WO2021169819A1 - Method and device for uplink transmission - Google Patents

Method and device for uplink transmission Download PDF

Info

Publication number
WO2021169819A1
WO2021169819A1 PCT/CN2021/076485 CN2021076485W WO2021169819A1 WO 2021169819 A1 WO2021169819 A1 WO 2021169819A1 CN 2021076485 W CN2021076485 W CN 2021076485W WO 2021169819 A1 WO2021169819 A1 WO 2021169819A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
configuration information
srs resource
antenna ports
codebook subset
Prior art date
Application number
PCT/CN2021/076485
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2021169819A1 publication Critical patent/WO2021169819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure generally relates to the technical field of communications, in particular, to a method and a device for uplink transmission.
  • the user equipment may be configured with a sounding reference signal (SRS) resource set with higher layer parameter usage set to be ‘codebook’ .
  • SRS resource set the UE may be configured with one or two SRS resources and those two SRS resources may have the same number of antenna ports.
  • codebook-based UL transmission the UE may be configured with a codebook subset through RRC parameter codebookSubset. Codebook-based UL transmission may be scheduled by control information.
  • the UE determines its UL transmission precoder based on SRS resource indicator (SRI) , transmitted precoding matrix indicator (TPMI) and the transmission rank, where the SRI, TPMI and the transmission rank are given by control information fields of SRS resource indicator and precoding information and number of layers.
  • SRI SRS resource indicator
  • TPMI transmitted precoding matrix indicator
  • the transmission rank are given by control information fields of SRS resource indicator and precoding information and number of layers.
  • Exemplary embodiments of the disclosure provide a method and a device for uplink transmission, to adapt for full power transmission.
  • a method for uplink (UL) transmission is adapted for a user equipment (UE) with multiple antenna ports.
  • the method includes, but not limited to, the following steps.
  • UE capability information is transmitted, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • Configuration information of sounding reference signal (SRS) resource set relates to the UE capability information is received, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of the antenna ports.
  • SRS is transmitted on the SRS resources.
  • a UE includes, but not limited to, a memory, a transceiver, and one or more processors.
  • the memory is used for storing program code.
  • the transceiver is used for transmitting or receiving signals.
  • the one or more processors are coupled to the memory and used for executing the program code to perform: transmitting UE capability information through the transceiver, receiving configuration information of SRS resource set relates to the UE capability information through the transceiver, and transmitting SRS on the SRS resources through the transceiver.
  • the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
  • a method for UL transmission is adapted for a network device.
  • the method includes, but not limited to, the following steps.
  • UE capability information is received, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • Configuration information of SRS resource set relates to the UE capability information is transmitted, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
  • SRS is received on the SRS resources.
  • a network device includes, but not limited to, a memory, a transceiver, and one or more processors.
  • the memory is used for storing program code.
  • the transceiver is used for transmitting or receiving signals.
  • the one or more processors are coupled to the memory and used for executing the program code to perform: receiving UE capability information through the transceiver, transmitting configuration information of SRS resource set relates to the UE capability information through the transceiver, and receiving SRS on the SRS resources through the transceiver.
  • the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
  • a device includes, but not limited to, a transmitting module and a receiving module.
  • the transmitting module is configured to transmit UE capability information, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • the receiving module is configured to receive configuration information of SRS resource set relates to the UE capability information, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
  • the transmitting module is configured to transmit SRS on the SRS resources.
  • a non-transitory computer-readable medium includes program code that executed by a processor to perform: transmitting UE capability information through the transceiver, receiving configuration information of SRS resource set relates to the UE capability information through the transceiver, and transmitting SRS on the SRS resources through the transceiver.
  • the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
  • FIG. 1 is a schematic diagram of a communication system according to an exemplary embodiment of the present disclosure.
  • FIG. 2A is a block diagram of a network device according to an exemplary embodiment of the present disclosure.
  • FIG. 2B is a block diagram of a user equipment (UE) according to an exemplary embodiment of the present disclosure.
  • UE user equipment
  • FIG. 3 is a flowchart of a method for uplink (UL) transmission according to an exemplary embodiment of the present disclosure.
  • FIG. 4 is a table illustrating transmitted precoding matrix indicator (TPMI) groups according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a table illustrating the precoding information and number of layers according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a device according to an exemplary embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a communication system 1 according to an exemplary embodiment of the present disclosure.
  • the communication system 1 includes, but not limited to, one or more network devices 10 and one or more user equipments (UEs) 50.
  • the communication system 1 may further include other core network entities such as a mobile management entity (MME) , a serving gateway (S-GW) , a packet data network gateway (P-GW) , an access and mobility function (AMF) and/or a user plane function (UPF) .
  • MME mobile management entity
  • S-GW serving gateway
  • P-GW packet data network gateway
  • AMF access and mobility function
  • UPF user plane function
  • the embodiments of the disclosure are not limited thereto.
  • the communication system 1 may be applied to, for example, a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) system, a long term evolution (LTE) system, an LTE frequency division duplex (FDD) system, LTE time division duplexes (TDD) , a universal mobile telecommunication system (UMTS) , a new radio (NR) system, or other mobile communication systems.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplexes
  • UMTS universal mobile telecommunication system
  • NR new radio
  • the network device 10 may have various implementations, for example (but not limited to) , a home evolved Node B (HeNB) , an eNB, a next generation Node B (gNB) , an integrated access and backhaul (IAB) network node, an advanced base station (ABS) , a base transceiver system (BTS) , a relay, a repeater, a cell and/or a satellite-based communication base station.
  • HeNB home evolved Node B
  • gNB next generation Node B
  • IAB integrated access and backhaul
  • ABS advanced base station
  • BTS base transceiver system
  • relay a relay
  • a repeater a cell and/or a satellite-based communication base station.
  • FIG. 2A is a block diagram of a network device 10 according to an exemplary embodiment of the present disclosure.
  • the network device 10 includes, but not limited to, one or more antennas 11, a receiver 12, a transmitter 13, an analog-to-digital/digital-to-analog converter 14, a memory 15, and one or more processors 16.
  • the one or more antennas 11 are coupled to the receiver 12 and the transmitter 13.
  • the analog-to-digital/digital-to-analog converter 14 is coupled to the receiver 12, the transmitter 13, and the processor 16.
  • the processor 16 is further coupled to the memory 15.
  • the receiver 12 and the transmitter 13 are respectively configured to wirelessly receive an uplink signal and transmit a downlink signal through the one or more antennas 11.
  • the receiver 12 and the transmitter 13 may also perform analog signal processing operations such as low noise amplification, impedance matching, frequency mixing, up-conversion or down-conversion, filtering, amplification, and the like.
  • the analog-to-digital/digital-to-analog converter 14 is configured to convert the uplink signal from an analog signal format to a digital signal format and convert the downlink signal from the digital signal format to the analog signal format.
  • the memory 15 may be any type of fixed or removable random access memory (RAM) , read-only memory (ROM) , flash memory or a similar element, or a combination of the foregoing elements.
  • the memory 15 records a program code, apparatus configuration, a codebook, buffered or permanent data, and records various communication protocol-related software modules such as a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, a media access control (MAC) layer, and the like, and data thereof.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the one or more processors 16 are configured to process a digital signal, load and execute a program code from the memory 15 according to an exemplary embodiment of the disclosure, and may access or load data and software modules recorded in the memory 15.
  • a function of the processor 16 may be implemented by using programmable units such as a central processing unit (CPU) , a microprocessor, a microcontroller, a digital signal processing (DSP) chip, a field programmable logic gate array (FPGA) , and the like.
  • the function of the processor 16 may also be implemented by using an independent electronic device or an integrated circuit (IC) , and the operations of the processor 16 may be implemented through software.
  • the UE 50 may have various implementations, for example (but not limited to) , a mobile station, an advanced mobile station (AMS) , a telephone apparatus, customer premise equipment (CPE) , a wireless sensor, a handheld device with wireless communication function, a computing device or other processing devices connected to wireless modems, an in-vehicle device, a wearable device, or the like.
  • AMS advanced mobile station
  • CPE customer premise equipment
  • wireless sensor a handheld device with wireless communication function
  • computing device or other processing devices connected to wireless modems an in-vehicle device, a wearable device, or the like.
  • FIG. 2B is a block diagram of a UE 50 according to an exemplary embodiment of the present disclosure.
  • the UE 50 includes, but not limited to, one or more antennas 51, a receiver 52, a transmitter 53, an analog-to-digital/digital-to-analog converter 54, a memory 55, and one or more processors 56.
  • the one or more antennas 51 are coupled to the receiver 52 and the transmitter 53.
  • the analog-to-digital/digital-to-analog converter 54 is coupled to the receiver 52, the transmitter 53, and the processor 56.
  • the processor 56 is further coupled to the memory 55.
  • the receiver 52 and the transmitter 53 are respectively configured to wirelessly receive a downlink signal and transmit an uplink signal through the antenna 51.
  • the receiver 52 and the transmitter 53 may also perform analog signal processing operations such as low noise amplification, impedance matching, frequency mixing, up-conversion or down-conversion, filtering, amplification, and the like.
  • the analog-to-digital/digital-to-analog converter 54 is configured to convert the downlink signal from an analog signal format to a digital signal format and convert the uplink signal from the digital signal format to the analog signal format.
  • the memory 55 may be any type of fixed or removable RAM, ROM, flash memory, or a similar element, or a combination of the foregoing elements.
  • the memory 55 records a program code, apparatus configuration, a codebook, buffered or permanent data, and records various communication protocol-related software modules such as an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and the like, and data thereof.
  • the one or more processors 56 are configured to process a digital signal, load and execute a program code from the memory 55 according to an exemplary embodiment of the disclosure, and may access or load data and software modules recorded in the memory 55.
  • a function of the processor 56 may be implemented by using programmable units such as a CPU, a microprocessor, a microcontroller, a DSP chip, an FPGA, and the like.
  • the function of the processor 56 may also be implemented by using an independent electronic device or an IC, and the operations of the processor 56 may be implemented through software.
  • FIG. 3 is a flowchart of a method for uplink (UL) transmission according to an exemplary embodiment of the present disclosure.
  • the processor 56 of the UE 50 may transmit UE capability information through the transmitter 53, and the processor 16 of the network device 10 may receive the UE capability information from the UE 50 through the receiver 12 (step S310) .
  • the UE 50 may determine its codebook subsets, which is configured with the coherence configuration among multiple antenna ports requested by the network device 10, based on its coherence capability for UL transmission.
  • a codebook subset is a subset of precoding matrix (s) and could be addressed by transmitted precoding matrix indicator (TPMI) or other indicators related to one or more precoding matrixes.
  • TPMI transmitted precoding matrix indicator
  • the precoding matrix is used for precoding data conveyed by multiple antenna ports for UL transmission.
  • the coherence configuration is used to request the antenna ports of the UE 50 should be transmitted coherently or noncoherently.
  • the coherence configuration could be the combination of full-coherence (i.e., all antenna ports may be transmitted coherently) , partial-coherence (i.e., part of antenna ports may be transmitted coherently) , and non-coherence (i.e., no antenna port pair may be transmitted coherently) (for example, ‘fullyAndPartialAndNonCoherent’ as defined in 3GPP standard) , the combination of partial-coherence and non-coherence (for example, ‘partialAndNonCoherent’ as defined in 3GPP standard) , or the non-coherence (for example, ‘nonCoherent’ as defined in 3GPP standard) .
  • the UE capability information may include its coherence capability among multiple antenna ports for UL transmission.
  • the coherence capability could be the combination of full-coherence, partial-coherence and non-coherence, the combination of partial-coherence and non-coherence, or the non-coherence.
