WO2023116200A1 - 一种阻抗装置及模拟头部对振动单元振动影响的系统 - Google Patents

一种阻抗装置及模拟头部对振动单元振动影响的系统 Download PDF

Info

Publication number
WO2023116200A1
WO2023116200A1 PCT/CN2022/128431 CN2022128431W WO2023116200A1 WO 2023116200 A1 WO2023116200 A1 WO 2023116200A1 CN 2022128431 W CN2022128431 W CN 2022128431W WO 2023116200 A1 WO2023116200 A1 WO 2023116200A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance device
elastic
vibration
vibration unit
damping
Prior art date
Application number
PCT/CN2022/128431
Other languages
English (en)
French (fr)
Inventor
王真
刘志青
张磊
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to JP2023543180A priority Critical patent/JP2024503876A/ja
Priority to EP22899614.6A priority patent/EP4243451A1/en
Priority to MX2023008715A priority patent/MX2023008715A/es
Priority to KR1020237024683A priority patent/KR20230124651A/ko
Priority to US18/328,761 priority patent/US20230351870A1/en
Publication of WO2023116200A1 publication Critical patent/WO2023116200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • H04R1/288Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/165Equalizers; Volume or gain control in limited frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/607Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of earhooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2811Enclosures comprising vibrating or resonating arrangements for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • This specification relates to the field of vibration simulation, in particular to an impedance device and a system for simulating the influence of the head on the vibration of the vibration unit.
  • the vibration unit can generate vibration signals to transmit the vibration signals to the human head (for example, head bones).
  • the vibration unit In order to simulate the influence of the human head on the vibration of the vibration unit so as to understand the vibration characteristics of the vibration unit, it is usually necessary to couple the vibration unit with a device that simulates the structure of the human head.
  • the vibration unit when used as a bone conduction earphone or hearing aid, the vibration unit is fitted to the facial area on the front side of the user's auricle, and the bone hardness of this area in the human head is relatively lower than that of the skull, mastoid bone, etc.
  • an impedance device including: a mass part, an elastic part and a fixed part, the mass part is connected to the fixed part through the elastic part, wherein the fixed part is a hollow structure inside body, the fixed part includes an opening, the elastic part is located at the opening and connected with the fixed part, and the elastic part and the fixed part form a cavity, and the elastic part is opposite to the quality part
  • the range of elastic coefficient in the vibration direction of the fixing part is 600N/m ⁇ 5000N/m.
  • One of the embodiments of this specification also provides a system for simulating the impact of the head on the vibration of the vibration unit, including: a vibration unit configured to provide a vibration signal; an impedance device, the impedance device contacts the vibration unit and provides vibration for the vibration
  • the unit provides mechanical impedance;
  • the connector is configured to couple the vibration unit with the impedance device;
  • the sensor is configured to collect parameter information of the vibration unit during vibration
  • the impedance device includes a mass part, an elastic part and a fixed part, the mass part is connected to the fixed part through the elastic part, the fixed part is a hollow structure, the fixed part includes an opening, and the elastic part is located in the opening and connected to the fixed part, and the elastic part forms a cavity with the fixed part, and the range of the elastic coefficient of the elastic part in the direction in which the mass part vibrates relative to the fixed part is 600N/m ⁇ 5000N/m.
  • FIG. 1 is a block diagram of an impedance device according to some embodiments of the present specification
  • Fig. 2 is a schematic structural diagram of an impedance device according to some embodiments of the present specification.
  • Fig. 3A is a schematic structural diagram of an impedance device according to some embodiments of the present specification.
  • Fig. 3B is a schematic structural diagram of an impedance device according to some other embodiments of the present specification.
  • Fig. 3C is a schematic structural diagram of an impedance device according to other embodiments of the present specification.
  • Fig. 3D is a schematic structural diagram of an impedance device according to other embodiments of the present specification.
  • Fig. 4 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • Fig. 5 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • Fig. 7 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • Fig. 8 is a frequency response curve diagram of the vibration of the vibration unit provided according to some embodiments of the present application.
  • Fig. 9 is an exemplary frame diagram of a system for simulating the influence of the head on the vibration of the vibration unit according to some embodiments of the present specification
  • Fig. 10 is a diagram showing the position of the head coupling area simulated by the impedance device according to some embodiments of the present specification
  • Fig. 11 is a schematic structural diagram of a system for simulating the impact of the head on the vibration of the vibration unit provided according to some embodiments of the present application;
  • Fig. 12 is a schematic structural diagram of a system for simulating the impact of the head on the vibration of the vibration unit according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • words may be replaced by other expressions if the other words accomplish the same purpose.
