WO2023116677A1 - Multi-beam operation for multi-panel user equipment uplink transmissions - Google Patents

Multi-beam operation for multi-panel user equipment uplink transmissions Download PDF

Info

Publication number
WO2023116677A1
WO2023116677A1 PCT/CN2022/140297 CN2022140297W WO2023116677A1 WO 2023116677 A1 WO2023116677 A1 WO 2023116677A1 CN 2022140297 W CN2022140297 W CN 2022140297W WO 2023116677 A1 WO2023116677 A1 WO 2023116677A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
resource set
field
tpmi
sri
Prior art date
Application number
PCT/CN2022/140297
Other languages
French (fr)
Inventor
Yi-Ru Chen
Kuan-Hung Chou
Cheng-Rung Tsai
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Priority to TW111149378A priority Critical patent/TWI841138B/en
Publication of WO2023116677A1 publication Critical patent/WO2023116677A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/0696Determining beam pairs
    • H04B7/06962Simultaneous selection of transmit [Tx] and receive [Rx] beams at both sides of a link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present disclosure is generally related to wireless communications and, more particularly, to multi-beam operation for multi-panel user equipment (UE) uplink (UL) transmissions in wireless communications.
  • UE user equipment
  • UL uplink
  • mTRP multi-transmission-and-reception-point
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • simultaneous UL transmissions across multiple panels may be beneficial in terms of enhancement in both throughput and reliability.
  • throughput may be increased by simultaneously transmitting different data to different TRPs or a single TRP.
  • reliability may be improved by simultaneously transmitting duplications to different TRPs or a single TRP.
  • one issue pertains to how a network indicates information of the sounding reference signal (SRS) resource indicator (SRI) and transmitted precoding matrix indicator (TPMI) to a UE for simultaneous PUSCH for multi-panel UEs (STxMP) to mTRP.
  • SRS sounding reference signal
  • TPMI transmitted precoding matrix indicator
  • STxMP multi-panel UEs
  • the configuration of two SRS resource sets, SS resource set indicator field, two SRI fields and two TPMI fields is introduced in Rel-17 mTRP PUSCH TDM repetition.
  • the UL SRI/TPMI indication and SRS resource set configuration could be further extended to support space-division multiplexing (SDM) , frequency-division multiplexing (FDM) and system frame numbering (SFN) schemes.
  • SDM space-division multiplexing
  • FDM frequency-division multiplexing
  • SFN system frame numbering
  • Another issue is that the network could not be aware of which beam group of two beams is feasible for STxMP by a legacy procedure. Specifically, how to avoid the network from selecting two UE beams belonging to the same UE panel needs to be addressed. Moreover, how to dynamically indicate the antenna capability for UE panels (e.g., the number of SRS ports for each panel) also needs to be addressed.
  • An objective of the present disclosure is to provide schemes, concepts, designs, techniques, methods and apparatuses pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications. Under various proposed schemes in accordance with the present disclosure, it is believed that aforementioned issue may be addressed or otherwise alleviated.
  • a processor of an apparatus may report, via a transceiver, to a network one or more UE capability value sets with: (a) each of the one or more UE capability value sets containing a value of a maximum supported number of SRS ports or a list of maximum supported numbers of SRS ports, and (b) any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets.
  • the processor may receive, via the transceiver, from the network a channel state information (CSI) configuration that configures a CSI reporting setting to associate at least one CSI resource setting to the UE.
  • CSI channel state information
  • the processor may then measure and report, via the transceiver, to the network at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, with the at least one CSI result comprising a synchronization signal (SS) /physical broadcast channel (PBCH) Block Resource Indicator (SSBRI) and CSI Reference Signal Resource Indicator (CRI) , or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity (e.g., layer 1 reference signal received power (L1-RSRP) or signal-to-interference noise ratio (SINR) ) and a first UE capability information.
  • SS synchronization signal
  • PBCH physical broadcast channel
  • SSBRI Block Resource Indicator
  • CRI CSI Reference Signal Resource Indicator
  • L1-RSRP layer 1 reference signal received power
  • SINR signal-to-interference noise ratio
  • the processor may receive, via the transceiver, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set.
  • the processor may transmit, via the transceiver and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration.
  • the processor may receive, via the transceiver, from the network an indication for an UL grand of a PUSCH, the indication indicating: one SRS resource set indicator, at least one SRI field, at least one TPMI field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH.
  • the processor may transmit, via the transceiver and using the at least the second spatial relation filter, a PUCCH or the PUSCH based on the UL grant.
  • radio access technologies such as, 5 th Generation (5G) New Radio (NR) mobile communications
  • 5G 5 th Generation
  • NR New Radio
  • the proposed concepts, schemes and any variation (s) /derivative (s) thereof may be implemented in, for and by other types of radio access technologies, networks and network topologies such as, for example and without limitation, 4 th Generation (4G) Long-Term Evolution (LTE) , LTE-Advanced, LTE-Advanced Pro, vehicle-to-vehicle (V2V) , vehicle-to-everything (V2X) , Wi-Fi, WiMax, Bluetooth, ZigBee, Internet-of-Things (IoT) , Industrial IoT (IIoT) and narrowband IoT (NB-IoT) .
  • LTE Long-Term Evolution
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • Wi-Fi Wireless Fidelity
  • WiMax Wireless Fidelity
  • FIG. 1 is a diagram of an example network environment in which various solutions and schemes in accordance with the present disclosure may be implemented.
  • FIG. 2 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 3 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 4 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 5 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 6 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 7 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 8 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 9 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 10 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 11 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 12 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 13 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 14 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 15 is a diagram of an example scenario in accordance with the present disclosure.
  • FIG. 16 is a block diagram of an example communication system in accordance with an implementation of the present disclosure.
  • FIG. 17 is a flowchart of an example process in accordance with an implementation of the present disclosure.
  • Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications.
  • a number of possible solutions may be implemented separately or jointly. That is, although these possible solutions may be described below separately, two or more of these possible solutions may be implemented in one combination or another.
  • FIG. 1 illustrates an example network environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented.
  • FIG. 2 ⁇ FIG. 17 illustrate examples of implementation of various proposed schemes in network environment 100 in accordance with the present disclosure. The following description of various proposed schemes is provided with reference to FIG. 1 ⁇ FIG. 17.
  • network environment 100 may involve at least a UE 110 communicating wirelessly with a first network node 120 (e.g., first TRP, eNB or gNB) and optionally a second network node 130 (e.g., second TRP, eNB or gNB) of a radio access network (RAN) 140 (e.g., a cellular network such as a 5G/NR mobile network) in accordance with one or more 3GPP specifications (e.g., Rel-17 and beyond) .
  • RAN radio access network
  • Part (A) of FIG. 1 shows a multi-bean operation for multi-beam UE 110 UL transmissions in a multi-panel UL in single-TRP scenario involving UE 110 and network node 120.
  • FIG. 2 shows a multi-bean operation for multi-beam UE 110 UL transmissions in a multi-panel UL in multi-TRP scenario involving UE 110, network node 120 and network node 130.
  • UE 110 and network 140 may be configured to implement multi-beam operation for multi-panel UE UL transmissions in accordance with various proposed schemes, as described below.
  • UE 110 is shown to be equipped or otherwise configured with a certain number of panels in FIG. 1 and following figures (e.g., three panels namely: panel 1, panel 2 and panel 3) , in actual implementations the number of panels may differ or may be the same.
  • the various proposed schemes may be individually or separately described below, in actual implementations each of the proposed schemes may be utilized individually or separately. Alternatively, some or all of the proposed schemes may be utilized jointly.
  • UE 110 may report to network 140 a list of UE capability values (or value sets) as UE capability of UE 110.
  • Each UE capability value (or set) may include the maximum supported number of SRS antenna ports (APs) , and any two capability values (or sets) are different.
  • APs SRS antenna ports
  • an index of corresponding UE capability value set is reported along with each reported pair of synchronization signal (SS) /physical broadcast channel (PBCH) Block Resource Indicator (SSBRI) and CSI Reference Signal Resource Indicator (CRI) as well as measurement quantity (e.g., layer 1 reference signal received power (L1-RSRP) or signal-to-interference noise ratio (SINR) ) .
  • SS synchronization signal
  • PBCH physical broadcast channel
  • SSBRI Block Resource Indicator
  • CRI CSI Reference Signal Resource Indicator
  • measurement quantity e.g., layer 1 reference signal received power (L1-RSRP) or signal-to-interference noise ratio (SIN
  • network 140 may configure CSI reference signal (CSI-RS) resource (s) and reporting configuration.
  • UE 110 may measure downlink (DL) reference signal (e.g., synchronization signal block (SSB) and/or CSI-RS) and report CSI reporting including the beam report.
  • DL downlink
  • SSB synchronization signal block
  • network 140 may configure SRS resource set (s) to require UE 110 to transmit SRS resource (s) for CSI acquisition.
  • network 140 may estimate the UL channel according to the SRS reference signal.
  • network 140 may provide an UL grant to UE 110 by radio resource control (RRC) configuration (for Type 1 configured grant (CG) -PUSCH) or downlink control information (DCI) indication (DG-PUSCH and Type 2 CG-PUSCH) .
  • RRC radio resource control
  • DCI downlink control information
  • Network 140 may select the SRS resource (s) by SRI field and provide the precoding information by TPMI field. Additionally, UE 110 may transmit PUSCH according to the configuration/indication from network 140.
  • network 140 may configure a reporting configuration and associate with only one CSI-RS resource set for the single TRP.
  • the CSI-resource setting may include a resource set (RS) #0 of ⁇ RS#1, RS#2, RS#3 ⁇ for network node 120.
  • network 140 may configure one SRS resource set for CSI acquisition.
  • the SRI and one TPMI may be configured or otherwise indicated.
  • the SRS resource (s) of the SRS resource set may be selected by the SRI.
  • the SRI may also be utilized to determine the number of PUSCH layers.
  • the TPMI may be utilized to determine the number of PUSCH layers and precoding matrix.
  • the SRI may be configured by srs-ResourceIndicator in ConfiguredGrantConfig, and the TPMI may be configured by precodingAndNumberOfLayers in ConfigureGrantConfig.
  • the SRI may be indicated by the “SRS resource indicator” field in DCI
  • the TPMI may be configured by the “precoding information and number of layers” field in DCI.
  • network 140 may configure a reporting configuration and associate with up to two CSI-RS resource set(s) for multiple TRPs.
  • the CSI-resource setting may include a resource set (RS) #0 of ⁇ RS#1, RS#2, RS#3 ⁇ for network node 120 and another resource set RS #1 of ⁇ RS#4, RS#5, RS#6 ⁇ for network node 130.
  • network 140 may configure two SRS resource sets for CSI acquisition.
  • the SRS resource set with a lower identifier (ID) may be the first SRS resource set and the other may be the second SRS resource set.
  • one or two SRI (s) and one or two TPMI (s) (in case of codebook-based PUSCH) may be configured or otherwise indicated.
  • the number of selected SRS resource (s) for two SRS resource sets may be the same.
  • the number of SRS ports of the two selected SRS resources for two SRS resource sets may be the same.
  • the same layers may be configured or otherwise indicated for all the repetitions to two TRPs.
  • two SRIs may be configured by srs-ResourceIndicator and srs-ResourceIndicator2 in ConfigureGrantConfig
  • two TPMIs may be configured by precodingAndNuberOfLayers and precodingAndNumberOfLayers2 in ConfiguredGrantConfig.
  • SRS resource set association with SRI/TPMI As for SRS resource set association with SRI/TPMI, srs-ResourceIndicator and precodingAndNumberOfLayers are associated with the first SRS resource set, while srs-ResourceIndicator2 and precodingAndNumberOfLayers2 are associated with the second SRS resource set.
  • two SRIs may be indicated by the “SRS resource indicator” and “second SRS resource indicator” field in DCI
  • two TPMIs may be configured by “precoding information and number of layer” and “second precoding information” fields in DCI. The number of layers for each repetition may be indicated by “precoding information and number of layer” only.
  • SRS resource set association with SRI/TPMI may be indicated by the “SRS resource set indicator” field.
  • FIG. 2 illustrates an example scenario 200 under the proposed scheme.
  • a UE capability value set may contain a value of the maximum number of supported SRS ports or a list of the maximum number of supported SRS ports, where the maximum number of supported SRS ports may be determined according to a single panel capability.
  • Other information e.g., coherence type
  • FIG. 3 illustrates another example scenario 300 under the proposed scheme.
  • at least one UE capability set ID (s) may be reported in a reporting instance for each DL resource sets (RSs) or a pair of DL RSs.
