WO2023116689A1 - 一种数据传输方法、装置、芯片和电子设备 - Google Patents

一种数据传输方法、装置、芯片和电子设备 Download PDF

Info

Publication number
WO2023116689A1
WO2023116689A1 PCT/CN2022/140341 CN2022140341W WO2023116689A1 WO 2023116689 A1 WO2023116689 A1 WO 2023116689A1 CN 2022140341 W CN2022140341 W CN 2022140341W WO 2023116689 A1 WO2023116689 A1 WO 2023116689A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
bits
repeated
data
total number
Prior art date
Application number
PCT/CN2022/140341
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2023116689A1 publication Critical patent/WO2023116689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the technical field of communication, and in particular to a data transmission method, device, chip and electronic equipment.
  • Non-terrestrial networks that is, satellite networks.
  • NTN Non-terrestrial networks
  • one cell includes one or more beams. Due to the rapid movement of satellites, terminals need to frequently switch beams/carriers to ensure connection with the network. Therefore, how to realize cross-carrier transmission without increasing the bit overhead of DCI is a problem that needs to be solved at present.
  • the present application provides a data transmission method, device, chip and electronic equipment, and the present application also provides a computer-readable storage medium.
  • the present application provides a data transmission method, including:
  • the target carrier and the total number of repeated transmissions of data are determined according to the first indication field in the downlink control information, and the total number of repeated transmissions of data belongs to the first set, and Including at least one value of the total number of repeated transmissions, at least one value of the total number of repeated transmissions is pre-configured or configured by the network;
  • Data is transmitted on the source carrier and the target carrier according to the total number of times of repeated transmission, where the source carrier is the carrier where the downlink control information is located.
  • determining the target carrier according to the first indication field in the downlink control information includes:
  • the target carrier is determined according to the first part of bits in the first indication field in the downlink control information.
  • determining the target carrier according to the first part of bits in the first indication field in the downlink control information includes:
  • the carrier corresponding to the value of the first part of bits is determined as the target carrier, and the second correspondence is a correspondence between different values of the first part of bits and the carrier.
  • the method further includes:
  • a second set of network configurations is received, and a second corresponding relationship is determined according to the second set, where the second set includes one or more carriers.
  • determining the total number of repeated data transmissions according to the first indication field in the downlink control information includes:
  • the total number of repeated data transmissions is determined according to the second part of bits in the first indication field in the downlink control information.
  • the total number of repeated transmission times of data is determined according to the second part of bits in the first indication field in the downlink control information, including:
  • the total number of times of repeated transmission of the data is determined according to the first correspondence, which is the correspondence between different values of the second part of bits and the value of the total number of times of repeated transmission in the first set.
  • the method further includes:
  • a first set of network configurations is received, and a first corresponding relationship is determined according to the first set.
  • the method further includes:
  • Receive bit configuration information where the bit configuration information is used to configure one or more of the following information: the number of bits in the first part, the position of the bits in the first part, the number of bits in the second part, and the position of the bits in the second part.
  • the bit configuration information is used to configure the position of the first part of bits and/or the position of the second part of bits;
  • Methods also include:
  • the number of bits in the first part is determined according to the number of candidate carriers of the target carrier, and/or the number of bits in the second part is determined according to the number of candidate times of the total number of repeated data transmission times.
  • the second part of bits is the remaining bits in the first indication field except for the first part of bits
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number and position of the first part of bits are the first indication field the first or last bit of the ; or,
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number and position of the first part of bits are the first indication field or the first or last bit of the first part; or, the number and position of the first part of bits are the first three or last three bits of the first indication field.
  • the downlink control information includes indication information for allocation of repeated transmission times, and transmits data on the source carrier and the target carrier according to the total number of repeated transmission times, including:
  • Data is transmitted on the source carrier and the target carrier according to the number of repeated transmissions on the source carrier and the target carrier.
  • the indication information for allocation of repeated transmission times is carried in the cross-carrier transmission indication field in the downlink control information.
  • the indication information for allocation of repeated transmission times is used to indicate the ratio of the number of repeated transmissions on the source carrier or target carrier to the total number of repeated transmissions of data, and according to the total number of repeated transmissions and the number of repeated transmissions allocated
  • the indication information identifies the number of repeated transmissions on the source carrier and the target carrier, including:
  • the method further includes:
  • the ratio value corresponding to the value of the repeated transmission times allocation indication information is determined as the ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmission times of the data, and the third corresponding relationship is the repeated transmission times
  • the assignment indicates the correspondence between the different values of the information and the proportional values.
  • the method further includes:
  • a third set of network configurations is received, and a third corresponding relationship is determined according to the third set, where the third set includes one or more proportional values.
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times on the source carrier or the target carrier;
  • the number of repeated transmissions on the source carrier and the target carrier is determined according to the total number of times of repeated transmission of data and the number of times of repeated transmission indicated by the allocation indication information of the number of repeated transmissions.
  • the method further includes:
  • the number of repeated transmissions corresponding to the value of the indication information for the number of repeated transmissions is determined as the number of repeated transmissions on the source carrier or the target carrier. Correspondence between repeated transmission times.
  • the method further includes:
  • a fourth set of network configurations is received, and a fourth corresponding relationship is determined according to the fourth set, where the fourth set includes one or more values of repeated transmission times.
  • the present application also provides a data scheduling method, including:
  • Send downlink control information wherein, in the case of cross-carrier transmission of data scheduled by the downlink control information, the first indication field in the downlink control information is used to indicate the target carrier and the total number of repeated transmissions of data, and the total number of repeated transmissions of data belongs to The first set, the first set includes at least one value of the total number of repeated transmission times, and the value of the at least one total number of repeated transmission times is pre-configured or configured by the network.
  • the first part of bits in the first indication field in the downlink control information is used to indicate the target carrier.
  • the carrier corresponding to the values of the first part of bits is the target carrier, and the correspondence between different values of the first part of bits and the carrier is the second correspondence.
  • the method further includes:
  • a second set is sent, the second set is used to determine a second correspondence, and the second set includes one or more carriers.
  • the second part of bits in the first indication field in the downlink control information is used to indicate the total number of repeated data transmissions.
  • the total number of repeated transmissions corresponding to the value of the second part of bits is the total number of repeated transmissions of data, and the different values of the second part of bits are equal to the total number of repeated transmissions in the first set
  • the correspondence between the values is the first correspondence.
  • the method further includes:
  • a first set is sent, and the first set is used to determine a first corresponding relationship.
  • the method further includes:
  • Send bit configuration information where the bit configuration information is used to configure one or more of the following information: the number of bits in the first part, the positions of the bits in the first part, the number of bits in the second part, and the position of the bits in the second part.
  • the second part of bits is the remaining bits in the first indication field except for the first part of bits
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number and position of the first part of bits are the first indication field the first or last bit of the ; or,
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number and position of the first part of bits are the first indication field or the first or last bit of the first part; or, the number and position of the first part of bits are the first three or last three bits of the first indication field.
  • the downlink control information includes indication information for allocation of repeated transmission times, and the indication information for allocation of repeated transmission times is used to determine the number of repeated transmissions on the source carrier and the target carrier.
  • the repeated transmission times allocation indication information is carried in the cross-carrier transmission indication field in the downlink control information.
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times on the source carrier or the target carrier.
  • the number of repeated transmissions corresponding to the value of the repeated transmission times allocation indication information is the number of repeated transmissions on the source carrier or the target carrier, and the different values of the repeated transmission times allocation indication information are different from the repeated transmission times.
  • the corresponding relationship between times is the fourth corresponding relationship.
  • the method further includes:
  • a fourth set is sent, the fourth set is used to determine a fourth corresponding relationship, and the fourth set includes one or more values of repeated transmission times.
  • the indication information for allocation of repeated transmission times is used to indicate the ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmissions of data.
  • the ratio value corresponding to the value of the repeated transmission times allocation indication information is the ratio of the repeated transmission times on the source carrier or target carrier to the total number of repeated data transmissions, and the repeated transmission times allocation indication
  • the corresponding relationship between different values of the information and the proportional value is the third corresponding relationship.
  • the method further includes:
  • a third set is sent, the third set is used to determine a third corresponding relationship, and the third set includes one or more proportional values.
  • the present application also provides a data transmission method, including:
  • the source carrier is the carrier where the downlink control information is located.
  • the determining the target carrier according to the first indication field in the downlink control information includes:
  • the method further includes:
  • a second set of network configurations is received, and the second corresponding relationship is determined according to the second set, where the second set includes one or more carriers.
  • the downlink control information includes indication information for allocation of repeated transmission times
  • the transmitting the data on the source carrier and the target carrier according to the total number of repeated transmissions includes:
  • the data is transmitted on the source carrier and the target carrier according to the repeated transmission times on the source carrier and the target carrier.
  • the data is transmitted across carriers.
  • the repeated transmission times allocation indication information is carried in a cross-carrier transmission indication field in the downlink control information.
  • the indication information for allocation of repeated transmission times is used to indicate the ratio of the number of repeated transmissions on the source carrier or the target carrier to the total number of repeated transmissions of the data
  • the Determining the number of repeated transmissions on the source carrier and the target carrier according to the total number of times of repeated transmissions and the allocation indication information of the number of repeated transmissions includes:
  • the number of repeated transmissions on the source carrier and the target carrier is determined according to the total number of times of repeated transmission of the data and the ratio indicated by the allocation indication information of the number of repeated transmissions.
  • the method further includes:
  • the ratio value corresponding to the value of the repeated transmission times allocation indication information is determined as the ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmissions of the data.
  • the third corresponding relationship is a corresponding relationship between different values and proportional values of the repeated transmission times allocation indication information.
  • the method further includes:
  • a third set of network configurations is received, and the third corresponding relationship is determined according to the third set, where the third set includes one or more proportional values.
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times on the source carrier or the target carrier;
  • the determining the number of repeated transmissions on the source carrier and the target carrier according to the total number of repeated transmissions and the allocation indication information of the number of repeated transmissions includes:
  • the number of repeated transmissions on the source carrier and the target carrier is determined according to the total number of times of repeated transmission of the data and the number of times of repeated transmission indicated by the allocation indication information of the number of repeated transmissions.
  • the method further includes:
  • the number of repeated transmissions corresponding to the value of the repeated transmission times allocation indication information is determined as the number of repeated transmissions on the source carrier or the target carrier, and the fourth correspondence is the number of repeated transmissions on the source carrier or the target carrier.
  • the allocation of transmission times indicates the correspondence between different values of the information and the number of repeated transmissions.
  • the method further includes:
  • a fourth set of network configurations is received, and the fourth corresponding relationship is determined according to the fourth set, where the fourth set includes one or more values of the repeated transmission times.
  • the present application also provides a data scheduling method, including:
  • the first indication field in the downlink control information is used to indicate the target carrier
  • the total number of retransmissions to send the data The total number of retransmissions to send the data.
  • the carrier corresponding to the value of the first indication field is the target carrier, and the correspondence between the different values of the first indication field and the carrier is the second correspondence relation.
  • the method further includes:
  • the second set is used to determine the second correspondence, the second set includes one or more carriers.
  • the method further includes:
  • the first set is used to determine the first correspondence, and the first set includes one or more values of the total number of repeated transmission times of the data.
  • the downlink control information includes indication information for allocation of repeated transmission times, and the indication information for allocation of repeated transmission times is used to determine the number of repeated transmissions on the source carrier and the target carrier.
  • the data is transmitted across carriers.
  • the repeated transmission times allocation indication information is carried in a cross-carrier transmission indication field in the downlink control information.
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times on the source carrier or the target carrier.
  • the number of repeated transmissions corresponding to the value of the repeated transmission times allocation indication information is the number of repeated transmissions on the source carrier or the target carrier, and the repeated transmission times allocation indication
  • the correspondence between different values of information and the number of times of repeated transmission is the fourth correspondence.
  • the method further includes:
  • the fourth set is used to determine the fourth corresponding relationship, and the fourth set includes one or more values of the repeated transmission times.
  • the indication information for allocating repeated transmission times is used to indicate a ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmissions of the data.
  • the ratio value corresponding to the value of the repeated transmission times allocation indication information is the number of repeated transmissions on the source carrier or the target carrier and the total number of repeated transmissions of the data
  • the corresponding relationship between different values of the repeated transmission times allocation indication information and the proportional value is the third corresponding relationship.
  • the method further includes:
  • a third set is sent, the third set is used to determine the third corresponding relationship, and the third set includes one or more proportional values.
  • the present application provides a data transmission device, the device comprising: a module configured to execute the method provided in the first aspect above.
  • a module configured to execute the method provided in the first aspect above. For example, include:
  • a transceiver module which is used to receive downlink control information
  • a confirmation module configured to determine the target carrier and the total number of repeated transmissions of the data according to the first indication field of the downlink control information in the case of cross-carrier transmission of data scheduled by the downlink control information, and the number of repeated transmissions of the data
  • the total number of repeated transmissions belongs to a first set, the first set includes at least one value of the total number of repeated transmissions, and the value of the at least one total number of repeated transmissions is pre-configured or configured by the network;
  • the transceiver module is also used for:
  • the source carrier is the carrier where the downlink control information is located.
  • the present application provides a data scheduling device, the device comprising: a module for executing the method provided in the second aspect above.
  • a module for executing the method provided in the second aspect above include:
  • a sending module configured to send downlink control information, wherein, in the case of cross-carrier transmission of data scheduled by the downlink control information, the first indication field in the downlink control information is used to indicate the target carrier and the data
  • the total number of repeated transmissions the total number of repeated transmissions of the data belongs to the first set, the first set includes at least one value of the total number of repeated transmissions, and the value of the at least one total number of repeated transmissions is pre-configured or network configured of.
  • the data scheduling device may further include a processing module, and the sending module may perform corresponding actions under the control of the processing module.
  • the present application further provides a data transmission device, including: a module for executing the method provided in the third aspect above.
  • a module for executing the method provided in the third aspect above include:
  • a transceiver module configured to receive downlink control information
  • a confirmation module configured to determine the target carrier according to the first indication field in the downlink control information in the case of cross-carrier transmission of data scheduled by the downlink control information;
  • the transceiver module is also used to receive the total number of repeated transmissions of the data configured by the network;
  • the transceiver module is further configured to transmit the data on the source carrier and the target carrier according to the total number of repeated transmissions, where the source carrier is the carrier where the downlink control information is located.
  • the present application further provides a data scheduling device, including: a module for executing the method provided in the fourth aspect above.
  • a data scheduling device including: a module for executing the method provided in the fourth aspect above.
  • a module for executing the method provided in the fourth aspect above include:
  • a sending module configured to send downlink control information, where, in the case of cross-carrier transmission of data scheduled by the downlink control information, the first indication field in the downlink control information is used to indicate a target carrier;
  • the sending module is further configured to send the total number of repeated transmission times of the data.
  • the data scheduling device may further include a processing module, and the sending module may perform corresponding actions under the control of the processing module.
  • the present application provides an electronic chip, including:
  • a processor configured to execute computer program instructions stored on a memory, wherein when the computer program instructions are executed by the processor, the electronic chip is triggered to perform the method steps described in the first aspect or the third aspect .
  • the present application provides an electronic chip, including:
  • a processor for executing computer program instructions stored on a memory, wherein when the computer program instructions are executed by the processor, the electronic chip is triggered to perform the method steps of the second aspect or the fourth aspect .
  • the present application provides an electronic device, which includes a memory for storing computer program instructions, a processor for executing computer program instructions, and a communication device, wherein when the computer program instructions are executed by the When executed by the processor, the electronic device is triggered to execute the method steps described in the first aspect or the third aspect.
  • the present application provides an electronic device, which includes a memory for storing computer program instructions, a processor for executing computer program instructions, and a communication device, wherein when the computer program instructions are executed by the When executed by the processor, the electronic device is triggered to execute the method steps described in the second aspect or the fourth aspect.
  • the present application provides a communication system, the communication system includes: a base station and a terminal, the base station is used to perform any one of the methods provided in the second aspect or the fourth aspect above, and the terminal is used to perform the method in the first aspect or Any method provided by the third aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it is run on a computer, the computer executes any of the following aspects from the first aspect to the fourth aspect.
  • the present application provides a computer program product, the computer program product includes a computer program, and when the computer program runs on a computer, the computer executes any one of the first to fourth aspects. method described in the aspect.
  • the terminal can obtain the target carrier and the total number of repeated transmissions when performing cross-carrier transmission, so that it can know which carrier should be switched to after data transmission is performed on the source carrier.
  • Data transmission, and data transmission is performed on the source carrier and the target carrier according to the total number of repeated transmissions, so as to realize cross-carrier data transmission.
  • the configuration of the first set for example, the number of values of the total number of times of repeated multiple transmissions in the first set is configured to be less, the number of bits occupied by the total number of times of repeated transmissions can be reduced, and the saved bits can be used It is used to indicate the target carrier, so as to realize cross-carrier transmission without increasing bit overhead.
  • Fig. 1 shows the NTN communication system schematic diagram of an embodiment of the present application
  • Fig. 2 shows the NTN communication system schematic diagram of an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of cross-carrier allocation of repeated transmission times according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a data transmission device according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of a data scheduling device according to an embodiment of the present application.
  • FIG. 7 is a structural block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an NTN communication system according to an embodiment of the present application.
  • a terminal 111 establishes a communication link with a satellite 112 .
  • the terminal 111 directly communicates with the satellite 112 (that is, the base station is on the satellite 112), and at this time, the satellite 112 can be regarded as a base station.
  • the terminal 111 ensures stable communication through carrier switching.
  • FIG. 2 is a schematic diagram of an NTN communication system according to another embodiment of the present application.
  • the terminal 121 establishes a communication link with the satellite 122
  • the satellite 122 establishes a communication link with the gateway/base station 123
  • the gateway/base station 123 is connected to the data network 124 .
  • the satellite 122 only acts as a relay.
  • the terminal 121 ensures stable communication with the satellite 122 through carrier switching.
  • a terminal for example, terminal 111, terminal 121 may also be referred to as user equipment (User Equipment, UE), terminal equipment, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device , user terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal can be a mobile phone, tablet computer, or notebook computer; it can also be other equipment with communication functions, such as automatic teller machine, industrial control equipment, intelligent robot, etc.
  • narrowband Internet of Things Narrow Band Internet of Things
  • eMTC Long Term Evolution enhanced MTC
  • a single-frequency cell is only 180kHz bandwidth, except for the narrowband primary synchronization signal (Narrowband Primary Synchronization Signal, NPSS), narrowband secondary synchronization signal (Narrowband Secondary Synchronization Signal, NSSS) and system information block (System Information Block, SIB) overhead, the rest of the business Channel capacity is small.
  • NPSS Narrowband Primary Synchronization Signal
  • NSSS narrowband Secondary Synchronization Signal
  • SIB System Information Block
  • NPBCH narrowband Physical Broadcast Channel
  • NPDCCH narrowband Physical Downlink Control Channel
  • NPDSCH narrowband Physical Downlink Share Channel
  • a multi-carrier cell there may be several downlink carriers that only carry NPDCCH and NPDSCH, but do not carry NPSS, NSSS and NPBCH channels, which are called non-anchor carriers.
  • the terminal can perform data transmission on the non-anchor carrier.
  • the network will designate a carrier for subsequent downlink data transmission through a random access message 4 (message4, Msg4) of the random access process.
  • the terminal is in the idle state and can monitor the paging on the non-anchor carrier.
  • a cell in NB-IoT/eMTC, a cell includes an anchor carrier and several non-anchor carriers, the spectrum bandwidth of each carrier is 180kHz, and the maximum spectrum span of all carriers in the cell does not exceed 20MHz.
  • a feasible application solution is to perform beam management through carrier switching, that is, a cell includes multiple beams, different The beams correspond to different carriers, and the switching of beams is realized through carrier switching.
  • cross-carrier transmission can be performed based on NB-IoT. Specifically, in one data transmission (uplink transmission or downlink transmission), data transmission is performed based on the first carrier, and in the next data transmission (uplink transmission or downlink transmission), data transmission is performed based on the second carrier, and in two data transmissions Carrier switching is performed between them, so as to realize cross-carrier data transmission.
  • the premise of the implementation of the above technical solution is that the network must ensure that the scheduled data transmission can be uploaded on the current carrier (the carrier that receives the DCI) when scheduling data transmission (that is, scheduling through downlink control information (DCI), This approach imposes severe limitations on network scheduling.
  • DCI downlink control information
  • NB-IOT/eMTC uses repeated transmission technology.
  • the maximum number of repetitions for downlink transmission is 2048, and the maximum number of repetitions for uplink transmission is 128 times.
  • the actual number of repetitions of the Physical Downlink Shared Channel (PDSCH)/Physical Uplink Shared Channel (PUSCH) is dynamically indicated by its corresponding scheduling DCI, that is, the terminal has a specific bit field according to the DCI (for example, The repetition count indication field) is used to indicate the repetition count of the PDSCH/PUSCH, and the maximum repetition count (ie Rmax) of the PDCCH is semi-statically configured by the RRC/SIB.
  • the number of repetitions supported by PUSCH is shown in Table 1.
  • I REP Number of repetitions (N REP ) 0(000) 1 1(001) 2 2(010) 4 3(011) 8 4(100) 16 5(101) 32 6(110) 64 7(111) 128
  • the uplink scheduling DCI (DCI Format N0) bit field design in the NB-IOT protocol includes "Repetition number–3bits as defined in clause 16.5.1.1of[3]". That is, the uplink scheduling DCI in the NB-IOT protocol includes a 3-bit repetition count indication field. Table 1 above shows the corresponding relationship between the value of the repetition count indication field of the uplink scheduling DCI and the repetition count of the PUSCH.
  • Table 2 shows the number of repetitions supported by the PDSCH.
  • I REP Number of repetitions (N REP ) 0(0000) 1 1(0001) 2 2(0010) 4 3(0011) 8 4(0100) 16 5(0101) 32 6(0110) 64 7(0111) 128 8(1000) 192 9(1001) 256 10(1010) 384 11 (1011) 512 12(1100) 768 13 (1101) 1024 14(1110) 1536 15(1111) 2048
  • the bit field design of the downlink scheduling DCI (DCI Format N1) in the NB-IOT protocol includes "Repetition number–4bits as defined in clause 16.4.1.3of[3]". That is, the downlink scheduling DCI in the NB-IOT protocol includes a 4-bit repetition count indication field. Table 2 above shows the corresponding relationship between the value of the repetition times indication field of the downlink scheduling DCI and the repetition times of the PDSCH.
