WO2023119430A1 - 信号処理装置、信号処理方法及びプログラム - Google Patents

信号処理装置、信号処理方法及びプログラム Download PDF

Info

Publication number
WO2023119430A1
WO2023119430A1 PCT/JP2021/047367 JP2021047367W WO2023119430A1 WO 2023119430 A1 WO2023119430 A1 WO 2023119430A1 JP 2021047367 W JP2021047367 W JP 2021047367W WO 2023119430 A1 WO2023119430 A1 WO 2023119430A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
positioning
signal processing
processing device
gnss
Prior art date
Application number
PCT/JP2021/047367
Other languages
English (en)
French (fr)
Inventor
誠史 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/047367 priority Critical patent/WO2023119430A1/ja
Publication of WO2023119430A1 publication Critical patent/WO2023119430A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/26Acquisition or tracking or demodulation of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking

Definitions

  • the present invention relates to a signal processing device, a signal processing method and a program.
  • GNSS Global Navigation Satellite Systems
  • An antenna that receives navigation satellite signals (hereinafter referred to as GNSS signals) and a device (hereinafter referred to as GNSS receiver) that processes GNSS signals and outputs positioning solutions through positioning calculation processing
  • GNSS signals navigation satellite signals
  • GNSS receiver a device that processes GNSS signals and outputs positioning solutions through positioning calculation processing
  • It is generally installed at a point (that is, a receiving position) where GNSS signals are received and positioning is performed.
  • a “cloud GNSS positioning architecture” that performs at least part of the positioning calculation processing on a server (hereinafter referred to as a positioning server) installed on a cloud/edge infrastructure via a communication network is also being considered. It is
  • the signal propagation delay and its fluctuations that occur when communicating with the positioning server via the communication network cause a quantitatively unpredictable delay in the output of the positioning solution on the terminal side. Time and its fluctuations occur.
  • it is possible to reduce the magnitude of delay time fluctuation by applying a jitter buffer or the like there is a tradeoff in that an additional delay time dependent on the set value of the buffer depth is generated.
  • An embodiment of the present invention has been made in view of the above points, and aims to output positioning solutions with high real-time performance.
  • a signal processing device is a signal processing device connected via a communication network to a positioning server that calculates a positioning solution from observation data of GNSS signals, wherein the GNSS signals are a GNSS signal receiving unit configured to receive and create the observation data; a first communication unit configured to transmit the observation data to the positioning server; and from the positioning server to the positioning a second communication unit configured to receive a solution; a relative positioning unit configured to measure a relative displacement amount of the signal processing device at each predetermined measurement cycle; and the signal processing device.
  • a delay measurement unit configured to measure a first delay time representing the time required for an output interface provided to output the positioning solution, the positioning solution, and a relative displacement amount for each measurement cycle; , based on the first delay time and a second delay time representing the time from the transmission of the observation data to the positioning server to the reception of the positioning solution, the first delay time rather than the current time; and an estimating unit configured to estimate the position of the signal processing device at a time after the delay time.
  • a highly real-time positioning solution can be output.
  • a terminal device composed of a GNSS antenna, a GNSS receiver, etc. exists at a reception position, and is located on a cloud/edge platform (hereinafter both cloud and edge platform are collectively referred to as "cloud”. ) via a communication network with a positioning server installed in A terminal device receives a GNSS signal with a GNSS antenna, and transmits observation data (raw data) acquired after performing RF signal processing, baseband signal processing, etc. in a GNSS receiver to a positioning server. The positioning server performs positioning calculation processing using the observation data transmitted from the terminal device, and transmits the resulting positioning solution to the terminal device.
  • cloud cloud/edge platform
  • the RTCM Radio Technical Commission for Maritime Services
  • the NMEA National Marine Electronics Association 0183 format
  • a protocol for transferring these data on an IP (Internet Protocol) network for example, TCP/IP-based Ntrip (Networked Transport of RTCM via Internet Protocol) or the like is used.
  • Ntrip Catser which is a gateway device of the Ntrip protocol, is installed on the cloud, and session management including authentication and traffic control are performed.
  • Positioning solutions output by positioning calculation processing in the positioning server on the cloud include positioning solutions by code positioning methods using navigation satellite signal codes (that is, code positioning solutions), RTK (Real Time Kinematic) methods, etc.
  • a positioning solution based on the carrier phase positioning method ie, carrier phase positioning solution is included.
  • the cloud GNSS positioning architecture is characterized by the fact that positioning solutions can be received unlimitedly by terminal devices at any point connected to the communication network, not just at the receiving location. Therefore, the cloud GNSS positioning architecture is suitable for applications such as remote control of robot tractors and applications such as GIS (Geographic Information System).
  • GIS Geographic Information System
  • the cloud GNSS positioning architecture it is possible to simplify some of the functions of the GNSS receiver on the terminal device side, so there is also the advantage that the terminal device can be made smaller, less expensive, and more power efficient.
  • the signal propagation delay and its fluctuations that occur when communicating with the positioning server via the communication network cause the output of the positioning solution on the terminal device side to be quantitatively causes unpredictable delay time and its fluctuations.
  • the delay time fluctuation it is possible to reduce its magnitude by applying a jitter buffer or the like, but there is a trade-off in that an additional delay time depending on the set value of the buffer depth is generated.
  • the output delay (time lag) of the positioning solution mentioned above is a performance problem in applications that require real-time performance (for example, autonomous control in self-driving vehicles, body control in ADAS (Advanced Driver-Assistance Systems), etc.). It can be a factor causing deterioration. For example, a car traveling at 80 km/h moves about 2.2 m in 100 ms. For this reason, assuming that the delay time including the time required for positioning calculation processing in the positioning server on the cloud is 300 ms, the control system that performs autonomous control, vehicle control, etc. receives the positioning solution. It will move 6.6m, which will affect various feedback controls.