  • beam indication restriction may be necessary in multi-panel UL transmissions to multiple TRPs.
  • network 140 may select two DL RSs the corresponding UE beams of which belong to the same panel. Group-based beam reporting may avoid this issue naturally; however, restriction on beam indication may be necessary when using legacy beam reporting.
  • legacy beam reporting When legacy beam reporting is used, network 140 may select two DL RSs the corresponding UE capability set of which contain one value for indicating the maximum number of supported SRS ports and corresponding UE capability set ID may be different.
  • FIG. 4 illustrates an example scenario 400 under the proposed scheme. Referring to FIG. 4, network 140 may not select RS#3 for multi-panel UL transmission (e.g., for SRS/PUSCH/PUCCH) .
  • FIG. 5 illustrates an example scenario 500 under the proposed scheme.
  • Part (A) of FIG. 5 shows a first case (Case 1) of one SRS resource set configuration.
  • Part (B) of FIG. 5 shows two SRS resource set configurations.
  • multi-panel PUSCH transmission to multiple TRPs may be performed.
  • two SRS resource sets may be configured, with each SRS resource set (s) associated with a respective TRP.
  • the number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110.
  • FIG. 6 illustrates another example scenario 600 under the proposed scheme.
  • the UE capability set ID (s) may be associated with the SRS resource set (s) via RRC signaling or a medium access control (MAC) control element (CE) .
  • MAC medium access control
  • the antenna port selection from a single panel or multiple panels for SRS resource transmission may follow the indicated UE capability set ID (s) .
  • the antenna port selection from a single panel or multiple panels for SRS resource transmission may follow the reported UE capability set ID (s) corresponding to the RS (s) of the associated spatial relation filter (s) or the quasi-co-located (QCL) -Type-D RS (s) of the transmission configuration indicator (TCI) state (s) .
  • network 140 may indicate at least one piece of information for UL transmission in DCI by using one or multiple fields.
  • the information indicated by network 140 may include one or more of the following: (i) one or two SRI field (s) , (ii) one or two TPMI field (s) ; (iii) one SRS resource set indicator field; and (iv) at least one UE capability set ID (s) .
  • FIG. 7 illustrates an example scenario 700 under the proposed scheme. Referring to FIG. 7, association between SRS resource set and SRI/TPMI field may be by an SRS resource set indicator. Specifically, the example shown in FIG.
  • FIG. 7 pertains to single-panel UL or multi-panel UL to single TRP with two SRS resource set configurations. It is noteworthy that, in scenario 700, only codepoints 0 ⁇ 2 are needed for non-codebook-based UL transmissions.
  • FIG. 8 illustrates another example scenario 800 under the proposed scheme. Referring to FIG. 8, association between SRS resource set and SRI/TPMI field may be by an SRS resource set indicator. Specifically, the example shown in FIG. 8 pertains to single-panel UL or multi-panel UL to single TRP with one SRS resource set configuration. It is noteworthy that, in scenario 800, only codepoint 0 is needed for non-codebook-based UL transmissions.
  • FIG. 9 illustrates yet another example scenario 900 under the proposed scheme. Referring to FIG.
  • association between SRS resource set and SRI/TPMI field may be by an SRS resource set indicator.
  • SRS resource set indicator Specifically, the example shown in FIG. 9 pertains to single-panel UL or multi-panel UL to single TRP or multiple TRPs with two SRS resource set configurations. It is noteworthy that, in scenario 900, codepoints 0 ⁇ 2 are needed for non-codebook-based UL transmissions.
  • FIG. 10, FIG. 11 and FIG. 12 illustrates example scenarios 1000, 1100 and 1200 of multi-panel PUSCH transmission to a single TRP under a proposed scheme in accordance with the present disclosure.
  • UE 110 may report its UE capability set values to provide the panel antenna capability.
  • network 140 may configure a reporting configuration and associate with only one CSI-RS resource set for a single TRP.
  • UE 110 may report DL-RS index (es) , corresponding L1-RSRP/SINR (s) , and corresponding UE capability value set ID (s) .
  • one or two SRS resource sets may be configured, and the SRS resource set (s) may be associated with a given TRP (e.g., network node 120 or network node 130) .
  • the number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110.
  • Part (A) of FIG. 11 shows a first case (Case 1) of one SRS resource set configuration.
  • Part (B) of FIG. 11 shows a second case (Case 2) of two SRS resource set configurations.
  • network 140 may use DCI indication for UL grant to indicate UL transmission mode, SRI (s) , TPMI (s) , and one UE capability set ID (s) , if any.
  • UE 110 may follow the indicated UL grant to transmit a codebook-based or non-codebook-based PUSCH and/or PUCCH.
  • FIG. 13, FIG. 14 and FIG. 15 illustrates example scenarios 1300, 1400 and 1500 of multi-panel PUSCH transmission to a single TRP under another proposed scheme in accordance with the present disclosure.
  • UE 110 may report its UE capability set values to provide the panel antenna capability.
  • network 140 may configure a reporting configuration and associate with one or two CSI-RS resource set (s) for multiple TRPs.
  • UE 110 may report DL-RS index (es) by legacy beam reporting or may report the group (s) of two DL-RS indexes by group-based beam reporting, corresponding L1-RSRP/SINR (s) , and corresponding UE capability value set ID (s) .
  • two SRS resource sets may be configured, and each SRS resource set may be associated with a respective TRP.
  • the number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110.
  • network 140 may use DCI indication for UL grant to indicate UL transmission mode, SRI (s) , TPMI (s) , and one UE capability set ID (s) , if any.
  • UE 110 may follow the indicated UL grant to transmit a codebook-based or non-codebook-based PUSCH and/or PUCCH.
  • a method of UL transmission for a multi-panel UE e.g., UE 110 in a cellular network (e.g., network 140) may involve UE 110 reporting one or multiple UE capability value set (s) to network 140, with each UE capability value set containing a value of a maximum supported number of SRS ports or a list of a maximum supported number of SRS ports, and any two UE capability value sets may be the same.
  • Network 140 may configure a CSI reporting setting associating at least one CSI resource setting (s) for UE 110.
  • UE 110 may measure and report at least one CSI result (s) in a CSI reporting instance.
  • the CSI result may include a SSBRI/CRI or a group of two SSBRIs/CRIs, as well as corresponding L1-RSRP/SINR and a fist piece of UE capability information.
  • network 140 may configure one or multiple SRS resource sets for UE 110. At least one first UL spatial relation filter (s) and a second piece of capability information may be associated with an SRS resource set.
  • UE 110 may use the first spatial relation filter (s) and the second capability information to transmit the SRS resources in the SRS resource set (s) according to the network configuration for the SRS resource sets.
  • Network 140 may indicate one SRS resource set indicator, at least one SRI field (s) , at least one TPMI field (s) , and a third piece of UE capability information, for an UL grant of a PUSCH.
  • network 140 may associate at least one second spatial relation filter (s) with the PUSCH. Accordingly, UE 110 may use the second spatial relation filter (s) to transmit a PUCCH/PUSCH based on the UL grant.
  • each UE capability value set may additionally include at least one piece of information, such as: (i) a coherence type indicator (e.g., fully coherent, partially coherent, or not coherent) ; (ii) capabilities related to UL full power transmission (e.g., ul-FullPwrMode2-TPMIGroup-r16) ; and (iii) a value of the maximum supported number of UL multiple-input-multiple-output (MIMO) layers or a list of the maximum supported numbers of UL MIMO layers.
  • the first, the second and the third pieces of UE capability information may include a value of UE capability set ID or a list of UE capability value set ID (s) .
  • the second piece of UE capability information for the SRS resource sets and the third piece of UE capability information for the PUCCH/PUSCH may be configured by network 140 via RRC, associated via MAC-CE, or indicated via DCI.
  • the first spatial relation filter (s) for the SRS resource sets may be configured by network 140 via RRC, associated via MAC-CE, or determined by UE 110 based on the TCI state (s) indicated by network 140 via DCI.
  • the second spatial relation filter (s) for the PUSCH may be configured by network 140 via RRC, associated via MAC-CE, or determined by UE 110 based on the TCI state (s) or SRI field (s) indicated by network 140 via DCI.
  • network 140 may use one or more rules in selecting the first and/or second spatial relation filter (s) based on the CSI reporting from UE 110.
  • One rule may be that, in an event that the first and/or second spatial relation filter (s) is/are used for simultaneous multi-panel UL transmission to multiple TRPs and one SSBRI/CRI is reported in a CSI result, the first and/or second spatial relation filter (s) may be the DL RSs the corresponding UE capability value set IDs of which may be different.
  • the first and/or second spatial relation filter (s) may be a DL RS the corresponding UE capability value set of which may contain a list of a maximum supported number of SRS ports.
  • the SRS resource set indicator may indicate the association between the first and/or second spatial relation filter (s) and the SRS resource sets as well as the mapping among one or multiple SRI field (s) , one or multiple TPMI field (s) , and the SRS resource sets.
  • Example associations are shown in FIG. 7 ⁇ FIG. 9.
  • the codepoint of the SRS resource set indicator may be predefined in a 3GPP specification (e.g., Rel-17 or beyond) as the table (s) or configured by network 140 via RRC or MAC-CE.
  • a rule of UE antenna port selection from a single panel or multiple panels for the SRS resource set (s) and the PUSCH may be defined. For instance, in an event that network 140 indicates the second and/or third piece (s) of UE capability information, the antenna port selectin from the single/multiple panel (s) for the SRS resource sets/PUSCH may follow the second and/or third piece (s) of UE capability information.
  • the antenna port selection from the single/multiple panel (s) for the SRS resource sets/PUSCH may follow the first piece of UE capability information corresponding to the RS (s) of the first and/or second spatial relation filter (s) .
  • FIG. 16 illustrates an example system 1600 having at least an example apparatus 1610 and an example apparatus 1620 in accordance with an implementation of the present disclosure.
  • apparatus 1610 and apparatus 1620 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications, including the various schemes described above with respect to various proposed designs, concepts, schemes, systems and methods described above as well as processes described below.
  • apparatus 1610 may be implemented in UE 110 and apparatus 1620 may be implemented in network node 120/network node 130, or vice versa.
  • each of apparatus 1610 and apparatus 1620 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more reduced-instruction set computing (RISC) processors, or one or more complex-instruction-set-computing (CISC) processors.
  • IC integrated-circuit
  • RISC reduced-instruction set computing
  • CISC complex-instruction-set-computing
  • Each of apparatus 1610 and apparatus 1620 may include at least some of those components shown in FIG. 16 such as a processor 1612 and a processor 1622, respectively, for example.
  • Each of apparatus 1610 and apparatus 1620 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of apparatus 1610 and apparatus 1620 are neither shown in FIG. 16 nor described below in the interest of simplicity and brevity.
  • components not pertinent to the proposed scheme of the present disclosure e.g., internal power supply, display device and/or user interface device
  • processor 1612 and processor 1622 may be implemented in the form of one or more single-core processors, one or more multi-core processors, one or more RISC processors or one or more CISC processors. That is, even though a singular term “a processor” is used herein to refer to processor 1612 and processor 1622, processor 1612 and processor 1622 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure.
  • processor 1612 and processor 1622 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific purposes in accordance with the present disclosure.
  • processor 1612 and processor 1622 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including those pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications in accordance with various implementations of the present disclosure.
  • apparatus 1610 may also include a transceiver 1616 coupled to processor 1612.
  • Transceiver 1616 may include a transmitter capable of wirelessly transmitting and a receiver capable of wirelessly receiving data.
  • apparatus 1620 may also include a transceiver 1626 coupled to processor 1622.
  • Transceiver 1626 may include a transmitter capable of wirelessly transmitting and a receiver capable of wirelessly receiving data.
  • apparatus 1610 may further include a memory 1614 coupled to processor 1612 and capable of being accessed by processor 1612 and storing data therein.
  • apparatus 1620 may further include a memory 1624 coupled to processor 1622 and capable of being accessed by processor 1622 and storing data therein.
  • RAM random-access memory
  • DRAM dynamic RAM
  • SRAM static RAM
  • T-RAM thyristor RAM
  • Z-RAM zero-capacitor RAM
  • each of memory 1614 and memory 1624 may include a type of read-only memory (ROM) such as mask ROM, programmable ROM (PROM) , erasable programmable ROM (EPROM) and/or electrically erasable programmable ROM (EEPROM) .
  • ROM read-only memory
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • each of memory 1614 and memory 1624 may include a type of non-volatile random-access memory (NVRAM) such as flash memory, solid-state memory, ferroelectric RAM (FeRAM) , magnetoresistive RAM (MRAM) and/or phase-change memory.
  • NVRAM non-volatile random-access memory
  • processor 1612 may report, via transceiver 1616, to a network (e.g., to RAN 140 via apparatus 1620 as network node 120/130) one or more UE capability value sets with: (a) each of the one or more UE capability value sets containing a value of a maximum supported number of SRS ports or a list of maximum supported numbers of SRS ports, and (b) any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets.
