WO2023116367A1 - 可穿戴检测设备和检测方法 - Google Patents

可穿戴检测设备和检测方法 Download PDF

Info

Publication number
WO2023116367A1
WO2023116367A1 PCT/CN2022/135151 CN2022135151W WO2023116367A1 WO 2023116367 A1 WO2023116367 A1 WO 2023116367A1 CN 2022135151 W CN2022135151 W CN 2022135151W WO 2023116367 A1 WO2023116367 A1 WO 2023116367A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
signal
sensor
frequency response
detection device
Prior art date
Application number
PCT/CN2022/135151
Other languages
English (en)
French (fr)
Inventor
�龙昊
李昆
肖新华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116367A1 publication Critical patent/WO2023116367A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a wearable detection device and a detection method.
  • a signal generator and a signal detector can be integrated on a wristband.
  • the signal generator and the signal detector are arranged symmetrically along the arm.
  • the signal generator is used to generate radio frequency signals in the terahertz frequency band.
  • the signal detector is used to receive the radio frequency signal transmitted through the arm.
  • a signal detector converts the transmitted RF signal into transmitted information.
  • the bracelet generates a spectrum based on the transmission information, and uses spectrum analysis technology to analyze the user's health status, such as blood sugar or skin status.
  • the present application provides a wearable detection device and a detection method.
  • the wearable detection device generates a first radio frequency response signal through a sensor. Therefore, the first radio frequency signal does not need to be transmitted through the object to be detected, thereby improving the reliability of the detection result.
  • the first aspect of the present application provides a wearable detection device.
  • the wearable detection device includes a first signal generator, a sensor, and a first signal detector.
  • the first signal generator is used to generate a first radio frequency signal and transmit the first radio frequency signal to the sensor.
  • the sensor is used to generate a first radio frequency response signal according to the object to be detected and the first radio frequency signal.
  • the object to be detected can be arm, wrist, skin, blood or air, etc. When the object to be detected changes, or the state of the object to be detected changes, one or more of the phase, amplitude, or frequency range of the first radio frequency response signal may change.
  • the sensor is also used to transmit a first radio frequency response signal to the first signal detector.
  • the first signal detector is used for receiving the first radio frequency response signal, and obtaining first information according to the first radio frequency response signal. The first information is used to obtain the detection result of the substance to be detected.
  • the wearable detection device further includes a circulator and a second signal detector.
  • the signal generator is used to transmit the first radio frequency signal to the sensor through the circulator.
  • the sensor is also used to generate a reflected radio frequency response signal according to the object to be detected and the first radio frequency signal.
  • the sensor is also used to transmit a reflected radio frequency response signal to the second signal detector.
  • the second signal detector is used for receiving the reflected radio frequency response signal from the circulator, and obtaining the first reflection information according to the reflected radio frequency response signal.
  • the first reflection information is used to obtain the detection result of the object to be detected. Wherein, the accuracy of the detection result can be improved by increasing the detection of the reflected radio frequency response signal.
  • the wearable detection device further includes a second signal generator.
  • the second signal generator is used to generate a second radio frequency signal.
  • the second signal generator is used for transmitting the second radio frequency signal to the sensor through the object to be detected.
  • the sensor is provided with an antenna.
  • the antenna is used to receive the second radio frequency signal, and obtain a transmitted radio frequency response signal according to the object to be detected and the second radio frequency signal.
  • the antenna is also used to transmit the transmitted radio frequency response signal to the second signal detector.
  • the second signal detector is also used for receiving the transmitted radio frequency response signal, and obtaining transmission information according to the transmitted radio frequency response signal.
  • the transmission information is used to obtain the detection result of the substance to be detected. Wherein, the accuracy of the detection result can be improved by increasing the detection of the transmitted radio frequency response signal.
  • the wearable detection device further includes a third signal detector.
  • the sensor is also used to reflect the second radio frequency signal to the object to be detected.
  • the third signal detector is configured to receive the reflected second radio frequency signal, and obtain second reflection information according to the reflected second radio frequency signal.
  • the second reflection information is used to obtain the detection result of the object to be detected.
  • the accuracy of the detection result can be improved by increasing the detected reflected second radio frequency signal.
  • the wearable detection device further includes a combiner.
  • the third signal detector and the first signal detector are the same signal detector.
  • the first signal detector is used for receiving the first radio frequency response signal through the combiner.
  • the third signal detector is used for receiving the reflected second radio frequency signal through the combiner.
  • the second signal generator and the first signal generator are the same signal generator.
  • the wearable detection device also includes a radio frequency switch. During the first time period, the first signal generator is used to output the first radio frequency signal through the first output port of the radio frequency switch. During the second time period, the first signal generator is used to output the second radio frequency signal through the second output port of the radio frequency switch.
  • the first time period and the second time period do not coincide. Among them, by sharing the same signal generator, the cost of wearable detection equipment can be reduced.
  • the spectrum ranges of the first radio frequency signal and the second radio frequency signal are different.
  • the first signal generator and the second signal generator can work simultaneously, thereby improving the detection efficiency.
  • the spectrum ranges of the first radio frequency signal and the second radio frequency signal are the same, the two radio frequency signals may interfere, thereby reducing the reliability of the detection result. Therefore, the present application can improve the reliability of detection results.
  • the wearable detection device further includes a processor.
  • the processor is configured to convert the first information into a first spectrum, and convert the first reflection information into a first reflection spectrum.
  • the processor is also used to obtain the detection result of the object to be detected according to the first spectrum and the first reflection spectrum.
  • the wearable detection device further includes a transceiver.
  • the transceiver is used to send the first information to the server, and receive the detection result of the object to be detected from the server. Wherein, by placing the spectrum analysis process on the server, the accuracy of the detection result can be improved.
  • the wearable detection device further includes a first transmission line and/or a second transmission line.
  • the first signal generator is used to transmit the first radio frequency signal to the sensor through the first transmission line.
  • the first signal detector is used for receiving the first radio frequency response signal through the second transmission line.
  • the senor comprises a hollow waveguide.
  • the fiber core of the first transmission line or the second transmission line is adapted to the through hole of the hollow waveguide.
  • the user can separate the fiber core from the hollow waveguide, thereby realizing the separation of the transmission line and the sensor, and improving user experience.
  • the second aspect of the present application provides a detection method.
  • the detection method includes the following steps: generating a first radio frequency signal by a first signal generator.
  • the first radio frequency signal is transmitted to the sensor through the first signal generator.
  • a first radio frequency response signal is obtained through the sensor.
  • the first radio frequency response signal is obtained according to the object to be detected and the first radio frequency signal.
  • a first radio frequency response signal is received by the first signal detector. Obtain first information according to the first radio frequency response signal.
  • the first radio frequency signal is transmitted to the sensor through a circulator.
  • the detection method also includes the following steps: obtaining a reflected radio frequency response signal through the sensor.
  • the reflected radio frequency response signal is obtained according to the object to be detected and the first radio frequency signal.
  • the reflected radio frequency response signal is transmitted to the second signal detector through the circulator.
  • the first reflection information is obtained according to the reflected radio frequency response signal.
  • the detection method further includes the following step: generating a second radio frequency signal by a second signal generator.
  • the second radio frequency signal is transmitted to the sensor through the object to be detected.
  • the transmitted RF response signal is obtained through the sensor's antenna.
  • the transmitted radio frequency response signal is obtained according to the second radio frequency signal.
  • the transmitted radio frequency response signal is received by the second signal detector. Transmission information is obtained from the transmission radio frequency response signal.
  • the detection method further includes the following step: reflecting the second radio frequency signal to the object to be detected through the sensor.
  • the reflected second radio frequency signal is received by the third signal detector. Obtain second reflection information according to the reflected second radio frequency signal.
  • the third signal detector and the first signal detector are the same signal detector.
  • Transmitting the first radio frequency signal to the sensor through the first signal generator includes: transmitting the first radio frequency signal to the sensor through the first signal generator and a combiner.
  • Receiving the reflected second radio frequency signal through the third signal detector includes: receiving the reflected second radio frequency signal through the combiner and the third signal detector.
  • the second signal generator and the first signal generator are the same signal generator.
  • the detection method further includes the following steps: receiving a first radio frequency signal from a first signal generator through a radio frequency switch during a first time period, and outputting the first radio frequency signal through a first output port of the radio frequency switch.
  • the second radio frequency signal is received from the first signal generator through the radio frequency switch, and the second radio frequency signal is output through the second output port of the radio frequency switch.
  • the first time period and the second time period do not coincide.
  • the spectrum ranges of the first radio frequency signal and the second radio frequency signal are different.
  • the detection method further includes the following steps: using a processor to convert the first information into a first spectrum, and converting the first reflection information into a first reflection spectrum.
  • the detection result of the object to be detected is obtained according to the first spectrum and the first reflection spectrum.
  • the detection method further includes the following step: sending the first information to the server through a transceiver.
  • the detection result of the object to be detected is received from the server through the transceiver.
  • the wearable detection device further includes a first transmission line and/or a second transmission line.
  • Transmitting the first radio frequency signal to the sensor through the first signal generator includes: transmitting the first radio frequency signal to the sensor through the first signal generator and the first transmission line.
  • Receiving the first radio frequency response signal through the first signal detector includes: receiving the first radio frequency response signal through the first signal detector and the second transmission line.
  • the senor includes a hollow waveguide, and the fiber core of the first transmission line or the second transmission line is adapted to the through hole of the hollow waveguide.
  • Fig. 1 is the first schematic structural diagram of the wearable detection device provided in the embodiment of the present application.
  • Fig. 2a is the first structural schematic diagram of the sensor provided in the embodiment of the present application.
  • Figure 2b is a schematic cross-sectional view of the sensor provided in Figure 2a;
  • FIG. 3 is a second structural schematic diagram of the wearable detection device provided in the embodiment of the present application.
