WO2023116819A1 - 除湿装置和烘干机 - Google Patents

除湿装置和烘干机 Download PDF

Info

Publication number
WO2023116819A1
WO2023116819A1 PCT/CN2022/141009 CN2022141009W WO2023116819A1 WO 2023116819 A1 WO2023116819 A1 WO 2023116819A1 CN 2022141009 W CN2022141009 W CN 2022141009W WO 2023116819 A1 WO2023116819 A1 WO 2023116819A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
air
water
circulation path
amount
Prior art date
Application number
PCT/CN2022/141009
Other languages
English (en)
French (fr)
Inventor
乾浩章
山内智博
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2023116819A1 publication Critical patent/WO2023116819A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/10Drying cabinets or drying chambers having heating or ventilating means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity

Definitions

  • the dehumidifier cools and dehumidifies the air flowing out from the container containing the object to be dried into the duct by exchanging heat with the dehumidifying mist sprayed into the duct from the injection port of the nozzle.
  • the control unit that controls spraying of the mist from the nozzle adjusts the spraying conditions of the mist according to the drying state of the object to be dried in the storage tub.
  • the spray amount of the mist from the nozzle is not always constant, but in a manner suitable for the current drying state of the object to be dried, that is, in a manner suitable for the current state of the object to be dried.
  • the air in the duct can be prevented from being excessively cooled in the initial stage, and the air in the duct can be dehumidified sufficiently in the middle and later stages.
  • the dehumidifier keeps the temperature and humidity of the air in the duct in an appropriate state throughout the initial, middle, and late stages. Therefore, if the air is returned to the storage cylinder and used again for drying the object to be dried, it can be used to dry the object.
  • the object to be dried in the container is efficiently dried.
  • a pair of nozzles are disposed so that the spray ports are opposed to each other, and therefore, by spraying the mist from one or both of these spray ports, it is possible to easily adjust the mist as the spray condition.
  • the spray volume and size of the fog are disposed so that the spray ports are opposed to each other, and therefore, by spraying the mist from one or both of these spray ports, it is possible to easily adjust the mist as the spray condition.
  • the charging part charges the moisture remaining in the air dehumidified by the mist sprayed from the nozzle, and the trapping part traps the charged moisture, so that the dehumidifier can charge the moisture in the pipeline.
  • the air is further dehumidified efficiently.
  • Fig. 1 is a schematic longitudinal sectional right view of a dryer according to one embodiment of the present invention.
  • Fig. 3 is a cross-sectional view taken along the line AA of Fig. 2 .
  • Fig. 5 is a plan view of a collection unit constituting the dehumidification device.
  • FIG. 8 is a diagram of one electrode extracted from FIG. 6 .
  • FIG. 11 is a time chart showing changes over time in the humidity and temperature of the object to be dried during the drying operation.
  • washing and drying machine 5: container; 20: circulation path; 21: air supply part; 22: heating part; 25: charging part; 26: collecting part; 28: nozzle; 28A: injection port; Control unit; 60: dehumidification device; L: laundry; M: mist.
  • Fig. 1 is a schematic longitudinal sectional right view of an integrated washer-dryer 1 which is an embodiment of the dryer of the present invention.
  • the direction perpendicular to the paper in FIG. 1 is called the left-right direction X of the washer-dryer 1
  • the left-right direction in FIG. 1 is called the front-back direction Y of the washer-dryer 1
  • the up-down direction in FIG. is the up and down direction Z of the all-in-one washing and drying machine 1 .
  • the rear side of the paper surface in FIG. 1 is referred to as the left X1
  • the front side of the paper surface of FIG. 1 is referred to as the right X2.
  • the left side in FIG. 1 is referred to as front Y1
  • the right side in FIG. 1 is referred to as rear Y2 .
  • the upper side is referred to as upper Z1
  • the lower side is referred to as lower Z2.
  • the left-right direction X and the front-back direction Y are included in the horizontal direction.
  • the horizontal direction may be the horizontal direction H, or may be a substantially horizontal direction slightly inclined with respect to the horizontal direction H.
  • the integrated washer-dryer 1 is mainly a drum-type integrated washer-dryer, but the integrated washer-dryer 1 may also be a vertical washer-dryer.
  • the present invention is also aimed at a dryer that performs only a drying operation while omitting the washing function.
  • the object to be dried by the integrated washing and drying machine 1 is laundry L such as clothing in this embodiment, it may be shoes, tableware, and the like.
  • An example of a dryer that dries tableware is an all-in-one dish washer and dryer.
  • the all-in-one washing and drying machine 1 includes: a box body 2; a storage cylinder 5, including a water cylinder 3 and a rotating cylinder 4 arranged in the box body 2, for storing laundry L; a water supply path 6 and a drainage path 7 connected to the water cylinder 3; a motor 8 , to rotate the rotary drum 4; and a drying unit 9, to dry the laundry L.
  • a support shaft 12 extending rearward Y2 along the axis J is provided at the center of the back wall 4B of the rotary drum 4 .
  • the rear end portion of the support shaft 12 passes through the through-hole 3D of the back wall 3B of the water tank 3, and is arranged at a position rearward Y2 from the back wall 3B.
  • An inlet/outlet 4E communicating with the hollow portion of the peripheral wall 4A from the front Y1 is formed inside the annular wall 4C.
  • the inlet and outlet 4E are in a state of facing and communicating with the inlet and outlet 3H of the water tank 3 and the opening 2B of the tank 2 from the rear Y2.
  • the entrance and exit 3H and the entrance and exit 4E are collectively opened and closed by the door 10 together with the opening 2B.
  • a user of the integrated washer-dryer 1 takes out/puts laundry L into/into the rotary drum 4 through the open opening 2B, the inlet and outlet 3H, and the inlet and outlet 4E.
  • the door 10 is provided with a gasket 13 that is in close contact with the third portion 3G of the front wall 3C of the water tank 3 when the door 10 closes the opening 2B, the entrance 3H, and the entrance 4E.
  • the water supply path 6 has: one end (not shown) connected to a faucet (not shown), the other end connected to, for example, the upper part of the second part 3F of the front wall 3C of the water cylinder 3 in the box body 2, and at the other end 6A of water supply ports facing the inside of the water tank 3 from upper Z1 are provided.
  • tap water from a faucet is supplied into the water tank 3 through the water supply channel 6 from the water supply port 6A.
  • Tap water or detergent water obtained by dissolving detergent in tap water is stored in the water tank 3 .
  • tap water and detergent water may be simply referred to as "water”.
  • the water in water tub 3 reciprocates between water tub 3 and rotary tub 4 through through hole 4D of rotary tub 4 . Therefore, the water level in the water cylinder 3 coincides with the water level in the rotary cylinder 4 .
  • the all-in-one washing and drying machine 1 includes: a water level detection unit 14 for detecting the water level in the water cylinder 3; Various water level sensors can be used as the water level detection unit 14 .
  • the water level detection unit 14 in this embodiment is a piezoelectric sensor with a built-in diaphragm (not shown), and is connected to the water cylinder 3 via a hose 16 .
  • the water level detection unit 14 measures the pressure in the hose 16 fluctuating with the change of the water level in the water cylinder 3 by using a diaphragm, and detects the water level in the water cylinder 3 .
  • the drainage channel 7 is connected to the lower end of the water tank 3 , for example, the lower end of the peripheral wall 3A.
  • the water in the water cylinder 3 is discharged from the drain 7 to the outside of the casing 2, that is, outside the machine.
  • the washer-dryer 1 includes an openable and closable drain valve 17 provided in the middle of the drain path 7 .
  • the drain valve 17 in the open state allows the water tank 3 to drain water by opening the drain passage 7 .
  • the drain valve 17 in the closed state stops draining water by closing the drain passage 7 .
  • the motor 8 is arranged in the rear Y2 of the rear wall 3B of the water tank 3 in the housing 2 .
  • a direct drive motor can be used.
  • the motor 8 is connected to a support shaft 12 provided on the rotary drum 4 .
  • the torque generated by the motor 8 is transmitted to the support shaft 12, and the rotary drum 4 rotates around the axis J along with the support shaft 12.
  • a clutch mechanism (not shown) which transmits or cuts off the torque of the motor 8 to the support shaft 12 may be provided between the motor 8 and the support shaft 12 .
  • the drying unit 9 includes: a circulation path 20 and an air supply part 21 for circulating the air in the water cylinder 3; a heating part 22 for heating the circulated air; and a dehumidifier 23 for dehumidifying the air flowing in the circulation path 20 .
  • the circulation path 20 is a pipe arranged, for example, above the water tank 3 at Z1 inside the tank 2 .
  • the circulation path 20 has: a middle portion 20A extending in the front-rear direction Y; a rear portion 20B extending from the rear end of the middle portion 20A downward Z2 and then bent forward Y1; and a front portion 20C extending from the front end of the middle portion 20A toward The lower Z2 extends.
  • An outflow port 20D is formed at the front end of the lower end portion of the rear portion 20B.
  • the outflow port 20D is connected to the lower portion of the rear wall 3B of the water cylinder 3 and communicates with the inside of the water cylinder 3 from the rear Y2.
  • the blower unit 21 is a so-called blower, and includes a rotary blade 21A arranged in a middle portion 20A of the circulation path 20 and a motor (not shown) that rotates the rotary blade 21A.
  • the rotating blade 21A rotates, as indicated by the thick dotted arrow, the air in the storage cylinder 5, that is, the air in the water cylinder 3 and the rotating cylinder 4 flows out from the outlet 20D into the circulation path 20, and then flows into the water cylinder 3 from the inlet 20E. Inside. Thereby, air flows so as to circulate between the storage tube 5 and the circulation path 20 .
  • the circulation path 20 may be a complete internal circulation path that is established even if the outside air, that is, the air outside the washer-dryer 1 is not taken in.
  • the heating unit 22 is a heat exchanger or a general heater in a heat pump, and is at least partially provided in the circulation path 20 .
  • a portion of the heating unit 22 provided in the circulation path 20 has a heat dissipation unit 22A.
  • the heat dissipation portion 22A is arranged on the downstream side of the inlet 20E from the rotating blade 21A of the air blower 21 in the circulation path 20 , but may be arranged on the upstream side of the inlet 20E from the rotating blade 21A.
  • the dehumidifier 23 includes: a mist supply part 24, which supplies the mist into the circulation path 20; a charging part 25, which charges the moisture contained in the air flowing in the circulation path 20; And charged moisture.
  • mist supply parts 24 There are a plurality of mist supply parts 24, and there is a pair in this embodiment.
  • One of a pair of mist supply part 24 is called 24 A of 1st mist supply parts, and the other is called 2nd mist supply part 24B.
  • the first mist supply part 24A and the second mist supply part 24B respectively include: a water flow path 27 branched from an upstream portion of the water supply path 6 closer to the faucet than the water supply valve 15; a nozzle 28 mounted on the front end of the water flow path 27;
  • the water flow valve 29 is provided in the middle of the water flow path 27 .
  • the nozzle 28 is arranged in the rear part 21B of the circulation path 20 .
  • the nozzle 28 has a spray port 28A of mist.
  • the water flow valve 29 is, for example, a solenoid valve.
  • the water flow valve 29 in the open state is in the state of opening the water flow path 27. In this state, the tap water from the faucet flows through the water flow path 27, and the mist M for dehumidification is sprayed into the circulation path 20 from the spray port 28A of the nozzle 28. .
  • the water flow valve 29 in the closed state closes the water flow path 27 and stops spraying of the mist M into the circulation path 20 .
  • the nozzle 28 of the first mist supply part 24A and the nozzle 28 of the second mist supply part 24B, that is, a pair of nozzles 28 are arranged so that the mutual injection ports 28A are in the air flow direction in the circulation path 20 (thick dotted line arrow in FIG. 1 ). opposite.
  • the charging unit 25 and the collecting unit 26 are arranged in a region closer to the inflow port 20E than the nozzles 28 of the first mist supply unit 24A and the second mist supply unit 24B in the circulation path 20 .
  • This area is an area on the downstream side of the nozzle 28 in the air flow direction in the circulation path 20 .
  • air blower 21 and heating unit 22 are arranged on the downstream side of charging unit 25 and collecting unit 26 .
  • the internal space 30B is opened from the entrance 30C to the downward direction Z2, and is opened from the exit 30D to the upward direction Z1.
  • the casing 30 constitutes a part of the circulation path 20 , specifically, a part of the portion extending in the vertical direction Z of the rear portion 20B (see FIG. 1 ).
  • the internal space 30B of the casing 30 , the inlet 30C, and the outlet 30D constitute a part of the area extending in the vertical direction Z in the internal space of the circulation path 20 .
  • Fig. 3 is a cross-sectional view taken along the line AA of Fig. 2 .
  • the air flowing in the circulation path 20 rises in the casing 30 from the inlet 30C to the outlet 30D (see the bold dotted arrow).
  • a pair of vertical walls 30AA is arranged perpendicularly to the remaining pair of vertical walls 30AB.
  • the lower end of one of the pair of vertical walls 30AA includes a through hole 30E, a slope 30F protruding from the lower end of the through hole 30E toward the internal space 30B, and a guide box 30G covering the through hole 30E from the outside of the housing 30 .
  • the through hole 30E, the slope 30F, and the guide box 30G are long in the opposing direction P of the pair of vertical walls 30AB.
  • the through hole 30E and the slope 30F are provided over the entire area in the opposing direction P in the internal space 30B.
  • the slope 30F is arranged obliquely upward from the through hole 30E, and the upper surface 30H of the slope 30F is also inclined.
  • a protruding portion 30I protruding upward Z1 is provided on the upper end portion of the upper surface 30H farthest from the through hole 30E.
  • the first electrode 31 is a thin plate-shaped counter electrode in the facing direction P, and is formed of, for example, stainless steel or aluminum, thereby having conductivity.
  • five first electrodes 31 are arranged at equal intervals in the opposing direction P in the internal space 30B of the casing 30 (see FIG. 2 ).
