WO2023118385A1 - Copeau en matériau composite recyclé et procédé de fabrication - Google Patents

Copeau en matériau composite recyclé et procédé de fabrication Download PDF

Info

Publication number
WO2023118385A1
WO2023118385A1 PCT/EP2022/087374 EP2022087374W WO2023118385A1 WO 2023118385 A1 WO2023118385 A1 WO 2023118385A1 EP 2022087374 W EP2022087374 W EP 2022087374W WO 2023118385 A1 WO2023118385 A1 WO 2023118385A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
fibers
carbon fibers
chips
composite material
Prior art date
Application number
PCT/EP2022/087374
Other languages
English (en)
Inventor
Benjamin SAADA
Romain Planche
Nicolas TACCOEN
Original Assignee
Fairmat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2114292A external-priority patent/FR3130819A1/fr
Priority claimed from EP22305430.5A external-priority patent/EP4253455A1/fr
Application filed by Fairmat filed Critical Fairmat
Priority to CA3241536A priority Critical patent/CA3241536A1/fr
Publication of WO2023118385A1 publication Critical patent/WO2023118385A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/042Mixing disintegrated particles or powders with other materials, e.g. with virgin materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to the field of recycling composite materials, in particular composite materials comprising carbon fibers.
  • Composite materials based on carbon fibers are used in many technical fields for their mechanical properties, in particular resistance and lightness. They are commonly used in particular in the aeronautical field, in the automotive industry, in boating, but also in the field of construction, energy, etc.
  • Composite materials based on carbon fibers generally comprise carbon fibers included in a matrix.
  • the carbon fibers are included in the matrix according to a given orientation, for example unidirectionally, or in the form of sheets of woven fibers.
  • the matrix generally, it consists of a polymer or it essentially comprises a polymer.
  • the matrix can also be called “adhesive”, or even “resin” (the matrix generally being a polymer).
  • the matrix can be thermoplastic or thermosetting in nature. Adhesives of a similar nature can be used in the same way within the scope of the present invention.
  • thermosetting polymers undergo a chemical reaction called crosslinking during the shaping of the composite material. This reaction generates chemical bonds and is irreversible. It is generally accepted that the most effective thermosetting polymers for forming a composite material based on carbon fibers are polyepoxides (known as “epoxies”).
  • Thermoplastic polymers are polymers which, beyond a certain temperature, called “phase transition temperature”, below their thermal degradation temperature, become viscous and can thus be shaped. When the temperature drops below this phase transition temperature, the polymer hardens and regains its initial stiffness. This hardening is reversible, by heating the polymer again.
  • the most common thermoplastic polymers are polyethylene (PE), poly(ethylene terephthalate) (PET) or polycaprolactam (PA-6).
  • PEEK poly(phenylene ether-ether-ketone)
  • PPS poly(phenylene sulfide)
  • PEI polyetherimide
  • composite materials based on carbon fibers being numerous and increasingly widespread, the question of the recycling of these materials arises.
  • these composite materials are high-value materials (largely due to the fact that they contain carbon fibers), the recovery of which may prove to be economically relevant.
  • Recycling may concern elements made of composite material at the end of their life or having suffered damage, elements manufactured but not meeting or no longer meeting certain standards required for the use for which they are intended (in particular in the aeronautical or space field) , or, more rarely, items not used on a certain date.
  • Mechanical recycling consists, in principle, of splitting and grinding existing composite material parts to separate at least partially the fibers from the resin, so as to obtain more or less long fibers which can be reused as reinforcement in new new resin.
  • the low fibrous particles resulting from the grinding which come in the form of powder, can be mixed with a resin during the formation of a new element in composite material.
  • the shredded pieces of composite are used as filling elements or as reinforcement in molded parts, but are not really intended to replace virgin carbon fibers as used in the traditional processes for manufacturing composite elements (based on non-recycled materials).
  • the powder obtained by grinding the composite materials to be recycled can be sieved in order to be sorted into several categories of particle sizes, without however this size having a significant influence on the mechanical properties of the element then formed in including these particles.
  • Chemical recycling consists of chemically degrading the hardened resin of a composite material in order to recover carbon fibers present in this material.
  • the recovered fibers are then generally aligned and/or spun to create a yarn from several thousand recovered fibers.
  • the mechanical properties of parts formed from composite materials comprising these recycled fibers are much lower than those of composite materials comprising new, non-recycled carbon fibers.
  • solvolysis under mild conditions, more moderate temperatures than in conventional solvolysis, below 200° C., are used.
  • the process takes place at atmospheric pressure (ambient pressure), and milder solvents, such as acetone or N,N-dimethylformamide are used, as well as possibly catalysts such as hydrogen peroxide or peroxyacetic acid .
  • Pre-treatment with acetic acid can also be used. That said, solvolysis under mild conditions has a fairly low production yield.
  • solvents are used under supercritical conditions to exhibit improved diffusivity and increased solvating ability. It is a complex and expensive process.
  • thermal recycling consists in principle of thermally degrading the resin of a composite material to recover the carbon fibers.
  • the heat can be provided by a pyrolysis process, which generally consists of burning the resin in an oven, by a fluidized bed process which uses the combined action of a solvent and high temperature, and finally by micro- waves.
  • the recovered fibers have highly degraded mechanical properties compared to new fibers.
  • the recovered fibers are generally short, they must be aligned and spun to be reused in applications requiring correct mechanical characteristics. Otherwise, they are used in filling, as are for example the powders obtained in the mechanical recycling processes mentioned above.
  • the present invention aims to provide recycled elements which can be incorporated into a matrix in order to prepare a part made of composite material, said recycled elements making it possible to overcome the drawbacks mentioned above.
  • the invention relates to a chip made of composite material comprising carbon fibers in a hardened adhesive, said chip having a substantially constant thickness defined between two opposite parallel faces of the chip, each face comprising carbon fibers on the surface at least part not included in the cured adhesive.
  • chip is meant a thin slice obtained from a composite material to be recycled comprising carbon fibers.
  • the chip has carbon fibers at least partially embedded in a cured adhesive. At least a majority of the fibers of the chip extend substantially parallel to opposite faces of the chip.
  • the thickness corresponds to the smallest dimension of the chip, which is small compared to its other dimensions (for example compared to its length and its width for a chip in a rectangular shape).
  • the thickness of the chip is substantially constant, because the chip has two opposite (main) faces that are substantially parallel at all points.
  • the chip is flat in the absence of constraints, it can be curved once included in a composite material part such as a panel. This possible curvature is possible due to the low thickness of the chip, which gives it a certain flexibility.
  • the thickness of the chip measured perpendicular to the main faces of the chip, is constant at all points of the chip, or, at the very least, is perceived as constant by an observer.
  • the thickness is “substantially” constant, that is to say that it is naturally perceived as constant.
  • the thickness is substantially constant when the smallest thickness is not less than half of the greatest thickness measured on a chip, and preferably when the difference between the greatest thickness and the smallest thickness measured on one chip does not exceed 25%.
  • the thickness is substantially constant when the difference between the smallest thickness and the largest thickness measured on the chip does not exceed 0.5 mm.
  • the term “substantially” refers conventionally to the perception of this characteristic according to the system used for its measurement or its manufacture. If a characteristic is observed with the naked eye, the term “significantly” therefore refers to the perception that an observer has of this characteristic.
  • An expression containing the term “substantially” should be interpreted as a technical characteristic produced within the tolerance range of its method of manufacture. In particular, the "substantially parallel" character between two elements can be understood to within 10° of angle. If the considered fiber is included in a fabric (typically taffetas, twills or satins), the direction of extension of the fiber is considered by neglecting the undulations of the fiber related to the weaving.
  • the chip according to the invention advantageously has a small thickness (e) compared to its other dimensions.
  • the chip thus being an essentially two-dimensional piece, of small thickness, its other dimensions typically correspond to the largest dimension (d) measurable at the surface of the chip and to the dimension measured perpendicularly, also at the surface of the chip.
  • face of the chip we mean any of the faces of the chip, namely the lower face or the upper face of the chip. Each of these faces having a surface called the surface of the chip.
  • the ratio (e)/(d) is between 0.05 and 0.0005, preferentially between 0.01 and 0.001 and even more preferentially between 0.005 and 0.001.
  • the thickness of the chip is between 200 ⁇ m and 1 mm, preferably between 200 ⁇ m and 500 ⁇ m.
  • the largest dimension (d) of the chip may advantageously be between 1 cm and 1 m, preferably between 5 cm and 50 cm, such as between 5 and 20 cm, more preferably between 7.5 and 15 cm or even more preferably between 8 and 12 cm or alternatively between 10 cm and 20 cm.
  • the length of the chip is about 10 cm.
  • X the length of the chip is about 10 cm.
  • the chip may have a width of between 2 and 20 mm, preferably between 5 and 15 mm, even more preferably between 7 and 10 mm.
  • the width of the chip is of the order of 9 mm.
  • cured adhesive an adhesive which has undergone a chemical reaction called cross-linking or polymerization. This chemical reaction occurs before the formation of chips, we then speak of hardened adhesive during a hardening prior to the formation of the chip.
  • the cured adhesive of the chip can advantageously be a thermosetting resin such as epoxy resins, cyanate ester and phenolic resins.
  • Suitable epoxy resins include diglycidyl ethers of bisphenol A, diglycidyl ethers of bisphenol F, epoxy novolac resins and N-glycidyl ethers, glycidyl esters, aliphatic and cycloaliphatic glycidyl ethers, glycidyl ethers of aminophenols, ethers glycidyls of any substituted phenols and mixtures thereof.
  • thermosetting polymers Also included are modified blends of the aforementioned thermosetting polymers.
  • modified blend is meant a polymer modified, typically, by the addition of rubber or thermoplastic.
  • the chip cured adhesive can also be a thermoplastic resin.
  • thermoplastics we can distinguish between high-performance plastics, engineering plastics and standard plastics. Most of the thermoplastics used in composite materials are high performance plastics or engineering plastics. These plastics differ from standard plastics in particular by greater wear resistance and chemical resistance.
  • Thermoplastics depending on their nature, can be hard in amorphous form or in crystalline form.