  • the cloud GNSS positioning system 1 realized by the cloud GNSS positioning architecture is targeted, and the output delay of the positioning solution due to the signal propagation delay and its fluctuation occurring in the communication network is eliminated, and the real-time positioning A case of outputting a solution will be described.
  • FIG. 1 shows an example of the overall configuration of a cloud GNSS positioning system 1 according to this embodiment.
  • a cloud GNSS positioning system 1 includes a terminal device 10 and a positioning server 20 .
  • the terminal device 10 and the positioning server 20 are communicably connected via a communication network 30 including the Internet.
  • the terminal device 10 is various devices, equipment, software, etc. that function as a terminal device of the cloud GNSS positioning architecture.
  • the terminal device 10 may be fixedly installed at a certain reception position, but in this embodiment, it is mainly mounted on a mobile object such as a vehicle, and the terminal device 10 is installed as the mobile object moves. Assume that the device 10 also moves at the same time.
  • the positioning server 20 is various devices, equipment, software, etc. that function as a positioning server for the cloud GNSS positioning architecture.
  • the positioning server 20 includes at least a positioning engine that executes positioning calculation processing using observation data transmitted from the terminal device 10 .
  • the positioning server 20 may be a distributed system composed of a plurality of devices, for example.
  • FIG. 2 shows a configuration example of the terminal device 10 according to this embodiment.
  • the terminal device 10 according to the present embodiment includes a GNSS signal reception unit 101, a relative positioning unit 102, a time synchronization unit 103, a processing delay measurement unit 104, a position estimation unit 105, a communication It has a section 106 and an output interface section 107 .
  • the terminal device 10 according to the present embodiment includes a GNSS antenna 108 that receives GNSS signals.
  • the GNSS signal receiving unit 101 receives GNSS signals from the GNSS antenna 108, performs RF signal processing, baseband signal processing, etc., and outputs observation data.
  • the GNSS signal reception unit 101 is realized by, for example, a GNSS receiver.
  • the relative positioning unit 102 measures the amount of relative displacement of the terminal device 10 .
  • the relative positioning unit 102 uses, for example, a gyro sensor (angular velocity sensor), an acceleration sensor, a magnetic compass, or the like for 6-axis (3-axis acceleration and 3-axis angular velocity) or 9-axis (3-axis acceleration, 3-axis angular velocity and 3-axis azimuth) inertial measurement unit (IMU), encoder (Odometry) that measures travel distance from axle rotation, VO (Visual Odometry) that measures relative displacement from camera image data, LiDAR point cloud It is realized by LO (LiDAR Odometry) etc. that measures relative displacement from data.
  • the relative positioning unit 102 may be realized by any one of them alone, or may be realized by combining a plurality of them.
  • the time synchronization unit 103 distributes time information synchronized with absolute time to at least other units (that is, the relative positioning unit 102, the processing delay measurement unit 104, the position estimation unit 105, and the output interface unit 107).
  • FIG. 3 shows a detailed configuration example of the time synchronization unit 103 according to this embodiment.
  • the time synchronization unit 103 according to the present embodiment includes a GNSS receiver unit 111 for synchronizing with absolute time, a clock unit 112 for generating time information synchronized with absolute time, and a crystal or atomic clock. and a clock signal generation unit 113 for generating a clock signal using .
  • the time information distribution unit 114 uses synchronization signals such as PPS (Pulse Per Second), NTP (Network time Protocol), and PTP (Precision Time Protocol) to distribute time information.
  • PPS Pulse Per Second
  • NTP Network time Protocol
  • PTP Precision Time Protocol
  • the time information distribution unit 114 may simultaneously distribute the clock signal together with the time information by a physical layer propagation means such as Synchronous Ethernet (SyncE).
  • Synchronous Ethernet Synchronous Ethernet
  • the GNSS receiver section 111 is realized by, for example, a GNSS receiver, but this GNSS receiver may be shared with the GNSS signal reception section 101 .
  • the time synchronization unit 103 allows the clock unit 112 to perform a free-running (holdover) operation for a certain period of time according to the clock signal supplied from the clock signal generation unit 113 .
  • the time synchronization unit 103 can provide highly accurate time synchronization and clock signal frequency synchronization to other units. Note that the accuracy of time synchronization provided by the time synchronization unit 103 is assumed to be several microseconds or more.
  • the processing delay measuring unit 104 measures the processing time (time lag) required from the time when the position estimating unit 105 inputs the information necessary for self-position estimation to the time when the output interface unit 107 outputs the estimated self-position. measure.
  • a method of measuring such processing time for example, a method of counting the pulse signal of the clock signal distributed from the time synchronization unit 103, a method of stamping a time stamp based on the time information distributed from the time synchronization unit 103. etc. are used. Note that the accuracy of the clock signal and time stamp used here is maintained by the time synchronization unit 103 .
  • the position estimation unit 105 Based on the positioning solution (GNSS positioning solution) received by the communication unit 106 from the positioning server 20, the relative displacement amount measured by the relative positioning unit 102, and the processing time measured by the processing delay measurement unit 104, the position estimation unit 105 , the self position (that is, the position of the terminal device 10) at an arbitrary time is estimated.
  • the position estimating unit 105 uses, for example, an extended Kalman filter (EKF), a particle filter (particle filter, Monte Carlo filter), etc., and the self-position is estimated by processing executed by the CPU (Central Processing Unit).
  • EKF extended Kalman filter
  • particle filter particle filter, Monte Carlo filter
  • the communication unit 106 transmits observation data to the positioning server 20 and receives positioning solutions from the positioning server 20 .
  • the communication unit 106 uses, for example, a communication protocol such as Ntrip, and is realized by a communication interface of standards such as mobile communication such as LTE (Long Term Evolution), WiFi, LAN (Local Area Network), and the like.
  • the output interface section 107 outputs the positioning solution representing the self-position estimated by the position estimation section 105 to a predetermined output destination.
  • the output interface unit 107 is realized by a machine communication interface such as serial communication, LAN, USB (Universal Serial Bus), or the like.
  • a machine communication interface such as serial communication, LAN, USB (Universal Serial Bus), or the like.