  • Each first electrode 31 is positioned in the internal space 30B by engaging the widened portion 31A widened at the upper end portion with the stepped portion 30N at the outlet 30D of the casing 30 (see FIG. 3 ).
  • the lower end edge 31B on the inlet 30C side of the casing 30 is linearly inclined so as to gradually descend toward the through hole 30E of the vertical wall 30AA.
  • the lower end portion on the side of the through hole 30E is arranged directly above the slope 30F, and is arranged at the same position in the vertical direction Z as the through hole 30E.
  • the second electrode 32 is a discharge electrode made of electric wires, and is made of, for example, tungsten so that it has conductivity and has a polarity opposite to that of the first electrode 31 .
  • the second electrodes 32 are arranged one by one between the adjacent first electrodes 31, and spanned between the pair of vertical walls 30AA (see FIGS. 2 and 3 ).
  • the second electrode 32 is not in contact with the first electrode 31 and slopes linearly so as to be parallel to the lower edge 31B above the lower edge 31B of the first electrode 31 (see FIG. 3 ).
  • the polarity of the first electrode 31 is negative on the ground side, and the polarity of the second electrode 32 is positive.
  • a voltage is applied to the charging unit 25 from a power supply (not shown) provided in the washer-dryer 1
  • a high voltage of several kV to tens of kV is applied between the first electrode 31 and the second electrode 32, and the second Electrode 32 will discharge.
  • the air around the second electrode 32 becomes a plasma state, and molecules in the air are cationized and move toward the first electrode 31 . Accordingly, a current of several 10 ⁇ A flows between the first electrode 31 and the second electrode 32 .
  • moisture contained in the air flowing between the first electrode 31 and the second electrode 32 is positively charged by colliding with cations and electrons.
  • the positively charged moisture is attracted to the negative first electrode 31 and is captured by the first electrode 31 .
  • the air between the first electrode 31 and the second electrode 32 is dehumidified.
  • the water trapped by the first electrode 31 becomes water droplets on the surface of the first electrode 31, flows along the slope of the lower edge 31B of the first electrode 31 due to its own weight (refer to arrow Q1 in FIG. 3 ), and falls on the slope 30F.
  • Surface 30H The moisture falling on the upper surface 30H flows down along the inclination of the upper surface 30H, flows into the inner space 30J of the guide box 30G (refer to arrow Q2 in FIG. It flows into the connecting portion 30M (see arrow Q3 in FIG. 4 ).
  • the first electrode 31 has a polarity opposite to that of the charged moisture and traps the moisture. It should be noted that the polarity of the first electrode 31 may be positive and the polarity of the second electrode may be negative. However, even in the above-mentioned configuration, the second electrode 32 will discharge, and the first electrode 32 will discharge. Electrode 31 also collects water.
  • the inlet 30C and the outlet 30D of the housing 30 are aligned in the vertical direction Z so that the air in the housing 30 flows upward, but they may also be arranged in the housing 30 In this case, the posture of the casing 30 may be changed such that the inlet 30C and the outlet 30D are arranged in a horizontal direction. In any case, the first electrode 31 and the second electrode 32 are arranged along the flow of the air so as not to act as resistance to the air flowing from the inlet 30C to the outlet 30D.
  • FIG. 5 is a plan view of the collecting unit 26 .
  • the collecting part 26 is arranged on the downstream side of the charging part 25 in the air flow direction in the circulation path 20 , and is arranged adjacent to the upper Z1 of the charging part 25 in the present embodiment.
  • the trapping unit 26 includes a hollow casing 40 , a plurality of third electrodes 43 arranged in the casing 40 , and fourth electrodes 44 arranged between adjacent third electrodes 43 .
  • An example of the housing 40 is a cuboid formed of four vertical walls 40A extending in the vertical direction Z.
  • the space surrounded by these vertical walls 40A is the internal space 40B of the casing 40 .
  • a rectangular inlet 40C surrounded by the lower ends of the four vertical walls 40A and a rectangular outlet 40D surrounded by the upper ends of the four vertical walls 40A are formed in the housing 40 (see also FIG. 6 ).
  • the internal space 40B is opened from the entrance 40C to the downward direction Z2, and is opened from the exit 40D to the upward direction Z1.
  • the casing 40 constitutes a part of a portion extending in the vertical direction Z at the rear portion 20B of the circulation path 20 (see FIG. 1 ).
  • the internal space 40B of the housing 40 , the inlet 40C, and the outlet 40D constitute a part of the area extending in the vertical direction Z in the internal space of the circulation path 20 .
  • Inlet 40C of case 40 communicates with outlet 30D (see FIG. 3 ) of case 30 of charging unit 25 from above Z1.
  • Fig. 6 is a cross-sectional view taken along line CC of Fig. 5 .
  • the air flowing through the circulation path 20 and passing through the charging unit 25 in the case 30 rises in the case 40 from the inlet 40C to the outlet 40D (see the thick dotted arrow).
  • a pair of vertical walls 40AA is arranged perpendicular to the remaining pair of vertical walls 40AB.
  • the lower end of one of the pair of vertical walls 40AA includes a through hole 40E, a slope 40F protruding from the lower end of the through hole 40E toward the internal space 40B, and a guide box 40G covering the through hole 40E from the outside of the housing 40 .
  • the through hole 40E, the slope 40F, and the guide box 40G are long in the opposing direction R of the pair of vertical walls 40AB.
  • the through hole 40E and the slope 40F are provided over the entire area in the opposing direction R in the internal space 40B.
  • the slope 40F is arranged obliquely upward from the through hole 40E, and the upper surface 40H of the slope 40F is also inclined.
  • a protruding portion 40I protruding upward Z1 is provided on the upper end portion of the upper surface 40H farthest from the through hole 40E.
  • FIG. 7 is a cross-sectional view taken along the arrow DD of FIG. 5 .
  • the lower end of the upper surface 40H of the slope 40F is connected to the lower end of the upper surface 40H of the slope 40F via the through-hole 40E at the bottom surface 40K that defines the internal space 40J from the lower side Z2.
  • the bottom surface 40K is, for example, an inclined surface gradually descending toward one of the opposing directions R, and a discharge port 40L is formed at the lower end thereof.
  • a cylindrical connecting portion 40M protruding downward Z2 while surrounding the discharge port 40L is provided on the lower surface of the guide box 40G.
  • the third electrode 43 is a thin plate-shaped counter electrode in the counter direction R, and is formed of, for example, stainless steel or aluminum, thereby having conductivity.
  • seven third electrodes 43 are arranged at equal intervals in the opposing direction R in the internal space 40B of the casing 40 (see FIG. 5 ).
  • Each third electrode 43 is positioned in the internal space 40B by engaging a protrusion 43A protruding from the upper end with a step 40N at the outlet 40D of the casing 40 .
  • the protruding portions 43A of the third electrodes 43 may be connected in series by the connecting shaft 45 extending in the opposing direction R to integrate all the third electrodes 43 (see FIG. 6 ).
  • each third electrode 43 The lower edge 43B of the case 40 on the inlet 40C side of each third electrode 43 is linearly inclined so as to gradually descend toward the through hole 40E of the vertical wall 40AA.
  • the lower end portion on the side of the through hole 40E is arranged directly above the slope 40F, and is arranged at the same position in the vertical direction Z as the through hole 40E.
  • FIG. 8 is a diagram of the fourth electrode 44 extracted from FIG. 6 .
  • Each fourth electrode 44 is an insulating electrode having a main body 44A elongated in the opposing direction S (see FIG. 6 ) of the pair of vertical walls 40AA and an insulator 44B covering most of the main body 44A.
  • the main body 44A is formed of copper, for example, and thus has conductivity.
  • the main body 44A has a polarity opposite to that of the third electrode 43 .
  • the insulator 44B has a rectangular plate shape that is thinner in the opposing direction R of the pair of vertical walls 40AA and longer in the opposing direction S.
  • the fourth electrodes 44 are arranged one by one between the adjacent third electrodes 43 , and are stretched between the pair of vertical walls 40AA without being in contact with the third electrodes 43 (see FIGS. 5 and 6 ). Viewed from the facing direction R, most of the fourth electrodes 44 are arranged to overlap with the third electrodes 43 (see FIG. 6 ).
  • the root portion 44AA exposed from the insulator 44B of the main body 44A and the portion of the insulator 44B on the root portion 44AA side are arranged outside the case 40 .
  • the polarity of the third electrode 43 is negative on the ground side, and the polarity of the fourth electrode 44 is positive.
  • a voltage is applied from a power source (not shown) provided in the washer-dryer 1 to the trap 26 , a high voltage of several kV to several tens of kV is applied between the third electrode 43 and the fourth electrode 44 .
  • the surface of the fourth electrode 44 is made of the insulator 44B, so no current flows between the third electrode 43 and the fourth electrode 44 . Therefore, it is possible to prevent sparks and voltage fluctuations due to leakage or the like between the third electrode 43 and the fourth electrode 44 .
  • the moisture collected by the third electrode 43 becomes water droplets on the surface of the third electrode 43, and flows along the slope of the lower edge 43B of the third electrode 43 due to its own weight (refer to arrow T1 in FIG. 6 ), and falls on the slope 40F.
  • the moisture falling on the upper surface 40H flows down along the inclination of the upper surface 40H, flows into the inner space 40J of the guide box 40G (refer to arrow T2 in FIG. It flows into the connection part 40M (refer arrow T3 of FIG. 7).
  • the dehumidifier 23 further includes a discharge path 46 extending downward Z2 from the charging part 25 and the collecting part 26 and connected to the water tank 3 (see FIG. 1 ).
  • One end portion 46A of discharge path 46 is branched and connected to connecting portion 30M of charging unit 25 and connecting portion 40M of collecting unit 26 (see FIGS. 4 and 7 ).
  • the other end 46B opposite to the one end 46A is connected to the back wall 3B of the water tank 3 in FIG. 1 .
  • the water flowing into the connection part 30M of the charging part 25 and the water flowing into the connection part 40M of the collecting part 26 flow into the water tank 3 through the discharge path 46 and are discharged from the drain path 7 to the outside.
  • the other end portion 46B of the discharge passage 46 may be directly connected to the drainage passage 7 .
  • the washer-dryer 1 includes: a humidity detection unit 50 for detecting the humidity of the air circulating between the storage tub 5 and the circulation path 20; and a temperature detection unit 51 for detecting the temperature of the air.
  • Humidity detection part 50 comprises: first humidity detection part 50A, is arranged between outlet 20D and nozzle 28 in circulation path 20; between the parts 26;
  • the temperature detection part 51 includes: a first temperature detection part 51A, arranged between the outlet 20D and the nozzle 28 in the circulation path 20; between the parts 26; It should be noted that the humidity detection unit 50 and the temperature detection unit 51 arranged at close positions may also be integrated as one humidity and temperature detection unit.
  • the storage tub 5 in the washer-dryer 1 , the storage tub 5 , the circulation path 20 , the dehumidifier 23 and the control unit 55 constitute a dehumidifier 60 as a whole.
  • the control unit 55 performs washing and drying operations by controlling the respective operations of the motor 8, the water supply valve 15, the drain valve 17, the blower unit 21, the heating unit 22, the mist supply unit 24, the charging unit 25, and the collecting unit 26.
  • the washing and drying operation includes an initial washing process, one or more rinsing processes performed after the washing process, a dehydration process performed after at least the last rinsing process, and a final drying process. These processes may also be operated independently, in which case, for example, the washing process is a washing operation, and the drying process is a drying operation.
  • control unit 55 first activates the motor 8 to make the rotating drum 4 rotate forward and sometimes reversely, and judges the degree of laundry L in the drying state in the rotating drum 4 according to the current value of the motor 8 at this time. quality.
  • the control unit 55 determines the required amount of detergent and the target water level in the water tub 3 during washing based on the determined quality of the laundry L.
  • Control unit 55 displays information on the determined amount of detergent on a display operation unit (not shown) provided on front surface 2A of housing 2 or the like.
  • control unit 55 executes the water supply process by opening the water supply valve 15 while the drain valve 17 is closed.
  • the tap water from the water supply channel 6 flows into the water tank 3 from the water supply port 6A and is stored, so that the water level in the water tank 3 rises.
  • the control unit 55 closes the water supply valve 15 to end the water supply process.
  • the detergent is manually injected into the rotary drum 4 by the user, or automatically injected. As a result, detergent water produced by dissolving detergent in tap water is stored in spin tub 4 .
  • the control unit 55 rotates the rotary drum 4 with the motor 8 as a cleaning process after the water supply process. Thereby, the laundry L in the spin tub 4 is tumble-washed. In the tumble washing, the laundry L is lifted up to a certain degree, and then tumbling (tumbling) is repeated to naturally fall to the water surface. Contaminants are removed from the laundry L by the impact of the tumbling and the detergent components contained in the water stored in the spin tub 4.
  • the controller 55 opens the drain valve 17 to drain water after a predetermined time elapses from the start of the tumbling, the cleaning process ends.
  • the controller 55 opens the water supply valve 15 for at least a predetermined time with the drain valve 17 closed to store tap water in the water tub 3 , and then the motor 8 rotates the spin tub 4 . Then, the above-mentioned tumbling is repeated, so that the laundry L is rinsed with the tap water in the spin tub 4 .
  • the rinsing process ends when the control unit 55 drains water after a predetermined time has elapsed from the start of tumbling.
  • the control unit 55 spins the spin drum 4 for dehydration while the drain valve 17 is opened.
  • the laundry L in the spin drum 4 is dehydrated by the centrifugal force generated by the dehydration rotation of the spin drum 4 .
  • the water seeped out of the laundry L by dehydration is drained out of the machine through the drain path 7 .