  • thermoplastics commonly used in composite materials are polyetherimides (PEI), polyethersulfone (PES), and polysulfones (PSU).
  • PEI polyetherimides
  • PES polyethersulfone
  • PSU polysulfones
  • thermoplastics used in composite materials include polyamides (PA), poly(ethylene terephthalate), polyphthalamide (PPA), poly(phenylene sulfide) (PPS), and polyetheretherketone ( PEEK).
  • PA polyamides
  • PPA poly(ethylene terephthalate)
  • PPA polyphthalamide
  • PPS poly(phenylene sulfide)
  • PEEK polyetheretherketone
  • a carbon fiber is considered included in the cured adhesive if its entire surface is in contact with this adhesive, i.e. if the entire surface of the fiber is coated by the adhesive.
  • the terms "included in” and “encapsulated by” are considered to be equivalent.
  • the part of the carbon fiber not included in the cured adhesive constitutes a bare fiber.
  • the chip according to the invention has a surface rate of bare fibers greater than or equal to 22%, the percentage being related to the total surface area of the face of the chip analyzed.
  • the area ratio of bare fibers represents the area occupied by the carbon fibers not included in the cured adhesive compared to the total surface area of the face of the chip analyzed.
  • the chip may have a surface rate of bare fibers greater than or equal to 22%, preferably comprised between 24% and 60%, such as a surface rate of bare fibers comprised between 26 and 50%.
  • the surface rate of bare fibers is determined on a sample comprising carbon fibers or on a chip according to the invention, according to the measurement method comprising the following steps: a) horizontal arrangement of the sample or chip on the plate d a digital microscope, so as to obtain images where the orientation of the fibers is vertical, the microscope being oriented at an angle of 20 to 40°, preferably 30° with respect to the line normal to the plane of the sample or chip and a partial annular light of the LED type is applied so that the light beam reaches the surface of the fibers in a direction orthogonal to the axis of orientation of the fibers b) Selection of the pixels having a threshold value of level of gray greater than or equal to 50 c) Count of the selected pixels and obtaining the percentage of area occupied by the selected pixels with respect to the total area of the image, this percentage corresponding to the value of the surface rate of bare fibres.
  • a ring light is a light that forms a circle around the microscope objective.
  • the plane of the sample or the chip is materialized by a face of the sample or the chip.
  • the circle of light can be divided into four quarters. We speak of “partial annular light” when only one of the quarters is used to illuminate the sample, thus defining a left, right, high or low annular light, depending on the location of the quarter with respect to the objective of the microscope.
  • a ring light is distinguished from a coaxial light which illuminates the specimen from the center of the microscope objective.
  • the partial annular light applied in step a) can be a right, left, top or bottom partial light.
  • the partial annular light applied in step a) is a left or right partial annular light, even more preferably, the partial annular light is right.
  • the microscope is then oriented at an angle of 20 to 40°, preferably 30° to the right with respect to the line normal to the plane of the chip.
  • the surface rate of bare fibers is determined according to the method set out in example 2, point 1.
  • one face has a roughness measured by a loss of mass greater than or equal to 0.008%, said loss of mass being measured by an abrasion test carried out on a linear abraser using an H18 abrasive rubber over 100 cycles.
  • roughness of a chip we mean the state of the face of the chip which presents roughness.
  • each face of the chip has a roughness.
  • This roughness is determined according to the measurement method comprising the following steps: a) Initial weighing of the chip to determine its initial mass, b) Fixing the chip on the support of a linear abraser, c) Application of an H18 abrasive rubber for 100 abrasion cycles, with a cycle length of 10 cm and a cycle speed of 25 cycles/min, d) Final weighing of the chip to determine its final mass, e) Determination of the roughness by calculating the difference between the initial mass of the chip (obtained in step a)) and the final mass of the chip (obtained in step d)).
  • the roughness is measured according to the method described in example 2.2.
  • the chip has a roughness measured by a loss of mass of between 0.014% and 0.20%, and more preferentially, the loss of mass is between 0.014% and 0.15%.
  • the chip according to the invention has a surface rate of bare fibers greater than or equal to 22% and a roughness measured by a loss of mass greater than or equal to 0.008%.
  • the chip has a surface rate of bare fibers comprised between 24% and 60% and a mass loss comprised between 0.014% and 0.20%.
  • the chip can have a surface rate of bare fibers comprised between 26% and 50%, and a mass loss comprised between 0.014% and 0.15%.
  • said carbon fibers extend substantially parallel to said opposite faces of the chip.
  • the carbon fibers included in the cured adhesive extend substantially parallel to said opposite faces of the chip.
  • the carbon fibers not included in the cured adhesive can extend substantially parallel to said opposite faces of the chip.
  • the carbon fibers are oriented in the same direction.
  • Carbon fibers oriented in the same direction are also said to be unidirectional.
  • the carbon fibers included in the cured adhesive are oriented in the same direction.
  • Carbon fibers not included in the cured adhesive can be oriented in the same direction.
  • the chip has a rectangular shape.
  • each face of the chip according to the invention has a surface area of at least 1 cm 2 .
  • Each face has a surface called the chip surface.
  • the surface of the chip can be at least 3 cm 2 , 5 cm 2 , 10 cm 2 or 20 cm 2 , 100 cm 2 .
  • the surface of the chip can therefore be between 1 and 100 cm 2 , between 2 and 25 cm 2 or between 5 and 15 cm 2 .
  • the invention also relates to a process for manufacturing a chip according to the invention, said process comprising the following steps: providing a composite material comprising carbon fibers oriented in a substantially parallel manner in a cured adhesive; mechanical cutting of the composite material with a blade device, said cutting being carried out by positioning the carbon fibers parallel to the direction of advance of the blade of said blade device.
  • the blade device may be a planer type system.
  • a plane-type system corresponds to a cutting machine comprising a blade making it possible to separate thin slices of regular thickness from the surface of an element over which it is passed.
  • the chip manufacturing process is more particularly described in Example 1.
  • the invention also relates to the use of shavings as defined above in a part made of composite material.
  • the chips according to the invention have the advantage of exhibiting improved adhesion with the matrix.
  • the inventors have discovered that the chips having a surface rate of bare fibers greater than or equal to 22% and/or a roughness measured by a loss in mass greater than or equal to 0.008% as defined above; show improved adhesion with the matrix. Improved adhesion between the matrix and the carbon fibers leads to better chip cohesion, thus limiting chip degradation and consequently also limiting the degradation of a part made of composite material comprising the chips according to the invention.
  • FIG. 1 represents, in the form of a graph, the flexural modulus of a panel comprising chips according to the invention organized in a unidirectional manner, the chips being obtained from composite material to be recycled, and that of a panel nine containing unidirectionally oriented carbon fibers.
  • Example 1 Obtaining a chip according to the invention
  • the formation of shavings is carried out from elements in composite material based on carbon fibers which are to be recycled.
  • the chips are obtained by mechanical cutting of said elements.
  • the cutting of the chips can be carried out using a cutting machine such as a blade device.
  • the blade device may be a planer type system.
  • a plane-type system corresponds to a cutting machine comprising a blade making it possible to separate thin slices of regular thickness from the surface of an element over which it is passed.
  • the blade of the blade device When an element is cut to form chips, the blade of the blade device is positioned, in a conventional manner, so that the edge of the blade moves in a plane parallel to the direction of advance of the blade of said blade device , the advancing direction of the blade of the blade device being rectilinear.
  • the “edge of the blade” also called “sharp edge” corresponds to the cutting edge of the blade which first penetrates the material to be cut.
  • the material to be cut is positioned in the cutting machine according to the organization of the carbon fibers it contains.
  • the fibers in the material to be cut are unidirectional, that is to say included in a matrix substantially parallel, in only one direction, then the fibers are positioned parallel to the direction of advancement of the blade of said blade device.
  • the part will preferably be placed so that the weft or warp threads are substantially parallel to the direction of advance of the blade of said blade device.
  • the fibers can also be arranged in a succession of layers, each layer comprising unidirectional fibers, but the layers having different fiber orientations. This is for example the case for so-called "four-way” materials, the layers of which may have successive relative orientations following: 0° (reference layer), 90°, 45°, -45°.
  • a “four-way” material is a laminated material comprising several unidirectional carbon fiber layers, the layers being oriented in four different directions: 0°, 90°, 45°, -45°.
  • the blade device can advantageously be adjusted so that its blade attacks the element between two layers of fibers, whether they are two layers of unidirectional fibers or two woven webs.
  • the cutting plane will advantageously be maintained between the layers of fibers in order to preserve their integrity as much as possible.
  • the blade device may comprise a micrometric shim system consisting of a superposition of elements arranged on either side of the material to be cut, said shim system being positioned on a reference plane and having a precision lower than the 1/ 10th of a millimeter.
  • a wedge system makes it possible to control the zone of attack of the blade and thus to produce a more precise cut between the layers of fibres. This system thus makes it possible to control the thickness of the chips obtained while keeping the carbon fibers intact.
  • Thin slices of composite material are thus obtained. These slices may in particular have a thickness of between 200 ⁇ m and 1 mm, preferably between 200 ⁇ m and 500 ⁇ m.
  • the elements to be cut are cut to the desired length for the chips before being cut into slices by the cutting machine, so that the chips with the desired length are obtained directly from the cutting machine.
  • the slices are then recut to obtain chips.
  • they are cut transversely by any suitable cutting means, for example by sawing, in order to form fine rectangular shavings of regular length. Other shapes of shavings can of course be cut from the slices obtained.
  • chips of 10 cm to 20 cm in length have been obtained and have made it possible to obtain very good results in terms of mechanical performance, as exemplified below.
  • Greater lengths can also be implemented, such as around 50 cm, or even 1 m.
  • the chips are therefore in the form of fine elements comprising carbon fibers included, at least in part, in a hardened resin.
  • the chips are therefore in the form of substantially two-dimensional pieces (in that their thickness is very small compared to its other dimensions).
  • the surface of the chips is advantageously at least 1 cm 2 , and preferably greater than 3 cm 2 , of the order of 10 cm 2 , or even greater, for example up to approximately 100 cm 2 .