  • NMEA0183 As the data format of the positioning solution (self-location) output by the output interface unit 107, for example, NMEA0183 or the like is used.
  • Step S101 The GNSS signal receiving unit 101 receives a GNSS signal from the GNSS antenna 108, performs RF signal processing, baseband signal processing, etc., and outputs observation data.
  • the GNSS signal reception unit 101 receives the reception time t1 in a state in which the time bias of the GNSS receiver is corrected (that is, in a state in which the GNSS receiver is synchronized with the absolute time). is measured.
  • This reception time t1 is included in the observation data generated by the GNSS signal reception unit 101, and is not affected by the propagation delay that occurs in the communication network in the subsequent communication process between the terminal device 10 and the positioning server 20.
  • Step S ⁇ b>102 The communication unit 106 transmits the observation data output from the GNSS signal reception unit 101 to the positioning server 20 . Accordingly, the positioning engine of the positioning server 20 calculates a positioning solution from the observation data and transmits the positioning solution to the terminal device 10 .
  • the positioning solution includes the reception time t1 of the GNSS signal.
  • Step S ⁇ b>103 the relative positioning unit 102 sequentially measures the amount of relative displacement of the terminal device 10 from the reception time t 1 of the GNSS signal, and sequentially outputs it to the position estimation unit 105 .
  • the relative positioning unit 102 synchronizes with the absolute time with high accuracy by the time information distributed from the time synchronization unit 103, and measures the relative displacement amount at each measurement time t2 (> t1 ).
  • the relative displacement amount is measured at each.
  • the time at which the terminal device 10 receives the positioning solution from the positioning server 20 is t3 , t1 + N ⁇ t2 ⁇ t3 . That is, the relative displacement amount is measured by the relative positioning unit 102 every measurement cycle ⁇ t 2 from time t 1 to time t 3 .
  • the relative displacement amount measured at each measurement time t 2 is sequentially output to the position estimator 105 .
  • the maximum value of the time difference between t 2 and t 1 (that is, t 3 ⁇ t 1 ) is the time when the terminal device 10 transmits the observation data to the positioning server 20, and the terminal device 10 receives the positioning solution for the observation data. corresponds to the delay time up to This delay time is assumed to be on the order of several hundred milliseconds, for example.
  • Step S ⁇ b>104 The communication unit 106 receives the positioning solution from the positioning server 20 .
  • the time t3 at which the positioning solution is received is also referred to as the current time.
  • Step S105 The processing delay measurement unit 104 measures the time from the time when the position estimation unit 105 receives information necessary for self-position estimation to the time when the output interface unit 107 outputs the estimated self-position (positioning solution).
  • the required processing time (hereinafter referred to as processing delay time) is output.
  • the processing delay measurement unit 104 synchronizes with the absolute time with high accuracy by the time information distributed from the time synchronization unit 103, measures the processing delay time with high accuracy (for example, accuracy of about 10 microseconds),
  • the measured value ⁇ t is output to position estimation section 105 .
  • a value measured at the present time may be output, or an average value of values measured in the past may be output.
  • the processing delay time ⁇ t is, for example, approximately several hundred microseconds to several tens of milliseconds.
  • FIG. 5 shows an example of self-position estimation. As shown in FIG. 5, position estimating section 105 uses the displacement amount at each time t2 from time t1 to time t3 and the positioning solution at time t1 to calculate the position at time t4 , which is ⁇ t ahead . Estimate the self-position at
  • Step S107 The output interface section 107 outputs the positioning solution representing the self-position estimated by the position estimation section 105 to a predetermined output destination.
  • the self-position positioning solution
  • the mobile object can obtain a highly real-time and highly accurate positioning solution (that is, the actual position of the mobile object at the current time). A positioning solution close to the position of ) is obtained.
  • GNSS positioning solutions are received at a constant frequency (eg, 10 Hz), so that steps S101 to S107 are assumed to be repeatedly executed every 100 milliseconds.
  • a constant frequency eg, 10 Hz
  • Relative positioning unit 102 measures the relative displacement at a frequency (eg, 100 Hz) higher than the positioning solution (eg, ⁇ t 2 is 10 milliseconds).
  • the gyro sensor which is a core component of the IMU that realizes the relative positioning unit 102, includes types such as a MEMS gyro, an interferometric optical fiber gyro, and a ring laser gyro with different accuracies.
  • the maximum value of the time difference of t1 corresponds to the turnaround time (TAT) of the communication network 30, which is several hundred milliseconds at most.
  • the accumulated error of the gyro sensor within this period (TAT) is sufficiently small even when compared relatively to the accuracy (several cm) expected in the GNSS positioning solution by carrier wave phase positioning, and the cost is low.
  • a MEMS gyro can be used.
  • positioning solutions can be estimated and output with high frequency. Since the terminal device 10 according to the present embodiment can output highly real-time positioning solutions at a high frequency, equipment that uses the positioning results, for example, an autonomous driving control device and a driving support system, can perform more precise control. can be realized.
  • the positioning server 20 may be set in any location other than the cloud/edge infrastructure. For example, when measuring the position of a vehicle, it may be installed on an in-vehicle ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the delay time of the communication network 30 is considered, but the present embodiment can be applied to any case where the output of the positioning solution is delayed due to factors other than the delay of the communication network 30. be.
  • the reception position that is, the terminal device 10 positions
  • highly real-time and highly accurate self-position estimation can be realized.
  • GNSS positioning system 10 terminal device 20 positioning server 30 communication network 101 GNSS signal receiver 102 relative positioning unit 103 time synchronization unit 104 processing delay measurement unit 105 position estimation unit 106 communication unit 107 output interface unit 108 GNSS antenna 111 GNSS receiver unit 112 clock unit 113 clock signal generation unit 114 time information distribution unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一実施形態に係る信号処理装置は、GNSS信号の観測データから測位解を演算する測位サーバと通信ネットワークを介して接続される信号処理装置であって、前記GNSS信号を受信し、前記観測データを作成するように構成されているGNSS信号受信部と、前記観測データを前記測位サーバに送信するように構成されている第1の通信部と、前記測位サーバから前記測位解を受信するように構成されている第2の通信部と、所定の計測周期毎に、前記信号処理装置の相対変位量を計測するように構成されている相対測位部と、前記信号処理装置が備える出力インタフェースが前記測位解を出力するのに要する時間を表す第1の遅延時間を計測するように構成されている遅延計測部と、前記測位解と、前記計測周期毎の相対変位量と、前記第1の遅延時間と、前記観測データを前記測位サーバに送信してから前記測位解を受信するまでの時間を表す第2の遅延時間とに基づいて、現在時刻よりも前記第1の遅延時間先の時刻における前記信号処理装置の位置を推定するように構成されている推定部と、を有する。

