WO2023116650A1 - 矿山防爆电器安全参数智能化检验系统及方法 - Google Patents

矿山防爆电器安全参数智能化检验系统及方法 Download PDF

Info

Publication number
WO2023116650A1
WO2023116650A1 PCT/CN2022/140194 CN2022140194W WO2023116650A1 WO 2023116650 A1 WO2023116650 A1 WO 2023116650A1 CN 2022140194 W CN2022140194 W CN 2022140194W WO 2023116650 A1 WO2023116650 A1 WO 2023116650A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
proof electrical
mine explosion
voltage
terminal
Prior art date
Application number
PCT/CN2022/140194
Other languages
English (en)
French (fr)
Inventor
张红奎
朱世安
杨扬
佟文明
王帅
祖安
杨华松
王艳鹤
娄家川
王哲
李骁洋
常海英
鞠哲
Original Assignee
抚顺中煤科工检测中心有限公司
中煤科工集团沈阳研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 抚顺中煤科工检测中心有限公司, 中煤科工集团沈阳研究院有限公司 filed Critical 抚顺中煤科工检测中心有限公司
Priority to AU2022374190A priority Critical patent/AU2022374190B2/en
Publication of WO2023116650A1 publication Critical patent/WO2023116650A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Definitions

  • the invention relates to inspection technology for mine explosion-proof electrical appliances, in particular to an intelligent inspection system and method for safety parameters of mine explosion-proof electrical appliances.
  • Electromechanical accidents refer to safety production accidents caused by equipment failures such as mine explosion-proof electrical appliances. At present, electromechanical accidents have become one of the main accidents in mine safety and production. At the same time, electromechanical accidents will lead to secondary accidents such as gas explosions and transportation.
  • Mine explosion-proof electrical appliances refer to the general term for electrical equipment in power transmission and distribution and control systems in mine power grids, mainly including mine explosion-proof low-voltage feed switches, mine explosion-proof high-voltage power distribution devices, and mine explosion-proof multi-circuit Combination switch, mine explosion-proof low-voltage vacuum electromagnetic starter, mine explosion-proof electric control box, mine general switchgear and other equipment play a role in inputting and removing branch power grids, connecting And breaking electrical equipment, fault monitoring and protection and other functions.
  • Overload test short circuit test, open phase test, leakage blocking and unlocking test, action characteristic test, temperature rise test are important indicators for evaluating the safety capability of mine explosion-proof electrical appliances, and are also important inspection items for type testing of mine explosion-proof electrical appliances.
  • the existing intelligent inspection system for the safety parameters of explosion-proof electrical appliances in mines has a complex structure, low measurement accuracy, and poor automation level. At the same time, it lacks abnormal data judgment and processing methods in the inspection process.
  • the present invention provides an intelligent inspection system and method for the safety parameters of mine explosion-proof electrical appliances, which can realize overload tests, short-circuit tests, open-phase tests, leakage locking and unlocking tests, operating characteristic tests, and temperature rise tests of mine explosion-proof electrical appliances.
  • Test and inspection improve the inspection efficiency of mine explosion-proof electrical appliances and the added value of science and technology.
  • an intelligent inspection system for safety parameters of mine explosion-proof electrical appliances including a power distribution switch cabinet 1, a low-voltage protection cabinet 2, a voltage regulation test power supply A3, a large current generating device 4, a current testing unit 5, a display screen 6, and a PLC system 7.
  • Control panel 9 communication interface 10, industrial computer 11, adjustable resistor 12, electromagnetic relay 13, voltage converter A14, transfer switch 15, warning unit 16, temperature test unit A17, signal processing unit 18, timer 19 , voltage converter B20, voltage test unit 21, humidity sensor 22, temperature test unit B23, loop resistance test unit 24, resistance test unit 25, mine explosion-proof electrical appliance 26, voltage regulation test power supply B27, wind speed sensor 28, leakage signal detection unit 29;
  • the output end of the power distribution switch cabinet 1 is connected to the input end of the low-voltage protection cabinet 2, the output end of the low-voltage protection cabinet 2 is connected to the input end of the voltage regulation test power supply A3, and the output end of the voltage regulation test power supply A3 is connected to the large
  • the input end of the current generating device 4 is connected, the output end of the large current generating device 4 is connected with the terminal of the mine explosion-proof electrical appliance 26, the test end of the current test unit 5 is connected with the current test end of the mine explosion-proof electrical appliance 26, and the current test
  • the current signal output terminal of the unit 5 is connected with the analog signal input terminal of the PLC system 7, the test terminal of the timer 19 is connected with the test current time test terminal of the mine explosion-proof electrical appliance 26, and the time signal output terminal of the timer 9 is connected with the PLC system
  • the analog signal input end of 7 is connected, the control signal input end of electromagnetic relay 13 is connected with the control signal output end of PLC system 7, the control signal input end of adjustable resistor 12 is connected
  • the voltage input terminal of the voltage regulation test power supply B27 is connected to the voltage output terminal of the low-voltage protection cabinet 2, the voltage output terminal of the voltage regulation test power supply B27 is connected to the primary side of the control transformer of the mine explosion-proof electrical appliance 26, and the voltage regulation test power supply B27
  • the adjustment control terminal is connected to the voltage control signal output terminal of the PLC system 7 through the voltage converter B20, the output voltage test terminal of the voltage regulation test power supply B27 is connected to the voltage signal input terminal of the PLC system 7 through the voltage test unit 21, and the wind speed sensor 28 , humidity sensor 22, the test end of temperature test unit B23 is placed in test environment, the signal output end of wind speed sensor 28, humidity sensor 22, temperature test unit B23 is connected with the wind speed of PLC system 7, temperature, humidity signal input end,
  • the test end of loop resistance test unit 24 is connected with the loop resistance test position of mine explosion-proof electrical appliance 26, and the signal output end of loop resistance test unit 24 is connected with the loop resistance signal input end of PLC system 7, and the leakage signal detection unit 29
  • the signal processing unit 18 adopts signal amplification, filtering, optocoupler isolation multi-mode hierarchical processing, which improves the signal processing accuracy.
  • the signal processed by the signal processing unit 18 is an analog quantity, so the linear optocoupler is selected for signal isolation.
  • the signal processing unit Mainly consists of resistor R1, amplifier LM358-A, power supply VCC1, capacitor C1, capacitor C2, ground GND1, resistor R2, optocoupler HCNR-201, ground GND2, capacitor C3, power supply VCC2, resistor R3, ground GND3, amplifier LM358-B , power supply VCC3, ground GND4, capacitor C4, and ground GND5.
  • One end of the resistor R1 is connected to the terminal 2 of the amplifier LM358-A and the terminal 4 of the optocoupler HCNR-201, and the other end of the resistor R1 is connected to the optocoupler HCNR.
  • Connect terminal 1 of -201 connect terminal 4 of amplifier LM358-A to ground GND5, connect terminal 3 of amplifier LM358-A to the signal output terminal of temperature test unit A17, connect terminal LM358-A 7 Connect to the power supply VCC1, one end of the capacitor C1, one end of the capacitor C2, and one end of the resistor R2, the other end of the capacitor C1 is connected to the ground GND1, and the other end of the capacitor C2 is connected to the terminal 6 of the amplifier LM358-A , the other end of the resistor R2 is connected to the terminal 2 of the optocoupler HCNR-201, the terminal 6 of the optocoupler HCNR-201 is connected to the power supply VCC2 and one end of the capacitor C3 respectively, and the terminal
  • the mine explosion-proof electrical safety parameter intelligent inspection system adopts the analog current method to carry out overload test, short-circuit test, open-phase test, the large current generating device 4 outputs the test current according to the parameters and test requirements of the mine explosion-proof electrical equipment 26 for testing, and the timer 19 Collect the action time of the mine explosion-proof electrical appliances 26, the PLC system 7 calls the inspection system database, and automatically judges the eligibility of the corresponding test items according to the test type and action time;
  • an intelligent inspection method for safety parameters of mine explosion-proof electrical appliances is realized based on the aforementioned intelligent inspection system for safety parameters of mine explosion-proof electrical appliances, specifically including overload test, short circuit test, phase failure test, leakage lockout and Unlock test, action characteristic test, temperature rise limit test;
  • Described overload test, short circuit test, open-phase test comprise the following steps:
  • Step A1 Check whether the explosion-proof electrical appliances 26 and the inspection system of the mine under inspection are normal. When the inspection system is abnormal, the warning unit 16 will give an alarm, and connect the inspection system line according to the requirements of the test items;
  • Step A2 Operate the control panel 9 to input control commands, close the power distribution switch cabinet 1 and the low-voltage protection cabinet 2, start the humidity sensor 22 and the temperature test unit B23 for measuring the environmental parameters of the mine explosion-proof electrical appliance 26, and the PLC collects the test environmental temperature, Humidity data, and display through the display screen 6;
  • Step A3 The PLC system 7 adjusts the voltage output of the voltage regulation test power supply B27 through the voltage converter B20 to provide control voltage for the mine explosion-proof electrical appliance 26 control transformer;
  • Step A4 According to the requirements of overload test, short circuit test and phase failure test, set 26 parameters of mine explosion-proof electrical appliances. PLC system 7 adjusts the output current of voltage regulation test power supply A3 through voltage converter A14. If the current value does not meet the requirements, use the transfer switch 15 switch the working circuit of the large current generating device 4;