  • the carbon fibers are oriented in the cured resin of the chips. Preferably, they are substantially parallel, orthogonal to each other, and/or oriented at 45° to each other.
  • the fibers of the chips having a substantially constant thickness, they have two opposite faces (between which the thickness is defined).
  • the cutting of the chips is carried out in such a way as to keep the carbon fibers intact as much as possible.
  • the cutting of the chips is carried out so that the fibers (in their majority, or even in their quasi totality or all) extend parallel to the opposite faces of the chips.
  • the fibers thus extend in planes parallel to the general plane of extension of the chip, and can have a great length despite the low thickness of the chips.
  • “Majority” means more than 50% in number.
  • a composite rod is a cylinder obtained by pultrusion of a composite material.
  • a composite sheet is distinguished from a composite plate by its thickness. Indeed the layer has a thickness of about 0.2 mm while the composite plate has a thickness of several millimeters.
  • Partially consolidated composite plies are plies whose carbon fibers are integrated into a matrix or resin whose polymerization has started but is not complete. They therefore differ from composite layers comprising carbon fibers in an unpolymerized matrix because for the latter the polymerization has not begun.
  • Materials 1 to 12 have all been sized to have the same width: 9 mm and the same length: 100 mm. To do this, materials 1 and 2 were dimensioned using a miter saw, material 3 was dimensioned using a paper cutter and materials 4 to 12 were dimensioned either via a paper cutter or using scissors.
  • chips according to the invention are obtained by the process as described in Example 1.
  • the materials 1-3 being composed of mostly unidirectional fibers, that is to say fibers oriented in a single direction, these are positioned parallel to the direction of advance of the blade of the mechanical cutting device at blade.
  • Cutting as described above makes it possible to obtain chips of regular thickness, to keep the carbon fibers intact as much as possible and to obtain chips comprising longer fibers.
  • the chips obtained from materials 1 to 4 have a thickness of between 0.3 and 0.5 mm.
  • the surface rate of bare fibers is defined as the surface occupied by bare carbon fibers, i.e. by carbon fibers not included in or not coated with resin, compared to the total surface analyzed.
  • the surface rate of bare fibers was determined for each of materials 1 to 12 using a VHX-970F digital microscope marketed by the Keyence brand. The latter is equipped with a VH-Z20T zoom lens capable of providing magnifications from x20 to x200. Image processing was performed with ImageJ software, version 2.1.0/1.53c.
  • the principle of the measurement is to perform image processing with the microscope by selecting the brightest areas, corresponding theoretically to the carbon fibers, and extracting them to measure the surface they occupy.
  • the protocol is as follows: a) Arrangement of the sample
  • the sample or chip is placed horizontally on the microscope stage so that the orientation of the fibers on the images taken is vertical.
  • the microscope is oriented at an angle of 30° with respect to the line normal to the plane of the sample or the chip (preferably on the right) and a partial ring light of the LED type (preferably a right partial ring light by relative to the microscope objective) is applied so that the light beam reaches the surface of the fibers in a direction orthogonal to the axis of the fibers.
  • This configuration makes it possible on the one hand to avoid taking into account fibers which are coated in transparent resins and on the other hand to prevent the reflection of the resin zones.
  • a selection of pixels is made by the software by performing the following steps in the “Image” > “Adjust” > “Color Threshold” tab. This option allows you to select the brightness level from which the pixels will be selected. For all the materials tested, the gray level was set at 50 (“Brightness” parameter). All areas whose gray level is greater than or equal to 50 have been selected. c) Results
  • the chips obtained from materials 1 to 3 all have a surface rate of bare fibers greater than or equal to 22% (taking into account the standard deviation), which is not the case for comparative chips of materials 4 to 12.
  • Cycle speed 25 cycles / minutes.
  • the samples are weighed initially, then after 50 cycles, and finally after 100 cycles, in order to determine the total mass loss. For each material, at least three samples were tested and the average of the values obtained was calculated.
  • the mass loss provides information on the surface condition of the chips. Indeed, the action of the abrasive rubber on a smooth surface will lead to a lower loss of mass compared to its action on a rough surface including asperities. This is explained by the fact that the action of the abrasive rubber will lead to the elimination of these surface roughnesses.
  • Table 3 Abrasion test results It follows from Table 3 that the chips obtained from materials 1 to 3 have a roughness measured by a mass loss greater than or equal to 0.008% taking into account the standard deviation.
  • Example 3 Mechanical properties of a composite material part
  • the Applicant has carried out characterization tests, in terms of mechanical characteristics, of the materials obtained from chips according to the present invention.
  • the shavings used in the tests presented here come from composite material elements comprising carbon fibers in a unidirectional arrangement included in an adhesive of the epoxy resin type.
  • the elements used come from the aeronautical industry.
  • the composite material had identical or similar characteristics to the “UD carbon plate” material, the characteristics of which are indicated in table 4 below.
  • the chips are cut according to Example 1 from a starting composite material comprising carbon fibers in a unidirectional arrangement included in an adhesive of the epoxy resin type.
  • the chips obtained are rectangular, and have a length I of 100 mm, a width b of 9 mm and a thickness of between 0.3 mm and 0.5 mm.
  • the plates are produced according to the process as described below: coating of the shavings: the shavings are mixed with a liquid adhesive in order to coat them, with a view to molding them; molding of the chips in the form of flat panels; mold pressing; demoulding of the part; and hardening of the part.
  • the mold is coated with a release agent and coated so as to create a layer of adhesive on the surface of the mould.
  • the adhesive used is the ADEKIT H9011 system used according to the recommendations of its manufacturer.
  • the chips are manually positioned in the mould.
  • the ratio of chips to adhesive is, unless otherwise specified, 65/35 by mass in the finished plate.
  • the molding is carried out under a press, by applying a force of 20 ton-force, and by controlling the temperature at around 70°C. After demoulding, the plates are kept for one week at room temperature.
  • the plates thus obtained correspond to plates of composite material whose chips, and therefore the fibers, are positioned in a unidirectional arrangement.
  • Table 4 compares the mechanical characteristics of the UD1 and UD2 plates with reference plates (carbon UD plate, wooden plate, aluminum plate).
  • the “UD carbon plate” corresponds to a plate of a composite material based on new unidirectional carbon fibers.
  • the “UD1 Plate” and “UD2 Plate” correspond to composite material plates in accordance with embodiments of the invention, obtained as described above, and whose chips, and therefore the fibers, are positioned according to an arrangement unidirectional. It is noteworthy that the flexural modulus and the breaking stress of the UD2 Plate (with 65% of chips by mass) is significantly higher than 50% of the values obtained for the reference Carbon UD Plate, i.e. a composite material based on of comparable new unidirectional fibers (from which the chips used can be extracted).
  • the flexural modulus obtained, in the longitudinal direction is equal to 57% of the flexural modulus of the comparable new unidirectional material based on carbon fibers.
  • the bending modulus of the UD2 Plate is equal to 63% of the bending modulus of the Plate Reference UD carbon.
  • the chips according to the invention therefore make it possible to obtain a recycled material which has approximately 70% of the mechanical performance, in particular 70% of the flexural modulus, and (up to 75% to 80% of the performance at identical masses) of comparable materials based on of new fibers, with a simple manufacturing process, and having a low environmental impact compared to chemical or thermal recycling processes.
  • FIG. 1 represents the flexural modulus of a panel made from chips according to the invention (obtained from a composite material to be recycled), the chips being organized in a unidirectional manner, and that of a panel obtained from new composite material containing unidirectionally oriented carbon fibers.
  • the flexural modulus is plotted on the ordinate.
  • the abscissa shows the angle at which the measurement is made.
  • An angle of 0° corresponds to the direction of extension of the fibers or the chips, and 90° corresponds to the direction transverse to the fibers and/or the chips.
  • the triangles correspond to the measurements made on a plate of a material comprising shavings according to the invention comprising unidirectional carbon fibers, said shavings being organized in a unidirectional manner.
  • the flexural modulus of this plate measured in the direction of extension of the chips and the fibers they contain, is 47 GPa.
  • the circles represent the theoretical bending moduli calculated for an equivalent plate, formed in a new composite material based on unidirectional carbon fibers whose bending modulus in the direction of the fibers it contains would be 47 GPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention concerne un copeau en matériau composite comportant des fibres de carbone dans un adhésif durci, ledit copeau ayant une épaisseur sensiblement constante définie entre deux faces opposées parallèles du copeau, chaque face comportant en surface des fibres de carbone au moins en partie non incluses dans l'adhésif durci.

Description

Copeau en matériau composite recyclé et procédé de fabrication
La présente invention concerne le domaine du recyclage des matériaux composites, en particulier des matériaux composites comportant des fibres de carbone.
Les matériaux composites à base de fibres de carbone sont utilisés dans de nombreux domaines techniques pour leurs propriétés mécaniques, notamment de résistance et de légèreté. Ils sont notamment couramment utilisés dans le domaine aéronautique, dans l’automobile, le nautisme, mais aussi dans le domaine de la construction, de l’énergie, etc.
Les matériaux composites à base de fibres de carbone comportent, de manière générale, des fibres de carbone incluses dans une matrice.
Plusieurs méthodes peuvent être utilisées pour fabriquer des fibres de carbone, le principe étant un dépôt de carbone à très haute température, soit à partir de papier ou de viscose (fibres « ex-cellulose »), soit à partir de polyacrylonitrile (fibres « ex-PAN »), soit à partir de résidus du pétrole ou de charbon (fibre « ex-brais »).
Les fibres de carbone sont incluses dans la matrice selon une orientation donnée, par exemple de manière unidirectionnelle, ou sous la forme de nappes de fibres tissées.
Concernant la matrice, généralement, elle est constituée d’un polymère ou elle comporte essentiellement un polymère. La matrice peut également être appelée « adhésif », ou encore « résine » (la matrice étant généralement un polymère). De manière bien connue, la matrice peut être de nature thermoplastique ou thermodurcissable. Des colles de nature analogue peuvent être utilisées de la même manière dans le cadre de la présente invention.