Description

信号処理装置、信号処理方法及びプログラム
 本発明は、信号処理装置、信号処理方法及びプログラムに関する。
 航法衛星システム(Global Navigation Satellite Systems:GNSS)を使用した測位は幅広い分野で活用されている。航法衛星信号(以下、GNSS信号という。)を受信するアンテナ(以下、GNSSアンテナという。)とGNSS信号を処理して測位演算処理により測位解を出力する機器(以下、GNSSレシーバという。)は、GNSS信号を受信し、測位を実施する地点(つまり、受信位置)に設置されることが一般的である。一方、これに対して、通信ネットワークを介してクラウド/エッジ基盤上に設置されたサーバ(以下、測位サーバという。)上で測位演算処理の少なくとも一部を実施する「クラウドGNSS測位アーキテクチャ」も検討されている。
Seiji Yoshida 他,"Positional Information Service with High Added Value Based on Cooperation between GNSS and Networks", NTT Technical Review Vol. 17 No. 6 June 2019
 しかしながら、従来のクラウドGNSS測位アーキテクチャにおいては、通信ネットワークを介して測位サーバと通信する際に生じる信号の伝搬遅延やその揺らぎが原因となり、端末側における測位解の出力に定量的には予測できない遅延時間やその揺らぎが生じる。なお、遅延時間の揺らぎに関してはジッタバッファ等の適用によりその大きさを低減することが可能であるが、バッファ深さの設定値に依存するアディショナルな遅延時間が生じるというトレードオフが存在する。
 本発明の一実施形態は、上記の点に鑑みてなされたもので、リアルタイム性の高い測位解を出力することを目的とする。
 上記目的を達成するため、一実施形態に係る信号処理装置は、GNSS信号の観測データから測位解を演算する測位サーバと通信ネットワークを介して接続される信号処理装置であって、前記GNSS信号を受信し、前記観測データを作成するように構成されているGNSS信号受信部と、前記観測データを前記測位サーバに送信するように構成されている第1の通信部と、前記測位サーバから前記測位解を受信するように構成されている第2の通信部と、所定の計測周期毎に、前記信号処理装置の相対変位量を計測するように構成されている相対測位部と、前記信号処理装置が備える出力インタフェースが前記測位解を出力するのに要する時間を表す第1の遅延時間を計測するように構成されている遅延計測部と、前記測位解と、前記計測周期毎の相対変位量と、前記第1の遅延時間と、前記観測データを前記測位サーバに送信してから前記測位解を受信するまでの時間を表す第2の遅延時間とに基づいて、現在時刻よりも前記第1の遅延時間先の時刻における前記信号処理装置の位置を推定するように構成されている推定部と、を有する。
 リアルタイム性の高い測位解を出力することができる。
本実施形態に係るクラウドGNSS測位システムの全体構成例を説明するための図である。 本実施形態に係る端末装置の構成例を説明するための図である。 本実施形態に係る時刻同期部の構成例を説明するための図である。 本実施形態に係る端末装置の動作例を説明するための図である。 自己位置の推定例を説明するための図である。
 以下、本発明の一実施形態について説明する。
 <クラウドGNSS測位アーキテクチャ及びその関連技術>
 まず、本実施形態を説明する前に、従来技術であるクラウドGNSS測位アーキテクチャとその関連技術について説明する。
 クラウドGNSS測位アーキテクチャでは、GNSSアンテナ及びGNSSレシーバ等で構成される端末装置が受信位置に存在し、クラウド/エッジ基盤上(以下、クラウド、エッジ基盤の両方をまとめて「クラウド」ということにする。)に設置された測位サーバと通信ネットワークを介して接続される。端末装置は、GNSSアンテナでGNSS信号を受信し、GNSSレシーバにおいてRF信号処理やベースバンド信号処理等を行った後に取得される観測データ(raw data)を測位サーバに送信する。測位サーバは、端末装置から送信された観測データを使用して測位演算処理を行い、その結果得られる測位解を当該端末装置に送信する。
 クラウド上の測位サーバへ観測データを送信する際のデータ形式としては、例えば、RTCM(Radio Technical Commission for Maritime Services)形式等が使用される。また、測位サーバから測位解を送信する際のデータ形式としては、例えば、NMEA(National Marine Electronics Association)0183形式等が使用される。これらのデータをIP(Internet Protocol)ネットワーク上で転送する際のプロトコルとしては、例えば、TCP/IPベースのNtrip(Networked Transport of RTCM via Internet Protocol)等が使用される。この場合、Ntripプロトコルのゲートウェア装置であるNtrip Catserがクラウド上に設置され、認証等を含むセッションの管理やトラフィックの制御等が行われる。
 クラウド上の測位サーバにおいて測位演算処理により出力される測位解には、航法衛星信号のコードを使用したコード測位方式による測位解(つまり、コード測位解)、RTK(Real Time Kinematic)方式をはじめとする搬送波位相測位方式による測位解(つまり、搬送波位相測位解)が含まれる。
 クラウドGNSS測位アーキテクチャでは、測位解を受信位置だけでなく、通信ネットワークに接続される任意の地点の端末装置で無制限に受信することができる点に特徴がある。このため、クラウドGNSS測位アーキテクチャは、例えば、ロボットトラクタの遠隔制御等といった用途やGIS(Geographic Information System)等のアプリケーションへの適用に適している。
 更に、クラウドGNSS測位アーキテクチャでは、クラウド上の潤沢な処理リソースを使用して高度な測位演算処理を行うことができる。また、複数の端末装置からデータを収集してコラボレイティブな処理を行うクラウドソーシング的なアプローチ、3次元地図データ等の地図空間情報を活用した処理等といった、従来の端末装置単独の測位では実現できなかった新たな測位演算処理を実現できる可能性がある。
 また、クラウドGNSS測位アーキテクチャでは、端末装置側のGNSSレシーバの機能の一部を簡略化することができるため、端末装置の小型化、低コスト化、省電力化等を実現できるというメリットもある。
 一方で、上述したように、クラウドGNSS測位アーキテクチャでは、通信ネットワークを介して測位サーバと通信する際に生じる信号の伝搬遅延やその揺らぎが原因となり、端末装置側における測位解の出力に定量的には予測できない遅延時間やその揺らぎが生じる。また、遅延時間の揺らぎに関してはジッタバッファ等の適用によりその大きさを低減することが可能であるが、バッファ深さの設定値に依存するアディショナルな遅延時間が生じるというトレードオフが存在する。