  • FIG. 4 is a third structural schematic diagram of the wearable detection device provided in the embodiment of the present application.
  • Fig. 5 is a fourth structural schematic diagram of the wearable detection device provided in the embodiment of the present application.
  • Figure 6a is a second structural schematic diagram of the sensor provided in the embodiment of the present application.
  • Figure 6b is a schematic cross-sectional view of the sensor provided in Figure 6a;
  • Figure 7a is a third structural schematic diagram of the sensor provided in the embodiment of the present application.
  • Figure 7b is a top view of the sensor provided in Figure 7a;
  • Fig. 8 is a schematic flowchart of the detection method provided in the embodiment of the present application.
  • the present application provides a wearable detection device and a detection method.
  • the wearable detection device generates a first radio frequency response signal through a sensor. Therefore, the first radio frequency signal does not need to be transmitted through the object to be detected, thereby improving the reliability of the detection result.
  • the wearable detection device in this application is applied in the technical field of electronic equipment.
  • it is a future development trend to integrate some health detection functions on wearable devices.
  • most substances in the human body have relatively strong absorption of radio frequency signals in the terahertz frequency band, which reduces the reliability of the detection results.
  • Fig. 1 is a first structural schematic diagram of a wearable detection device provided in an embodiment of the present application.
  • the wearable detection device 100 includes a first signal generator 101 , a sensor 102 and a first signal detector 103 .
  • the first signal generator 101 is used to generate a first radio frequency signal in a terahertz frequency band, and transmit the first radio frequency signal to the sensor 102 .
  • the sensor 102 is in contact with an object to be detected (not shown in FIG. 1 ).
  • the sensor 102 is used for generating a first radio frequency response signal according to the object to be detected and the first radio frequency signal.
  • the object to be detected can be an arm, a finger, a calf, or air, etc.
  • the sensor 102 is also used to transmit the first radio frequency response signal to the first signal detector 103 .
  • the first signal detector 103 is configured to receive a first radio frequency response signal, and obtain first information according to the first radio frequency response signal.
  • the first information may be phase or amplitude information corresponding to multiple frequency bins.
  • the wearable detection device 100 is used to obtain the detection result of the substance to be detected according to the first information.
  • the wearable detection device 100 can obtain detection results according to different methods.
  • the wearable detection device 100 also includes a processor.
  • the processor includes a spectral synthesizer and an analysis module.
  • a spectrum synthesizer is used to convert the first information into a first spectrum.
  • the analysis module is used to obtain the detection result of the substance to be detected according to the first frequency spectrum.
  • the wearable detection device 100 further includes a transceiver.
  • the transceiver is used to send the first information to the server.
  • the server is used to convert the first information into a first frequency spectrum, and obtain a detection result of the object to be detected according to the first frequency spectrum.
  • the transceiver is also used for receiving the detection result of the object to be detected from the server.
  • the first signal generator 101 may be directly connected to the sensor 102, or the first signal generator 101 may be connected to the sensor 102 through a transmission line.
  • the wearable detection device 100 further includes a first transmission line 104.
  • the first transmission line 104 is used for transmitting a first radio frequency signal.
  • the first signal detector 103 can be directly connected to the sensor 102, and the first signal detector 103 can also be connected to the sensor 102 through a transmission line.
  • the wearable detection device 100 further includes a second transmission line 105 .
  • the second transmission line 105 is used for transmitting the first radio frequency response signal.
  • a coupler may be provided between the two devices.
  • a coupler may be included between the first signal generator 101 and the first transmission line 104 .
  • the coupler is used for receiving the first radio frequency signal from the first signal generator 101 and coupling the first radio frequency signal to the first transmission line 104 .
  • a coupler may be included between the first signal detector 103 and the second transmission line 105 .
  • the coupler is used for receiving the first radio frequency response signal from the second transmission line 105 and coupling the first radio frequency response signal to the first signal detector 103 .
  • Fig. 2a is a first structural schematic diagram of the sensor provided in the embodiment of the present application.
  • the sensor 102 includes a medium 1021 and a metal grid 1022 .
  • One end of the sensor 102 is connected to the first transmission line.
  • the first transmission line includes a core 1042 and a cladding 1041 .
  • the other end of the sensor 102 is connected to the second transmission line.
  • the second transmission line includes a core 1052 and a cladding 1051 .
  • the medium 1021, the fiber core 1042 and the fiber core 1052 may be integrated.
  • the medium 1021 may be a dielectric fiber, which has both signal transmission and sensing capabilities.
  • the sensor 102 receives a first radio frequency signal from a first transmission line 104 .
  • the metal grid 1022 is in contact with the object to be detected. Because of the evanescent wave effect, the first radio frequency signal interacts with the object to be detected.
  • the sensor 102 generates a first radio frequency response signal according to the first radio frequency signal.
  • the object to be detected changes, or the state of the object to be detected changes, one or more of the phase, amplitude, or frequency range of the first radio frequency response signal may change. Taking the frequency range as an example, the metal grid 1022 has the capability of selective reflection of frequency. When the first radio frequency signal is transmitted on the sensor 102, most of the energy of the signal in a certain frequency range is reflected.
  • the energy of signals in other frequency ranges will be transmitted through the sensor 102 . Therefore, part of the RF signal of the first RF signal is reflected back to the first transmission line 104 . Another part of the RF signal of the first RF signal is transmitted to the second transmission line 105 .
  • the frequency range of some radio frequency signals is related to the structural size of the metal grid 1022, the properties of the medium 1021, and the like. When the state of the object to be detected changes, the frequency range of the reflected signal will change. At this time, the frequency range of another part of the radio frequency signal will change accordingly.
  • the first radio frequency response signal may be part of the radio frequency signal reflected back to the first transmission line 104 , and the first radio frequency response signal may also be another part of the radio frequency signal transmitted to the second transmission line 105 .
  • the first radio frequency response signal it will be described by taking the first radio frequency response signal as another part of the radio frequency signal as an example.
  • the part of the radio frequency signal reflected back to the first transmission line 104 may also be referred to as a reflected radio frequency response signal.
  • the metal grid 1022 may only cover a part of the medium 1021 facing the object to be detected.
  • Fig. 2b is a schematic cross-sectional view of the sensor provided in Fig. 2a.
  • the sensor 102 includes a medium 1021 and a metal grid 1022 .
  • the metal grid 1022 covers only part of the surface of the medium 1021 .
  • the sensor 102 may also generate a reflected radio frequency response signal according to the first radio frequency signal.
  • the wearable detection device can also detect the reflected radio frequency response signal.
  • FIG. 1 is a schematic cross-sectional view of the sensor provided in Fig. 2a.
  • the sensor 102 includes a medium 1021 and a metal grid 1022 .
  • the metal grid 1022 covers only part of the surface of the medium 1021 .
  • the sensor 102 may also generate a reflected radio frequency response signal according to the first radio frequency signal.
  • the wearable detection device can also detect the reflected radio frequency response signal.
  • the wearable detection device 100 further includes a circulator 302 and a second signal detector 301 .
  • the first signal generator 101 transmits the first radio frequency signal to the sensor 102 through the circulator 302 .
  • the sensor 102 is used for generating a reflected radio frequency response signal according to the first radio frequency signal.
  • the sensor 102 is used to transmit the reflected radio frequency response signal to the circulator 302 through the first transmission line 104 .
  • the circulator 302 is used to transmit the reflected radio frequency response signal to the second signal detector 301 .
  • the second signal detector 301 is configured to obtain first reflection information according to the reflected radio frequency response signal.
  • the first reflection information is phase or amplitude information corresponding to multiple frequency points.
  • the wearable detection device 100 can generate a first reflection spectrum according to the first reflection information.
  • the wearable detection device 100 can obtain the detection result of the object to be detected according to the first reflection spectrum and the first spectrum. Wherein, in the sensor 102, the transmission directions of the reflected radio frequency response signal and the first radio frequency response signal are opposite.
  • the wearable detection device can obtain the first frequency spectrum according to the first signal detector 103 , and obtain the detection result of the object to be detected according to the first frequency spectrum.
  • wearable detection equipment can also obtain the transmission spectrum of the object to be detected.
  • the wearable detection device obtains the detection result of the object to be detected according to the first spectrum and the transmission spectrum.
  • FIG. 4 is a third structural schematic diagram of the wearable detection device provided in the embodiment of the present application. As shown in FIG. 4 , on the basis of FIG. 3 , the wearable detection device further includes a second signal generator 401 and a third signal detector 402 .
  • the second signal generator 401 is used for transmitting a second radio frequency signal to the sensor 102 through the object to be detected.
  • the sensor 102 is configured to receive a second radio frequency signal, and obtain a transmitted radio frequency response signal according to the second radio frequency signal.
  • the sensor 102 is used to transmit a transmitted radio frequency response signal to the second signal detector 301 or the first signal detector 103 .
  • the second signal detector 301 or the first signal detector 103 is used to receive the transmission radio frequency response signal, and obtain transmission information according to the transmission radio frequency response signal.
  • the transmission information is phase or amplitude information corresponding to multiple frequency points.
  • the wearable detection device 100 can generate a transmission spectrum according to the transmission information.
  • the wearable detection device 100 can obtain the detection result of the object to be detected according to the transmission spectrum and the first spectrum.
  • the first transmission line 104 can be used for transmitting reflected radio frequency response signals, and can also be used for transmitting transmitted radio frequency response signals.
  • the reflected radio frequency response signal is obtained according to the first radio frequency signal.
  • the transmitted transmitted radio frequency response signal is derived from the second radio frequency signal.
  • the spectrum range of the first RF signal and the second RF signal are the same, and the first signal generator and the second signal generator work at the same time, the reflected RF response signal and the transmitted RF response signal may interfere, thereby reducing the reliability of the detection result sex.
  • the spectrum ranges of the first radio frequency signal and the second radio frequency signal may be different.
  • the wearable detection device 100 can also obtain the reflection spectrum of the object to be detected.
  • the wearable detection device 100 further includes a third signal detector.
  • the sensor 102 is also used to reflect the second radio frequency signal to the object to be detected.
  • the third signal detector 402 is configured to receive the reflected second radio frequency signal, and obtain second reflection information according to the reflected second radio frequency signal.
  • the second reflection information is phase or amplitude information corresponding to multiple frequency points.
  • the wearable detection device 100 may generate a second reflection spectrum according to the second reflection information.