  • an embodiment of the present application proposes a data scheduling method. Specifically, in NB-IoT, data scheduling is usually implemented by DCI. Therefore, in an embodiment of the present application, control information related to carrier switching is added to the DCI. The terminal performs carrier switching in one data transmission based on related control information of carrier switching in the DCI, so as to realize cross-carrier data transmission in one data transmission.
  • the terminal needs to switch from the source carrier (the carrier used by the base station to send DCI) to the target carrier (the carrier to which the terminal needs to switch), which requires the DCI to indicate which carrier the terminal
  • the target carrier for the current cross-carrier handover data transmission and, in the current cross-carrier handover data transmission, data to be transmitted on the source carrier and the target carrier respectively.
  • a feasible solution is to add a new field (target carrier indication field) in the DCI used for scheduling (uplink scheduling or downlink scheduling).
  • the target carrier The indication field carries target carrier indication information, and the target carrier indication information is used to indicate which carrier is the target carrier.
  • adding a new field in the DCI will increase the bit overhead of the DCI.
  • the first indication field in the DCI is used to carry information indicating the target carrier.
  • other fields other than the first indication field may also be used to carry information indicating the target carrier.
  • FIG. 3 is a schematic flowchart of a data scheduling and transmission method according to an embodiment of the present application.
  • the cross-carrier data transmission (uplink transmission or downlink transmission) is realized between the base station and the terminal based on the process shown in FIG. 3 .
  • the base station generates DCI.
  • S300 is an optional step.
  • the base station sends DCI to the terminal, and accordingly, the terminal receives the DCI sent by the base station.
  • the DCI sent by the base station may be DCI for scheduling uplink transmission, or may be DCI for scheduling downlink transmission.
  • the terminal determines the target carrier and the total number of repeated data transmissions according to the first indication field in the DCI.
  • the total number of repeated data transmissions belongs to the first set, and the first set includes At least one value of the total number of repeated transmissions, at least one value of the total number of repeated transmissions is pre-configured or configured by the network; or, the terminal determines the target carrier according to the first indication field in the DCI, and receives the total number of repeated transmissions of data configured by the network frequency.
  • the first indication field may be the repetition count indication field in the prior art, or may be another field in the prior art, or may be a newly added field.
  • all domains that have the function of the first indication domain can be considered as the first indication domain in this application.
  • the first set may be pre-configured in the terminal, or stipulated by a protocol, or configured for the terminal by the network.
  • the implementation of “the terminal determines the target carrier and the total number of repeated data transmissions according to the first indication field in the DCI” is recorded as the first implementation of S302, and "the terminal determines the total number of repeated transmission times of the data according to the first indication field in the DCI”
  • the implementation manner of determining the target carrier in the field and receiving the total number of repeated transmission times of data configured by the network” is recorded as the second implementation manner of S302.
  • the terminal transmits DCI-scheduled data on the source carrier and/or the target carrier according to the total number of repeated data transmissions.
  • the terminal in the first implementation of S302, through DCI, the terminal can obtain the target carrier and the total number of repeated transmissions during cross-carrier transmission, so that it can know that after data transmission on the source carrier, Which carrier should be switched to continue data transmission, and data transmission is performed on the source carrier and the target carrier according to the total number of repeated transmissions, so as to realize cross-carrier data transmission.
  • the number of values of the total number of times of repeated multiple transmissions in the first set is configured to be less, the number of bits occupied by the total number of times of repeated transmissions can be reduced, and the saved bits can be used It is used to indicate the target carrier, so as to realize cross-carrier transmission without increasing the bit overhead of DCI.
  • the total number of repeated transmissions of data is configured through the network, so that the DCI only needs to indicate the target carrier, and the number of bits required for the target carrier to indicate is less, therefore, it can be used without increasing or In the case of reducing the bit overhead of DCI, cross-carrier transmission is realized.
  • the first indication field when used to indicate the target carrier, it may be implemented through the following manner (1) or manner (2).
  • the first part of bits in the first indication field indicates the target carrier, and the first part of bits is part of the bits in the first indication field.
  • S302 may include in specific implementation: the terminal determines the target carrier according to the first part of bits in the first indication field in the DCI.
  • S302 may further include: determining the carrier corresponding to the value of the first part of bits as the target carrier according to the second correspondence, and the second correspondence is the value of the first part of bits Correspondence between different values and carriers.
  • the second correspondence may be preset, for example, configured by a protocol.
  • the second correspondence may be configured by the network for the terminal.
  • the method further includes: the network (for example, a base station) sends the second correspondence, and the terminal receives the second correspondence configured by the network.
  • the second correspondence may be carried in high-layer signaling (for example, a system broadcast message or radio resource control (Radio Resource Control, RRC) dedicated signaling).
  • RRC Radio Resource Control
  • the network before performing data scheduling (before sending DCI), the network configures the second corresponding relationship for the terminal through a system broadcast message or RRC dedicated signaling, that is, before S300, the terminal receives the network-configured Second Correspondence.
  • the second correspondence may be one correspondence. Further, considering the difference between uplink transmission and downlink transmission, the second correspondence may also include two different correspondences for uplink transmission and downlink transmission respectively (for example, the second correspondence may include the first uplink transmission correspondence and first downlink transmission correspondence).
  • C1, C2, C3, and C4 respectively correspond to 4 uplink carriers, and the first part of bits is 2 bits.
  • the network configures the terminal with the second corresponding relationship shown in Table 3 below through a system broadcast message or RRC dedicated signaling.
  • the second corresponding relationship may be determined by the terminal according to the carrier set configured by the network.
  • the method further includes: the network sends the second set, the terminal receives the second set configured by the network, and according to the second set A second correspondence is determined, the second set includes one or more carriers. Carriers in the second set may be considered as candidate target carriers. The number of carriers in the second set is less than or equal to the value number of the first part of bits.
  • the terminal After acquiring the second set, the terminal generates the above-mentioned second corresponding relationship according to the second set.
  • the second set may be carried in higher layer signaling (for example, a system broadcast message or RRC dedicated signaling).
  • the network before performing data scheduling (before sending DCI), the network configures the second set for the terminal through a system broadcast message or RRC dedicated signaling, that is, before S300, the terminal receives the first set configured by the network. Two sets, determining the second corresponding relationship according to the second set.
  • the second set may be a set. Further, considering the difference between uplink transmission and downlink transmission, the second set may also include two different sets for uplink transmission and downlink transmission respectively (for example, the second set may include the first uplink transmission set and the first downlink transmission set). transfer collection).
  • the number and/or position of the first part of bits may be preset to the terminal, so that the terminal can generate the second correspondence.
  • C1, C2, C3, and C4 respectively correspond to 4 uplink carriers, and the first part of bits is 2 bits.
  • the network configures the second set as ⁇ C1, C2, C3, C4 ⁇ for the terminal through a system broadcast message or RRC dedicated signaling.
  • the terminal generates the second corresponding relationship shown in Table 3 according to the second set ⁇ C1, C2, C3, C4 ⁇ .
  • All bits in the first indication field indicate the target carrier.
  • mode (2) can refer to mode (1), the only difference is that all the bits in the first indication field are used to indicate the target carrier here, and in the third case in mode (1), the terminal can By default, the bits used to indicate the target carrier are all the bits in the first indication field, therefore, the number and/or position of bits used to establish the second correspondence may not be pre-set for the terminal.
  • the implementation of the way (2) can be obtained by replacing the first part of bits in the way (1) with all the bits in the first indication field, which will not be repeated here.
  • the target carrier can be indicated through the existing first indication field, which effectively reduces the bits of DCI. overhead.
  • the method may also include S310:
  • the terminal determines the number of repeated transmissions on the source carrier and the target carrier according to the total number of repeated transmissions and the DCI.
  • specific implementation of S302 may include: when the terminal determines that the number of repeated transmissions on the target carrier is not zero according to the DCI, the terminal determines the target carrier according to the DCI. When the terminal determines that the number of repeated transmissions on the target carrier is zero according to the DCI, the terminal does not need to determine the target carrier (no need to execute S302). That is, if the number of repeated transmissions on the target carrier is not zero, the data is transmitted across carriers.
  • S303 may include: the terminal performs data transmission based on the target carrier indicated by the DCI and the number of repeated transmissions on the source carrier and the target carrier.
  • the DCI when the data transmission scheduled by the DCI is cross-carrier data transmission, the DCI includes information indicating the target carrier and information indicating the number of repeated transmission times of the currently scheduled data transmission on the source carrier and the target carrier .
  • the DCI does not contain information indicating the target carrier, but contains information indicating the number of repeated transmissions of the currently scheduled data transmission on the source carrier and the target carrier, and indicates the target carrier The number of repeated transfers on is zero.
  • data transmission in this application refers to uplink data transmission
  • data transmission in this application refers to downlink data transmission
  • the data transmission is first allocated on the source carrier according to the number of repeated transmissions of the source carrier, and then the source carrier is switched to the target carrier. The number of repeated transmissions is allocated for data transmission on the target carrier.
  • the terminal confirms the number of repeated transmissions of the currently scheduled data transmission on the source carrier and the target carrier according to the DCI, and determines the target carrier according to the DCI when the number of repeated transmissions on the target carrier is not zero. Carrier switching is performed during transmission.
  • the number of repeated transmissions on the source carrier and the target carrier may be determined through the following method A or method B.
  • the repeated transmission times allocation indication information is used to indicate the ratio between the repeated transmission times on the source carrier or the target carrier and the total number of repeated transmissions of the data transmission scheduled by the current DCI, and the terminal allocates the indication information according to the total number of repeated transmissions and the repeated transmission times Determine the number of repeated transmissions on the source carrier or the target carrier, and further determine the number of repeated transmissions on the target carrier or the source carrier (the sum of the number of repeated transmissions on the source carrier and the target carrier is the total number of repeated transmissions).
  • the terminal may receive a third correspondence configured by the network, and the third correspondence is the repeated transmission times allocation indication The corresponding relationship between different values of the information and the proportional value, so that the terminal can determine the number of repeated transmissions on the source carrier or the target carrier and the total number of repeated transmissions according to the value of the repeated transmission times allocation indication information and the third corresponding relationship proportion.
  • the third corresponding relationship may be carried in high layer signaling (for example, system broadcast message or RRC dedicated signaling).
  • high layer signaling for example, system broadcast message or RRC dedicated signaling.
  • the network before performing data scheduling (before sending DCI), the network configures the third correspondence relationship for the terminal through a system broadcast message or RRC dedicated signaling, that is, before S300, the terminal receives the network-configured third correspondence.
  • the third correspondence may be one correspondence. Further, considering that the number of repeated transmissions supported by uplink transmission and downlink transmission is different, the third correspondence may also include two different correspondences for uplink transmission respectively (for example, the third correspondence includes a third correspondence for uplink transmission and the third downlink transmission correspondence).
  • the network configures the terminal with the third corresponding relationship shown in Table 4 below through a system broadcast message or RRC dedicated signaling.
  • Cross-carrier transmission indication field value Scale factor 00 0 (do not allocate the number of repeated transmissions on the target carrier, that is, the source carrier transmission) 01 1/2 (1/2 the number of repeated transmissions on the target carrier) 10 3/4 (3/4 of the repeated transmission times are on the target carrier) 11 1 (all retransmission counts are on the target carrier)
  • the indication information for allocating repeated transmission times may be carried in the cross-carrier transmission indication field in the DCI.
  • the current scheduling is source carrier scheduling, that is, the terminal does not perform carrier switching in this data transmission, and the source The carrier can complete this data transmission.
  • the terminal When the value of the cross-carrier transmission indication field in the DCI is 01, 10, or 11, the terminal needs to perform carrier switching in this data transmission, and needs to transmit a part of data on the target carrier. In particular, when the value of the cross-carrier transmission indication field in the DCI is 11, this data transmission is entirely performed on the target carrier.
  • FIG. 4 is a schematic diagram of cross-carrier allocation of repeated transmission times according to an embodiment of the present application. During a data transmission process, the allocation of repeated transmission times for cross-carrier data transmission is shown in FIG. 4 .
  • DCI is transmitted on carrier 1 (source carrier). Assuming that the value of the cross-carrier transmission indication field in the DCI is 01, after receiving the DCI, the terminal performs data transmission on carrier 1 (source carrier), and the number of repeated transmissions performed on carrier 1 (source carrier) is the total number of repeated transmissions 1/2 of.
  • the terminal After the terminal completes 1/2 of the total number of repeated transmissions on carrier 1, it switches from carrier 1 (source carrier) to carrier 2 (target carrier), and performs data transmission on carrier 2 (target carrier).
  • the number of repetitions performed on 2 (target carrier) is 1/2 of the total number of repetitions.
  • Table 4 shows that it is pre-defined to assign the proportion pointed to by the cross-carrier transmission indication field to the target carrier. Optionally, it can also be pre-defined as assigning the proportion pointed to by the cross-carrier transmission indication field to the source carrier.
  • the network does not directly configure the third corresponding relationship for the terminal, but configures a third set for the terminal, where the third set includes one or more proportional values.
  • the number of proportional values in the third set is less than or equal to the number of values of the cross-carrier transmission indication field.
  • the terminal After acquiring the third set, the terminal generates the above-mentioned third corresponding relationship according to the third set. For example, before S300, the terminal receives a third set of network configurations, and determines a third corresponding relationship according to the third set.
  • the third set may be a set. Further, considering the difference between uplink transmission and downlink transmission, the third set may also include two different sets for uplink transmission and downlink transmission respectively (for example, the third set includes a third uplink transmission set and a third downlink transmission set ).
  • the network configures the third set ⁇ 0, 1/2, 3/4, 1 ⁇ for the terminal through a system broadcast message or RRC dedicated signaling, and the cross-carrier transmission indication field is 2 bits.
  • the terminal generates the third corresponding relationship shown in Table 4 according to the third set ⁇ 0, 1/2, 3/4, 1 ⁇ .
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times on the source carrier or the target carrier, and the terminal determines the repeated transmission times on the source carrier or the target carrier according to the repeated transmission times indicated by the repeated transmission times allocation indication information, and further according to the repeated transmission times
  • the total number of times determines the repeated transmission times on the target carrier or the source carrier (the sum of the repeated transmission times on the source carrier and the target carrier is the total number of repeated transmissions).
  • different values of the repeated transmission times allocation indication information correspond to different repeated transmission times.
  • the network configures the fourth corresponding relationship for the terminal, the fourth corresponding relationship is the corresponding relationship between different values of the repeated transmission times allocation indication information and the repeated transmission times, so that the terminal can allocate the value of the indicated information according to the repeated transmission times and the fourth corresponding relationship determine the number of repeated transmissions on the source carrier or the target carrier.
  • the fourth correspondence may be carried in high-layer signaling (for example, a system broadcast message or RRC dedicated signaling).
  • the network before performing data scheduling (before sending DCI), the network configures the fourth corresponding relationship for the terminal through a system broadcast message or RRC dedicated signaling, that is, before S300, the terminal receives the network-configured The fourth correspondence.
  • the fourth correspondence may be one correspondence. Further, considering that the number of repeated transmissions supported by uplink transmission and downlink transmission is different, the fourth correspondence may also include two different correspondences for uplink transmission respectively (for example, the fourth correspondence includes a fourth uplink transmission correspondence and the fourth downlink transmission correspondence).
  • the network configures the terminal with the fourth corresponding relationship shown in Table 5 below through a system broadcast message or RRC dedicated signaling.
  • Cross-carrier transmission indication field value repeat transfer count 00 0 (repeated transmission 0 times on the target carrier, that is, the source carrier transmission) 01 16 (16 repeated transmissions on the target carrier) 10 32 (32 repeated transmissions on the target carrier) 11 64 (64 repeated transmissions on the target carrier)
  • the indication information for allocating repeated transmission times may be carried in the cross-carrier transmission indication field in the DCI.
  • the DCI sent by the base station is the DCI for scheduling uplink transmission, and the total number of repeated transmissions is 128.
  • the transmission is repeated 32 times on the target carrier. That is, in the currently scheduled uplink transmission, the number of times of repeated transmission on the source carrier is 96 times (128-32), and the number of times of repeated transmission on the target carrier is 32 times.
  • Table 5 shows that the number of repeated transmissions pointed to by the cross-carrier transmission indication field is pre-defined to be allocated to the target carrier. carrier.
  • the network does not directly configure the fourth corresponding relationship for the terminal, but configures a fourth set for the terminal, where the fourth set includes multiple repeated transmission times values.
  • the number of values of the repeated transmission times in the fourth set is less than or equal to the number of values of the repeated transmission times allocation indication information.
  • the terminal After acquiring the fourth set, the terminal generates the above fourth corresponding relationship according to the fourth set. That is, before S300, the terminal receives a fourth set of network configurations, and determines a fourth corresponding relationship according to the fourth set.
  • the fourth set may be a set. Further, considering the difference between uplink transmission and downlink transmission, the fourth set may also include two different sets for uplink transmission and downlink transmission respectively (for example, the fourth set includes a fourth uplink transmission set and a fourth downlink transmission set ).
  • the network configures the fourth set ⁇ 0, 16, 32, 64 ⁇ for the terminal through a system broadcast message or RRC dedicated signaling.
  • the cross-carrier transmission indication field in the DCI is 2 bits.
  • the terminal generates the fourth corresponding relationship shown in Table 5 according to the fourth set ⁇ 0, 16, 32, 64 ⁇ .
  • n repeated transmissions can also be defined to form a data segment (n is a natural number), and the data segment is used as the repeated transmission
  • n is a natural number
  • different values of the indication information for allocation of repeated transmission times correspond to different numbers of data segments.
  • there is a corresponding relationship between different values of the repeated transmission times allocation indication information and the number of data segments (referred to as the fifth corresponding relationship).
  • the terminal determines the number of data segments on the source carrier or the target carrier according to the value of the repeated transmission times allocation indication information and the fifth correspondence, and then determines the number of repeated transmissions on the source carrier or the target carrier.
  • n 2
  • the network configures the fifth corresponding relationship as shown in Table 6 below for the terminal through the system broadcast message or RRC dedicated signaling, or the network configures the fifth set ⁇ 0, 8, 16, 32 ⁇
  • the terminal generates the fifth corresponding relationship shown in Table 6 according to the fifth set ⁇ 0, 8, 16, 32 ⁇ .
  • Cross-carrier transmission indication field value Number of data segments 00 0 (i.e. source carrier transmission) 01 8 (transmit 8 data segments on the target carrier) 10 16 (transmit 16 data segments on the target carrier) 11 32 (transmit 32 data segments on the target carrier)
  • the DCI sent by the base station is DCI for scheduling uplink transmission, and the total number of repeated transmissions is 128 (64 data segments).
  • the value of the cross-carrier transmission indication field is 10
  • 16 data segments are transmitted on the target carrier. That is, in the currently scheduled uplink transmission, 48 (64-16) data segments are transmitted on the source carrier (the number of repeated transmissions is 96 times), and 16 data segments are transmitted on the target carrier (the number of repeated transmissions is 32 times) .
  • Table 6 shows that the value of the number of data segments pointed to by the cross-carrier transmission indication field is pre-defined and assigned to the target carrier. Value assigned to the source carrier.
  • the terminal uses the first indication
  • the number of retransmissions indicated by the field is the total number of retransmissions of data transmission scheduled by the DCI (refer to Table 1 and Table 2).
  • the first indication of DCI is used to indicate the target carrier, and different values of the first part of bits correspond to different carriers, and the terminal determines the corresponding carrier as the target carrier according to the value of the first part of bits.
  • the original function of the first indication field in DCI is to indicate the total number of repeated transmissions (refer to the relevant content in Table 1 and Table 2 above), but when the first part of bits in the first indication field is used to indicate the target carrier , the first indication field cannot indicate the total number of repeated transmissions based on the rules in Table 1 and Table 2, and during the execution of the above S302 and S303, the terminal needs to know the total number of repeated transmissions of the data transmission scheduled by the current DCI, so , it is necessary to design a new scheme indicating the total number of repeated transmissions.
  • the method for the terminal to determine the total number of repeated transmissions of data according to the first indication field in the DCI is called method 1
  • the method for the terminal to receive the data configured by the network The method of repeating the total number of times of transmission is called method 2, and the method 1 or method 2 will be described in detail below.
  • the network configures the total number of repeated transmissions for the terminal (which may be recorded as the first number).
  • the terminal receives the first number of network configurations.
  • the configuration process may be performed before S300.
  • the target carrier may be indicated by a first part of bits in the first indication field, or may be indicated by all bits in the first indication field.
  • the terminal uses the first The number is the total number of repeated transmission times of the data transmission scheduled by the DCI.
  • the first indication field since the total number of repeated transmissions for cross-carrier data transmission is configured by the network, during cross-carrier data transmission, the first indication field does not need to indicate the total number of repeated transmissions. Therefore, the first indication field used to indicate the target carrier A part of bits are all bits of the first indication field.
  • the first indication of DCI is used to indicate the total number of repeated transmissions.
  • the second part of bits is part or all of the remaining bits in the first indication field except the first part of bits (used to indicate the target carrier).
  • the second part Different values of the bits correspond to different times, and the terminal determines the corresponding times as the total times of repeated transmission according to the value of the second part of bits.
  • the network configures the first correspondence relationship for the terminal, and the first correspondence relationship is the correspondence relationship between different values of the second part of bits and the total number of candidate repeated transmission times.
  • the first correspondence may be carried in high-layer signaling (for example, a system broadcast message or RRC dedicated signaling).
  • the network configures the first corresponding relationship for the terminal through a system broadcast message or RRC dedicated signaling, that is, before S300, the terminal receives the network-configured first correspondence.
  • the first correspondence may be a correspondence. Further, considering the difference between uplink transmission and downlink transmission, the first correspondence may also include two different correspondences for uplink transmission and downlink transmission respectively (for example, the first correspondence includes the second uplink transmission correspondence and the second Two downlink transmission correspondence).
  • the network does not directly configure the first corresponding relationship for the terminal, but configures the first set for the terminal.
  • the first set includes one or more total number of repeated transmissions that can be used as the total number of repeated transmissions as candidates. frequency.
  • the total number of repeated transmission times in the first set is less than or equal to the value number of the second part of bits.
  • the first set may be a set. Further, considering the difference between uplink transmission and downlink transmission, the first set may also include two different sets for uplink transmission and downlink transmission respectively (for example, the first set includes the second uplink transmission set and the second downlink transmission set ).
  • the total number of repeated transmissions of the candidates (the first set) is selected from the candidate with a larger value in the total number of repeated transmissions of the candidates (refer to Table 1 and Table 2) in the non-cross-carrier transmission scenario composition.
  • the total number of repeated transmissions (the first set) of candidates in the first correspondence can be ⁇ 64, 128 ⁇ or ⁇ 32, 64, 128 ⁇ ;
  • the candidates in the first correspondence may be ⁇ 768, 1024, 1536, 2048 ⁇ , ⁇ 1024, 1536, 2048 ⁇ or ⁇ 1536, 2048 ⁇ .
  • the number and/or position of the first part of bits and/or the second part of bits in the first indication field may be configured by the network for the terminal.
  • the network sends bit configuration information to the terminal, and the terminal receives the bit configuration information, which is used to configure one or more of the following information: the number of the first part of bits in the first indication field, the first The position of the first part of bits in the indication field, the number of the second part of bits in the first indication field, and the position of the second part of bits in the first indication field.
  • the bit configuration information is used to configure the number and position of the first part of bits in the first indication field, or the number and position of the second part of bits in the first indication field.
  • the bit configuration information is used to configure the positions of the first part of bits and/or the positions of the second part of bits in the first indication field.
  • the terminal determines the number of bits in the first part according to the number of candidate carriers of the target carrier (the second corresponding relationship or the number of carriers in the second set), and/or, according to the number of alternative times of the total number of repeated data transmissions
  • the number of bits determines the number of bits in the second part.
  • the carrier set (second set) in the second correspondence of the network configuration is ⁇ C1, C2, C3, C4 ⁇
  • the total number of repeated transmission times (the first set) in the first correspondence of the network configuration is ⁇ 64, 128 ⁇