  • an antenna port is defined such that the channel over which a symbol on the antenna port is conveyed may be inferred from the channel over which another symbol on the same antenna port is conveyed.
  • the UE capability information may indicate one or more reported precoding matrixes.
  • the UE 50 may be configured to operate in either full power transmission mode 1 ( ‘fullpowerMode1’ ) or full power transmission mode 2 ( ‘fullpowerMode2’ ) upon reception of the higher layer parameter ULFPTxModes or ul-FullPowerTransmission from the network device 10.
  • the UE 50 may be configured with one or more sounding reference signal (SRS) resources with the same or different numbers of SRS ports within an SRS resource set with usage set to ‘codebook’ and a maximum of 4 or more SRS resources are supported to an SRS resource set with usage set to ‘codebook’ .
  • SRS sounding reference signal
  • the UE 50 may report one or more TMPIs or another indicator of a subset of precoding matrixes in the UE capability information which may be used to support full power transmission.
  • the UE capability information may include one of the following TMPI groups which may deliver full power in UL transmission mode 2.
  • FIG. 4 is a table illustrating transmitted precoding matrix indicator (TPMI) groups according to an exemplary embodiment of the present disclosure. Referring to FIG. 4, there are seven TMPI groups. The UE 50 may report one or more of those TPMI groups ⁇ G0, G1, G2, G3, G4, G5, G6 ⁇ to the network device 10.
  • TPMI transmitted precoding matrix indicator
  • the UE 50 may include another number of the antenna ports (such as 2, 8, or 16) different from the aforementioned example, and the precoding matrixes may also be different.
  • the UE capability information may indicate that a support number of multiple antenna ports for codebook subset is less than the number of all of the antenna ports. That is, in UE capability information, the UE 50 may report the support of uplink codebook subset for 2 or more antenna ports for full power transmission mode which may be different from its total antenna ports.
  • a UE 50 has four Tx antenna ports.
  • the UE 50 may report parameter pusch-TransCoherence in UE capability information to report the support of uplink codebook subset for UL precoding when 4 antenna ports are used.
  • the UE 50 may also report a parameter in UE capability information to report support of uplink codebook subset for UL precoding when 2 antenna ports are used for UL transmission.
  • those 2 antenna ports may be implemented through antenna virtualization by UE implementation.
  • the processor 16 of the network device 10 may configure the SRS resource set for the UE 50.
  • the processor 16 of the network device 10 may transmit configuration information of the SRS source set through the transmitter 13, and the processor 56 of the UE 50 may receive the configuration information of the SRS source set through the receiver 52 (step S330) .
  • the configuration information of the SRS resource set indicates that the SRS resource set includes one or more SRS resources for codebook-based UL transmission.
  • the configuration information of the SRS resource set may be SRS-Config information element which defines a list of SRS resources and a list of SRS resource sets, or the configuration information of the SRS resource set may be one of the listed SRS resource sets.
  • the SRS resource is allocated on the radio resource (or called the time-frequency resource) . If (or only if) multiple SRS resources are configured in an SRS resource set, the SRS resources may be configured with the same or different numbers of antenna ports. That is, two or more of the SRS resources are configured with the same or different numbers of antenna ports. In one of the objectives, to support full power transmission, it may configure different numbers of antenna ports in different SRS resources in one SRS resource set for codebook based UL transmission.
  • one SRS resource set configured to support full power transmission includes a first SRS resource and a second SRS resource, where the first SRS resource is configured with 4 antenna ports and the second SRS resource is configured with 2 antenna ports.
  • the UE 50 may be configured with another number of the antenna ports (such as 8 or 16) in one SRS resource different from the aforementioned example.
  • the processor 56 of the UE 50 may transmit one or more SRSs on one or more configured SRS resources through the transmitter 53, and the processor 16 of the network device 10 may receive the SRSs on the SRS resources from the UE 50 through the receiver 12 (step S350) .
  • the SRS is used for the estimation of the channel for UL transmission.
  • the network device 10 may configure codebook subset and one or more suitable SRS sources based on the estimated channel.
  • the processor 16 of the network device 10 may transmit configuration information of codebook subset through the transmitter 13, and the processor 56 of the UE 50 may receive the configuration information of codebook subset through the receiver 52 (step S370) .
  • the UE 50 may receive the higher layer parameter codebookSubset from the network device 10 to provide the configuration information of codebook subset.
  • the higher layer parameter codebookSubset includes a subset of precoding matrix indicators (PMIs) addressed by TPMI, where PMIs are those supported by UE 50 with maximum coherence capability.
  • the configuration information of codebook subset may be included in the information element PUSCH-Config for scheduling of physical uplink shared channel (PUSCH) or another uplink data channel in the RRC parameter.
  • PUSCH-Config for scheduling of physical uplink shared channel (PUSCH) or another uplink data channel in the RRC parameter.
  • PUSCH-Config for scheduling of physical uplink shared channel (PUSCH) or another uplink data channel in the RRC parameter.
  • DCI downlink control information
  • the UE 50 may determine its UL transmission precoder based on SRS resource indicator (SRI) , TPMI and the transmission rank, where the SRI, TPMI and the transmission rank are given by DCI fields of SRS resource indicator and precoding information and number of layers.
  • SRI SRS resource indicator
  • TPMI is used to indicate the precoder to be applied over the layers ⁇ 0... ⁇ -1 ⁇ corresponding to the rank and that corresponds to the SRS resource selected by the SRI when multiple SRS resources are configured, or if a single SRS resource is configured TPMI is used to indicate the precoder to be applied over the layers ⁇ 0... ⁇ -1 ⁇ and that corresponds to the SRS resource.
  • the transmission precoder is selected from the uplink codebook that has the number of antenna ports equal to the number of antenna ports in the SRS resources configured for codebook-based UL transmission, which is provided by RRC parameter nrofSRS-Ports in information element SRS-Config.
  • the configuration information of codebook subset indicates that the coherence configuration of the antenna ports of the UE 50 is configured with the combination of partial-coherence and non-coherence.
  • the higher layer parameter codebookSubset is set to be ‘partialAndNonCoherent’ .
  • the processor 56 of the UE 50 may configure the codebook subset for a third SRS resource as different from the coherence configuration (i.e., the combination of partial-coherence and non-coherence) request by the network device 10. It is assumed the configured SRS resources include the third SRS resource, and the third SRS resource is requested by the configuration information of codebook subset. For example, the third SRS resource is indicated by SRI.
  • the third SRS resource is used for codebook-based UL transmission, and the number of configured antenna ports for the third SRS resource is less than the largest number of configured antenna ports for all SRS resources.
  • the third SRS resource is configured with two antenna ports, and the first SRS resource is configured with four antenna ports.
  • the UE 50 may expect that higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet may be configured with the same or different values for all these SRS resources.
  • the UE 50 may be provided with a higher layer parameter codebookSubset which may be configured with ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ depending on the UE capability information. If the largest value of nrofSRS-Ports in SRS-Resource configured for all SRS resources in SRS-ResourceSet with usage set to ‘codebook’ is four antenna ports, the UE 50 may be configured with higher layer parameter codebookSubset set to ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ .
  • the UE 50 may configure the codebook subset for the third SRS resource as merely the non-coherence.
  • multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ .
  • the largest value of higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet is four antenna ports and there are one or more SRS resources configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’
  • higher layer parameter codebookSubset in pusch-Config is configured with ‘partialAndNonCoherent’
  • the UE 50 may assume the codebook subset for the SRS resource (s) configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may configure the codebook subset for the third SRS resource as the combination of full-coherence, partial-coherence, and non-coherence.
  • multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ .
  • the largest value of higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet is four antenna ports and there is at least one SRS resource configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’
  • higher layer parameter codebookSubset in pusch-Config is configured with ‘partialAndNonCoherent’
  • the UE 50 may assume the codebook subset for the SRS resource (s) configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘fullyAndPartialAndNonCoherent’ .
  • the processor 56 of the UE 50 may configure the coherence configuration of configured antenna ports for a fourth SRS resource according to the reported precoding matrix in the UE capability information. It is assumed the configured SRS resources include the fourth SRS resource, and the fourth SRS resource is requested by the configuration information of codebook subset. For example, the fourth SRS resource is indicated by SRI. Furthermore, it is assumed the fourth SRS resource is used for codebook-based UL transmission, and the number of configured antenna ports for the fourth SRS resource is less than the largest number of configured antenna ports for all SRS resources. For example, the fourth SRS resource is configured with two antenna ports, and the first SRS resource is configured with four antenna ports.
  • the coherence configuration of configured antenna ports for the fourth SRS resource may be coherent or noncoherent.
  • multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ . If the largest value of higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet is four antenna ports and there is at least one SRS resource configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ , the UE 50 may assume the codebook subset for the SRS resource (s) configured with two antenna ports according to the TMPIs for mode 2 transmission reported in UE capability information.
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘fullyAndPartialAndNonCoherent’ . If the TPMI for mode 2 transmission reported in UE capability information belongs to a second subset of TPMIs, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna port in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna port in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
  • the UE 50 may determine the codebook subset for SRS resource with 2 antenna port for codebook-based PUSCH transmission based on the reported TPMI of 4 antenna ports for mode 2 transmission.
  • the UE 50 may determine codebook subset for SRS resource with two antenna port in the SRS-ResourceSet with usage set to ‘codebook’ (if at least one SRS resource with 4 antenna ports is configured in the SRS resource set) as follows.
  • the UE 50 may determine the codebook subset for SRS resource with 2 antenna ports based on the codebook subset configured for 4 antenna ports, as in some examples described in this disclosure.
  • the UE 50 may expect the UE 50 would be configured with a codebook subset for 2 antenna ports.
  • the UE 50 may not expect to be configured with the higher layer parameter codebookSubset set to ‘partialAndNonCoherent’ .
  • the configuration information of codebook subset may include first configuration information and second configuration information used for the different numbers of the antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix.
  • the UE 50 may be provided with multiple RRC parameters to provide the codebook subset configuration for multiple different numbers of antenna ports.
  • the UE 50 may select one of the first configuration information and the second configuration information for configuring the codebook subset of a fifth SRS resource. It is assumed the configured SRS resources include the fifth SRS resource, and the fifth SRS resource is requested by the configuration information of codebook subset. For example, the fifth SRS resource is indicated by SRI.
  • the fifth SRS resource is used for codebook-based UL transmission, and the number of the antenna ports used for the selected one of the first configuration information and the second configuration information is the same as the number of configured antenna ports for the fifth SRS resource configured by the configuration information of SRS resource set.
  • the UE 50 may be provided with a codebook subset configuration (i.e., the first configuration information) for four antenna ports and another codebook subset configuration (i.e., the second configuration information) for two antenna ports.
  • the UE 50 may be configured with an SRS resource set for codebook-based UL transmission.
  • the UE 50 may be configured with multiple SRS resources with the same or different numbers of antenna ports. For example, each SRS resource may be configured with 1, 2 or 4 antenna ports.
  • the UE 50 may determine the codebook subset according to the higher layer parameter and the SRS resource indicated by the SRI field in the DCI scheduling the PUSCH transmission and configuration information of codebook subset provided by higher layer parameter.
  • the UE 50 may determine the codebook subset according to the second configuration information. If the SRS resource indicated by the SRI is configured with four antenna ports, the UE 50 may determine the codebook subset according to the first configuration information.
  • the UE 50 may be provided with two higher layer parameters codebookSubset and codebookSubset2port in the information element pusch-Config.
  • the higher layer parameter codebookSubset is used to provide codebook subset configuration for 4 antenna ports and more than 4 antenna ports.