  • the resistance device may include a mass part, an elastic part and a fixed part, and the mass part is connected to the fixed part through the elastic part.
  • the fixing part is a hollow structure, the fixing part includes an opening, the elastic part is located at the opening and connected with the fixing part, and the elastic part and the fixing part form a cavity.
  • the mass part is connected to the elastic part, and under the action of an external force, the mass part can vibrate relative to the fixed part.
  • the elastic coefficient of the elastic part in the direction in which the mass part vibrates relative to the fixed part ranges from 600N/m to 5000N/m.
  • the vibration of the mass part relative to the fixed part has a resonant peak within a frequency range of 20 Hz-300 Hz.
  • the frequency response curve of the vibration unit (for example, bone conduction speaker, hearing aid, etc.)
  • the frequency response curves worn near the tragus area of the human body are approximately consistent, and the impedance device can be used to simulate the influence of the vicinity of the tragus area on the vibration unit.
  • the impedance device can also include a damping structure, which can provide damping for the impedance device, and the damping of the damping structure can be adjusted to simulate the actual impedance fed back to the vibration unit near the tragus area during actual use, so that the vibration unit The frequency response curve when coupled with the impedance device is consistent or approximately consistent with the frequency response curve of the vibration unit worn near the tragus region of the human body.
  • a damping structure which can provide damping for the impedance device, and the damping of the damping structure can be adjusted to simulate the actual impedance fed back to the vibration unit near the tragus area during actual use, so that the vibration unit The frequency response curve when coupled with the impedance device is consistent or approximately consistent with the frequency response curve of the vibration unit worn near the tragus region of the human body.
  • FIG. 1 is a block diagram of an impedance device according to some embodiments of the present specification.
  • the impedance device 100 may include a mass part 101 , an elastic part 102 and a fixing part 103 .
  • the mass part 101 is connected to the fixed part 103 through the elastic part 102 , and the mass part 101 can vibrate relative to the fixed part 103 .
  • the mass part 101 may be physically connected to the fixing part 103 through the elastic part 102 , and the physical connection described in this specification may include welding, clamping, gluing, integral molding, etc. or any combination thereof.
  • the mass part 101 when the mass part 101 contacts or couples with an external vibration unit (eg, bone conduction earphone, air conduction earphone, hearing aid, etc.), the mass part 101 receives the vibration of the vibration unit and moves relative to the fixed part 103 .
  • the mass part 101 may be in direct contact with or coupled to the vibration unit, and the vibration unit directly pushes the mass part 101 to move when it vibrates.
  • the mass part 101 may be in contact with or coupled to the vibration unit through other structures or components (such as a protective film, etc.), and the mass part 101 receives the vibration of the vibration unit to move.
  • the mass part 101 refers to an object with a certain weight.
  • the mass part 101 can be used to characterize the mass load fed back to the vibration unit near the tragus area of the head (for example, the front face area of the auricle), and the mass part 101 is also called an inertial part.
  • the vibration unit pushes the mass part 101 to move together during the vibration process.
  • the mass part 101 and the vibration unit maintain the same phase and have the same or approximately the same vibration acceleration.
  • the shape of the mass part 101 may include, but not limited to, regular structures or irregular structures such as cylinders, cuboids, cones, frustums of cones, and spheres.
  • the material of the mass part 101 may include, but not limited to, any material such as plastic, silica gel, wood, metal, and foam.
  • the elastic part 102 is used to provide a certain elasticity for the movement of the mass part 101 .
  • the elastic force of the elastic part 102 is proportional to the movement displacement or movement range of the mass part 101 .
  • the elastic portion 102 is deformed during movement of the mass portion, and the elastic force of the elastic portion 102 is related to the deformation amount of the elastic portion 102 , the greater the deformation amount, the greater the elastic force provided by the elastic portion 102 .
  • the elastic coefficient of the elastic part 102 can be used to characterize the equivalent elastic coefficient near the tragus region of the human head.