  • the bits occupied by the first part of the network configuration are counted backwards from the first bit of the first indication field
  • the bits occupied by the second part of the network configuration are counted from the last bit of the first indication field to the front .
  • the terminal determines that the number of bits occupied by the first part of bits is 2 according to the number of carriers 4 in ⁇ C1, C2, C3, C4 ⁇ , and determines the number of bits occupied by the number of repeated transmission times in ⁇ 64, 128 ⁇ 2.
  • the number of bits occupied by the second part of bits is 1. Based on the positions of the first part of bits and the position of the second part of bits configured by the network, the terminal determines that the first two bits in the first indication field are the first part of bits, and the last bit is the second part of bits.
  • the carrier set (second set) in the second corresponding relationship configured by the network is ⁇ C1, C2 ⁇
  • the repeated transmission times set (first set) in the configured first corresponding relationship is ⁇ 16, 32, 64, 128 ⁇
  • the bits occupied by the second part of the network configuration bits are counted backwards from the first bit of the first indication field, and the bits occupied by the first part of the network configuration bits are counted from the last bit of the first indication field to the front.
  • the terminal determines that the number of bits occupied by the first part of bits is 1 according to the number of carriers 2 in ⁇ C1, C2 ⁇ , and determines the number of bits occupied by the number of repeated transmission times in ⁇ 16, 32, 64, 128 ⁇ 4
  • the number of bits occupied by the second part of bits is 2. Based on the position of the first part of bits and the position of the second part of bits configured by the network, the terminal determines that the last bit in the first indication field is the first part of bits, and the first two bits are the second part of bits.
  • the first indication field is the repetition number indication field in the prior art
  • the first part of bits and the second part of bits can be the following two situations:
  • Case 1 The number and position of the first part of bits are the first two or last two bits of the first indication field, and the second part of bits is the bits in the first indication field except the first part of bits.
  • the number and position of the first part of bits is the first or last bit of the first indication field
  • the second part of bits is the bits other than the first part of bits in the first indication field
  • the first indication field is the repetition count indication field in the prior art
  • the first part of bits and the second part of bits can be the following three situations:
  • Case 1 The number and position of the first part of bits are the first two or last two bits of the first indication field, and the second part of bits is the bits in the first indication field except the first part of bits.
  • the number and position of the first part of bits is the first or last bit of the first indication field
  • the second part of bits is the bits other than the first part of bits in the first indication field
  • the number and position of the first part of bits are the first three or last three bits of the first indication field, and the second part of bits are the bits in the first indication field except the first part of bits.
  • a new field (cross-carrier scheduling) is added to the DCI used for scheduling (uplink scheduling or downlink scheduling).
  • Transmission indication field the cross-carrier transmission indication field is used to carry the repeated transmission times allocation indication information (the value of the cross-carrier transmission indication field is the value of the repeated transmission times allocation indication information).
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times of the currently scheduled data transmission (including PUSCH transmission or PDSCH transmission) on the source carrier and/or the target carrier.
  • the network configures the fourth set ⁇ 0, 16, 32, 64 ⁇ to the terminal through the system broadcast message or RRC dedicated signaling, and the cross-carrier transmission indication field is 2 bits. 64 ⁇ Generate the fourth correspondence shown in Table 5.
  • the network For uplink transmission, the network sends bit configuration information to the terminal through a system broadcast message or RRC dedicated signaling.
  • the bit configuration information specifies/specifies that the first two bits in the first indication field in the scheduling DCI are used to indicate the target uplink carrier (the first part bits), and the last bit is used to indicate the total number of repeated transmissions corresponding to the cross-carrier transmission (the second part of bits).
  • the network configures the first set ⁇ 64, 128 ⁇ for the terminal through a system broadcast message or RRC dedicated signaling.
  • the terminal generates the first correspondence shown in Table 7 according to the first set ⁇ 64, 128 ⁇ .
  • the network configures the second set ⁇ C1, C2, C3, C4 ⁇ for the terminal through a system broadcast message or RRC dedicated signaling.
  • the terminal generates the second corresponding relationship shown in Table 3 according to the second set ⁇ C1, C2, C3, C4 ⁇ .
  • the base station sends DCI for scheduling uplink data transmission to the terminal, and the terminal receives the DCI for scheduling uplink data transmission.
  • the terminal reads the cross-carrier transmission indication field of the DCI and the value of the first indication field.
  • the terminal determines that the current data transmission is cross-carrier transmission, and on the target carrier
  • the number of repeated transmissions is 32, and then determine the target carrier as C3 according to the first 2 bits of the first indication field and Table 3 (10 in Table 3 corresponds to the uplink carrier C3), and determine according to the last bit of the first indication field
  • the terminal determines that the current scheduling is source carrier transmission. Since this scheduling is source carrier transmission, Therefore, the first indication field is only used to indicate the number of repeated transmissions currently scheduled, and the terminal determines that the total number of repeated transmissions is 16 according to the value of the first indication field and Table 1 (100 in Table 1 corresponds to 16).
  • the network configures the fourth set ⁇ 0, 64, 128, 256 ⁇ for the terminal through the system broadcast message or RRC dedicated signaling, and the cross-carrier transmission indication field is 2 bits. 256 ⁇ to generate the fourth correspondence shown in Table 8.
  • Cross-carrier transmission indication field value repeat transfer count 00 0 (repeated transmission 0 times on the target carrier, that is, the source carrier transmission) 01 64 (64 repeated transmissions on the target carrier) 10 128 (128 repeated transmissions on the target carrier) 11 256 (256 repeated transmissions on the target carrier)
  • the network For downlink transmission, the network sends bit configuration information to the terminal through a system broadcast message or RRC dedicated signaling.
  • the bit configuration information specifies/specifies that the first two bits in the first indication field in the scheduling DCI are used to indicate the target uplink carrier (the first part bits), and the last two bits are used to indicate the total number of repeated transmissions corresponding to the cross-carrier transmission (the second part of bits).
  • the network configures the terminal with the first set ⁇ 768, 1024, 1536, 2048 ⁇ through a system broadcast message or RRC dedicated signaling.
  • the terminal generates the first correspondence shown in Table 9 according to the first set ⁇ 768, 1024, 1536, 2048 ⁇ .
  • the network configures the second set ⁇ C1, C2, C3, C4 ⁇ for the terminal through a system broadcast message or RRC dedicated signaling.
  • the terminal generates the second corresponding relationship shown in Table 3 according to the second set ⁇ C1, C2, C3, C4 ⁇ .
  • the base station sends DCI for scheduling downlink data transmission to the terminal, and the terminal receives the DCI for scheduling downlink data transmission.
  • the terminal reads the cross-carrier transmission indication field of the DCI and the value of the first indication field.
  • the terminal determines that the current scheduling is cross-carrier transmission, and on the target carrier The number of repeated transmissions is 128, and then the target carrier is determined according to the first 2 bits of the first indicator field and Table 3 (10 in Table 3 corresponds to the downlink carrier C3), and the currently scheduled carrier is determined according to the last 2 bits of the first indicator field.
  • the terminal determines that the current scheduling is source carrier transmission. Since this scheduling is source carrier transmission, Therefore, the first indication field is only used to indicate the number of repeated transmissions currently scheduled, and the terminal determines that the total number of repeated transmissions is 192 according to the value of the first indication field and Table 2 (1000 in Table 2 corresponds to 192).
  • an embodiment of the present application also proposes a data transmission device, the data transmission device is constructed in the terminal, and each module in the data transmission device can be installed in the processing module of the terminal perform corresponding actions under the control.
  • FIG. 5 is a structural block diagram of a data transmission device according to an embodiment of the present application. As shown in Figure 5, the data transmission device 500 includes:
  • a transceiver module 510 configured to: receive downlink control information
  • a confirmation module 520 configured to determine the target carrier and the total number of repeated transmissions of the data according to the first indication field in the downlink control information in the case of cross-carrier transmission of data scheduled by the downlink control information, the The total number of repeated transmission times of data belongs to a first set, the first set includes at least one value of the total number of repeated transmission times, and the value of the at least one total number of repeated transmission times is pre-configured or configured by the network;
  • the transceiver module 510 is further configured to transmit the data on the source carrier and the target carrier according to the total number of repeated transmission times, where the source carrier is the carrier where the downlink control information is located.
  • the confirmation module 520 is specifically configured to: determine the target carrier according to the first part of bits in the first indication field in the downlink control information.
  • the confirming module 520 is specifically configured to: determine the carrier corresponding to the value of the first part of bits as the target carrier according to a second correspondence, the second correspondence being the value of the first part of bits Correspondence between different values and carriers.
  • the transceiver module 510 is also used for:
  • a second set of network configurations is received, and the second corresponding relationship is determined according to the second set, where the second set includes one or more carriers.
  • the confirmation module 520 is specifically configured to: determine the total number of repeated transmission times of the data according to the second part of bits in the first indication field in the downlink control information.
  • the confirming module 520 is specifically configured to: determine the total number of repeated transmissions of the data according to a first correspondence, where the first correspondence is the different values of the second part of bits and the first set The correspondence between the values of the total number of retransmissions in .
  • the transceiver module 510 is also used for:
  • the first set of network configurations is received, and the first corresponding relationship is determined according to the first set.
  • the transceiver module 510 is also used for:
  • bit configuration information is used to configure one or more of the following information: the number of bits in the first part, the position of bits in the first part, the number of bits in the second part, the Describe the position of the second part of the bit.
  • bit configuration information is used to configure the position of the first part of bits and/or the position of the second part of bits; the confirmation module 520 is also used to: Determine the number of bits in the first part, and/or determine the number of bits in the second part according to the number of alternative times of the total number of repeated transmission times of the data.
  • the second part of bits is the remaining bits in the first indication field except for the first part of bits
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number of the first part of bits The number and position are the first or last bit of the first indication field; or,
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number of the first part of bits The number and position are the first or last bit of the first indication field; or, the number and position of the first part of bits are the first three or last three bits of the first indication field.
  • the downlink control information includes indication information for allocation of repeated transmission times
  • the confirmation module 520 is further configured to: determine the number of repeated transmissions on the source carrier and the target carrier according to the total number of repeated transmissions and the allocation indication information of the number of repeated transmissions;
  • the transceiver module 510 is specifically configured to transmit the data on the source carrier and the target carrier according to the repeated transmission times on the source carrier and the target carrier.
  • the data is transmitted across carriers.
  • the repeated transmission times allocation indication information is carried in a cross-carrier transmission indication field in the downlink control information.
  • the allocation indication information of the number of repeated transmissions is used to indicate the ratio of the number of repeated transmissions on the source carrier or the target carrier to the total number of repeated transmissions of the data, and the confirming module 520 is specifically used for:
  • the number of repeated transmissions on the source carrier and the target carrier is determined according to the total number of times of repeated transmission of the data and the ratio indicated by the allocation indication information of the number of repeated transmissions.
  • the confirmation module 520 is also used for:
  • the ratio value corresponding to the value of the repeated transmission times allocation indication information is determined as the ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmissions of the data.
  • the third corresponding relationship is a corresponding relationship between different values and proportional values of the repeated transmission times allocation indication information.
  • the transceiver module 510 is also used for:
  • a third set of network configurations is received, and the third corresponding relationship is determined according to the third set, where the third set includes one or more proportional values.
  • the indication information for assigning the number of repeated transmissions is used to indicate the number of repeated transmissions on the source carrier or the target carrier; the confirmation module 520 is specifically configured to: according to the total number of repeated transmissions of the data and the The repeated transmission times indicated by the repeated transmission times allocation indication information determine the repeated transmission times on the source carrier and the target carrier.
  • the confirmation module 520 is further configured to: according to the fourth correspondence, determine the number of repeated transmissions corresponding to the value of the repeated transmission times allocation indication information as the repeated transmission on the source carrier or the target carrier times, the fourth correspondence is a correspondence between different values of the repeated transmission times allocation indication information and repeated transmission times.
  • the transceiver module 510 is also used for:
  • a fourth set of network configurations is received, and the fourth corresponding relationship is determined according to the fourth set, where the fourth set includes one or more values of the repeated transmission times.
  • the confirmation module 520 is further configured to determine whether data scheduled by the DCI is transmitted across carriers according to the DCI.
  • the confirmation module 520 determines the allocation of repeated transmission times on the source carrier and the target carrier according to the DCI, and when the repeated transmission times on the target carrier is not zero, the data scheduled by the DCI is transmitted across carriers.
  • the confirmation module 520 determines that the number of repeated transmissions on the target carrier is not zero, the target carrier is determined according to the first indication field of the DCI.
  • the transceiver module 510 allocates the number of repeated transmissions on the target carrier indicated by the DCI and the source carrier and the target carrier.
  • the transceiving module 510 determines that cross-carrier data transmission is required according to the DCI, it first allocates data transmission on the source carrier according to the number of repeated transmissions of the source carrier, and then switches from the source carrier to the target carrier. The times are allocated for data transmission on the target carrier.
  • an embodiment of the present application also proposes a data scheduling device, the data scheduling device is constructed in the base station, and each module in the data scheduling device can be implemented in the processing module of the base station perform corresponding actions under the control.
  • FIG. 6 is a structural block diagram of a data scheduling device according to an embodiment of the present application. As shown in Figure 6, the data scheduling device 600 includes:
  • a sending module 610 configured to send downlink control information, where, in the case of cross-carrier transmission of data scheduled by the downlink control information, the first indication field in the downlink control information is used to indicate the target carrier and the data
  • the data scheduling apparatus 600 further includes a DCI generation module 620, and the DCI generation module 620 is configured to generate DCI, wherein the DCI includes information used to indicate the allocation of repeated transmission times on the source carrier and the target carrier, and, when the target carrier When the number of times of repeated transmissions on is not zero, the DCI also includes information used to indicate the target carrier.
  • the DCI generation module 620 is configured to generate DCI, wherein the DCI includes information used to indicate the allocation of repeated transmission times on the source carrier and the target carrier, and, when the target carrier When the number of times of repeated transmissions on is not zero, the DCI also includes information used to indicate the target carrier.
  • the first part of bits in the first indication field in the downlink control information is used to indicate the target carrier.
  • the carrier corresponding to the value of the first part of bits is the target carrier, and the correspondence between the different values of the first part of bits and the carrier is the second correspondence.
  • the sending module 610 is also used for:
  • the second set is used to determine the second correspondence, the second set includes one or more carriers.
  • the second part of bits in the first indication field in the downlink control information is used to indicate the total number of repeated transmission times of the data.
  • the total number of repeated transmissions corresponding to the value of the second part of bits is the total number of repeated transmissions of the data, and the different values of the second part of bits are different from the total number of repeated transmissions in the first set
  • the correspondence between the values of is the first correspondence.
  • the sending module 610 is also used for:
  • the sending module 610 is also used for:
  • bit configuration information is used to configure one or more of the following information: the number of bits in the first part, the position of bits in the first part, the number of bits in the second part, the Describe the position of the second part of the bit.
  • the second part of bits is the remaining bits in the first indication field except for the first part of bits
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number of the first part of bits The number and position are the first or last bit of the first indication field; or,
  • the number and position of the first part of bits are the first two or last two bits of the first indication field, or the number of the first part of bits The number and position are the first or last bit of the first indication field; or, the number and position of the first part of bits are the first three or last three bits of the first indication field.
  • the downlink control information includes indication information for allocation of repeated transmission times, and the indication information for allocation of repeated transmission times is used to determine the number of repeated transmissions on the source carrier and the target carrier.
  • the data is transmitted across carriers.
  • the repeated transmission times allocation indication information is carried in a cross-carrier transmission indication field in the downlink control information.
  • the repeated transmission times allocation indication information is used to indicate the repeated transmission times on the source carrier or the target carrier.
  • the number of repeated transmissions corresponding to the value of the repeated transmission times allocation indication information is the number of repeated transmissions on the source carrier or the target carrier, and the different values of the repeated transmission times allocation indication information are different from those of repeated transmissions.
  • the corresponding relationship between the transmission times is the fourth corresponding relationship.
  • the sending module 610 is also used for:
  • the fourth set is used to determine the fourth corresponding relationship, and the fourth set includes one or more values of the repeated transmission times.
  • the indication information for allocating repeated transmission times is used to indicate a ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmissions of the data.
  • the ratio value corresponding to the value of the repeated transmission times allocation indication information is the ratio of the repeated transmission times on the source carrier or the target carrier to the total number of repeated transmissions of the data, and the repeated transmission
  • the corresponding relationship between the different values of the times allocation instruction information and the proportional value is the third corresponding relationship.
  • the method also includes:
  • a third set is sent, the third set is used to determine the third corresponding relationship, and the third set includes one or more proportional values.
  • each module is only a division of logical functions.
  • each The functions of the modules are implemented in the same or more software and/or hardware.
  • the devices proposed in the embodiments of the present application may be fully or partially integrated into a physical entity during actual implementation, and may also be physically separated.
  • these modules can all be implemented in the form of software called by the processing element; they can also be implemented in the form of hardware; some modules can also be implemented in the form of software called by the processing element, and some modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or may be integrated into a certain chip of the electronic device for implementation.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or more digital signal processors ( Digital Singnal Processor, DSP), or, one or more Field Programmable Gate Arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • these modules can be integrated together and implemented in the form of a device-on-a-chip (System-On-a-Chip, SOC).
  • an embodiment of the present application also proposes an electronic device (terminal), the electronic device includes a memory for storing computer program instructions, a processor for executing program instructions, and The communication device, wherein, when the computer program instructions are executed by the processor, the electronic device is triggered to perform S301, S302, S303, and/or other actions performed by the terminal in the methods shown in the embodiments of the present application.
  • an embodiment of the present application also proposes an electronic device (base station), the electronic device includes a memory for storing computer program instructions, a processor for executing the program instructions, and A communication device, wherein, when the computer program instructions are executed by the processor, the processor controls the communication device to perform S300 and S301, and/or other actions performed by the base station in the method shown in the embodiment of the present application.
  • base station the electronic device includes a memory for storing computer program instructions, a processor for executing the program instructions, and A communication device, wherein, when the computer program instructions are executed by the processor, the processor controls the communication device to perform S300 and S301, and/or other actions performed by the base station in the method shown in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device (terminal or base station) in this embodiment of the present application may adopt the component structure as shown in FIG. 7 .
  • an electronic device 700 includes a processor 710 , a memory 720 and a communication device 730 .
  • the memory 720 may be used to store computer program instructions for executing the methods shown in the above embodiments.
  • the processor 710 executes the computer program instructions stored in the memory 720, the processor 710 controls the communication device 730 to execute the methods shown in the above embodiments. method.
  • the processor 710 of the electronic device 700 may be a device on chip SOC, and the processor may include a central processing unit (Central Processing Unit, CPU), and may further include other types of processors.
  • CPU Central Processing Unit
  • the processor 710 may include, for example, a CPU, a DSP, a microcontroller or a digital signal processor, and may also include a GPU, an embedded neural network processor (Neural-network Process Units, NPU) and an image signal processor (Image Signal Processor). Processing, ISP), the processor 710 may also include necessary hardware accelerators or logic processing hardware circuits, such as ASIC, or one or more integrated circuits for controlling the execution of the program of the technical solution of the present application. In addition, the processor 710 may have a function of operating one or more software programs, which may be stored in a storage medium.
  • the memory 720 of the electronic device 700 can be a read-only memory (read-only memory, ROM), other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or can store information and Other types of dynamic storage devices for instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or can be used to carry or store desired data in the form of instructions or data structures and any computer-readable medium that can be accessed by a computer.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices, or can be used
  • the processor 710 and the memory 720 may be combined into one processing device, and more generally, they are components independent of each other.
  • the memory 720 may also be integrated in the processor 710 , or be independent of the processor 710 .
  • the communication device 730 of the electronic device 700 is configured to implement a wireless communication function, and the communication device 730 includes one or more of an antenna 731 , a communication module 732 , a modem processor 733 and a baseband processor 734 .
  • the antenna 731 is used to transmit and receive electromagnetic wave signals.
  • Antenna 731 may include one or more individual antennas, each operable to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • the communication module 732 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 700 .
  • the communication module 732 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the communication module 732 can receive electromagnetic waves through the antenna 731, filter and amplify the received electromagnetic waves, and send them to the modem processor 733 for demodulation.
  • the mobile communication module 732 can also amplify the signal modulated by the modulation and demodulation processor 733, and convert it into electromagnetic waves and radiate it through the antenna 731.
  • at least part of the functional modules of the mobile communication module 732 may be set in the processor 710 .
  • Modem processor 733 may include a modulator and a demodulator. Wherein, the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal. The demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor 734 for processing. The low-frequency baseband signal is passed to the processor 710 after being processed by the baseband processor 734 .
  • modem processor 733 may be a stand-alone device. In some other embodiments, the modem processor 733 may be independent from the processor 710, and be set in the same device as the mobile communication module 732 or other functional modules.
  • the antenna 731 of the electronic device 700 is coupled to the communication module 732, so that the electronic device 700 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • LTE long term evolution
  • BT GNSS
  • WLAN NFC
  • FM FM
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • an embodiment of the present application also proposes an electronic chip installed in a base station.
  • the electronic chip includes a memory for storing computer program instructions and a memory for executing computer program instructions.
  • a processor wherein, when the computer program instructions are executed by the processor, the electronic chip is triggered to execute the actions performed by the base station in the method shown in the above embodiments of the present application.
  • an embodiment of the present application also proposes an electronic chip, the electronic chip is installed in the terminal, and the electronic chip includes a memory for storing computer program instructions and a computer program for executing A processor of instructions, wherein when the computer program instructions are executed by the processor, the electronic chip is triggered to execute the actions performed by the terminal in the method shown in the above embodiments of the present application.
  • the devices, devices, and modules described in the embodiments of the present application may be implemented by computer chips or entities, or by products with certain functions.
  • the embodiments of the present application may be provided as methods, devices, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • any function is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • an embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run on a computer, the computer executes the method provided in the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, the computer program product includes a computer program, and when running on a computer, causes the computer to execute the method provided in the embodiment of the present application.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, or B exists alone. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, or Can be multiple.
  • the term “comprising”, “comprising” or any other variant thereof is intended to cover a non-exclusive inclusion, so that a process, method, commodity or device comprising a series of elements not only includes those elements, but also includes Other elements not expressly listed, or elements inherent in the process, method, commodity, or apparatus are also included.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the application may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.
  • each embodiment in the present application is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for relevant parts, please refer to part of the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、装置、芯片和电子设备。该方法包括:接收下行控制信息,在下行控制信息调度的数据跨载波传输的情况下,根据下行控制信息中的第一指示域确定目标载波和数据的重复传输总次数,并根据重复传输总次数在源载波和目标载波上传输数据。其中,源载波为下行控制信息所在的载波,数据的重复传输总次数属于第一集合,第一集合中包括至少一个重复传输总次数的值,至少一个重复传输总次数的值为预先配置或网络配置的。根据本申请实施例的方法,可以实现在当前调度的一次数据传输中进行载波切换,从而实现跨载波传输。