  • processor 1612 may receive, via transceiver 1616, from the network (e.g., via apparatus 1620) a CSI configuration that configures a CSI reporting setting to associate at least one CSI resource setting to apparatus 1610. Moreover, processor 1612 may measure, via transceiver 1616, at least one CSI result.
  • processor 1612 may report, via transceiver 1616, to the network (e.g., via apparatus 1620) the at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, with the at least one CSI result including a SSBRI and a CRI (herein denoted as “SSBRI/CRI” ) , or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity (e.g., L1-RSRP or a SINR) as well as a first UE capability information.
  • SSBRI/CRI SSBRI/CRI
  • processor 1612 may perform additional operations. For instance, processor 1612 may receive, via transceiver 1616, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set. Moreover, processor 1612 may transmit, via transceiver 1616 and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration.
  • processor 1612 may receive, via transceiver 1616, from the network an indication for an UL grand of a PUSCH, with the indication indicating: one SRS resource set indicator, at least one SRI field, at least one TPMI field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH. Furthermore, processor 1612 may transmit, via transceiver 1616 and using the at least one second spatial relation filter, a PUCCH or the PUSCH based on the UL grant.
  • each of the one or more UE capability value sets may further include at least one of the following: (a) a coherence type indicator to indicate fully coherent, partially coherent, or not coherent; (b) capabilities related to UL full power transmission; and (c) a value of a maximum supported number of UL MIMO layers or a list of maximum supported numbers of UL MIMO layers.
  • each of the first, the second and the third UE capability information may include a value of UE capability value set ID or a list of UE capability value set IDs.
  • the second UE capability information for the one or more SRS resource sets and the third UE capability information for the PUCCH or PUSCH may be configured by a RRC signaling, associated via a MAC-CE, or indicated via a DCI signaling.
  • the first spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
  • the second spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
  • each of the first spatial relation filter and the second spatial relation filter may be selected by the network based on the at least one CSI result reported by the UE and using one or more of a plurality of rules.
  • a first rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to multiple network nodes and one SSBRI/CRI is reported in a single CSI result, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RSs whose corresponding UE capability value set IDs are different.
  • a second rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to a single network node, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RS whose corresponding UE capability value set contains the list of maximum supported numbers of SRS ports.
  • the SRS resource set indicator may indicate an association between either or both of the first and the second spatial relation filters and the one or more SRS resource sets. Additionally, the SRS resource set indicator may also indicate a mapping among one or more multiple SRI fields of the at least one SRI field, one or more TPMI fields of the at least one TPMI field, and the one or more SRS resource sets.
  • the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the UEP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved.
  • S-TRP single-transmission-and-reception-point
  • S-panel single-panel
  • the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the UEP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved.
  • the SRS resource set indicator indicates the S-TRP mode and a multi-panel (M-panel) mode for the UEP1 and UEP2 such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1.
  • the SRS resource set indicator indicates the S-TRP mode and the M-panel mode for the UEP1 and UEP2 such that: (j) the first SRI field is associated with the SRS resource set, and the first TPMI field is associated with both of the SRS resource set #0 and the SRS resource set #1; and (k) the second SRI field is associated with the SRS resource set #1, and the second TPMI field is reserved.
  • the SRS resource set indicator indicates an S-TRP mode and an M-panel mode such that: (a) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (b) a second SRI field is reserved and a second TPMI field is associated with the SRS resource set #0.
  • the SRS resource set indicator indicates the S-TRP mode and an S-panel mode or the M-panel mode such that: (c) the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with the UEP1 and the UEP2; and (d) the second SRI field and the second TPMI field are reserved.
  • TRP1 transmission-and-reception-point
  • TRP2 transmission-and-reception-point
  • the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and an S-panel mode for the TRP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved.
  • the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the TRP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved.
  • the SRS resource set indicator indicates a multi-transmission-and-reception-point (M-TRP) mode and an M-panel mode such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1.
  • M-TRP multi-transmission-and-reception-point
  • a respective codepoint of the SRS resource set indicator may be predefined in a 3GPP specification (e.g., Release 18 or later) or configured by the network via a RRC signaling or a MAC-CE.
  • processor 1612 may perform an antenna port selection from a single panel or multiple panels of apparatus 1610 using one or more of a plurality of rules.
  • a first rule may be that, in an event that the network indicates the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the second or the third UE capability information.
  • a second rule may be that, in an event that the network does not indicate the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the first UE capability information corresponding to one or more RSs of either or both of the first and the second spatial relation filters.
  • FIG. 17 illustrates an example process 1700 in accordance with an implementation of the present disclosure.
  • Process 1700 may represent an aspect of implementing various proposed designs, concepts, schemes, systems and methods described above. More specifically, process 1700 may represent an aspect of the proposed concepts and schemes pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications in accordance with the present disclosure.
  • Process 1700 may include one or more operations, actions, or functions as illustrated by one or more of blocks 1710, 1720, 1730 and 1740. Although illustrated as discrete blocks, various blocks of process 1700 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks/sub-blocks of process 1700 may be executed in the order shown in FIG.
  • Process 1700 may be implemented by or in apparatus 1610 and apparatus 1620 as well as any variations thereof. Solely for illustrative purposes and without limiting the scope, process 1700 is described below in the context of apparatus 1610 implemented in or as UE110 and apparatus 1620 implemented in or as network node 120 or network node 130 of a wireless network such as RAN 140 in network environment 100 in accordance with one or more of 3GPP standards. Process 1700 may begin at block 1710.
  • process 1700 may involve processor 1612 reporting, via transceiver 1616, to a network (e.g., to RAN 140 via apparatus 1620 as network node 120/130) one or more UE capability value sets with: (a) each of the one or more UE capability value sets containing a value of a maximum supported number of SRS ports or a list of maximum supported numbers of SRS ports, and (b) any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets.
  • Process 1700 may proceed from 1710 to 1720.
  • process 1700 may involve processor 1612 receiving, via transceiver 1616, from the network (e.g., via apparatus 1620) a CSI configuration that configures a CSI reporting setting to associate at least one CSI resource setting to apparatus 1610.
  • Process 1700 may proceed from 1720 to 1730.
  • process 1700 may involve processor 1612 measuring, via transceiver 1616, at least one CSI result. Process 1700 may proceed from 1730 to 1740.
  • process 1700 may involve processor 1612 reporting, via transceiver 1616, to the network (e.g., via apparatus 1620) the at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, with the at least one CSI result including a SSBRI and a CRI (herein denoted as “SSBRI/CRI” ) , or a group of two SSBRIs/CRIs, plus a corresponding L1-RSRP and a SINR as well as a first UE capability information.
  • SSBRI/CRI SSBRI/CRI
  • process 1700 may involve processor 1612 performing additional operations. For instance, process 1700 may involve processor 1612 receiving, via transceiver 1616, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set. Moreover, process 1700 may involve processor 1612 transmitting, via transceiver 1616 and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration.
  • process 1700 may involve processor 1612 receiving, via transceiver 1616, from the network an indication for an UL grand of a PUSCH, with the indication indicating: one SRS resource set indicator, at least one SRI field, at least one TPMI field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH. Furthermore, process 1700 may involve processor 1612 transmitting, via transceiver 1616 and using the at least one second spatial relation filter, a PUCCH or the PUSCH based on the UL grant.
  • each of the one or more UE capability value sets may further include at least one of the following: (a) a coherence type indicator to indicate fully coherent, partially coherent, or not coherent; (b) capabilities related to UL full power transmission; and (c) a value of a maximum supported number of UL MIMO layers or a list of maximum supported numbers of UL MIMO layers.
  • each of the first, the second and the third UE capability information may include a value of UE capability value set ID or a list of UE capability value set IDs.
  • the second UE capability information for the one or more SRS resource sets and the third UE capability information for the PUCCH or PUSCH may be configured by a RRC signaling, associated via a MAC-CE, or indicated via a DCI signaling.
  • the first spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
  • the second spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
  • each of the first spatial relation filter and the second spatial relation filter may be selected by the network based on the at least one CSI result reported by the UE and using one or more of a plurality of rules.
  • a first rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to multiple network nodes and one SSBRI/CRI is reported in a single CSI result, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RSs whose corresponding UE capability value set IDs are different.
  • a second rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to a single network node, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RS whose corresponding UE capability value set contains the list of maximum supported numbers of SRS ports.
  • the SRS resource set indicator may indicate an association between either or both of the first and the second spatial relation filters and the one or more SRS resource sets. Additionally, the SRS resource set indicator may also indicate a mapping among one or more multiple SRI fields of the at least one SRI field, one or more TPMI fields of the at least one TPMI field, and the one or more SRS resource sets.
  • the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the UEP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved.
  • S-TRP single-transmission-and-reception-point
  • S-panel single-panel
  • the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the UEP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved.
  • the SRS resource set indicator indicates the S-TRP mode and a multi-panel (M-panel) mode for the UEP1 and UEP2 such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1.
  • the SRS resource set indicator indicates the S-TRP mode and the M-panel mode for the UEP1 and UEP2 such that: (j) the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with both of the SRS resource set #0 and the SRS resource set #1; and (k) the second SRI field is associated with the SRS resource set #1, and the second TPMI field is reserved.
  • the SRS resource set indicator indicates an S-TRP mode and an M-panel mode such that: (a) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (b) a second SRI field is reserved and a second TPMI field is associated with the SRS resource set #0.
  • the SRS resource set indicator indicates the S-TRP mode and an S-panel mode or the M-panel mode such that: (c) the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with the UEP1 and the UEP2; and (d) the second SRI field and the second TPMI field are reserved.
  • TRP1 transmission-and-reception-point
  • TRP2 transmission-and-reception-point
  • the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and an S-panel mode for the TRP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved.
  • the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the TRP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved.
  • the SRS resource set indicator indicates a multi-transmission-and-reception-point (M-TRP) mode and an M-panel mode such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1.
  • M-TRP multi-transmission-and-reception-point
  • a respective codepoint of the SRS resource set indicator may be predefined in a 3GPP specification (e.g., Release 18 or later) or configured by the network via a RRC signaling or a MAC-CE.
  • process 1700 may involve processor 1612 performing an antenna port selection from a single panel or multiple panels of apparatus 1610 using one or more of a plurality of rules.
  • a first rule may be that, in an event that the network indicates the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the second or the third UE capability information.
  • a second rule may be that, in an event that the network does not indicate the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the first UE capability information corresponding to one or more RSs of either or both of the first and the second spatial relation filters.
  • any two components so associated can also be viewed as being “operably connected” , or “operably coupled” , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable” , to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Abstract