  • the higher layer parameter codebookSubset2port is used to provide codebook subset configuration for 2 antenna ports.
  • the UE 50 may be configured with an SRS resource set with usage set to ‘codebook’ , as configured by the higher layer parameter SRS-ResourceSet. In the SRS resource set with usage set to ‘codebook’ , the UE 50 may be configured with one or more SRS resources.
  • the UE 50 may expect that higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet may be configured with the same or different values for all these SRS resources.
  • the configured nrofSRS-Ports in SRS-Resource may be 1, 2 or 4.
  • the UE 50 may be configured with a single SRS-ResourceSet with usage set to ‘codebook’ and only one SRS resource may be indicated based on the SRI from within the SRS resource set. For a given PUSCH transmission, the UE 50 may determine its codebook subset based on higher layer parameter codebookSubset2port if the SRS resource indicated by the SRI is configured with 2 antenna ports, and the UE 50 may determine its codebook subset based on higher layer parameter codebookSubset if the SRS resource indicated by the SRI is configured with 4 antenna ports.
  • the UE 50 may be provided with more than two higher layer parameters codebookSubset in the information element pusch-Config.
  • the configuration information of codebook subset is related to precoding matrix and layer information, and the precoding matrix and layer information indicates precoding of the plurality of antenna ports.
  • the precoding matrix and layer information is the precoding information and number of layers in DCI or other information related to the indication of precoding matrix and transmission rank.
  • FIG. 5 is a table illustrating the precoding information and number of layers according to an exemplary embodiment of the present disclosure.
  • the UE 50 determines its codebook subsets based on TPMI and upon the reception of higher layer parameter codebookSubset in information element pusch-Config which may be configured with ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ depending on the UE capability information.
  • the maximum transmission rank may be configured by the higher parameter maxRank in the information element pusch-Config.
  • the codebook subset may be ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ .
  • the codebook subset may only be ‘fullyAndPartialAndNonCoherent’ or ‘nonCoherent’ .
  • the UE 50 may not expect to be configured with the higher layer parameter codebookSubset set to ‘partialAndNonCoherent’ when higher layer parameter nrofSRS-Ports in information element SRS-ResourceSet with usage set to ‘codebook’ indicates that two SRS antenna ports are configured.
  • the UE 50 or the network device 10 may determine the size of bit-filed of the precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on the number of configured antenna ports of a sixth SRS resource. It is assumed the configured SRS resources include the sixth SRS resource, and the sixth SRS resource is requested by the configuration information of codebook subset. For example, the sixth SRS resource is indicated by SRI. Furthermore, the UE 50 or the network device 10 may determine the number of bits for “Precoding information and number of layers” according to the number of antenna ports configured in the SRS resource indicated by the SRI and the configuration information of codebook subset provided by higher layer parameter for the number of antenna ports as configured in the SRS resource indicated by the SRI.
  • DCI downlink control information
  • DCI format 0_1 is used to schedule PUSCH transmission.
  • the bit-field “SRS resource indicator (SRI) ” indicates one SRS resource from the SRS resource set with usage set to ‘codebook’ and the bit-field “Precoding information and number of layers” indicates the information of PUSCH precoder and transmission rank (i.e., the precoding matrix and layer information) .
  • the bit-field “Precoding information and number of layers” records the index of corresponding transmission rank and TPMI. If the codebook subset is configured with ‘nonCoherent’ and index “9” for example, the transmission rank would be 2 and the TPMI would be 5.
  • the number of bits of bit-field “Precoding information and number of layers” may be determined as follows.
  • the number of bits of “Precoding information and number of layers” is a function of the value in the bit-field SRS resource indicator.
  • the number of bits of “Precoding information and number of layers” is a function of a number of antenna ports configured in the SRS resource indicated by the bit-field SRS resource indicator.
  • the number of bits of “Precoding information and number of layers” is a function of configuration information of codebook subset provided by the higher layer parameter for the number of antenna ports configured in the SRS resource indicated by the bit-field SRS resource indicator (SRI) .
  • RRC parameter txConfig is ‘codebook’ . It means the UL transmission is based on codebook.
  • the number of bits of the precoding matrix and layer information is 2, 4 or 5 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 4 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
  • RRC parameter txConfig is ‘codebook’ .
  • the number of bits of the precoding matrix and layer information is 4, 5 or 6 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 4 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
  • RRC parameter txConfig is ‘codebook’ .
  • the number of bits of the precoding matrix and layer information is 2 or 4 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 2 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
  • RRC parameter txConfig is ‘codebook’ .
  • the number of bits of the precoding matrix and layer information is 1 or 3 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 2 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
  • the disclosure further provides a non-transitory computer-readable recording medium (e.g., a storage medium such as a hard disk, a compact disk, a flash memory, or a solid state disk (SSD) ) .
  • the computer-readable recording medium is capable of storing a plurality of program code segments (e.g., code segments of determining part of sub-channel, code segments of dividing sub-channel, etc. ) . After the code segments are loaded onto the processor 56 of the UE 50 and executed, all the steps of the above resource allocation method may be completed.
  • the user equipment includes a hardware structure and/or a software module corresponding to each function.
  • the disclosure may be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the disclosure may divide the functional module of the UE according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated module may be implemented in the form of hardware or software functional module. It should be noted that the division of the modules in the embodiments of the disclosure is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 6 is a block diagram of a device according to an exemplary embodiment of the present disclosure.
  • the device 60 for UL transmission which is applied to the user equipment 50 shown in FIG. 2B, includes a receiving module 61 and a transmitting module 63.
  • the transmitting module 63 is configured to transmit UE capability information.
  • the UE capability information includes a coherence capability among multiple antenna ports for UL transmission.
  • the receiving module 61 is configured to receive configuration information of SRS resource set relates to the UE capability information.
  • the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of the antenna ports.
  • the transmitting module 63 is configured to transmit SRS on the SRS resources.
  • the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission.
  • the receiving module 61 is further configured to receive configuration information of codebook subset relates to the SRS.
  • the configuration information of codebook subset indicates that a coherence configuration of the antenna ports is configured with partialAndNonCoherent.
  • the transmitting module 63 is further configured to configure the codebook subset for a third SRS resource as different from the coherence configuration.
  • the SRS resources include the third SRS resource, the third SRS resource is requested by the configuration information of codebook subset, and the number of configured antenna ports for the third SRS resource is less than the largest number of configured antenna ports for all SRS resources.
  • the transmitting module 63 is further configured to configure the codebook subset for the third SRS resource as merely the non-coherence.
  • the transmitting module 63 is further configured to configure the codebook subset for the third SRS resource as fullyAndPartialAndNonCoherent.
  • the UE capability information further indicates a reported precoding matrix.
  • the transmitting module 63 is further configured to configure a coherence configuration of configured antenna ports for a fourth SRS resource according to the reported precoding matrix.
  • the SRS resources include the fourth SRS resource, and the number of the configured antenna ports for the fourth SRS resource is less than the largest number of configured antenna ports for all SRS resources.
  • the UE capability information further indicates that a support number of the antenna ports for codebook subset is less than the number of all antenna ports.
  • the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission.
  • the receiving module 61 is further configured to receive configuration information of codebook subset relates to the SRS.
  • the configuration information of codebook subset includes first configuration information and second configuration information used for different numbers of the antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix.
  • the transmitting module 63 is further configured to select one of the first configuration information and the second configuration information for configuring the codebook subset of a fifth SRS resource.
  • the SRS resources include the fifth SRS resource, the fifith SRS resource is requested by the configuration information of codebook subset, and the number of the antenna ports used for the selected one of the first configuration information and the second configuration information is the same as the number of configured antenna ports for the fifth SRS resource configured by the configuration information of SRS resource set.
  • the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission.
  • the receiving module 61 is further configured to receive configuration information of codebook subset relates to the SRS and determine the size of bit-filed of precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on the number of configured antenna ports of a sixth SRS resource.
  • the configuration information of codebook subset is related to the precoding matrix and layer information, the precoding matrix and layer information indicates precoding of the antenna ports, the SRS resources includes the sixth SRS resource, and the sixth SRS resource is requested by the configuration information of codebook subset.
  • module used herein should be understood as the widest possible meaning.
  • the object used to implement the functions described by each “module” may be, for example, an integrated circuit ASIC, a single circuit, or a chip, used to execute one or more software or firmware.
  • the program s processor (shared, dedicated, or chipset) and memory, combined logic circuits, and/or other suitable components that provide the functions described above.
  • the receiving module 61 and the transmitting module 63 may be a control circuit, a chip, or a processor.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the module is only a logical function division.
  • multiple module s or components may be combined or may Integration into another system, or some features may be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional module in each embodiment of the disclosure may be integrated into one processing module, or each of the modules may exist separately physically, or two or more modules may be integrated into one module.
  • the above integrated module may be implemented in the form of hardware or in the form of software program modules.
  • the integrated module When the integrated module is implemented in the form of a software program module and sold or used as an independent product, it may be stored in a computer-readable memory.
  • the technical solution of the disclosure essentially or part that contributes to the existing technology or all or part of the technical solution may be embodied in the form of a software product, which is stored in a memory, several instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc. ) to perform all or part of the steps of the method described in the embodiments of the disclosure.
  • the foregoing memory includes a flash disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and other media that may store program codes.
  • the UE in the method and the device for uplink transmission, in the SRS resource set configured for codebook-based UL transmission, two or more SRS resources are configured with the same or different numbers of antenna ports. If (or only if) the codebook subset configured is ‘partialAndNonCoherent’ , the UE may assume the codebook subset of ‘nonCoherent’ or ‘fullyAndPartialAndNonCoherent’ is used when the SRS resource with less number of configured antenna ports than the largest number of the configured antenna ports is indicated for UL transmission.
  • the field size of precoding matrix and layer information depends on the number of antenna ports configured in the SRS resource indicated by the SRI field in the same DCI format X.
  • the UE In UL configuration, the UE is provided with two or more higher layer parameters for the configuration of codebook subset. One configuration information for 4 or more configured antenna ports and another configuration information for 2 antenna ports. For a given UL transmission, the UE determines the codebook subset according to the indicated SRS resource and corresponding RRC parameter. The UE may determine the codebook subset for SRS resource with 2 or more antenna ports based on the TMPI for mode 2 transmission that are reported in UE capability information. Accordingly, it may support full power transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and a device for uplink (UL) transmission are provided. The method is adapted for a user equipment (UE) with multiple antenna ports. In the method, UE capability information is transmitted, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission. Configuration information of sounding reference signal (SRS) resource set relates to the UE capability information is received, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of the antenna ports. SRS is transmitted on the SRS resources. Accordingly, it may support full power transmission.