Description

一种数据传输方法、装置、芯片和电子设备 技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法、装置、芯片和电子设备。
背景技术
非陆地网络(non terrestrial networks,NTN),即卫星网络。在NTN场景下,一个小区中包括一个或多个波束(beam),由于卫星的快速移动,终端需要频繁的进行波束/载波切换以保证与网络的连接。因此,如何在不增加DCI的比特开销的情况下实现跨载波传输是当前需要解决的问题。
发明内容
针对现有技术下如何实现跨载波传输的问题,本申请提供了一种数据传输方法、装置、芯片和电子设备,本申请还提供一种计算机可读存储介质。
本申请实施例采用下述技术方案:
第一方面,本申请提供一种数据传输方法,包括:
接收下行控制信息;
在下行控制信息调度的数据跨载波传输的情况下,根据下行控制信息中的第一指示域确定目标载波和数据的重复传输总次数,数据的重复传输总次数属于第一集合,第一集合中包括至少一个重复传输总次数的值,至少一个重复传输总次数的值为预先配置或网络配置的;
根据重复传输总次数在源载波和目标载波上传输数据,源载波为下行控制信息所在的载波。
在第一方面的一种实现方式中,根据下行控制信息中的第一指示域确定目标载波,包括:
根据下行控制信息中的第一指示域中的第一部分比特确定目标载波。
在第一方面的一种实现方式中,根据下行控制信息中的第一指示域中的第一部分比特确定目标载波,包括:
根据第二对应关系,将第一部分比特的值所对应的载波确定为目标载波,第二对应关系为第一部分比特的不同的值与载波之间的对应关系。
在第一方面的一种实现方式中,方法还包括:
接收网络配置的第二对应关系;
或者,
接收网络配置的第二集合,根据第二集合确定第二对应关系,第二集合包含一个或多个载波。
在第一方面的一种实现方式中,根据下行控制信息中的第一指示域确定数据的重复传输总次数,包括:
根据下行控制信息中的第一指示域中的第二部分比特确定数据的重复传输总次数。
在第一方面的一种实现方式中,根据下行控制信息中的第一指示域中的第二部分比特确定数据的重复传输总次数,包括:
根据第一对应关系确定数据的重复传输总次数,第一对应关系为第二部分比特的不同的值与第一集合中的重复传输总次数的值之间的对应关系。
在第一方面的一种实现方式中,方法还包括:
接收网络配置的第一对应关系;
或者,
接收网络配置的第一集合,根据第一集合确定第一对应关系。
在第一方面的一种实现方式中,方法还包括:
接收比特配置信息,比特配置信息用于配置以下信息中的一个或多个:第一部分比特的个数,第一部分比特的位置,第二部分比特的个数,第二部分比特的位置。
在第一方面的一种实现方式中,比特配置信息用于配置第一部分比特的位置和/或第二部分比特的位置;
方法还包括:
根据目标载波的备选载波的个数确定第一部分比特的个数,和/或,根据数据的重复传输总次数的备选次数值的个数确定第二部分比特的个数。
在第一方面的一种实现方式中,第二部分比特为第一指示域中除第一部分比特以外的剩余比特;
在下行控制信息调度上行传输的情况下,第一部分比特的个数以及位置为第一指示域的前两个或后两个比特位,或者,第一部分比特的个数以及位置为第一指示域的第一个或最后一个比特位;或者,
在下行控制信息调度下行传输的情况下,第一部分比特的个数以及位置为第一指示域的前两个或后两个比特位,或者,第一部分比特的个数以及位置为第一指示域的第一个或最后一个比特位;或者,第一部分比特的个数以及位置为第一指示域的前三个或后三个比特位。
在第一方面的一种实现方式中,下行控制信息包含重复传输次数分配指示信息,根据重复传输总次数在源载波和目标载波上传输数据,包括:
根据重复传输总次数和重复传输次数分配指示信息确定源载波以及目标载波上的重复传输次数;
根据源载波以及目标载波上的重复传输次数在源载波和目标载波上传输数据。
在第一方面的一种实现方式中,在目标载波上的重复传输次数不为零的情况下,数据跨载波传输。
在第一方面的一种实现方式中,重复传输次数分配指示信息携带在下行控制信息中的跨载波传输指示域中。
在第一方面的一种实现方式中,重复传输次数分配指示信息用于指示源载波或目标载波上的重复传输次数与数据的重复传输总次数的比例,根据重复传输总次数和重复传输次数分配指示信息确定源载波以及目标载波上的重复传输次数,包括:
根据数据的重复传输总次数和重复传输次数分配指示信息指示的比例确定源载波以 及目标载波上的重复传输次数。
在第一方面的一种实现方式中,方法还包括:
根据第三对应关系,将重复传输次数分配指示信息的值所对应的比例值确定为源载波或目标载波上的重复传输次数与数据的重复传输总次数的比例,第三对应关系为重复传输次数分配指示信息的不同的值与比例值之间的对应关系。
在第一方面的一种实现方式中,方法还包括:
接收网络配置的第三对应关系;
或者,
接收网络配置的第三集合,根据第三集合确定第三对应关系,第三集合包含一个或多个比例值。
在第一方面的一种实现方式中,重复传输次数分配指示信息用于指示源载波或目标载波上的重复传输次数;
根据重复传输总次数和重复传输次数分配指示信息确定源载波以及目标载波上的重复传输次数,包括:
根据数据的重复传输总次数以及重复传输次数分配指示信息指示的重复传输次数,确定源载波以及目标载波上的重复传输次数。
在第一方面的一种实现方式中,方法还包括:
根据第四对应关系,将重复传输次数分配指示信息的值所对应的重复传输次数确定为源载波或目标载波上的重复传输次数,第四对应关系为重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系。
在第一方面的一种实现方式中,方法还包括:
接收网络配置的第四对应关系;
或者,
接收网络配置的第四集合,根据第四集合确定第四对应关系,第四集合包含一个或多个重复传输次数的值。
第二方面,本申请还提供了一种数据调度方法,包括:
发送下行控制信息,其中,在下行控制信息调度的数据跨载波传输的情况下,下行控制信息中的第一指示域用于指示目标载波和数据的重复传输总次数,数据的重复传输总次数属于第一集合,第一集合中包括至少一个重复传输总次数的值,至少一个重复传输总次数的值为预先配置或网络配置的。
在第二方面的一种实现方式中,下行控制信息中的第一指示域中的第一部分比特用于指示目标载波。
在第二方面的一种实现方式中,第一部分比特的值所对应的载波为目标载波,第一部分比特的不同的值与载波之间的对应关系为第二对应关系。
在第二方面的一种实现方式中,方法还包括:
发送第二对应关系;
或者,
发送第二集合,第二集合用于确定第二对应关系,第二集合包含一个或多个载波。
在第二方面的一种实现方式中,下行控制信息中的第一指示域中的第二部分比特用于 指示数据的重复传输总次数。
在第二方面的一种实现方式中,第二部分比特的值对应的重复传输总次数为数据的重复传输总次数,第二部分比特的不同的值与第一集合中的重复传输总次数的值之间的对应关系为第一对应关系。
在第二方面的一种实现方式中,方法还包括:
发送第一对应关系;
或者,
发送第一集合,第一集合用于确定第一对应关系。
在第二方面的一种实现方式中,方法还包括:
发送比特配置信息,比特配置信息用于配置以下信息中的一个或多个:第一部分比特的个数,第一部分比特的位置,第二部分比特的个数,第二部分比特的位置。
在第二方面的一种实现方式中,第二部分比特为第一指示域中除第一部分比特以外的剩余比特;
在下行控制信息调度上行传输的情况下,第一部分比特的个数以及位置为第一指示域的前两个或后两个比特位,或者,第一部分比特的个数以及位置为第一指示域的第一个或最后一个比特位;或者,
在下行控制信息调度下行传输的情况下,第一部分比特的个数以及位置为第一指示域的前两个或后两个比特位,或者,第一部分比特的个数以及位置为第一指示域的第一个或最后一个比特位;或者,第一部分比特的个数以及位置为第一指示域的前三个或后三个比特位。
在第二方面的一种实现方式中,下行控制信息包含重复传输次数分配指示信息,重复传输次数分配指示信息用于确定源载波以及目标载波上的重复传输次数。
在第二方面的一种实现方式中,在目标载波上的重复传输次数不为零的情况下,数据跨载波传输。
在第二方面的一种实现方式中,重复传输次数分配指示信息携带在下行控制信息中的跨载波传输指示域中。
在第二方面的一种实现方式中,重复传输次数分配指示信息用于指示源载波或目标载波上的重复传输次数。
在第二方面的一种实现方式中,重复传输次数分配指示信息的值所对应的重复传输次数为源载波或目标载波上的重复传输次数,重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系为第四对应关系。
在第二方面的一种实现方式中,方法还包括:
发送第四对应关系;
或者,
发送第四集合,第四集合用于确定第四对应关系,第四集合包含一个或多个重复传输次数的值。
在第二方面的一种实现方式中,重复传输次数分配指示信息用于指示源载波或目标载波上的重复传输次数与数据的重复传输总次数的比例。
在第二方面的一种实现方式中,重复传输次数分配指示信息的值所对应的比例值为源 载波或目标载波上的重复传输次数与数据的重复传输总次数的比例,重复传输次数分配指示信息的不同的值与比例值之间的对应关系为第三对应关系。
在第二方面的一种实现方式中,方法还包括:
发送第三对应关系;
或者,
发送第三集合,第三集合用于确定第三对应关系,第三集合包含一个或多个比例值。
第三方面,本申请还提供了一种数据传输方法,包括:
接收下行控制信息;
在所述下行控制信息调度的数据跨载波传输的情况下,根据所述下行控制信息中的第一指示域确定目标载波;
接收网络配置的所述数据的重复传输总次数;
根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,所述源载波为所述下行控制信息所在的载波。
在第三方面的一种实现方式中,所述根据所述下行控制信息中的第一指示域确定目标载波,包括:
根据第二对应关系,将所述第一指示域的值所对应的载波确定为所述目标载波,所述第二对应关系为所述第一指示域的不同的值与载波之间的对应关系。
在第三方面的一种实现方式中,所述方法还包括:
接收网络配置的所述第二对应关系;
或者,
接收网络配置的第二集合,根据所述第二集合确定所述第二对应关系,所述第二集合包含一个或多个载波。
在第三方面的一种实现方式中,所述下行控制信息包含重复传输次数分配指示信息,所述根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,包括:
根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数;
根据所述源载波以及所述目标载波上的重复传输次数在所述源载波和所述目标载波上传输所述数据。
在第三方面的一种实现方式中,在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
在第三方面的一种实现方式中,所述重复传输次数分配指示信息携带在所述下行控制信息中的跨载波传输指示域中。
在第三方面的一种实现方式中,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数,包括:
根据所述数据的重复传输总次数和所述重复传输次数分配指示信息指示的比例确定源载波以及目标载波上的重复传输次数。
在第三方面的一种实现方式中,所述方法还包括:
根据第三对应关系,将所述重复传输次数分配指示信息的值所对应的比例值确定为所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述第三对应关系为所述重复传输次数分配指示信息的不同的值与比例值之间的对应关系。
在第三方面的一种实现方式中,所述方法还包括:
接收网络配置的所述第三对应关系;
或者,
接收网络配置的第三集合,根据所述第三集合确定所述第三对应关系,所述第三集合包含一个或多个比例值。
在第三方面的一种实现方式中,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数;
所述根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数,包括:
根据所述数据的重复传输总次数以及所述重复传输次数分配指示信息指示的重复传输次数,确定所述源载波以及所述目标载波上的重复传输次数。
在第三方面的一种实现方式中,所述方法还包括:
根据第四对应关系,将所述重复传输次数分配指示信息的值所对应的重复传输次数确定为所述源载波或所述目标载波上的重复传输次数,所述第四对应关系为所述重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系。
在第三方面的一种实现方式中,所述方法还包括:
接收网络配置的所述第四对应关系;
或者,
接收网络配置的第四集合,根据所述第四集合确定所述第四对应关系,所述第四集合包含一个或多个所述重复传输次数的值。
第四方面,本申请还提供了一种数据调度方法,包括:
发送下行控制信息,其中,在所述下行控制信息调度的数据跨载波传输的情况下,所述下行控制信息中的第一指示域用于指示目标载波;
发送所述数据的重复传输总次数。
在第四方面的一种实现方式中,所述第一指示域的值所对应的载波为所述目标载波,所述第一指示域的不同的值与载波之间的对应关系为第二对应关系。
在第四方面的一种实现方式中,所述方法还包括:
发送所述第二对应关系;
或者,
发送第二集合,所述第二集合用于确定所述第二对应关系,所述第二集合包含一个或多个载波。
在第四方面的一种实现方式中,所述方法还包括:
发送所述第一对应关系;
或者,
发送第一集合,所述第一集合用于确定所述第一对应关系,所述第一集合包含一个 或多个所述数据的重复传输总次数的值。
在第四方面的一种实现方式中,所述下行控制信息包含重复传输次数分配指示信息,所述重复传输次数分配指示信息用于确定所述源载波以及所述目标载波上的重复传输次数。
在第四方面的一种实现方式中,在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
在第四方面的一种实现方式中,所述重复传输次数分配指示信息携带在所述下行控制信息中的跨载波传输指示域中。
在第四方面的一种实现方式中,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数。
在第四方面的一种实现方式中,所述重复传输次数分配指示信息的值所对应的重复传输次数为所述源载波或所述目标载波上的重复传输次数,所述重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系为第四对应关系。
在第四方面的一种实现方式中,所述方法还包括:
发送所述第四对应关系;
或者,
发送第四集合,所述第四集合用于确定所述第四对应关系,所述第四集合包含一个或多个所述重复传输次数的值。
在第四方面的一种实现方式中,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例。
在第四方面的一种实现方式中,所述重复传输次数分配指示信息的值所对应的比例值为所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述重复传输次数分配指示信息的不同的值与比例值之间的对应关系为第三对应关系。
在第四方面的一种实现方式中,所述方法还包括:
发送所述第三对应关系;
或者,
发送第三集合,所述第三集合用于确定所述第三对应关系,所述第三集合包含一个或多个比例值。
第五方面,本申请提供一种数据传输装置,所述装置包括:用于执行上述第一方面提供的方法的模块。例如,包括:
收发模块,其用于接收下行控制信息;
确认模块,其用于在所述下行控制信息调度的数据跨载波传输的情况下,根据所述下行控制信息的第一指示域确定目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的;
所述收发模块,还用于:
根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,所述源载波为所述下行控制信息所在的载波。
第六方面,本申请提供一种数据调度装置,所述装置包括:用于执行上述第二方面提 供的方法的模块。例如,包括:
发送模块,其用于发送下行控制信息,其中,在所述下行控制信息调度的数据跨载波传输的情况下,所述下行控制信息中的第一指示域用于指示目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的。
其中,该数据调度装置还可以包括处理模块,发送模块可以在处理模块的控制下执行相应的动作。
第七方面,本申请还提供了一种数据传输装置,包括:用于执行上述第三方面提供的方法的模块。例如,包括:
收发模块,用于接收下行控制信息;
确认模块,用于在所述下行控制信息调度的数据跨载波传输的情况下,根据所述下行控制信息中的第一指示域确定目标载波;
收发模块,还用于接收网络配置的所述数据的重复传输总次数;
收发模块,还用于根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,所述源载波为所述下行控制信息所在的载波。
第八方面,本申请还提供了一种数据调度装置,包括:用于执行上述第四方面提供的方法的模块。例如,包括:
发送模块,用于发送下行控制信息,其中,在所述下行控制信息调度的数据跨载波传输的情况下,所述下行控制信息中的第一指示域用于指示目标载波;
发送模块,还用于发送所述数据的重复传输总次数。
其中,该数据调度装置还可以包括处理模块,发送模块可以在处理模块的控制下执行相应的动作。
第九方面,本申请提供一种电子芯片,包括:
处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行第一方面或第三方面所述的方法步骤。
第十方面,本申请提供一种电子芯片,包括:
处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行第二方面或第四方面所述的方法步骤。
第十一方面,本申请提供一种电子设备,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如第一方面或第三方面所述的方法步骤。
第十二方面,本申请提供一种电子设备,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如第二方面或第四方面所述的方法步骤。
第十三方面,本申请提供一种通信系统,该通信系统包括:基站和终端,基站用于执行上述第二方面或第四方面提供的任意一种方法,终端用于执行上述第一方面或第三方面提供的任意一种方法。
第十四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如第一方面至第四方面中任 意一个方面所述的方法。
第十五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第一方面至第四方面中任意一个方面所述的方法。
根据本申请实施例所提出的上述技术方案,至少可以实现下述技术效果:
根据本申请实施例的方法,通过下行控制信息,终端可以获取进行跨载波传输时的目标载波和重复传输总次数,从而可以获知在源载波上进行数据传输后,应该切换到哪个载波上继续进行数据传输,并根据重复传输总次数在源载波和目标载波上进行数据传输,实现跨载波的数据传输。并且,通过第一集合的配置,例如,将第一集合中的重复复传输总次数的值的个数配置的较少,可以减少重复传输总次数所占用的比特数,节省出的比特可以用于指示目标载波,从而在不增加比特开销的情况下,实现跨载波传输。
附图说明
图1所示为本申请一实施例的NTN通信系统示意图;
图2所示为本申请一实施例的NTN通信系统示意图;
图3所示为本申请一实施例的数据传输方法的流程示意图;
图4所示为本申请一实施例的重复传输次数跨载波分配示意图;
图5所示为本申请一实施例的数据传输装置结构框图;
图6所示为本申请一实施例的数据调度装置结构框图;
图7所示为本申请一实施例的电子设备结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1所示为本申请一实施例的NTN通信系统示意图。如图1所示,终端111与卫星112建立通信链路。终端111直接与卫星112通信(即基站在卫星112上),此时,卫星112可以看作是基站。在终端111与卫星112通信的过程中,终端111通过载波切换确保通信稳定实现。
图2所示为本申请另一实施例的NTN通信系统示意图。如图2所示,终端121与卫星122建立通信链路,卫星122与网关/基站123建立通信链路,网关/基站123接入到数据网络124中。终端121与网关/基站123之间的通信过程中,卫星122只是充当中继转发的角色。在终端121与网关/基站123之间的通信过程中,终端121通过载波切换确保与卫星122稳定通信。
在本申请实施例中,终端(例如,终端111、终端121)也可以称为用户设备(User Equipment,UE)、终端设备、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等,例如,终端可以为手机、平板电 脑、笔记本电脑;也可以是其他具备通信功能的设备,例如,自动柜员机、工控设备、智能机器人等。
在当前的陆地网物联网协议中,窄带物联网(Narrow Band Internet of Things,NB-IoT)/基于长期演进技术演进的物联网技术(Long Term Evolution enhanced MTC,eMTC),单频点小区只有180kHz的带宽,该带宽上除了窄带初级同步信号(Narrowband Primary Synchronization Signal,NPSS),窄带次级同步信号(Narrowband Secondary Synchronization Signal,NSSS)和系统信息块(System Information Block,SIB)的开销外,剩余业务信道容量很小。为了支持海量终端,需要采用多个频点来提高网络容量。