  • the wearable detection device 100 can obtain the detection result of the object to be detected according to the second reflection spectrum and the first spectrum.
  • the third signal detector and the first signal detector may be the same signal detector.
  • the second signal generator and the first signal generator may be the same signal generator.
  • FIG. 5 is a fourth structural schematic diagram of the wearable detection device provided in the embodiment of the present application.
  • the wearable detection device 100 includes a first signal generator 101, a radio frequency switch 501, a circulator 302, a first transmission line 104, a sensor 102, a second transmission line 105, a combiner 502, and a first signal detector 103 and the second signal detector 302.
  • the first signal generator 101 is configured to output the first radio frequency signal through the first output port of the radio frequency switch 501 .
  • the circulator 302 is used for receiving the first radio frequency signal, and transmitting the first radio frequency signal to the sensor 102 through the first transmission line 104 .
  • the sensor 102 is used to generate a first radio frequency response signal and a reflected radio frequency response signal according to the first radio frequency signal and the object to be detected.
  • the sensor 102 is used to transmit the first radio frequency response signal to the first signal detector 103 through the second transmission line 105 and the combiner 502 .
  • the first signal detector 103 is configured to obtain first information according to the first radio frequency response signal.
  • the sensor 102 is used to transmit the reflected radio frequency response signal to the second signal detector 301 through the first transmission line 104 and the circulator 302 .
  • the second signal detector 301 is configured to obtain first reflection information according to the reflected radio frequency response signal.
  • the wearable detection device may generate the first frequency spectrum according to the first information.
  • the wearable detection device can generate a first reflection spectrum according to the first reflection information.
  • the first signal generator 101 is used to output the second radio frequency signal through the second output port of the radio frequency switch 501 .
  • the second radio frequency signal reaches the sensor 102 after being transmitted through the object to be detected.
  • the sensor 102 is used for generating a transmitted radio frequency response signal according to the second radio frequency signal.
  • the sensor 102 is used to transmit the transmitted radio frequency response signal to the second signal detector 301 through the first transmission line 104 and the circulator 302 .
  • the second signal detector 301 is used for obtaining transmission information according to the transmission radio frequency response signal.
  • the sensor 102 is also used to reflect the second radio frequency signal to the object to be detected.
  • the first signal detector 103 is used for receiving the reflected second radio frequency signal through the combiner 502 .
  • the first signal detector 103 is configured to obtain second reflection information according to the reflected second radio frequency signal.
  • the wearable detection device may generate a second reflection spectrum according to the second reflection information. Wearable detection devices can generate transmission spectra based on transmission information.
  • the wearable detection device can jointly analyze the four spectrums to obtain the detection result of the object to be detected.
  • Fig. 6a is a second structural schematic diagram of the sensor provided in the embodiment of the present application.
  • the sensor includes a hollow waveguide 1023 and a metal grid 1022 .
  • One end of the sensor is connected to the first transmission line.
  • the first transmission line includes a core 1042 and a cladding 1041 .
  • the other end of the sensor is connected to the second transmission line.
  • the second transmission line includes a core 1052 and a cladding 1051 .
  • the through hole of the hollow waveguide 1023 is compatible with the fiber core 1052 and the fiber core 1042 .
  • the core 1052 or the protrusion of the core 1042 may be inserted into the through hole of the hollow waveguide 1023 .
  • the core 1052 or the protrusion of the core 1042 can be pulled out from the hollow waveguide 1023 .
  • Fig. 6b is a schematic cross-sectional view of the sensor provided in Fig. 6a. As shown in FIG. 6 b , the sensor includes a hollow waveguide 1023 and a metal grid 1022 . The metal grid 1022 only covers part of the surface of the hollow waveguide 1023 .
  • Fig. 7a is a third structural schematic diagram of the sensor provided in the embodiment of the present application. As shown in FIG. 7 a , the sensor includes a hollow waveguide 1023 , a metal cylinder 1025 and an antenna 1024 . The metal cylinder 1025 and the antenna 1024 cover the surface of the hollow waveguide 1023 . One end of the sensor is connected to the first transmission line.
  • the first transmission line includes a core 1042 and a cladding 1041 .
  • the other end of the sensor is connected to the second transmission line.
  • the second transmission line includes a core 1052 and a cladding 1051 .
  • the through hole of the hollow waveguide 1023 is compatible with the fiber core 1052 and the fiber core 1042 .
  • Fig. 7b is a top view of the sensor provided in Fig. 7a.
  • the antennas 1024 are symmetrically distributed along the centerline of the hollow waveguide 1023.
  • the metal cylinders 1025 are distributed on both sides of the antenna 1024 .
  • the metal cylinder 1025 is used to achieve a similar function to the aforementioned metal grid 1022 in FIG. 2a.
  • the wearable detection device includes a first transmission line and a second transmission line.
  • the wearable detection device may not include the first transmission line or the second transmission line.
  • the wearable detection device may not include the cladding 1041 and the cladding 1051 , and the metal grid 1022 is provided on the original cladding 1041 and the original cladding 1051 .
  • the wearable detection device may not include the first transmission line or the second transmission line.
  • the sensor is directly connected to the first signal generator or the first signal detector.
  • the sensor 102 comprises a metal grid 1022 .
  • Metal grid 1022 is used to generate reflected radio frequency response signals.
  • the sensor 102 may not include the metal grid 1022 .
  • the first radio frequency response signal is a radio frequency signal transmitted from the sensor 102 to the second transmission line 105 .
  • the transmission direction of the first radio frequency response signal is the same as the transmission direction of the first radio frequency signal.
  • the wearable detection device can get four frequency spectrums.
  • the four spectrums are respectively the first spectrum, the first reflection spectrum, the second reflection spectrum and the transmission spectrum.
  • the wearable detection device can selectively acquire multiple spectrums among the four spectrums.
  • the wearable detection device can obtain the detection results of the object to be detected according to multiple frequency spectra.
  • the plurality of spectra includes a first spectrum and a transmitted spectrum.
  • the wearable detection device 100 may not include the circulator 302 , the second signal detector 301 and the combiner 502 .
  • the sensor 102 is configured to generate a first radio frequency response signal according to a first radio frequency signal.
  • the sensor 102 is used to transmit the first radio frequency response signal to the first signal detector 103 through the second transmission line 105 .
  • the first signal detector 103 is configured to obtain first information according to the first radio frequency response signal.
  • the wearable detection device 100 is used to obtain the first frequency spectrum according to the first information.
  • the sensor 102 is configured to generate a transmitted radio frequency response signal based on the second radio frequency signal.
  • the sensor 102 is used to transmit the transmitted radio frequency response signal to the first signal detector 103 through the second transmission line 105 .
  • the first signal detector 103 is used for obtaining transmission information according to the transmission radio frequency response signal.
  • the wearable detection device 100 is used to obtain the transmission spectrum according to the transmission information.
  • the wearable detection device 100 is used to obtain the detection result of the object to be detected according to the transmission spectrum and the first spectrum.
  • the multiple frequency spectra include a first frequency spectrum and a second reflected frequency spectrum.
  • the wearable detection device 100 may not include the circulator 302 and the second signal detector 301 .
  • the sensor 102 is configured to generate a first radio frequency response signal according to a first radio frequency signal.
  • the sensor 102 is used to transmit the first radio frequency response signal to the first signal detector 103 through the second transmission line 105 and the combiner 502 .
  • the first signal detector 103 is configured to obtain first information according to the first radio frequency response signal.
  • the wearable detection device 100 is used to obtain the first frequency spectrum according to the first information.
  • the sensor 102 is used to reflect the second radio frequency signal to the object to be detected.
  • the first signal detector 103 is configured to receive the second reflection information through the combiner 502 .
  • the first signal detector 103 is configured to obtain second reflection information according to the reflected second radio frequency signal.
  • the wearable detection device 100 is configured to obtain a second reflection spectrum according to the second reflection information.
  • the wearable detection device 100 is used to obtain the detection result of the object to be detected according to the second reflection spectrum and the first spectrum.
  • the wearing detection device 100 may further include a processor or a transceiver.
  • the transceiver is used to send the first information to the server.
  • the transceiver may be a radio frequency module.
  • the processor is used to obtain the first frequency spectrum according to the first information.
  • the processor may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • Processors may further include hardware chips or other general-purpose processors.
  • the aforementioned hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • the wearing detection device 100 may further include a memory.
  • the memory is used to store the first information or the first frequency spectrum.
  • Memory can be volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), or flash memory wait.
  • the volatile memory may be random access memory (RAM).
  • Fig. 8 is a schematic flowchart of the detection method provided in the embodiment of the present application. As shown in Fig. 8, the detection method includes the following steps.
  • the wearable detection device In step 801, the wearable detection device generates a first radio frequency signal through a first signal generator.
  • the first radio frequency signal may be a signal in a terahertz frequency band.
  • Wearable detection devices can continuously generate pulse signals with different frequencies for a period of time. Pulse signals with different frequencies form the first radio frequency signal.
  • the wearable detection device may also directly generate the first radio frequency signal including a certain frequency range at a certain moment.
  • the wearable detection device obtains a first radio frequency response signal through a sensor.
  • the first radio frequency response signal is obtained according to the object to be detected and the first radio frequency signal.
  • the object to be detected changes, or the state of the object to be detected changes, one or more of the phase, amplitude, or frequency range of the first radio frequency response signal may change.
  • the wearable detection device obtains first information according to the first radio frequency response signal.
  • the wearable detection device can obtain the first frequency spectrum according to the first information, and obtain the detection result of the object to be detected according to the first frequency spectrum.
  • the wearable detection device may also obtain a reflected radio frequency response signal according to the first radio frequency signal.
  • the wearable detection device can also obtain the first reflection information according to the reflected radio frequency response signal.
  • the wearable detection device can obtain the first reflection spectrum according to the first reflection information, and obtain the detection result of the object to be detected according to the first reflection spectrum and the first spectrum.
  • the wearable detection device may also obtain a transmitted radio frequency response signal according to the second radio frequency signal, and obtain transmission information according to the transmitted radio frequency response signal.
  • the wearable detection device can obtain the transmission spectrum according to the transmission information, and obtain the detection result of the object to be detected according to the transmission spectrum and the first spectrum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供了一种可穿戴检测设备,应用于电子设备技术领域。可穿戴检测设备包括第一信号发生器、传感器、和第一信号检测器。第一信号发生器用于生成第一射频信号,向传感器传输第一射频信号。传感器用于根据待检测物和第一射频信号生成第一射频响应信号,向第一信号检测器传输第一射频响应信号。第一信号检测器用于根据第一射频响应信号得到第一信息。在本申请中,可穿戴检测设备通过传感器生成第一射频响应信号。因此,第一射频信号无需透射过待检测物,从而提高了检测结果的可靠性。

