の断面における結晶粒内の局所方位差(KAM)を測定し、KAMが0.2°以上の領域(高歪領域)の面積率を求めた。
 表3に、実施例1~3および比較例1~4の各々について、断面の中央測定領域および周辺測定領域の高歪領域の面積率を記載した。また、高歪領域の面積率が実施形態の好ましい範囲(高歪領域の面積率が15~30%)を満たすかどうか評価し、満たす場合は「〇」、満たさない場合は「×」と記載した。
 さらに、中央測定領域の高歪領域Rcと周辺測定領域の高歪領域Rpの差(絶対値)ΔRを計算し、表3に記載した。また、ΔRが、実施形態の好ましい範囲(ΔR≦5%)を満たすかどうか評価し、満たす場合は「〇」、満たさない場合は「×」と記載した。
 各試料の断面における結晶粒内のKAMの測定値から、KAMの平均値、標準偏差、および最頻値を求めた。表4に、実施例1~3および比較例1~4の各々について、断面の中央測定領域および周辺測定領域のKAMの平均値、標準偏差、および最頻値を記載した。
 さらに、中央測定領域の標準偏差STD1と周辺測定領域の標準偏差STD2の差(絶対値)ΔSTDを計算し、表4に記載した。また、ΔSTDが、実施形態の好ましい範囲(ΔSTD≦0.02)を満たすかどうか評価し、満たす場合は「〇」、満たさない場合は「×」と記載した。
(引張強度の評価)
 押出線の押出始側の端部と、押出終側(尾部側)の端部とから、それぞれ、長さ200mmの金属線を切り出した。切り出した金属線を加工して、引張試験片(試料)を得た。なお、引張試験片の形状寸法は、JIS Z 2241:2011の4号試験片の通りとした。
 引張試験は、JIS Z 2241:2011に準拠して行った。引張試験片の両端50mmをチャックでつかみ、引張速度 20mm/minで引張試験を行い、引張強度を測定した。引張試験方法は、JIS Z 2241:2011に準拠して行った。
 表5に、実施例1~3および比較例1~4の各々について、押出始側の試料の引張強度TS1、および押出終側(尾部側)の試料の引張強度TS2を記載した。また、TS2が53.5MPa以上の場合をA、52MPa以上53.5MPa未満の場合をB、52MPa未満の場合をCに分類した。
 さらに、押出始側の試料の引張強度TS1と押出終側(尾部側)の試料の引張強度TS2の差ΔTS(TS1-TS2)を計算し、表5に記載した。ΔTSが5MPa以下の場合をA、10MPa以上5MPa未満の場合をB、10MPa超の場合をCに分類した。
 TS2の評価結果とΔTSの評価結果から、各試料の総合評価を行った。少なくとも一方の評価がCの場合は、総合評価をCとし、両方の評価がAの場合は、総合評価をAとした。それ以外は、総合評価をBとした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~3は、押出成形時のビレット温度BLとコンテナ温度Cの差(=ビレット温度BL-コンテナ温度C)が20~80℃であったため、押出線の断面の中央測定領域および周辺測定領域の平均結晶粒径Dc、Dpがいずれも15~50μmとなり、かつ平均結晶粒径Dc、Dpの差ΔDが20μm以下であった(表2)。そのため、押出線の押出終(尾部)における押出線の引張強度が高く、かつ押出始と押出終(尾部)の押出線の引張強度の差が小さくなった。すなわち、実施例1~3の押出線は、強度が高いだけでなく、長さ方向における強度のばらつきが少なく、強度均一性が高くなった。
 特に、実施例1~2では、ビレット温度BLとコンテナ温度Cの差が20~60℃であったため、中央測定領域と周辺測定領域における結晶粒内の局所方位差が0.2°以上の領域の面積率Rc、Rpが、いずれも15~30%となり、面積率Rc、Rpの差ΔRが5%以下となり、さらに、中央測定領域と周辺測定領域におけるにおける局所方位差の測定値(°)の標準偏差STD1、STD2の差ΔSTDが0.02以下となった。その結果、押出線の押出終(尾部)における押出線の引張強度と、押出線の長さ方向における強度均一性が、いずれも特に高かった。
 比較例1は、ビレット温度BLとコンテナ温度Cの差が-20℃で、コンテナ温度の方がビレット温度より高かった。そのため、周辺測定領域の平均結晶粒径が50μmを越えていた。その結果、押出線の押出終(尾部)における押出線の引張強度が低く、かつ押出始と押出終(尾部)の押出線の引張強度の差が大きかった。
 比較例2は、ビレット温度BLとコンテナ温度Cの差が0℃であった。そのため、周辺測定領域の平均結晶粒径が50μmを越え、かつ中央測定領域と周辺測定領域における平均結晶粒径の差が20μmを越えていた。その結果、押出線の押出終(尾部)における押出線の引張強度が低く、かつ押出始と押出終(尾部)の押出線の引張強度の差が大きかった。
 比較例3は、ビレット温度BLとコンテナ温度Cの差が100℃と、温度差が大きかった。そのため、中央測定領域の平均結晶粒径が15μm未満となった。その結果、押出線の押出終(尾部)における押出線の引張強度が低かった。
 比較例4は、比較例3と同様に、ビレット温度BLとコンテナ温度Cの差が90℃と、温度差が大きかった。そのため、中央測定領域の平均結晶粒径が15μm未満となった。その結果、押出線の押出終(尾部)における押出線の引張強度が低かった。
 本出願は、出願日が2021年12月24日である日本国特許出願、特願第2021-211128号を基礎出願とする優先権主張を伴う。特願第2021-211128号は参照することにより本明細書に取り込まれる。