  • Step A5 The PLC system 7 controls the output of the test current, the timer 19 tests the operation time of the mine explosion-proof electrical appliance 26, and feeds back to the PLC system 7 at the same time, and the PLC system 7 judges whether the test is qualified according to the type of experiment and the collected data, through the display screen 6 and industrial Computer 11 performs data display and storage;
  • Step A6 The PLC system 7 sends a control command to cut off the power supply line of the mine explosion-proof electrical safety parameter intelligent inspection system, including the power distribution switch cabinet 1, the low-voltage protection cabinet 2, and the voltage regulation test power supply A3, and the operation control panel 9 stops the inspection system;
  • Step A7 sort out the test equipment, and complete the overload test, short circuit test, and phase failure test of the mine explosion-proof electrical appliance 26;
  • Described leakage blocking and unlocking test is divided into leakage blocking test and unlocking test, wherein the specific process of leakage blocking test is: at first the two ends of adjustable resistor 12 are respectively connected to the ground of mine explosion-proof electrical appliance 26, and mine explosion-proof electrical appliance 26 leakage detection phase
  • the PLC system 7 adjusts the resistance value of the adjustable resistor from large to small through the electromagnetic relay 13.
  • the unit 29 feeds back the PLC system 7, and the PLC system 7 collects the resistance value fed back by the resistance test unit 25, and displays and stores the data through the display screen 6 and the industrial computer 11; adjust;
  • the results obtained during the overload test, short circuit test, phase failure test and leakage blocking and unlocking test are digital quantities, and multiple measurements are needed to ensure the reliability of the experimental results;
  • the mine explosion-proof electrical appliance 26 protector is an electronic protector, normal The deviation of the data measured by the test is small, but due to the abnormality of the large current generating device 4, the current test unit 5, the timer 19, and the resistance test unit 25, the deviation between the single measurement result and other measurement results is large, and this data is called abnormal data;
  • Mine explosion-proof electrical appliance 26 needs to be deleted if there are abnormal data during overload test, short circuit test, phase failure test and leakage blocking and unlocking test.
  • the abnormal data judgment method is as follows:
  • Step S1 Test to get a set of n data x 1 , x 2 ,..., x n , and calculate the average value of the data and standard deviation ⁇ x as:
  • Step S2 Calculate the abnormal data x i and the average value
  • the ratio t a of the difference between and the standard deviation ⁇ x is:
  • Step S3 According to the normal error integral table I, find out the probability P, which is outside t a , which is the reasonable measurement result and the average value The probability of a difference of t a times, and finally multiplied by n to get the total number of measurements is:
  • N n ⁇ P (outside t a ) (4)
  • the data of xi is considered to be abnormal data
  • the specific process of the action characteristic test is: the PLC system 7 adjusts the voltage of the voltage regulation test power supply B27 through the voltage converter B20, and performs the opening and closing operation of the mine explosion-proof electrical appliance 26 within the voltage range required by the action characteristic test, and measures the mine
  • the release voltage of the explosion-proof electrical appliance 26 in the inspection environment is calculated by the PLC system 7 to obtain the release voltage at the lowest operating temperature of -5°C, and the calculation formula is:
  • U is the release voltage of mine explosion-proof electrical appliances at -5 °C inspection environment
  • U s is the release voltage of mine explosion-proof electrical inspection environment
  • Tc is the temperature coefficient
  • T h is the inspection environment temperature.
  • the current adopts a closed-loop timely adjustment method.
  • the specific process is: PLC system 7 adjusts the voltage output of the voltage regulation test power supply A through the voltage converter A14 according to the current value required for the temperature rise limit test, and then realizes Adjust the output current of the large current generating device 4, and then realize the real-time adjustment of the temperature rise limit current of the mine explosion-proof electrical appliance 26.
  • the temperature test unit A17 collects the temperature data of the test point of the mine explosion-proof electrical appliance 26 in real time, and feeds back to the PLC system through the signal processing unit 18 7.
  • the PLC system 7 compares the temperature data of the 26 test points of the mine explosion-proof electrical appliances.
  • the temperature rise limit test is considered to be over.
  • the resistance values of the primary coil and the secondary coil of the mine explosion-proof electrical appliance 26 control transformer and the test environment temperature value are collected, and then the PLC system 7 calculates the primary coil and secondary coil of the mine explosion-proof electrical appliance 26 control transformer according to the following formula.
  • the temperature rise value of the secondary coil, the calculation formula is:
  • ⁇ T is the temperature rise of the transformer winding
  • R r is the hot state resistance of the transformer winding
  • R l is the cold state resistance of the transformer winding
  • T c is the temperature coefficient number
  • T l is the temperature of the cold state inspection environment
  • T r is the hot state Check ambient temperature.
  • the invention provides an intelligent inspection system and method for the safety parameters of mine explosion-proof electrical appliances.
  • the temperature rise inspection cycle saves power resources, increases the added value of product technology, provides test verification technical support for the material and component selection of new mine explosion-proof electrical appliances, ensures the quality of mine explosion-proof electrical appliances, and promotes the testing and inspection of mine explosion-proof electrical appliances. Sustained and healthy development.
  • Fig. 1 is a structural diagram of an intelligent inspection system for safety parameters of mine explosion-proof electrical appliances in an embodiment of the present invention
  • Fig. 2 is a circuit diagram of a signal processing unit in an embodiment of the present invention.
  • Fig. 3 is the flow chart of qualification determination of overload test, short circuit test and open phase test in the embodiment of the present invention
  • Fig. 4 is the flow chart of action characteristic test in the embodiment of the present invention.
  • Fig. 5 is a flow chart of data processing of temperature rise limit test in the embodiment of the present invention.
  • an intelligent inspection system for safety parameters of mine explosion-proof electrical appliances as shown in Fig. Display screen 6, PLC system 7, control panel 9, communication interface 10, industrial computer 11, adjustable resistor 12, electromagnetic relay 13, voltage converter A14, transfer switch 15, warning unit 16, temperature test unit A17, signal processing Unit 18, Timer 19, Voltage Converter B20, Voltage Test Unit 21, Humidity Sensor 22, Temperature Test Unit B23, Loop Resistance Test Unit 24, Resistance Test Unit 25, Mining Explosion-proof Electrical Appliances 26, Voltage Regulation Test Power Supply B27, Wind Speed Sensor 28. Leakage signal detection unit 29;
  • the output end of the power distribution switch cabinet 1 is connected to the input end of the low-voltage protection cabinet 2, the output end of the low-voltage protection cabinet 2 is connected to the input end of the voltage regulation test power supply A3, and the output end of the voltage regulation test power supply A3 is connected to the large
  • the input end of the current generating device 4 is connected, the output end of the large current generating device 4 is connected with the terminal of the mine explosion-proof electrical appliance 26, the test end of the current test unit 5 is connected with the current test end of the mine explosion-proof electrical appliance 26, and the current test
  • the current signal output terminal of the unit 5 is connected with the analog signal input terminal of the PLC system 7, the test terminal of the timer 19 is connected with the test current time test terminal of the mine explosion-proof electrical appliance 26, and the time signal output terminal of the timer 9 is connected with the PLC system
  • the analog signal input end of 7 is connected, the control signal input end of electromagnetic relay 13 is connected with the control signal output end of PLC system 7, the control signal input end of adjustable resistor 12 is connected
  • the voltage input terminal of the voltage regulation test power supply B27 is connected to the voltage output terminal of the low-voltage protection cabinet 2, the voltage output terminal of the voltage regulation test power supply B27 is connected to the primary side of the control transformer of the mine explosion-proof electrical appliance 26, and the voltage regulation test power supply B27
  • the adjustment control terminal is connected to the voltage control signal output terminal of the PLC system 7 through the voltage converter B20, the output voltage test terminal of the voltage regulation test power supply B27 is connected to the voltage signal input terminal of the PLC system 7 through the voltage test unit 21, and the wind speed sensor 28 , humidity sensor 22, the test end of temperature test unit B23 is placed in test environment, the signal output end of wind speed sensor 28, humidity sensor 22, temperature test unit B23 is connected with the wind speed of PLC system 7, temperature, humidity signal input end,
  • the test end of loop resistance test unit 24 is connected with the loop resistance test position of mine explosion-proof electrical appliance 26, and the signal output end of loop resistance test unit 24 is connected with the loop resistance signal input end of PLC system 7, and the leakage signal detection unit 29