Description

可穿戴检测设备和检测方法
本申请要求于2021年12月24日提交中国国家知识产权局、申请号为CN202111603261.9、申请名称为“可穿戴检测设备和检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及可穿戴检测设备和检测方法。
背景技术
为了方便用户时常检测健康状态,在可穿戴设备上集成一些健康检测功能是未来的一种发展趋势。例如,可在手环上集成信号发生器和信号检测器。信号发生器和信号检测器沿手臂对称设置。信号发生器用于生成太赫兹频段的射频信号。信号检测器用于接收透射过手臂的射频信号。信号检测器将透射的射频信号转化为透射信息。手环根据透射信息生成频谱,利用频谱分析技术分析用户的健康状态,例如血糖、或皮肤状态等。
但是,在实际应用中,人体大多数物质对太赫兹频段的射频信号的吸收性比较强,降低了检测结果的可靠性。
发明内容
本申请提供了一种可穿戴检测设备和检测方法,在本申请中,可穿戴检测设备通过传感器生成第一射频响应信号。因此,第一射频信号无需透射过待检测物,从而提高了检测结果的可靠性。
本申请第一方面提供了一种可穿戴检测设备。可穿戴检测设备包括第一信号发生器、传感器、和第一信号检测器。第一信号发生器用于生成第一射频信号,向传感器传输第一射频信号。传感器用于根据待检测物和第一射频信号生成第一射频响应信号。待检测物可以是手臂、手腕、皮肤、血液或空气等。当待检测物发生改变,或待检测物的状态发生改变时,第一射频响应信号的相位、幅度、或频率范围中的一项或多项可能发生变化。传感器还用于向第一信号检测器传输第一射频响应信号。第一信号检测器用于接收第一射频响应信号,根据第一射频响应信号得到第一信息。第一信息用于得到待检测物的检测结果。
在第一方面的一种可选方式中,可穿戴检测设备还包括环形器和第二信号检测器。信号发生器用于通过环形器向传感器传输第一射频信号。传感器还用于根据待检测物和第一射频信号生成反射射频响应信号。当待检测物发生改变,或待检测物的状态发生改变时,反射射频响应信号的相位、幅度、或频率范围中的一项或多项可能发生变化。传感器还用于向第二信号检测器传输反射射频响应信号。第二信号检测器用于从环形器接收反射射频响应信号,根据反射射频响应信号得到第一反射信息。第一反射信息用于得到待检测物的检测结果。其中,通过增加检测反射射频响应信号,可以提高检测结果的准确性。
在第一方面的一种可选方式中,可穿戴检测设备还包括第二信号发生器。第二信号发 生器用于生成第二射频信号。第二信号发生器用于透过待检测物向传感器传输第二射频信号。传感器上设置有天线。天线用于接收第二射频信号,根据待检测物和第二射频信号得到透射射频响应信号。天线还用于向第二信号检测器传输透射射频响应信号。第二信号检测器还用于接收透射射频响应信号,根据透射射频响应信号得到透射信息。透射信息用于得到待检测物的检测结果。其中,通过增加检测透射射频响应信号,可以提高检测结果的准确性。
在第一方面的一种可选方式中,可穿戴检测设备还包括第三信号检测器。传感器还用于向待检测物反射第二射频信号。第三信号检测器用于接收反射的第二射频信号,根据反射的第二射频信号得到第二反射信息。第二反射信息用于得到待检测物的检测结果。其中,通过增加检测反射的第二射频信号,可以提高检测结果的准确性。
在第一方面的一种可选方式中,可穿戴检测设备还包括合路器。第三信号检测器和第一信号检测器为同一信号检测器。第一信号检测器用于通过合路器接收第一射频响应信号。第三信号检测器用于通过合路器接收反射的第二射频信号。其中,通过共用同一个信号检测器,可以降低可穿戴检测设备的成本。
在第一方面的一种可选方式中,第二信号发生器和第一信号发生器为同一信号发生器。可穿戴检测设备还包括射频开关。在第一时间段,第一信号发生器用于通过射频开关的第一输出端口输出第一射频信号。在第二时间段,第一信号发生器用于通过射频开关的第二输出端口输出第二射频信号。第一时间段和第二时间段不重合。其中,通过共用同一个信号发生器,可以降低可穿戴检测设备的成本。
在第一方面的一种可选方式中,第一射频信号和第二射频信号的频谱范围不同。其中,第一信号发生器和第二信号发生器可以同时工作,从而提高了检测效率。但是,若第一射频信号和第二射频信号的频谱范围相同,则两个射频信号可能发生干涉,从而降低检测结果的可靠性。因此,本申请可以提高检测结果的可靠性。
在第一方面的一种可选方式中,可穿戴检测设备还包括处理器。处理器用于将第一信息转换为第一频谱,将第一反射信息转换为第一反射频谱。处理器还用于根据第一频谱和第一反射频谱得到待检测物的检测结果。
在第一方面的一种可选方式中,可穿戴检测设备还包括收发器。收发器用于向服务器发送第一信息,从服务器接收待检测物的检测结果。其中,通过将频谱分析的过程放置到服务器,可以提高检测结果的准确性。
在第一方面的一种可选方式中,可穿戴检测设备还包括第一传输线和/或第二传输线。第一信号发生器用于通过第一传输线向传感器传输第一射频信号。第一信号检测器用于通过第二传输线接收第一射频响应信号。其中,通过增加传输线,可以提高设计的灵活性。
在第一方面的一种可选方式中,传感器包括空心波导。第一传输线或第二传输线的纤芯和空心波导的通孔相适配。其中,在某些场景中,用户可以将纤芯从空心波导分离,从而实现传输线和传感器的分离,提高用户体验。
本申请第二方面提供了一种检测方法。检测方法包括以下步骤:通过第一信号发生器生成第一射频信号。通过第一信号发生器向传感器传输第一射频信号。通过传感器得到第一射频响应信号。第一射频响应信号是根据待检测物和第一射频信号得到的。通过第一信 号检测器接收第一射频响应信号。根据第一射频响应信号得到第一信息。
在第二方面的一种可选方式中,通过环形器向传感器传输第一射频信号。检测方法还包括以下步骤:通过传感器得到反射射频响应信号。反射射频响应信号是根据待检测物和第一射频信号得到的。通过环形器向第二信号检测器传输反射射频响应信号。根据反射射频响应信号得到第一反射信息。
在第二方面的一种可选方式中,检测方法还包括以下步骤:通过第二信号发生器生成第二射频信号。透过待检测物向传感器传输第二射频信号。通过传感器的天线得到透射射频响应信号。透射射频响应信号是根据第二射频信号得到的。通过第二信号检测器接收透射射频响应信号。根据透射射频响应信号得到透射信息。
在第二方面的一种可选方式中,检测方法还包括以下步骤:通过传感器向待检测物反射第二射频信号。通过第三信号检测器接收反射的第二射频信号。根据反射的第二射频信号得到第二反射信息。
在第二方面的一种可选方式中,第三信号检测器和第一信号检测器为同一信号检测器。通过第一信号发生器向传感器传输第一射频信号包括:通过第一信号发生器和合路器向传感器传输第一射频信号。通过第三信号检测器接收反射的第二射频信号包括:通过合路器和第三信号检测器接收反射的第二射频信号。
在第二方面的一种可选方式中,第二信号发生器和第一信号发生器为同一信号发生器。检测方法还包括以下步骤:在第一时间段,通过射频开关从第一信号发生器接收第一射频信号,通过射频开关的第一输出端口输出第一射频信号。在第二时间段,通过射频开关从第一信号发生器接收第二射频信号,通过射频开关的第二输出端口输出第二射频信号。第一时间段和第二时间段不重合。
在第二方面的一种可选方式中,第一射频信号和第二射频信号的频谱范围不同。
在第二方面的一种可选方式中,检测方法还包括以下步骤:通过处理器将第一信息转换为第一频谱,将第一反射信息转换为第一反射频谱。根据第一频谱和第一反射频谱得到待检测物的检测结果。
在第二方面的一种可选方式中,检测方法还包括以下步骤:通过收发器向服务器发送第一信息。通过收发器从服务器接收待检测物的检测结果。
在第二方面的一种可选方式中,可穿戴检测设备还包括第一传输线和/或第二传输线。通过第一信号发生器向传感器传输第一射频信号包括:通过第一信号发生器和第一传输线向传感器传输第一射频信号。通过第一信号检测器接收第一射频响应信号包括:通过第一信号检测器和第二传输线接收第一射频响应信号。
在第二方面的一种可选方式中,传感器包括空心波导,第一传输线或第二传输线的纤芯和空心波导的通孔相适配。
附图说明
图1为本申请实施例中提供的可穿戴检测设备的第一个结构示意图;
图2a为本申请实施例中提供的传感器的第一个结构示意图;
图2b为图2a所提供的传感器的截面示意图;
图3为本申请实施例中提供的可穿戴检测设备的第二个结构示意图;
图4为本申请实施例中提供的可穿戴检测设备的第三个结构示意图;
图5为本申请实施例中提供的可穿戴检测设备的第四个结构示意图;
图6a为本申请实施例中提供的传感器的第二个结构示意图;
图6b为图6a所提供的传感器的截面示意图;
图7a为本申请实施例中提供的传感器的第三个结构示意图;
图7b为图7a所提供的传感器的俯视图;
图8为本申请实施例中提供的检测方法的流程示意图。
具体实施方式
本申请提供了一种可穿戴检测设备和检测方法,在本申请中,可穿戴检测设备通过传感器生成第一射频响应信号。因此,第一射频信号无需透射过待检测物,从而提高了检测结果的可靠性。