A user equipment (UE) reports one or more UE capability value sets to a network. Each of the UE capability value set (s) containing a value of a maximum supported number of sounding reference signal (SRS) ports or a list of maximum supported numbers of SRS ports. Any two of the one or more UE capability value set (s) are the same. The UE receives, from the network, a channel state information (CSI) configuration that configures a CSI reporting setting to associate at least one CSI resource setting to the UE. The UE then measures and reports, to the network, at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting. The CSI result includes an SSBRI/CRI, or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity (e.g., L1-RSRP or SINR) and a first UE capability information.

Description

MULTI-BEAM OPERATION FOR MULTI-PANEL USER EQUIPMENT UPLINK TRANSMISSIONS
CROSS REFERENCE TO RELATED PATENT APPLICATION (S)
The present disclosure claims the priority benefit of U.S. Provisional Patent Application No. 63/293,100, filed 23 December 2021, the content of which herein being incorporated by reference in its entirety.
TECHNICAL FIELD
The present disclosure is generally related to wireless communications and, more particularly, to multi-beam operation for multi-panel user equipment (UE) uplink (UL) transmissions in wireless communications.
BACKGROUND
Unless otherwise indicated herein, approaches described in this section are not prior art to the claims listed below and are not admitted as prior art by inclusion in this section.
With increasing popularity of mobile communication devices and advancement in technology, more and more UEs are equipped with multiple panels. However, single-panel UL transmission only is allowed until Release 17 (Rel-17) of the 3 rd Generation Partnership Project (3GPP) specification for mobile communications. That is, in multi-transmission-and-reception-point (herein denoted as “mTRP” and “M-TRP” interchangeably) operation, even if a UE could establish two links by two panels, the UE would still transmits physical uplink shared channel (PUSCH) and/or physical uplink control channel (PUCCH) to one TRP by a single panel at a given time. The mTRP operation with time-division multiplexing (TDM) repetition could enhance reliability but at the expense of long latency. On the other hand, simultaneous UL transmissions across multiple panels may be beneficial in terms of enhancement in both throughput and reliability. For example, throughput may be increased by simultaneously transmitting different data to different TRPs or a single TRP. Moreover, reliability may be improved by simultaneously transmitting duplications to different TRPs or a single TRP.
However, there remain certain issues to be addressed. For instance, one issue pertains to how a network indicates information of the sounding reference signal (SRS) resource indicator (SRI) and transmitted precoding matrix indicator (TPMI) to a UE for simultaneous PUSCH for multi-panel UEs (STxMP) to mTRP. The configuration of two SRS resource sets, SS resource set indicator field, two SRI fields and two TPMI fields is introduced in Rel-17 mTRP PUSCH TDM repetition. The UL SRI/TPMI indication and SRS resource set configuration could be further extended to support space-division multiplexing (SDM) , frequency-division multiplexing (FDM) and system frame numbering (SFN) schemes. Another issue is that the network could not be aware of which beam group of two beams is feasible for STxMP by a legacy procedure. Specifically, how to avoid the network from selecting two UE beams belonging to the same UE panel needs to be addressed. Moreover, how to dynamically indicate the antenna capability for UE panels (e.g., the number of SRS ports for each panel) also needs to be addressed.
Therefore, there is a need for a solution of multi-beam operation for multi-panel UE UL transmissions in wireless communications.
SUMMARY
The following summary is illustrative only and is not intended to be limiting in any way. That is, the following summary is provided to introduce concepts, highlights, benefits and advantages of the novel and non-obvious techniques described herein. Select implementations are further described below in the detailed description. Thus, the following summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
An objective of the present disclosure is to provide schemes, concepts, designs, techniques, methods and apparatuses pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications. Under various proposed schemes in accordance with the present disclosure, it is believed that aforementioned issue  may be addressed or otherwise alleviated.
In one aspect, a processor of an apparatus, implemented in a UE, may report, via a transceiver, to a network one or more UE capability value sets with: (a) each of the one or more UE capability value sets containing a value of a maximum supported number of SRS ports or a list of maximum supported numbers of SRS ports, and (b) any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets. The processor may receive, via the transceiver, from the network a channel state information (CSI) configuration that configures a CSI reporting setting to associate at least one CSI resource setting to the UE. The processor may then measure and report, via the transceiver, to the network at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, with the at least one CSI result comprising a synchronization signal (SS) /physical broadcast channel (PBCH) Block Resource Indicator (SSBRI) and CSI Reference Signal Resource Indicator (CRI) , or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity (e.g., layer 1 reference signal received power (L1-RSRP) or signal-to-interference noise ratio (SINR) ) and a first UE capability information. The processor may receive, via the transceiver, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set. Correspondingly, the processor may transmit, via the transceiver and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration. Moreover, the processor may receive, via the transceiver, from the network an indication for an UL grand of a PUSCH, the indication indicating: one SRS resource set indicator, at least one SRI field, at least one TPMI field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH. Correspondingly, the processor may transmit, via the transceiver and using the at least the second spatial relation filter, a PUCCH or the PUSCH based on the UL grant.
It is noteworthy that, although description provided herein may be in the context of certain radio access technologies, networks and network topologies such as, 5 th Generation (5G) New Radio (NR) mobile communications, the proposed concepts, schemes and any variation (s) /derivative (s) thereof may be implemented in, for and by other types of radio access technologies, networks and network topologies such as, for example and without limitation, 4 th Generation (4G) Long-Term Evolution (LTE) , LTE-Advanced, LTE-Advanced Pro, vehicle-to-vehicle (V2V) , vehicle-to-everything (V2X) , Wi-Fi, WiMax, Bluetooth, ZigBee, Internet-of-Things (IoT) , Industrial IoT (IIoT) and narrowband IoT (NB-IoT) . Thus, the scope of the present disclosure is not limited to the examples described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of the present disclosure. The drawings illustrate implementations of the disclosure and, together with the description, serve to explain the principles of the disclosure. It is appreciable that the drawings are not necessarily in scale as some components may be shown to be out of proportion than the size in actual implementation to clearly illustrate the concept of the present disclosure.
FIG. 1 is a diagram of an example network environment in which various solutions and schemes in accordance with the present disclosure may be implemented.
FIG. 2 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 3 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 4 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 5 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 6 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 7 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 8 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 9 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 10 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 11 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 12 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 13 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 14 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 15 is a diagram of an example scenario in accordance with the present disclosure.
FIG. 16 is a block diagram of an example communication system in accordance with an implementation of the present disclosure.
FIG. 17 is a flowchart of an example process in accordance with an implementation of the present disclosure.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Detailed embodiments and implementations of the claimed subject matters are disclosed herein. However, it shall be understood that the disclosed embodiments and implementations are merely illustrative of the claimed subject matters which may be embodied in various forms. The present disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments and implementations set forth herein. Rather, these exemplary embodiments and implementations are provided so that description of the present disclosure is thorough and complete and will fully convey the scope of the present disclosure to those skilled in the art. In the description below, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments and implementations.
Overview
Implementations in accordance with the present disclosure relate to various techniques, methods, schemes and/or solutions pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications. According to the present disclosure, a number of possible solutions may be implemented separately or jointly. That is, although these possible solutions may be described below separately, two or more of these possible solutions may be implemented in one combination or another.
FIG. 1 illustrates an example network environment 100 in which various solutions and schemes in accordance with the present disclosure may be implemented. FIG. 2 ~ FIG. 17 illustrate examples of implementation of various proposed schemes in network environment 100 in accordance with the present disclosure. The following description of various proposed schemes is provided with reference to FIG. 1 ~ FIG. 17.
Referring to FIG. 1, network environment 100 may involve at least a UE 110 communicating wirelessly with a first network node 120 (e.g., first TRP, eNB or gNB) and optionally a second network node 130 (e.g., second TRP, eNB or gNB) of a radio access network (RAN) 140 (e.g., a cellular network such as a 5G/NR mobile network) in accordance with one or more 3GPP specifications (e.g., Rel-17 and beyond) . Part (A) of FIG. 1 shows a multi-bean operation for multi-beam UE 110 UL transmissions in a multi-panel UL in single-TRP scenario involving UE 110 and network node 120. Part (B) of FIG. 2 shows a multi-bean operation for multi-beam UE 110 UL transmissions in a multi-panel UL in multi-TRP scenario involving UE 110, network node 120 and network node 130. Each of UE 110 and network 140 (e.g., via network node 120 and network node 130) may be configured to implement multi-beam operation for multi-panel UE UL transmissions in accordance with various proposed schemes, as described below. It is noteworthy that, although UE 110 is shown to be equipped or otherwise configured with a certain number of panels in FIG. 1 and following figures (e.g., three panels namely: panel 1, panel 2 and panel 3) , in actual implementations the number of panels may differ or may be the same. It is also noteworthy that, while the various proposed schemes may be individually or separately described below, in actual implementations each of the proposed schemes may be utilized individually or separately. Alternatively, some or all of the proposed schemes may be utilized jointly.
Under Rel-17 with respect to UE capability reporting, UE 110 may report to network 140 a list of UE capability values (or value sets) as UE capability of UE 110. Each UE capability value (or set) may include the maximum supported number of SRS antenna ports (APs) , and any two capability values (or sets) are different. In a beam reporting instance, an index of corresponding UE capability value set is reported along with each reported pair of synchronization signal (SS) /physical broadcast channel (PBCH) Block Resource Indicator (SSBRI) and CSI  Reference Signal Resource Indicator (CRI) as well as measurement quantity (e.g., layer 1 reference signal received power (L1-RSRP) or signal-to-interference noise ratio (SINR) ) . This is applicable to both legacy beam reporting and group-based beam reporting.
With respect to PUSCH transmission, regarding beam management, network 140 may configure CSI reference signal (CSI-RS) resource (s) and reporting configuration. UE 110 may measure downlink (DL) reference signal (e.g., synchronization signal block (SSB) and/or CSI-RS) and report CSI reporting including the beam report. Regarding CSI acquisition, network 140 may configure SRS resource set (s) to require UE 110 to transmit SRS resource (s) for CSI acquisition. Moreover, network 140 may estimate the UL channel according to the SRS reference signal. Regarding indication and configuration for PUSCH, network 140 may provide an UL grant to UE 110 by radio resource control (RRC) configuration (for Type 1 configured grant (CG) -PUSCH) or downlink control information (DCI) indication (DG-PUSCH and Type 2 CG-PUSCH) . Network 140 may select the SRS resource (s) by SRI field and provide the precoding information by TPMI field. Additionally, UE 110 may transmit PUSCH according to the configuration/indication from network 140.
With respect to single-panel PUSCH transmission in a single-TRP (herein denoted as “sTRP” and “S-TRP” interchangeably) operation, for DL beam management, network 140 may configure a reporting configuration and associate with only one CSI-RS resource set for the single TRP. For instance, the CSI-resource setting may include a resource set (RS) #0 of {RS#1, RS#2, RS#3} for network node 120. Moreover, network 140 may configure one SRS resource set for CSI acquisition. For codebook-based UL transmissions, one SRS resource set with usage = {codebook} may be configured. For non-codebook-based UL transmissions, one SRS resource set with usage = {non-codebook} may be configured. Moreover, only one SRI and one TPMI (in case of codebook-based PUSCH) may be configured or otherwise indicated. The SRS resource (s) of the SRS resource set may be selected by the SRI. In case that the PUSCH is non-codebook-based, the SRI may also be utilized to determine the number of PUSCH layers. In case that the PUSCH is codebook-based, the TPMI may be utilized to determine the number of PUSCH layers and precoding matrix. Regarding UL grant for Type 1 CG-PUSCH, the SRI may be configured by srs-ResourceIndicator in ConfiguredGrantConfig, and the TPMI may be configured by precodingAndNumberOfLayers in ConfigureGrantConfig. Regarding UL grant for DG-PUSCH Type 2 CG-PUSCH, the SRI may be indicated by the “SRS resource indicator” field in DCI, and the TPMI may be configured by the “precoding information and number of layers” field in DCI.
With respect to single-panel PUSCH transmission in an mTRP operation, a single-panel PUSCH transmission to mTRP was introduced by TDM repetition in single-DCI (s-DCI) -based mTRP operation. For DL beam management, network 140 may configure a reporting configuration and associate with up to two CSI-RS resource set(s) for multiple TRPs. For instance, the CSI-resource setting may include a resource set (RS) #0 of {RS#1, RS#2, RS#3} for network node 120 and another resource set RS #1 of {RS#4, RS#5, RS#6} for network node 130. Moreover, network 140 may configure two SRS resource sets for CSI acquisition. For codebook-based UL transmissions, two SRS resource sets with usage = {codebook} may be configured. For non-codebook-based UL transmissions, two SRS resource sets with usage = {non-codebook} may be configured. The SRS resource set with a lower identifier (ID) may be the first SRS resource set and the other may be the second SRS resource set. Moreover, one or two SRI (s) and one or two TPMI (s) (in case of codebook-based PUSCH) may be configured or otherwise indicated. For non-codebook-based PUSCH, the number of selected SRS resource (s) for two SRS resource sets may be the same. For codebook-based PUSCH, the number of SRS ports of the two selected SRS resources for two SRS resource sets may be the same. The same layers may be configured or otherwise indicated for all the repetitions to two TRPs. Regarding UL grant for Type 1 CG-PUSCH, two SRIs may be configured by srs-ResourceIndicator and srs-ResourceIndicator2 in ConfigureGrantConfig, and two TPMIs may be configured by precodingAndNuberOfLayers and precodingAndNumberOfLayers2 in ConfiguredGrantConfig. As for SRS resource set association with SRI/TPMI, srs-ResourceIndicator and precodingAndNumberOfLayers are associated with the first SRS resource set, while srs-ResourceIndicator2 and precodingAndNumberOfLayers2 are associated with the second SRS resource set. Regarding UL grant for DG-PUSCH and Type 2 CG-PUSCH, two SRIs may be indicated by the “SRS resource indicator” and “second SRS resource indicator” field in DCI, and two TPMIs may  be configured by “precoding information and number of layer” and “second precoding information” fields in DCI. The number of layers for each repetition may be indicated by “precoding information and number of layer” only. SRS resource set association with SRI/TPMI may be indicated by the “SRS resource set indicator” field.
Under a proposed scheme in accordance with the present disclosure with respect to multi-panel PUSCH transmission for beam reporting, UE capability index reporting may be enhanced. FIG. 2 illustrates an example scenario 200 under the proposed scheme. Referring to FIG. 2, with respect to enhanced UE capability index reporting, a UE capability value set may contain a value of the maximum number of supported SRS ports or a list of the maximum number of supported SRS ports, where the maximum number of supported SRS ports may be determined according to a single panel capability. Other information (e.g., coherence type) may be included in a UE capability value set as well. FIG. 3 illustrates another example scenario 300 under the proposed scheme. Referring to FIG. 3, with respect to enhanced UE capability index reporting, at least one UE capability set ID (s) may be reported in a reporting instance for each DL resource sets (RSs) or a pair of DL RSs.