Description

METHOD AND DEVICE FOR UPLINK TRANSMISSION
CROSS-REFERENCE TO RELATED APPLICATION
This application claims the priority benefit of U.S. provisional application serial no. 62/981,906, filed on February 26, 2020. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of specification.
BACKGROUND
1. Field of the Disclosure
The present disclosure generally relates to the technical field of communications, in particular, to a method and a device for uplink transmission.
2. Description of Related Art
As specified in the third generation partnership project (3GPP) release 15, for codebook-based uplink (UL) transmission, the user equipment (UE) may be configured with a sounding reference signal (SRS) resource set with higher layer parameter usage set to be ‘codebook’ . In the SRS resource set, the UE may be configured with one or two SRS resources and those two SRS resources may have the same number of antenna ports. For codebook-based UL transmission, the UE may be configured with a codebook subset through RRC parameter codebookSubset. Codebook-based UL transmission may be scheduled by control information. The UE determines its UL transmission precoder based on SRS resource indicator (SRI) , transmitted precoding matrix indicator (TPMI) and the transmission rank, where the SRI, TPMI and the transmission rank are given by control information fields of SRS resource indicator and precoding information and number of layers. In the conventional approaches, it is assumed that the numbers of antenna ports of all the SRS resources in the SRS resource set configured for codebook-based UL transmission are the same. However, the assumption of the number of antenna ports is improper to support full power transmission.
SUMMARY
Exemplary embodiments of the disclosure provide a method and a device for uplink transmission, to adapt for full power transmission.
According to one or more exemplary embodiments of the disclosure, a method for uplink (UL) transmission is adapted for a user equipment (UE) with multiple antenna ports. The method includes, but not limited to, the following steps. UE capability information is transmitted, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission. Configuration information of sounding reference signal (SRS) resource set relates to the UE capability information is received, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of the antenna ports. SRS is transmitted on the SRS resources.
According to one or more exemplary embodiments of the disclosure, a UE includes, but not limited to, a memory, a transceiver, and one or more processors. The memory is used for storing program code. The transceiver is used for transmitting or receiving signals. The one or more processors are coupled to the memory and used for executing the program code to perform: transmitting UE capability information through the transceiver, receiving configuration information of SRS resource set relates to the UE capability information through the transceiver, and transmitting SRS on the SRS resources through the transceiver. The UE capability information includes a coherence capability among multiple antenna ports for UL transmission. The configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
According to one or more exemplary embodiments of the disclosure, a method for UL transmission is adapted for a network device. The method includes, but not limited to, the following steps. UE capability information is received, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission. Configuration information of SRS resource set relates to the UE capability information is transmitted, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports. SRS is received on the SRS resources.
According to one or more exemplary embodiments of the disclosure, a network device includes, but not limited to, a memory, a transceiver, and one or more processors. The memory is used for storing program code. The transceiver is used for transmitting or receiving signals. The one or more processors are coupled to the memory and used for executing the program code to perform: receiving UE capability information through the transceiver, transmitting configuration information of SRS resource set relates to the UE capability information through the transceiver, and receiving SRS on the SRS resources through the transceiver. The UE capability information includes a coherence capability among multiple antenna ports for UL transmission. The configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
According to one or more exemplary embodiments of the disclosure, a device includes, but not limited to, a transmitting module and a receiving module. The transmitting module is configured to transmit UE capability information, where the UE capability information includes a coherence capability among multiple antenna ports for UL transmission. The receiving module is configured to receive configuration information of SRS resource set relates to the UE capability information, where the configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports. The transmitting module is configured to transmit SRS on the SRS resources.
According to one or more exemplary embodiments of the disclosure, a non-transitory computer-readable medium includes program code that executed by a processor to perform: transmitting UE capability information through the transceiver, receiving configuration information of SRS resource set relates to the UE capability information through the transceiver, and transmitting SRS on the SRS resources through the transceiver. The UE capability information includes a coherence capability among multiple antenna ports for UL transmission. The configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of antenna ports.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
FIG. 1 is a schematic diagram of a communication system according to an exemplary embodiment of the present disclosure.
FIG. 2A is a block diagram of a network device according to an exemplary embodiment of the present disclosure.
FIG. 2B is a block diagram of a user equipment (UE) according to an exemplary embodiment of the present disclosure.
FIG. 3 is a flowchart of a method for uplink (UL) transmission according to an exemplary embodiment of the present disclosure.
FIG. 4 is a table illustrating transmitted precoding matrix indicator (TPMI) groups according to an exemplary embodiment of the present disclosure.
FIG. 5 is a table illustrating the precoding information and number of layers according to an exemplary embodiment of the present disclosure.
FIG. 6 is a block diagram of a device according to an exemplary embodiment of the present disclosure.
DETAILED DESCRIPTION
Reference will now be made in detail to the present preferred embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
FIG. 1 is a schematic diagram of a communication system 1 according to an exemplary embodiment of the present disclosure. Referring to FIG. 1, the communication system 1 includes, but not limited to, one or more network devices 10 and one or more user equipments (UEs) 50. In addition, the communication system 1 may further include other core network entities such as a mobile management entity (MME) , a serving gateway (S-GW) , a packet data network gateway (P-GW) , an access and mobility function (AMF) and/or a user plane function (UPF) . However, the embodiments of the disclosure are not limited thereto. The communication system 1 may be applied to, for example, a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) system, a long term evolution (LTE) system, an LTE frequency division duplex (FDD) system, LTE time division duplexes (TDD) , a universal mobile telecommunication system (UMTS) , a new radio (NR) system, or other mobile communication systems.
The network device 10 may have various implementations, for example (but not limited to) , a home evolved Node B (HeNB) , an eNB, a next generation Node B (gNB) , an integrated access and backhaul (IAB) network node, an advanced base station (ABS) , a base transceiver system (BTS) , a relay, a repeater, a cell and/or a satellite-based communication base station.
FIG. 2A is a block diagram of a network device 10 according to an exemplary embodiment of the present disclosure. Referring to FIG. 2A, the network device 10 includes, but not limited to, one or more antennas 11, a receiver 12, a transmitter 13, an analog-to-digital/digital-to-analog converter 14, a memory 15, and one or more processors 16.
The one or more antennas 11 are coupled to the receiver 12 and the transmitter 13. The analog-to-digital/digital-to-analog converter 14 is coupled to the receiver 12, the transmitter 13, and the processor 16. The processor 16 is further coupled to the memory 15.
The receiver 12 and the transmitter 13 are respectively configured to wirelessly receive an uplink signal and transmit a downlink signal through the one or more antennas 11. The receiver 12 and the transmitter 13 may also perform analog signal processing operations such as low noise amplification, impedance matching, frequency mixing, up-conversion or down-conversion, filtering, amplification, and the like. The analog-to-digital/digital-to-analog converter 14 is configured to convert the uplink signal from an analog signal format to a digital signal format and convert the downlink signal from the digital signal format to the analog signal format.
The memory 15 may be any type of fixed or removable random access memory (RAM) , read-only memory (ROM) , flash memory or a similar element, or a combination of the foregoing elements. The memory 15 records a program code, apparatus configuration, a codebook, buffered or permanent data, and records various communication protocol-related software modules such as a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, a media access control (MAC) layer, and the like, and data thereof.
The one or more processors 16 are configured to process a digital signal, load and execute a program code from the memory 15 according to an exemplary embodiment of the disclosure, and  may access or load data and software modules recorded in the memory 15. In one embodiment, a function of the processor 16 may be implemented by using programmable units such as a central processing unit (CPU) , a microprocessor, a microcontroller, a digital signal processing (DSP) chip, a field programmable logic gate array (FPGA) , and the like. In some embodiments, the function of the processor 16 may also be implemented by using an independent electronic device or an integrated circuit (IC) , and the operations of the processor 16 may be implemented through software.
The UE 50 may have various implementations, for example (but not limited to) , a mobile station, an advanced mobile station (AMS) , a telephone apparatus, customer premise equipment (CPE) , a wireless sensor, a handheld device with wireless communication function, a computing device or other processing devices connected to wireless modems, an in-vehicle device, a wearable device, or the like.
FIG. 2B is a block diagram of a UE 50 according to an exemplary embodiment of the present disclosure. Referring to FIG. 2B, the UE 50 includes, but not limited to, one or more antennas 51, a receiver 52, a transmitter 53, an analog-to-digital/digital-to-analog converter 54, a memory 55, and one or more processors 56.
The one or more antennas 51 are coupled to the receiver 52 and the transmitter 53. The analog-to-digital/digital-to-analog converter 54 is coupled to the receiver 52, the transmitter 53, and the processor 56. The processor 56 is further coupled to the memory 55.
The receiver 52 and the transmitter 53 are respectively configured to wirelessly receive a downlink signal and transmit an uplink signal through the antenna 51. The receiver 52 and the transmitter 53 may also perform analog signal processing operations such as low noise amplification, impedance matching, frequency mixing, up-conversion or down-conversion, filtering, amplification, and the like. The analog-to-digital/digital-to-analog converter 54 is configured to convert the downlink signal from an analog signal format to a digital signal format and convert the uplink signal from the digital signal format to the analog signal format.
The memory 55 may be any type of fixed or removable RAM, ROM, flash memory, or a similar element, or a combination of the foregoing elements. The memory 55 records a program code, apparatus configuration, a codebook, buffered or permanent data, and records various communication protocol-related software modules such as an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and the like, and data thereof.
The one or more processors 56 are configured to process a digital signal, load and execute a program code from the memory 55 according to an exemplary embodiment of the disclosure, and may access or load data and software modules recorded in the memory 55. In one embodiment, a function of the processor 56 may be implemented by using programmable units such as a CPU, a microprocessor, a microcontroller, a DSP chip, an FPGA, and the like. In some embodiments, the function of the processor 56 may also be implemented by using an independent electronic device or an IC, and the operations of the processor 56 may be implemented through software.
In the following, the method in the embodiment of the disclosure would be described in combination with apparatuses and elements thereof in the communication system 1. Each process of the method according to the embodiment of the disclosure may be adjusted according to an implementation situation and is not limited thereto.
FIG. 3 is a flowchart of a method for uplink (UL) transmission according to an exemplary embodiment of the present disclosure. Referring to FIG. 3, the processor 56 of the UE 50 may transmit UE capability information through the transmitter 53, and the processor 16 of the network device 10 may receive the UE capability information from the UE 50 through the receiver 12 (step S310) . Specifically, for codebook based transmission, the UE 50 may determine its codebook subsets, which is configured with the coherence configuration among multiple antenna ports requested by the network device 10, based on its coherence capability for UL transmission. A codebook subset is a subset of precoding matrix (s) and could be addressed by transmitted precoding matrix indicator (TPMI) or other indicators related to one or more  precoding matrixes. The precoding matrix is used for precoding data conveyed by multiple antenna ports for UL transmission. The coherence configuration is used to request the antenna ports of the UE 50 should be transmitted coherently or noncoherently. In one embodiment, the coherence configuration could be the combination of full-coherence (i.e., all antenna ports may be transmitted coherently) , partial-coherence (i.e., part of antenna ports may be transmitted coherently) , and non-coherence (i.e., no antenna port pair may be transmitted coherently) (for example, ‘fullyAndPartialAndNonCoherent’ as defined in 3GPP standard) , the combination of partial-coherence and non-coherence (for example, ‘partialAndNonCoherent’ as defined in 3GPP standard) , or the non-coherence (for example, ‘nonCoherent’ as defined in 3GPP standard) .
In one embodiment, the UE capability information may include its coherence capability among multiple antenna ports for UL transmission. Similarly, the coherence capability could be the combination of full-coherence, partial-coherence and non-coherence, the combination of partial-coherence and non-coherence, or the non-coherence. Furthermore, an antenna port is defined such that the channel over which a symbol on the antenna port is conveyed may be inferred from the channel over which another symbol on the same antenna port is conveyed.
In one embodiment, the UE capability information may indicate one or more reported precoding matrixes. Specifically, the UE 50 may be configured to operate in either full power transmission mode 1 ( ‘fullpowerMode1’ ) or full power transmission mode 2 ( ‘fullpowerMode2’ ) upon reception of the higher layer parameter ULFPTxModes or ul-FullPowerTransmission from the network device 10. For example, for UL transmission mode 2, the UE 50 may be configured with one or more sounding reference signal (SRS) resources with the same or different numbers of SRS ports within an SRS resource set with usage set to ‘codebook’ and a maximum of 4 or more SRS resources are supported to an SRS resource set with usage set to ‘codebook’ . For another example, for UL transmission mode 2, the UE 50 may report one or more TMPIs or another indicator of a subset of precoding matrixes in the UE capability information which may be used to support full power transmission.
In one example, for a UE 50 with 4 antenna ports, the UE capability information may include one of the following TMPI groups which may deliver full power in UL transmission mode 2. FIG. 4 is a table illustrating transmitted precoding matrix indicator (TPMI) groups according to an exemplary embodiment of the present disclosure. Referring to FIG. 4, there are seven TMPI groups. The UE 50 may report one or more of those TPMI groups {G0, G1, G2, G3, G4, G5, G6} to the network device 10.