应理解,本申请中使用的“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。另外,为了简明和清楚,本申请多个附图中重复参考编号和/或字母。重复并不表明各种实施例和/或配置之间存在严格的限定关系。
本申请中的可穿戴检测设备应用于电子设备技术领域。在电子设备技术领域中,在可穿戴设备上集成一些健康检测功能是未来的一种发展趋势。但是,在实际应用中,人体大多数物质对太赫兹频段的射频信号的吸收性比较强,降低了检测结果的可靠性。
为此,本申请提供了一种可穿戴检测设备。图1为本申请实施例中提供的可穿戴检测设备的第一个结构示意图。如图1所示,可穿戴检测设备100包括第一信号发生器101、传感器102和第一信号检测器103。第一信号发生器101用于产生太赫兹频段的第一射频信号,向传感器102传输第一射频信号。传感器102和待检测物(图1中未示出)接触。传感器102用于根据待检测物和第一射频信号生成第一射频响应信号。待检测物可以是手臂、手指、小腿、或空气等。当待检测物发生改变,或待检测物的状态发生改变时,第一射频响应信号的相位、幅度、或频率范围中的一项或多项可能发生变化。传感器102还用于向第一信号检测器103传输第一射频响应信号。第一信号检测器103用于接收第一射频响应信号,根据第一射频响应信号得到第一信息。第一信息可以是多个频点对应的相位或幅度信息。
可穿戴检测设备100用于根据第一信息得到待检测物质的检测结果。在实际应用中,可穿戴检测设备100可以根据不同的方法得到检测结果。例如,可穿戴检测设备100还包括处理器。处理器包括谱合成器和分析模块。谱合成器用于将第一信息转换为第一频谱。分析模块用于根据第一频谱得到待检测物的检测结果。又如,可穿戴检测设备100还包括收发器。收发器用于向服务器发送第一信息。服务器用于将第一信息转换为第一频谱,根据第一频谱得到待检测物的检测结果。收发器还用于从服务器接收待检测物的检测结果。
在实际应用中,第一信号发生器101可以和传感器102直接相连,第一信号发生器101也可以通过传输线和传感器102相连。例如,在图1中,可穿戴检测设备100还包括第一 传输线104。第一传输线104用于传输第一射频信号。类似地,第一信号检测器103可以和传感器102直接相连,第一信号检测器103也可以通过传输线和传感器102相连。例如,在图1中,可穿戴检测设备100还包括第二传输线105。第二传输线105用于传输第一射频响应信号。
在本申请中,当任意两个相连的器件的模场大小不同时,两个器件之间可以设置有耦合器。例如,在第一信号发生器101和第一传输线104之间可以包括耦合器。耦合器用于从第一信号发生器101接收第一射频信号,将第一射频信号耦合至第一传输线104。例如,在第一信号检测器103和第二传输线105之间可以包括耦合器。耦合器用于从第二传输线105接收第一射频响应信号,将第一射频响应信号耦合至第一信号检测器103。
根据前面的描述可知,传感器102用于根据第一射频信号生成第一射频响应信号。下面对传感器102的结构进行示例性的描述。图2a为本申请实施例中提供的传感器的第一个结构示意图。如图2a所示,传感器102包括介质1021和金属栅格1022。传感器102的一端和第一传输线相连。第一传输线包括纤芯1042和包层1041。传感器102的另一端和第二传输线相连。第二传输线包括纤芯1052和包层1051。其中,介质1021、纤芯1042和纤芯1052可以为一个整体。介质1021可以是介质纤,兼具传输信号和传感的能力。
传感器102从第一传输线104接收第一射频信号。金属栅格1022和待检测物接触。因为翛逝波效应,第一射频信号与待检测物发生作用。传感器102根据第一射频信号生成第一射频响应信号。当待检测物发生改变,或待检测物的状态发生改变时,第一射频响应信号的相位、幅度、或频率范围中的一项或多项可能发生变化。以频率范围为例,金属栅格1022具备频率的选择性反射能力。第一射频信号在传感器102上传输时,某个频率范围的信号的绝大部分能量被反射。其它频率范围的信号的能量会透射过传感器102。因此,第一射频信号的部分射频信号会反射回第一传输线104。第一射频信号的另一部分射频信号会传输至第二传输线105。部分射频信号的频率范围与金属栅格1022的结构尺寸、介质1021的属性等相关。当待检测物的状态发生改变时,反射信号的频率范围会发生改变。此时,另一部分射频信号的频率范围也会相应的发生改变。
在图2b中,第一射频响应信号可以为反射回第一传输线104的部分射频信号,第一射频响应信号也可以为传输至第二传输线105的另一部分射频信号。在后续的描述中,将以第一射频响应信号为另一部分射频信号为例进行描述。此时,反射回第一传输线104的部分射频信号也可以称为反射射频响应信号。
在实际应用中,金属栅格1022可以只覆盖介质1021上面向待检测物的一部分。例如,图2b为图2a所提供的传感器的截面示意图。如图2b所示,传感器102包括介质1021和金属栅格1022。金属栅格1022只覆盖了介质1021的部分表面。根据前述对图2a的描述可知,传感器102还可以根据第一射频信号生成反射射频响应信号。为了提高检测结果的准确性,可穿戴检测设备还可以检测反射射频响应信号。例如,图3为本申请实施例中提供的可穿戴检测设备的第二个结构示意图。如图3所示,在图1的基础上,可穿戴检测设备100还包括环形器302和第二信号检测器301。第一信号发生器101通过环形器302向传感器102传输第一射频信号。传感器102用于根据第一射频信号生成反射射频响应信号。当待检测物发生改变,或待检测物的状态发生改变时,反射射频响应信号的相位、幅度、 或频率范围中的一项或多项可能发生变化。传感器102用于通过第一传输线104向环形器302传输反射射频响应信号。环形器302用于向第二信号检测器301传输反射射频响应信号。第二信号检测器301用于根据反射射频响应信号得到第一反射信息。第一反射信息为多个频点对应的相位或幅度信息。可穿戴检测设备100可以根据第一反射信息生成第一反射频谱。可穿戴检测设备100可以根据第一反射频谱和第一频谱得到待检测物的检测结果。其中,在传感器102中,反射射频响应信号和第一射频响应信号的传输方向相反。
根据前述图1的描述可知,可穿戴检测设备可以根据第一信号检测器103得到第一频谱,根据第一频谱得到待检测物的检测结果。在实际应用中,可穿戴检测设备还可以得到待检测物的透射频谱。可穿戴检测设备根据第一频谱和透射频谱得到待检测物的检测结果。例如,图4为本申请实施例中提供的可穿戴检测设备的第三个结构示意图。如图4所示,在图3的基础上,可穿戴检测设备还包括第二信号发生器401和第三信号检测器402。
第二信号发生器401用于透过待检测物向传感器102传输第二射频信号。传感器102用于接收第二射频信号,根据第二射频信号得到透射射频响应信号。传感器102用于向第二信号检测器301或第一信号检测器103传输透射射频响应信号。第二信号检测器301或第一信号检测器103用于接收透射射频响应信号,根据透射射频响应信号得到透射信息。透射信息为多个频点对应的相位或幅度信息。在后续的处理中,可穿戴检测设备100可以根据透射信息生成透射频谱。可穿戴检测设备100可以根据透射频谱和第一频谱得到待检测物的检测结果。
根据前面的描述可知,第一传输线104既可以用于传输反射射频响应信号,也可以用于传输透射射频响应信号。反射射频响应信号是根据第一射频信号得到的。传输透射射频响应信号是根据第二射频信号得到的。当第一射频信号和第二射频信号的频谱范围相同,第一信号发生器和第二信号发生器同时工作时,反射射频响应信号和透射射频响应信号可能会发生干涉,从而降低检测结果的可靠性。为了提高检测结果的可靠性,第一射频信号和第二射频信号的频谱范围可以不同。
在实际应用中,为了提高检测结果的准确性,可穿戴检测设备100还可以得到待检测物的反射频谱。例如,在图4中,可穿戴检测设备100还包括第三信号检测器。传感器102还用于向待检测物反射第二射频信号。第三信号检测器402用于接收反射的第二射频信号,根据反射的第二射频信号得到第二反射信息。第二反射信息为多个频点对应的相位或幅度信息。在后续的处理中,可穿戴检测设备100可以根据第二反射信息生成第二反射频谱。可穿戴检测设备100可以根据第二反射频谱和第一频谱得到待检测物的检测结果。
为了降低可穿戴检测设备100的成本,第三信号检测器和第一信号检测器可以为同一信号检测器。第二信号发生器和第一信号发生器可以为同一信号发生器。例如,图5为本申请实施例中提供的可穿戴检测设备的第四个结构示意图。如图5所示,可穿戴检测设备100包括第一信号发生器101、射频开关501、环形器302、第一传输线104、传感器102、第二传输线105、合路器502、第一信号检测器103和第二信号检测器302。