  • Described signal processing unit 18 as shown in Figure 2 adopts signal amplification, filtering, optocoupler isolation multi-mode hierarchical processing mode, has improved signal processing accuracy, the signal that signal processing unit 18 handles is an analog quantity, so selects linear optocoupler to carry out Signal isolation, the signal processing unit is mainly composed of resistor R1, amplifier LM358-A, power supply VCC1, capacitor C1, capacitor C2, ground GND1, resistor R2, optocoupler HCNR-201, ground GND2, capacitor C3, power supply VCC2, resistor R3, ground GND3, amplifier LM358-B, power supply VCC3, grounding GND4, capacitor C4, grounding GND5, one end of the resistor R1 is respectively connected to the terminal 2 of the amplifier LM358-A, and the terminal 4 of the optocoupler HCNR-201.
  • the other end is connected to the terminal 1 of the optocoupler HCNR-201, the terminal 4 of the amplifier LM358-A is connected to the ground GND5, the terminal 3 of the amplifier LM358-A is connected to the signal output of the temperature test unit A17, the amplifier Terminal 7 of LM358-A is connected to power supply VCC1, one end of capacitor C1, one end of capacitor C2, and one end of resistor R2, the other end of capacitor C1 is connected to ground GND1, and the other end of capacitor C2 is connected to amplifier LM358-A
  • the terminal 6 of the resistor R2 is connected to the terminal 2 of the optocoupler HCNR-201, and the terminal 6 of the optocoupler HCNR-201 is respectively connected to the power supply VCC2 and one end of the capacitor C3.
  • the optocoupler HCNR- Terminal 3 of 201 is connected to power supply VCC4, the other end of capacitor C3 is connected to ground GND2, terminal 5 of optocoupler HCNR-201 is connected to one end of resistor R3 and terminal 3 of amplifier LM358-B respectively, and the resistor The other end of R3 is connected to the ground GND3, the terminal 2 of the amplifier LM358-B is respectively connected to the terminal 6 of the amplifier LM358-B and the temperature signal input terminal of the PLC system, and the terminal 7 of the amplifier LM358-B is connected to the power supply VCC3 is connected to one end of the capacitor C4, and the other end of the capacitor C4 is connected to the ground GND4.
  • the mine explosion-proof electrical safety parameter intelligent inspection system adopts the analog current method to carry out overload test, short-circuit test, open-phase test, the large current generating device 4 outputs the test current according to the parameters and test requirements of the mine explosion-proof electrical equipment 26 for testing, and the timer 19 Collect the action time of the mine explosion-proof electrical appliances 26, the PLC system 7 calls the inspection system database, and automatically judges the eligibility of the corresponding test items according to the test type and action time;
  • an intelligent inspection method for safety parameters of mine explosion-proof electrical appliances is realized based on the aforementioned intelligent inspection system for safety parameters of mine explosion-proof electrical appliances, specifically including overload test, short circuit test, phase failure test, leakage lockout and Unlock test, action characteristic test, temperature rise limit test;
  • Described overload test, short circuit test, open-phase test are as shown in Figure 3, comprise the following steps:
  • Step A1 Check whether the explosion-proof electrical appliances 26 and the inspection system of the mine under inspection are normal. When the inspection system is abnormal, the warning unit 16 will give an alarm, and connect the inspection system line according to the requirements of the test items;
  • Step A2 Operate the control panel 9 to input control commands, close the power distribution switch cabinet 1 and the low-voltage protection cabinet 2, start the humidity sensor 22 and the temperature test unit B23 for measuring the environmental parameters of the mine explosion-proof electrical appliance 26, and the PLC collects the test environmental temperature, Humidity data, and display through the display screen 6;
  • Step A3 The PLC system 7 adjusts the voltage output of the voltage regulation test power supply B27 through the voltage converter B20 to provide control voltage for the mine explosion-proof electrical appliance 26 control transformer;
  • Step A4 According to the requirements of overload test, short circuit test and phase failure test, set 26 parameters of mine explosion-proof electrical appliances. PLC system 7 adjusts the output current of voltage regulation test power supply A3 through voltage converter A14. If the current value does not meet the requirements, use the transfer switch 15 switch the working circuit of the large current generating device 4;
  • Step A5 The PLC system 7 controls the output of the test current, the timer 19 tests the operation time of the mine explosion-proof electrical appliance 26, and feeds back to the PLC system 7 at the same time, and the PLC system 7 judges whether the test is qualified according to the type of experiment and the collected data, through the display screen 6 and industrial Computer 11 performs data display and storage;
  • Step A6 The PLC system 7 sends a control command to cut off the power supply line of the mine explosion-proof electrical safety parameter intelligent inspection system, including the power distribution switch cabinet 1, the low-voltage protection cabinet 2, and the voltage regulation test power supply A3, and the operation control panel 9 stops the inspection system;
  • Step A7 sort out the test equipment, and complete the overload test, short circuit test, and phase failure test of the mine explosion-proof electrical appliance 26;
  • Described leakage blocking and unlocking test is divided into leakage blocking test and unlocking test, wherein the specific process of leakage blocking test is: at first the two ends of adjustable resistor 12 are respectively connected to the ground of mine explosion-proof electrical appliance 26, and mine explosion-proof electrical appliance 26 leakage detection phase
  • the PLC system 7 adjusts the resistance value of the adjustable resistor from large to small through the electromagnetic relay 13.
  • the unit 29 feeds back the PLC system 7, and the PLC system 7 collects the resistance value fed back by the resistance test unit 25, and displays and stores the data through the display screen 6 and the industrial computer 11; adjust;
  • the results obtained during the overload test, short circuit test, phase failure test and leakage blocking and unlocking test are digital quantities, and multiple measurements are needed to ensure the reliability of the experimental results;
  • the mine explosion-proof electrical appliance 26 protector is an electronic protector, normal The deviation of the data measured by the test is small, but due to the abnormality of the large current generating device 4, the current test unit 5, the timer 19, and the resistance test unit 25, the deviation between the single measurement result and other measurement results is large, and this data is called abnormal data;
  • Mine explosion-proof electrical appliance 26 needs to be deleted if there are abnormal data during overload test, short circuit test, phase failure test and leakage blocking and unlocking test.
  • the abnormal data judgment method is as follows:
  • Step S1 Test to get a set of n data x 1 , x 2 ,..., x n , and calculate the average value of the data and standard deviation ⁇ x as:
  • Step S2 Calculate the abnormal data x i and the average value
  • the ratio t a of the difference between and the standard deviation ⁇ x is:
  • Step S3 According to the normal error integral table I, find out the probability P, which is outside t a , which is the reasonable measurement result and the average value The probability of a difference of t a times, and finally multiplied by n to get the total number of measurements is:
  • N n ⁇ P (outside t a ) (4)
  • the data of xi is considered to be abnormal data
  • the action characteristic test is shown in Figure 4, and the specific process is: the PLC system 7 adjusts the voltage of the voltage regulation test power supply B27 through the voltage converter B20, and performs the opening and closing operation of the mine explosion-proof electrical appliance 26 within the voltage range required by the action characteristic test , and measured the release voltage of the mine explosion-proof electrical appliances 26 in the inspection environment, and calculated the release voltage at the lowest working temperature of -5°C through the PLC system 7, the calculation formula is:
  • U is the release voltage of the mine explosion-proof electrical appliance at -5°C inspection environment
  • U s is the release voltage of the mine explosion-proof electrical appliance inspection environment
  • Tc is the temperature coefficient
  • copper in this embodiment is 234.5°C
  • T h is the inspection environment temperature .
  • the current adopts a closed-loop timely adjustment method, as shown in Figure 5, the specific process is: PLC system 7 adjusts the voltage regulation test power supply A through the voltage converter A14 according to the current value required for the temperature rise limit test voltage output, and then realize the output current adjustment of the large current generating device 4, and then realize the real-time adjustment of the temperature rise limit current of the mine explosion-proof electrical appliance 26.
  • the unit 18 feeds back to the PLC system 7, and the PLC system 7 compares the temperature data of the test point of the mine explosion-proof electrical appliance 26, and when the temperature difference between two measurements is less than 1K, the temperature rise limit test is considered to be over.
  • the resistance values of the primary coil and the secondary coil of the mine explosion-proof electrical appliance 26 control transformer and the test environment temperature value are collected, and then the PLC system 7 calculates the primary coil and secondary coil of the mine explosion-proof electrical appliance 26 control transformer according to the following formula.
  • the temperature rise value of the secondary coil, the calculation formula is:
  • ⁇ T is the temperature rise value of the transformer winding
  • R r is the hot state resistance of the transformer winding
  • R l is the cold state resistance of the transformer winding
  • T c is the temperature coefficient number, in this embodiment, the copper is 234.5°C
  • T l is the cold state
  • T r is the heat test environment temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种矿山防爆电器(26)安全参数智能化检验系统及方法,涉及矿山防爆电器(26)检验技术领域。用模拟电流法进行过载试验、短路试验、断相试验,大电流发生装置(4)根据试验用矿山防爆电器(26)的参数和试验要求输出试验电流,计时器(19)采集矿山防爆电器(26)的动作时间,PLC系统(7)调用检验系统数据库,根据试验类型和动作时间自动判断对应试验项目的合格性,实现矿山防爆电器(26)过载试验、短路试验、断相试验、漏电闭锁与解锁试验、动作特性试验、温升试验检验,提升矿山防爆电器(26)检验效率和科技附加值。