Ainsi, sauf s’il en est disposé autrement, les termes « matrice », « colle », « adhésif » et « résine » sont considérés comme synonymes dans la présente demande.
Les polymères thermodurcissables subissent une réaction chimique appelée réticulation lors de la mise en forme du matériau composite. Cette réaction génère des liaisons chimiques et est irréversible. Il est généralement admis que les polymères thermodurcissables les plus performants pour former un matériau composite à base de fibres de carbone sont les polyépoxydes (dits « époxy »).
Les polymères thermoplastiques sont des polymères qui, au-delà d’une certaine température, appelée « température de transition de phase », inférieure à leur température de dégradation thermique, deviennent visqueux et peuvent ainsi être mis en forme. Lorsque la température descend en-dessous de cette température de transition de phase, le polymère durcit et retrouve sa raideur initiale. Ce durcissement est réversible, en chauffant de nouveau le polymère. Les polymères thermoplastiques les plus courants sont le polyéthylène (PE), le poly(téréphtalate d’éthylène) (PET) ou le polycaprolactame (PA-6). Pour certaines applications, des polymères thermoplastiques spéciaux peuvent être utilisés, tels le poly(éther- éther-cétone de phénylène) (PEEK), le poly(sulfure de phénylène) (PPS), ou le polyetherimide (PEI).
Les applications des matériaux composites à base de fibres de carbone étant nombreuses et de plus en plus répandues, la question du recyclage de ces matériaux se pose. Outre le fait que les quantités de matériaux pouvant être recyclés augmentent, ces matériaux composites sont des matériaux de grande valeur (en grande partie du fait qu’ils contiennent des fibres de carbone), dont la valorisation peut se révéler économiquement pertinente.
Le recyclage peut concerner des éléments en matériau composite en fin de vie ou ayant subi un endommagement, des éléments fabriqués mais ne répondant pas ou plus à certains standards requis pour l’usage auquel ils sont destinés (en particulier dans le domaine aéronautique ou spatial), ou encore, plus rarement, des éléments non utilisés à une certaine date.
Pour recycler des matériaux composites renforcés avec des fibres de carbone, trois grandes catégories de méthodes ont été développées : le recyclage dit mécanique, le recyclage dit chimique et le recyclage dit thermique.
Le recyclage mécanique consiste, dans son principe, à fractionner et à broyer des pièces en matériau composite existantes pour dissocier au moins en partie les fibres de la résine, de sorte à obtenir des fibres plus ou moins longues qui peuvent être réutilisées comme renfort dans de la résine neuve. Les particules peu fibreuses issues du broyage, qui se présentent sous forme de poudre, peuvent être mêlées à une résine lors de la formation d’un nouvel élément en matériau composite.
Les morceaux de composite broyés sont utilisés comme éléments de remplissage ou comme renfort dans des pièces moulées, mais ne visent pas réellement à remplacer des fibres de carbone vierges telles qu’utilisées dans les procédés classiques de fabrication d’éléments en composite (à base de matériaux non recyclés).
Dans ce procédé, la poudre obtenue par broyage des matériaux composites à recycler peut être tamisée pour être triée en plusieurs catégories de tailles de particules, sans toutefois que cette taille n’ait une influence significative sur les propriétés mécaniques de l’élément formé ensuite en incluant ces particules.
Globalement, on estime que les propriétés mécaniques (résistance en flexion ou raideur en flexion) d’une pièce obtenue par un procédé de recyclage mécanique de l’état de la technique sont au moins divisées par quatre comparativement à une pièce neuve similaire. Les matériaux composites à base de fibres de carbone recyclées obtenus par des procédés de recyclage mécanique ont donc généralement un usage limité à certains domaines dans lesquels les propriétés mécaniques, rapportées à la masse, n’ont pas besoin d’être très élevées. Ils sont ainsi surtout utilisés dans la construction (bâtiments).
Le recyclage chimique consiste à dégrader chimiquement la résine durcie d’un matériau composite dans le but de récupérer des fibres de carbone présentes dans ce matériau. Les fibres récupérées sont ensuite généralement alignées et/ou filées afin de créer un fil à partir de plusieurs milliers de fibres récupérées. Les propriétés mécaniques des pièces formées en matériaux composites comportant ces fibres recyclées sont largement moindres que celles de matériaux composites comportant des fibres de carbone neuves, non-recyclées.
Plusieurs procédés de dégradations chimiques sont connus, notamment la solvolyse classique, la solvolyse « en conditions douces », ou la solvolyse en conditions supercritiques. Dans un procédé de solvolyse classique, les pièces à recycler sont plongées dans un solvant, à haute température (plus de 200°C) et à haute pression (de l’ordre de 180 bar), pour que la résine soit décomposée. Il peut s’agir par exemple d’acides concentrés (acide nitrique ou acide sulfurique notamment).
Dans un procédé de solvolyse en conditions douces, des températures plus modérées que dans la solvolyse classique, inférieures à 200°C, sont utilisées. Le procédé a lieu à pression atmosphérique (pression ambiante), et des solvants plus doux, comme de l’acétone ou du N,N-diméthylformamide sont utilisés, ainsi qu’éventuellement des catalyseurs comme le peroxyde d’hydrogène ou l’acide peroxyacétique. Un traitement préalable à l’acide acétique peut également être employé. Ceci étant, la solvolyse en conditions douces présente un rendement de production assez faible.
Dans un procédé de solvolyse en conditions supercritiques, des solvants sont utilisés en conditions supercritiques pour présenter une meilleure diffusivité et une capacité accrue de solvatation. C’est un procédé complexe et onéreux.
Enfin, le recyclage thermique consiste dans son principe à dégrader thermiquement la résine d’un matériau composite pour en récupérer les fibres de carbone. La chaleur peut être apportée par un procédé de pyrolyse, qui consiste globalement à brûler la résine dans un four, par un procédé de lit fluidisé qui utilise l’action combinée d’un solvant et d’une haute température, et enfin par micro-ondes.
Bien que ces procédés soient en voie d’optimisation, les fibres récupérées ont des propriétés mécaniques fortement dégradées comparativement à des fibres neuves. Les fibres récupérées sont généralement courtes, elles doivent être alignées et filées pour être réutilisées dans des applications nécessitant des caractéristiques mécaniques correctes. Sinon, elles sont utilisées en remplissage, comme le sont par exemple les poudres obtenues dans les procédés de recyclage mécaniques évoqués ci-dessus.
En résumé, les différentes techniques connues dans le domaine du recyclage des matériaux composites à base de fibres de carbone consistent à : - broyer le matériau composite pour utiliser les broyats comme renfort (recyclage mécanique);
- ou dégrader la résine pour régénérer des fibres de carbone (recyclage chimique ou thermique).
Mais ces deux solutions ont chacune des inconvénients importants : elles offrent des matériaux ayant de faibles performances mécaniques, et/ou elles sont coûteuses et/ou complexes à mettre en œuvre. Les techniques de recyclage dans lesquelles la résine est dégradée pour récupérer les fibres de carbone ont en outre un coût environnemental important. En effet, elles rejettent la résine dégradée sous forme liquide ou gazeuse. Ces rejets doivent être traités.
La présente invention vise à proposer des éléments recyclés qui peuvent être incorporés dans une matrice afin de préparer une pièce en matériau composite, lesdits éléments recyclés permettant de pallier les inconvénients mentionnés ci-avant.
Plus particulièrement, l’invention vise un copeau en matériau composite comportant des fibres de carbone dans un adhésif durci, ledit copeau ayant une épaisseur sensiblement constante définie entre deux faces opposées parallèles du copeau, chaque face comportant en surface des fibres de carbone au moins en partie non incluses dans l’adhésif durci.
On entend par « copeau » une tranche de faible épaisseur obtenue à partir d’un matériau composite à recycler comportant des fibres de carbone. Le copeau comporte des fibres de carbone au moins en partie incluses dans un adhésif durci. Au moins une majorité des fibres du copeau s’étendent sensiblement parallèlement aux faces opposées du copeau.
La notion d’épaisseur sensiblement constante s’interprète de la manière suivante. L’épaisseur correspond à la plus petite dimension du copeau, qui est faible comparativement à ses autres dimensions (par exemple comparativement à sa longueur et sa largeur pour un copeau se présentant sous une forme rectangulaire). L’épaisseur du copeau est sensiblement constante, car le copeau présente deux faces (principales) opposées sensiblement parallèles en tout point. Bien que le copeau soit plat en l’absence de contraintes, il peut être courbé une fois inclus dans une pièce en matériau composite tel qu’un panneau. Cette éventuelle courbure est possible du fait de la faible épaisseur du copeau, qui lui confère une certaine souplesse. L’épaisseur du copeau, mesurée perpendiculairement aux faces principales du copeau, est constante en tout point du copeau, ou, à tout le moins, est perçue comme constante par un observateur. C’est en ce sens qu’il est indiqué que l’épaisseur est « sensiblement » constante, c’est-à-dire qu’elle est perçu naturellement comme constante. Alternativement il est considéré que l’épaisseur est sensiblement constante lorsque la plus faible épaisseur n’est pas inférieure à la moitié de la plus grande épaisseur mesurée sur un copeau, et préférentiellement lorsque la différence entre la plus grande épaisseur et la plus faible épaisseur mesurées sur un copeau n’excède pas 25%. Alternativement il est considéré que l’épaisseur est sensiblement constante lorsque la différence entre la plus faible épaisseur et la plus grande épaisseur mesurées sur le copeau n’excède pas 0,5 mm.
Dans l’ensemble de la présente demande, le terme « sensiblement » fait référence de manière classique à la perception de cette caractéristique selon le système utilisé pour sa mesure ou sa fabrication. Si une caractéristique est observée à l’œil nu, le terme « sensiblement » fait donc référence à la perception qu’a un observateur de cette caractéristique. Une expression contenant le terme "sensiblement" doit être interprétée comme une caractéristique technique produite dans la marge de tolérance de sa méthode de fabrication. Notamment, le caractère « sensiblement parallèle » entre deux éléments peut s’entendre à 10° d’angle près. Si la fibre considérée est incluse dans un tissu (typiquement taffetas, sergés ou satins), la direction d’extension de la fibre est considérée en négligeant les ondulations de la fibre liées au tissage.