其中,在第一时间段,第一信号发生器101用于通过射频开关501的第一输出端口输出第一射频信号。环形器302用于接收第一射频信号,通过第一传输线104向传感器102传输第一射频信号。传感器102用于根据第一射频信号和待检测物生成第一射频响应信号 和反射射频响应信号。传感器102用于通过第二传输线105和合路器502向第一信号检测器103传输第一射频响应信号。第一信号检测器103用于根据第一射频响应信号得到第一信息。传感器102用于通过第一传输线104和环形器302向第二信号检测器301传输反射射频响应信号。第二信号检测器301用于根据反射射频响应信号得到第一反射信息。在后续的处理中,可穿戴检测设备可以根据第一信息生成第一频谱。可穿戴检测设备可以根据第一反射信息生成第一反射频谱。
在第二时间段,第一信号发生器101用于通过射频开关501的第二输出端口输出第二射频信号。第二射频信号透射过待检测物后到达传感器102。传感器102用于根据第二射频信号生成透射射频响应信号。传感器102用于通过第一传输线104和环形器302向第二信号检测器301传输透射射频响应信号。第二信号检测器301用于根据透射射频响应信号得到透射信息。传感器102还用于向待检测物反射第二射频信号。第一信号检测器103用于通过合路器502接收反射的第二射频信号。第一信号检测器103用于根据反射的第二射频信号得到第二反射信息。在后续的处理中,可穿戴检测设备可以根据第二反射信息生成第二反射频谱。可穿戴检测设备可以根据透射信息生成透射频谱。
其中,第一时间段和第二时间段不重合。在得到第一频谱、第一反射频谱、第二反射频谱和透射频谱后,可穿戴检测设备可以对四个频谱进行联合分析,得到待检测物的检测结果。
在某些场景中,用户可能需要将传输线和传感器分离。例如,当可穿戴检测设备为手环时,为了方便穿戴手环,手环上可以设置有可插拔的接口。此时,可插拔的接口可以为传输线和传感器之间的接口。例如,图6a为本申请实施例中提供的传感器的第二个结构示意图。如图6a所示,传感器包括空心波导1023和金属栅格1022。传感器的一端和第一传输线相连。第一传输线包括纤芯1042和包层1041。传感器的另一端和第二传输线相连。第二传输线包括纤芯1052和包层1051。其中,空心波导1023的通孔和纤芯1052、纤芯1042相适配。纤芯1052或纤芯1042的突出部可以插入空心波导1023的通孔。当需要分离传输线和传感器时,可以将纤芯1052或纤芯1042的突出部从空心波导1023中拔出。关于传感器的其它描述,可以参考前述图1至图5中对传感器102的相关描述。
在实际应用中,为了避免第一射频信号被完全反射,金属栅格1022可以只覆盖空心波导1023的一部分。例如,图6b为图6a所提供的传感器的截面示意图。如图6b所示,传感器包括空心波导1023和金属栅格1022。金属栅格1022只覆盖了空心波导1023的部分表面。
根据前面对图4或图5的描述可知,传感器102可以根据第二射频信号得到透射射频响应信号。在实际应用中,为了提高透射射频响应信号的能量,传感器102上可以设置有天线。天线用于根据第二射频信号得到透射射频响应信号。例如,图7a为本申请实施例中提供的传感器的第三个结构示意图。如图7a所示,传感器包括空心波导1023、金属圆柱1025和天线1024。金属圆柱1025和天线1024覆盖于空心波导1023的表面。传感器的一端和第一传输线相连。第一传输线包括纤芯1042和包层1041。传感器的另一端和第二传输线相连。第二传输线包括纤芯1052和包层1051。其中,空心波导1023的通孔和纤芯1052、纤芯1042相适配。图7b为图7a所提供的传感器的俯视图。如图7b所示,天线1024沿着 空心波导1023的中心线对称分布。金属圆柱1025分布于天线1024的两侧。金属圆柱1025用于实现和前述图2a中金属栅格1022类似的功能。关于传感器的其它描述,可以参考前述图1至图5中对传感器102的相关描述。
应理解,前面对本申请中提供的可穿戴检测设备进行示例性的描述。在实际应用中,本领域技术人员可以根据需求对可穿戴检测设备进行适应性的修改。适应性的修改可以包括以下一项或多项内容。
在图2a中,可穿戴检测设备包括第一传输线和第二传输线。在实际应用中,可穿戴检测设备可以不包括第一传输线或第二传输线。例如,在图2a中,可穿戴检测设备可以不包括包层1041和包层1051,在原包层1041和原包层1051处设置金属栅格1022。此时,可穿戴检测设备可以不包括第一传输线或第二传输线。传感器直接和第一信号发生器或第一信号检测器相连。
在图2a中,传感器102包括金属栅格1022。金属栅格1022用于生成反射射频响应信号。在实际应用中,传感器102可以不包括金属栅格1022。此时,第一射频响应信号为从传感器102传输至第二传输线105的射频信号。第一射频响应信号的传输方向和第一射频信号的传输方向相同。
在图5中,可穿戴检测设备可以得到四个频谱。四个频谱分别为第一频谱、第一反射频谱、第二反射频谱和透射频谱。在实际应用中,可穿戴检测设备可以选择性地在四个频谱中获取多个频谱。可穿戴检测设备可以根据多个频谱得到待检测物的检测结果。
例如,多个频谱包括第一频谱和透射频谱。此时,可穿戴检测设备100可以不包括环形器302、第二信号检测器301和合路器502。具体地,在第一时间段,传感器102用于根据第一射频信号生成第一射频响应信号。传感器102用于通过第二传输线105向第一信号检测器103传输第一射频响应信号。第一信号检测器103用于根据第一射频响应信号得到第一信息。可穿戴检测设备100用于根据第一信息得到第一频谱。在第二时间段,传感器102用于根据第二射频信号生成透射射频响应信号。传感器102用于通过第二传输线105向第一信号检测器103传输透射射频响应信号。第一信号检测器103用于根据透射射频响应信号得到透射信息。可穿戴检测设备100用于根据透射信息得到透射频谱。可穿戴检测设备100用于根据透射频谱和第一频谱得到待检测物的检测结果。
又如,多个频谱包括第一频谱和第二反射频谱。此时,可穿戴检测设备100可以不包括环形器302和第二信号检测器301。具体地,在第一时间段,传感器102用于根据第一射频信号生成第一射频响应信号。传感器102用于通过第二传输线105和合路器502向第一信号检测器103传输第一射频响应信号。第一信号检测器103用于根据第一射频响应信号得到第一信息。可穿戴检测设备100用于根据第一信息得到第一频谱。在第二时间段,传感器102用于向待检测物反射第二射频信号。第一信号检测器103用于通过合路器502接收第二反射信息。第一信号检测器103用于根据反射的第二射频信号得到第二反射信息。可穿戴检测设备100用于根据第二反射信息得到第二反射频谱。可穿戴检测设备100用于根据第二反射频谱和第一频谱得到待检测物的检测结果。
根据前面的描述可知,穿戴检测设备100还可以包括处理器或收发器。收发器用于向服务器发送第一信息。收发器可以是无线射频模块。处理器用于根据第一信息得到第一频 谱。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。
在其它实施例中,穿戴检测设备100还可以包括存储器。存储器用于存储第一信息或第一频谱。存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、或闪存等。易失性存储器可以是随机存取存储器(random access memory,RAM)。
前面对本申请中提供的可穿戴检测设备进行描述,下面对本申请中提供的检测方法进行描述。图8为本申请实施例中提供的检测方法的流程示意图。如图8所示,检测方法包括以下步骤。
在步骤801中,可穿戴检测设备通过第一信号发生器生成第一射频信号。第一射频信号可以为太赫兹频段的信号。可穿戴检测设备可以在一段时间内持续生成频率不同的脉冲信号。频率不同的脉冲信号组成第一射频信号。可穿戴检测设备也可以在某个时刻直接生成包括一定频率范围的第一射频信号。
在步骤802中,可穿戴检测设备通过传感器得到第一射频响应信号。第一射频响应信号是根据待检测物和第一射频信号得到的。当待检测物发生改变,或待检测物的状态发生改变时,第一射频响应信号的相位、幅度、或频率范围中的一项或多项可能发生变化。
在步骤803中,可穿戴检测设备根据第一射频响应信号得到第一信息。在后续的处理中,可穿戴检测设备可以根据第一信息得到第一频谱,根据第一频谱得到待检测物的检测结果。
应理解,关于本申请中检测方法的描述,可以参考前述可穿戴检测设备的相关描述。例如,可穿戴检测设备还可以根据第一射频信号得到反射射频响应信号。可穿戴检测设备还可以根据反射射频响应信号得到第一反射信息。在后续的处理中,可穿戴检测设备可以根据第一反射信息得到第一反射频谱,根据第一反射频谱和第一频谱得到待检测物的检测结果。又如,可穿戴检测设备还可以根据第二射频信号得到透射射频响应信号,根据透射射频响应信号得到透射信息。在后续的处理中,可穿戴检测设备可以根据透射信息得到透射频谱,根据透射频谱和第一频谱得到待检测物的检测结果。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (18)