 上記の測位解の出力遅延(タイムラグ)は、リアルタイム性が要求されるアプリケーション(例えば、自動走行車における自律制御、ADAS(Advanced Driver-Assistance Systems:先進運転支援システム)における車体制御等)において性能の劣化が生じる要因となり得る。例えば、時速80kmで走行する車は100msの間に約2.2m移動する。このため、クラウド上の測位サーバにおける測位演算処理に要する時間も含む遅延時間が300msであると仮定した場合、自律制御や車体制御等を行う制御システムが測位解を受信した時点で進行方向に約6.6m移動していることになり、各種のフィードバック制御に対して影響を与えてしまう。
 そこで、以下では、クラウドGNSS測位アーキテクチャで実現されたクラウドGNSS測位システム1を対象として、通信ネットワークで生じる信号の伝搬遅延及びその揺らぎに起因する測位解の出力遅延を解消し、リアルタイム性の高い測位解を出力する場合について説明する。
 <クラウドGNSS測位システム1の全体構成例>
 本実施形態に係るクラウドGNSS測位システム1の全体構成例を図1に示す。図1に示すように、本実施形態に係るクラウドGNSS測位システム1には、端末装置10と、測位サーバ20とが含まれる。また、端末装置10と測位サーバ20は、インターネット等を含む通信ネットワーク30を介して通信可能に接続される。
 端末装置10は、クラウドGNSS測位アーキテクチャの端末装置として機能する各種装置、機器、ソフトウェア等である。なお、端末装置10は或る受信位置に固定的に設置されるものであってもよいが、本実施形態では、主に、車両等の移動体に搭載され、移動体の移動に伴って端末装置10も同時に移動する場合を想定する。
 測位サーバ20は、クラウドGNSS測位アーキテクチャの測位サーバとして機能する各種装置、機器、ソフトウェア等である。測位サーバ20は、端末装置10から送信された観測データを使用して測位演算処理を実行する測位エンジンを少なくとも備えている。
 なお、図1に示す例では、端末装置10が1台のみ図示されているが、複数台の端末装置10が存在してもよい。また、測位サーバ20は、例えば、複数台の装置で構成される分散システムであってもよい。
 <端末装置10の構成例>
 本実施形態に係る端末装置10の構成例を図2に示す。図2に示すように、本実施形態に係る端末装置10は、GNSS信号受信部101と、相対測位部102と、時刻同期部103と、処理遅延計測部104と、位置推定部105と、通信部106と、出力インタフェース部107とを有する。また、本実施形態に係る端末装置10は、GNSS信号を受信するGNSSアンテナ108を備えている。
 GNSS信号受信部101は、GNSSアンテナ108からGNSS信号を受信し、RF信号処理やベースバンド信号処理等を行い、観測データを出力する。GNSS信号受信部101は、例えば、GNSSレシーバにより実現される。
 相対測位部102は、端末装置10の相対変位量を計測する。相対測位部102は、例えば、ジャイロセンサ(角速度センサ)、加速度センサ、磁気コンパス等により実現される6軸(3軸加速度と3軸角速度)又は9軸(3軸加速度と3軸角速度と3軸方位)の慣性航法装置(Inertial Measurement Unit:IMU)、車軸の回転数から走行距離を計測するエンコーダ(Odometry)、カメラの画像データから相対変位量を計測するVO(Visual Odometry)、LiDARの点群データから相対変位を計測するLO(LiDAR Odometry)等により実現される。なお、これらのうちのいずれか単独で相対測位部102が実現されてもよいし、複数を組み合わせたもので相対測位部102が実現されてもよい。
 時刻同期部103は、絶対時刻に同期した時刻情報を他の各部(つまり、相対測位部102、処理遅延計測部104、位置推定部105、及び出力インタフェース部107)に少なくとも配信する。ここで、本実施形態に係る時刻同期部103の詳細な構成例を図3に示す。図3に示すように、本実施形態に係る時刻同期部103は、絶対時刻に同期するためのGNSSレシーバ部111と、絶対時刻に同期した時刻情報を生成する時計部112と、水晶や原子時計等を原振としてクロック信号を生成するクロック信号生成部113と、時刻情報を他の各部に少なくとも配信する時刻情報配信部114とを有する。
 ここで、絶対時刻としては、例えば、UTC(Coordinated Universal Time:協定世界時)が使用される。また、時刻情報配信部114では、例えば、PPS(Pulse Per Second)、NTP(Network time Protocol)、PTP(Precision Time Protocol)等の同期信号が時刻情報の配信において使用される。このとき、時刻情報配信部114は、時刻情報と共に、例えば、シンクロナスイーサネット(Synchronous Ethernet:;SyncE)等の物理層の伝搬手段によりクロック信号を同時に配信してもよい。
 また、GNSSレシーバ部111は、例えば、GNSSレシーバにより実現されるが、このGNSSレシーバはGNSS信号受信部101と共用していてもよい。また、時刻同期部103は、GNSS信号との同期が途切れた場合でも、クロック信号生成部113から供給されるクロック信号により時計部112が一定時間自走(ホールドオーバー)動作を行うことができる。
 これにより、時刻同期部103は、他の各部に対して高精度な時刻同期及びクロック信号の周波数同期を提供することができる。なお、時刻同期部103により提供される時刻同期の精度は数マイクロ秒程度以上を想定する。
 処理遅延計測部104は、位置推定部105において自己位置推定に必要な情報が入力された時点から、出力インタフェース部107において推定された自己位置が出力される時点までに要する処理時間(タイムラグ)を計測する。このような処理時間を計測する方法としては、例えば、時刻同期部103から配信されたクロック信号のパルス信号をカウントする方法、時刻同期部103から配信された時刻情報によりタイムスタンプを打刻する方法等が使用される。なお、ここで使用されるクロック信号やタイムスタンプの精度は、時刻同期部103によって維持される。
 位置推定部105は、通信部106が測位サーバ20から受信した測位解(GNSS測位解)、相対測位部102によって計測された相対変位量、処理遅延計測部104によって計測された処理時間に基づいて、任意の時刻における自己位置(つまり、端末装置10の位置)を推定する。位置推定部105は、例えば、拡張カルマンフィルタ(Extended KalmanFilter:EKF)、パーティクルフィルタ(粒子フィルタ、モンテカルロフィルタ)等が使用され、CPU(Central Processing Unit)が実行する処理により自己位置の推定が行われる。
 通信部106は、測位サーバ20に観測データを送信したり、測位サーバ20から測位解を受信したりする。通信部106は、例えば、Ntrip等の通信プロトコルを使用し、LTE(Long Term Evolution)等のモバイル通信、WiFi、LAN(Local Area Network)等といった規格の通信インタフェースにより実現される。
 出力インタフェース部107は、位置推定部105によって推定された自己位置を表す測位解を所定の出力先に出力する。出力インタフェース部107は、例えば、シリアル通信、LAN、USB(Universal Serial Bus)等といった機械の通信インタフェースにより実現される。なお、出力インタフェース部107によって出力される測位解(自己位置)のデータ形式としては、例えば、NMEA0183等が使用される。
 <端末装置10の動作例>