多载波小区中有且只有一个下行载波支持同时承载NPSS,NSSS,窄带物理广播信道(Narrowband Physical Broadcast Channel,NPBCH),窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)和窄带物理下行共享信道(Narrowband Physical Downlink Share Channel,NPDSCH)信道。该载波称为锚点载波(anchor carrier)。终端在anchor carrier需要监控NPSS,NSSS,NPBCH,NPDCCH和NPDSCH信息。
多载波小区中可以有若干个只承载NPDCCH,NPDSCH,但不承载NPSS,NSSS和NPBCH信道的下行载波,称为非锚点载波(non-anchor carrier)。终端可以在non-anchor carrier上进行数据传输。此外,在终端进入连接态前,网络会通过随机接入过程的随机接入消息4(message4,Msg4)指定一个载波用于后续的下行数据传输。终端在空闲(idle)态,可以在non-anchor carrier上进行呼叫(paging)的监听。
即,在NB-IoT/eMTC中,一个小区包括一个anchor carrier和若干个non-anchor carrier,每个载波的频谱带宽为180kHz,小区内所有载波的最大频谱跨度不超过20MHz。
基于此,针对现有技术下如何在通信过程中实现beam管理(例如,beam切换)的问题,一种可行的应用方案是通过载波切换的方式进行beam管理,即一个小区包括多个beam,不同的beam对应不同的载波,通过载波切换实现beam的切换。
由于NB-IoT本身支持多个载波进行传输,因此,在一种可行的技术方案中,可以基于NB-IoT进行跨载波传输。具体的,在一次数据传输(上行传输或下行传输)中,基于第一载波进行数据传输,在下一次数据传输(上行传输或下行传输)中,基于第二载波进行数据传输,在两次数据传输之间,进行载波切换,从而实现跨载波的数据传输。
上述技术方案的执行前提是网络在调度数据传输(即通过下行控制信息(Downlink Control Information,DCI)进行调度)的时候必须保证所调度的数据传输可以在当前载波(接收DCI的载波)上传完,这种方式会对网络调度产生严重的限制。
进一步的,在物联网协议里,为了保证覆盖范围,NB-IOT/eMTC采用了重复传输的技术。对于下行传输最大的重复次数是2048次,对于上行传输,最大的重复次数为128次。
下行物理共享信道(Physical Downlink Share Channel,PDSCH)/上行物理共享信道(Physical Uplink Shared Channel,PUSCH)的实际重复次数由其对应的调度DCI动态指示,即终端根据DCI存在特定的比特域(例如,重复次数指示域)用于指示 PDSCH/PUSCH的重复次数,PDCCH的最大重复次数(即Rmax)由RRC/SIB半静态配置。
PUSCH所支持的重复次数如表1所示。
表1
取值(I REP) 重复次数(N REP)
0(000) 1
1(001) 2
2(010) 4
3(011) 8
4(100) 16
5(101) 32
6(110) 64
7(111) 128
在NB-IOT协议中的上行调度DCI(即DCI Format N0)比特域设计中包含“Repetition number–3bits as defined in clause 16.5.1.1of[3]”。即NB-IOT协议中的上行调度DCI包含3bits重复次数指示域。上行调度DCI的重复次数指示域的取值与PUSCH的重复次数的对应关系如上表1所示。
PDSCH所支持的重复次数如表2所示。
表2
取值(I REP) 重复次数(N REP)
0(0000) 1
1(0001) 2
2(0010) 4
3(0011) 8
4(0100) 16
5(0101) 32
6(0110) 64
7(0111) 128
8(1000) 192
9(1001) 256
10(1010) 384
11(1011) 512
12(1100) 768
13(1101) 1024
14(1110) 1536
15(1111) 2048
在NB-IOT协议中的下行调度DCI(即DCI Format N1)比特域设计中包含“Repetition number–4bits as defined in clause 16.4.1.3of[3]”。即NB-IOT协议中的下行调度DCI包含4bits重复次数指示域。下行调度DCI的重复次数指示域的取值与PDSCH的重复次数的对应关系如上表2所示。
由于重复传输,一次数据调度(数据传输)需要持续很长的时间,就会导致在跨载波传输的应用场景中,终端在一次数据传输(PDSCH/PUSCH传输)过程中可能会发生beam切换(即载波切换)。
针对上述在一次数据传输执行期间需要进行载波切换的需求,本申请一实施例提出了一种数据调度方法。具体的,在NB-IoT中,数据调度通常由DCI实现。因此,在本申请一实施例中,在DCI中增加载波切换的相关控制信息。终端基于DCI中的载波切换的相关控制信息在一次数据传输中进行载波切换,从而在一次数据传输中实现跨载波数据传输。进一步的,在跨载波切换数据传输的过程中,终端需要从源载波(基站发送DCI时所使用的载波)切换到目标载波(终端需要切换到的载波),这就需要DCI指示终端哪一个载波为当前跨载波切换数据传输的目标载波,以及,在当前跨载波切换数据传输中,分别需要在源载波以及目标载波上需要传输的数据。
针对如何在DCI中指示目标载波,一种可行的方案是在用于调度(上行调度或下行调度)的DCI中增加一个新域(目标载波指示域),当需要进行跨载波传输时,目标载波指示域携带目标载波指示信息,目标载波指示信息用于指示哪一个载波为目标载波。但是,在DCI中增加一个新域会增加DCI的比特开销。
因此,为降低DCI的比特开销,在本申请一实施例中,使用DCI中的第一指示域携带指示目标载波的信息。在其他实施例中,也可以使用第一指示域以外的其他域携带指示目标载波的信息。
具体的,图3所示为本申请一实施例的数据调度和传输方法的流程示意图。基站与终端之间基于如图3所示的流程实现跨载波数据传输(上行传输或下行传输)。
S300,基站生成DCI。
其中,S300为可选步骤。
S301,基站向终端发送DCI,相应的,终端接收基站发送的DCI。
其中,基站发送的DCI可以为用于调度上行传输的DCI,也可以是用于调度下行传输的DCI。
S302,在DCI调度的数据跨载波传输的情况下,终端根据DCI中的第一指示域确定目标载波和数据的重复传输总次数,数据的重复传输总次数属于第一集合,第一集合中包括至少一个重复传输总次数的值,至少一个重复传输总次数的值为预先配置或网络配置的;或者,终端根据DCI中的第一指示域确定目标载波,并接收网络配置的数据的重复传输总次数。
示例性的,第一指示域可以为现有技术中的重复次数指示域,也可以为现有技术中其他的域,也可以为新增的一个域。在未来的协议中,具备第一指示域的功能的域都可以认为是本申请中的第一指示域。
其中,第一集合可以为预先配置在终端中,或协议规定的,或网络配置给终端的。
在图3中,将“终端根据DCI中的第一指示域确定目标载波和数据的重复传输总次数” 的实现方式记为S302的第一种实现方式,将“终端根据DCI中的第一指示域确定目标载波,并接收网络配置的数据的重复传输总次数”的实现方式记为S302的第二种实现方式。
S303,终端根据数据的重复传输总次数在源载波和/或目标载波上传输DCI调度的数据。
根据本申请实施例的方法,在S302的第一种实现方式中,通过DCI,终端可以获取进行跨载波传输时的目标载波和重复传输总次数,从而可以获知在源载波上进行数据传输后,应该切换到哪个载波上继续进行数据传输,并根据重复传输总次数在源载波和目标载波上进行数据传输,实现跨载波的数据传输。并且,通过第一集合的配置,例如,将第一集合中的重复复传输总次数的值的个数配置的较少,可以减少重复传输总次数所占用的比特数,节省出的比特可以用于指示目标载波,从而在不增加DCI的比特开销的情况下,实现跨载波传输。在S302的第二种实现方式中,通过网络配置数据的重复传输总次数,使得DCI只需要指示目标载波即可,目标载波在指示时所需的比特数较少,因此,可以在不增加或降低DCI的比特开销的情况下,实现跨载波传输。
示例性的,采用第一指示域指示目标载波时,可以通过以下方式(1)或方式(2)实现。
方式(1)
第一指示域中的第一部分比特指示目标载波,第一部分比特为第一指示域中的部分比特。此时,S302在具体实现时可以包括:终端根据DCI中的第一指示域中的第一部分比特确定目标载波。
在方式(1)中,可选的,S302在具体实现时进一步可以包括:根据第二对应关系,将第一部分比特的值所对应的载波确定为目标载波,第二对应关系为第一部分比特的不同的值与载波之间的对应关系。
在第一种情况下,第二对应关系可以为预设的,例如,协议配置的。
在第二种情况下,第二对应关系可以是网络配置给终端的,此时,该方法还包括:网络(例如,基站)发送第二对应关系,终端接收网络配置的第二对应关系。
第二对应关系可以承载在高层信令(例如,系统广播消息或者无线资源控制(Radio Resource Control,RRC)专用信令)中。示例性的,在一实施例中,在进行数据调度之前(发送DCI之前),网络通过系统广播消息或者RRC专用信令给终端配置第二对应关系,即,在S300之前,终端接收网络配置的第二对应关系。
具体的,第二对应关系可以是一个对应关系。进一步的,考虑到上行传输与下行传输的区别,第二对应关系也可以包含分别针对上行传输和下行传输的两个不同的对应关系(例如,第二对应关系可以包括第一上行传输对应关系以及第一下行传输对应关系)。
以一具体应用场景为例,C1,C2,C3,C4分别对应4个上行载波,第一部分比特为2比特(bit)。针对上行传输,网络通过系统广播消息或者RRC专用信令给终端配置如下述表3所示的第二对应关系。
表3
第一部分比特的值 载波
00 C1
01 C2
10 C3
11 C4
在第三种情况下,第二对应关系可以为终端根据网络配置的载波集合确定的,此时,该方法还包括:网络发送第二集合,终端接收网络配置的第二集合,根据第二集合确定第二对应关系,第二集合包含一个或多个载波。第二集合中的载波可以认为是候选的目标载波。第二集合中载波的个数小于等于第一部分比特的取值个数。终端在获取到第二集合后,根据第二集合生成上述的第二对应关系。第二集合可以承载在高层信令(例如,系统广播消息或者RRC专用信令)中。示例性的,在一实施例中,在进行数据调度之前(发送DCI之前),网络通过系统广播消息或者RRC专用信令给终端配置第二集合,即,在S300之前,终端接收网络配置的第二集合,根据第二集合确定第二对应关系。
具体的,第二集合可以是一个集合。进一步的,考虑到上行传输与下行传输的区别,第二集合也可以包含分别针对上行传输以及下行传输的两个不同的集合(例如,第二集合可以包括第一上行传输集合以及第一下行传输集合)。
在第三种情况下,可以预先设置第一部分比特的个数和/或位置给终端,以便终端生成第二对应关系。以一具体应用场景为例,C1,C2,C3,C4分别对应4个上行载波,第一部分比特为2比特(bit)。针对上行传输,网络通过系统广播消息或者RRC专用信令给终端配置第二集合为{C1,C2,C3,C4}。终端根据第二集合{C1,C2,C3,C4},生成如表3所示的第二对应关系。
方式(2)
第一指示域中的全部比特指示目标载波。
方式(2)的实现可参考方式(1),区别仅在于此处用于指示目标载波的为第一指示域中的全部比特,并且在方式(1)中的第三种情况中,终端可以默认用于指示目标载波的比特为第一指示域中的全部比特,因此,可以不预先为终端设置用于建立第二对应关系的比特的个数和/或位置。其他描述中,将方式(1)中的第一部分比特替换为第一指示域中的全部比特进行理解,即可得到方式(2)的实现方式,此处不再赘述。
通过本发明实施例,不需要额外增加新的比特域用于指示跨载波传输的目标载波,当发生跨载波传输时,可以通过现有的第一指示域指示目标载波,有效降低了DCI的比特开销。
可选的,在S302之前,该方法还可以包括S310:
S310,终端根据重复传输总次数和DCI确定源载波和目标载波上的重复传输次数。
此时,S302在具体实现时可以包括:在终端根据DCI确定目标载波上的重复传输次数不为零时,终端根据DCI确定目标载波。当终端根据DCI确定目标载波上的重复传输次数为零时,终端不需要确定目标载波(不需要执行S302)。即在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
S303在具体实现时可以包括:终端基于DCI指示的目标载波以及在源载波以及目标载波上的重复传输次数,进行数据传输。
可以理解的是,在S300中,当DCI所调度的数据传输为跨载波数据传输时,DCI包含指示目标载波的信息以及指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息。当DCI所调度的数据传输不为跨载波数据传输时,DCI不包含指示目标载波的信息,包含指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息,并且,指示目标载波上的重复传输次数为零。
其中,在DCI用于调度上行传输的情况下,本申请中的数据传输是指上行数据传输,在DCI用于调度下行传输的情况下,本申请中的数据传输是指下行数据传输。
进一步的,在数据传输过程中,当根据DCI确定需要进行跨载波数据传输时,先根据源载波的重复传输次数分配在源载波上进行数据传输,之后由源载波切换至目标载波,根据目标载波的重复传输次数分配在目标载波上进行数据传输。
终端根据DCI确认当前调度的数据传输在源载波以及目标载波上的重复传输次数,并且,在目标载波上的重复传输次数不为零时根据DCI确定目标载波,从而可以实现在当前调度的一次数据传输中进行载波切换。
S310在具体实现时,可以通过以下方式A或方式B确定源载波以及目标载波上的重复传输次数。
方式A
重复传输次数分配指示信息用于指示源载波或目标载波上的重复传输次数与当前DCI调度的数据传输的重复传输总次数之间的比例,终端根据重复传输总次数和重复传输次数分配指示信息指示的比例确定源载波或目标载波上的重复传输次数,并进一步确定目标载波或源载波上的重复传输次数(源载波以及目标载波上重复传输次数之和为重复传输总次数)。
在方式A中,重复传输次数分配指示信息的不同的值对应不同的比例值,在一种实现方式中,终端可以接收网络配置的第三对应关系,该第三对应关系为重复传输次数分配指示信息的不同的值与比例值之间的对应关系,从而使得终端可以根据重复传输次数分配指示信息的值和第三对应关系确定源载波或目标载波上的重复传输次数与重复传输总次数之间的比例。
其中,第三对应关系可以承载在高层信令(例如,系统广播消息或者RRC专用信令)中。示例性的,在一实施例中,在进行数据调度之前(发送DCI之前),网络通过系统广播消息或者RRC专用信令给终端配置第三对应关系,即,在S300之前,终端接收网络配置的第三对应关系。
具体的,第三对应关系可以是一个对应关系。进一步的,考虑到上行传输与下行传输所支持的重复传输次数不同,第三对应关系也可以包含分别针对上行传输的两个不同的对应关系(例如,第三对应关系包括第三上行传输对应关系以及第三下行传输对应关系)。
以一具体应用场景为例,网络通过系统广播消息或者RRC专用信令给终端配置如下述表4所示的第三对应关系。
表4
跨载波传输指示域取值 比例系数
00 0(不分配重复传输次数在目标载波上,即源载波传输)
01 1/2(1/2的重复传输次数在目标载波上)
10 3/4(3/4的重复传输次数在目标载波上)
11 1(所有重复传输次数在目标载波上)
重复传输次数分配指示信息可以携带在DCI中的跨载波传输指示域中。
当DCI中的跨载波传输指示域的值(或者说重复传输次数分配指示信息的值)为00时,表示当前调度为源载波调度,即终端在本次数据传输中不进行载波切换,在源载波就可以完成本次数据的传输。
当DCI中的跨载波传输指示域的值为01,10,或者11时,终端在本次数据传输中需要进行载波切换,需要在目标载波上进行一部分数据的传输。特别地,当DCI中的跨载波传输指示域的值为11时,本次数据传输完全是在目标载波进行的。
图4所示为根据本申请一实施例的重复传输次数跨载波分配示意图。在一次数据传输过程中,跨载波数据传输的重复传输次数分配如图4所示。
DCI在载波1(源载波)上传输。假设DCI中的跨载波传输指示域的值为01,终端接收到DCI之后,在载波1(源载波)上进行数据传输,在载波1(源载波)上进行的重复传播次数为重复传播总次数的1/2。
在终端在载波1上完成重复传播总次数的1/2的重复传播之后,从载波1(源载波)切换到载波2(目标载波),在载波2(目标载波)上进行数据传输,在载波2(目标载波)上进行的重复传播次数为重复传播总次数的1/2。
表4所示为,预先定义将跨载波传输指示域所指向的比例分配给目标载波,可选的,也可以预先定义为,将跨载波传输指示域所指向的比例分配给源载波。
在方式A的另一种实现方式中,网络并不直接为终端配置第三对应关系,而是为终端配置第三集合,该第三集合为包括一个或多个比例值。第三集合中比例值的个数小于等于跨载波传输指示域的取值个数。终端在获取到第三集合后,根据第三集合生成上述的第三对应关系。例如,在S300之前,终端接收网络配置的第三集合,根据第三集合确定第三对应关系。
具体的,第三集合可以是一个集合。进一步的,考虑到上行传输与下行传输的区别,第三集合也可以包含分别针对上行传输以及下行传输的两个不同的集合(例如,第三集合包括第三上行传输集合以及第三下行传输集合)。
以一具体应用场景为例,网络通过系统广播消息或者RRC专用信令给终端配置第三集合{0,1/2,3/4,1},跨载波传输指示域为2比特(bit)。终端根据第三集合{0,1/2,3/4,1}生成表4所示的第三对应关系。
方式B
重复传输次数分配指示信息用于指示源载波或目标载波上的重复传输次数,终端根据重复传输次数分配指示信息指示的重复传输次数确定源载波或目标载波上的重复传输次数,并进一步根据重复传输总次数确定目标载波或源载波上的重复传输次数(源载波以及目标载波上重复传输次数之和为重复传输总次数)。
在方式B的一种实现方式中,重复传输次数分配指示信息的不同的值对应不同的重复传输次数。例如,网络为终端配置第四对应关系,该第四对应关系为重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系,从而使得终端可以根据重复传输次数分配指示信息的值和第四对应关系确定源载波或目标载波上的重复传输次数。
第四对应关系可以承载在高层信令(例如,系统广播消息或者RRC专用信令)中。示例性的,在一实施例中,在进行数据调度之前(发送DCI之前),网络通过系统广播消息或者RRC专用信令给终端配置第四对应关系,即,在S300之前,终端接收网络配置的第四对应关系。
具体的,第四对应关系可以是一个对应关系。进一步的,考虑到上行传输与下行传输所支持的重复传输次数不同,第四对应关系也可以包含分别针对上行传输的两个不同的对应关系(例如,第四对应关系包括第四上行传输对应关系以及第四下行传输对应关系)。
以一具体应用场景为例,针对上行传输,网络通过系统广播消息或者RRC专用信令给终端配置如下述表5所示的第四对应关系。
表5
跨载波传输指示域取值 重复传输次数
00 0(在目标载波上重复传输0次,即源载波传输)
01 16(在目标载波上重复传输16次)
10 32(在目标载波上重复传输32次)
11 64(在目标载波上重复传输64次)
重复传输次数分配指示信息可以携带在DCI中的跨载波传输指示域中。
基于表5所示的第四对应关系,假设基站发送的DCI为调度上行传输的DCI,重复传输总次数为128,当跨载波传输指示域的值(或者说重复传输次数分配指示信息的值)为10时,如表5所示,在目标载波上重复传输32次。即,在当前调度的上行传输中,在源载波上重复传输次数为96次(128-32),在目标载波上重复传输次数为32次。
表5所示为,预先定义将跨载波传输指示域所指向的重复传输次数分配给目标载波,可选的,也可以预先定义为,将跨载波传输指示域所指向的重复传输次数分配给源载波。
在方式B的另一种实现方式中,网络并不直接为终端配置第四对应关系,而是为终端配置第四集合,该第四集合为包括多个重复传输次数取值。第四集合中重复传输次数取值的个数小于等于重复传输次数分配指示信息的取值个数。终端在获取到第四集合后,根据第四集合生成上述的第四对应关系。即,在S300之前,终端接收网络配置的第四集合,根据第四集合确定第四对应关系。
具体的,第四集合可以是一个集合。进一步的,考虑到上行传输与下行传输的区别,第四集合也可以包含分别针对上行传输以及下行传输的两个不同的集合(例如, 第四集合包括第四上行传输集合以及第四下行传输集合)。
以一具体应用场景为例,网络通过系统广播消息或者RRC专用信令给终端配置第四集合{0,16,32,64}。DCI中的跨载波传输指示域为2比特(bit)。终端根据第四集合{0,16,32,64},生成如表5所示的第四对应关系。
在方式B的上述实现方式中,以单次重复传输为重复传输次数分配的最小单位,可选的,也可以定义n次重复传输构成一个数据段(n为自然数),以数据段作为重复传输次数分配的最小单位,本申请不作限制。
在方式B的另一种实现方式中,重复传输次数分配指示信息的不同的值对应不同的数据段个数。例如,重复传输次数分配指示信息的不同的值与数据段个数之间具有对应关系(记为第五对应关系)。终端根据重复传输次数分配指示信息的值和第五对应关系确定源载波或目标载波上的数据段的个数,进而确定源载波或目标载波上的重复传输次数。
以一具体应用场景为例,定义n为2,网络通过系统广播消息或者RRC专用信令给终端配置如下述表6所示的第五对应关系,或者,网络为终端配置第五集合{0,8,16,32},终端根据第五集合{0,8,16,32}生成表6所示的第五对应关系。