Le copeau selon l’invention a avantageusement une faible épaisseur (e) comparativement à ses autres dimensions. Le copeau étant ainsi une pièce essentiellement bidimensionnelle, de faible épaisseur, ses autres dimensions correspondent typiquement à la plus grande dimension (d) mesurable en surface du copeau et à la dimension mesurée perpendiculairement, également en surface du copeau. Ainsi, par « face du copeau », on entend l’une quelconque des faces du copeau à savoir la face inférieure ou la face supérieure du copeau. Chacune de ces faces présentant une surface dite surface du copeau.
Avantageusement, le ratio (e)/(d) est compris entre 0,05 et 0,0005, préférentiellement entre 0,01 et 0,001 et encore plus préférentiellement entre 0,005 et 0,001 .
Dans la présente demande, sauf indication contraire, les gammes s’entendent bornes incluses.
Avantageusement, l’épaisseur du copeau est comprise entre 200 pm et 1 mm, de préférence entre 200 pm et 500 pm.
La plus grande dimension (d) du copeau peut être avantageusement comprise entre 1 cm et 1 m, de préférence, entre 5 cm et 50 cm, tel qu’entre 5 et 20 cm, plus préférentiellement, entre 7,5 et 15 cm ou encore plus préférentiellement entre 8 et 12 cm ou alternativement entre 10 cm et 20 cm.
A titre d’exemple, la longueur du copeau est de l’ordre de 10 cm. Par « de l’ordre de X », on vise une valeur de X plus ou moins 10%.
Le copeau peut présenter une largeur comprise entre 2 et 20 mm, de préférence entre 5 et 15 mm, encore plus préférentiellement entre 7 et 10 mm.
A titre d’exemple, la largeur du copeau est de l’ordre de 9 mm.
On entend par adhésif durci, un adhésif qui a subi une réaction chimique appelée réticulation ou polymérisation. Cette réaction chimique se produit avant la formation des copeaux, on parle alors d’adhésif durci lors d’un durcissement préalable à la formation du copeau.
L’adhésif durci du copeau peut être avantageusement une résine thermodurcissable telles que les résines époxy, ester cyanate et résines phénoliques. Les résines époxy appropriées comprennent les éthers diglycidyliques de bisphénol A, les éthers diglycidyliques de bisphénol F, les résines époxy novolaques et les éthers N-glycidyliques, les esters glycidyliques, les éthers glycidyliques aliphatiques et cycloaliphatiques, les éthers glycidyliques d'aminophénols, les éthers glycidyliques de n'importe quels phénols substitués et leurs mélanges.
Sont également inclus des mélanges modifiés des polymères thermodurcissables susmentionnés.
Par « mélange modifié », on vise un polymère modifié, typiquement, par addition de caoutchouc ou de thermoplastique.
L’adhésif durci du copeau peut aussi être une résine thermoplastique. Parmi les thermoplastiques, on peut distinguer les plastiques à hautes performances, les plastiques techniques et les plastiques standards. La plupart des thermoplastiques utilisés dans les matériaux composites sont des plastiques à hautes performances ou des plastiques techniques. Ces plastiques se distinguent notamment des plastiques standards par une résistance à l’usure et une résistance chimique plus importantes.
Les thermoplastiques, selon leur nature, peuvent être durs sous forme amorphe ou sous forme cristalline.
Parmi les thermoplastiques amorphes couramment utilisés dans les matériaux composites, il y a les polyétherimides (PEI), le polyethersulfone (PES), et les polysulfones (PSU).
Parmi les thermoplastiques cristallins couramment utilisés dans les matériaux composites, il y a les polyamides (PA), le poly(téréphtalate d'éthylène), le polyphthalamide (PPA), le poly(sulfure de phénylène) (PPS), et le polyétheréthercétone (PEEK).
Une fibre de carbone est considérée comme incluse dans l’adhésif durci si toute sa surface est en contact avec cet adhésif, c’est-à-dire si toute le surface de la fibre est enrobée par l’adhésif. Dans toute la demande, les termes « incluses dans » et « enrobées par » sont considérés comme équivalents.
Dans le copeau selon l’invention, la partie de la fibre de carbone non incluse dans l’adhésif durci constitue une fibre nue.
La présence de fibres nues en surface du copeau résulte du procédé de découpe du copeau selon l’invention. De préférence, le copeau selon l’invention présente un taux surfacique de fibres nues supérieur ou égal à 22%, le pourcentage étant rapporté à la surface totale de la face du copeau analysée.
Le taux surfacique de fibres nues représente la surface occupée par les fibres de carbone non incluses dans l’adhésif durci par rapport à la surface totale de la face du copeau analysée.
Le copeau peut présenter un taux surfacique de fibres nues supérieur ou égal à 22%, de préférence compris entre 24 % et 60%, tel qu’un taux surfacique de fibres nues compris entre 26 et 50%.
Le taux surfacique de fibres nues est déterminé sur un échantillon comportant des fibres de carbone ou sur un copeau selon l’invention, selon la méthode de mesure comportant les étapes suivantes : a) Disposition horizontale de l’échantillon ou du copeau sur la platine d’un microscope numérique, de sorte à obtenir des images où l’orientation des fibres est verticale, le microscope étant orienté d’un angle de 20 à 40 °, de préférence 30° par rapport à la droite normale au plan de l’échantillon ou du copeau et une lumière annulaire partielle de type LED est appliquée de sorte que le faisceau de lumière atteigne la surface des fibres selon une direction orthogonale à l’axe d’orientation des fibres b) Sélection des pixels présentant une valeur seuil de niveau de gris supérieure ou égale à 50 c) Décompte des pixels sélectionnés et obtention du pourcentage de surface occupée par les pixels sélectionnés par rapport à la surface totale de l’image, ce pourcentage correspondant à la valeur du taux surfacique de fibres nues.
Une lumière annulaire est une lumière formant un cercle autour de l’objectif du microscope.
Le plan de l’échantillon ou du copeau est matérialisé par une face de l’échantillon ou du copeau.
Le cercle de lumière peut être divisé en quatre quarts. On parle de « lumière annulaire partielle » lorsque seul un des quarts est utilisé pour éclairer l’échantillon, définissant ainsi une lumière annulaire gauche, droite, haute ou basse, selon la localisation du quart par rapport à l’objectif du microscope.
Une lumière annulaire se distingue d’une lumière coaxiale qui éclaire l’échantillon à partir du centre de l’objectif du microscope.
La lumière annulaire partielle appliquée à l’étape a) peut être une lumière partielle droite, gauche, haute ou basse. De préférence la lumière annulaire partielle appliquée à l’étape a) est une lumière annulaire partielle gauche ou droite, encore plus préférentiellement, la lumière annulaire partielle est droite. Dans le cas d’une lumière annulaire partielle droite, le microscope est alors orienté d’un angle de 20 à 40 °, de préférence 30° sur la droite par rapport à la droite normale au plan du copeau.
De préférence, le taux surfacique de fibres nues est déterminé selon la méthode exposée à l’exemple 2, point 1.
De préférence, dans le copeau selon l’invention, une face présente une rugosité mesurée par une perte de masse supérieure ou égale à 0,008%, ladite perte de masse étant mesurée par un test d’abrasion effectuée sur abrasimètre linéaire à l’aide d’une gomme abrasive H18 sur 100 cycles.
On entend par « rugosité » d’un copeau, l’état de la face du copeau qui présente des aspérités. De préférence, chaque face du copeau présente une rugosité.
Cette rugosité est déterminée selon la méthode de mesure comportant les étapes suivantes : a) Pesée initiale du copeau pour déterminer sa masse initiale, b) Fixation du copeau sur le support d’un abrasimètre linéaire, c) Application d’une gomme abrasive H18 pendant 100 cycles d’abrasion, avec une longueur de cycle de 10 cm et une vitesse de cycle de 25 cycles/min, d) Pesée finale du copeau pour déterminer sa masse finale, e) Détermination de la rugosité par calcul de la différence entre la masse initiale du copeau (obtenue à l’étape a)) et la masse finale du copeau (obtenue à l’étape d)).
De préférence, la rugosité est mesurée selon la méthode décrite à l’exemple 2.2.
De préférence, le copeau présente une rugosité mesurée par une perte de masse comprise entre 0,014% et 0,20%, et plus préférentiellement, la perte de masse est comprise entre 0,014% et 0,15%.
Avantageusement, le copeau selon l’invention présenter un taux surfacique de fibres nues supérieur ou égale à 22% et une rugosité mesurée par une perte de masse supérieure ou égale à 0,008%. De préférence, le copeau présente un taux surfacique de fibres nues compris entre 24% et 60% et une perte de masse comprise entre 0,014% et 0,20%. Encore plus préférentiellement, le copeau peut présenter un taux surfacique de fibres nues compris entre 26% et 50%, et une perte de masse comprise entre 0,014% et 0,15%.
Avantageusement, dans le copeau selon l’invention, lesdites fibres de carbone s’étendent sensiblement parallèlement aux dites faces opposées du copeau.
Plus particulièrement, les fibres de carbones incluses dans l’adhésif durci s’étendent sensiblement parallèlement aux dites faces opposées du copeau.
Les fibres de carbones non incluses dans l’adhésif durci peuvent s’étendent sensiblement parallèlement aux dites faces opposées du copeau. Avantageusement, dans le copeau selon l’invention, les fibres de carbones sont orientées dans une même direction.
Des fibres de carbone orientées dans une même direction sont également dites unidirectionnelles.
Plus particulièrement, les fibres de carbones incluses dans l’adhésif durci sont orientées dans une même direction.
Les fibres de carbone non incluses dans l’adhésif durci peuvent être orientées dans une même direction.
Avantageusement, le copeau a une forme rectangulaire.
De préférence, chaque face du copeau selon l’invention présente une surface d’au moins 1 cm2.
Chaque face présente une surface appelée surface du copeau.
La surface du copeau peut être d’au moins 3 cm2, 5 cm2, 10 cm2 ou 20 cm2, 100cm2.