  • the elastic coefficient of the elastic part 102 can be adjusted to be approximately equal to the equivalent elastic coefficient near the tragus area of the human head (the facial area in front of the auricle). In some embodiments, the elastic coefficient of the elastic part 102 can be adjusted based on the hardness near the tragus region of the human head, different age groups of the wearer, the pressure when wearing the vibration unit, and the cell type at the location. The specific reasons are as follows. The hardness of different parts of the human head is different, and the equivalent elastic coefficients of different parts of the human head are also different. For example, the forehead and mastoid behind the ear of the human head have relatively high hardness, and their equivalent elastic coefficients are relatively large.
  • the temporal bone in front of the ear of the human head (that is, near the tragus area) is softer than the forehead and the mastoid behind the ear, and its equivalent elastic coefficient is relatively small.
  • the equivalent elastic coefficients of the same part of the same person at different ages will also be different.
  • the equivalent elastic coefficient of the human head skin is also related to the pressure between the vibration unit and the head skin when the user wears the vibration unit.
  • a device containing a vibration unit for example, a hearing device, an audio device, etc.
  • the device squeezes the subcutaneous cells of the human body, which will affect the amount of subcutaneous fluid corresponding to the device.
  • the greater the pressure the less the amount of subcutaneous fluid corresponding to the device, and the corresponding equivalent elastic coefficient increases.
  • the elastic coefficient of the elastic part 102 can be set to change with the movement displacement or movement amplitude of the mass part 101, for example, As the movement range of the mass part 101 increases, the elastic coefficient of the elastic part 102 also increases correspondingly.
  • the elastic part 102 may include but not limited to spring, elastic soft rubber or silicone, plastic with elastic structure, metal with elastic structure, etc. or other elastic forms (for example, air cushion, film-like structure, etc.) .
  • the spring includes, but is not limited to, one or more of compression springs, tension springs, torsion springs, coil springs, and leaf springs.
  • the elastic part 102 can also be a fluid (for example, gas, liquid or a combination of gas and liquid, etc.), when the shape of the fluid is subjected to an external force (for example, the pressure on the fluid when the mass part 101 vibrates) When in action, the fluid produces a certain movement resistance (ie, viscosity) to the mass part 101 , thereby providing a certain elasticity for the movement of the mass part 101 .
  • a fluid for example, gas, liquid or a combination of gas and liquid, etc.
  • the fixing part 103 refers to the carrier of the impedance device 100 , and can be used to carry other components of the impedance device 100 (for example, the mass part 101 , the elastic part 102 , and the damping structure 104 ).
  • the structure of the fixing part 103 may include but not limited to a plate structure, a shell structure, a block structure, a bench structure, and the like. It should be noted that the fixing part 103 is not limited to the above-mentioned structure, and it can be a structure of any shape, as long as it can serve as other components of the impedance device 100 (for example, the mass part 101, the elastic part 102, the damping structure 104) The structure is sufficient, and no further limitation is made here.
  • the impedance device 100 may also include a damping structure 104 .
  • the damping structure 104 may be used to provide damping to the movement of the mass part 101 .
  • the damping structure 104 may represent the equivalent damping of the human body.
  • the damping structure 104 may include, but is not limited to, spring dampers, hydraulic dampers, friction dampers, pulsation dampers, rotational dampers, viscous dampers, airflow dampers, damping hinges, damping slides, One or any combination of electromagnetic damping, etc.
  • the damping structure 104 can also be realized by using the properties of certain media (eg, fluid, flexible material with pores) (eg, liquid with certain viscosity, such as magnetic fluid, etc.).
  • the mass of the mass part 101 may range from 0.5g to 5g.
  • the mass range of the mass part 101 may be 0.6g-4.5g. More preferably, the mass range of the mass part 101 may be 0.8g-4g.
  • the mass of the mass part 101 may range from 1 g to 3.6 g. More preferably, the mass range of the mass part 101 may be 1.5g-3g. More preferably, the mass of the mass part 101 may range from 2g to 2.5g.
  • the elastic coefficient of the elastic part 102 in the direction in which the mass part 101 vibrates relative to the fixed part 103 may range from 600 N/m to 5000 N/m. Preferably, the elastic coefficient of the elastic part 102 may range from 700N/m-4500N/m. More preferably, the elastic coefficient of the elastic part 102 may range from 800N/m to 4000N/m. Preferably, the elastic coefficient of the elastic part 102 may range from 850N/m to 3500N/m.
  • the elastic coefficient of the elastic part 102 may range from 900N/m to 1700N/m. Preferably, the elastic coefficient of the elastic part 102 may range from 1000N/m-1500N/m. Preferably, the elastic coefficient of the elastic part 102 may range from 1100N/m-1400N/m.