Description

矿山防爆电器安全参数智能化检验系统及方法 技术领域
本发明涉及矿山防爆电器检验技术,尤其涉及一种矿山防爆电器安全参数智能化检验系统及方法。
背景技术
近年来我国矿山安全生产工作取得明显成效,安全生产事故总量和死亡人数逐年下降,但矿山安全生产形势依然复杂严峻,面临着矿山产业结构不合理、灾害日益严重、采掘接续紧张、外部环境不确定和人员经验能力不足等带来的安全风险。机电事故是指矿山防爆电器等设备故障引起安全生产事故。目前,机电事故已成为矿山安全上产的主要事故之一,同时机电事故会导致瓦斯爆炸、运输等次生事故。
矿山防爆电器安全已成为影响矿山安全生产的主要因素。矿山防爆电器是指矿山电网中输配电、控制系统中的电气设备的总称,主要包括矿用隔爆型低压馈电开关、矿用隔爆型高压配电装置、矿用隔爆型多回路组合开关、矿用隔爆型低压真空电磁起动器、矿用隔爆型电控箱、矿用一般型开关柜等设备,在矿山供配电系统中起到投入和切除支路电网、接通和分断用电设备、故障监测与保护等功能。过载试验、短路试验、断相试验、漏电闭锁与解锁试验、动作特性试验、温升试验是考核矿山防爆电器安全能力的重要指标,也是矿山防爆电器产品型式试验的重要检验项目。现有矿山防爆电器安全参数智能化检验系统结构复杂、测量精度低、自动化水平差,同时缺少检验过程异常数据判定和处理方法。
发明内容
为了解决上述存在的问题,本发明提供一种矿山防爆电器安全参数智能化检验系统及方法,实现矿山防爆电器过载试验、短路试验、断相试验、漏电闭锁与解锁试验、动作特性试验、温升试验检验,提升矿山防爆电器检验效率和科技附加值。
一方面,一种矿山防爆电器安全参数智能化检验系统,包括配电开关柜1、低压保护柜2、调压试验电源A3、大电流发生装置4、电流测试单元5、显示屏6、PLC系统7、控制面板9、通讯接口10、工业计算机11、可调电阻器12、电磁继电器13、电压转换器A14、转换开关15、警示单元16、温度测试单元A17、信号处理单元18、计时器19、电压转换器B20、电压测试单元21、湿度传感器22、温度测试单元B23、回路电阻测试单元24、电阻测试单元25、矿山防爆电器26、调压试验电源B27、风速传感器28、漏电信号检测单元29;
所述配电开关柜1的输出端与低压保护柜2的输入端相连接,低压保护柜2的输出端与调压试验电源A3的输入端相连接,调压试验电源A3的输出端与大电流发生装置4的输入端 相连接,大电流发生装置4的输出端与矿山防爆电器26的接线端子相连接,电流测试单元5的测试端与矿山防爆电器26的电流测试端相连接,电流测试单元5的电流信号输出端与PLC系统7的模拟信号输入端相连接,计时器19的测试端与矿山防爆电器26的试验电流时间测试端相连接,计时器9的时间信号输出端与PLC系统7的模拟信号输入端相连接,电磁继电器13的控制信号输入端与PLC系统7的控制信号输出端相连接,可调电阻器12的控制信号输入端与电磁继电器13的信号输出端相连接,可调电阻器12的漏电信号测试端与矿山防爆电器26的漏电保护测试端端相连接,电阻测试单元25的电阻测量端与可调电阻器12的电阻测试端相连接,电阻测试单元25的电阻信号输出端与PLC系统7的模拟信号输入端相连接,PLC系统7的控制信号输出端分别与配电开关柜1、低压保护柜2的控制信号输入端相连接,控制面板9的信号输出端与PLC系统7的控制信号输入端相连接,警示单元16的信号输入端与PLC系统7的警示信号输出端相连接,显示屏6的信号输入端与PLC系统7的显示信号输出端相连接,通讯接口10的信号输入端与PLC系统7的通讯信号输出端相连接,工业计算机11的通讯信号输入端与通讯接口10的通讯信号输出端相连接。调压试验电源B27的电压输入端与低压保护柜2的电压输出端相连接,调压试验电源B27的电压输出端与矿山防爆电器26的控制变压器一次侧相连接,调压试验电源B27的电压调节控制端经过电压转换器B20与PLC系统7电压控制信号输出端相连接,调压试验电源B27的输出电压测试端经过电压测试单元21与PLC系统7的电压信号输入端相连接,风速传感器28、湿度传感器22、温度测试单元B23的测试端置于试验环境中,风速传感器28、湿度传感器22、温度测试单元B23的信号输出端与PLC系统7的风速、温度、湿度信号输入端相连接,回路电阻测试单元24的测试端与矿山防爆电器26的回路电阻测试部位相连接,回路电阻测试单元24的信号输出端与PLC系统7的的回路电阻信号输入端相连接,漏电信号检测单元29的信号输入端与矿山防爆电器26的漏电保护信号输出端相连接,漏电信号检测单元29的信号输出端与PLC系统7的漏电保护信号输入端相连接,调压试验电源A3的控制端经过电压转换器A14与PLC系统7的调压试验电源A3的控制信号输出端相连接,大电流发生装置4的磁路调整控制端与转换开关15的控制信号输出端相连接,转换开关15控制信号输入端与PLC系统7的输出端相连接,温度测试单元A17的温度测试端固定在矿山防爆电器26的测试部位,温度测试单元A17的温度信号输出端经过信号处理单元18与PLC系统7的温度信号接收相连接。
所述信号处理单元18采用信号放大、滤波、光耦隔离多方式分级处理方式,提高了信号处理精度,信号处理单元18处理的信号为模拟量,所以选用线性光耦进行信号隔离,信号处理单元主要由电阻R1、放大器LM358-A、电源VCC1、电容C1、电容C2、接地GND1、电阻R2、光耦HCNR-201、接地GND2、电容C3、电源VCC2、电阻R3、接地GND3、放大器LM358-B、电 源VCC3、接地GND4、电容C4、接地GND5组成,电阻R1的一端分别与放大器LM358-A的接线端子2、光耦HCNR-201的接线端子4相连接,电阻R1的另一端与光耦HCNR-201的接线端子1相连接,放大器LM358-A的接线端子4与接地GND5相连接,放大器LM358-A的接线端子3与温度测试单元A17的信号输出端相连接,放大器LM358-A的接线端子7分别与电源VCC1、电容C1的一端、电容C2的一端、电阻R2的一端相连接,电容C1的另一端与接地GND1相连接,电容C2的另一端与放大器LM358-A的接线端子6相连接,电阻R2的另一端与光耦HCNR-201的接线端子2相连接,光耦HCNR-201的接线端子6分别与电源VCC2、电容C3的一端相连接,光耦HCNR-201的接线端子3与电源VCC4相连接,电容C3的另一端与接地GND2相连接,光耦HCNR-201的接线端子5分别与电阻R3的一端、放大器LM358-B的接线端子3相连接,电阻R3的另一端与接地GND3相连接,放大器LM358-B的接线端子2分别与放大器LM358-B的接线端子6及PLC系统的温度信号输入端相连接,放大器LM358-B的接线端子7分别与电源VCC3、电容C4的一端相连接,电容C4的另一端与接地GND4相连接。
所述矿山防爆电器安全参数智能化检验系统采用模拟电流法进行过载试验、短路试验、断相试验,大电流发生装置4根据试验用矿山防爆电器26的参数和试验要求输出试验电流,计时器19采集矿山防爆电器26的动作时间,PLC系统7调用检验系统数据库,根据试验类型和动作时间自动判断对应试验项目的合格性;
另一方面,一种矿山防爆电器安全参数智能化检验方法,基于前述一种矿山防爆电器安全参数智能化检验系统实现,具体包括矿山防爆电器的过载试验、短路试验、断相试验、漏电闭锁与解锁试验、动作特性试验、温升极限试验;
所述过载试验、短路试验、断相试验包括以下步骤:
步骤A1:检查被检矿山防爆电器26及检验系统是否正常,其中检验系统异常时警示单元16进行报警,根据试验项目要求连接检验系统线路;
步骤A2:操作控制面板9输入控制指令,配电开关柜1和低压保护柜2合闸,启动被矿山防爆电器26试验环境参数测量用湿度传感器22和温度测试单元B23,PLC采集试验环境温度、湿度数据,并通过显示屏6显示;
步骤A3:PLC系统7通过电压转换器B20调节调压试验电源B27的电压输出,为矿山防爆电器26控制变压器提供控制电压;
步骤A4:根据过载试验、短路试验、断相试验要求,设置矿山防爆电器26参数,PLC系统7通过电压转换器A14调节调压试验电源A3的输出电流,如果电流值不满足要求,通过转换开关15切换大电流发生装置4的工作回路;