  • the dehydration process may be performed not only after the rinsing process but also after the washing process.
  • the control unit 55 peels or loosens the laundry L in the rotary drum 4 from the peripheral wall 4A of the rotary drum 4 by rapidly repeating the forward rotation and reverse rotation of the rotary drum 4 . Thereby, in the subsequent drying process, it is possible to prevent the laundry L from being wrinkled.
  • the control unit 55 executes a drying process, that is, a drying operation, by controlling at least the blower unit 21 , the heating unit 22 and the dehumidifier 23 .
  • a drying process that is, a drying operation
  • the hot air is generated by the operation of the air blower 21 and the heating unit 22 , circulates between the storage tub 5 and the circulation path 20 , and is blown to the laundry L in the rotary tub 4 .
  • the moisture in the laundry L is evaporated into water vapor by the heat exchange between the hot air and the moisture, and thus the drying of the laundry L is accelerated.
  • the water vapor generated from the laundry L in the storage tub 5 is entrained in the circulating air and flows out from the outflow port 20D to the circulation path 20 .
  • the control unit 55 sprays the mist M from the injection port 28A of the nozzle 28 into the circulation path 20 by opening the flow valve 29 of the mist supply unit 24 .
  • the dehumidified heating unit 22 heats it to become hot air, flows into the storage tub 5 from the inlet 20E, and is used for drying the laundry L again.
  • the mist supply unit 24 may generate the mist M only by the pressure of tap water, or may generate the mist M using an ultrasonic vibrator (not shown).
  • the control unit 55 can adjust the spray amount and flow of the mist M sprayed from the spray port 28A by adjusting the opening degree of the flow valve 29 .
  • a pair of nozzle 28 is arrange
  • the control unit 55 can easily adjust the spraying amount and size of the mist M which is the spraying condition of the mist M by spraying the mist M from one or both of these spraying ports 28A in the common nozzle 28 . For example, if the mist M is sprayed from both sides of the pair of injection ports 28A, the mist M collides with each other, and the mist M with a large particle diameter can be generated at high density. In this way, the control unit 55 controls the injection of the mist M at the nozzle 28 .
  • the mist supply part 24 may include the pump (not shown) which pressurizes the tap water which flows through the water channel 27. As shown in FIG. By controlling the pump, the controller 55 can adjust the injection amount and flow of the mist M injected from the injection port 28A in a wider range.
  • Fig. 10 is a time chart showing a drying operation.
  • the horizontal axis represents elapsed time.
  • the vertical axis represents the evaporation amount of moisture from the laundry L in the storage tub 5 and the spraying amount of the mist M sprayed from the nozzle 28 of the mist supply unit 24 during the drying operation.
  • An example of the unit of the elapsed time is [min]
  • an example of the respective units of the evaporation amount and the injection amount is [g/min].
  • the required time of the drying operation is set to 120 minutes, for example, in the initial period within 30 minutes from the start of the drying operation, the heat energy of the hot air supplied to the storage tub 5 is mainly consumed by the laundry.
  • the temperature of the moisture in the L rises, so the amount of evaporation is very little if at first increased.
  • the evaporation amount gradually increases as shown by the thick solid line in Fig. 10, reaches the maximum in the middle period between 30 minutes and 60 minutes at the start of the drying operation, and then gradually decreases at the later stage of the drying operation .
  • the temperature in the storage tube 5 becomes a substantially constant reference temperature
  • the later stage the temperature in the storage tube 5 slightly rises from the reference temperature.
  • An example of the reference temperature is not less than 40 degrees and not more than 45 degrees.
  • the evaporation amount is an index showing the drying state of the laundry L in the storage tub 5 .
  • the control unit 55 adjusts the spraying conditions of the mist M at the nozzle 28, particularly the spraying amount, according to the evaporation amount. During the drying operation, the control unit 55 changes the injection amount at the initial stage, the middle stage, and the late stage, as indicated by the thick one-dot chain line in FIG. 10 .
  • control unit 55 adjusts the spraying conditions so that the spraying amount of the mist M in the initial stage when the evaporation amount starts to increase is smaller than the spraying amount of the mist M in the middle stage when the evaporation amount is the largest after the initial stage, and the evaporation amount continues to decrease after the middle stage.
  • the injection amount of the mist M in the later stage is smaller than the injection amount of the mist M in the middle stage, and is equal to or more than the injection amount of the mist M in the early stage. That is, the injection amount at the initial stage is the minimum value, and the injection amount at the middle stage is the maximum value.
  • the initial injection amount can be zero or greater than zero.
  • the control unit 55 changes the spraying of the mist M twice only at the timing of switching from the early stage to the middle stage and at the timing of switching from the middle stage to the late stage. quantity.
  • the control unit 55 may change the injection amount based on the elapsed time from the start of the drying operation.
  • the control unit 55 may change the injection amount more frequently, that is, in multiple stages, so that the injection amount closely follows the change of the actual evaporation amount, as indicated by the thick two-dot chain line. Therefore, the injection amount is changed multiple times even in the respective periods of the initial stage, the middle stage, and the late stage.
  • control unit 55 changes the injection amount based on a value linked to the evaporation amount, for example, changes in humidity and temperature in the storage tube 5 .
  • the humidity in the storage tube 5 is the detection value of the third humidity detection unit 50C
  • the temperature in the storage tube 5 is the detection value of the third temperature detection unit 51C (see FIG. 1 ).
  • Fig. 11 is a time chart showing a drying operation.
  • the horizontal axis represents elapsed time.
  • the vertical axis represents the detection value of the first humidity detection unit 50A and the detection value of the first temperature detection unit 51A.
  • the detection value of the first humidity detection unit 50A is the humidity of water vapor generated from the laundry L in the storage tub 5 and immediately after flowing into the circulation path 20 .
  • the detected value of the first temperature detector 51A is the temperature near the outlet 20D of the circulation path 20 , in other words, the temperature inside the storage tube 5 . Therefore, instead of the detection value of the first temperature detection unit 51A, the detection value of the third temperature detection unit 51C may be used.
  • the unit of elapsed time is "min”
  • the unit of humidity is "%”
  • the unit of temperature is "degree”.
  • Humidity is relative humidity.
  • the difference from the present embodiment is that when the spraying amount of the mist M is always constant during the drying operation, the spraying amount is often at a level unbalanced with the evaporation amount of moisture from the laundry L at the beginning of the drying operation.
  • the spraying amount of the mist M is often at a level unbalanced with the evaporation amount of moisture from the laundry L at the beginning of the drying operation.
  • the air in the circulation path 20 is dehumidified by the mist M, it is excessively cooled.
  • the temperature in the storage tube 5 rises gradually as indicated by the thick dotted line, it reaches the reference temperature at the end of the middle period. In this way, since the humidity gradually decreases as indicated by the thick solid line, it takes time for the laundry L to be in a dry state.
  • the spraying conditions of the mist M during the drying operation are adjusted according to the drying state of the laundry L as described above. Therefore, the spraying amount of mist is not always constant, but the sprayed mist M is timely adjusted to suit the current drying state of the laundry L, that is, to suit the evaporation amount of moisture from the current laundry L. Spray into the circulation path 20. Specifically, as described above, the injection amount is adjusted so that it is smaller in the early stage, larger in the middle stage than in the early stage, and smaller in the later stage than in the middle stage (see the dashed-dotted line and the dashed-two-dotted line in FIG. 10 ).
  • mist M under appropriate spray conditions corresponding to the drying state of laundry L at respective timings is sprayed into circulation path 20 at an appropriate time in the early, middle, and late stages of the drying operation. Therefore, for example, in the drying operation, it is possible to prevent the air in the circulation path 20 from being excessively cooled by the mist M when the amount of moisture evaporated from the laundry L is small at the initial stage. When it is used again for drying laundry L, this air can be heated in a short time, and it is difficult to lower the temperature in storage tub 5 . In addition, the air in the circulation path 20 can be sufficiently dehumidified after a medium term.
  • the dehumidifier 60 keeps the temperature and humidity of the air in the circulation path 20 in an appropriate state throughout all the early, middle, and late stages. Therefore, by returning the air dehumidified by the dehumidifier 60 to the storage tub 5 and using it again for drying the laundry L, the laundry L in the storage tub 5 can be efficiently dried in a short time. Therefore, the temperature in the storage tub 5 rapidly rises to the reference temperature before the middle of the initial period as shown by the thick single-dashed line, and the humidity drops relatively quickly to the reference humidity as shown by the thick double-dotted line, so that the laundry L The time until it becomes dry becomes shorter.
  • the size of the mist M can be adjusted in the early, middle and late stages respectively.
  • the size of the mist M may be smaller in the early and late stages than in the middle stage.
  • the control unit 55 may operate the motor 8 to rotate the rotary drum 4 to stir the laundry L, so that the hot air spreads to every corner of the laundry L.
  • a voltage is applied to the charging unit 25 and the collecting unit 26 of the dehumidifying device 23 under the control of the control unit 55 .
  • the air flowing through the circulation path 20 carrying the moisture evaporated from the laundry L passes through the internal space 30B of the casing 30 of the charging part 25 and the internal space of the casing 40 of the collecting part 26 as described above. Dehumidified at 40B.
  • the charging part 25 charges the moisture remaining in the air dehumidified by the mist M sprayed from the nozzle 28, and the collecting part 26 traps the charged moisture, so the dehumidifier 60 can charge the moisture in the circulation path 20.
  • the air is further dehumidified efficiently.
  • the control unit 55 stops the heating unit 22 and executes the cooling process. During the cooling process, the control unit 55 continues to operate the blower unit 21 while the heating unit 22 is stopped. Thereby, the laundry L in the storage tub 5 and the door 10 are cooled by cold air circulation. Then, the user can open the door 10 and take out the laundry L from the storage tub 5 .
  • a pair of nozzles 28 are provided, but only one nozzle 28 may exist as long as the spray amount and size of the mist can be adjusted by one nozzle 28. That is, only one mist supply part 24 may be provided.
  • the drying unit 9 may further include an exhaust passage 20F branched from the circulation passage 20 and communicating with the outside of the washer-dryer 1 .
  • a portion of the exhaust passage 20F that communicates with the outside of the machine is an exhaust port 20G formed in the casing 2 .
  • the circulation path 20 may also communicate with the outside of the washer-dryer 1 .
  • the portion of the circulation path 20 that communicates with the outside of the machine is the intake port 20H formed in the casing 2, and the air blower 21 and the heating unit 22 are arranged in the area between the inlet port 20E and the intake port 20H.
  • the circulation path 20 has a connection path 20I extending from a portion connected to the exhaust path 20F to a region between the inlet port 20E and the intake port 20H.
  • An exhaust valve 71 that opens and closes the exhaust port 20G is provided in the exhaust path 20F
  • an intake valve 72 that opens and closes the intake port 20H is provided in the circulation path 20 .
  • the exhaust valve 71 and the intake valve 72 are regulating valves, and their opening and closing are controlled by the control unit 55 (see FIG. 9 ).
  • the control unit 55 can adjust the respective opening degrees of the exhaust valve 71 and the intake valve 72 .
  • the exhaust valve 71 and the intake valve 72 are in a closed state when their respective opening degrees are zero.
  • the control unit 55 opens the exhaust valve 71 by increasing the opening degree, the exhaust port 20G is opened, so that the air in the exhaust passage 20F is exhausted to the outside.
  • the control unit 55 opens the intake valve 72 by increasing the opening degree, the intake port 20H is opened, so that outside air can flow into the circulation path 20 .
  • a filter (not shown) for trapping foreign substances contained in the outside air may be provided at the intake port 20H.
  • a switching unit 73 is provided on the connection path 20I.
  • the switching unit 73 is constituted by an openable and closable regulating valve and the like.
  • the control unit 55 opens and closes the switching unit 73 by adjusting the opening degree of the switching unit 73 (see FIG. 9 ).
  • the switching portion 73 is in the closed state when the opening degree is zero.
  • the control part 55 opens the switching part 73 by increasing the opening degree, the circulation path 20 is open, so when the blower part 21 operates in this state, the air in the circulation path 20 circulates as described above.
  • the switching part 73 is closed, the circulation path 20 is cut off at the connection path 20I, and therefore the air in the circulation path 20 flows to the exhaust path 20F and is exhausted outside the machine. In this way, the switching unit 73 makes the air in the circulation path 20 flow to the exhaust path 20F or flow to the connection path 20I under the control of the control unit 55 .
  • connection path 20I may be omitted.
  • the air blower 21 works, outside air flows into the circulation path 20 from the air inlet 20H, is heated by the heating unit 22 to become hot air, and the hot air is blown from the inlet 20E to the laundry in the storage tub 5. After L, it flows out from the outlet 20D to the circulation path 20, and is discharged from the exhaust port 20G to the outside of the machine through the exhaust path 20F, so the air in the drying operation always flows in one direction without circulation.