It should be noticed that, in another example, the UE 50 may include another number of the antenna ports (such as 2, 8, or 16) different from the aforementioned example, and the precoding matrixes may also be different.
In one embodiment, the UE capability information may indicate that a support number of multiple antenna ports for codebook subset is less than the number of all of the antenna ports. That is, in UE capability information, the UE 50 may report the support of uplink codebook subset for 2 or more antenna ports for full power transmission mode which may be different from its total antenna ports.
In one example, a UE 50 has four Tx antenna ports. The UE 50 may report parameter pusch-TransCoherence in UE capability information to report the support of uplink codebook subset for UL precoding when 4 antenna ports are used. However, the UE 50 may also report a parameter in UE capability information to report support of uplink codebook subset for UL precoding when 2 antenna ports are used for UL transmission. In one example, those 2 antenna ports may be implemented through antenna virtualization by UE implementation.
In response to the UE capability information, the processor 16 of the network device 10 may configure the SRS resource set for the UE 50. The processor 16 of the network device 10 may transmit configuration information of the SRS source set through the transmitter 13, and the processor 56 of the UE 50 may receive the configuration information of the SRS source set through the receiver 52 (step S330) . Specifically, the configuration information of the SRS  resource set indicates that the SRS resource set includes one or more SRS resources for codebook-based UL transmission. The configuration information of the SRS resource set may be SRS-Config information element which defines a list of SRS resources and a list of SRS resource sets, or the configuration information of the SRS resource set may be one of the listed SRS resource sets. The SRS resource is allocated on the radio resource (or called the time-frequency resource) . If (or only if) multiple SRS resources are configured in an SRS resource set, the SRS resources may be configured with the same or different numbers of antenna ports. That is, two or more of the SRS resources are configured with the same or different numbers of antenna ports. In one of the objectives, to support full power transmission, it may configure different numbers of antenna ports in different SRS resources in one SRS resource set for codebook based UL transmission.
In one example, one SRS resource set configured to support full power transmission includes a first SRS resource and a second SRS resource, where the first SRS resource is configured with 4 antenna ports and the second SRS resource is configured with 2 antenna ports.
It should be noticed that, in another example, the UE 50 may be configured with another number of the antenna ports (such as 8 or 16) in one SRS resource different from the aforementioned example.
The processor 56 of the UE 50 may transmit one or more SRSs on one or more configured SRS resources through the transmitter 53, and the processor 16 of the network device 10 may receive the SRSs on the SRS resources from the UE 50 through the receiver 12 (step S350) . Specifically, the SRS is used for the estimation of the channel for UL transmission. The network device 10 may configure codebook subset and one or more suitable SRS sources based on the estimated channel.
In response to the SRS, the processor 16 of the network device 10 may transmit configuration information of codebook subset through the transmitter 13, and the processor 56 of the UE 50 may receive the configuration information of codebook subset through the receiver 52 (step S370) . Specifically, the UE 50 may receive the higher layer parameter codebookSubset from the network device 10 to provide the configuration information of codebook subset. The higher layer parameter codebookSubset includes a subset of precoding matrix indicators (PMIs) addressed by TPMI, where PMIs are those supported by UE 50 with maximum coherence capability. In one embodiment, the configuration information of codebook subset may be included in the information element PUSCH-Config for scheduling of physical uplink shared channel (PUSCH) or another uplink data channel in the RRC parameter. For example, a codebook-based PUSCH transmission may be scheduled by downlink control information (DCI) format 0_1. In one embodiment, the configuration information of codebook subset may be included in another control information for scheduling the UL transmission.
Furthermore, in one embodiment, the UE 50 may determine its UL transmission precoder based on SRS resource indicator (SRI) , TPMI and the transmission rank, where the SRI, TPMI and the transmission rank are given by DCI fields of SRS resource indicator and precoding information and number of layers. The TPMI is used to indicate the precoder to be applied over the layers {0…ν-1} corresponding to the rank and that corresponds to the SRS resource selected by the SRI when multiple SRS resources are configured, or if a single SRS resource is configured TPMI is used to indicate the precoder to be applied over the layers {0…ν-1} and that corresponds to the SRS resource. The transmission precoder is selected from the uplink codebook that has the number of antenna ports equal to the number of antenna ports in the SRS resources configured for codebook-based UL transmission, which is provided by RRC parameter nrofSRS-Ports in information element SRS-Config.
In one embodiment, the configuration information of codebook subset indicates that the coherence configuration of the antenna ports of the UE 50 is configured with the combination of partial-coherence and non-coherence. For example, the higher layer parameter codebookSubset is set to be ‘partialAndNonCoherent’ . The processor 56 of the UE 50 may configure the  codebook subset for a third SRS resource as different from the coherence configuration (i.e., the combination of partial-coherence and non-coherence) request by the network device 10. It is assumed the configured SRS resources include the third SRS resource, and the third SRS resource is requested by the configuration information of codebook subset. For example, the third SRS resource is indicated by SRI. Furthermore, it is assumed the third SRS resource is used for codebook-based UL transmission, and the number of configured antenna ports for the third SRS resource is less than the largest number of configured antenna ports for all SRS resources. For example, an SRS resource set with usage set to ‘codebook’ as configured by the higher layer parameter SRS-ResourceSet, the third SRS resource is configured with two antenna ports, and the first SRS resource is configured with four antenna ports.
When multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ , the UE 50 may expect that higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet may be configured with the same or different values for all these SRS resources.
For example, in information element pusch-Config, the UE 50 may be provided with a higher layer parameter codebookSubset which may be configured with ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ depending on the UE capability information. If the largest value of nrofSRS-Ports in SRS-Resource configured for all SRS resources in SRS-ResourceSet with usage set to ‘codebook’ is four antenna ports, the UE 50 may be configured with higher layer parameter codebookSubset set to ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ .
In one embodiment, if (or only if) the number of configured antenna ports for the third SRS resource is less than the largest number of configured antenna ports for all SRS resources, the UE 50 may configure the codebook subset for the third SRS resource as merely the non-coherence.
For example, multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ . If the largest value of higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet is four antenna ports and there are one or more SRS resources configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ , and if higher layer parameter codebookSubset in pusch-Config is configured with ‘partialAndNonCoherent’ , the UE 50 may assume the codebook subset for the SRS resource (s) configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In another embodiment, if (or only if) the number of configured antenna ports for the third SRS resource is less than the largest number of configured antenna ports for all SRS resources, the UE 50 may configure the codebook subset for the third SRS resource as the combination of full-coherence, partial-coherence, and non-coherence.
For example, multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ . If the largest value of higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet is four antenna ports and there is at least one SRS resource configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ , and if higher layer parameter codebookSubset in pusch-Config is configured with ‘partialAndNonCoherent’ , the UE 50 may assume the codebook subset for the SRS resource (s) configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘fullyAndPartialAndNonCoherent’ .
In one embodiment, the processor 56 of the UE 50 may configure the coherence configuration of configured antenna ports for a fourth SRS resource according to the reported precoding matrix in the UE capability information. It is assumed the configured SRS resources include the fourth SRS resource, and the fourth SRS resource is requested by the configuration information of codebook subset. For example, the fourth SRS resource is indicated by SRI. Furthermore, it is assumed the fourth SRS resource is used for codebook-based UL transmission, and the number of configured antenna ports for the fourth SRS resource is less than the largest number of configured antenna ports for all SRS resources. For example, the fourth SRS resource  is configured with two antenna ports, and the first SRS resource is configured with four antenna ports.
In one embodiment, the coherence configuration of configured antenna ports for the fourth SRS resource may be coherent or noncoherent. For example, multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ . If the largest value of higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet is four antenna ports and there is at least one SRS resource configured with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ , the UE 50 may assume the codebook subset for the SRS resource (s) configured with two antenna ports according to the TMPIs for mode 2 transmission reported in UE capability information.
In one example, if the TMPI for mode 2 transmission reported in UE capability information belongs to a first subset of TPMIs, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘fullyAndPartialAndNonCoherent’ . If the TPMI for mode 2 transmission reported in UE capability information belongs to a second subset of TPMIs, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
Taking FIG. 4 as an example, in one example, if the UE 50 reports one of the TPMI groups {G0, G1, G2, G3} , the UE 50 may assume codebook subset for SRS resource with two antenna port in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports one of the TPMI group {G4, G5, G6} , the UE 50 may assume codebook subset for SRS resource with two antenna port in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G0 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI group G1 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI group G2 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI group G3 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI group G0 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G1 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G2 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G3 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G4 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G5 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G6 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘coherent’ .
In one example, if the UE 50 reports TPMI group G4 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI group G5 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI group G6 in UE capability information, the UE 50 may assume codebook subset for SRS resource with two antenna ports in the SRS-ResourceSet with usage set to ‘codebook’ is ‘nonCoherent’ .
In one example, if the UE 50 reports TPMI of 4 antenna ports for mode 2 transmission in UE capability information, the UE 50 may determine the codebook subset for SRS resource with 2 antenna port for codebook-based PUSCH transmission based on the reported TPMI of 4 antenna ports for mode 2 transmission.
In one example, if the UE 50 does not report TPMI of 4 antenna ports for mode 2 transmission in UE capability information and the UE 50 is configured with mode 2 full power transmission, the UE 50 may determine codebook subset for SRS resource with two antenna port in the SRS-ResourceSet with usage set to ‘codebook’ (if at least one SRS resource with 4 antenna ports is configured in the SRS resource set) as follows. The UE 50 may determine the codebook subset for SRS resource with 2 antenna ports based on the codebook subset configured for 4 antenna ports, as in some examples described in this disclosure. Furthermore, the UE 50 may expect the UE 50 would be configured with a codebook subset for 2 antenna ports.
However, in one example, when the largest value of nrofSRS-Ports in SRS-Resource configured for all SRS resources in SRS-ResourceSet with usage set to ‘codebook’ is two antenna ports (that is the number of configured antenna ports for the fourth SRS resource equals to the largest number of configured antenna ports for all SRS resources) , the UE 50 may not expect to be configured with the higher layer parameter codebookSubset set to ‘partialAndNonCoherent’ .
In one embodiment, the configuration information of codebook subset may include first configuration information and second configuration information used for the different numbers of the antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix. The UE 50 may be provided with multiple RRC parameters to provide the codebook subset configuration for multiple different numbers of antenna ports. The UE 50 may select one of the first configuration information and the second configuration information for configuring the codebook subset of a fifth SRS resource. It is assumed the configured SRS resources include the fifth SRS resource, and the fifth SRS resource is requested by the configuration information of codebook subset. For example, the fifth SRS resource is indicated by SRI. Furthermore, it is assumed the fifth SRS resource is used for codebook-based UL transmission, and the number of the antenna ports used for the selected one of the first configuration information and the second configuration information is the same as the number of configured antenna ports for the fifth SRS resource configured by the configuration information of SRS resource set.
In one example, the UE 50 may be provided with a codebook subset configuration (i.e., the first configuration information) for four antenna ports and another codebook subset configuration (i.e., the second configuration information) for two antenna ports. The UE 50 may be configured with an SRS resource set for codebook-based UL transmission. In the SRS resource set, the UE  50 may be configured with multiple SRS resources with the same or different numbers of antenna ports. For example, each SRS resource may be configured with 1, 2 or 4 antenna ports. For a given PUSCH transmission, the UE 50 may determine the codebook subset according to the higher layer parameter and the SRS resource indicated by the SRI field in the DCI scheduling the PUSCH transmission and configuration information of codebook subset provided by higher layer parameter. If the SRS resource indicated by the SRI is configured with two antenna ports, the UE 50 may determine the codebook subset according to the second configuration information. If the SRS resource indicated by the SRI is configured with four antenna ports, the UE 50 may determine the codebook subset according to the first configuration information.