表6
跨载波传输指示域取值 数据段个数
00 0(即源载波传输)
01 8(在目标载波上传输8个数据段)
10 16(在目标载波上传输16个数据段)
11 32(在目标载波上传输32个数据段)
基于表6所示的示例,假设基站发送的DCI为调度上行传输的DCI,重复传输总次数为128(64个数据段)。当跨载波传输指示域的值为10时,如表6所示,在目标载波上传输16个数据段。即,在当前调度的上行传输中,在源载波上传输48(64-16)个数据段(重复传输次数为96次),在目标载波上传输16个数据段(重复传输次数为32次)。
表6所示为,预先定义将跨载波传输指示域所指向的数据段数取值分配给目标载波,在另一实施例中,也可以预先定义为,将跨载波传输指示域所指向的数据段数取值分配给源载波。
当DCI中指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息,指示目标载波上的重复传输次数为零(数据传输不为跨载波数据传输)时,终端以第一指示域指示的重复传输次数为DCI所调度的数据传输的重复传输总次数(参照表1以及表2)。
当DCI中指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息,指示目标载波上的重复传输次数不为零(数据传输为跨载波数据传输)时,DCI的第一指示域中的第一部分比特用于指示目标载波,第一部分比特的不同的值对应不同的载波,终端根据第一部分比特的值确定其对应的载波为目标载波。
DCI中的第一指示域的原有功能是用来指示重复传输总次数(参照上述表1以及表2的相关内容),但是,当第一指示域中的第一部分比特被用来指示目标载波时,第一指示域就无法基于表1以及表2的规则指示重复传输总次数,而在上述S302和S303的执行过程中,终端需要获知当前DCI所调度的数据传输的重复传输总次数,因此,需要设计一种新的指示重复传输总次数的方案。
在上述S302中,在确定数据的重复传输总次数的实现方式中,将终端根据DCI中的第一指示域确定数据的重复传输总次数的方式称为方式一,将终端接收网络配置的数据的重复传输总次数的方式称为方式二,以下对方式一或方式二具体进行说明。
方式一
网络为终端配置重复传输总次数(可以记为第一次数)。相应的,终端接收网络配置的第一次数。示例性的,配置过程可以在S300之前执行。此时,目标载波可以由第一指示域中的第一部分比特指示,也可以由第一指示域中的全部比特指示。
当DCI中指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息,指示目标载波上的重复传输次数不为零(数据传输为跨载波数据传输)时,终端以第一次数为DCI所调度的数据传输的重复传输总次数。
在方式一中,由于针对跨载波数据传输的重复传输总次数由网络配置,因此,在跨载波数据传输时,第一指示域不需要指示重复传输总次数,因此,用于指示目标载波的第一部分比特为第一指示域的全部比特。
方式二
当DCI中指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息,指示目标载波上的重复传输次数不为零(数据传输为跨载波数据传输)时,DCI的第一指示域中的第二部分比特用于指示重复传输总次数,第二部分比特为第一指示域中除第一部分比特(用于指示目标载波)以外的剩余的比特中的部分或全部,第二部分比特的不同的值对应不同的次数,终端根据第二部分比特的值确定其对应的次数为重复传输总次数。
在方式二的一种实现方式中,网络为终端配置第一对应关系,该第一对应关系为第二部分比特的不同的值与候选的重复传输总次数之间的对应关系。第一对应关系可以承载在高层信令(例如,系统广播消息或者RRC专用信令)中。示例性的,在一实施例中,在进行数据调度之前(发送DCI之前),网络通过系统广播消息或者RRC专用信令给终端配置第一对应关系,即,在S300之前,终端接收网络配置的第一对应关系。
具体的,第一对应关系可以是一个对应关系。进一步的,考虑到上行传输与下行传输的区别,第一对应关系也可以包含分别针对上行传输和下行传输的两个不同的对应关系(例如,第一对应关系包括第二上行传输对应关系以及第二下行传输对应关系)。
在另一种实现方式中,网络并不直接为终端配置第一对应关系,而是为终端配置第一集合,该第一集合为包括可以作为候选重复传输总次数的一个或多个重复传输总次数。第一集合中重复传输总次数的个数小于等于第二部分比特的取值个数。终端在获取到第一集合后,根据第一集合生成上述的第一对应关系。例如,在S300之前,终端接收网络配置的第一集合,根据第一集合确定第一对应关系。
具体的,第一集合可以是一个集合。进一步的,考虑到上行传输与下行传输的区别,第一集合也可以包含分别针对上行传输以及下行传输的两个不同的集合(例如,第一集合包括第二上行传输集合以及第二下行传输集合)。
进一步的,在第一对应关系中,候选的重复传输总次数(第一集合)由非跨载波传输场景下候选的重复传输总次数(参照表1以及表2)中取值较大的候选值组成。例如,对于上行数据传输,第一对应关系中候选的重复传输总次数(第一集合)可以是{64,128}或者{32,64,128};对于下行传输,第一对应关系中候选的重复传输总次数(第一集合)可以是{768,1024,1536,2048},{1024,1536,2048}或者{1536,2048}。
进一步的,在上述方式二中,第一指示域中的第一部分比特和/或第二部分比特的个数和/或位置可以由网络为终端配置。例如,在S300之前,网络向终端发送比特配置信息,终端接收比特配置信息,该比特配置信息用于配置以下信息中的一个或多个:第一指示域中第一部分比特的个数,第一指示域中第一部分比特的位置,第一指示域中第二部分比特的个数,第一指示域中第二部分比特的位置。
具体的,在一种实现方式中,比特配置信息用于配置第一指示域中第一部分比特的个数以及位置,或者,第一指示域中第二部分比特的个数以及位置。
在另一种实现方式中,比特配置信息用于配置第一指示域中第一部分比特的位置和/或第二部分比特的位置。终端根据目标载波的备选载波的个数(第二对应关系或者第二集合中载波的个数)确定第一部分比特的个数,和/或,根据数据的重复传输总次数的备选次数值的个数(第一对应关系或第一集合中重复传输总次数值的个数)确定第二部分比特的个数。
例如,网络配置的第二对应关系中载波集合(第二集合)为{C1,C2,C3,C4},网络配置的第一对应关系中重复传输总次数集合(第一集合)为{64,128},并且,网络配置第一部分比特所占的比特位为从第一指示域的首位往后数,网络配置第二部分比特所占的比特位为从第一指示域的末位往前数。那么,终端根据{C1,C2,C3,C4}中的载波个数4确定第一部分比特所占的比特个数为2,根据{64,128}中的重复传输次数取值个数2确定第二部分比特所占的比特个数为1。基于网络配置的第一部分比特的位置和第二部分比特的位置,终端确定第一指示域中前两位为第一部分比特,后一位为第二部分比特。
又例如,网络配置的第二对应关系中载波集合(第二集合)为{C1,C2},配置的第一对应关系中重复传输次数集合(第一集合)为{16,32,64,128},并且,网络配置第二部分比特所占的比特位为从第一指示域的首位往后数,网络配置第一部分比特所占的比特位为从第一指示域的末位往前数。那么,终端根据{C1,C2}中的载波个数2确定第一部分比特所占的比特个数为1,根据{16,32,64,128}中的重复传输次数取值个数4确定第二部分比特所占的比特个数为2。基于网络配置的第一部分比特的位置和第二部分比特的位置,终端确定第一指示域中最后一位为第一部分比特,前两位为第二部分比特。
可选的,若第一指示域为现有技术中的重复次数指示域,在DCI调度上行传输的情况下,第一部分比特和第二部分比特可以为以下两种情况:
情况1、第一部分比特的个数以及位置为第一指示域的前两个或后两个比特位,第二部分比特为所述第一指示域中除第一部分比特之外的比特。
情况2、第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位,第二部分比特为所述第一指示域中除第一部分比特之外的比特。
可选的,若第一指示域为现有技术中的重复次数指示域,在DCI调度下行传输的情况下,第一部分比特和第二部分比特可以为以下三种情况:
情况1、第一部分比特的个数以及位置为第一指示域的前两个或后两个比特位,第二部分比特为所述第一指示域中除第一部分比特之外的比特。
情况2、第一部分比特的个数以及位置为第一指示域的第一个或最后一个比特位,第二部分比特为所述第一指示域中除第一部分比特之外的比特。
情况3、第一部分比特的个数以及位置为第一指示域的前三个或后三个比特位,第二部分比特为所述第一指示域中除第一部分比特之外的比特。
针对指示当前调度的数据传输在源载波以及目标载波上的重复传输次数的信息,在本申请一实施例中,在用于调度(上行调度或下行调度)的DCI中增加一个新域(跨载波传输指示域),跨载波传输指示域用于携带重复传输次数分配指示信息(跨载波传输指示域的值即为重复传输次数分配指示信息的值)。重复传输次数分配指示信息用于指示当前调度的数据传输(包括PUSCH传输或者PDSCH传输)在源载波和/或目标载波上的重复传输次数。
以下通过两个应用场景举例说明根据本申请的数据传输方法分别进行上行数据传输以及下行数据传输的实现过程。
应用场景一
针对上行传输,网络通过系统广播消息或者RRC专用信令给终端配置第四集合{0,16,32,64},跨载波传输指示域为2bit,终端根据第四集合{0,16,32,64}生成如表5所示的第四对应关系。
针对上行传输,网络通过系统广播消息或者RRC专用信令给终端发送比特配置信息,该比特配置信息指定/规定调度DCI中第一指示域中前两个比特位用于指示目标上行载波(第一部分比特),最后1个比特位用于指示跨载波传输对应的重复传输总次数(第二部分比特)。
针对上行传输,网络通过系统广播消息或者RRC专用信令给终端配置第一集合{64,128}。终端根据第一集合{64,128}生成如表7所示的第一对应关系。
表7
第二部分比特 重复传输总次数
0 64
1 128
针对上行传输,网络通过系统广播消息或者RRC专用信令给终端配置第二集合{C1,C2,C3,C4}。终端根据第二集合{C1,C2,C3,C4}生成如表3所示的第二对应关系。
基站向终端发送用于调度上行数据传输的DCI,终端接收用于调度上行数据传输的DCI。
终端读取DCI的跨载波传输指示域以及第一指示域的取值。
当跨载波传输指示域的取值为10,第一指示域取值为100时,根据跨载波传输指示域的取值和表5,终端确定当前数据传输为跨载波传输,且在目标载波上的重复传输次数为32,然后根据第一指示域的前2个比特位和表3确定目标载波为C3(表3中10对应上行载波C3),根据第一指示域的最后1个比特位确定当前调度的重复传输总次数为64(表6中0表示当前调度总的重复次数为64),进而可以确定源载波上的重复传输次数为32(即总的重复传输次数减去目标载波的重复次数,即为64-32=32)。
当跨载波传输指示域的取值为00,重复次指示域取值为100时,根据跨载波传输指示域的取值,终端确定当前调度为源载波传输,由于本次调度为源载波传输,因此第一指示域只用来指示当前调度的重复传输次数,终端根据第一指示域的取值以及表1确定重复传输总次数为16(表1中100对应于16)。
应用场景二
针对下行传输,网络通过系统广播消息或者RRC专用信令给终端配置第四集合{0,64,128,256},跨载波传输指示域为2bit,终端根据第四集合{0,64,128,256}生成如表8所示的第四对应关系。
表8
跨载波传输指示域取值 重复传输次数
00 0(在目标载波上重复传输0次,即源载波传输)
01 64(在目标载波上重复传输64次)
10 128(在目标载波上重复传输128次)
11 256(在目标载波上重复传输256次)
针对下行传输,网络通过系统广播消息或者RRC专用信令给终端发送比特配置信息,该比特配置信息指定/规定调度DCI中第一指示域中前两个比特位用于指示目标上行载波(第一部分比特),后两个比特位用于指示跨载波传输对应的重复传输总次数(第二部分比特)。
针对下行传输,网络通过系统广播消息或者RRC专用信令给终端配置第一集合{768,1024,1536,2048}。终端根据第一集合{768,1024,1536,2048}生成如表9所示的第一对应关系。
表9
第二部分比特 重复传输总次数
00 768
01 1024
10 1536
11 2048
针对下行传输,网络通过系统广播消息或者RRC专用信令给终端配置第二集合{C1,C2,C3,C4}。终端根据第二集合{C1,C2,C3,C4}生成如表3所示的第二对应关系。
基站向终端发送用于调度下行数据传输的DCI,终端接收用于调度下行数据传输的DCI。
终端读取DCI的跨载波传输指示域以及第一指示域的取值。
当跨载波传输指示域的取值为10,第一指示域取值为1000时,根据跨载波传输指示域的取值和表8,终端确定当前调度为跨载波传输,且在目标载波上的重复传输次数为128,然后根据第一指示域的前2个比特位和表3确定目标载波(表3中10对应下行载波C3),根据第一指示域的最后2个比特位确定当前调度的重复传输总次数为768(表9中00表示当前调度总的重复次数为768),进而可以确定源载波上的重复传输次数(即总的重复传输次数减去目标载波的重复次数,即为768-128=640)。
当跨载波传输指示域的取值为00,重复次指示域取值为1000时,根据跨载波传输指示域的取值,终端确定当前调度为源载波传输,由于本次调度为源载波传输,因此第一指示域只用来指示当前调度的重复传输次数,终端根据第一指示域的取值以及表2确定重复传输总次数为192(表2中1000对应于192)。
进一步的,基于图3所示实施例的方法,本申请一实施例还提出了一种数据传输装置,该数据传输装置被构造在终端中,数据传输装置中的各个模块可以在终端的处理模块的控制下执行相应的动作。
图5所示为根据本申请一实施例的数据传输装置结构框图。如图5所示,数据传输装置500包括:
收发模块510,其用于:接收下行控制信息;
确认模块520,其用于在所述下行控制信息调度的数据跨载波传输的情况下,根据所述下行控制信息中的第一指示域确定目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的;
收发模块510,还用于根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,所述源载波为所述下行控制信息所在的载波。
可选的,确认模块520,具体用于:根据所述下行控制信息中的第一指示域中的第一部分比特确定所述目标载波。
可选的,确认模块520,具体用于:根据第二对应关系,将所述第一部分比特的值所对应的载波确定为所述目标载波,所述第二对应关系为所述第一部分比特的不同的值与载波之间的对应关系。
可选的,收发模块510还用于:
接收网络配置的所述第二对应关系;
或者,
接收网络配置的第二集合,根据所述第二集合确定所述第二对应关系,所述第二集合包含一个或多个载波。
可选的,确认模块520,具体用于:根据所述下行控制信息中的第一指示域中的第二部分比特确定所述数据的重复传输总次数。
可选的,确认模块520,具体用于:根据第一对应关系确定所述数据的重复传输总次数,所述第一对应关系为所述第二部分比特的不同的值与所述第一集合中的重复传输总次 数的值之间的对应关系。
可选的,收发模块510还用于:
接收网络配置的所述第一对应关系;
或者,
接收网络配置的所述第一集合,根据所述第一集合确定所述第一对应关系。
可选的,收发模块510还用于:
接收比特配置信息,所述比特配置信息用于配置以下信息中的一个或多个:所述第一部分比特的个数,所述第一部分比特的位置,所述第二部分比特的个数,所述第二部分比特的位置。
可选的,所述比特配置信息用于配置所述第一部分比特的位置和/或所述第二部分比特的位置;确认模块520,还用于:根据所述目标载波的备选载波的个数确定所述第一部分比特的个数,和/或,根据所述数据的重复传输总次数的备选次数值的个数确定所述第二部分比特的个数。
可选的,所述第二部分比特为所述第一指示域中除所述第一部分比特以外的剩余比特;
在所述下行控制信息调度上行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,
在所述下行控制信息调度下行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,所述第一部分比特的个数以及位置为所述第一指示域的前三个或后三个比特位。
可选的,所述下行控制信息包含重复传输次数分配指示信息,
确认模块520,还用于:根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数;
收发模块510,具体用于根据所述源载波以及所述目标载波上的重复传输次数在所述源载波和所述目标载波上传输所述数据。
可选的,在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
可选的,所述重复传输次数分配指示信息携带在所述下行控制信息中的跨载波传输指示域中。
可选的,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,确认模块520,具体用于:
根据所述数据的重复传输总次数和所述重复传输次数分配指示信息指示的比例确定源载波以及目标载波上的重复传输次数。
可选的,确认模块520,还用于:
根据第三对应关系,将所述重复传输次数分配指示信息的值所对应的比例值确定为所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述第三对应关系为所述重复传输次数分配指示信息的不同的值与比例值之间的对应关系。
可选的,收发模块510,还用于:
接收网络配置的所述第三对应关系;
或者,
接收网络配置的第三集合,根据所述第三集合确定所述第三对应关系,所述第三集合包含一个或多个比例值。
可选的,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数;确认模块520,具体用于:根据所述数据的重复传输总次数以及所述重复传输次数分配指示信息指示的重复传输次数,确定所述源载波以及所述目标载波上的重复传输次数。
可选的,确认模块520,还用于:根据第四对应关系,将所述重复传输次数分配指示信息的值所对应的重复传输次数确定为所述源载波或所述目标载波上的重复传输次数,所述第四对应关系为所述重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系。
可选的,收发模块510,还用于:
接收网络配置的所述第四对应关系;
或者,
接收网络配置的第四集合,根据所述第四集合确定所述第四对应关系,所述第四集合包含一个或多个所述重复传输次数的值。
可选的,确认模块520,还用于根据DCI确定DCI调度的数据是否跨载波传输。
具体的,确认模块520根据DCI确定源载波和目标载波上的重复传输次数分配,当目标载波上的重复传输次数不为零时,DCI调度的数据跨载波传输。在确认模块520确定目标载波上的重复传输次数不为零时,根据DCI的第一指示域确定目标载波。收发模块510根据DCI指示的目标载波以及源载波和目标载波上的重复传输次数分配。
具体的,当收发模块510根据DCI确定需要进行跨载波数据传输时,先根据源载波的重复传输次数分配在源载波上进行数据传输,之后由源载波切换至目标载波,根据目标载波的重复传输次数分配在目标载波上进行数据传输。
进一步的,基于图3所示实施例的方法,本申请一实施例还提出了一种数据调度装置,该数据调度装置被构造在基站中,数据调度装置中的各个模块可以在基站的处理模块的控制下执行相应的动作。
图6所示为根据本申请一实施例的数据调度装置结构框图。如图6所示,数据调度装置600包括:
发送模块610,用于发送下行控制信息,其中,在所述下行控制信息调度的数据跨载波传输的情况下,所述下行控制信息中的第一指示域用于指示目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的。
可选的,数据调度装置600还包括DCI生成模块620,DCI生成模块620用于生成DCI,其中,DCI包含用于指示源载波和目标载波上的重复传输次数分配的信息,并且,当目标载波上的重复传输次数不为零时,DCI还包含用于指示目标载波的信息。
可选的,所述下行控制信息中的第一指示域中的第一部分比特用于指示所述目标载 波。
可选的,所述第一部分比特的值所对应的载波为所述目标载波,所述第一部分比特的不同的值与载波之间的对应关系为第二对应关系。
可选的,发送模块610,还用于:
发送所述第二对应关系;
或者,
发送第二集合,所述第二集合用于确定所述第二对应关系,所述第二集合包含一个或多个载波。
可选的,所述下行控制信息中的第一指示域中的第二部分比特用于指示所述数据的重复传输总次数。
可选的,所述第二部分比特的值对应的重复传输总次数为所述数据的重复传输总次数,所述第二部分比特的不同的值与所述第一集合中的重复传输总次数的值之间的对应关系为第一对应关系。
可选的,发送模块610,还用于:
发送所述第一对应关系;
或者,
发送所述第一集合,所述第一集合用于确定所述第一对应关系。
可选的,发送模块610,还用于:
发送比特配置信息,所述比特配置信息用于配置以下信息中的一个或多个:所述第一部分比特的个数,所述第一部分比特的位置,所述第二部分比特的个数,所述第二部分比特的位置。
可选的,所述第二部分比特为所述第一指示域中除所述第一部分比特以外的剩余比特;
在所述下行控制信息调度上行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,
在所述下行控制信息调度下行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,所述第一部分比特的个数以及位置为所述第一指示域的前三个或后三个比特位。