Under a proposed scheme in accordance with the present disclosure with respect to multi-panel PUSCH transmission, beam indication restriction may be necessary in multi-panel UL transmissions to multiple TRPs. According to a current beam management procedure, network 140 may select two DL RSs the corresponding UE beams of which belong to the same panel. Group-based beam reporting may avoid this issue naturally; however, restriction on beam indication may be necessary when using legacy beam reporting. When legacy beam reporting is used, network 140 may select two DL RSs the corresponding UE capability set of which contain one value for indicating the maximum number of supported SRS ports and corresponding UE capability set ID may be different. FIG. 4 illustrates an example scenario 400 under the proposed scheme. Referring to FIG. 4, network 140 may not select RS#3 for multi-panel UL transmission (e.g., for SRS/PUSCH/PUCCH) .
Under a proposed scheme in accordance with the present disclosure with respect to multi-panel PUSCH transmission for SRS resource set configuration, multi-panel PUSCH transmission to a single TRP may be performed. For instance, one or two SRS resource sets may be configured, and the SRS resource set (s) may be associated with a single TRP. The number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110. FIG. 5 illustrates an example scenario 500 under the proposed scheme. Part (A) of FIG. 5 shows a first case (Case 1) of one SRS resource set configuration. Part (B) of FIG. 5 shows two SRS resource set configurations.
Under the proposed scheme, multi-panel PUSCH transmission to multiple TRPs may be performed. For instance, two SRS resource sets may be configured, with each SRS resource set (s) associated with a respective TRP. The number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110. FIG. 6 illustrates another example scenario 600 under the proposed scheme. Under the proposed scheme, the UE capability set ID (s) may be associated with the SRS resource set (s) via RRC signaling or a medium access control (MAC) control element (CE) . In case that UE capability set ID (s) is/are indicated, the antenna port selection from a single panel or multiple panels for SRS resource transmission may follow the indicated UE capability set ID (s) . Otherwise, the antenna port selection from a single panel or multiple panels for SRS resource transmission may follow the reported UE capability set ID (s) corresponding to the RS (s) of the associated spatial relation filter (s) or the quasi-co-located (QCL) -Type-D RS (s) of the transmission configuration indicator (TCI) state (s) .
Under a proposed scheme in accordance with the present disclosure with respect to multi-panel PUSCH transmission for UL grant by DCI indication, network 140 may indicate at least one piece of information for UL transmission in DCI by using one or multiple fields. For instance, the information indicated by network 140 may include one or more of the following: (i) one or two SRI field (s) , (ii) one or two TPMI field (s) ; (iii) one SRS resource set indicator field; and (iv) at least one UE capability set ID (s) . FIG. 7 illustrates an example scenario 700 under the proposed scheme. Referring to FIG. 7, association between SRS resource set and SRI/TPMI field may be by an SRS resource set indicator. Specifically, the example shown in FIG. 7 pertains to single-panel UL or multi-panel UL to single TRP with two SRS resource set configurations. It is noteworthy that, in scenario 700, only codepoints 0 ~ 2 are needed for non-codebook-based UL transmissions. FIG. 8 illustrates another example scenario 800 under  the proposed scheme. Referring to FIG. 8, association between SRS resource set and SRI/TPMI field may be by an SRS resource set indicator. Specifically, the example shown in FIG. 8 pertains to single-panel UL or multi-panel UL to single TRP with one SRS resource set configuration. It is noteworthy that, in scenario 800, only codepoint 0 is needed for non-codebook-based UL transmissions. FIG. 9 illustrates yet another example scenario 900 under the proposed scheme. Referring to FIG. 9, association between SRS resource set and SRI/TPMI field may be by an SRS resource set indicator. Specifically, the example shown in FIG. 9 pertains to single-panel UL or multi-panel UL to single TRP or multiple TRPs with two SRS resource set configurations. It is noteworthy that, in scenario 900, codepoints 0 ~ 2 are needed for non-codebook-based UL transmissions.
FIG. 10, FIG. 11 and FIG. 12 illustrates  example scenarios  1000, 1100 and 1200 of multi-panel PUSCH transmission to a single TRP under a proposed scheme in accordance with the present disclosure. Referring to part (A) of FIG. 10, UE 110 may report its UE capability set values to provide the panel antenna capability. Referring to part (B) of FIG. 10, for DL beam management, network 140 may configure a reporting configuration and associate with only one CSI-RS resource set for a single TRP. Referring to part (C) of FIG. 10, in a CSI report instance, UE 110 may report DL-RS index (es) , corresponding L1-RSRP/SINR (s) , and corresponding UE capability value set ID (s) .
Referring to FIG. 11, under the proposed scheme, one or two SRS resource sets may be configured, and the SRS resource set (s) may be associated with a given TRP (e.g., network node 120 or network node 130) . The number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110. Part (A) of FIG. 11 shows a first case (Case 1) of one SRS resource set configuration. Part (B) of FIG. 11 shows a second case (Case 2) of two SRS resource set configurations.
Referring to FIG. 12, under the proposed scheme, network 140 may use DCI indication for UL grant to indicate UL transmission mode, SRI (s) , TPMI (s) , and one UE capability set ID (s) , if any. UE 110 may follow the indicated UL grant to transmit a codebook-based or non-codebook-based PUSCH and/or PUCCH.
FIG. 13, FIG. 14 and FIG. 15 illustrates  example scenarios  1300, 1400 and 1500 of multi-panel PUSCH transmission to a single TRP under another proposed scheme in accordance with the present disclosure. Referring to part (A) of FIG. 13, UE 110 may report its UE capability set values to provide the panel antenna capability. Referring to part (B) of FIG. 13, for DL beam management, network 140 may configure a reporting configuration and associate with one or two CSI-RS resource set (s) for multiple TRPs.
Referring to part (A) of FIG. 14, in a CSI reporting instance, UE 110 may report DL-RS index (es) by legacy beam reporting or may report the group (s) of two DL-RS indexes by group-based beam reporting, corresponding L1-RSRP/SINR (s) , and corresponding UE capability value set ID (s) . Referring to part (B) of FIG. 14, two SRS resource sets may be configured, and each SRS resource set may be associated with a respective TRP. The number of SRS antenna ports for each SRS resource may be configured by network 140 based on the reported UE capability value set (s) from UE 110.
Referring to FIG. 15, under the proposed scheme, network 140 may use DCI indication for UL grant to indicate UL transmission mode, SRI (s) , TPMI (s) , and one UE capability set ID (s) , if any. UE 110 may follow the indicated UL grant to transmit a codebook-based or non-codebook-based PUSCH and/or PUCCH.
In view of the above, under one or more of the various proposed schemes in accordance with the present disclosure, a method of UL transmission for a multi-panel UE (e.g., UE 110) in a cellular network (e.g., network 140) may involve UE 110 reporting one or multiple UE capability value set (s) to network 140, with each UE capability value set containing a value of a maximum supported number of SRS ports or a list of a maximum supported number of SRS ports, and any two UE capability value sets may be the same. Network 140 may configure a CSI reporting setting associating at least one CSI resource setting (s) for UE 110. Based on the CSI reporting setting and at least one CSI resource setting (s) , UE 110 may measure and report at least one CSI result (s) in a CSI reporting instance. The CSI result may include a SSBRI/CRI or a group of two SSBRIs/CRIs, as well as corresponding L1-RSRP/SINR and a fist piece of UE capability information. Additionally, network 140 may configure one or multiple SRS resource sets for UE 110. At least one first UL spatial relation filter (s) and a second piece of capability information may be associated with an SRS resource set. Moreover, UE 110 may use the first  spatial relation filter (s) and the second capability information to transmit the SRS resources in the SRS resource set (s) according to the network configuration for the SRS resource sets. Network 140 may indicate one SRS resource set indicator, at least one SRI field (s) , at least one TPMI field (s) , and a third piece of UE capability information, for an UL grant of a PUSCH. Furthermore, network 140 may associate at least one second spatial relation filter (s) with the PUSCH. Accordingly, UE 110 may use the second spatial relation filter (s) to transmit a PUCCH/PUSCH based on the UL grant.
In some implementations, each UE capability value set may additionally include at least one piece of information, such as: (i) a coherence type indicator (e.g., fully coherent, partially coherent, or not coherent) ; (ii) capabilities related to UL full power transmission (e.g., ul-FullPwrMode2-TPMIGroup-r16) ; and (iii) a value of the maximum supported number of UL multiple-input-multiple-output (MIMO) layers or a list of the maximum supported numbers of UL MIMO layers. In some implementations, the first, the second and the third pieces of UE capability information may include a value of UE capability set ID or a list of UE capability value set ID (s) . In some implementations, the second piece of UE capability information for the SRS resource sets and the third piece of UE capability information for the PUCCH/PUSCH may be configured by network 140 via RRC, associated via MAC-CE, or indicated via DCI. In some implementations, the first spatial relation filter (s) for the SRS resource sets may be configured by network 140 via RRC, associated via MAC-CE, or determined by UE 110 based on the TCI state (s) indicated by network 140 via DCI. In some implementations, the second spatial relation filter (s) for the PUSCH may be configured by network 140 via RRC, associated via MAC-CE, or determined by UE 110 based on the TCI state (s) or SRI field (s) indicated by network 140 via DCI.
In some implementations, network 140 may use one or more rules in selecting the first and/or second spatial relation filter (s) based on the CSI reporting from UE 110. One rule may be that, in an event that the first and/or second spatial relation filter (s) is/are used for simultaneous multi-panel UL transmission to multiple TRPs and one SSBRI/CRI is reported in a CSI result, the first and/or second spatial relation filter (s) may be the DL RSs the corresponding UE capability value set IDs of which may be different. Another rule may be that, in an event that the first and/or second spatial relation filter (s) is/are used for simultaneous multi-panel UL transmission to a single TRP, the first and/or second spatial relation filter (s) may be a DL RS the corresponding UE capability value set of which may contain a list of a maximum supported number of SRS ports.
In some implementations, the SRS resource set indicator may indicate the association between the first and/or second spatial relation filter (s) and the SRS resource sets as well as the mapping among one or multiple SRI field (s) , one or multiple TPMI field (s) , and the SRS resource sets. Example associations are shown in FIG. 7 ~ FIG. 9. In some implementations, the codepoint of the SRS resource set indicator may be predefined in a 3GPP specification (e.g., Rel-17 or beyond) as the table (s) or configured by network 140 via RRC or MAC-CE.
In some implementations, a rule of UE antenna port selection from a single panel or multiple panels for the SRS resource set (s) and the PUSCH may be defined. For instance, in an event that network 140 indicates the second and/or third piece (s) of UE capability information, the antenna port selectin from the single/multiple panel (s) for the SRS resource sets/PUSCH may follow the second and/or third piece (s) of UE capability information. Alternatively, in an event that network 140 does not indicate the second and/or third piece (s) of UE capability information, the antenna port selection from the single/multiple panel (s) for the SRS resource sets/PUSCH may follow the first piece of UE capability information corresponding to the RS (s) of the first and/or second spatial relation filter (s) .
Illustrative Implementations
FIG. 16 illustrates an example system 1600 having at least an example apparatus 1610 and an example apparatus 1620 in accordance with an implementation of the present disclosure. Each of apparatus 1610 and apparatus 1620 may perform various functions to implement schemes, techniques, processes and methods described herein pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications, including the various schemes described above with respect to various proposed designs, concepts, schemes, systems and methods described above as well as processes described below. For instance, apparatus 1610 may be implemented in UE 110 and apparatus 1620 may be implemented in network node 120/network node 130, or vice  versa.
In some implementations, each of apparatus 1610 and apparatus 1620 may be implemented in the form of one or more integrated-circuit (IC) chips such as, for example and without limitation, one or more single-core processors, one or more multi-core processors, one or more reduced-instruction set computing (RISC) processors, or one or more complex-instruction-set-computing (CISC) processors. Each of apparatus 1610 and apparatus 1620 may include at least some of those components shown in FIG. 16 such as a processor 1612 and a processor 1622, respectively, for example. Each of apparatus 1610 and apparatus 1620 may further include one or more other components not pertinent to the proposed scheme of the present disclosure (e.g., internal power supply, display device and/or user interface device) , and, thus, such component (s) of apparatus 1610 and apparatus 1620 are neither shown in FIG. 16 nor described below in the interest of simplicity and brevity.
In one aspect, processor 1612 and processor 1622 may be implemented in the form of one or more single-core processors, one or more multi-core processors, one or more RISC processors or one or more CISC processors. That is, even though a singular term “a processor” is used herein to refer to processor 1612 and processor 1622, processor 1612 and processor 1622 may include multiple processors in some implementations and a single processor in other implementations in accordance with the present disclosure. In another aspect, processor 1612 and processor 1622 may be implemented in the form of hardware (and, optionally, firmware) with electronic components including, for example and without limitation, one or more transistors, one or more diodes, one or more capacitors, one or more resistors, one or more inductors, one or more memristors and/or one or more varactors that are configured and arranged to achieve specific purposes in accordance with the present disclosure. In other words, in at least some implementations, processor 1612 and processor 1622 is a special-purpose machine specifically designed, arranged and configured to perform specific tasks including those pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications in accordance with various implementations of the present disclosure.
In some implementations, apparatus 1610 may also include a transceiver 1616 coupled to processor 1612. Transceiver 1616 may include a transmitter capable of wirelessly transmitting and a receiver capable of wirelessly receiving data. In some implementations, apparatus 1620 may also include a transceiver 1626 coupled to processor 1622. Transceiver 1626 may include a transmitter capable of wirelessly transmitting and a receiver capable of wirelessly receiving data.
In some implementations, apparatus 1610 may further include a memory 1614 coupled to processor 1612 and capable of being accessed by processor 1612 and storing data therein. In some implementations, apparatus 1620 may further include a memory 1624 coupled to processor 1622 and capable of being accessed by processor 1622 and storing data therein. Each of memory 1614 and memory 1624 may include a type of random-access memory (RAM) such as dynamic RAM (DRAM) , static RAM (SRAM) , thyristor RAM (T-RAM) and/or zero-capacitor RAM (Z-RAM) . Alternatively, or additionally, each of memory 1614 and memory 1624 may include a type of read-only memory (ROM) such as mask ROM, programmable ROM (PROM) , erasable programmable ROM (EPROM) and/or electrically erasable programmable ROM (EEPROM) . Alternatively, or additionally, each of memory 1614 and memory 1624 may include a type of non-volatile random-access memory (NVRAM) such as flash memory, solid-state memory, ferroelectric RAM (FeRAM) , magnetoresistive RAM (MRAM) and/or phase-change memory.
In one aspect pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications in accordance with the present disclosure, with apparatus 1610 implementing a UE (e.g., UE 110) and apparatus 1620 implementing a TRP or a type of network node of a network (e.g., network node 120 or network node 130 of network 140) , processor 1612 may report, via transceiver 1616, to a network (e.g., to RAN 140 via apparatus 1620 as network node 120/130) one or more UE capability value sets with: (a) each of the one or more UE capability value sets containing a value of a maximum supported number of SRS ports or a list of maximum supported numbers of SRS ports, and (b) any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets. Additionally, processor 1612 may receive, via transceiver 1616, from the network (e.g., via apparatus 1620) a CSI configuration that configures a CSI reporting setting to associate at least one CSI resource setting to apparatus 1610. Moreover, processor 1612 may measure, via  transceiver 1616, at least one CSI result. Furthermore, processor 1612 may report, via transceiver 1616, to the network (e.g., via apparatus 1620) the at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, with the at least one CSI result including a SSBRI and a CRI (herein denoted as “SSBRI/CRI” ) , or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity (e.g., L1-RSRP or a SINR) as well as a first UE capability information.
In some implementations, processor 1612 may perform additional operations. For instance, processor 1612 may receive, via transceiver 1616, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set. Moreover, processor 1612 may transmit, via transceiver 1616 and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration. Additionally, processor 1612 may receive, via transceiver 1616, from the network an indication for an UL grand of a PUSCH, with the indication indicating: one SRS resource set indicator, at least one SRI field, at least one TPMI field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH. Furthermore, processor 1612 may transmit, via transceiver 1616 and using the at least one second spatial relation filter, a PUCCH or the PUSCH based on the UL grant.