  1. 一种可穿戴检测设备,其特征在于,包括第一信号发生器、传感器、和第一信号检测器,其中:
    所述第一信号发生器用于生成第一射频信号,向所述传感器传输所述第一射频信号;
    所述传感器用于根据待检测物和所述第一射频信号生成第一射频响应信号,向所述第一信号检测器传输所述第一射频响应信号;
    所述第一信号检测器用于接收所述第一射频响应信号,根据所述第一射频响应信号得到第一信息。
  2. 根据权利要求1所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括环形器和第二信号检测器;
    所述第一信号发生器用于向所述传感器传输所述第一射频信号包括:所述信号发生器用于通过所述环形器向所述传感器传输所述第一射频信号;
    所述传感器还用于根据所述待检测物和所述第一射频信号生成反射射频响应信号,向所述第二信号检测器传输所述反射射频响应信号;
    所述第二信号检测器用于从所述环形器接收所述反射射频响应信号,根据所述反射射频响应信号得到第一反射信息。
  3. 根据权利要求2所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括第二信号发生器,所述传感器上设置有天线;
    所述第二信号发生器用于生成第二射频信号;
    所述第二信号发生器用于透过所述待检测物向所述传感器传输所述第二射频信号;
    所述天线用于接收所述第二射频信号,根据所述第二射频信号得到透射射频响应信号,向所述第二信号检测器传输透射射频响应信号;
    所述第二信号检测器还用于接收所述透射射频响应信号,根据所述透射射频响应信号得到透射信息。
  4. 根据权利要求3所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括第三信号检测器;
    所述传感器还用于向所述待检测物反射所述第二射频信号;
    所述第三信号检测器用于接收反射的所述第二射频信号,根据反射的所述第二射频信号得到第二反射信息。
  5. 根据权利要求4所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括合路器,所述第三信号检测器和所述第一信号检测器为同一信号检测器;
    所述第一信号检测器用于接收所述第一射频响应信号包括:所述第一信号检测器用于通过所述合路器接收所述第一射频响应信号;
    所述第三信号检测器用于接收反射的所述第二射频信号包括:所述第三信号检测器用于通过所述合路器接收反射的所述第二射频信号。
  6. 根据权利要求3至5中任意一项所述的可穿戴检测设备,其特征在于,所述第二信号发生器和所述第一信号发生器为同一信号发生器,所述可穿戴检测设备还包括射频开关;
    在第一时间段,所以第一信号发生器用于通过所述射频开关的第一输出端口输出所述 第一射频信号;
    在第二时间段,所以第一信号发生器用于通过所述射频开关的第二输出端口输出所述第二射频信号,所述第一时间段和所述第二时间段不重合。
  7. 根据权利要求3至5中任意一项所述的可穿戴检测设备,其特征在于,所述第一射频信号和所述第二射频信号的频谱范围不同。
  8. 根据权利要求2至4中任意一项所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括处理器;
    所述处理器用于将所述第一信息转换为第一频谱,将所述第一反射信息转换为第一反射频谱,根据所述第一频谱和所述第一反射频谱得到所述待检测物的检测结果。
  9. 根据权利要求1至7中任意一项所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括收发器;
    所述收发器用于向服务器发送所述第一信息,从所述服务器接收所述待检测物的检测结果。
  10. 根据权利要求1至9中任意一项所述的可穿戴检测设备,其特征在于,所述可穿戴检测设备还包括第一传输线和/或第二传输线;
    所述第一信号发生器用于向所述传感器传输所述第一射频信号包括:所述第一信号发生器用于通过所述第一传输线向所述传感器传输所述第一射频信号;
    所述第一信号检测器用于接收所述第一射频响应信号包括:所述第一信号检测器用于通过所述第二传输线接收所述第一射频响应信号。
  11. 根据权利要求10所述的可穿戴检测设备,其特征在于,所述传感器包括空心波导,所述第一传输线或所述第二传输线的纤芯和所述空心波导的通孔相适配。
  12. 一种检测方法,其特征在于,包括:
    通过第一信号发生器生成第一射频信号;
    通过所述第一信号发生器向传感器传输所述第一射频信号;
    通过所述传感器得到第一射频响应信号,所述第一射频响应信号是根据待检测物和所述第一射频信号得到的;
    通过第一信号检测器接收所述第一射频响应信号;
    根据所述第一射频响应信号得到第一信息。
  13. 根据权利要求12所述的检测方法,其特征在于,
    通过所述第一信号发生器向传感器传输所述第一射频信号包括:通过所述第一信号发生器和环形器向所述传感器传输所述第一射频信号;
    所述方法还包括:
    通过所述传感器得到反射射频响应信号,所述反射射频响应信号是根据所述待检测物和所述第一射频信号得到的;
    通过所述环形器向第二信号检测器传输所述反射射频响应信号;
    根据所述反射射频响应信号得到第一反射信息。
  14. 根据权利要求13所述的检测方法,其特征在于,所述方法还包括:
    通过第二信号发生器生成第二射频信号;
    透过所述待检测物向所述传感器传输所述第二射频信号;
    通过所述传感器的天线得到透射射频响应信号,所述透射射频响应信号是根据所述第二射频信号得到的;
    通过所述第二信号检测器接收所述透射射频响应信号;
    根据所述透射射频响应信号得到透射信息。
  15. 根据权利要求14所述的检测方法,其特征在于,所述方法还包括:
    通过所述传感器向所述待检测物反射所述第二射频信号;
    通过第三信号检测器接收反射的所述第二射频信号;
    根据反射的所述第二射频信号得到第二反射信息。
  16. 根据权利要求13至15中任意一项所述的检测方法,其特征在于,所述方法还包括:
    通过处理器将所述第一信息转换为第一频谱,将所述第一反射信息转换为第一反射频谱;
    根据所述第一频谱和所述第一反射频谱得到所述待检测物的检测结果。
  17. 根据权利要求12至15中任意一项所述的检测方法,其特征在于,所述方法还包括:
    通过收发器向服务器发送所述第一信息;
    通过所述收发器从所述服务器接收所述待检测物的检测结果。
  18. 根据权利要求12至17中任意一项所述的检测方法,其特征在于,
    所述通过所述第一信号发生器向传感器传输所述第一射频信号包括:通过所述第一信号发生器和第一传输线向所述传感器传输所述第一射频信号;
    所述通过第一信号检测器接收第一射频响应信号包括:通过所述第一信号检测器和第二传输线接收所述第一射频响应信号。
PCT/CN2022/135151 2021-12-24 2022-11-29 可穿戴检测设备和检测方法 WO2023116367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111603261.9A CN116346150A (zh) 2021-12-24 2021-12-24 可穿戴检测设备和检测方法
CN202111603261.9 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116367A1 true WO2023116367A1 (zh) 2023-06-29