 以下、本実施形態に係る端末装置10の動作例について、図4を参照しながら説明する。なお、図4のステップS101~ステップS107は、例えば、所定の時間毎に繰り返し実行される。
 ステップS101:GNSS信号受信部101は、GNSSアンテナ108からGNSS信号を受信し、RF信号処理やベースバンド信号処理等を行い、観測データを出力する。このとき、GNSS信号の受信時刻をtとした場合、GNSS信号受信部101は、GNSSレシーバの時刻バイアスが補正された状態(つまり、GNSSレシーバが絶対時刻に同期した状態)で受信時刻tが計測される。この受信時刻tは、GNSS信号受信部101で生成される観測データに含まれ、その後の端末装置10と測位サーバ20との間の通信過程において通信ネットワークで生じる伝搬遅延の影響を受けない。
 ステップS102:通信部106は、GNSS信号受信部101から出力された観測データを測位サーバ20に送信する。これにより、測位サーバ20の測位エンジンによって当該観測データから測位解が演算され、端末装置10に当該測位解が送信される。なお、当該測位解には、GNSS信号の受信時刻tが含まれる。
 ステップS103:他方で、相対測位部102は、GNSS信号の受信時刻tからの端末装置10の相対変位量を逐次的に計測し、位置推定部105に逐次的に出力する。ここで、相対測位部102は、時刻同期部103から配信される時刻情報によって絶対時刻と高精度に同期し、各計測時刻t(>t)において相対変位量を計測する。
 例えば、相対変位量の計測周期をΔtとした場合、或る整数Nに対して、t=t+Δt,t+2Δt,t+3Δt,・・・,t+NΔtの各々で相対変位量が計測される。ただし、測位サーバ20からの測位解を端末装置10が受信した時刻をtとした場合、t+NΔt≦tである。すなわち、相対測位部102によって時刻tから時刻tまでの間、計測周期Δt毎に相対変位量が計測される。
 上記の各計測時刻tの各々で計測された相対変位量は、位置推定部105に逐次的に出力される。なお、tとtの時間差の最大値(つまり、t-t)は、端末装置10から測位サーバ20に観測データを送信し、その観測データに対する測位解を端末装置10が受信するまでの遅延時間に相当する。この遅延時間は、例えば、数100ミリ秒程度の大きさであることが想定される。
 ステップS104:通信部106は、測位サーバ20から測位解を受信する。以下、測位解を受信した時刻tを現在時刻ともいう。
 ステップS105:処理遅延計測部104は、位置推定部105において自己位置推定に必要な情報が入力された時点から、出力インタフェース部107において推定された自己位置(測位解)が出力される時点までに要する処理時間(以下、処理遅延時間という。)を出力する。ここで、処理遅延計測部104は、時刻同期部103から配信される時刻情報によって絶対時刻と高精度に同期し、処理遅延時間を高精度(例えば、10マイクロ秒程度の精度)で計測し、その計測値Δtを位置推定部105に出力する。処理遅延時間Δtは、例えば、現時点で計測した値を出力してもよいし、過去に計測した値の平均値を出力してもよい。又は、例えば、ステップS101~ステップS107の繰り返しにおける各処理遅延時間の変動幅が少なければ(具体的には、或る微小な閾値よりも変動幅が小さければ)、一度計測した値を定数として出力してもよい。なお、処理遅延時間Δtは、例えば、数100マイクロ秒から数10ミリ秒程度の大きさであることが想定される。
 ステップS106:位置推定部105は、通信部106が測位サーバ20から受信したGNSS信号の受信時刻tにおける測位解と、相対測位部102によって各計測時刻tの各々で計測された各相対変位量と、処理遅延計測部104によって計測された処理遅延時間Δtとに基づいて、現在時刻tよりも処理遅延時間Δt先の時刻(つまり、出力インタフェース部107によって測位解が出力される想定時刻)t=t+Δtにおける自己位置を推定する。ここで、自己位置の推定例を図5に示す。図5に示すように、位置推定部105は、時刻tから時刻tまでの各時刻tにおける変位量と、時刻tにおける測位解とを用いて、Δt先の時刻であるtにおける自己位置を推定する。
 ステップS107:出力インタフェース部107は、位置推定部105によって推定された自己位置を表す測位解を所定の出力先に出力する。このように、位置推定部105で推定されたΔt時間後の自己位置(測位解)を出力することにより、移動体においてリアルタイム性の高く高精度な測位解(つまり、現在時刻における移動体の実際の位置に近い測位解)が得られる。
 なお、例えば、GNSS測位解は一定の頻度(例えば、10Hz)で受信されることが想定されるため、上記のステップS101~ステップS107は100ミリ秒毎に繰り返し実行されることが想定される。これにより、リアルタイム性の高く高精度な測位解が継続的に出力される。
 <補足>
 相対測位部102では測位解よりも高い頻度(例えば、100Hz)で相対変位量が計測される(つまり、例えば、Δtは10ミリ秒)。相対測位部102を実現するIMUの基幹部品であるジャイロセンサには、精度の異なるMEMSジャイロ、干渉型光ファイバジャイロ、リングレーザジャイロ等の種別があるが、上述したように、時刻tと時刻tの時間差の最大値は通信ネットワーク30のターンアラウンドタイム(TAT)相当であり、高々数100ミリ秒である。このため、この期間内(TAT)のジャイロセンサの累積誤差は搬送波位相測位によるGNSS測位解で期待される精度(数cm)と相対的に比較しても十分に小さいことが想定され、低コストなMEMSジャイロを用いることができる。
 また、相対測位部102において高い精度で相対変位量を計測及び出力し、位置推定部105でこれらの相対変位量を使用することにより、高い頻度で測位解を推定及び出力することができる。本実施形態に係る端末装置10は、リアルタイム性の高い測位解を高い頻度で出力することができるため、測位結果を利用する機器、例えば、自律走行の制御装置や運転支援システムではより精緻な制御を実現することができるようになる。
 なお、測位サーバ20はクラウド/エッジ基盤以外の任意の場所に設定されてもよい。例えば、車両の位置を測位する場合には車載のECU(Electronic Control Unit)上に設置されてもよい。
 また、本実施形態では通信ネットワーク30の遅延時間を考慮したが、通信ネットワーク30の遅延以外の要因で測位解の出力に遅延を生じるあらゆるケースに対しても本実施形態を適用することが可能である。
 以上、詳述した通り、本実施形態によれば、クラウドGNSS測位アーキテクチャで実現されるクラウドGNSS測位システム1において、通信ネットワーク30で生じる伝搬遅延時間の大きさよらず、受信位置(つまり、端末装置10の位置)においてリアルタイム性が高く、かつ、高精度な自己位置の推定を実現することができる。
 本発明は、具体的に開示された上記の実施形態に限定されるものではなく、請求の範囲の記載から逸脱することなく、種々の変形や変更、既知の技術との組み合わせ等が可能である。
 1    クラウドGNSS測位システム
 10   端末装置
 20   測位サーバ
 30   通信ネットワーク
 101  GNSS信号受信部
 102  相対測位部
 103  時刻同期部
 104  処理遅延計測部
 105  位置推定部
 106  通信部
 107  出力インタフェース部
 108  GNSSアンテナ
 111  GNSSレシーバ部
 112  時計部
 113  クロック信号生成部
 114  時刻情報配信部