可选的,所述下行控制信息包含重复传输次数分配指示信息,所述重复传输次数分配指示信息用于确定所述源载波以及所述目标载波上的重复传输次数。
可选的,在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
可选的,所述重复传输次数分配指示信息携带在所述下行控制信息中的跨载波传输指示域中。
可选的,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数。
可选的,所述重复传输次数分配指示信息的值所对应的重复传输次数为所述源载波或所述目标载波上的重复传输次数,所述重复传输次数分配指示信息的不同的值与重复传输 次数之间的对应关系为第四对应关系。
可选的,发送模块610,还用于:
发送所述第四对应关系;
或者,
发送第四集合,所述第四集合用于确定所述第四对应关系,所述第四集合包含一个或多个所述重复传输次数的值。
可选的,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例。
可选的,所述重复传输次数分配指示信息的值所对应的比例值为所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述重复传输次数分配指示信息的不同的值与比例值之间的对应关系为第三对应关系。
可选的,所述方法还包括:
发送所述第三对应关系;
或者,
发送第三集合,所述第三集合用于确定所述第三对应关系,所述第三集合包含一个或多个比例值。
在本申请实施例的描述中,为了描述的方便,描述装置时以功能分为各种模块分别描述,各个模块的划分仅仅是一种逻辑功能的划分,在实施本申请实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
具体的,本申请实施例所提出的装置在实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个数字信号处理器(Digital Singnal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,这些模块可以集成在一起,以片上装置(System-On-a-Chip,SOC)的形式实现。
进一步的,基于图3所示实施例的方法,本申请一实施例还提出了一种电子设备(终端),电子设备包括用于存储计算机程序指令的存储器、用于执行程序指令的处理器以及通信装置,其中,当计算机程序指令被该处理器执行时,触发电子设备执行S301、S302、S303,和/或本申请实施例中所示的方法中终端执行的其他动作。
进一步的,基于图3所示实施例的方法,本申请一实施例还提出了一种电子设备(基站),电子设备包括用于存储计算机程序指令的存储器、用于执行程序指令的处理器以及通信装置,其中,当计算机程序指令被该处理器执行时,处理器控制通信装置执行S300以及S301,和/或本申请实施例中所示的方法中基站执行的其他动作。
图7所示为本申请一实施例的电子设备结构示意图。本申请实施例的电子设备(终端或基站)可以采用如图7所示的组件结构。如图7所示,电子设备700包括处理器710、存储器720以及通信装置730。
存储器720可以用于存储用于执行上述实施例所示的方法的计算机程序指令,当处理器710执行存储器720中存储的计算机程序指令时,处理器710控制通信装置730执行上述实施例所示的方法。
电子设备700的处理器710可以是片上装置SOC,该处理器中可以包括中央处理器(Central Processing Unit,CPU),还可以进一步包括其他类型的处理器。
具体的,处理器710可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units,NPU)和图像信号处理器(Image Signal Processing,ISP),处理器710还可包括必要的硬件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器710可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
电子设备700的存储器720可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何计算机可读介质。
具体的,在本申请一实施例中,处理器710和存储器720可以合成一个处理装置,更常见的是彼此独立的部件。具体实现时,存储器720也可以集成在处理器710中,或者,独立于处理器710。
电子设备700的通信装置730用于实现无线通信功能,通信装置730包括天线731、通信模块732,调制解调处理器733以及基带处理器734中的一个或多个。
天线731用于发射和接收电磁波信号。天线731可以包括一个或多个独立的天线,每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
通信模块732可以提供应用在电子设备700上的包括2G/3G/4G/5G等无线通信的解决方案。通信模块732可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。通信模块732可以由天线731接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器733进行解调。移动通信模块732还可以对经调制解调处理器733调制后的信号放大,经天线731转为电磁波辐射出去。在一些实施例中,移动通信模块732的至少部分功能模块可以被设置于处理器710中。
调制解调处理器733可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器734处理。低频基带信号经基带处理器734处理后,被传递给处理器710。在一些实施例中,调制解调处理器733可以是独立的 器件。在另一些实施例中,调制解调处理器733可以独立于处理器710,与移动通信模块732或其他功能模块设置在同一个器件中。
在一些实施例中,电子设备700的天线731和通信模块732耦合,使得电子设备700可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
进一步的,在实际应用场景中,本说明书所示实施例的方法流程可以由安装在电子设备上的电子芯片所实现。因此,基于图3所示实施例的方法,本申请一实施例还提出了一种电子芯片该电子芯片安装在基站中,电子芯片包括用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被该处理器执行时,触发电子芯片执行本申请上述实施例所示的方法中的基站所执行的动作。
进一步的,基于图3所示实施例的方法,本申请一实施例还提出了一种电子芯片该电子芯片安装在终端中,电子芯片包括用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被该处理器执行时,触发电子芯片执行本申请上述实施例所示的方法中的终端所执行的动作。
进一步的,本申请实施例阐明的设备、装置、模块,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
具体的,本申请一实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请一实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请中的实施例描述是参照根据本申请实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以意识到,本申请实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的 应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种数据传输方法,其特征在于,包括:
    接收下行控制信息;
    在所述下行控制信息调度的数据跨载波传输的情况下,根据所述下行控制信息中的第一指示域确定目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的;
    根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,所述源载波为所述下行控制信息所在的载波。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述下行控制信息中的第一指示域确定目标载波,包括:
    根据所述下行控制信息中的第一指示域中的第一部分比特确定所述目标载波。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述下行控制信息中的第一指示域中的第一部分比特确定所述目标载波,包括:
    根据第二对应关系,将所述第一部分比特的值所对应的载波确定为所述目标载波,所述第二对应关系为所述第一部分比特的不同的值与载波之间的对应关系。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收网络配置的所述第二对应关系;
    或者,
    接收网络配置的第二集合,根据所述第二集合确定所述第二对应关系,所述第二集合包含一个或多个载波。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述根据所述下行控制信息中的第一指示域确定所述数据的重复传输总次数,包括:
    根据所述下行控制信息中的第一指示域中的第二部分比特确定所述数据的重复传输总次数。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述下行控制信息中的第一指示域中的第二部分比特确定所述数据的重复传输总次数,包括:
    根据第一对应关系确定所述数据的重复传输总次数,所述第一对应关系为所述第二部分比特的不同的值与所述第一集合中的重复传输总次数的值之间的对应关系。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收网络配置的所述第一对应关系;
    或者,
    接收网络配置的所述第一集合,根据所述第一集合确定所述第一对应关系。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述方法还包括:
    接收比特配置信息,所述比特配置信息用于配置以下信息中的一个或多个:所述第一部分比特的个数,所述第一部分比特的位置,所述第二部分比特的个数,所述第二部分比特的位置。
  9. 根据权利要求8所述的方法,其特征在于,所述比特配置信息用于配置所述第一部 分比特的位置和/或所述第二部分比特的位置;
    所述方法还包括:
    根据所述目标载波的备选载波的个数确定所述第一部分比特的个数,和/或,根据所述数据的重复传输总次数的备选次数值的个数确定所述第二部分比特的个数。
  10. 根据权利要求5-9任一项所述的方法,其特征在于,所述第二部分比特为所述第一指示域中除所述第一部分比特以外的剩余比特;
    在所述下行控制信息调度上行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,
    在所述下行控制信息调度下行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,所述第一部分比特的个数以及位置为所述第一指示域的前三个或后三个比特位。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述下行控制信息包含重复传输次数分配指示信息,所述根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,包括:
    根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数;
    根据所述源载波以及所述目标载波上的重复传输次数在所述源载波和所述目标载波上传输所述数据。
  12. 根据权利要求11所述的方法,其特征在于,在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
  13. 根据权利要求11或12所述的方法,其特征在于,所述重复传输次数分配指示信息携带在所述下行控制信息中的跨载波传输指示域中。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数,包括:
    根据所述数据的重复传输总次数和所述重复传输次数分配指示信息指示的比例确定源载波以及目标载波上的重复传输次数。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据第三对应关系,将所述重复传输次数分配指示信息的值所对应的比例值确定为所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述第三对应关系为所述重复传输次数分配指示信息的不同的值与比例值之间的对应关系。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收网络配置的所述第三对应关系;
    或者,
    接收网络配置的第三集合,根据所述第三集合确定所述第三对应关系,所述第三集合包含一个或多个比例值。
  17. 根据权利要求11-13任一项所述的方法,其特征在于,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数;
    所述根据所述重复传输总次数和所述重复传输次数分配指示信息确定所述源载波以及所述目标载波上的重复传输次数,包括:
    根据所述数据的重复传输总次数以及所述重复传输次数分配指示信息指示的重复传输次数,确定所述源载波以及所述目标载波上的重复传输次数。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    根据第四对应关系,将所述重复传输次数分配指示信息的值所对应的重复传输次数确定为所述源载波或所述目标载波上的重复传输次数,所述第四对应关系为所述重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    接收网络配置的所述第四对应关系;
    或者,
    接收网络配置的第四集合,根据所述第四集合确定所述第四对应关系,所述第四集合包含一个或多个所述重复传输次数的值。
  20. 一种数据调度方法,其特征在于,包括:
    发送下行控制信息,其中,在所述下行控制信息调度的数据跨载波传输的情况下,所述下行控制信息中的第一指示域用于指示目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的。
  21. 根据权利要求20所述的方法,其特征在于,所述下行控制信息中的第一指示域中的第一部分比特用于指示所述目标载波。
  22. 根据权利要求21所述的方法,其特征在于,所述第一部分比特的值所对应的载波为所述目标载波,所述第一部分比特的不同的值与载波之间的对应关系为第二对应关系。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    发送所述第二对应关系;
    或者,
    发送第二集合,所述第二集合用于确定所述第二对应关系,所述第二集合包含一个或多个载波。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,所述下行控制信息中的第一指示域中的第二部分比特用于指示所述数据的重复传输总次数。
  25. 根据权利要求24所述的方法,其特征在于,所述第二部分比特的值对应的重复传输总次数为所述数据的重复传输总次数,所述第二部分比特的不同的值与所述第一集合中的重复传输总次数的值之间的对应关系为第一对应关系。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    发送所述第一对应关系;
    或者,
    发送所述第一集合,所述第一集合用于确定所述第一对应关系。
  27. 根据权利要求24-26任一项所述的方法,其特征在于,所述方法还包括:
    发送比特配置信息,所述比特配置信息用于配置以下信息中的一个或多个:所述第一部分比特的个数,所述第一部分比特的位置,所述第二部分比特的个数,所述第二部分比特的位置。
  28. 根据权利要求24-27任一项所述的方法,其特征在于,所述第二部分比特为所述第一指示域中除所述第一部分比特以外的剩余比特;
    在所述下行控制信息调度上行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,
    在所述下行控制信息调度下行传输的情况下,所述第一部分比特的个数以及位置为所述第一指示域的前两个或后两个比特位,或者,所述第一部分比特的个数以及位置为所述第一指示域的第一个或最后一个比特位;或者,所述第一部分比特的个数以及位置为所述第一指示域的前三个或后三个比特位。
  29. 根据权利要求20-28任一项所述的方法,其特征在于,所述下行控制信息包含重复传输次数分配指示信息,所述重复传输次数分配指示信息用于确定所述源载波以及所述目标载波上的重复传输次数。
  30. 根据权利要求29所述的方法,其特征在于,在所述目标载波上的重复传输次数不为零的情况下,所述数据跨载波传输。
  31. 根据权利要求29或30所述的方法,其特征在于,所述重复传输次数分配指示信息携带在所述下行控制信息中的跨载波传输指示域中。
  32. 根据权利要求29-31任一项所述的方法,其特征在于,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数。
  33. 根据权利要求32所述的方法,其特征在于,所述重复传输次数分配指示信息的值所对应的重复传输次数为所述源载波或所述目标载波上的重复传输次数,所述重复传输次数分配指示信息的不同的值与重复传输次数之间的对应关系为第四对应关系。
  34. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    发送所述第四对应关系;
    或者,
    发送第四集合,所述第四集合用于确定所述第四对应关系,所述第四集合包含一个或多个所述重复传输次数的值。
  35. 根据权利要求29-31任一项所述的方法,其特征在于,所述重复传输次数分配指示信息用于指示所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例。
  36. 根据权利要求35所述的方法,其特征在于,所述重复传输次数分配指示信息的值所对应的比例值为所述源载波或所述目标载波上的重复传输次数与所述数据的重复传输总次数的比例,所述重复传输次数分配指示信息的不同的值与比例值之间的对应关系为第三对应关系。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    发送所述第三对应关系;
    或者,
    发送第三集合,所述第三集合用于确定所述第三对应关系,所述第三集合包含一个或多个比例值。
  38. 一种数据传输装置,其特征在于,所述装置包括:
    收发模块,其用于接收下行控制信息;
    确认模块,其用于在所述下行控制信息调度的数据跨载波传输的情况下,根据所述下行控制信息的第一指示域确定目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的;
    所述收发模块,还用于:
    根据所述重复传输总次数在源载波和所述目标载波上传输所述数据,所述源载波为所述下行控制信息所在的载波。
  39. 一种数据调度装置,其特征在于,所述装置包括:
    发送模块,其用于发送下行控制信息,其中,在所述下行控制信息调度的数据跨载波传输的情况下,所述下行控制信息中的第一指示域用于指示目标载波和所述数据的重复传输总次数,所述数据的重复传输总次数属于第一集合,所述第一集合中包括至少一个重复传输总次数的值,所述至少一个重复传输总次数的值为预先配置或网络配置的。
  40. 一种电子芯片,其特征在于,包括:
    处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行权利要求1-19中任一项所述的方法。
  41. 一种电子芯片,其特征在于,包括:
    处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行权利要求20-37中任一项所述的方法。
  42. 一种电子设备,其特征在于,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如权利要求1-19中任一项所述的方法。
  43. 一种电子设备,其特征在于,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如权利要求20-37中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如权利要求1-37中任一项所述的方法。
  45. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-37中任一项所述的方法。
PCT/CN2022/140341 2021-12-21 2022-12-20 一种数据传输方法、装置、芯片和电子设备 WO2023116689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111569609.7 2021-12-21
CN202111569609.7A CN116321472A (zh) 2021-12-21 2021-12-21 一种数据传输方法、装置、芯片和电子设备