La surface du copeau peut donc être comprise entre 1 et 100 cm2, entre 2 et 25 cm2 ou entre 5 et 15 cm2.
L’invention vise également un procédé de fabrication d’un copeau selon l’invention, ledit procédé comprenant les étapes suivantes : fourniture d’un matériau composite comportant des fibres de carbone orientées de manière sensiblement parallèle dans un adhésif durci; découpage mécanique du matériau composite avec un dispositif à lame, ledit découpage étant réalisée en positionnant les fibres de carbones parallèlement à la direction d’avancement de la lame dudit dispositif à lame.
A titre d’exemple, le dispositif à lame peut être un système de type rabot. Un système de type rabot correspond à une machine de découpe comportant une lame permettant de séparer de fines tranches d’épaisseur régulière de la surface d’un élément sur lequel il est passé.
Le procédé de fabrication du copeau est plus particulièrement décrit à l’exemple 1.
L’invention a également pour objet l’utilisation de copeau tel que défini ci-dessus dans une pièce en matériau composite.
Les copeaux selon l’invention ont l’avantage de présenter une adhésion améliorée avec la matrice.
En particulier, les inventeurs ont découvert que les copeaux présentant un taux surfacique de fibres nues supérieur ou égal à 22% et/ou une rugosité mesurée par une perte de masse supérieure ou égale à 0,008% tels que définis ci-dessus ; présentent une adhésion avec la matrice améliorée. L’amélioration de l’adhésion entre la matrice et les fibres de carbone conduit à une meilleure cohésion du copeau, limitant ainsi la dégradation du copeau et par conséquent limitant également la dégradation d’une pièce en matériau composite comprenant les copeaux selon l’invention.
D’autres caractéristiques et avantages de l’invention apparaitront dans la figure et les exemples qui suivent et qui sont donnés à titre illustratif.
La figure 1 représente, sous forme d’un graphique, le module de flexion d’un panneau comprenant des copeaux selon l’invention organisés de manière unidirectionnelle, les copeaux étant obtenus à partir de matériau composite à recycler, et celui d’un panneau neuf contenant des fibres de carbone orientées de manière unidirectionnelle.
Exemple 1 : Obtention d’un copeau selon l’invention
La formation de copeaux est réalisée à partir d’éléments en matériau composite à base de fibres de carbone qui sont à recycler.
Pour ce faire, les copeaux sont obtenus par découpage mécanique desdits éléments.
Le découpage des copeaux peut être réalisé à l’aide d’une machine de découpe telle qu’un dispositif à lame. Le dispositif à lame peut être un système de type rabot. Un système de type rabot correspond à une machine de découpe comportant une lame permettant de séparer de fines tranches d’épaisseur régulière de la surface d’un élément sur lequel il est passé.
Lorsqu’un élément est découpé pour former des copeaux, la lame du dispositif à lame est positionnée, de manière classique, de sorte que le fil de la lame évolue dans un plan parallèle à la direction d’avancement de la lame dudit dispositif à lame, la direction d’avancement de la lame du dispositif à lame étant rectiligne.
Le « fil de la lame » aussi appelé « arête vive » correspond au tranchant de la lame qui pénètre en premier la matière à découper.
Le matériau à découper est positionné dans la machine de découpe selon l’organisation des fibres de carbone qu’il contient.
Si les fibres dans le matériau à découper sont unidirectionnelles, c’est-à-dire incluses dans une matrice sensiblement parallèlement, dans une seule direction, alors les fibres sont positionnées parallèlement à la direction d’avancement de la lame dudit dispositif à lame.
Si les fibres sont incluses sous la forme de nappes tissées, on placera préférentiellement la pièce de sorte que les fils de trame ou de chaîne soient sensiblement parallèles à la direction d’avancement de la lame dudit dispositif à lame.
Les fibres peuvent aussi être disposées selon une succession de couches, chaque couche comportant des fibres unidirectionnelles, mais les couches présentant des orientations des fibres différentes. C’est par exemple le cas pour des matières dites « quadri directionnelles », dont les couches peuvent présenter les orientations relatives successives suivantes : 0° (couche de référence), 90°, 45°, -45°. Ainsi, une matière « quadri directionnelle » est une matière stratifiée comportant plusieurs couches de fibre de carbone unidirectionnelles, les couches étant orientées dans quatre directions différentes : 0°, 90°, 45°, -45°.
Le dispositif à lame peut avantageusement être réglé de sorte que sa lame attaque l’élément entre deux couches de fibres, qu’il s’agisse de deux couches de fibres unidirectionnelles ou de deux nappes tissées.
Le plan de coupe sera avantageusement maintenu entre les couches de fibres afin de conserver autant que possible leur intégrité.
Avantageusement, le dispositif à lame peut comprendre un système de cale micrométrique constitué d’une superposition d’éléments disposés de part et d’autre du matériau à découper, ledit système de cale étant positionné sur un plan de référence et présentant une précision inférieure au 1/10ème de millimètre. Un tel système de cale permet de maîtriser la zone d’attaque de la lame et ainsi de réaliser une découpe plus précise entre les couches de fibres. Ce système permet ainsi de maîtriser l’épaisseur des copeaux obtenus tout en maintenant intacte les fibres de carbone.
De fines tranches de matériau composite sont ainsi obtenues. Ces tranches peuvent notamment avoir une épaisseur comprise entre 200 pm et 1mm, de préférence entre 200 pm et 500 pm.
Les éléments à découper sont mis à la longueur souhaitée pour les copeaux avant d’être découpés en tranches par la machine de découpe, de sorte que les copeaux ayant la longueur souhaitée sont directement obtenus en sortie de la machine de découpe.
Alternativement, les tranches sont ensuite recoupées pour obtenir des copeaux. Typiquement, elles sont coupées transversalement par tout moyen de découpe adapté, par exemple par sciage, afin de former de fins copeaux rectangulaires de longueur régulière. D’autres formes de copeaux peuvent bien évidemment être découpées dans les tranches obtenues.
Par exemple, pour la réalisation de panneaux plans, des copeaux de 10 cm à 20 cm de longueur ont été obtenus et ont permis l’obtention de résultats très bons en termes de performances mécaniques comme exemplifié ci-après. Des longueurs supérieures peuvent également être mises en œuvre, telles que de l’ordre de 50 cm, voire de 1 m.
Bien évidemment, le procédé de découpe décrit ci-dessus peut être adapté selon l’application considérée et les quantités à produire.
Une fois que les copeaux sont formés, ils se présentent donc sous la forme de fins éléments comportant des fibres de carbone incluses, au moins en partie, dans une résine durcie. Les copeaux se présentent donc sous la forme de pièces sensiblement bidimensionnelles (en ce que leur épaisseur est très faible comparativement à ses autres dimensions). La surface des copeaux est avantageusement d’au moins 1 cm2, et de préférence supérieure à 3 cm2, de l’ordre de 10 cm2, voire supérieure, par exemple jusque 100 cm 2 environ.
Les fibres de carbone sont orientées dans la résine durcie des copeaux. De préférence, elles sont sensiblement parallèles, orthogonales entre elles, et/ou orientées à 45° les unes des autres.
Les fibres des copeaux ayant une épaisseur sensiblement constante, ils comportent deux faces opposées (entre lesquelles l’épaisseur est définie). Le découpage des copeaux est réalisé de sorte à conserver autant que possible les fibres de carbone intactes. Pour cela, le découpage des copeaux est réalisé de sorte que les fibres (dans leur majorité, voire dans leur quasi-totalité ou leur totalité) s’étendent parallèlement aux faces opposées des copeaux. Les fibres s’étendent ainsi dans des plans parallèles au plan général d’extension du copeau, et peuvent présenter une grande longueur malgré la faible épaisseur des copeaux.
Par « majorité », on entend plus de 50% en nombre.
Par « quasi-totalité », on entend plus de 90% en nombre.
Exemple 2 : Caractérisation des copeaux selon l’invention
La demanderesse a effectué des tests permettant de caractériser les copeaux selon la présente invention. Ces tests ont été réalisés à partir des matières listées dans le tableau 1.
Ces matières se présentent sous la forme de jonc, de plaque ou de nappe en composite.
Un jonc en composite est un cylindre obtenu par pultrusion d’un matériau composite.
Une nappe composite se distingue d’une plaque composite par son épaisseur. En effet la nappe a une épaisseur de l’ordre de 0,2 mm tandis que la plaque composite a une épaisseur de plusieurs millimètres.
Les nappes composites partiellement consolidées sont des nappes dont les fibres de carbone sont intégrées dans une matrice ou résine dont la polymérisation a débuté mais n’est pas achevée. Elles se distinguent donc des nappes composites comportant des fibres de carbone dans une matrice non polymérisée car pour ces dernières la polymérisation n’a pas commencé.
Lorsqu’aucune précision n’est apportée sur l’état de polymérisation de la matrice des matières présentées dans le tableau 1 ci-dessus, cela signifie que la matrice est polymérisée.
Figure imgf000014_0001
Figure imgf000015_0001
*UD : disposition unidirectionnelle des fibres de carbone
Tableau 1 : Liste des matières utilisées
Les matières 1 à 12 ont toutes été dimensionnées pour présenter la même largeur : 9 mm et la même longueur : 100 mm. Pour ce faire, les matières 1 et 2 ont été dimensionnées à l’aide d’une scie à onglet, la matière 3 a été dimensionnée à l’aide d’un massicot et les matières 4 à 12 ont été dimensionnées soit via un massicot soit à l’aide de ciseaux.
Puis, les matières 1 à 3 ont été découpées afin d’obtenir des copeaux selon l’invention. Les copeaux selon l’invention sont obtenus par le procédé tel que décrit dans l’exemple 1.
Le découpage mécanique au rabot est réalisé de telle sorte qu’il favorise les coupes selon l’axe des fibres. En effet, les matières 1-3 se composant de fibres majoritairement unidirectionnelles c’est-à-dire de fibres orientées dans une seule direction, celles-ci sont positionnées parallèlement à la direction d’avancement de la lame du dispositif de découpage mécanique à lame.