Abstract

本发明提供一种能够使烘干对象物高效地烘干的除湿装置及包括该除湿装置的烘干机。除湿装置(60)包括:收容筒(5),收容洗涤物(L);循环路(20),使空气从收容筒(5)流出;喷嘴(28),从喷射口(28A)向循环路(20)内喷射除湿用的雾(M);以及控制部(55),控制喷嘴(28)中的雾(M)的喷射。控制部(55)根据收容筒(5)内的洗涤物(L)的烘干状态,调整雾(M)的喷射条件。

Description

除湿装置和烘干机 技术领域
本发明涉及除湿装置及包括该除湿装置的烘干机。
背景技术
下述专利文献1中所记载的滚筒式洗干一体机包括:滚筒,收容洗涤物;加热器,在烘干运转时产生暖风;送风机,将来自加热器的暖风吹送到滚筒内;以及热交换器,通过水喷雾喷嘴对包含从被暖风吹拂过的洗涤物中蒸发出的水分并向滚筒外排出的空气进行除湿。热交换器通过使从水喷雾喷嘴喷射的雾与高温多湿的空气进行热交换,对该空气进行冷却并除湿。除湿后的空气被加热器加热而成为暖风,被吹送到滚筒内并再次用于洗涤物的烘干。
来自洗涤物这样的烘干对象物的水分的蒸发量随着烘干对象物的烘干的进行而增加,因此烘干运转的初期的蒸发量比之后的期间的蒸发量少。在使用专利文献1那样的水冷式热交换器对空气进行除湿的情况下,若来自水喷雾喷嘴的雾的喷射量在烘干运转中始终恒定,则在烘干运转的初期,雾的喷射量多处于与来自烘干对象物的水分的蒸发量不平衡的水平,因此空气在除湿时被过度地冷却。在对该空气进行加热并再次用于烘干对象物的烘干的情况下,空气的加热耗费时间,该空气使滚筒内的温度下降,因此难以使滚筒内的烘干对象物高效地烘干,烘干运转变长。
现有技术文献
专利文献
专利文献1:日本特开平4-152970号公报
发明内容
发明所要解决的问题
本发明是在这样的背景下完成的,其目的在于提供一种能够使烘干对象物高效地烘干的除湿装置及包括该除湿装置的烘干机。
用于解决问题的方案
本发明是一种除湿装置,包括:收容筒,收容烘干对象物;管道,使空气从所述收容筒流出;喷嘴,具有喷射口,从所述喷射口向所述管道内喷射除湿用的雾;以及控制部,控制所述喷嘴处的雾的喷射,所述控制部根据所述收容筒内的烘干对象物的烘干状态,调整雾的喷射条件。
此外,本发明的特征在于,所述控制部调整所述喷射条件,使得来自所述收容筒内的烘干对象物的水分的蒸发量开始增加的初期的雾的喷射量比在所述初期之后所述蒸发量变位最大的中期的雾的喷射量少、使在所述中期之后所述蒸发量减少的后期的雾的喷射量比所述中期的雾的喷射量少。
此外,本发明的特征在于,所述除湿装置包括至少一对所述喷嘴,一对所述喷嘴配置为相互的所述喷射口对置。
此外,本发明的特征在于,所述除湿装置在所述管道内,还包括:带电部,配置在空气流动方向上的所述喷嘴的下游侧,使在所述管道内流动的空气所含的水分带电;以及捕集部,捕集通过所述带电部而带电的水分。
此外,本发明是一种烘干机,包括:所述除湿装置;送风部,使空气在所述收容筒与所述管道之间循环;以及加热部,对从所述管道流入所述收容筒的空气进行加热,所述管道是通过使空气从所述收容筒流出后流入所述收容筒而使其循环的循环路。
发明效果
根据本发明,除湿装置通过与从喷嘴的喷射口喷射到管道内的除湿用的雾的热交换,对从收容烘干对象物的收容筒向管道流出的空气进行冷却并除湿。除湿装置中,对喷嘴处的雾的喷射进行控制的控制部根据收容筒内的烘干对象物的烘干状态,调整雾的喷射条件。在该情况下,在烘干运转中,来自喷嘴的雾的喷射量并不始终恒定,而以适合烘干对象物的现状的烘干状态的方式、即以适合来自烘干对象物的现状的水分的蒸发量的方式调整了喷射量等的雾被适时地喷射到管道内。由此,例如,在烘干运转中,能够在来自烘干对象物的水 分的蒸发量较少的初期防止管道内的空气被雾过度地冷却,因此,在将该空气返回至收容筒并再次用于烘干对象物的烘干的情况下,能够在短时间内加热该空气,不易降低收容筒内的温度。因此,能够利用被除湿装置除湿过的空气使收容筒内的烘干对象物高效地烘干。
此外,根据本发明,控制部调整喷射条件,使得来自收容筒内的烘干对象物的水分的蒸发量开始增加的初期的雾的喷射量比在初期之后蒸发量变为最大的中期的雾的喷射量少,使在中期之后蒸发量减少的后期的雾的喷射量比中期的雾的喷射量少。由此,分别在烘干运转的初期、中期以及后期,与各个定时下的烘干对象物的烘干状态相应的适当的喷射条件下的雾被适时地喷射到管道内。因此,能够在初期防止管道内的空气被过度地冷却,能够在中期以后对管道内的空气充分地除湿。如此,除湿装置在整个初期、中期以及后期使管道内的空气的温度和湿度始终处于适当的状态,因此如果将该空气返回至收容筒并再次用于烘干对象物的烘干,则能够使收容筒内的烘干对象物高效地烘干。
此外,根据本发明,在除湿装置中,一对喷嘴以相互的喷射口对置的方式配置,因此,通过将雾从这些喷射口的一方或两方喷射,能容易地调整作为所述喷射条件的雾的喷射量和大小。
此外,根据本发明,在除湿装置的管道内,带电部使被从喷嘴喷射的雾除湿过的空气中残留的水分带电,捕集部捕集带电的水分,因此,除湿装置能对管道内的空气进一步高效地除湿。
此外,根据本发明,在包括如上所述的除湿装置并使空气在收容筒与管道之间循环的烘干机中,如上所述,在将被除湿装置除湿过的空气返回至收容筒并再次用于烘干对象物的烘干时,能通过加热部在短时间内加热该空气,不易降低收容筒内的温度。因此,能够利用被除湿装置除湿过的空气使收容筒内的烘干对象物高效地烘干。
附图说明
图1是本发明的一个实施方式的烘干机的示意性纵剖右视图。
图2是构成烘干机的除湿装置的带电部的俯视图。
图3是图2的A-A向视剖视图。
图4是图2的B-B向视剖视图。
图5是构成除湿装置的捕集部的俯视图。
图6是图5的C-C向视剖视图。
图7是图5的D-D向视剖视图。
图8是从图6中抽出一个电极的图。
图9是表示烘干机的电结构的框图。
图10是表示烘干机的烘干运转的时序图。
图11是表示烘干运转中的烘干对象物的湿度和温度的经时变化的时序图。
附图标记说明
1:洗干一体机;5:收容筒;20:循环路;21:送风部;22:加热部;25:带电部;26:捕集部;28:喷嘴;28A:喷射口;55:控制部;60:除湿装置;L:洗涤物;M:雾。
具体实施方式
以下,参照附图对本发明的实施方式进行具体说明。图1是本发明的烘干机的一个实施方式的洗干一体机1的示意性纵剖右视图。将图1的与纸面正交的方向称为洗干一体机1的左右方向X,将图1中的左右方向称为洗干一体机1的前后方向Y,将图1中的上下方向称为洗干一体机1的上下方向Z。
左右方向X当中,将图1的纸面的里侧称为左方X1,将图1的纸面的跟前侧称为右方X2。前后方向Y当中,将图1中的左侧称为前方Y1,将图1中的右侧称为后方Y2。上下方向Z当中,将上侧称为上方Z1,将下侧称为下方Z2。左右方向X和前后方向Y包含在横向中。横向既可以是水平方向H,也可以是相对于水平方向H稍微倾斜的大致水平方向。
在本实施方式中,洗干一体机1以滚筒式的洗干一体机为主要对象,但洗干一体机1也可以是立式洗干一体机。此外,本发明还以省略了洗涤功能仅执 行烘干运转的烘干机为对象。此外,洗干一体机1的烘干对象物在本实施方式中是衣物等洗涤物L,但也可以是鞋、餐具等。烘干对象物为餐具的烘干机的一个例子是餐具洗烘一体机。
洗干一体机1包括:箱体2;收容筒5,包括配置在箱体2内的水筒3和旋转筒4,收容洗涤物L;与水筒3连接的供水路6和排水路7;马达8,使旋转筒4旋转;以及烘干单元9,使洗涤物L烘干。
箱体2形成为箱状。箱体2的前表面2A例如是垂直面。在前表面2A形成有使箱体2的内外连通的开口2B。在前表面2A设有对开口2B进行开闭的门10。
水筒3被从箱体2的底壁2C向上方Z1延伸的减振器11支承,被弹簧(未图示)悬吊。由此,包括水筒3的收容筒5的整体被弹性支承。水筒3具有:圆筒状的圆周壁3A,以沿水平方向H向前后方向Y延伸的轴线J为中心;圆盘状的背面壁3B,从后方Y2堵住圆周壁3A的中空部分;以及环状的正面壁3C,与圆周壁3A的前端缘相连。
在背面壁3B的中心形成有沿轴线J在前后方向Y上贯通背面壁3B的贯通孔3D。正面壁3C具有:圆环状的第一部3E,从圆周壁3A的前端缘向轴线J侧突出;圆筒状的第二部3F,从第一部3E的内周缘向前方Y1突出;以及圆环状的第三部3G,从第二部3F的前端缘向轴线J侧突出。在第三部3G的内侧形成有从前方Y1与圆周壁3A的中空部分连通的出入口3H。出入口3H处于从后方Y2与箱体2的开口2B对置并连通的状态。
旋转筒4是具有与轴线J一致的中心轴线的圆筒体,比水筒3小一圈。在本实施方式中,旋转筒4以中心轴线沿水平方向H的方式水平配置在水筒3内,但也可以以中心轴线相对于水平方向H倾斜的方式倾斜配置。旋转筒4具有:圆筒状的圆周壁4A,与水筒3的圆周壁3A同轴配置;圆盘状的背面壁4B,从后方Y2堵住圆周壁4A的中空部分;以及圆环状的环状壁4C,从圆周壁4A的前端缘向轴线J侧突出。在圆周壁4A和背面壁4B形成有多个贯通孔4D。
旋转筒4的背面壁4B的中心设有沿轴线J向后方Y2延伸的支承轴12。支承轴12的后端部穿过水筒3的背面壁3B的贯通孔3D而配置于比背面壁3B靠 后方Y2的位置。
环状壁4C的内侧形成有从前方Y1与圆周壁4A的中空部分连通的出入口4E。出入口4E处于从后方Y2与水筒3的出入口3H和箱体2的开口2B对置并连通的状态。出入口3H和出入口4E与开口2B一起由门10统一开闭。洗干一体机1的使用者经由开放的开口2B、出入口3H以及出入口4E将洗涤物L取出/放入旋转筒4内。门10设有垫圈13,该垫圈13在门10关闭了开口2B、出入口3H以及出入口4E时紧贴于水筒3的正面壁3C的第三部3G。