In some implementations, each of the one or more UE capability value sets may further include at least one of the following: (a) a coherence type indicator to indicate fully coherent, partially coherent, or not coherent; (b) capabilities related to UL full power transmission; and (c) a value of a maximum supported number of UL MIMO layers or a list of maximum supported numbers of UL MIMO layers.
In some implementations, each of the first, the second and the third UE capability information may include a value of UE capability value set ID or a list of UE capability value set IDs.
In some implementations, the second UE capability information for the one or more SRS resource sets and the third UE capability information for the PUCCH or PUSCH may be configured by a RRC signaling, associated via a MAC-CE, or indicated via a DCI signaling.
In some implementations, the first spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
In some implementations, the second spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
In some implementations, each of the first spatial relation filter and the second spatial relation filter may be selected by the network based on the at least one CSI result reported by the UE and using one or more of a plurality of rules. For instance, a first rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to multiple network nodes and one SSBRI/CRI is reported in a single CSI result, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RSs whose corresponding UE capability value set IDs are different. Moreover, a second rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to a single network node, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RS whose corresponding UE capability value set contains the list of maximum supported numbers of SRS ports.
In some implementations, the SRS resource set indicator may indicate an association between either or both of the first and the second spatial relation filters and the one or more SRS resource sets. Additionally, the SRS resource set indicator may also indicate a mapping among one or more multiple SRI fields of the at least one SRI field, one or more TPMI fields of the at least one TPMI field, and the one or more SRS resource sets.
In some implementations, as shown in scenario 700 of FIG. 7, regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1, a codepoint 2 and a codepoint 3, the SRS resource set indicator may indicate two SRS resource sets with usage = {codebook} or {non-codebook} such that: (a) a first panel of the UE (UEP1) is associated with a SRS resource set #0; and (b) a second panel of the UE (UEP2) is associated with a SRS resource set #1. Additionally, regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates  a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the UEP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved. Moreover, regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the UEP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved. Furthermore, regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates the S-TRP mode and a multi-panel (M-panel) mode for the UEP1 and UEP2 such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1. Also, regarding SRI and TPMI for the codepoint 3, the SRS resource set indicator indicates the S-TRP mode and the M-panel mode for the UEP1 and UEP2 such that: (j) the first SRI field is associated with the SRS resource set, and the first TPMI field is associated with both of the SRS resource set #0 and the SRS resource set #1; and (k) the second SRI field is associated with the SRS resource set #1, and the second TPMI field is reserved.
In some implementations, as shown in scenario 800 of FIG. 8, regarding the one or more SRS resource sets and for each of a codepoint 0 and a codepoint 1, the SRS resource set indicator indicates one SRS resource set with usage = {codebook} or {non-codebook} such that both of UEP1 and UEP2 are associated with a SRS resource set #0. Additionally, regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates an S-TRP mode and an M-panel mode such that: (a) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (b) a second SRI field is reserved and a second TPMI field is associated with the SRS resource set #0. Moreover, regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and an S-panel mode or the M-panel mode such that: (c) the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with the UEP1 and the UEP2; and (d) the second SRI field and the second TPMI field are reserved.
In some implementations, as shown in scenario 900 of FIG. 9, regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1 and a codepoint 2, the SRS resource set indicator indicates two SRS resource sets with usage = {codebook} or {non-codebook} such that: (a) a first transmission-and-reception-point (TRP1) is associated with a SRS resource set #0; and (b) a second transmission-and-reception-point (TRP2) is associated with a SRS resource set #1. Additionally, regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and an S-panel mode for the TRP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved. Moreover, regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the TRP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved. Furthermore, regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates a multi-transmission-and-reception-point (M-TRP) mode and an M-panel mode such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1.
In some implementations, a respective codepoint of the SRS resource set indicator may be predefined in a 3GPP specification (e.g., Release 18 or later) or configured by the network via a RRC signaling or a MAC-CE.
In some implementations, in transmitting the one or more SRS resources and the PUSCH, processor 1612 may perform an antenna port selection from a single panel or multiple panels of apparatus 1610 using one or more of a plurality of rules. For instance, a first rule may be that, in an event that the network indicates the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the second or the third UE capability information. Moreover, a second rule may be that, in an event that the network does not indicate the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the first UE capability information corresponding to one or more RSs of either or both of the first and the second spatial relation filters.
Illustrative Processes
FIG. 17 illustrates an example process 1700 in accordance with an implementation of the present disclosure. Process 1700 may represent an aspect of implementing various proposed designs, concepts, schemes, systems and methods described above. More specifically, process 1700 may represent an aspect of the proposed concepts and schemes pertaining to multi-beam operation for multi-panel UE UL transmissions in wireless communications in accordance with the present disclosure. Process 1700 may include one or more operations, actions, or functions as illustrated by one or more of  blocks  1710, 1720, 1730 and 1740. Although illustrated as discrete blocks, various blocks of process 1700 may be divided into additional blocks, combined into fewer blocks, or eliminated, depending on the desired implementation. Moreover, the blocks/sub-blocks of process 1700 may be executed in the order shown in FIG. 17 or, alternatively in a different order. Furthermore, one or more of the blocks/sub-blocks of process 1700 may be executed repeatedly or iteratively. Process 1700 may be implemented by or in apparatus 1610 and apparatus 1620 as well as any variations thereof. Solely for illustrative purposes and without limiting the scope, process 1700 is described below in the context of apparatus 1610 implemented in or as UE110 and apparatus 1620 implemented in or as network node 120 or network node 130 of a wireless network such as RAN 140 in network environment 100 in accordance with one or more of 3GPP standards. Process 1700 may begin at block 1710.
At 1710, process 1700 may involve processor 1612 reporting, via transceiver 1616, to a network (e.g., to RAN 140 via apparatus 1620 as network node 120/130) one or more UE capability value sets with: (a) each of the one or more UE capability value sets containing a value of a maximum supported number of SRS ports or a list of maximum supported numbers of SRS ports, and (b) any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets. Process 1700 may proceed from 1710 to 1720.
At 1720, process 1700 may involve processor 1612 receiving, via transceiver 1616, from the network (e.g., via apparatus 1620) a CSI configuration that configures a CSI reporting setting to associate at least one CSI resource setting to apparatus 1610. Process 1700 may proceed from 1720 to 1730.
At 1730, process 1700 may involve processor 1612 measuring, via transceiver 1616, at least one CSI result. Process 1700 may proceed from 1730 to 1740.
At 1740, process 1700 may involve processor 1612 reporting, via transceiver 1616, to the network (e.g., via apparatus 1620) the at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, with the at least one CSI result including a SSBRI and a CRI (herein denoted as “SSBRI/CRI” ) , or a group of two SSBRIs/CRIs, plus a corresponding L1-RSRP and a SINR as well as a first UE capability information.
In some implementations, process 1700 may involve processor 1612 performing additional operations. For instance, process 1700 may involve processor 1612 receiving, via transceiver 1616, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set. Moreover, process 1700 may involve processor 1612 transmitting, via transceiver 1616 and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration. Additionally, process 1700 may involve processor 1612 receiving, via transceiver 1616, from the network an indication for an UL grand of a PUSCH, with the indication indicating: one SRS resource set indicator, at least one SRI field, at least one TPMI field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH. Furthermore, process 1700 may involve processor 1612 transmitting, via transceiver 1616 and using the at least one second spatial relation filter, a PUCCH or the PUSCH based on the UL grant.
In some implementations, each of the one or more UE capability value sets may further include at least one of the following: (a) a coherence type indicator to indicate fully coherent, partially coherent, or not coherent; (b) capabilities related to UL full power transmission; and (c) a value of a maximum supported number of UL MIMO layers or a list of maximum supported numbers of UL MIMO layers.
In some implementations, each of the first, the second and the third UE capability information may include a value of UE capability value set ID or a list of UE capability value set IDs.
In some implementations, the second UE capability information for the one or more SRS resource sets and the  third UE capability information for the PUCCH or PUSCH may be configured by a RRC signaling, associated via a MAC-CE, or indicated via a DCI signaling.
In some implementations, the first spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
In some implementations, the second spatial relation filter may be configured by a RRC signaling, associated via a MAC-CE, or determined based on an indicated TCI state via a DCI signaling.
In some implementations, each of the first spatial relation filter and the second spatial relation filter may be selected by the network based on the at least one CSI result reported by the UE and using one or more of a plurality of rules. For instance, a first rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to multiple network nodes and one SSBRI/CRI is reported in a single CSI result, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RSs whose corresponding UE capability value set IDs are different. Moreover, a second rule may be that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to a single network node, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are the DL RS whose corresponding UE capability value set contains the list of maximum supported numbers of SRS ports.
In some implementations, the SRS resource set indicator may indicate an association between either or both of the first and the second spatial relation filters and the one or more SRS resource sets. Additionally, the SRS resource set indicator may also indicate a mapping among one or more multiple SRI fields of the at least one SRI field, one or more TPMI fields of the at least one TPMI field, and the one or more SRS resource sets.
In some implementations, as shown in scenario 700 of FIG. 7, regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1, a codepoint 2 and a codepoint 3, the SRS resource set indicator may indicate two SRS resource sets with usage= {codebook} or {non-codebook} such that: (a) a first panel of the UE (UEP1) is associated with a SRS resource set #0; and (b) a second panel of the UE (UEP2) is associated with a SRS resource set #1. Additionally, regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the UEP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved. Moreover, regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the UEP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved. Furthermore, regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates the S-TRP mode and a multi-panel (M-panel) mode for the UEP1 and UEP2 such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1. Also, regarding SRI and TPMI for the codepoint 3, the SRS resource set indicator indicates the S-TRP mode and the M-panel mode for the UEP1 and UEP2 such that: (j) the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with both of the SRS resource set #0 and the SRS resource set #1; and (k) the second SRI field is associated with the SRS resource set #1, and the second TPMI field is reserved.
In some implementations, as shown in scenario 800 of FIG. 8, regarding the one or more SRS resource sets and for each of a codepoint 0 and a codepoint 1, the SRS resource set indicator indicates one SRS resource set with usage= {codebook} or {non-codebook} such that both of UEP1 and UEP2 are associated with a SRS resource set #0. Additionally, regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates an S-TRP mode and an M-panel mode such that: (a) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (b) a second SRI field is reserved and a second TPMI field is associated with the SRS resource set #0. Moreover, regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and an S-panel mode or the M-panel mode such that: (c) the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with the UEP1 and the UEP2; and (d) the second SRI field and the second  TPMI field are reserved.
In some implementations, as shown in scenario 900 of FIG. 9, regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1 and a codepoint 2, the SRS resource set indicator indicates two SRS resource sets with usage = {codebook} or {non-codebook} such that: (a) a first transmission-and-reception-point (TRP1) is associated with a SRS resource set #0; and (b) a second transmission-and-reception-point (TRP2) is associated with a SRS resource set #1. Additionally, regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and an S-panel mode for the TRP1 such that: (c) a first SRI field and a first TPMI field are associated with the SRS resource set #0; and (d) a second SRI field and a second TPMI field are reserved. Moreover, regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the TRP2 such that: (e) the first SRI field and the first TPMI field are associated with the SRS resource set #1; and (f) the second SRI field and the second TPMI field are reserved. Furthermore, regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates a multi-transmission-and-reception-point (M-TRP) mode and an M-panel mode such that: (g) the first SRI field and the first TPMI field are associated with the SRS resource set #0; and (h) the second SRI field and the second TPMI field are associated with the SRS resource set #1.
In some implementations, a respective codepoint of the SRS resource set indicator may be predefined in a 3GPP specification (e.g., Release 18 or later) or configured by the network via a RRC signaling or a MAC-CE.
In some implementations, in transmitting the one or more SRS resources and the PUSCH, process 1700 may involve processor 1612 performing an antenna port selection from a single panel or multiple panels of apparatus 1610 using one or more of a plurality of rules. For instance, a first rule may be that, in an event that the network indicates the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the second or the third UE capability information. Moreover, a second rule may be that, in an event that the network does not indicate the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the first UE capability information corresponding to one or more RSs of either or both of the first and the second spatial relation filters.
Additional Notes
The herein-described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected" , or "operably coupled" , to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable" , to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
Further, with respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
Moreover, it will be understood by those skilled in the art that, in general, terms used herein, and especially in the appended claims, e.g., bodies of the appended claims, are generally intended as “open” terms, e.g., the term “including” should be interpreted as “including but not limited to, ” the term “having” should be interpreted as “having at least, ” the term “includes” should be interpreted as “includes but is not limited to, ” etc. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an  intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to implementations containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an, " e.g., “a” and/or “an” should be interpreted to mean “at least one” or “one or more; ” the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number, e.g., the bare recitation of "two recitations, " without other modifiers, means at least two recitations, or two or more recitations. Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc. ” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention, e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. In those instances where a convention analogous to “at least one of A, B, or C, etc. ” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention, e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc. It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B. ”
From the foregoing, it will be appreciated that various implementations of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various implementations disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (20)