In one example, the UE 50 may be provided with two higher layer parameters codebookSubset and codebookSubset2port in the information element pusch-Config. The higher layer parameter codebookSubset is used to provide codebook subset configuration for 4 antenna ports and more than 4 antenna ports. The higher layer parameter codebookSubset2port is used to provide codebook subset configuration for 2 antenna ports. The UE 50 may be configured with an SRS resource set with usage set to ‘codebook’ , as configured by the higher layer parameter SRS-ResourceSet. In the SRS resource set with usage set to ‘codebook’ , the UE 50 may be configured with one or more SRS resources. When multiple SRS resources are configured by SRS-ResourceSet with usage set to ‘codebook’ , the UE 50 may expect that higher layer parameters nrofSRS-Ports in SRS-Resource in SRS-ResourceSet may be configured with the same or different values for all these SRS resources. For each SRS resource, the configured nrofSRS-Ports in SRS-Resource may be 1, 2 or 4.
In one example, for codebook-based UL transmission, the UE 50 may be configured with a single SRS-ResourceSet with usage set to ‘codebook’ and only one SRS resource may be indicated based on the SRI from within the SRS resource set. For a given PUSCH transmission, the UE 50 may determine its codebook subset based on higher layer parameter codebookSubset2port if the SRS resource indicated by the SRI is configured with 2 antenna ports, and the UE 50 may determine its codebook subset based on higher layer parameter codebookSubset if the SRS resource indicated by the SRI is configured with 4 antenna ports.
In another example, the UE 50 may be provided with more than two higher layer parameters codebookSubset in the information element pusch-Config.
In one embodiment, the configuration information of codebook subset is related to precoding matrix and layer information, and the precoding matrix and layer information indicates precoding of the plurality of antenna ports. For example, the precoding matrix and layer information is the precoding information and number of layers in DCI or other information related to the indication of precoding matrix and transmission rank.
For example, FIG. 5 is a table illustrating the precoding information and number of layers according to an exemplary embodiment of the present disclosure. Referring FIG. 5, for codebook-based transmission, the UE 50 determines its codebook subsets based on TPMI and upon the reception of higher layer parameter codebookSubset in information element pusch-Config which may be configured with ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ depending on the UE capability information. The maximum transmission rank may be configured by the higher parameter maxRank in the information element pusch-Config. In this example, for 4 antenna ports, the codebook subset may be ‘fullyAndPartialAndNonCoherent’ , ‘partialAndNonCoherent’ , or ‘nonCoherent’ . However, for 2 antenna ports, the codebook subset may only be ‘fullyAndPartialAndNonCoherent’ or ‘nonCoherent’ . The UE 50 may not expect to be configured with the higher layer parameter codebookSubset set to ‘partialAndNonCoherent’ when higher layer parameter nrofSRS-Ports in information element SRS-ResourceSet with usage set to ‘codebook’ indicates that two SRS antenna ports are configured.
In one embodiment, the UE 50 or the network device 10 may determine the size of bit-filed of the precoding matrix and layer information in downlink control information (DCI) for the UL  transmission based on the number of configured antenna ports of a sixth SRS resource. It is assumed the configured SRS resources include the sixth SRS resource, and the sixth SRS resource is requested by the configuration information of codebook subset. For example, the sixth SRS resource is indicated by SRI. Furthermore, the UE 50 or the network device 10 may determine the number of bits for “Precoding information and number of layers” according to the number of antenna ports configured in the SRS resource indicated by the SRI and the configuration information of codebook subset provided by higher layer parameter for the number of antenna ports as configured in the SRS resource indicated by the SRI.
In one example, DCI format 0_1 is used to schedule PUSCH transmission. The bit-field “SRS resource indicator (SRI) ” indicates one SRS resource from the SRS resource set with usage set to ‘codebook’ and the bit-field “Precoding information and number of layers” indicates the information of PUSCH precoder and transmission rank (i.e., the precoding matrix and layer information) . Taking FIG. 5 as an example, the bit-field “Precoding information and number of layers” records the index of corresponding transmission rank and TPMI. If the codebook subset is configured with ‘nonCoherent’ and index “9” for example, the transmission rank would be 2 and the TPMI would be 5.
Furthermore, the number of bits of bit-field “Precoding information and number of layers” may be determined as follows. The number of bits of “Precoding information and number of layers” is a function of the value in the bit-field SRS resource indicator. The number of bits of “Precoding information and number of layers” is a function of a number of antenna ports configured in the SRS resource indicated by the bit-field SRS resource indicator. The number of bits of “Precoding information and number of layers” is a function of configuration information of codebook subset provided by the higher layer parameter for the number of antenna ports configured in the SRS resource indicated by the bit-field SRS resource indicator (SRI) .
In one example, RRC parameter txConfig is ‘codebook’ . It means the UL transmission is based on codebook. The number of bits of the precoding matrix and layer information is 2, 4 or 5 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 4 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
In one example, RRC parameter txConfig is ‘codebook’ . The number of bits of the precoding matrix and layer information is 4, 5 or 6 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 4 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
In one example, RRC parameter txConfig is ‘codebook’ . The number of bits of the precoding matrix and layer information is 2 or 4 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 2 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
In one example, RRC parameter txConfig is ‘codebook’ . The number of bits of the precoding matrix and layer information is 1 or 3 if the number of antenna ports in the SRS resource indicated by the ‘SRI’ is 2 according to whether transform precoder is enabled or disabled, and the values of higher layer parameters maxRank, and configuration information of codebook subset.
In addition, the disclosure further provides a non-transitory computer-readable recording medium (e.g., a storage medium such as a hard disk, a compact disk, a flash memory, or a solid state disk (SSD) ) . The computer-readable recording medium is capable of storing a plurality of program code segments (e.g., code segments of determining part of sub-channel, code segments of dividing sub-channel, etc. ) . After the code segments are loaded onto the processor 56 of the UE 50 and executed, all the steps of the above resource allocation method may be completed.
The above mainly introduces the solutions of the embodiments of the disclosure from the perspective of the execution process on the method side. It may be understood that, in order to realize the above-mentioned functions, the user equipment includes a hardware structure and/or a software module corresponding to each function. Those skilled in the art should easily realize that, in combination with the modules and algorithm steps of the examples described in the embodiments provided herein, the disclosure may be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
The embodiments of the disclosure may divide the functional module of the UE according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. The above integrated module may be implemented in the form of hardware or software functional module. It should be noted that the division of the modules in the embodiments of the disclosure is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
FIG. 6 is a block diagram of a device according to an exemplary embodiment of the present disclosure. Referring to FIG. 6, the device 60 for UL transmission, which is applied to the user equipment 50 shown in FIG. 2B, includes a receiving module 61 and a transmitting module 63.
The transmitting module 63 is configured to transmit UE capability information. The UE capability information includes a coherence capability among multiple antenna ports for UL transmission. The receiving module 61 is configured to receive configuration information of SRS resource set relates to the UE capability information. The configuration information of the SRS resource set indicates that the SRS resource set includes multiple SRS resources and two of the SRS resources are configured with different numbers of the antenna ports. The transmitting module 63 is configured to transmit SRS on the SRS resources.
In one embodiment, the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission. The receiving module 61 is further configured to receive configuration information of codebook subset relates to the SRS. The configuration information of codebook subset indicates that a coherence configuration of the antenna ports is configured with partialAndNonCoherent. The transmitting module 63 is further configured to configure the codebook subset for a third SRS resource as different from the coherence configuration. The SRS resources include the third SRS resource, the third SRS resource is requested by the configuration information of codebook subset, and the number of configured antenna ports for the third SRS resource is less than the largest number of configured antenna ports for all SRS resources.
In one embodiment, the transmitting module 63 is further configured to configure the codebook subset for the third SRS resource as merely the non-coherence.
In one embodiment, the transmitting module 63 is further configured to configure the codebook subset for the third SRS resource as fullyAndPartialAndNonCoherent.
In one embodiment, the UE capability information further indicates a reported precoding matrix. The transmitting module 63 is further configured to configure a coherence configuration of configured antenna ports for a fourth SRS resource according to the reported precoding matrix. The SRS resources include the fourth SRS resource, and the number of the configured antenna ports for the fourth SRS resource is less than the largest number of configured antenna ports for all SRS resources.
In one embodiment, the UE capability information further indicates that a support number of the antenna ports for codebook subset is less than the number of all antenna ports.
In one embodiment, the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission. The receiving module 61 is further configured to receive configuration information of codebook subset relates to the SRS. The configuration information of codebook subset includes first configuration information and second configuration information used for different numbers of the antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix. The transmitting module 63 is further configured to select one of the first configuration information and the second configuration information for configuring the codebook subset of a fifth SRS resource. The SRS resources include the fifth SRS resource, the fifith SRS resource is requested by the configuration information of codebook subset, and the number of the antenna ports used for the selected one of the first configuration information and the second configuration information is the same as the number of configured antenna ports for the fifth SRS resource configured by the configuration information of SRS resource set.
In one embodiment, the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission. The receiving module 61 is further configured to receive configuration information of codebook subset relates to the SRS and determine the size of bit-filed of precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on the number of configured antenna ports of a sixth SRS resource. The configuration information of codebook subset is related to the precoding matrix and layer information, the precoding matrix and layer information indicates precoding of the antenna ports, the SRS resources includes the sixth SRS resource, and the sixth SRS resource is requested by the configuration information of codebook subset.
It should be noted that the user equipment described in the embodiments of the disclosure are presented in the form of functional modules. The term "module" used herein should be understood as the widest possible meaning. The object used to implement the functions described by each "module" may be, for example, an integrated circuit ASIC, a single circuit, or a chip, used to execute one or more software or firmware. The program’s processor (shared, dedicated, or chipset) and memory, combined logic circuits, and/or other suitable components that provide the functions described above.
The receving module 61 and the transmitting module 63 may be a control circuit, a chip, or a processor.
It should be noted that, for the foregoing method embodiments, for the sake of simple description, they are all described as a series of action combinations. However, those skilled in the art should know that this application is not limited by the described action order. Because according to the disclosure, certain steps may be performed in another order or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification are all preferred embodiments, and the actions and modules involved are not necessarily required for this application.
In the above embodiments, the description of each embodiment has its own emphasis. For a part that is not described in detail in one embodiment, reference may be made to related descriptions in other embodiments.
In the several embodiments provided in this application, it should be understood that the disclosed device may be implemented in other ways. For example, the device embodiments described above are only schematic. For example, the division of the module is only a logical function division. In actual implementation, there may be another division manner. For example, multiple module s or components may be combined or may Integration into another system, or some features may be ignored or not implemented. In addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical or other forms.
The modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
In addition, each functional module in each embodiment of the disclosure may be integrated into one processing module, or each of the modules may exist separately physically, or two or more modules may be integrated into one module. The above integrated module may be implemented in the form of hardware or in the form of software program modules.
When the integrated module is implemented in the form of a software program module and sold or used as an independent product, it may be stored in a computer-readable memory. Based on such an understanding, the technical solution of the disclosure essentially or part that contributes to the existing technology or all or part of the technical solution may be embodied in the form of a software product, which is stored in a memory, several instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc. ) to perform all or part of the steps of the method described in the embodiments of the disclosure. The foregoing memory includes a flash disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and other media that may store program codes.
In summary, in the method and the device for uplink transmission, in the SRS resource set configured for codebook-based UL transmission, two or more SRS resources are configured with the same or different numbers of antenna ports. If (or only if) the codebook subset configured is ‘partialAndNonCoherent’ , the UE may assume the codebook subset of ‘nonCoherent’ or ‘fullyAndPartialAndNonCoherent’ is used when the SRS resource with less number of configured antenna ports than the largest number of the configured antenna ports is indicated for UL transmission. In DCI format X scheduling UL transmission, the field size of precoding matrix and layer information depends on the number of antenna ports configured in the SRS resource indicated by the SRI field in the same DCI format X. In UL configuration, the UE is provided with two or more higher layer parameters for the configuration of codebook subset. One configuration information for 4 or more configured antenna ports and another configuration information for 2 antenna ports. For a given UL transmission, the UE determines the codebook subset according to the indicated SRS resource and corresponding RRC parameter. The UE may determine the codebook subset for SRS resource with 2 or more antenna ports based on the TMPI for mode 2 transmission that are reported in UE capability information. Accordingly, it may support full power transmission.
It will be apparent to those skilled in the art that various modifications and variations may be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.