供水路6具有:与水龙头(未图示)连接的一端(未图示)、与箱体2内水筒3的正面壁3C的第二部3F中的例如上部连接的另一端,在该另一端设有从上方Z1面向水筒3内的供水口6A。供水时,来自水龙头的自来水从供水口6A经过供水路6被供给至水筒3内。水筒3内会蓄留自来水、或者洗涤剂溶于自来水而成的洗涤剂水。以下,有时会将自来水和洗涤剂水简称为“水”。水筒3内的水经由旋转筒4的贯通孔4D在水筒3与旋转筒4之间往复流动。因此,水筒3内的水位与旋转筒4内的水位一致。
洗干一体机1包括:水位检测部14,对水筒3内的水位进行检测;以及可开闭的供水阀15,设于供水路6的中途。作为水位检测部14,可以采用各种水位传感器。本实施方式中的水位检测部14是内置隔膜(未图示)的压电式传感器,经由软管16与水筒3连接。水位检测部14利用隔膜测定随着水筒3内的水位的变化而变动的软管16内的压力,对水筒3内的水位进行检测。
打开状态的供水阀15通过打开供水路6,允许向水筒3即收容筒5的供水。关闭状态的供水阀15通过关闭供水路6,停止向收容筒5的供水。
排水路7与水筒3的下端部例如圆周壁3A的下端部连接。水筒3内的水从排水路7排出至箱体2之外即机外。洗干一体机1包括设于排水路7的中途的可开闭的排水阀17。打开状态的排水阀17通过打开排水路7,允许水筒3的排水。关闭状态的排水阀17通过关闭排水路7,停止排水。
马达8在箱体2内配置于水筒3的背面壁3B的后方Y2。作为马达8的一个例子,可以采用直驱(direct drive)马达。马达8与设于旋转筒4的支承轴12连结。马达8所产生的转矩被传递至支承轴12,旋转筒4伴随支承轴12绕轴线 J旋转。需要说明的是,也可以在马达8与支承轴12之间设置将马达8的转矩向支承轴12传递或切断的离合机构(未图示)。
烘干单元9包括:循环路20和送风部21,用于使水筒3内的空气循环;加热部22,加热循环的空气;以及除湿器件23,对在循环路20内流动的空气进行除湿。
循环路20是在箱体2内例如配置于水筒3的上方Z1的管道。循环路20具有:中途部分20A,沿前后方向Y延伸;后部分20B,从中途部分20A的后端向下方Z2延伸后被向前方Y1弯折;以及前部分20C,从中途部分20A的前端向下方Z2延伸。在后部分20B的下端部的前端形成有流出口20D。流出口20D与水筒3的背面壁3B的下部连接,从后方Y2与水筒3内连通。在前部分20C的下端形成有流入口20E。流入口20E与水筒3的正面壁3C的第二部3F的上端部连接,从上方Z1与水筒3内连通。
送风部21即所谓的鼓风机,包括配置于循环路20的中途部分20A内的旋转叶片21A和使旋转叶片21A旋转的马达(未图示)。当旋转叶片21A旋转时,如粗虚线箭头所示,收容筒5内的空气即水筒3内和旋转筒4内的空气从流出口20D流出至循环路20内,然后从流入口20E流入水筒3内。由此,空气以在收容筒5与循环路20之间循环的方式流动。在该情况下的循环路20也可以是即使不取入外部空气即洗干一体机1的外部的空气也成立的完全内部循环路径。
加热部22是热泵中的热交换器或普通加热器等,其至少局部设于循环路20内。加热部22中的设于循环路20内的部分具有散热部22A。在本实施方式中,散热部22A在循环路20内配置在比送风部21的旋转叶片21A靠近流入口20E的下游侧,但也可以配置在比旋转叶片21A远离流入口20E的上游侧。
当加热部22工作时散热部22A会变为高温,因此流经循环路20内的空气会在经过散热部22A的周围时被加热而成为热风,然后流入收容筒5。如此,加热部22对从循环路20向收容筒5流入的空气进行加热。
除湿器件23包括:雾供给部24,将雾供给到循环路20内;带电部25,使在循环路20内流动的空气所含的水分带电;以及捕集部26,捕集通过带电部25而带电的水分。
雾供给部24存在多个,在本实施方式中存在一对。将一对雾供给部24中的一方称为第一雾供给部24A,将另一方称为第二雾供给部24B。第一雾供给部24A和第二雾供给部24B分别包括:流水路27,在供水路6中从比供水阀15靠近水龙头的上游部分支;喷嘴28,装配在流水路27的前端部;以及流水阀29,设置在流水路27的中途。
喷嘴28配置于循环路20的后部分21B。喷嘴28具有雾的喷射口28A。流水阀29例如为电磁阀。打开状态的流水阀29处于打开了流水路27的状态,在该状态下,来自水龙头的自来水流过流水路27,从喷嘴28的喷射口28A成为除湿用的雾M被喷射到循环路20内。关闭状态的流水阀29处于关闭了流水路27的状态,停止向循环路20内的雾M的喷射。第一雾供给部24A的喷嘴28和第二雾供给部24B的喷嘴28,即一对喷嘴28配置为相互的喷射口28A在循环路20中的空气流动方向(图1的粗虚线箭头)上对置。
带电部25和捕集部26在循环路20内配置在比第一雾供给部24A和第二雾供给部24B的喷嘴28靠近流入口20E的区域。该区域是在循环路20内的空气流动方向上的喷嘴28的下游侧的区域。在循环路20内,送风部21和加热部22配置在比带电部25和捕集部26靠下游侧的位置。
图2是带电部25的俯视图。带电部25包括:中空的壳体30、配置在壳体30内的多个第一电极31、以及配置在相邻的第一电极31之间的第二电极32。
壳体30的一个例子是由沿上下方向Z延伸的四个纵壁30A构成的长方体。由这些纵壁30A包围的空间是壳体30的内部空间30B。在壳体30上形成有由四个纵壁30A的下端包边的矩形的入口30C和由四个纵壁30A的上端包边的矩形的出口30D(也参照图3)。
内部空间30B从入口30C向下方Z2开放,并从出口30D向上方Z1开放。壳体30构成循环路20中的一部分,详细而言是构成后部分20B中沿上下方向Z延伸的部分的一部分(参照图1)。壳体30的内部空间30B、入口30C以及出口30D构成循环路20的内部空间中沿上下方向Z延伸的区域的一部分。
图3是图2的A-A向视剖视图。在本实施方式中,在循环路20内流动的空气在壳体30内从入口30C向出口30D上升(参照粗虚线箭头)。四个纵壁 30A中,一对纵壁30AA与剩余的一对纵壁30AB正交配置。在一对纵壁30AA中的一方的下端部包括:贯通孔30E、从贯通孔30E的下端向内部空间30B突出的斜坡30F、以及从壳体30之外覆盖贯通孔30E的导向箱30G。
贯通孔30E、斜坡30F以及导向箱30G在一对纵壁30AB的对置方向P上为长尺寸。贯通孔30E和斜坡30F设于内部空间30B中遍及对置方向P的全部区域。斜坡30F从贯通孔30E向斜上侧倾斜配置,斜坡30F的上表面30H也倾斜。在上表面30H中最远离贯通孔30E的上端部设有向上方Z1突出的突出部30I。
导向箱30G的内部空间30J处于与贯通孔30E连通的状态。图4是图2的B-B向视剖视图。在导向箱30G中,在从下方Z2划分出内部空间30J的底面30K处隔着贯通孔30E与斜坡30F的上表面30H的下端连接。底面30K例如是随着向对置方向P中的一方而逐渐下降的倾斜面,在其下端形成有排出口30L。在导向箱30G的下表面设有以包围排出口30L的状态向下方Z2突出的圆筒状的连结部30M。
第一电极31是在对置方向P上的薄板状的对置电极,例如由不锈钢或铝形成,由此具有导电性。在本实施方式中,作为一个例子,在壳体30的内部空间30B中,五个第一电极31在对置方向P上等间隔地排列配置(参照图2)。
各第一电极31通过在其上端部一段变宽的宽幅部31A与壳体30的出口30D处的阶梯部30N卡合,在内部空间30B被定位(参照图3)。在各第一电极31中,壳体30的入口30C侧的下端缘31B以向纵壁30AA的贯通孔30E逐渐下降的方式呈直线状倾斜。在各第一电极31的下端缘31B中,贯通孔30E侧的下端部配置在斜坡30F的正上方,与贯通孔30E在上下方向Z上配置在相同的位置。
第二电极32是由电线构成的放电电极,例如由钨形成,由此具有导电性,具有与第一电极31相反的极性。第二电极32一一配置在相邻的第一电极31之间,架设于一对纵壁30AA之间(参照图2和图3)。第二电极32以不与第一电极31接触的状态,在比第一电极31的下端缘31B靠上方Z1的位置以与下端缘31B平行的方式呈直线状倾斜(参照图3)。
在本实施方式中,第一电极31的极性为接地侧的负极,第二电极32的极 性为正极。当从设于洗干一体机1的电源(未图示)向带电部25施加电压时,通过在第一电极31与第二电极32之间施加数kV~数十kV的高电压,第二电极32会放电。于是,第二电极32周围的空气成为等离子体状态,该空气中的分子阳离子化而向第一电极31移动。由此,数10μA的电流在第一电极31与第二电极32之间流动。
而且,在第一电极31与第二电极32之间流动的空气所含的水分通过与阳离子、电子碰撞而带正电。带正电的水分被吸引到负极的第一电极31,被第一电极31捕集。由此,第一电极31与第二电极32之间的空气被除湿。
被第一电极31捕集的水分在第一电极31的表面成为水滴,由于自重而沿着第一电极31的下端缘31B的倾斜流动(参照图3的箭头Q1),落在斜坡30F的上表面30H上。落在上表面30H上的水分沿着上表面30H的倾斜流下,流入导向箱30G的内部空间30J(参照图3的箭头Q2),沿着导向箱30G的底面30K的倾斜流下,从排出口30L流入连结部30M内(参照图4的箭头Q3)。
如此,在本实施方式中,第一电极31具有与带电的水分相反的极性而捕集该水分。需要说明的是,也可以是第一电极31的极性为正极,第二电极的极性为负极这样的相反的配置,但即使是所述的配置,第二电极32也会放电、第一电极31也会集水。
需要说明的是,在本实施方式中,与在壳体30内空气以上升的方式流动相应地,壳体30的入口30C和出口30D沿上下方向Z排列配置,但也可以是在壳体30内使空气沿左右方向X等横向流动,在该情况下,壳体30的姿势也可以变更,以使入口30C和出口30D横向排列。无论如何,第一电极31和第二电极32沿着该空气的流动配置,以便不成为对从入口30C向出口30D流动的空气的阻力。
图5是捕集部26的俯视图。捕集部26配置在循环路20中的空气流动方向上的带电部25的下游侧,在本实施方式中,与带电部25的上方Z1邻接配置。捕集部26包括:中空的壳体40、配置在壳体40内的多个第三电极43、以及配置在相邻的第三电极43之间的第四电极44。