  1. A method, comprising:
    reporting, by a processor of a user equipment (UE) , to a network one or more UE capability value sets with:
    each of the one or more UE capability value sets containing a value of a maximum supported number of sounding reference signal (SRS) ports or a list of maximum supported numbers of SRS ports, and
    any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets;
    receiving, by the processor, from the network a channel state information (CSI) configuration that configures a CSI reporting setting to associate at least one CSI resource setting to the UE;
    measuring, by the processor, at least one CSI result; and
    reporting, by the processor, to the network the at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting,
    wherein the at least one CSI result comprises a synchronization signal (SS) /physical broadcast channel (PBCH) Block Resource Indicator (SSBRI) and channel state information (CSI) Reference Signal Resource Indicator (CRI) , or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity and a first UE capability information.
  2. The method of Claim 1, further comprising:
    receiving, by the processor, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set; and
    transmitting, by the processor using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration.
  3. The method of Claim 2, further comprising:
    receiving, by the processor, from the network an indication for an uplink (UL) grand of a physical uplink shared channel (PUSCH) , the indication indicating: one SRS resource set indicator, at least one SRS resource indicator (SRI) field, at least one transmitted precoding matrix indicator (TPMI) field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH; and
    transmitting, by the processor using the at least one second spatial relation filter, a physical uplink control channel (PUCCH) or the PUSCH based on the UL grant.
  4. The method of Claim 1, wherein each of the one or more UE capability value sets further comprises at least one of:
    a coherence type indicator to indicate fully coherent, partially coherent, or not coherent;
    capabilities related to uplink (UL) full power transmission; and
    a value of a maximum supported number of UL multiple-input-multiple-output (MIMO) layers or a list of maximum supported numbers of UL MIMO layers.
  5. The method of Claim 3, wherein each of the first, the second and the third UE capability information comprises a value of UE capability value set identifier (ID) or a list of UE capability value set IDs.
  6. The method of Claim 2, wherein the second UE capability information for the one or more SRS resource sets and the third UE capability information for the PUCCH or PUSCH are configured by a radio resource control (RRC) signaling, associated via a medium access control (MAC) control element (CE) , or indicated via a downlink control information (DCI) signaling.
  7. The method of Claim 2, wherein the first spatial relation filter is configured by a radio resource control (RRC) signaling, associated via a medium access control (MAC) control element (CE) , or determined based on an indicated transmission configuration indicator (TCI) state via a downlink control information (DCI) signaling.
  8. The method of Claim 3, wherein the second spatial relation filter is configured by a radio resource control (RRC) signaling, associated via a medium access control (MAC) control element (CE) , or determined based on an indicated transmission configuration indicator (TCI) state via a downlink control information (DCI) signaling.
  9. The method of Claim 3, wherein each of the first spatial relation filter and the second spatial relation filter is selected by the network based on the at least one CSI result reported by the UE and using one or more of a plurality of rules comprising:
    a first rule that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to multiple network nodes and one SSBRI/CRI is reported in a single CSI result, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are downlink (DL) resource sets (RSs) whose corresponding UE capability value set IDs are different; and
    a second rule that, in an event that either or both of the first and the second spatial relation filters is or are used for a simultaneous multi-panel UL transmission to a single network node, either or both of the first and the second spatial relation filters used in the simultaneous multi-panel UL transmission is or are a DL resource set (RS) whose corresponding UE capability value set contains the list of maximum supported numbers of SRS ports.
  10. The method of Claim 3, wherein the SRS resource set indicator indicates an association between either or both of the first and the second spatial relation filters and the one or more SRS resource sets, and wherein the SRS resource set indicator further indicates a mapping among one or more multiple SRI fields of the at least one SRI field, one or more TPMI fields of the at least one TPMI field, and the one or more SRS resource sets.
  11. The method of Claim 10, wherein:
    regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1, a codepoint 2 and a codepoint 3, the SRS resource set indicator indicates two SRS resource sets for CSI such that:
    a first panel of the UE (UEP1) is associated with a SRS resource set #0; and
    a second panel of the UE (UEP2) is associated with a SRS resource set #1,
    regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the UEP1 such that:
    a first SRI field and a first TPMI field are associated with the SRS resource set #0; and
    a second SRI field and a second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the UEP2 such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #1; and
    the second SRI field and the second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates the S-TRP mode and a multi-panel (M-panel) mode for the UEP1 and UEP2 such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #0; and
    the second SRI field and the second TPMI field are associated with the SRS resource set #1,
    regarding SRI and TPMI for the codepoint 3, the SRS resource set indicator indicates the S-TRP mode and the M-panel mode for the UEP1 and UEP2 such that:
    the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with both of the SRS resource set #0 and the SRS resource set #1; and
    the second SRI field is associated with the SRS resource set #1, and the second TPMI field is reserved.
  12. The method of Claim 10, wherein:
    regarding the one or more SRS resource sets and for each of a codepoint 0 and a codepoint 1, the SRS resource set indicator indicates one SRS resource set for CSI such that both of a first panel of the UE (UEP1) and a second panel of the UE (UEP2) are associated with a SRS resource set #0,
    regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a multi-panel (M-panel) mode such that:
    a first SRI field and a first TPMI field are associated with the SRS resource set #0; and
    a second SRI field is reserved and a second TPMI field is associated with the SRS resource set #0,
    regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and a single-panel (S-panel) mode or the M-panel mode such that:
    the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with the UEP1 and the UEP2; and
    the second SRI field and the second TPMI field are reserved.
  13. The method of Claim 10, wherein:
    regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1 and a codepoint 2, the SRS resource set indicator indicates two SRS resource sets for CSI such that:
    a first transmission-and-reception-point (TRP1) is associated with a SRS resource set #0; and
    a second transmission-and-reception-point (TRP2) is associated with a SRS resource set #1,
    regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the TRP1 such that:
    a first SRI field and a first TPMI field are associated with the SRS resource set #0; and
    a second SRI field and a second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the TRP2 such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #1; and
    the second SRI field and the second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates a multi-transmission-and-reception-point (M-TRP) mode and a multi-panel (M-panel) mode such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #0; and
    the second SRI field and the second TPMI field are associated with the SRS resource set #1.
  14. The method of Claim 10, wherein a respective codepoint of the SRS resource set indicator is predefined in a 3 rd Generation Partnership Project (3GPP) specification or configured by the network via a radio resource control (RRC) signaling or a medium access control (MAC) control element (CE) .
  15. The method of Claim 3, wherein the transmitting of the one or more SRS resources and the PUSCH comprises performing an antenna port selection from a single panel or multiple panels of the UE using one or more of a plurality of rules comprising:
    a first rule that, in an event that the network indicates the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the second or the third UE capability information; and
    a second rule that, in an event that the network does not indicate the second or the third UE capability information, the antenna port selection for transmission of the one or more SRS resources and the PUSCH follows the first UE capability information corresponding to one or more resource sets (RSs) of either or both of the first  and the second spatial relation filters.
  16. An apparatus implementable in a user equipment (UE) , comprising:
    a transceiver configured to communicate wirelessly with a network; and
    a processor coupled to the transceiver and configured to perform operations comprising:
    reporting, via the transceiver, to the network one or more UE capability value sets with:
    each of the one or more UE capability value sets containing a value of a maximum supported number of sounding reference signal (SRS) ports or a list of maximum supported numbers of SRS ports, and
    any two of the one or more UE capability value sets being the same in case of there being multiple UE capability value sets;
    receiving, via the transceiver, from the network a channel state information (CSI) configuration that configures a CSI reporting setting to associate at least one CSI resource setting to the UE;
    measuring, via the transceiver, at least one CSI result;
    reporting, via the transceiver, to the network the at least one CSI result in a CSI reporting instance based on the CSI reporting setting and the at least one CSI resource setting, wherein the at least one CSI result comprises a synchronization signal (SS) /physical broadcast channel (PBCH) Block Resource Indicator (SSBRI) and channel state information (CSI) Reference Signal Resource Indicator (CRI) , or a group of two SSBRIs/CRIs, plus a corresponding measurement quantity and a first UE capability information;
    receiving, via the transceiver, from the network an SRS configuration that configures one or more SRS resource sets for the UE and at least one first spatial relation filter and a second capability information for an SRS resource set;
    transmitting, via the transceiver and using the at least one first spatial relation filter, one or more SRS resources in the one or more SRS resource sets according to the SRS configuration;
    receiving, via the transceiver, from the network an indication for an uplink (UL) grand of a physical uplink shared channel (PUSCH) , the indication indicating: one SRS resource set indicator, at least one SRS resource indicator (SRI) field, at least one transmitted precoding matrix indicator (TPMI) field, and a third UE capability information, with at least one second spatial relation filter being associated with the PUSCH; and
    transmitting, via the transceiver and using the at least one second spatial relation filter, a physical uplink control channel (PUCCH) or the PUSCH based on the UL grant.
  17. The apparatus of Claim 16, wherein the SRS resource set indicator indicates an association between either or both of the first and the second spatial relation filters and the one or more SRS resource sets, and wherein the SRS resource set indicator further indicates a mapping among one or more multiple SRI fields of the at least one SRI field, one or more TPMI fields of the at least one TPMI field, and the one or more SRS resource sets.
  18. The apparatus of Claim 17, wherein:
    regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1, a codepoint 2 and a codepoint 3, the SRS resource set indicator indicates two SRS resource sets for CSI such that:
    a first panel of the UE (UEP1) is associated with a SRS resource set #0; and
    a second panel of the UE (UEP2) is associated with a SRS resource set #1,
    regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the UEP1 such that:
    a first SRI field and a first TPMI field are associated with the SRS resource set #0; and
    a second SRI field and a second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and  the S-panel mode for the UEP2 such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #1; and
    the second SRI field and the second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates the S-TRP mode and a multi-panel (M-panel) mode for the UEP1 and UEP2 such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #0; and
    the second SRI field and the second TPMI field are associated with the SRS resource set #1,
    regarding SRI and TPMI for the codepoint 3, the SRS resource set indicator indicates the S-TRP mode and the M-panel mode for the UEP1 and UEP2 such that:
    the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with both of the SRS resource set #0 and the SRS resource set #1; and
    the second SRI field is associated with the SRS resource set #1, and the second TPMI field is reserved.
  19. The apparatus of Claim 17, wherein:
    regarding the one or more SRS resource sets and for each of a codepoint 0 and a codepoint 1, the SRS resource set indicator indicates one SRS resource set for CSI such that both of a first panel of the UE (UEP1) and a second panel of the UE (UEP2) are associated with a SRS resource set #0,
    regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a multi-panel (M-panel) mode such that:
    a first SRI field and a first TPMI field are associated with the SRS resource set #0; and
    a second SRI field is reserved and a second TPMI field is associated with the SRS resource set #0,
    regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and a single-panel (S-panel) mode or the M-panel mode such that:
    the first SRI field is associated with the SRS resource set #0, and the first TPMI field is associated with the UEP1 and the UEP2; and
    the second SRI field and the second TPMI field are reserved.
  20. The apparatus of Claim 17, wherein:
    regarding the one or more SRS resource sets and for each of a codepoint 0, a codepoint 1 and a codepoint 2, the SRS resource set indicator indicates two SRS resource sets for CSI such that:
    a first transmission-and-reception-point (TRP1) is associated with a SRS resource set #0; and
    a second transmission-and-reception-point (TRP2) is associated with a SRS resource set #1,
    regarding SRI and TPMI for the codepoint 0, the SRS resource set indicator indicates a single-transmission-and-reception-point (S-TRP) mode and a single-panel (S-panel) mode for the TRP1 such that:
    a first SRI field and a first TPMI field are associated with the SRS resource set #0; and
    a second SRI field and a second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 1, the SRS resource set indicator indicates the S-TRP mode and the S-panel mode for the TRP2 such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #1; and
    the second SRI field and the second TPMI field are reserved,
    regarding SRI and TPMI for the codepoint 2, the SRS resource set indicator indicates a multi-transmission-and-reception-point (M-TRP) mode and a multi-panel (M-panel) mode such that:
    the first SRI field and the first TPMI field are associated with the SRS resource set #0; and
    the second SRI field and the second TPMI field are associated with the SRS resource set #1.
PCT/CN2022/140297 2021-12-23 2022-12-20 Multi-beam operation for multi-panel user equipment uplink transmissions WO2023116677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111149378A TWI841138B (en) 2021-12-23 2022-12-22 Method and apparatus of multi-beam operation for multi-panel user equipment uplink transmissions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163293100P 2021-12-23 2021-12-23
US63/293,100 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023116677A1 true WO2023116677A1 (en) 2023-06-29