  • the damping of the damping structure 104 can also be adjusted so that the characteristics of the impedance device 100 are consistent with the tragus region of the human head. Nearby properties are similar.
  • the damping structure 104 may have a damping range of 1-4. More preferably, the damping range of the damping structure 104 may be 1-3. More preferably, the damping range of the damping structure 104 may be 1-2.
  • the mass part 101 or the elastic part 102 can also play a role in providing damping, and here the damping provided by the mass part 101, the elastic part 102 or the damping structure 104 is regarded as equivalent damping, This equivalent damping also satisfies the aforementioned range.
  • one of the mass part 101 , the elastic part 102 , and the damping structure 104 can simultaneously provide two or three of mass action, elastic action, or damping action.
  • the mass part 101 and the elastic part 102 can be provided by the same component.
  • an elastic silicone block can serve as the quality part 101 and the elastic part 102 at the same time.
  • the mass portion 101 and the damping structure 104 may be provided by the same component.
  • the fixed part 103 has an orifice with the same shape as the mass part 101. When the side wall of the mass part 101 is in contact with the inner wall of the fixed part 103, the frictional force between the mass part 101 and the fixed part 103 can be used as the resistance device 100. damping.
  • the elastic part 102 and the damping structure 104 can be provided by the same component.
  • a spring filled or wrapped with foam serves as both the elastic portion 102 and the damping structure 104 .
  • the above description about the impedance device 100 is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the impedance device 100 under the guidance of this specification, for example, omit the elastic part 102 or the damping structure 104, and for example, the number of the damping structure 104 is not limited to one, and Can be two, three or more.
  • Such amendments and changes are still within the scope of this specification.
  • Fig. 2 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the impedance device 200 may include a mass part 201 , an elastic part 202 and a fixing part 203 .
  • the mass part 201 is connected to the fixed part 203 through the elastic part 202 , and the mass part 201 can vibrate relative to the fixed part 203 .
  • the fixing part 203 may be a cuboid, a cylinder, a terraced structure, a triangular prism, a spherical or hemispherical structure and other regular or irregular structures.
  • the fixing part 203 may be a hollow structure with an open opening (also referred to as an opening), and the elastic part 202 is located at the opening of the fixing part 203 to form a cavity 205 with the fixing part 203 .
  • cavity 205 may be a closed cavity.
  • the elastic part 202 can be a film-like structure, the shape and size of the film-like structure are approximately the same as the shape and size of the opening on the fixing part 203, and the elastic part 202 can connect with the fixing part 203 through its peripheral side. The side walls are connected to form a closed cavity 205 .
  • the size of the membrane-like structure is greater than or equal to the size of the opening on the fixing part 203 , and the membrane-like structure is located at one end of the fixing part 203 with the opening to cover the opening.
  • the material of the membrane structure may be elastic silica gel, rubber or the like.
  • the cavity 205 can also communicate with the outside world.
  • the membrane-like structure includes a hole (not shown in FIG. 2 ), and the cavity 205 communicates with the outside through the hole.
  • the shape and size of the membranous structure do not match the shape and size of the opening on the fixing part 203 , and the peripheral part of the membranous structure is connected to the sidewall of the fixing part 203 .
  • the elastic part 202 can also be a reed structure, which is connected to the sidewall of the fixing part 203 through its peripheral side, and the reed structure can completely cover the opening or cover part of the opening area.
  • the material of the reed structure may include metal (eg, stainless steel, beryllium copper, etc.), plastic, and the like.
  • the gas in the cavity 205 can also provide elasticity and damping.
  • the gas in the cavity 205 has the characteristics of compressibility and expandability.
  • the elastic part 202 deforms to cause the The volume of the cavity 205 becomes smaller, and the pressure inside the cavity 205 increases, and the gas inside the cavity 205 exerts a force on the elastic part 202 and the mass part 201, and the force is opposite to the movement direction of the mass part 201.
  • the gas in the cavity 205 can provide elasticity.
  • the cavity 205 can also be filled with a liquid with a certain viscosity, such as one or more of magnetic fluid, water, oily organic matter, etc., or the cavity 205 can be filled with both liquid and gas .
  • the mass part 201 vibrates relative to the fixed part 203 under the elastic action of the elastic part 202, and the vibration has different frequencies A distinct frequency response, wherein the vibration produces a resonance peak within a first specified frequency range.