步骤A5:PLC系统7控制试验电流的输出,计时器19测试矿山防爆电器26动作时间, 同时反馈给PLC系统7,PLC系统7根据实验类型和采集数据判断试验是否合格,通过显示屏6和工业计算机11进行数据显示和存储;
步骤A6:PLC系统7发送控制指令切断矿山防爆电器安全参数智能化检验系统供电线路,包括配电开关柜1、低压保护柜2、调压试验电源A3,操作控制面板9停止检验系统;
步骤A7:整理试验设备,完成矿山防爆电器26的过载试验、短路试验、断相试验检验;
所述漏电闭锁与解锁试验分为漏电闭锁试验和解锁试验,其中漏电闭锁试验具体过程为:首先将可调电阻器12的两端分别与矿山防爆电器26的地、矿山防爆电器26漏电检测相的端子相连接,PLC系统7通过电磁继电器13从大到小调节可调电阻的阻值,矿山防爆电器26检测到漏电时进行闭锁,矿山防爆电器26不能起动,并将漏电信息通过漏电信号检测单元29反馈PLC系统7,PLC系统7采集电阻测试单元25反馈的电阻值,并通过显示屏6和工业计算机11进行数据显示和存储;漏电解锁试验过程中电阻调整过程为从漏电闭锁值向大调节;
所述过载试验、短路试验、断相试验和漏电闭锁与解锁试验时得到的结果为数字量,为了保证实验结果的可靠性需要进行多次测量;矿山防爆电器26保护器为电子保护器,正常试验测得数据偏差小,但由于大电流发生装置4、电流测试单元5、计时器19、电阻测试单元25发生异常,导致单次测量结果与其他测量结果偏差大,此数据称为异常数据;矿山防爆电器26在过载试验、短路试验、断相试验和漏电闭锁与解锁试验时如出现异常数据需要将其删除,异常数据判断方法如下:
步骤S1:测试得到一组数据n个为x 1、x 2、……、x n,计算得到数据的平均值
Figure PCTCN2022140194-appb-000001
和标准偏差σ x为:
Figure PCTCN2022140194-appb-000002
Figure PCTCN2022140194-appb-000003
步骤S2:计算异常数据x i与平均值
Figure PCTCN2022140194-appb-000004
之间的差值与标准偏差σ x的比值t a,为:
Figure PCTCN2022140194-appb-000005
步骤S3:根据正态误差积分表Ⅰ,查出概率P,在t a之外,这就是合理的测量结果与平均值
Figure PCTCN2022140194-appb-000006
相差t a倍的概率,最后乘以n得到全部的测量次数为:
N=n×P(在t a之外)  (4)
如果这个期望的次数N小于二分之一,则认为x i这个数据为异常数据;
所述动作特性试验的具体过程为:PLC系统7通过电压转换器B20调节调压试验电源B27的电压,在动作特性试验要求电压范围内对矿山防爆电器26进行分合闸操作,并测得矿山防爆电器26在检验环境的释放电压,通过PLC系统7计算得到最低工作温度-5℃时的释放电压,计算公式为:
Figure PCTCN2022140194-appb-000007
式中,U为矿山防爆电器-5℃检验环境的释放电压,U s为矿山防爆电器检验环境的释放电压,T c为温度系数,T h为检验环境温度。
所述温升极限测试验中,电流采用闭环适时调节方式,具体过程为:PLC系统7根据温升极限试验所需电流值,通过电压转换器A14调节调压试验电源A的电压输出,进而实现对大电流发生装置4的输出电流调节,进而实现对矿山防爆电器26温升极限电流的实时调整,温度测试单元A17实时采集矿山防爆电器26测试点温度数据,经过信号处理单元18反馈给PLC系统7,PLC系统7比较矿山防爆电器26测试点温度数据,在间隔两次测量温度差小于1K时,认为温升极限试验结束。在温升极限试验前、试验后采集矿山防爆电器26控制变压器一次线圈、二次线圈的电阻值和检验环境温度值,然后PLC系统7依据以下公式计算得到矿山防爆电器26控制变压器一次线圈、二次线圈的温升值,计算公式为:
Figure PCTCN2022140194-appb-000008
式中,△T为变压器绕组温升值,R r为变压器绕组热态电阻,R l为变压器绕组冷态电阻,T c为温度系数数,T l为冷态检验环境温度,T r为热态检验环境温度。
采用上述技术方案所产生的有益效果在于:
本发明提供一种矿山防爆电器安全参数智能化检验系统及方法,本发明提出了矿山防爆电器安全参数智能化检验系统,提高了矿山防爆电器安全参数检验能力,提高了检验精度和科技水平,缩短温升检验周期,节约电力资源,增加产品科技附加值,为矿山防爆电器新产品研发过程材料和部件选型提供试验验证技术支撑,保证了矿山防爆电器产品质量,促进检测检验和矿山防爆电器领域持续健康发展。
附图说明
图1为本发明实施例中矿山防爆电器安全参数智能化检验系统结构图;
图2为本发明实施例中信号处理单元电路图;
图3为本发明实施例中过载试验、短路试验、断相试验合格性判定流程图;
图4为本发明实施例中动作特性试验流程图;
图5为本发明实施例中温升极限试验数据处理流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
一方面,一种矿山防爆电器安全参数智能化检验系统,如图1所示,包括配电开关柜1、低压保护柜2、调压试验电源A3、大电流发生装置4、电流测试单元5、显示屏6、PLC系统7、控制面板9、通讯接口10、工业计算机11、可调电阻器12、电磁继电器13、电压转换器A14、转换开关15、警示单元16、温度测试单元A17、信号处理单元18、计时器19、电压转换器B20、电压测试单元21、湿度传感器22、温度测试单元B23、回路电阻测试单元24、电阻测试单元25、矿山防爆电器26、调压试验电源B27、风速传感器28、漏电信号检测单元29;
所述配电开关柜1的输出端与低压保护柜2的输入端相连接,低压保护柜2的输出端与调压试验电源A3的输入端相连接,调压试验电源A3的输出端与大电流发生装置4的输入端相连接,大电流发生装置4的输出端与矿山防爆电器26的接线端子相连接,电流测试单元5的测试端与矿山防爆电器26的电流测试端相连接,电流测试单元5的电流信号输出端与PLC系统7的模拟信号输入端相连接,计时器19的测试端与矿山防爆电器26的试验电流时间测试端相连接,计时器9的时间信号输出端与PLC系统7的模拟信号输入端相连接,电磁继电器13的控制信号输入端与PLC系统7的控制信号输出端相连接,可调电阻器12的控制信号输入端与电磁继电器13的信号输出端相连接,可调电阻器12的漏电信号测试端与矿山防爆电器26的漏电保护测试端端相连接,电阻测试单元25的电阻测量端与可调电阻器12的电阻测试端相连接,电阻测试单元25的电阻信号输出端与PLC系统7的模拟信号输入端相连接,PLC系统7的控制信号输出端分别与配电开关柜1、低压保护柜2的控制信号输入端相连接,控制面板9的信号输出端与PLC系统7的控制信号输入端相连接,警示单元16的信号输入端与PLC系统7的警示信号输出端相连接,显示屏6的信号输入端与PLC系统7的显示信号输出端相连接,通讯接口10的信号输入端与PLC系统7的通讯信号输出端相连接,工业计算机11的通讯信号输入端与通讯接口10的通讯信号输出端相连接。调压试验电源B27的电压输入端与低压保护柜2的电压输出端相连接,调压试验电源B27的电压输出端与矿山防爆电器26的控制变压器一次侧相连接,调压试验电源B27的电压调节控制端经过电压转换器B20与PLC系统7电压控制信号输出端相连接,调压试验电源B27的输出电压测试端经过电压测试单元21与PLC系统7的电压信号输入端相连接,风速传感器28、湿度传感器22、温度测试 单元B23的测试端置于试验环境中,风速传感器28、湿度传感器22、温度测试单元B23的信号输出端与PLC系统7的风速、温度、湿度信号输入端相连接,回路电阻测试单元24的测试端与矿山防爆电器26的回路电阻测试部位相连接,回路电阻测试单元24的信号输出端与PLC系统7的的回路电阻信号输入端相连接,漏电信号检测单元29的信号输入端与矿山防爆电器26的漏电保护信号输出端相连接,漏电信号检测单元29的信号输出端与PLC系统7的漏电保护信号输入端相连接,调压试验电源A3的控制端经过电压转换器A14与PLC系统7的调压试验电源A3的控制信号输出端相连接,大电流发生装置4的磁路调整控制端与转换开关15的控制信号输出端相连接,转换开关15控制信号输入端与PLC系统7的输出端相连接,温度测试单元A17的温度测试端固定在矿山防爆电器26的测试部位,温度测试单元A17的温度信号输出端经过信号处理单元18与PLC系统7的温度信号接收相连接。