壳体40的一个例子是由沿上下方向Z延伸的四个纵壁40A构成的长方体。 由这些纵壁40A包围的空间是壳体40的内部空间40B。在壳体40上形成有由四个纵壁40A的下端包边的矩形的入口40C和由四个纵壁40A的上端包边的矩形的出口40D(也参照图6)。内部空间40B从入口40C向下方Z2开放,并从出口40D向上方Z1开放。
壳体40构成循环路20的后部分20B处的沿上下方向Z延伸的部分的一部分(参照图1)。壳体40的内部空间40B、入口40C和出口40D构成循环路20的内部空间中的沿上下方向Z延伸的区域的一部分。壳体40的入口40C从上方Z1与带电部25的壳体30的出口30D(参照图3)连通。
图6是图5的C-C向视剖视图。在本实施方式中,流经循环路20并经过带电部25的壳体30内的空气会在壳体40内从入口40C向出口40D上升(参照粗虚线箭头)。四个纵壁40A中,一对纵壁40AA与剩余的一对纵壁40AB正交配置。在一对纵壁40AA中的一方的下端部包括:贯通孔40E、从贯通孔40E的下端向内部空间40B突出的斜坡40F、以及从壳体40之外覆盖贯通孔40E的导向箱40G。
贯通孔40E、斜坡40F以及导向箱40G在一对纵壁40AB的对置方向R上为长尺寸。贯通孔40E和斜坡40F设于内部空间40B中遍及对置方向R的全部区域。斜坡40F从贯通孔40E向斜上侧倾斜配置,斜坡40F的上表面40H也倾斜。在上表面40H中最远离贯通孔40E的上端部设有向上方Z1突出的突出部40I。
导向箱40G的内部空间40J处于与贯通孔40E连通的状态。图7是图5的D-D向视剖视图。在导向箱40G中,在从下方Z2划分出内部空间40J的底面40K处隔着贯通孔40E与斜坡40F的上表面40H的下端连接。底面40K例如是随着向对置方向R中的一方而逐渐下降的倾斜面,在其下端形成有排出口40L。在导向箱40G的下表面设有以包围排出口40L的状态向下方Z2突出的圆筒状的连结部40M。
第三电极43是在对置方向R上较薄的板状的对置电极,例如由不锈钢或铝形成,由此具有导电性。在本实施方式中,在壳体40的内部空间40B中,七个第三电极43在对置方向R上等间隔地排列配置(参照图5)。各第三电极43通过从其上端部突出的突出部43A与壳体40的出口40D处的阶梯部40N卡合, 在内部空间40B被定位。需要说明的是,也可以通过沿对置方向R延伸的连结轴45将各第三电极43的突出部43A串接,使全部的第三电极43一体化(参照图6)。
各第三电极43中的壳体40的入口40C侧的下端缘43B以向纵壁40AA的贯通孔40E逐渐下降的方式呈直线状倾斜。在各第三电极43的下端缘43B中,贯通孔40E侧的下端部配置在斜坡40F的正上方,与贯通孔40E在上下方向Z上配置在相同的位置。
图8是从图6抽出第四电极44的图。各第四电极44是绝缘电极,所述绝缘电极具有在一对纵壁40AA的对置方向S(参照图6)上呈长尺寸的主体44A和覆盖主体44A的大部分的绝缘体44B。主体44A例如由铜形成,由此具有导电性。主体44A具有与第三电极43相反的极性。绝缘体44B是呈在一对纵壁40AA的对置方向R上较薄且在对置方向S上较长的长方形的板状。
第四电极44一一配置在相邻的第三电极43之间,以不与第三电极43接触的状态,架设在一对纵壁40AA之间(参照图5和图6)。从对置方向R观察,各第四电极44的大部分与各第三电极43重叠配置(参照图6)。主体44A中从绝缘体44B露出的根部44AA和绝缘体44B中的根部44AA侧的部分配置在壳体40之外。
在本实施方式中,第三电极43的极性为接地侧的负极,第四电极44的极性为正极。当从设于洗干一体机1上的电源(未图示)向捕集部26施加电压时,数kV~数十kV的高电压被施加在第三电极43与第四电极44之间。但是,第四电极44的表面是由绝缘体44B构成的,因此在第三电极43与第四电极44之间没有电流流动。因此,能够防止因第三电极43与第四电极44之间的泄漏等引起的火花、电压变动。
另一方面,在本实施方式中,在第三电极43与第四电极44之间产生电场,因此在通过带电部25而带电为正电的状态下流入到捕集部26的壳体40内的水分被负极的第三电极43捕集。由此,捕集部26能有效地捕集带电的水分。因此,被带电部25除湿的空气被进一步除湿。
被第三电极43捕集的水分在第三电极43的表面成为水滴,由于自重而沿 着第三电极43的下端缘43B的倾斜流动(参照图6的箭头T1),落在斜坡40F的上表面40H上。落在上表面40H上的水分沿着上表面40H的倾斜流下,流入导向箱40G的内部空间40J(参照图6的箭头T2),沿着导向箱40G的底面40K的倾斜流下,从排出口40L流入连结部40M内(参照图7的箭头T3)。
需要说明的是,也可以是第三电极43的极性为正极而第四电极44的极性为负极的相反的配置。此外,在本实施方式中,在壳体40内,与空气以上升的方式流动相应地,壳体40的入口40C和出口40D沿上下方向Z排列配置,但也可以在壳体40内使空气沿横向流动,在该情况下,可以以横向排列入口40C和出口40D的方式来变更壳体40的姿势。无论如何,第三电极43和第四电极44沿着该空气的流动配置,以便不成为对从入口40C向出口40D流动的空气的阻力。
除湿器件23还包括从带电部25和捕集部26向下方Z2延伸并与水筒3连接的排出路46(参照图1)。排出路46的一端部46A分支而分别与带电部25的连结部30M和捕集部26的连结部40M连接(参照图4和图7)。在排出路46中,与一个端部46A相反的另一端部46B在图1中与水筒3的背面壁3B连接。流入带电部25中的连结部30M内的水分、流入捕集部26中的连结部40M内的水分流经排出路46而流入水筒3内,然后从排水路7排出至机外。需要说明的是,排出路46的另一端部46B也可以与排水路7直接连接。
洗干一体机1包括:湿度检测部50,对在收容筒5与循环路20之间循环的空气的湿度进行检测;以及温度检测部51,对该空气的温度进行检测。
作为湿度检测部50,可以采用公知的湿度传感器。湿度检测部50包括:第一湿度检测部50A,配置在循环路20内的流出口20D与喷嘴28之间;第二湿度检测部50B,配置在循环路20内的送风部21与捕集部26之间;以及第三湿度检测部50C,配置在收容筒5内。
作为温度检测部51,可以采用热敏电阻等公知的温度传感器。温度检测部51包括:第一温度检测部51A,在循环路20内配置在流出口20D与喷嘴28之间;第二温度检测部51B,在循环路20内配置在送风部21与捕集部26之间;以及第三温度检测部51C,配置在收容筒5内。需要说明的是,配置在接近的位置的湿度检测部50和温度检测部51也可以作为一个湿度温度检测部而一体化。
图9是表示洗干一体机1的电结构的框图。洗干一体机1还包括控制部55。控制部55例如被配置为包括中央处理器(CPU)、只读存储器(ROM)或随机存取存储器(RAM)等存储器以及计时用的计时器的微型计算机,并内置于箱体2内(参照图1)。马达8、水位检测部14、供水阀15、排水阀17、送风部21、加热部22、雾供给部24、带电部25、捕集部26、湿度检测部50以及温度检测部51分别与控制部55电连接。水位检测部14、湿度检测部50以及温度检测部51的各自的检测值被实时输入控制部55。
参照图1,洗干一体机1中,收容筒5、循环路20、除湿器件23以及控制部55的整体构成除湿装置60。
控制部55通过对马达8、供水阀15、排水阀17、送风部21、加热部22、雾供给部24、带电部25以及捕集部26的各自的动作进行控制,执行洗涤烘干运转。洗涤烘干运转包括:最初的清洗过程、在清洗过程后执行一次或多次的漂洗过程、至少在最后的漂洗过程后执行的脱水过程、以及最终的烘干过程。这些过程也可以分别是独立的运转,在该情况下,例如,清洗过程是清洗运转,烘干过程是烘干运转。
控制部55在清洗过程中,首先使马达8工作而使旋转筒4有时正转有时反转,根据此时的马达8的电流值,判定在旋转筒4内处于烘干状态的洗涤物L的质量。控制部55根据所判定的洗涤物L的质量,确定所需的洗涤剂量和清洗过程中的水筒3内的目标水位。控制部55在设于箱体2的前表面2A等的显示操作部(未图示)上显示所确定的洗涤剂量的信息。
而且,控制部55通过在关闭了排水阀17的状态下打开供水阀15来执行供水处理。由此,来自供水路6的自来水从供水口6A流入水筒3内而蓄留,因此水筒3内的水位上升。当水位检测部14检测到水筒3内的水位上升至目标水位时,控制部55通过关闭供水阀15而结束供水处理。在供水处理的前后,洗涤剂由使用者手动投入到旋转筒4内,或者自动投入。由此,洗涤剂溶于自来水而生成的洗涤剂水蓄留在旋转筒4内。
作为供水处理后的清洗处理,控制部55通过马达8来使旋转筒4旋转。由此,旋转筒4内的洗涤物L被摔洗。在摔洗中,洗涤物L被反复进行举起一定程度后自然落下至水面的翻滚(tumbling)。通过由翻滚产生的冲击、蓄于旋转 筒4的水中所含的洗涤剂成分,将污垢从洗涤物L中被去除。在从翻滚开始起经过规定时间后,当控制部55打开排水阀17进行排水时,清洗过程结束。
在漂洗过程中,控制部55在关闭了排水阀17的状态下,使供水阀15打开至少规定时间,在水筒3中蓄留自来水,然后通过马达8来使旋转筒4旋转。于是,上述翻滚被反复进行,因此洗涤物L被旋转筒4内的自来水漂洗。在从翻滚开始起经过规定时间后,当控制部55进行排水时,漂洗过程结束。
在脱水过程中,控制部55在打开排水阀17的状态下使旋转筒4脱水旋转。通过由旋转筒4的脱水旋转产生的离心力,旋转筒4内的洗涤物L被脱水。通过脱水而从洗涤物L中渗出的水从排水路7排出至机外。也可以是,脱水过程不仅在漂洗过程后实施,在清洗过程后也实施。在最后的脱水过程之后,控制部55通过快速重复旋转筒4的正转和反转,将旋转筒4内的洗涤物L从旋转筒4的圆周壁4A上剥离或解开。由此,在之后的烘干过程中,能防止洗涤物L产生褶皱。