  • the first specific frequency range may be 20Hz ⁇ 300Hz. In some embodiments, the first specific frequency range may be 40Hz ⁇ 60Hz.
  • Fig. 3A is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the impedance device 300A may include a mass part 301 , an elastic part 302 and a fixed part 303 .
  • the mass part 301 is connected to the fixed part 303 through the elastic part 302 , and the mass part 301 can vibrate relative to the fixed part 303 .
  • the fixing part 303 may be a hollow structure with an open opening, and the elastic part 302 is located at the opening of the fixing part 303 to form a cavity 305 with the fixing part 303 .
  • one or more holes 3031 are provided on the side wall of the fixing part 303 opposite to the mass part 301 to communicate the air inside the cavity 305 with the air outside the cavity 305 .
  • the impedance device 300A may further include an acoustic gauze 304 covering the hole portion 3031 , and the acoustic gauze 304 allows the air inside the cavity 305 to communicate with the air outside the cavity 305 . Under the action of an external force (arrow F shown in FIG. 3A ), the mass portion 301 vibrates relative to the fixed portion 303.
  • the elastic portion 302 acts on the elastic portion 302, and the elastic portion 301 vibrates relative to the fixed portion 303.
  • Part 302 produces elastic deformation, so that the pressure inside the cavity 305 increases, so that the air inside the cavity 305 leaks to the external environment through the hole 3031.
  • the air passes through the acoustic gauze 304, the airflow is subject to viscous action, thus Damping is provided for the motion of the mass part 301 .
  • the cavity 305 and the air inside it, and the acoustic gauze 304 can be regarded as the damping structure of the impedance device 300A, so as to provide damping for the movement of the mass part 301 .
  • the damping of the impedance device 300A can be adjusted by adjusting the size of the hole portion 3031 , the volume of the cavity, or the acoustic range of the acoustic gauze 304 .
  • the total area of the hole 3031 occupies
  • the area of the side wall of 303 is 10%-90%
  • the cavity volume is not more than 1000cm 3
  • the acoustic resistance of the acoustic gauze 304 is in the range of 500Rayl-1600Rayl.
  • the total area of the holes 3031 accounts for 20%-80% of the area of the sidewall of the fixing part 303 where they are located, the volume of the cavity is not greater than 800cm 3 , and the acoustic resistance of the acoustic gauze 304 is in the range of 600Rayl-1400Rayl. Further preferably, the total area of the holes 3031 accounts for 30% to 60% of the area of the side wall of the fixing part 303 where they are located, the volume of the cavity is not greater than 600cm 3 , and the acoustic resistance of the acoustic gauze 304 is in the range of 800Rayl to 1200Rayl .
  • the elastic portion 302 can simultaneously provide elastic support and damping.
  • the elastic part 302 can be a film-like structure made of flexible material, a rod-like structure or a block-like structure, and other structures of any shape capable of carrying the effects of the mass part 301 and the connecting and fixing part 303 .
  • the flexible material may include but not limited to silicone, rubber, polyvinyl alcohol (PVA), polyester (PET), polyimide (PI), polyethylene naphthalate (PEN) , textile materials, etc. any one or more of them. Under the action of an external force (arrow F shown in FIG. 3A ), the mass portion 301 vibrates relative to the fixed portion 303.
  • the elastic portion 302 acts on the elastic portion 302, and the elastic portion 301 vibrates relative to the fixed portion 303.
  • the part 302 produces elastic deformation, so that the internal friction of the elastic part 302 generates heat energy, thereby providing damping for the movement of the mass part 301 .
  • the elastic coefficient of the elastic part 302 in the direction in which the mass part 301 vibrates relative to the fixed part 303 may be located at 600N/ m ⁇ 5000N/m range.
  • the elastic coefficient of the elastic part 302 in the direction in which the mass part 301 vibrates relative to the fixed part 303 can be in the range of 700N/m-3500N/m, and the elastic part elastic coefficient ranges from 700N/m-3500N/m.
  • the elastic coefficient of the elastic part 302 in the direction in which the mass part 301 vibrates relative to the fixed part 303 may be 900N/m-1700N/m.
  • the elastic part 302 when the elastic part 302 is a structure made of flexible material, the elastic part 302 itself can provide elasticity and damping effects at the same time, and the side wall opposite to the mass part 301 on the fixed part 303 may not be additionally provided
  • the damping structure (for example, the hole portion 3031 and the acoustic gauze 304 ) can also be provided with a damping structure at the same time. At this time, the elastic portion 302 and the damping structure jointly provide damping for the movement of the mass portion 301 .