所述信号处理单元18如图2所示,采用信号放大、滤波、光耦隔离多方式分级处理方式,提高了信号处理精度,信号处理单元18处理的信号为模拟量,所以选用线性光耦进行信号隔离,信号处理单元主要由电阻R1、放大器LM358-A、电源VCC1、电容C1、电容C2、接地GND1、电阻R2、光耦HCNR-201、接地GND2、电容C3、电源VCC2、电阻R3、接地GND3、放大器LM358-B、电源VCC3、接地GND4、电容C4、接地GND5组成,电阻R1的一端分别与放大器LM358-A的接线端子2、光耦HCNR-201的接线端子4相连接,电阻R1的另一端与光耦HCNR-201的接线端子1相连接,放大器LM358-A的接线端子4与接地GND5相连接,放大器LM358-A的接线端子3与温度测试单元A17的信号输出端相连接,放大器LM358-A的接线端子7分别与电源VCC1、电容C1的一端、电容C2的一端、电阻R2的一端相连接,电容C1的另一端与接地GND1相连接,电容C2的另一端与放大器LM358-A的接线端子6相连接,电阻R2的另一端与光耦HCNR-201的接线端子2相连接,光耦HCNR-201的接线端子6分别与电源VCC2、电容C3的一端相连接,光耦HCNR-201的接线端子3与电源VCC4相连接,电容C3的另一端与接地GND2相连接,光耦HCNR-201的接线端子5分别与电阻R3的一端、放大器LM358-B的接线端子3相连接,电阻R3的另一端与接地GND3相连接,放大器LM358-B的接线端子2分别与放大器LM358-B的接线端子6及PLC系统的温度信号输入端相连接,放大器LM358-B的接线端子7分别与电源VCC3、电容C4的一端相连接,电容C4的另一端与接地GND4相连接。
所述矿山防爆电器安全参数智能化检验系统采用模拟电流法进行过载试验、短路试验、断相试验,大电流发生装置4根据试验用矿山防爆电器26的参数和试验要求输出试验电流,计时器19采集矿山防爆电器26的动作时间,PLC系统7调用检验系统数据库,根据试验类型和动作时间自动判断对应试验项目的合格性;
另一方面,一种矿山防爆电器安全参数智能化检验方法,基于前述一种矿山防爆电器安 全参数智能化检验系统实现,具体包括矿山防爆电器的过载试验、短路试验、断相试验、漏电闭锁与解锁试验、动作特性试验、温升极限试验;
所述过载试验、短路试验、断相试验如图3所示,包括以下步骤:
步骤A1:检查被检矿山防爆电器26及检验系统是否正常,其中检验系统异常时警示单元16进行报警,根据试验项目要求连接检验系统线路;
步骤A2:操作控制面板9输入控制指令,配电开关柜1和低压保护柜2合闸,启动被矿山防爆电器26试验环境参数测量用湿度传感器22和温度测试单元B23,PLC采集试验环境温度、湿度数据,并通过显示屏6显示;
步骤A3:PLC系统7通过电压转换器B20调节调压试验电源B27的电压输出,为矿山防爆电器26控制变压器提供控制电压;
步骤A4:根据过载试验、短路试验、断相试验要求,设置矿山防爆电器26参数,PLC系统7通过电压转换器A14调节调压试验电源A3的输出电流,如果电流值不满足要求,通过转换开关15切换大电流发生装置4的工作回路;
步骤A5:PLC系统7控制试验电流的输出,计时器19测试矿山防爆电器26动作时间,同时反馈给PLC系统7,PLC系统7根据实验类型和采集数据判断试验是否合格,通过显示屏6和工业计算机11进行数据显示和存储;
步骤A6:PLC系统7发送控制指令切断矿山防爆电器安全参数智能化检验系统供电线路,包括配电开关柜1、低压保护柜2、调压试验电源A3,操作控制面板9停止检验系统;
步骤A7:整理试验设备,完成矿山防爆电器26的过载试验、短路试验、断相试验检验;
所述漏电闭锁与解锁试验分为漏电闭锁试验和解锁试验,其中漏电闭锁试验具体过程为:首先将可调电阻器12的两端分别与矿山防爆电器26的地、矿山防爆电器26漏电检测相的端子相连接,PLC系统7通过电磁继电器13从大到小调节可调电阻的阻值,矿山防爆电器26检测到漏电时进行闭锁,矿山防爆电器26不能起动,并将漏电信息通过漏电信号检测单元29反馈PLC系统7,PLC系统7采集电阻测试单元25反馈的电阻值,并通过显示屏6和工业计算机11进行数据显示和存储;漏电解锁试验过程中电阻调整过程为从漏电闭锁值向大调节;
所述过载试验、短路试验、断相试验和漏电闭锁与解锁试验时得到的结果为数字量,为了保证实验结果的可靠性需要进行多次测量;矿山防爆电器26保护器为电子保护器,正常试验测得数据偏差小,但由于大电流发生装置4、电流测试单元5、计时器19、电阻测试单元25发生异常,导致单次测量结果与其他测量结果偏差大,此数据称为异常数据;矿山防爆电器26在过载试验、短路试验、断相试验和漏电闭锁与解锁试验时如出现异常数据需要将其删除,异常数据判断方法如下:
步骤S1:测试得到一组数据n个为x 1、x 2、……、x n,计算得到数据的平均值
Figure PCTCN2022140194-appb-000009
和标准偏差σ x为:
Figure PCTCN2022140194-appb-000010
Figure PCTCN2022140194-appb-000011
步骤S2:计算异常数据x i与平均值
Figure PCTCN2022140194-appb-000012
之间的差值与标准偏差σ x的比值t a,为:
Figure PCTCN2022140194-appb-000013
步骤S3:根据正态误差积分表Ⅰ,查出概率P,在t a之外,这就是合理的测量结果与平均值
Figure PCTCN2022140194-appb-000014
相差t a倍的概率,最后乘以n得到全部的测量次数为:
N=n×P(在t a之外)  (4)
如果这个期望的次数N小于二分之一,则认为x i这个数据为异常数据;
所述动作特性试验如图4所示,具体过程为:PLC系统7通过电压转换器B20调节调压试验电源B27的电压,在动作特性试验要求电压范围内对矿山防爆电器26进行分合闸操作,并测得矿山防爆电器26在检验环境的释放电压,通过PLC系统7计算得到最低工作温度-5℃时的释放电压,计算公式为:
Figure PCTCN2022140194-appb-000015
式中,U为矿山防爆电器-5℃检验环境的释放电压,U s为矿山防爆电器检验环境的释放电压,T c为温度系数,本实施例中铜为234.5℃,T h为检验环境温度。
所述温升极限测试验中,电流采用闭环适时调节方式,如图5所示,具体过程为:PLC系统7根据温升极限试验所需电流值,通过电压转换器A14调节调压试验电源A的电压输出,进而实现对大电流发生装置4的输出电流调节,进而实现对矿山防爆电器26温升极限电流的实时调整,温度测试单元A17实时采集矿山防爆电器26测试点温度数据,经过信号处理单元18反馈给PLC系统7,PLC系统7比较矿山防爆电器26测试点温度数据,在间隔两次测量温度差小于1K时,认为温升极限试验结束。在温升极限试验前、试验后采集矿山防爆电器26控制变压器一次线圈、二次线圈的电阻值和检验环境温度值,然后PLC系统7依据以下公式计算得到矿山防爆电器26控制变压器一次线圈、二次线圈的温升值,计算公式为:
Figure PCTCN2022140194-appb-000016
式中,△T为变压器绕组温升值,R r为变压器绕组热态电阻,R l为变压器绕组冷态电阻,T c为温度系数数,本实施例中铜为234.5℃,T l为冷态检验环境温度,T r为热态检验环境温度。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (6)