Le découpage tel que décrit ci-dessus permet d’obtenir des copeaux d’épaisseurs régulières, de conserver autant que possible les fibres de carbone intactes et d’obtenir des copeaux comprenant des fibres plus longues.
Les copeaux obtenus à partir des matières 1 à 4 présentent une épaisseur comprise entre 0,3 et 0,5mm.
Les matières 4 à 12 servent d’exemples comparatifs et n’ont pas été découpées. 1. Analyse de surface : détermination du taux surfacique de fibres nues
Des analyses de surface ont été effectuées sur l’ensemble des copeaux obtenus à partir des matières 1 à 12 selon le mode opératoire détaillé ci-dessous.
Le taux surfacique de fibres nues est défini comme la surface occupée par des fibres de carbone nues, c’est-à-dire par des fibres de carbone non incluses dans ou non enrobées par de la résine, rapportée à la surface totale analysée.
Le taux surfacique de fibres nues a été déterminé pour chacune des matières 1 à 12 en utilisant un microscope numérique VHX-970F commercialisé par la marque Keyence. Ce dernier est muni d’un objectif zoom VH-Z20T capable de fournir des grossissements de x20 à x200. Les traitements d’images ont été réalisés avec le logiciel ImageJ, version 2.1.0/1.53c.
Le principe de la mesure est de réaliser un traitement d’image avec le microscope en sélectionnant les zones les plus lumineuses, correspondant théoriquement aux fibres de carbone, et en les extrayant pour mesurer la surface qu’elles occupent. Le protocole est le suivant : a) Disposition de l’échantillon
L’échantillon ou copeau est placé à l’horizontal sur la platine du microscope de sorte que l’orientation des fibres sur les clichés réalisés soit verticale. Le microscope est orienté d’un angle de 30° par rapport à la droite normale au plan de l’échantillon ou du copeau (de préférence à droite) et une lumière annulaire partielle de type LED (de préférence, une lumière annulaire partielle droite par rapport à l’objectif du microscope) est appliquée de sorte que le faisceau de lumière atteigne la surface des fibres selon une direction orthogonale à l’axe des fibres. Cette configuration permet d’une part d’éviter la prise en compte de fibres qui sont enrobées dans des résines transparentes et d’autre part d’empêcher la réflexion des zones de résines. b) Sélection des pixels
Une sélection des pixels est réalisée par le logiciel en effectuant les étapes suivantes dans l’onglet “Image” > “Adjust” > “Color Treshold”. Cette option permet de sélectionner le niveau de luminosité à partir duquel les pixels seront sélectionnés. Pour toutes les matières testées le niveau de gris a été fixé à 50 (paramètre « Brightness »). Toutes les zones dont le niveau de gris est supérieur ou égal à 50 ont ainsi été sélectionnées. c) Résultats
Une fois que les pixels ont été sélectionnés, leur décompte se fait en allant dans l’onglet “Analyze” > “Analyze Particles”. La taille des pixels est fixée à partir de 0 et leur circularité est fixée entre 0 et 1 . Le logiciel donne alors comme résultat le pourcentage de surface occupée par les pixels sélectionnés par rapport à la surface totale de l’image, ce qui correspond à la valeur du taux surfacique de fibres nues.
Pour chaque matière, trois copeaux sont analysés et dix mesures sont effectuées par copeau. Le taux surfacique de fibres nues par copeau est obtenu en faisant la moyenne de ces 10 mesures. Le taux surfacique de fibres nues par matière est obtenu en faisant la moyenne des taux obtenus par chacun des trois copeaux. Les résultats sont présentés dans le tableau 2 ci-dessous.
Figure imgf000017_0001
Tableau 2 : Taux surfacique de fibres nues des matières 1 à 12
Les copeaux obtenus à partir des matières 1 à 3 (selon l’invention) présentent tous un taux surfacique de fibres nues supérieur ou égal à 22% (en tenant compte de l’écart-type) ce qui n’est pas le cas des copeaux comparatifs des matières 4 à 12.
Cette caractéristique technique définissant les copeaux selon l’invention permet l’obtention de matériau composite ayant des propriétés mécaniques élevées, comme démontré ci-après.
2. Test d’abrasion
Un test d’abrasion a été effectué afin de déterminer la perte de masse des copeaux, en vue de caractériser leur rugosité.
Ce test a été effectué à l’aide d’un abrasimètre linéaire Taber® (5750) muni d’une gomme d’abrasion H 18. Ce test se déroule selon le mode opératoire détaillé ci-dessous : L’échantillon est fixé sur un support puis soumis à l’action de la gomme abrasive H18 (caractéristique d’un matériau non résilient) montée sur l’abrasimètre linéaire. Les paramètres suivants sont utilisés :
- Aucune charge appliquée en plus du support;
Nombre de cycles d’abrasion : 100;
Longueur de cycle : 10 cm;
Vitesse de cycle : 25 cycles / minutes.
Les échantillons sont pesés initialement, puis après 50 cycles, et enfin après 100 cycles, afin de déterminer la perte de masse totale. Pour chaque matière, trois échantillons ont été testés au minimum et la moyenne des valeurs obtenues a été calculée.
La perte de masse renseigne de l’état de surface des copeaux. En effet, l’action de la gomme abrasive sur une surface lisse entrainera une perte de masse plus faible en comparaison à son action sur une surface rugueuse comprenant des aspérités. Ceci s’explique par le fait que l’action de la gomme abrasive va entrainer l’élimination de ces aspérités de surface.
Ainsi, plus la perte de masse est importante, plus la surface est rugueuse et donc contient des aspérités.
Les résultats présentés au tableau 3 sont exprimés en gramme, et en pourcentage de masse perdue par rapport à la masse initiale.
Figure imgf000018_0001
Tableau 3 : Résultats du test d’abrasion Il découle du tableau 3 que les copeaux obtenus à partir des matières 1 à 3 présentent une rugosité mesurée par une perte de masse supérieure ou égale à 0,008% en tenant compte de l’écart-type.
Ces caractéristiques techniques définissant les copeaux selon l’invention permettent l’obtention de matériau composite ayant des propriétés mécaniques élevées comme démontré ci-après.
Exemple 3 : Propriétés mécaniques de pièce en matériau composite
La Demanderesse a mené des essais de caractérisation, en termes de caractéristiques mécaniques, des matériaux obtenus à partir de copeaux selon la présente invention.
Les essais dont les résultats sont décrits ci-après ont été réalisés sur des plaques prototypes de 23 cm par 23 cm et ayant une épaisseur comprise entre 3,5 mm et 3,6 mm.
Les copeaux utilisés dans les essais ici présentés sont issus d’éléments en matériau composite comportant des fibres de carbone selon un agencement unidirectionnel inclus dans un adhésif de type résine époxy. Les éléments employés sont issus de l’industrie aéronautique. Le matériau composite avait des caractéristiques identiques ou similaires au matériau « Plaque carbone UD » dont les caractéristiques sont indiquées dans le tableau 4 ci- dessous.
Les copeaux sont découpés selon l’exemple 1 à partir d’un matériau composite de départ comportant des fibres de carbone selon un agencement unidirectionnel inclus dans un adhésif de type résine époxy.
Les copeaux obtenus sont rectangulaires, et ont une longueur I de 100 mm, une largeur b de 9 mm et une épaisseur comprise entre 0,3 mm et 0,5 mm.
A partir de ces copeaux, les plaques sont réalisées selon le procédé tel que décrit ci- après : enduction des copeaux : les copeaux sont mélangés à un adhésif liquide afin de les enduire, en vue de leur moulage ; moulage des copeaux sous la forme de panneaux plans ; pressage du moule ; démoulage de la pièce ; et durcissement de la pièce.
Le moule est enduit d’un démoulant et est nappé de manière à réaliser une couche d’adhésif en surface du moule.
L’adhésif utilisé est le système ADEKIT H9011 utilisé selon les recommandations de son fabricant.
Les copeaux sont positionnés manuellement dans le moule. Le ratio entre les copeaux et l’adhésif est, sauf indication contraire, de 65/35 en masse dans la plaque finie.
Le moulage est réalisé sous presse, en appliquant une force de 20 tonne-force, et en pilotant la température à 70°C environ. Après démoulage, les plaques sont maintenues une semaine à température ambiante
(20°C) pour finaliser le durcissement avant d’être utilisées pour des mesures.
Les plaques ainsi obtenues correspondent à des plaques en matériau composite dont les copeaux, et donc les fibres, sont positionnées selon un arrangement unidirectionnel.
Le tableau 4 ci-dessous compare les caractéristiques mécaniques des plaques UD1 et UD2 à des plaques de référence (plaque UD carbone, plaque en bois, plaque en aluminium).
Figure imgf000020_0001
Tableau 4 : Propriétés mécaniques
La « plaque carbone UD » correspond à une plaque d’un matériau composite à base de fibres de carbone neuves unidirectionnelles. Les « Plaque UD1 » et « Plaque UD2 » correspondent à des plaques en matériau composite conformes à des modes de réalisation de l’invention, obtenus comme décrit ci- dessus, et dont les copeaux, et donc les fibres, sont positionnées selon un arrangement unidirectionnel. Il est notable que le module de flexion et la contrainte à la rupture de la Plaque UD2 (avec 65% de copeaux en masse) est significativement supérieure à 50 % des valeurs obtenues pour la Plaque Carbone UD de référence, soit un matériau composite à base de fibres unidirectionnelles neuves comparables (duquel les copeaux employés peuvent être extraits). En particulier le module de flexion obtenu, dans le sens longitudinal, est égal à 57 % du module de flexion du matériau unidirectionnel neuf comparable à base de fibres de carbone. En ramenant ces résultats à masses égales des panneaux (compte tenu des différences observées en terme de densité), le module de flexion de la Plaque UD2 (avec 65% de copeaux en masse) est égal à 63 % du module de flexion de la Plaque Carbone UD de référence.