Publications (1)

Publication Number Publication Date
WO2023116689A1 true WO2023116689A1 (zh) 2023-06-29

Family

ID=86831019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140341 WO2023116689A1 (zh) 2021-12-21 2022-12-20 一种数据传输方法、装置、芯片和电子设备

Country Status (2)

Country Link
CN (1) CN116321472A (zh)
WO (1) WO2023116689A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557842A (zh) * 2018-06-01 2019-12-10 华为技术有限公司 一种信号发送方法、装置及系统
CN110831229A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 上行控制信息的发送和接收方法及装置
CN111988857A (zh) * 2020-08-19 2020-11-24 中兴通讯股份有限公司 控制信息传输方法、装置、通信节点及存储介质
CN114679244A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 跨载波数据传输方法与装置、终端和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557842A (zh) * 2018-06-01 2019-12-10 华为技术有限公司 一种信号发送方法、装置及系统
CN110831229A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 上行控制信息的发送和接收方法及装置
CN111988857A (zh) * 2020-08-19 2020-11-24 中兴通讯股份有限公司 控制信息传输方法、装置、通信节点及存储介质
CN114679244A (zh) * 2020-12-25 2022-06-28 展讯半导体(南京)有限公司 跨载波数据传输方法与装置、终端和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Correction on the Cross Carrier Scheduling Configuration", 3GPP DRAFT; R2-2006995, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911843 *

Also Published As

Publication number Publication date
CN116321472A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US10764881B2 (en) Resource management method and related device
CN115553005A (zh) 侧行反馈资源配置方法、终端设备和网络设备
US20220045721A1 (en) Transmission of NR Control Information in an LTE Downlink Subframe
US20230063901A1 (en) Sidelink feedback method and terminal device
KR20200138814A (ko) 데이터를 전송하는 방법, 단말기 및 네트워크 기기
JP2022500907A (ja) 通信方法、端末装置及びネットワーク装置
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
US20230007682A1 (en) Data transmission method, terminal device and network device
US20230224879A1 (en) Method for Reporting Direct Current Carrier Location, Terminal Device, and Network Device
WO2023116689A1 (zh) 一种数据传输方法、装置、芯片和电子设备
TW202014027A (zh) 無線通訊的方法、終端設備和網路設備
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141824A1 (zh) 无线通信的方法和终端设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
US20230353292A1 (en) Wireless communication method and device
US20230217433A1 (en) Resource scheduling method, terminal device, and network device
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022141649A1 (zh) 无线通信方法和设备
US20230421297A1 (en) Method for processing sidelink retransmission resources, terminal device, and network device
WO2023245492A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023108555A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023115583A1 (zh) 通信方法、终端设备和网络设备
US20240147195A1 (en) Wireless communication method, terminal device and network device
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910001

Country of ref document: EP

Kind code of ref document: A1