Family

ID=86877780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135151 WO2023116367A1 (zh) 2021-12-24 2022-11-29 可穿戴检测设备和检测方法

Country Status (2)

Country Link
CN (1) CN116346150A (zh)
WO (1) WO2023116367A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730503A (zh) * 2007-03-15 2010-06-09 帝国创新有限公司 心率测量
US20150018676A1 (en) * 2012-02-11 2015-01-15 Sensifree Ltd. Microwave contactless heart rate sensor
US20160091776A1 (en) * 2014-09-27 2016-03-31 Edris M. Mohammed Integrated terahertz sensor
WO2017089479A1 (en) * 2015-11-26 2017-06-01 Aston University Non-invasive human condition monitoring device
CN106821358A (zh) * 2016-12-20 2017-06-13 杭州联络互动信息科技股份有限公司 心率检测装置及可穿戴设备
EP3488776A1 (en) * 2017-11-23 2019-05-29 Koninklijke Philips N.V. Wearable device using ppg sensor for optical communication
CN111065326A (zh) * 2017-08-25 2020-04-24 博能电子公司 增强光学心脏活动测量

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730503A (zh) * 2007-03-15 2010-06-09 帝国创新有限公司 心率测量
US20150018676A1 (en) * 2012-02-11 2015-01-15 Sensifree Ltd. Microwave contactless heart rate sensor
US20160091776A1 (en) * 2014-09-27 2016-03-31 Edris M. Mohammed Integrated terahertz sensor
WO2017089479A1 (en) * 2015-11-26 2017-06-01 Aston University Non-invasive human condition monitoring device
CN106821358A (zh) * 2016-12-20 2017-06-13 杭州联络互动信息科技股份有限公司 心率检测装置及可穿戴设备
CN111065326A (zh) * 2017-08-25 2020-04-24 博能电子公司 增强光学心脏活动测量
EP3488776A1 (en) * 2017-11-23 2019-05-29 Koninklijke Philips N.V. Wearable device using ppg sensor for optical communication

Also Published As

Publication number Publication date
CN116346150A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US10959679B2 (en) Noncontact self-injection-locked sensor
JP5309569B2 (ja) 方向検出システム
Garbati et al. Chipless RFID reader design for ultra-wideband technology: design, realization and characterization
KR101534567B1 (ko) 임피던스 매칭 장치
TWI453415B (zh) 利用超寬頻雷達偵測物體之運動狀態之成像方法及系統
CN114296141A (zh) 多目标生命征象侦测器及其侦测方法
Di Mattia et al. A feasibility study of a compact radar system for autonomous walking of blind people
Gu et al. Noncontact vital sensing with a miniaturized 2.4 GHz circularly polarized Doppler radar
Jatlaoui et al. Original identification technique of passive EM sensors using loaded transmission delay lines
WO2023116367A1 (zh) 可穿戴检测设备和检测方法
TWI286023B (en) Optoelectric sensing system for electric field signal
CN103777073A (zh) 宽带激励声表面波器件谐振频率测量装置及方法
EP3335056B1 (en) Coupled radar
Fan et al. Hand gesture recognition based on Wi-Fi chipsets
JP2010230473A (ja) モノパルスドップラレーダ装置
CN102306266A (zh) 用于射频识别的模拟器
CN210487973U (zh) 一种太赫兹雷达测距装置
Benchikh et al. A novel millimeter wave radar sensor for medical signal detection
CN205333850U (zh) 一种雷达测试设备
KR20090121739A (ko) 초음파 시스템 및 신호 필터링 방법
EP3550314B1 (en) Testing system and method for efficiently testing high-frequency communications devices
KR20150022735A (ko) 임피던스 매칭 장치
Chen et al. FPGA verification of radar signal processing based on SoC
JP2017005655A (ja) 送受信装置及び送受信方法
RU2008122871A (ru) Моноимпульсная радиолокационная станция с автоматической калибровкой

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909682

Country of ref document: EP

Kind code of ref document: A1