Claims (9)

  1.  合計含有量が0.01質量%以下のFe、Cu、Ti、Mn、Mg、Cr、B、Ga、VおよびZnと、
     Ni、YおよびSiから成る群から選択される1種以上と、を含み、
     残部がAlおよび不可避不純物から成り、
     押出線の長手方向と直交する断面において、当該断面の中心点を含む中央測定領域と、前記断面の外周に接する周辺測定領域の両方で、後方散乱電子回折によって測定した平均結晶粒径が、それぞれ15~50μmである、アルミニウム押出線。
  2.  以下の式(1)を満たす、請求項1に記載のアルミニウム押出線。

      |Dp-Dc|≦20(μm)・・・(1)

     ここで、
    Dcは、前記断面の中央測定領域における平均結晶粒径(μm)であり、
    Dpは、前記断面の周辺測定領域における平均結晶粒径(μm)である。
  3.  前記中央測定領域と前記周辺測定領域の両方で、結晶粒内の局所方位差が0.2°以上の領域の面積率が、それぞれ15~30%である、請求項1または2に記載のアルミニウム押出線。
  4.  以下の式(2)を満たす、請求項1または2に記載のアルミニウム押出線。

      |Rc-Rp|≦5(%)・・・(2)

     ここで、
    Rcは、前記断面の中央測定領域における局所方位差0.2°以上の領域の面積率(%)であり、
    Rpは、前記断面の周辺測定領域における局所方位差0.2°以上の領域の面積率(%)である。
  5.  後方散乱電子回折により、前記断面における結晶粒内の局所方位差を測定したとき、以下の式(3)を満たす、請求項1または2に記載のアルミニウム押出線。

      |STD1-STD2|≦0.02・・・(3)

     ここで、
    STD1は、前記断面の前記中央測定領域における局所方位差の測定値(°)の標準偏差であり、
    STD2は、前記断面の前記周辺測定領域における局所方位差の測定値(°)の標準偏差である。
  6.  Ni、YおよびSiから成る群から選択される1種以上の合計含有量が、10~2000質量ppmである、請求項1または2に記載のアルミニウム押出線。
  7.  直径が1~10mmである、請求項1または2に記載のアルミニウム押出線。
  8.  半導体素子のアルミニウム配線用である、請求項1または2に記載のアルミニウム押出線。
  9.  20K以下で使用する超電導安定化材用である、請求項1または2に記載のアルミニウム押出線。
PCT/JP2022/041760 2021-12-24 2022-11-09 アルミニウム押出線 WO2023119926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280083440.0A CN118401688A (zh) 2021-12-24 2022-11-09 铝挤压线
EP22910645.5A EP4455324A1 (en) 2021-12-24 2022-11-09 Extruded aluminum wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-211128 2021-12-24
JP2021211128A JP2023095314A (ja) 2021-12-24 2021-12-24 アルミニウム押出線

Publications (1)

Publication Number Publication Date
WO2023119926A1 true WO2023119926A1 (ja) 2023-06-29

Family

ID=86902109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041760 WO2023119926A1 (ja) 2021-12-24 2022-11-09 アルミニウム押出線