Claims (8)

  1.  GNSS信号の観測データから測位解を演算する測位サーバと通信ネットワークを介して接続される信号処理装置であって、
     前記GNSS信号を受信し、前記観測データを作成するように構成されているGNSS信号受信部と、
     前記観測データを前記測位サーバに送信するように構成されている第1の通信部と、
     前記測位サーバから前記測位解を受信するように構成されている第2の通信部と、
     所定の計測周期毎に、前記信号処理装置の相対変位量を計測するように構成されている相対測位部と、
     前記信号処理装置が備える出力インタフェースが前記測位解を出力するのに要する時間を表す第1の遅延時間を計測するように構成されている遅延計測部と、
     前記測位解と、前記計測周期毎の相対変位量と、前記第1の遅延時間と、前記観測データを前記測位サーバに送信してから前記測位解を受信するまでの時間を表す第2の遅延時間とに基づいて、現在時刻よりも前記第1の遅延時間先の時刻における前記信号処理装置の位置を推定するように構成されている推定部と、
     を有する信号処理装置。
  2.  前記相対測位部は、
     前記計測周期毎に、前記GNSS信号を受信した時刻から、前記測位解を受信するまでの間における前記相対変位量を計測するように構成されている、請求項1に記載の信号処理装置。
  3.  前記相対測位部、前記遅延計測部、及び前記推定部に対して、絶対時刻と同期した時刻情報を少なくとも配信するように構成されている時刻同期部を更に有する、請求項1又は2に記載の信号処理装置。
  4.  推定された位置を前記出力インタフェースにより所定の出力先に出力するように構成されている出力部を更に有する、請求項1乃至3の何れか一項に記載の信号処理装置。
  5.  前記推定部は、
     拡張カルマンフィルタ又はパーティクルフィルタにより前記現在時刻よりも前記第1の遅延時間先の時刻における前記信号処理装置の位置を推定するように構成されている、請求項1乃至4の何れか一項に記載の信号処理装置。
  6.  前記信号処理装置は車両を含む移動体に搭載されるものである、請求項1乃至5の何れか一項に記載の信号処理装置。
  7.  GNSS信号の観測データから測位解を演算する測位サーバと通信ネットワークを介して接続される信号処理装置が、
     前記GNSS信号を受信し、前記観測データを作成するGNSS信号受信手順と、
     前記観測データを前記測位サーバに送信する第1の通信手順と、
     前記測位サーバから前記測位解を受信する第2の通信手順と、
     所定の計測周期毎に、前記信号処理装置の相対変位量を計測する相対測位手順と、
     前記信号処理装置が備える出力インタフェースが前記測位解を出力するのに要する時間を表す第1の遅延時間を計測する遅延計測手順と、
     前記測位解と、前記計測周期毎の相対変位量と、前記第1の遅延時間と、前記観測データを前記測位サーバに送信してから前記測位解を受信するまでの時間を表す第2の遅延時間とに基づいて、現在時刻よりも前記第1の遅延時間先の時刻における前記信号処理装置の位置を推定する推定手順と、
     を実行する信号処理方法。
  8.  コンピュータを、請求項1乃至6の何れか一項に記載の信号処理装置として機能させるプログラム。
PCT/JP2021/047367 2021-12-21 2021-12-21 信号処理装置、信号処理方法及びプログラム WO2023119430A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047367 WO2023119430A1 (ja) 2021-12-21 2021-12-21 信号処理装置、信号処理方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047367 WO2023119430A1 (ja) 2021-12-21 2021-12-21 信号処理装置、信号処理方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2023119430A1 true WO2023119430A1 (ja) 2023-06-29