Claims (33)

  1. A method for uplink (UL) transmission, adapted for a user equipment (UE) with a plurality of antenna ports, and the method comprising:
    transmitting UE capability information, wherein the UE capability information comprises a coherence capability among the plurality of antenna ports for UL transmission;
    receiving configuration information of sounding reference signal (SRS) resource set relates to the UE capability information, wherein the configuration information of the SRS resource set indicates that the SRS resource set comprises a plurality of SRS resources and two of the plurality of SRS resources are configured with different numbers of the plurality of antenna ports; and
    transmitting SRS on the plurality of SRS resources.
  2. The method according to claim 1, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the method further comprises:
    receiving configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset indicates that a coherence configuration of the plurality of antenna ports is configured with partialAndNonCoherent; and
    configuring the codebook subset for a first SRS resource as different from the coherence configuration, wherein the plurality of SRS resources comprises the first SRS resource, the first SRS resource is requested by the configuration information of codebook subset, and a number of configured antenna ports for the first SRS resource is less than the largest number of configured antenna ports for all of the plurality of SRS resources.
  3. The method according to claim 2, wherein configuring the codebook subset for the first SRS resource comprises:
    configuring the codebook subset for the first SRS resource as merely the non-coherence.
  4. The method according to claim 2, wherein configuring the codebook subset for the first SRS resource comprises:
    configuring the codebook subset for the first SRS resource as a fullyAndPartialAndNonCoherent.
  5. The method according to claim 1, wherein the UE capability information further indicates reported precoding matrix, and the method further comprises:
    configuring a coherence configuration of configured antenna ports for a second SRS resource according to the reported precoding matrix, wherein the plurality of SRS resources comprises the second SRS resource, and a number of the configured antenna ports for the second SRS resource is less than the largest number of configured antenna ports for all of the plurality of SRS resources.
  6. The method according to claim 1, wherein the UE capability information further indicates that a support number of the plurality of antenna ports for codebook subset is less than the number of all of the plurality of antenna ports.
  7. The method according to claim 1, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the method further comprises:
    receiving configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset comprises first configuration information and second configuration information used for different numbers of the plurality of antenna ports,  and each of the first configuration information and the second configuration information indicates a subset of precoding matrix; and
    selecting one of the first configuration information and the second configuration information for configuring the codebook subset of a third SRS resource, wherein the plurality of SRS resources comprises the third SRS resource, the third SRS resource is requested by the configuration information of codebook subset, and the number of the plurality of antenna ports used for a selected one of the first configuration information and the second configuration information is the same as a number of configured antenna ports for the third SRS resource configured by the configuration information of SRS resource set.
  8. The method according to claim 1, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the method further comprises:
    receiving configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset is related to precoding matrix and layer information, and the precoding matrix and layer information indicates precoding of the plurality of antenna ports; and
    determining a size of bit-filed of the precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on a number of configured antenna ports of a fourth SRS resource, wherein the plurality of SRS resources comprises the fourth SRS resource, and the fourth SRS resource is requested by the configuration information of codebook subset.
  9. A user equipment (UE) , comprising:
    a memory, used for storing program code;
    a transceiver, used for transmitting or receiving signals; and
    a processor, coupled to the memory and the transceiver, and used for executing the program code to perform:
    transmitting, through the transceiver, UE capability information, wherein the UE capability information comprises a coherence capability among a plurality of antenna ports for UL transmission;
    receiving, through the transceiver, configuration information of sounding reference signal (SRS) resource set relates to the UE capability information, wherein the configuration information of the SRS resource set indicates that the SRS resource set comprises a plurality of SRS resources and two of the plurality of SRS resources are configured with different numbers of the plurality of antenna ports; and
    transmitting, through the transceiver, SRS on the plurality of SRS resources.
  10. The UE according to claim 9, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the processor is further used to perform:
    receiving, through the transceiver, configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset indicates that a coherence configuration of the plurality of antenna ports is configured with partialAndNonCoherent; and
    configuring the codebook subset for a first SRS resource as different from the coherence configuration, wherein the plurality of SRS resources comprises the first SRS resource, the first SRS resource is requested by the configuration information of codebook subset, and a number of configured antenna ports for the first SRS resource is less than the largest number of configured antenna ports for all of the plurality of SRS resources.
  11. The UE according to claim 10, wherein the processor is further used to perform:
    configuring the codebook subset for the first SRS resource as merely the non-coherence.
  12. The UE according to claim 10, wherein the processor is further used to perform:
    configuring the codebook subset for the first SRS resource as fullyAndPartialAndNonCoherent.
  13. The UE according to claim 9, wherein the UE capability information further indicates reported precoding matrix, and the processor is further used to perform:
    configuring a coherence configuration of configured antenna ports for a second SRS resource according to the reported precoding matrix, wherein the plurality of SRS resources comprises the second SRS resource, and a number of the configured antenna ports for the second SRS resource is less than the largest number of configured antenna ports for all of the plurality of SRS resources.
  14. The UE according to claim 9, wherein the UE capability information further indicates that a support number of the plurality of antenna ports for codebook subset is less than the number of all of the plurality of antenna ports.
  15. The UE according to claim 9, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the processor is further used to perform:
    receiving, through the transceiver, configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset comprises first configuration information and second configuration information used for different numbers of the plurality of antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix; and
    selecting one of the first configuration information and the second configuration information for configuring the codebook subset of a third SRS resource, wherein the plurality of SRS resources comprises the third SRS resource, the third SRS resource is requested by the configuration information of codebook subset, and the number of the plurality of antenna ports used for a selected one of the first configuration information and the second configuration information is the same as a number of configured antenna ports for the third SRS resource configured by the configuration information of SRS resource set.
  16. The UE according to claim 9, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the processor is further used to perform:
    receiving, through the transceiver, configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset is related to precoding matrix and layer information, and the precoding matrix and layer information indicates precoding of the plurality of antenna ports; and
    determining a size of bit-filed of the precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on a number of configured antenna ports of a fourth SRS resource, wherein the plurality of SRS resources comprises the fourth SRS resource, and the fourth SRS resource is requested by the configuration information of codebook subset.
  17. A method for uplink (UL) transmission, adapted for a network device, and the method comprising:
    receiving user equipment (UE) capability information, wherein the UE capability information comprises a coherence capability among a plurality of antenna ports for UL transmission;
    transmitting configuration information of sounding reference signal (SRS) resource set relates to the UE capability information, wherein the configuration information of the SRS resource set indicates that the SRS resource set comprises a plurality of SRS resources and two of the plurality of SRS resources are configured with different numbers of the plurality of antenna ports; and
    receiving SRS on the plurality of SRS resources.
  18. The method according to claim 17, wherein the UE capability information further indicates that a support number of the plurality of antenna ports for codebook subset is less than the number of all of the plurality of antenna ports.
  19. The method according to claim 17, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the method further comprises:
    transmitting configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset comprises first configuration information and second configuration information used for different numbers of the plurality of antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix.
  20. The method according to claim 17, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the method further comprises:
    determining a size of bit-filed of precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on a number of configured antenna ports of a selected SRS resource, wherein the plurality of SRS resources comprises the selected SRS resource; and
    transmitting configuration information of codebook subset in the DCI relates to the SRS, wherein the configuration information of codebook subset is related to precoding matrix and layer information, the selected SRS resource is requested by the configuration information of codebook subset, and the precoding matrix and layer information indicates precoding of the plurality of antenna ports.
  21. A network device, comprising:
    a memory, used for storing program code;
    a transceiver, used for transmitting or receiving signals; and
    a processor, coupled to the memory and the transceiver, and used for executing the program code to perform:
    receiving, through the transceiver, user equipment (UE) capability information, wherein the UE capability information comprises a coherence capability among a plurality of antenna ports for UL transmission;
    transmitting, through the transceiver, configuration information of sounding reference signal (SRS) resource set relates to the UE capability information, wherein the configuration information of the SRS resource set indicates that the SRS resource set comprises a plurality of SRS resources and two of the plurality of SRS resources are configured with different numbers of the plurality of antenna ports; and
    receiving, through the transceiver, SRS on the plurality of SRS resources.
  22. The network device according to claim 21, wherein the UE capability information further indicates that a support number of the plurality of antenna ports for codebook subset is less than the number of all of the plurality of antenna ports.
  23. The network device according to claim 21, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the processor is further used to perform:
    transmitting, through the transceiver, configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset comprises first configuration information and second configuration information used for different numbers of the plurality of antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix.
  24. The network device according to claim 21, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission, and the processor is further used to perform:
    determining a size of bit-filed of precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on a number of configured antenna ports of a selected SRS resource, wherein the plurality of SRS resources comprises the selected SRS resource; and
    transmitting, through the transceiver, configuration information of codebook subset in the DCI relates to the SRS, wherein the configuration information of codebook subset is related to precoding matrix and layer information, the selected SRS resource is requested by the configuration information of codebook subset, and the precoding matrix and layer information indicates precoding of the plurality of antenna ports.
  25. A device for uplink (UL) transmission, comprising:
    a transmitting module, configured to transmit user equipment (UE) capability information, wherein the UE capability information comprises a coherence capability among a plurality of antenna ports for UL transmission; and
    a receiving module, configured to receive configuration information of sounding reference signal (SRS) resource set relates to the UE capability information, wherein the configuration information of the SRS resource set indicates that the SRS resource set comprises a plurality of SRS resources and two of the plurality of SRS resources are configured with different numbers of the plurality of antenna ports, and
    the transmitting module is further configured to transmit SRS on the plurality of SRS resources.
  26. The device according to claim 25, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission,
    the receiving module is further configured to receive configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset indicates that a coherence configuration of the plurality of antenna ports is configured with partialAndNonCoherent,
    the transmitting module is further configured to configure the codebook subset for a first SRS resource as different from the coherence configuration, wherein the plurality of SRS resources comprises the first SRS resource, the first SRS resource is requested by the configuration information of codebook subset, and a number of configured antenna ports for the first SRS resource is less than the largest number of configured antenna ports for all of the plurality of SRS resources.
  27. The device according to claim 26, wherein the transmitting module is further configured to configure the codebook subset for the first SRS resource as merely the non-coherence.
  28. The device according to claim 26, wherein the transmitting module is further configured to configure the codebook subset for the first SRS resource as fullyAndPartialAndNonCoherent.
  29. The device according to claim 25, wherein the UE capability information further indicates reported precoding matrix,
    the transmitting module is further configured to configure a coherence configuration of configured antenna ports for a second SRS resource according to the reported precoding matrix, wherein the plurality of SRS resources comprises the second SRS resource, and a number of the configured antenna ports for the second SRS resource is less than the largest number of configured antenna ports for all of the plurality of SRS resources.
  30. The device according to claim 25, wherein the UE capability information further indicates that a support number of the plurality of antenna ports for codebook subset is less than the number of all of the plurality of antenna ports.
  31. The device according to claim 25, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission,
    the receiving module is further configured to receive configuration information of codebook subset relates to the SRS, wherein the configuration information of codebook subset comprises first configuration information and second configuration information used for different numbers of the plurality of antenna ports, and each of the first configuration information and the second configuration information indicates a subset of precoding matrix,
    the transmitting module is further configured to select one of the first configuration information and the second configuration information for configuring the codebook subset of a third SRS resource, wherein the plurality of SRS resources comprises the third SRS resource, the third SRS resource is requested by the configuration information of codebook subset, and the number of the plurality of antenna ports used for a selected one of the first configuration information and the second configuration information is the same as a number of configured antenna ports for the third SRS resource configured by the configuration information of SRS resource set.
  32. The device according to claim 25, wherein the configuration information of the SRS resource set further indicates the SRS resource set is used for codebook-based UL transmission,
    the receiving module is further configured to receive configuration information of codebook subset relates to the SRS and determine a size of bit-filed of precoding matrix and layer information in downlink control information (DCI) for the UL transmission based on a number of configured antenna ports of a fourth SRS resource, wherein the configuration information of codebook subset is related to the precoding matrix and layer information, the precoding matrix and layer information indicates precoding of the plurality of antenna ports, the plurality of SRS resources comprises the fourth SRS resource, and the fourth SRS resource is requested by the configuration information of codebook subset.
  33. A non-transitory computer-readable medium, comprising program code that executed by a processor to perform:
    transmitting, through the transceiver, UE capability information, wherein the UE capability information comprises a coherence capability among a plurality of antenna ports for UL transmission;
    receiving, through the transceiver, configuration information of sounding reference signal (SRS) resource set relates to the UE capability information, wherein the configuration information of the SRS resource set indicates that the SRS resource set comprises a plurality of SRS resources and two of the plurality of SRS resources are configured with different numbers of the plurality of antenna ports; and
    transmitting, through the transceiver, SRS on the plurality of SRS resources.
PCT/CN2021/076485 2020-02-26 2021-02-10 Method and device for uplink transmission WO2021169819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062981906P 2020-02-26 2020-02-26
US62/981,906 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169819A1 true WO2021169819A1 (en) 2021-09-02