Country Status (4)

Country Link
EP (1) EP4455324A1 (ja)
JP (1) JP2023095314A (ja)
CN (1) CN118401688A (ja)
WO (1) WO2023119926A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218537A (ja) * 1986-03-19 1987-09-25 Nippon Light Metal Co Ltd アルミニウム細線
JP2006004757A (ja) * 2004-06-17 2006-01-05 Furukawa Electric Co Ltd:The アルミ導電線
JP2008156694A (ja) 2006-12-22 2008-07-10 Mitsubishi Alum Co Ltd スパッタリングターゲット材およびその製造方法
WO2016047627A1 (ja) * 2014-09-22 2016-03-31 古河電気工業株式会社 端子付き電線
CN105803268A (zh) 2016-02-01 2016-07-27 新疆众和股份有限公司 一种键合铝丝用母杆的生产方法
JP2019512050A (ja) 2016-03-25 2019-05-09 中南大学 高電気伝導性・耐熱性鉄含有軽質アルミワイヤー及びその製造プロセス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218537A (ja) * 1986-03-19 1987-09-25 Nippon Light Metal Co Ltd アルミニウム細線
JP2006004757A (ja) * 2004-06-17 2006-01-05 Furukawa Electric Co Ltd:The アルミ導電線
JP2008156694A (ja) 2006-12-22 2008-07-10 Mitsubishi Alum Co Ltd スパッタリングターゲット材およびその製造方法
WO2016047627A1 (ja) * 2014-09-22 2016-03-31 古河電気工業株式会社 端子付き電線
CN105803268A (zh) 2016-02-01 2016-07-27 新疆众和股份有限公司 一种键合铝丝用母杆的生产方法
JP2019512050A (ja) 2016-03-25 2019-05-09 中南大学 高電気伝導性・耐熱性鉄含有軽質アルミワイヤー及びその製造プロセス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALUMINUM KAKOGIJUTSU BINRAN: "Aluminum Processing Technology Handbook", 1970, THE NIKKAN KOGYO SHIMBUN, LTD., pages: 128

Also Published As

Publication number Publication date
JP2023095314A (ja) 2023-07-06
CN118401688A (zh) 2024-07-26
EP4455324A1 (en) 2024-10-30

Similar Documents

Publication Publication Date Title
JP6119937B1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP6022882B2 (ja) 高強度アルミニウム合金押出材及びその製造方法
WO2016059950A1 (ja) マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法
KR20170009842A (ko) 알루미늄 합금 도체선, 알루미늄 합금 연선, 피복 전선, 와이어 하니스 및 알루미늄 합금 도체선의 제조 방법
KR20160137906A (ko) 원통형 스퍼터링 타깃용 소재
EP4012062A1 (en) Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
JP2019014939A (ja) アルミニウム合金箔およびアルミニウム合金箔の製造方法
AU2017367371B2 (en) Aluminum alloy for extruded material, extruded material using the same, and method for producing extruded material
US10920306B2 (en) Aluminum alloy wire rod and producing method thereof
JP2011144396A (ja) 耐応力腐食割れ性に優れた高強度アルミニウム合金押出材
KR20190029519A (ko) 알루미늄 합금 선재, 알루미늄 합금 연선, 피복 전선 및 와이어 하네스
JP2004084058A (ja) 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材
EP3176274B1 (en) Aluminium alloy extruded material with excellent machinability and manufacturing method thereof
WO2023119926A1 (ja) アルミニウム押出線
WO2018088351A1 (ja) アルミニウム合金押出材
CN111527220A (zh) 镁合金板材及其制造方法
WO2017006816A1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP6684395B1 (ja) 銅合金板材及び銅合金板材の製造方法並びに銅合金板材を用いたコネクタ
WO2017126413A1 (ja) 機械部品およびその製造方法、押出材
EP1522600B1 (en) Forged aluminium alloy material having excellent high temperature fatigue strength
EP1826284A1 (en) Case made of magnesium alloy
JP4864413B2 (ja) 高強度マグネシウム合金押出し材
EP3933060A1 (en) Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy
WO2018037810A1 (ja) 機械部品および押出材
JP7568874B1 (ja) アルミニウム合金箔およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280083440.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022910645

Country of ref document: EP

Effective date: 20240724

WWE Wipo information: entry into national phase

Ref document number: 11202404134V

Country of ref document: SG