  1. 一种矿山防爆电器安全参数智能化检验系统,其特征在于,包括配电开关柜1、低压保护柜2、调压试验电源A3、大电流发生装置4、电流测试单元5、显示屏6、PLC系统7、控制面板9、通讯接口10、工业计算机11、可调电阻器12、电磁继电器13、电压转换器A14、转换开关15、警示单元16、温度测试单元A17、信号处理单元18、计时器19、电压转换器B20、电压测试单元21、湿度传感器22、温度测试单元B23、回路电阻测试单元24、电阻测试单元25、矿山防爆电器26、调压试验电源B27、风速传感器28、漏电信号检测单元29;
    所述配电开关柜1的输出端与低压保护柜2的输入端相连接,低压保护柜2的输出端与调压试验电源A3的输入端相连接,调压试验电源A3的输出端与大电流发生装置4的输入端相连接,大电流发生装置4的输出端与矿山防爆电器26的接线端子相连接,电流测试单元5的测试端与矿山防爆电器26的电流测试端相连接,电流测试单元5的电流信号输出端与PLC系统7的模拟信号输入端相连接,计时器19的测试端与矿山防爆电器26的试验电流时间测试端相连接,计时器9的时间信号输出端与PLC系统7的模拟信号输入端相连接,电磁继电器13的控制信号输入端与PLC系统7的控制信号输出端相连接,可调电阻器12的控制信号输入端与电磁继电器13的信号输出端相连接,可调电阻器12的漏电信号测试端与矿山防爆电器26的漏电保护测试端端相连接,电阻测试单元25的电阻测量端与可调电阻器12的电阻测试端相连接,电阻测试单元25的电阻信号输出端与PLC系统7的模拟信号输入端相连接,PLC系统7的控制信号输出端分别与配电开关柜1、低压保护柜2的控制信号输入端相连接,控制面板9的信号输出端与PLC系统7的控制信号输入端相连接,警示单元16的信号输入端与PLC系统7的警示信号输出端相连接,显示屏6的信号输入端与PLC系统7的显示信号输出端相连接,通讯接口10的信号输入端与PLC系统7的通讯信号输出端相连接,工业计算机11的通讯信号输入端与通讯接口10的通讯信号输出端相连接;调压试验电源B27的电压输入端与低压保护柜2的电压输出端相连接,调压试验电源B27的电压输出端与矿山防爆电器26的控制变压器一次侧相连接,调压试验电源B27的电压调节控制端经过电压转换器B20与PLC系统7电压控制信号输出端相连接,调压试验电源B27的输出电压测试端经过电压测试单元21与PLC系统7的电压信号输入端相连接,回路电阻测试单元24的测试端与矿山防爆电器26的回路电阻测试部位相连接,回路电阻测试单元24的信号输出端与PLC系统7的的回路电阻信号输入端相连接,漏电信号检测单元29的信号输入端与矿山防爆电器26的漏电保护信号输出端相连接,漏电信号检测单元29的信号输出端与PLC系统7的漏电保护信号输入端相连接,调压试验电源A3的控制端经过电压转换器A14与PLC系统7的调压试验电源A3的控制信号输出端相连接,大电流发生装置4的磁路调整控制端与转换开关15的控制信号输出端相连接,转换开关15控制信号输入端与PLC系统7的输出端相连接,温度测试单元 A17的温度测试端固定在矿山防爆电器26的测试部位,温度测试单元A17的温度信号输出端经过信号处理单元18与PLC系统7的温度信号接收相连接。
  2. 根据权利要求1所述的一种矿山防爆电器安全参数智能化检验系统,其特征在于,所述风速传感器28、湿度传感器22、温度测试单元B23的测试端置于试验环境中,风速传感器28、湿度传感器22、温度测试单元B23的信号输出端与PLC系统7的风速、温度、湿度信号输入端相连接。
  3. 根据权利要求1所述的一种矿山防爆电器安全参数智能化检验系统,其特征在于,所述信号处理单元18采用信号放大、滤波、光耦隔离多方式分级处理方式,提高了信号处理精度,信号处理单元18处理的信号为模拟量,所以选用线性光耦进行信号隔离,信号处理单元主要由电阻R1、放大器LM358-A、电源VCC1、电容C1、电容C2、接地GND1、电阻R2、光耦HCNR-201、接地GND2、电容C3、电源VCC2、电阻R3、接地GND3、放大器LM358-B、电源VCC3、接地GND4、电容C4、接地GND5组成,电阻R1的一端分别与放大器LM358-A的接线端子2、光耦HCNR-201的接线端子4相连接,电阻R1的另一端与光耦HCNR-201的接线端子1相连接,放大器LM358-A的接线端子4与接地GND5相连接,放大器LM358-A的接线端子3与温度测试单元A17的信号输出端相连接,放大器LM358-A的接线端子7分别与电源VCC1、电容C1的一端、电容C2的一端、电阻R2的一端相连接,电容C1的另一端与接地GND1相连接,电容C2的另一端与放大器LM358-A的接线端子6相连接,电阻R2的另一端与光耦HCNR-201的接线端子2相连接,光耦HCNR-201的接线端子6分别与电源VCC2、电容C3的一端相连接,光耦HCNR-201的接线端子3与电源VCC4相连接,电容C3的另一端与接地GND2相连接,光耦HCNR-201的接线端子5分别与电阻R3的一端、放大器LM358-B的接线端子3相连接,电阻R3的另一端与接地GND3相连接,放大器LM358-B的接线端子2分别与放大器LM358-B的接线端子6及PLC系统的温度信号输入端相连接,放大器LM358-B的接线端子7分别与电源VCC3、电容C4的一端相连接,电容C4的另一端与接地GND4相连接。
  4. 一种矿山防爆电器安全参数智能化检验方法,基于权利要求1所述的一种矿山防爆电器安全参数智能化检验系统实现,其特征在于,具体包括矿山防爆电器的过载试验、短路试验、断相试验、漏电闭锁与解锁试验、动作特性试验、温升极限试验;
    其中所述过载试验、短路试验、断相试验包括以下步骤:
    步骤A1:检查被检矿山防爆电器26及检验系统是否正常,其中检验系统异常时警示单元16进行报警,根据试验项目要求连接检验系统线路;
    步骤A2:操作控制面板9输入控制指令,配电开关柜1和低压保护柜2合闸,启动被矿山防爆电器26试验环境参数测量用湿度传感器22和温度测试单元B23,PLC采集试验环境温 度、湿度数据,并通过显示屏6显示;
    步骤A3:PLC系统7通过电压转换器B20调节调压试验电源B27的电压输出,为矿山防爆电器26控制变压器提供控制电压;
    步骤A4:根据过载试验、短路试验、断相试验要求,设置矿山防爆电器26参数,PLC系统7通过电压转换器A14调节调压试验电源A3的输出电流,如果电流值不满足要求,通过转换开关15切换大电流发生装置4的工作回路;
    步骤A5:PLC系统7控制试验电流的输出,计时器19测试矿山防爆电器26动作时间,同时反馈给PLC系统7,PLC系统7根据实验类型和采集数据判断试验是否合格,通过显示屏6和工业计算机11进行数据显示和存储;
    步骤A6:PLC系统7发送控制指令切断矿山防爆电器安全参数智能化检验系统供电线路,包括配电开关柜1、低压保护柜2、调压试验电源A3,操作控制面板9停止检验系统;
    步骤A7:整理试验设备,完成矿山防爆电器26的过载试验、短路试验、断相试验检验;
    所述漏电闭锁与解锁试验分为漏电闭锁试验和解锁试验,其中漏电闭锁试验具体过程为:首先将可调电阻器12的两端分别与矿山防爆电器26的地、矿山防爆电器26漏电检测相的端子相连接,PLC系统7通过电磁继电器13从大到小调节可调电阻的阻值,矿山防爆电器26检测到漏电时进行闭锁,矿山防爆电器26不能起动,并将漏电信息通过漏电信号检测单元29反馈PLC系统7,PLC系统7采集电阻测试单元25反馈的电阻值,并通过显示屏6和工业计算机11进行数据显示和存储;漏电解锁试验过程中电阻调整过程为从漏电闭锁值向大调节;
    所述动作特性试验的具体过程为:PLC系统7通过电压转换器B20调节调压试验电源B27的电压,在动作特性试验要求电压范围内对矿山防爆电器26进行分合闸操作,并测得矿山防爆电器26在检验环境的释放电压,通过PLC系统7计算得到最低工作温度-5℃时的释放电压,计算公式为:
    Figure PCTCN2022140194-appb-100001
    式中,U为矿山防爆电器-5℃检验环境的释放电压,U s为矿山防爆电器检验环境的释放电压,T c为温度系数,其中铜为234.5℃,T h为检验环境温度;
    所述温升极限测试验中,电流采用闭环适时调节方式,具体过程为:PLC系统7根据温升极限试验所需电流值,通过电压转换器A14调节调压试验电源A的电压输出,进而实现对大电流发生装置4的输出电流调节,进而实现对矿山防爆电器26温升极限电流的实时调整,温度测试单元A17实时采集矿山防爆电器26测试点温度数据,经过信号处理单元18反馈给PLC系统7,PLC系统7比较矿山防爆电器26测试点温度数据,在间隔两次测量温度差小于1K 时,认为温升极限试验结束;在温升极限试验前、试验后采集矿山防爆电器26控制变压器一次线圈、二次线圈的电阻值和检验环境温度值,然后PLC系统7依据以下公式计算得到矿山防爆电器26控制变压器一次线圈、二次线圈的温升值,计算公式为:
    Figure PCTCN2022140194-appb-100002
    式中,△T为变压器绕组温升值,R r为变压器绕组热态电阻,R l为变压器绕组冷态电阻,T c为温度系数数,T l为冷态检验环境温度,T r为热态检验环境温度。
  5. 根据权利要求4所述的一种矿山防爆电器安全参数智能化检验方法,其特征在于,所述过载试验、短路试验、断相试验采用模拟电流法进行,大电流发生装置4根据试验用矿山防爆电器26的参数和试验要求输出试验电流,计时器19采集矿山防爆电器26的动作时间,PLC系统7调用检验系统数据库,根据试验类型和动作时间自动判断对应试验项目的合格性。
  6. 根据权利要求4所述的一种矿山防爆电器安全参数智能化检验方法,其特征在于,所述过载试验、短路试验、断相试验和漏电闭锁与解锁试验时得到的结果为数字量,为了保证实验结果的可靠性需要进行多次测量;矿山防爆电器26保护器为电子保护器,正常试验测得数据偏差小,但由于大电流发生装置4、电流测试单元5、计时器19、电阻测试单元25发生异常,导致单次测量结果与其他测量结果偏差大,此数据称为异常数据;矿山防爆电器26在过载试验、短路试验、断相试验和漏电闭锁与解锁试验时如出现异常数据需要将其删除,异常数据判断方法如下:
    步骤S1:测试得到一组数据n个为x 1、x 2、……、x n,计算得到数据的平均值
    Figure PCTCN2022140194-appb-100003
    和标准偏差σ x为:
    Figure PCTCN2022140194-appb-100004
    Figure PCTCN2022140194-appb-100005
    步骤S2:计算异常数据x i与平均值
    Figure PCTCN2022140194-appb-100006
    之间的差值与标准偏差σ x的比值t a,为:
    Figure PCTCN2022140194-appb-100007
    步骤S3:根据正态误差积分表Ⅰ,查出概率P,在t a之外,这就是合理的测量结果与平均值
    Figure PCTCN2022140194-appb-100008
    相差t a倍的概率,最后乘以n得到全部的测量次数为:
    N=n×P  (4)
    如果这个期望的次数N小于二分之一,则认为x i这个数据为异常数据。
PCT/CN2022/140194 2021-12-22 2022-12-20 矿山防爆电器安全参数智能化检验系统及方法 WO2023116650A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022374190A AU2022374190B2 (en) 2021-12-22 2022-12-20 Intelligent test system and method for safety parameters of mine explosion-proof electrical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111582589.7 2021-12-22
CN202111582589.7A CN114415625B (zh) 2021-12-22 2021-12-22 矿山防爆电器安全参数智能化检验系统及检验方法