Family

ID=77490682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076485 WO2021169819A1 (en) 2020-02-26 2021-02-10 Method and device for uplink transmission

Country Status (1)

Country Link
WO (1) WO2021169819A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048469A1 (en) * 2021-09-21 2023-03-30 Samsung Electronics Co., Ltd. Method and apparatus for codebook based ul transmission
WO2023102814A1 (en) * 2021-12-09 2023-06-15 Oppo广东移动通信有限公司 Wireless communication method, terminal device, and network device
WO2023116677A1 (en) * 2021-12-23 2023-06-29 Mediatek Inc. Multi-beam operation for multi-panel user equipment uplink transmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495879A (en) * 2017-09-11 2019-03-19 电信科学技术研究院 A kind of resource allocation method, base station and terminal
US20190103907A1 (en) * 2017-10-03 2019-04-04 Mediatek Inc. Codebook-Based Uplink Transmission In Wireless Communications
WO2020010632A1 (en) * 2018-07-13 2020-01-16 Lenovo (Beijing) Limited Srs configurations and srs transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495879A (en) * 2017-09-11 2019-03-19 电信科学技术研究院 A kind of resource allocation method, base station and terminal
US20190103907A1 (en) * 2017-10-03 2019-04-04 Mediatek Inc. Codebook-Based Uplink Transmission In Wireless Communications
WO2020010632A1 (en) * 2018-07-13 2020-01-16 Lenovo (Beijing) Limited Srs configurations and srs transmission

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Remaining Issues for UL Full Power Transmission Enhancement", 3GPP DRAFT; R1-2000862, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 15 February 2020 (2020-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051853479 *
INTEL CORPORATION: "Correction to Full Tx Power UL Transmission", 3GPP DRAFT; R1-2000741, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 15 February 2020 (2020-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051853434 *
OPPO: "Text proposals for full TX power UL transmission", 3GPP DRAFT; R1-2000459, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051852869 *
VIVO: "Discussion on remaining issues on ULFP and text proposals", 3GPP DRAFT; R1-2000335, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051852824 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048469A1 (en) * 2021-09-21 2023-03-30 Samsung Electronics Co., Ltd. Method and apparatus for codebook based ul transmission
WO2023102814A1 (en) * 2021-12-09 2023-06-15 Oppo广东移动通信有限公司 Wireless communication method, terminal device, and network device
WO2023116677A1 (en) * 2021-12-23 2023-06-29 Mediatek Inc. Multi-beam operation for multi-panel user equipment uplink transmissions

Similar Documents

Publication Publication Date Title
EP3567900B1 (en) Method and indication method for measuring csi-rs, network device and terminal
US11777680B2 (en) Resource indication method, terminal device, and network device
JP7033205B2 (en) Data transmission method, base station and terminal
WO2021169819A1 (en) Method and device for uplink transmission
CA3044093C (en) Method for transmitting reference signal, and communication device
WO2021027895A1 (en) Method and device for determining codebook subset, and user equipment
US20230063015A1 (en) NON-CODEBOOK BASED MULTI-TRP PUSCH RELIABILITY WITH MULTIPLE ASSOCIATED NZP CSI-RSs
US11323222B2 (en) Communication method, and apparatus
US11233549B2 (en) Information transmission method and apparatus
WO2018202154A1 (en) Method for indicating transmission precoding matrix and device
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
EP3579482B1 (en) Methods and corresponding devices for improved dci detection
WO2022028578A1 (en) Signal transmission method, terminal, and network device
WO2020187125A1 (en) Data transmission method and device
WO2021093138A1 (en) Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
CN112585884B (en) Communication method, device, network equipment, terminal equipment and system
TWI771502B (en) Method, a terminal device and a network device for calculating cqi
WO2018039860A1 (en) Channel quality measurement and feedback method and apparatus
US10314073B2 (en) Data transmission method and user equipment
WO2022067862A1 (en) Channel state information reporting
WO2023207459A1 (en) Information processing method and apparatus, and readable storage medium
CN117640038A (en) Channel state information transmission method and related device
CN118339908A (en) Method and device for determining transmission power, terminal equipment and network equipment
CN116582885A (en) Communication method and device
CN117676622A (en) Transmission mode determining method and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759687

Country of ref document: EP

Kind code of ref document: A1