Family

ID=86901651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047367 WO2023119430A1 (ja) 2021-12-21 2021-12-21 信号処理装置、信号処理方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2023119430A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017016A (ja) * 2003-06-24 2005-01-20 National Institute Of Information & Communication Technology 衛星測位端末受信機の検定方法及び検定システム
JP2006258461A (ja) * 2005-03-15 2006-09-28 Mitsubishi Electric Corp 測位装置、測位方法および測位プログラム
WO2016185659A1 (ja) * 2015-05-15 2016-11-24 株式会社デンソー 移動体位置検出装置、移動体位置検出方法
JP2021515205A (ja) * 2018-02-26 2021-06-17 スマートスカイ ネットワークス エルエルシーSmartsky Networks Llc 最適化された位置情報支援型ビームフォーミング
WO2021220416A1 (ja) * 2020-04-28 2021-11-04 日本電信電話株式会社 位置計測装置、位置計測方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017016A (ja) * 2003-06-24 2005-01-20 National Institute Of Information & Communication Technology 衛星測位端末受信機の検定方法及び検定システム
JP2006258461A (ja) * 2005-03-15 2006-09-28 Mitsubishi Electric Corp 測位装置、測位方法および測位プログラム
WO2016185659A1 (ja) * 2015-05-15 2016-11-24 株式会社デンソー 移動体位置検出装置、移動体位置検出方法
JP2021515205A (ja) * 2018-02-26 2021-06-17 スマートスカイ ネットワークス エルエルシーSmartsky Networks Llc 最適化された位置情報支援型ビームフォーミング
WO2021220416A1 (ja) * 2020-04-28 2021-11-04 日本電信電話株式会社 位置計測装置、位置計測方法、及びプログラム

Similar Documents

Publication Publication Date Title
US10591581B2 (en) Space-time calibration system and method
Soatti et al. Implicit cooperative positioning in vehicular networks
Hasan et al. GNSS time synchronization in vehicular ad-hoc networks: Benefits and feasibility
US9606219B2 (en) Systems and methods for locating a target in a GPS-denied environment
CN102023290B (zh) 高精度分布式脉冲信号到达时间差检测系统
AU2017233539A1 (en) Estimating locations of mobile devices in a wireless tracking system
CN111788851B (zh) 车辆和用于控制车辆的方法
US10754039B2 (en) Method and device for chronologically synchronizing a kinematic location network
KR102107936B1 (ko) V2x 기반 차량 위성항법신호에 대한 오차보정데이터 생성을 위한 방법
KR101193833B1 (ko) 위성 추적 시스템 및 그 제어 방법
Shen et al. A DSRC Doppler/IMU/GNSS tightly-coupled cooperative positioning method for relative positioning in VANETs
JP7337444B2 (ja) 測位方法および測位システム
WO2023119430A1 (ja) 信号処理装置、信号処理方法及びプログラム
JP2017129458A (ja) 位置特定システム、および、位置特定方法
Yi et al. Joint time synchronization and tracking for mobile underwater systems
CN116545568A (zh) 一种短波信号超高精度时间戳的添加系统及方法
US11415708B2 (en) Multipath management for global navigation satellite systems
US10091751B2 (en) Mobile unit and method for timestamping a message exchanged with the mobile unit
Obst et al. Accurate relative localization for land vehicles with SBAS corrected GPS/INS integration and V2V communication
RU2802322C1 (ru) Помехоустойчивая разностно-дальномерная локальная радионавигационная система, комплексированная с инерциальной навигационной системой, обеспечивающая высокоточное позиционирование движущихся объектов
Willners et al. Moving baseline localization for multi-vehicle maritime operations
Mousa et al. Unmanned Aerial Vehicle Positioning using 5G New Radio Technology in Urban Environment
Li et al. An Efficient Distributed Multi-vehicle Cooperative Tracking Framework via Multicast
Fain et al. Small fixed-wing aerial positioning using inter-vehicle ranging combined with visual odometry
US20240098451A1 (en) Systems and methods for differential and non-differential navigation with cellular signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023568831

Country of ref document: JP

Kind code of ref document: A