控制部55通过控制至少送风部21、加热部22以及除湿器件23来执行烘干过程、即烘干运转。在烘干运转中,热风通过送风部21和加热部22进行工作而产生并在收容筒5与循环路20之间循环,被吹拂至旋转筒4内的洗涤物L。由此,通过洗涤物L内的水分与热风的热交换,该水分蒸发而成为水蒸气,因此促进洗涤物L的烘干。
从收容筒5内的洗涤物L产生的水蒸气裹挟在循环的空气中从流出口20D向循环路20流出。此时,控制部55通过打开雾供给部24的流水阀29,将雾M从喷嘴28的喷射口28A向循环路20内喷射。由此,通过与雾M的热交换,在循环路20内流动的水蒸气被冷却并除湿。通过除湿后的加热部22加热而成为热风,从流入口20E流入收容筒5内,再次用于洗涤物L的烘干。
雾供给部24可以仅通过自来水的压力产生雾M,也可以利用超声波振子(未图示)产生雾M。此外,控制部55通过调整流水阀29的开度,能调整从喷射口28A喷射的雾M的喷射量、出势。
在第一雾供给部24A和第二雾供给部24B中,一对喷嘴28配置为如上所述地相互的喷射口28A对置。控制部55通过从共用的喷嘴28中的这些喷射口28A 的一方或两方喷射雾M,能容易地调整作为雾M的喷射条件的雾M的喷射量和大小。例如,若从一对喷射口28A两方喷射雾M,则通过这些雾M相互碰撞,能够高密度地产生粒径大的雾M。如此,控制部55控制喷嘴28处的雾M的喷射。
而且,雾供给部24也可以包括对流经流水路27的自来水进行加压的泵(未图示)。控制部55通过控制该泵,能以进一步宽泛的范围来调整从喷射口28A喷射的雾M的喷射量、出势。
图10是表示烘干运转的时序图。图10的时序图中,横轴表示经过时间。另一方面,纵轴表示烘干运转中来自收容筒5内的洗涤物L的水分的蒸发量和从雾供给部24的喷嘴28喷射的雾M的喷射量。经过时间的单位的一个例子为[min],蒸发量和喷射量的各自的单位的一个例子为[g/min]。
在将烘干运转的所需时间例如设为120分钟的情况下,在从烘干运转的开始到30分钟以内的初期,供给到收容筒5内的热风所具有的热能主要被消耗于洗涤物L中的水分温度上升,因此蒸发量即使开始增加也很少。当开始烘干运转时,蒸发量如图10中粗实线所示逐渐增加,在烘干运转开始时的30分钟到60分钟之间的中期达到最大,然后,在烘干运转的后期逐渐减少。在中期,收容筒5内的温度成为几乎恒定的基准温度,在后期,收容筒5内的温度从基准温度稍微上升。基准温度的一个例子是40度以上且45度以下。
蒸发量是显示收容筒5内的洗涤物L的烘干状态的指标。控制部55根据蒸发量,调整喷嘴28处的雾M的喷射条件,特别是喷射量。在烘干运转中,控制部55如图10中粗单点划线所示,在初期、中期以及后期变更喷射量。
具体而言,控制部55调整喷射条件,使得蒸发量开始增加的初期的雾M的喷射量比在初期之后蒸发量最大的中期的雾M的喷射量少,使在中期之后蒸发量持续减少的后期的雾M的喷射量比中期的雾M的喷射量少,并且使其成为与初期的雾M的喷射量的相等以上。即,初期的喷射量为最小值,中期的喷射量为最大值。初期的喷射量可以为零,也可以大于零。
在以图10中的粗单点划线表示的情况下,在烘干运转中,控制部55仅在从初期切换到中期的定时和从中期切换到后期的定时下变更两次雾M的喷射 量。在该情况下,控制部55也可以基于从烘干运转开始起的经过时间来变更喷射量。另一方面,在烘干运转中,控制部55也可以如粗双点划线所示,更频繁地、即多阶段地变更喷射量,以便喷射量细致地追随实际蒸发量的推移。因此,即使在初期、中期以及后期各自的期间内,喷射量也会发生多次变更。在该情况下,控制部55基于与蒸发量连动的值,例如收容筒5内的湿度、温度的推移来变更喷射量。收容筒5内的湿度为第三湿度检测部50C的检测值,收容筒5内的温度为第三温度检测部51C的检测值(参照图1)。
图11是表示烘干运转的时序图。在图11的时序图中,横轴表示经过时间。另一方面,纵轴表示第一湿度检测部50A的检测值和第一温度检测部51A的检测值。第一湿度检测部50A的检测值是从收容筒5内的洗涤物L产生并刚流入循环路20紧后的水蒸气的湿度。第一温度检测部51A的检测值为循环路20的流出口20D附近的温度,换言之为收容筒5内的温度。因此,也可以使用第三温度检测部51C的检测值来代替第一温度检测部51A的检测值。经过时间的单位为“min”,湿度的单位为“%”,温度的单位为“度”。湿度为相对湿度。当烘干运转开始时为100%的湿度降低到30%以上且50%以下的基准湿度时,洗涤物L处于烘干状态。
与本实施方式不同在于,雾M的喷射量在烘干运转中始终恒定的情况下,在烘干运转的初期,喷射量多处于与来自洗涤物L的水分的蒸发量不平衡的水平,因此循环路20内的空气在被雾M除湿时被过度地冷却。在该情况下,收容筒5内的温度如粗虚线所示缓慢上升,因此在中期的最后才达到基准温度。这样一来,湿度如粗实线所示缓慢下降,因此洗涤物L变为烘干状态为止需要时间。
另一方面,在本实施方式中,如上所述,烘干运转中的雾M的喷射条件根据洗涤物L的烘干状态进行调整。因此,雾的喷射量并不始终恒定,而以适合洗涤物L的现状的烘干状态、即以适合来自洗涤物L的现状的水分的蒸发量的方式调整过喷射量的雾M被适时地喷射到循环路20内。具体而言,喷射量如上所述,被调整为初期少,中期比初期多,后期比中期少(参照图10的单点划线和双点划线)。
由此,在烘干运转的初期、中期以及后期,分别与各自的定时下的洗涤物L 的烘干状态相应的适当的喷射条件下的雾M被适时地喷射到循环路20内。因此,例如,在烘干运转中,能够在来自洗涤物L的水分的蒸发量少的初期,防止循环路20内的空气被雾M过度地冷却,因此在将该空气返回至收容筒5并再次用于洗涤物L的烘干的情况下,该空气能在短时间内被加热,不易降低收容筒5内的温度。此外,能够在中期以后对循环路20内的空气充分地除湿。
如此,除湿装置60在历经初期、中期以及后期的全部时,使循环路20内的空气的温度和湿度始终处于适当的状态。因此,通过将经除湿装置60除湿过的空气返回至收容筒5并再次用于洗涤物L的烘干,能够使收容筒5内的洗涤物L在短时间内高效地烘干。因此,收容筒5内的温度如粗单点划线所示,在初期的中段之前迅速上升至基准温度,因此湿度如粗双点划线所示,相对迅速下降到基准湿度,因此洗涤物L变为烘干状态为止的时间变短。
在烘干运转中,不仅雾M的喷射量,雾M的大小也可以在初期、中期以及后期分别进行调整。例如,可以是,雾M的大小在初期和后期比中期小。需要说明的是,在烘干运转中,控制部55也可以通过使马达8工作而使旋转筒4旋转来搅拌洗涤物L,从而使热风遍及洗涤物L的各个角落。
此外,在烘干运转中,通过控制部55的控制对除湿器件23的带电部25和捕集部26施加电压。由此,裹挟着从洗涤物L蒸发的水分并在循环路20内流动的空气如上所述,在经过带电部25的壳体30的内部空间30B和捕集部26的壳体40的内部空间40B时被除湿。如此,在循环路20内,带电部25使经从喷嘴28喷射的雾M除湿过的空气中残留的水分带电,捕集部26捕集带电的水分,因此除湿装置60能对循环路20内的空气进一步高效地除湿。
控制部55在烘干运转的后期的最后,使加热部22停止,执行降温处理。控制部55在降温处理中,在使加热部22停止的状态下使送风部21继续工作。由此,通过冷风循环来冷却收容筒5内的洗涤物L、门10。然后,使用者可以打开门10,从收容筒5内取出洗涤物L。
本发明不限于以上说明的实施方式,可在技术方案所记载的范围内进行各种变更。
例如,在本实施方式中,设有一对喷嘴28,但若一个喷嘴28能够调整雾的 喷射量和大小,则也可以仅存在一个喷嘴28。即,也可以只设置一个雾供给部24。
此外,参照图1,烘干单元9也可以还包括从循环路20分支并与洗干一体机1的机外连通的排气路20F。在排气路20F中与机外连通的部分是形成于箱体2的排气口20G。
循环路20也可以与洗干一体机1的机外连通。在该情况下,循环路20中与机外连通的部分是形成于箱体2的吸气口20H,在流入口20E与吸气口20H之间的区域配置有送风部21和加热部22。循环路20具有从与排气路20F连接的部分延伸到流入口20E与吸气口20H之间的区域为止的连接路20I。
在排气路20F设有对排气口20G进行开闭的排气阀71,在循环路20设有对吸气口20H进行开闭的吸气阀72。排气阀71和吸气阀72为调整阀,各自的开闭由控制部55控制(参照图9)。特别是,控制部55能够调整排气阀71和吸气阀72各自的开度。
排气阀71和吸气阀72在分别开度为零时处于关闭状态。当控制部55通过增大开度而打开排气阀71时,排气口20G被打开,因此排气路20F内的空气排出至机外。当控制部55通过增大开度而打开吸气阀72时,吸气口20H开放,因此外部空气能流入循环路20内。也可以在吸气口20H设有用于捕获外部空气所含的异物的过滤器(未图示)。
在连接路20I设有切换部73。切换部73由可开闭的调整阀等构成。控制部55通过调整切换部73的开度来对切换部73进行开闭(参照图9)。切换部73在开度为零时处于关闭状态。当控制部55通过增大开度而打开切换部73时,循环路20开通的,因此在该状态下送风部21工作时,循环路20内的空气如上所述地循环。另一方面,当切换部73关闭时,循环路20在连接路20I被切断,因此循环路20内的空气向排气路20F流动而排出至机外。如此,切换部73通过控制部55的控制使循环路20内的空气流向排气路20F或者流向连接路20I。
需要说明的是,在循环路20中,也可以省略连接路20I。在该情况下,当送风部21工作时,外部空气从吸气口20H流入循环路20,通过加热部22加热而成为热风,热风在从流入口20E被吹拂至收容筒5内的洗涤物L后,从流出 口20D向循环路20流出,经由排气路20F从排气口20G排出至机外,因此烘干运转中的空气始终向一个方向流动而不循环。