Publications (1)

Publication Number Publication Date
WO2023116650A1 true WO2023116650A1 (zh) 2023-06-29

Family

ID=81267614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140194 WO2023116650A1 (zh) 2021-12-22 2022-12-20 矿山防爆电器安全参数智能化检验系统及方法

Country Status (3)

Country Link
CN (1) CN114415625B (zh)
AU (1) AU2022374190B2 (zh)
WO (1) WO2023116650A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117559349A (zh) * 2024-01-10 2024-02-13 厦门市海悦电气设备有限公司 一种低压配电柜漏电保护方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415625B (zh) * 2021-12-22 2024-04-19 中煤科工集团沈阳研究院有限公司 矿山防爆电器安全参数智能化检验系统及检验方法
CN115389045A (zh) * 2022-08-23 2022-11-25 中煤科工集团沈阳研究院有限公司 防爆灯具最不利条件下温度测试系统及测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790174A (en) * 1980-09-25 1982-06-04 Siemens Ag Insulation tester for high voltage feeder
CN103439619A (zh) * 2013-09-13 2013-12-11 桂林电子科技大学 一种防爆电器性能测试台
CN204575784U (zh) * 2014-08-13 2015-08-19 中煤科工集团上海有限公司 一种矿用电器漏电试验测试仪
CN205120861U (zh) * 2015-10-27 2016-03-30 山东公信安全科技有限公司 煤矿井下低压电气设备综合性能测试仪
CN109460099A (zh) * 2018-12-21 2019-03-12 煤科集团沈阳研究院有限公司 电气设备表面温升电流跟踪调整检验装置及检验方法
CN112229439A (zh) * 2020-08-31 2021-01-15 煤科集团沈阳研究院有限公司 基于电流波动法矿用隔爆型电缆卷筒检验系统及检验方法
CN114415625A (zh) * 2021-12-22 2022-04-29 中煤科工集团沈阳研究院有限公司 矿山防爆电器安全参数智能化检验系统及检验方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201600421U (zh) * 2010-01-15 2010-10-06 淮南矿业(集团)有限责任公司 开关保护器的测试装置以及开关保护器
CN202256530U (zh) * 2011-09-28 2012-05-30 山东一统电器有限公司 防爆电器保护性能智能试验台
CN102435884A (zh) * 2011-09-28 2012-05-02 山东一统电器有限公司 防爆电器保护性能智能试验台及其操作方法
CN103901312B (zh) * 2012-12-26 2016-12-28 山西全安新技术开发有限公司 一种煤矿远方漏电试验方法及设备
CN205825914U (zh) * 2016-05-25 2016-12-21 中国南方电网有限责任公司超高压输电公司检修试验中心 一种交流输电线路导线风偏监测装置
CN206241453U (zh) * 2016-12-12 2017-06-13 成都华远电器设备有限公司 一种等离子切割机电流遥控接口电路
CN106707155A (zh) * 2016-12-30 2017-05-24 中车长春轨道客车股份有限公司 一种小容量接触器动作特性测试系统及方法
CN207067351U (zh) * 2017-08-21 2018-03-02 湖北公信安全科技有限公司 一种用于检测矿用防爆电气开关的可靠性的装置
CN211626739U (zh) * 2019-09-10 2020-10-02 成都昆朋新能科技有限公司 一种pt100铂热电阻温度采样电路
CN211826260U (zh) * 2019-09-25 2020-10-30 中国标准化研究院 电器安全自动检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790174A (en) * 1980-09-25 1982-06-04 Siemens Ag Insulation tester for high voltage feeder
CN103439619A (zh) * 2013-09-13 2013-12-11 桂林电子科技大学 一种防爆电器性能测试台
CN204575784U (zh) * 2014-08-13 2015-08-19 中煤科工集团上海有限公司 一种矿用电器漏电试验测试仪
CN205120861U (zh) * 2015-10-27 2016-03-30 山东公信安全科技有限公司 煤矿井下低压电气设备综合性能测试仪
CN109460099A (zh) * 2018-12-21 2019-03-12 煤科集团沈阳研究院有限公司 电气设备表面温升电流跟踪调整检验装置及检验方法
CN112229439A (zh) * 2020-08-31 2021-01-15 煤科集团沈阳研究院有限公司 基于电流波动法矿用隔爆型电缆卷筒检验系统及检验方法
CN114415625A (zh) * 2021-12-22 2022-04-29 中煤科工集团沈阳研究院有限公司 矿山防爆电器安全参数智能化检验系统及检验方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117559349A (zh) * 2024-01-10 2024-02-13 厦门市海悦电气设备有限公司 一种低压配电柜漏电保护方法
CN117559349B (zh) * 2024-01-10 2024-04-05 厦门市海悦电气设备有限公司 一种低压配电柜漏电保护方法

Also Published As

Publication number Publication date
AU2022374190B2 (en) 2024-03-21
CN114415625B (zh) 2024-04-19
CN114415625A (zh) 2022-04-29
AU2022374190A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2023116650A1 (zh) 矿山防爆电器安全参数智能化检验系统及方法
CN100583586C (zh) 高压串联补偿电容器组不平衡保护方法和装置
CN101900782B (zh) 气体绝缘组合电器设备测试系统
US10910812B2 (en) Method for testing open phase detection system
CN102901891B (zh) 一种电力系统变压器保护装置的柔性仿真测试平台
CN101344552B (zh) 高压电网综合保护器测试仪
CN102967742A (zh) 宽电流检测范围的电子互感器
CN100501440C (zh) 高压电气设备绝缘在线监测系统校验器
CN107144757B (zh) 一种瓦斯继电器油流流速在线监测装置及方法
CN110165778A (zh) 一种油浸式电力变压器非电量保护故障录波装置及方法
EP4027155A1 (en) Transformation method for gas density relay, and gas density relay having online self-check function and check method thereof
CN104181427A (zh) 一种智能变电站变压器在线监测系统
CN107884645A (zh) 基于电压比较的电力电容器运行状态监测方法
CN110794357A (zh) 一种全方位安全防护的10kV电力互感器全性能试验系统
CN207798935U (zh) 一体化gis管道内电流互感器校验装置
CN109884436B (zh) 电力电容器成套装置在线监测方法
KR20210014877A (ko) 운전 중인 전력설비 내부 전기회로정수 측정에 의한 설비 건전상태 감시 방법
CN201247289Y (zh) 高压电网综合保护器测试仪
CN211179414U (zh) 一种经济型气体密度监测装置及系统
CN103941146B (zh) 一种不停电检测及区分10kV电流互感器各二次绕组准确等级的装置和方法
KR102419753B1 (ko) 운전 중인 전력설비 내부 전기회로정수 측정에 의한 설비 건전상태 감시 방법
CN205157733U (zh) 一种低压断路器的检测设备
CN211179415U (zh) 一种机电一体化的气体密度继电器及系统
CN107167755B (zh) 大电流互感器现场误差校验的控制系统及其控制方法
CN107240885B (zh) 双母线隔离开关后台显示位置不对应故障查找方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022374190

Country of ref document: AU

Date of ref document: 20221220

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909962

Country of ref document: EP

Kind code of ref document: A1