Les résultats présentés ci-dessus démontrent l’obtention de matériaux recyclés ayant des grandes performances mécaniques. Ces résultats sont obtenus pour des matériaux comportant une proportion de copeaux pouvant être encore augmentée relativement à la quantité d’adhésif ajoutée (ratio de 65/35 en masse au plus dans les exemples représentés). Or, la Demanderesse a constaté que le pourcentage de copeaux influe directement sur les performances mécaniques obtenues, car il induit le pourcentage de fibres au sein du matériau. Notamment, le module de flexion de la Plaque UD2 (contenant 65% de copeaux en masse) est supérieur de près de 50% à celui de la Plaque UD1 (contenant 50% de copeaux en masse). La résistance à la rupture est quant à elle augmentée de plus de 20%.
Les copeaux selon l’invention permettent donc d’obtenir un matériau recyclé qui présente environ 70% des performances mécaniques, notamment 70 % du module de flexion, et (jusque 75% à 80% des performances à masses identiques) des matériaux comparables à base de fibres neuves, avec un procédé de fabrication simple, et ayant un impact environnemental faible comparativement aux procédés de recyclage chimiques ou thermiques.
En outre, des performances encore supérieures peuvent être atteintes, la Demanderesse ayant réalisé avec succès des pièces contenant plus de 65% en masse de copeaux (en l’occurrence jusqu’à 78 % en masse, et un panneau contenant environ 85% en masse de copeau semble réalisable).
Figure imgf000021_0001
La figure 1 représente, le module de flexion d’un panneau fabriqué à partir de copeaux selon l’invention (obtenus à partir d’un matériau composite à recycler), les copeaux étant organisés de manière unidirectionnelle, et celui d’un panneau obtenu à partir de matériau composite neuf contenant des fibres de carbone orientées de manière unidirectionnelle.
Le module de flexion est porté en ordonnée. En abscisse est représenté l’angle selon lequel la mesure est réalisée. Un angle de 0° correspond à la direction d’extension des fibres ou des copeaux, et 90° correspond à la direction transversale aux fibres et/ou aux copeaux.
Les triangles correspondent aux mesures réalisées sur une plaque d’un matériau comprenant des copeaux selon l’invention comportant des fibres de carbone unidirectionnelles, lesdits copeaux étant organisés de manière unidirectionnelle. Le module de flexion de cette plaque mesuré dans la direction d’extension des copeaux et des fibres qu’ils contiennent, est de 47 GPa.
Les ronds représentent les modules de flexion théoriques calculés pour une plaque équivalente, formée dans un matériau composite neuf à base de fibres de carbone unidirectionnelles dont le module de flexion dans la direction des fibres qu’il contient serait de 47 GPa.
Il apparaît que, de manière surprenante, les mesures réalisées pour un matériau composite comprenant des copeaux selon l’invention correspondent parfaitement aux valeurs théoriques obtenues pour le matériau neuf formé avec des fibres continues équivalentes.
Ainsi, les propriétés mécaniques d’un élément formé avec les copeaux selon l’invention sont prédictibles selon les connaissances généralement appliquées aux matériaux composites neufs à base de fibres de carbone continues équivalentes.

Claims

Revendications Copeau en matériau composite comportant des fibres de carbone dans un adhésif durci, ledit copeau ayant une épaisseur sensiblement constante définie entre deux faces opposées parallèles du copeau, chaque face comportant en surface des fibres de carbone au moins en partie non incluses dans l’adhésif durci. Copeau selon la revendication 1 , dans lequel la partie de la fibre de carbone non incluse dans l’adhésif durci constitue une fibre nue. Copeau selon la revendication 2, présentant un taux surfacique de fibres nues supérieur ou égal à 22%, le pourcentage étant rapporté à la surface totale de la face du copeau analysée. Copeau selon l’une quelconque des revendications 1 à 3, dont une face présente une rugosité mesurée par une perte de masse supérieure ou égale à 0,008%, ladite perte de masse étant mesurée par un test d’abrasion effectuée sur abrasimètre linéaire à l’aide d’une gomme abrasive H18 sur 100 cycles. Copeau selon l’une quelconque des revendications précédentes, présentant une épaisseur comprise entre 200 pm et 1 mm. Copeau selon l’une quelconque des revendications précédentes, dans lequel, lesdites fibres de carbone s’étendent sensiblement parallèlement aux dites faces opposées du copeau. Copeau selon l’une quelconque des revendications précédentes, dans lequel, les fibres de carbones sont orientées dans une même direction. Copeau selon l’une quelconque des revendications précédentes, ayant une forme rectangulaire. Copeau selon l’une quelconque des revendications précédentes, dans lequel, chaque face du copeau présente une surface d’au moins 1 cm2. Procédé de fabrication d’un copeau tel que défini selon l’une des revendications 1 à 9, ledit procédé comprenant les étapes suivantes : fourniture d’un matériau composite comportant des fibres de carbone orientées de manière sensiblement parallèle dans un adhésif durci; découpage mécanique du matériau composite avec un dispositif à lame, ledit découpage étant réalisée en positionnant les fibres de carbones parallèlement à la direction d’avancement de la lame dudit dispositif à lame.
PCT/EP2022/087374 2021-12-22 2022-12-21 Copeau en matériau composite recyclé et procédé de fabrication WO2023118385A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3241536A CA3241536A1 (fr) 2021-12-22 2022-12-21 Copeau en materiau composite recycle et procede de fabrication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FRFR2114292 2021-12-22
FR2114292A FR3130819A1 (fr) 2021-12-22 2021-12-22 Pièce en matériau composite recyclé et procédé de fabrication
EP22305430.5A EP4253455A1 (fr) 2022-03-31 2022-03-31 Copeau en matériau composite recyclé et procédé de fabrication
EP22305430.5 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023118385A1 true WO2023118385A1 (fr) 2023-06-29

Family

ID=84980869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/087374 WO2023118385A1 (fr) 2021-12-22 2022-12-21 Copeau en matériau composite recyclé et procédé de fabrication

Country Status (2)

Country Link
CA (1) CA3241536A1 (fr)
WO (1) WO2023118385A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951656B2 (en) 2021-10-29 2024-04-09 Vartega Inc. Fiber-containing particles with dual-tapered shape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024722A1 (en) * 1996-05-24 2001-09-27 Toray Industries, Inc. Carbon fibers, acrylic fibers and process for producing the acrylic fibers
US20130065471A1 (en) * 2010-05-27 2013-03-14 Hexcel Composites Limited Structured thermoplastic in composite interleaves
US20140217332A1 (en) * 2012-06-14 2014-08-07 Hexcel Corporation Composite materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024722A1 (en) * 1996-05-24 2001-09-27 Toray Industries, Inc. Carbon fibers, acrylic fibers and process for producing the acrylic fibers
US20130065471A1 (en) * 2010-05-27 2013-03-14 Hexcel Composites Limited Structured thermoplastic in composite interleaves
US20140217332A1 (en) * 2012-06-14 2014-08-07 Hexcel Corporation Composite materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TEWARI U.S ET AL: "Solid particle erosion of unidirectional carbon fibre reinforced polyetheretherketone composites", WEAR, vol. 252, no. 11-12, 1 July 2002 (2002-07-01), CH, pages 992 - 1000, XP055959837, ISSN: 0043-1648, DOI: 10.1016/S0043-1648(02)00063-7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951656B2 (en) 2021-10-29 2024-04-09 Vartega Inc. Fiber-containing particles with dual-tapered shape

Also Published As

Publication number Publication date
CA3241536A1 (fr) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2023118385A1 (fr) Copeau en matériau composite recyclé et procédé de fabrication
Evens et al. The influence of mechanical recycling on properties in injection molding of fiber-reinforced polypropylene
Liang et al. Thermo-compression forming of flax fibre-reinforced polyamide 6 composites: influence of the fibre thermal degradation on mechanical properties
Nasreen et al. Effect of surface treatment on the performance of composite‐composite and composite‐metal adhesive joints
FR3070979A1 (fr) Pieces en polyether cetone cetone presentant une stabilite dimensionnelle amelioree
FR2843967A1 (fr) Nouveaux produits composites et articles moules obtenus a partir desdits produits
Heider et al. Closed loop recycling of CFRP into highly aligned high performance short fiber composites using the tuff process
EP4253455A1 (fr) Copeau en matériau composite recyclé et procédé de fabrication
KR101996096B1 (ko) 복합체 물품을 위한 함침 직물의 제조 방법, 및 상기 방법에 의해 제조되는 함침 직물
WO2023118383A1 (fr) Pièce en matériau composite recyclé et procédé de fabrication
TW201442853A (zh) 用於製造熱塑性複合材料之組成物與方法(二)
EP2435505B1 (fr) Ruban dielectrique preimpregne pour radome
FR3056136A1 (fr) Systeme de decoupe d'un tissu de fibres de renfort pour la fabrication de feuilles en matiere plastique renforcee
JP6836014B2 (ja) マルチマテリアル複合体およびその製造方法
FR2969027A1 (fr) Procede de recyclage d'une piece en materiau composite et machine de decoupage
EP3898786A1 (fr) Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
EP3768768A1 (fr) MATERIAU FIBREUX IMPREGNE DE POLYMERE THERMOPLASTIQUE D'EPAISSEUR INFERIEURE OU EGALE A 100µM ET SON PROCEDE DE PREPARATION
Merino Perez et al. Induced thermo-mechanical damage in the drilling of thermoplastic-toughened CFRP composites
EP1796887B1 (fr) Pièce en matière plastique pour vehicule automobile comportant du polypropylène charge en fibres de verre neuves et recyclees
EP3768482A2 (fr) Nappe de materiau fibreux impregne, son procede de fabrication et son utilisation pour la fabrication de pieces composites en trois dimensions
WO2021030739A1 (fr) Fabrication et/ou réparation rapides de composites de réseau adaptable covalent renforcés par des fibres
Tharazi et al. Effects of fiber content and processing parameters on tensile properties of unidirectional long kenaf fiber reinforced polylactic-acid composite
Sanchez et al. Evaluation of methodology for the carbon fibre recycling
Alsinani et al. Effect of length variation of flax/polypropylene pellets produced by multi-die pultrusion on the quality of injection molded product
EP4058276A1 (fr) Piece a resistance a l'usure par frottement amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22843724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3241536

Country of ref document: CA