Claims (5)

  1. 一种除湿装置,包括:
    收容筒,收容烘干对象物;
    管道,使空气从所述收容筒流出;
    喷嘴,具有喷射口,从所述喷射口向所述管道内喷射除湿用的雾;以及
    控制部,控制所述喷嘴处的雾的喷射,所述控制部根据所述收容筒内的烘干对象物的烘干状态,调整雾的喷射条件。
  2. 根据权利要求1所述的除湿装置,其中,
    所述控制部调整所述喷射条件,使得所述收容筒内的来自烘干对象物的水分的蒸发量开始增加的初期的雾的喷射量比在所述初期之后所述蒸发量最大的中期的雾的喷射量少,使在所述中期之后所述蒸发量减少的后期的雾的喷射量比所述中期的雾的喷射量少。
  3. 根据权利要求1或2所述的除湿装置,其中,
    所述除湿装置包括至少一对所述喷嘴,一对所述喷嘴以相互的所述喷射口对置的方式配置。
  4. 根据权利要求1~3中任一项所述的除湿装置,其中,
    在所述管道内,还包括:带电部,配置在空气流动方向上的所述喷嘴的下游侧,使在所述管道内流动的空气所含的水分带电;以及
    捕集部,捕集通过所述带电部带电的水分。
  5. 一种烘干机,包括:
    如权利要求1~4中任一项所述的除湿装置;
    送风部,使空气在所述收容筒与所述管道之间循环;以及
    加热部,对从所述管道流入所述收容筒的空气进行加热,
    所述管道是通过使空气从所述收容筒流出后流入所述收容筒而使其循环的循环路。
PCT/CN2022/141009 2021-12-24 2022-12-22 除湿装置和烘干机 WO2023116819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-211439 2021-12-24
JP2021211439A JP2023095502A (ja) 2021-12-24 2021-12-24 除湿装置及び乾燥機

Publications (1)

Publication Number Publication Date
WO2023116819A1 true WO2023116819A1 (zh) 2023-06-29

Family

ID=86901315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141009 WO2023116819A1 (zh) 2021-12-24 2022-12-22 除湿装置和烘干机

Country Status (2)

Country Link
JP (1) JP2023095502A (zh)
WO (1) WO2023116819A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008670A (ja) * 2002-06-11 2004-01-15 Sharp Corp 乾燥洗濯機
JP2005237729A (ja) * 2004-02-27 2005-09-08 Sharp Corp 洗濯乾燥機
KR100690899B1 (ko) * 2006-04-24 2007-03-09 엘지전자 주식회사 의류건조기
EP2042641A1 (en) * 2007-09-25 2009-04-01 Electrolux Home Products Corporation N.V. Laundry dryer
CN106245291A (zh) * 2015-06-11 2016-12-21 东芝生活电器株式会社 衣物烘干机
CN112301645A (zh) * 2020-07-13 2021-02-02 无锡小天鹅电器有限公司 衣物处理设备的控制方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008670A (ja) * 2002-06-11 2004-01-15 Sharp Corp 乾燥洗濯機
JP2005237729A (ja) * 2004-02-27 2005-09-08 Sharp Corp 洗濯乾燥機
KR100690899B1 (ko) * 2006-04-24 2007-03-09 엘지전자 주식회사 의류건조기
EP2042641A1 (en) * 2007-09-25 2009-04-01 Electrolux Home Products Corporation N.V. Laundry dryer
CN106245291A (zh) * 2015-06-11 2016-12-21 东芝生活电器株式会社 衣物烘干机
CN112301645A (zh) * 2020-07-13 2021-02-02 无锡小天鹅电器有限公司 衣物处理设备的控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2023095502A (ja) 2023-07-06

Similar Documents

Publication Publication Date Title
US7584633B2 (en) Spray type drum washing machine
EP1445367B1 (en) Drying/washing machine
EP1584728A1 (en) Heating apparatus of washing machine and washing method thereof
US20090126420A1 (en) Washing Machine
US9683323B2 (en) Steam generator and laundry treatment apparatus including the same
JP4987618B2 (ja) 洗濯乾燥機
CN109750443B (zh) 洗衣干燥机
JP4987619B2 (ja) 洗濯乾燥機
JP5012937B2 (ja) 洗濯乾燥機
US20230175194A1 (en) Clothes treating apparatus and control method thereof
CN101328657B (zh) 洗衣机
WO2022142190A1 (zh) 烘干机
WO2023116819A1 (zh) 除湿装置和烘干机
WO2022142207A1 (zh) 烘干机
JP5300946B2 (ja) ドラム式洗濯機
JP2015057156A (ja) 洗濯機
JP2018079173A (ja) 洗濯乾燥機
TW201727004A (zh) 烘乾機及洗衣烘乾機
JP2004230063A (ja) 洗濯機
JP5296170B2 (ja) ドラム式洗濯機
WO2023116852A1 (zh) 除湿装置及烘干机
JP5698792B2 (ja) ドラム式洗濯機
JP2010051662A (ja) 洗濯機
JP2010051664A (ja) 乾燥機
WO2023125407A1 (zh) 洗衣设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910131

Country of ref document: EP

Kind code of ref document: A1