Family

ID=86901233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140297 WO2023116677A1 (en) 2021-12-23 2022-12-20 Multi-beam operation for multi-panel user equipment uplink transmissions

Country Status (1)

Country Link
WO (1) WO2023116677A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157090A1 (en) * 2020-02-07 2021-08-12 株式会社Nttドコモ Terminal and communication method
WO2021159452A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Srs for antenna switching
WO2021169819A1 (en) * 2020-02-26 2021-09-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for uplink transmission
CN113519179A (en) * 2020-02-12 2021-10-19 苹果公司 Concurrent Channel State Information (CSI) capability reporting using multiple codebooks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157090A1 (en) * 2020-02-07 2021-08-12 株式会社Nttドコモ Terminal and communication method
CN113519179A (en) * 2020-02-12 2021-10-19 苹果公司 Concurrent Channel State Information (CSI) capability reporting using multiple codebooks
WO2021159452A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Srs for antenna switching
WO2021169819A1 (en) * 2020-02-26 2021-09-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for uplink transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "UE features for NR eMIMO", 3GPP DRAFT; R1-2003756, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885527 *
MEDIATEK INC.: "Views on Rel-16 UE Features for NR eMIMO", 3GPP DRAFT; R1-2003690, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885465 *

Also Published As

Publication number Publication date
TW202327393A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US20190379514A1 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system using multiple antennas
US11515991B2 (en) User equipment, base station and wireless communication method
FI126835B (en) Signaling for downlink coordinated multi-point communication in a wireless communication system
US9025487B2 (en) Reference signal port discovery involving transmission points
CA2986418C (en) Uplink coordinated multi-point
EP3046357B1 (en) Method and base station for configuring channel status information reference signal
US20190173549A1 (en) Channel state feedback method and apparatus
EP3197231A1 (en) Method and device for transmitting and receiving signal to and from enb by user equipment in wireless communication system that supports carrier aggregation
US20180083681A1 (en) A CSI Report Framework for Enhanced Separate Dimension Feedback
US20180359073A1 (en) Methods and Apparatuses for Configuration of Measurement Restrictions
EP2813007A2 (en) Signaling for configuration of downlink coordinated multipoint communications
JP2014511610A (en) Primary cell indication method and apparatus for demodulating control channel
US10812968B2 (en) Flexible signaling of capability of UE processing time in wireless communications
EP3577836B1 (en) Dynamic indication for channel state information feedback
US20200322013A1 (en) Methods and apparatuses for port index signaling for non-precoder matrix indicator (pmi) channel state information (csi) feedback
EP3433941A1 (en) Methods and apparatus for precoding control in a wireless communication network
US11457351B2 (en) Flexible signaling of capability of UE processing time in wireless communications
US11290906B2 (en) Channel measurement method
JP6665324B2 (en) Channel measurement method and user equipment
WO2023116677A1 (en) Multi-beam operation for multi-panel user equipment uplink transmissions
US11563467B2 (en) Precoding-matched CSI feedback in mobile communications
WO2021155842A1 (en) Method and apparatus for channel state information reporting
WO2024032335A1 (en) Uplink power control for dynamic tdd and subband full duplex
US20220124536A1 (en) Reporting Of Best Wideband CQI In Mobile Communications
WO2024001665A1 (en) Methods for reverse ue-ue cli measurement in non-overlapping subband-fullduplex deployment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909989

Country of ref document: EP

Kind code of ref document: A1