  • the elastic part 302 made of flexible material can also be applied to the impedance devices provided in other embodiments of the present application, for example, the impedance device 300B shown in FIG. 3B , the impedance device 300C shown in FIG. 3C , and the impedance device 300C shown in FIG. 3D
  • the above description about the impedance device 300A is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the impedance device 300A.
  • the hole part 3031 and the acoustic gauze 304 can also be located At the side wall, or, in the impedance device 300B shown in FIG. 3B , the hole portion 3031 and the acoustic gauze 304 can also be provided on the side wall connected to the elastic portion 302 on the fixed portion 303 and on the fixed portion 303 and the quality portion at the same time. 301 at the opposite side walls, while such modifications and changes remain within the scope of this specification.
  • Fig. 3C is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the impedance device 300C shown in FIG. 3C is substantially the same as the impedance device 300A shown in FIG. 3A , the main difference being that the cavity 305 of the impedance device 300C communicates with the outside through the elastic portion 302 .
  • the elastic part 302 may be a reed structure, and the reed structure covers the opening of the fixing part 303 and forms a cavity 305 .
  • the reed structure may include a hollowed out area (not shown in FIG. 3C ) that allows the air inside the cavity 305 to communicate with the air outside the cavity 305 .
  • the hollow area may be covered with an acoustic gauze 304 , which allows the air inside the cavity 305 to communicate with the air outside the cavity 305 and provides damping.
  • the elastic part 302 may be a film structure, and one or more holes are opened on the film structure, and the holes allow the air inside the cavity 305 to communicate with the air outside the cavity 305 .
  • the holes may be covered with an acoustic gauze 304 , which allows the air inside the cavity 305 to communicate with the air outside the cavity 305 and provides damping.
  • Fig. 3D is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the impedance device 300D shown in FIG. 3D is similar in structure to the impedance device 300A shown in FIG. 3A , the impedance device 300B shown in FIG. 3B , and the impedance device 300C shown in FIG. 3C .
  • the fixed part 303 and the elastic part 302 are provided with damping structures.
  • one or more holes 3031 are provided on the side wall of the fixed part 303 opposite to the mass part 301 to separate the air inside the cavity 305 from the air outside the cavity 305. connected.
  • A may further include an acoustic gauze 304 covering the hole portion 3031 , which allows the air inside the cavity 305 to communicate with the air outside the cavity 305 .
  • the elastic part 302 has a hollow area or a hole, and the hollow area or the hole is covered with an acoustic gauze 304, the acoustic gauze 304 allows the air inside the cavity 305 to communicate with the air outside the cavity 305, and Provides damping.
  • Fig. 4 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the impedance device 400 may include a mass part 401 , an elastic part 402 and a fixed part 403 .
  • the mass part 401 is connected to the fixed part 403 through the elastic part 402 , and the mass part 401 can vibrate relative to the fixed part 403 .
  • the fixing part 403 may be a structure with a groove 405
  • the elastic part 402 is located at the groove 405 of the fixing part 403 and connected to the fixing part 403 through the elastic part 402 .
  • the elastic part 402 may be a film-like structure, a rod-like structure, a sheet-like structure, or the like.
  • the impedance device 400 may further include a magnetic circuit structure, wherein the magnetic circuit structure may be located between the elastic part 402 and the fixed part 403 .
  • the magnetic circuit structure may include a first magnet 4041 and a second magnet 4042, the first magnet 4041 and the second magnet 4042 are arranged at intervals in the groove 405, one pole of the first magnet 4041 and the second magnet 4042 One pole of the first magnet 4041 and the second magnet 4042 are opposite in polarity, forming a magnetic gap 4043.
  • the impedance device 400 may further include a metal sheet 4044, one end of the metal sheet 4044 is connected to the quality part 401 or the elastic part 402, and the other end of the metal sheet 4044 extends to a side away from the quality part 401 or the elastic part 402 , and extend into the magnetic gap 4043 . Under the action of an external force (arrow F shown in FIG. 4 ), the mass part 401 vibrates relative to the fixed part 403.
  • the mass part 401 When the mass part 401 generates a motion displacement relative to the fixed part 403, it drives the metal sheet 4044 in the In the magnetic gap 4043, the movement of cutting magnetic lines of induction causes the metal sheet 4044 to generate eddy currents. According to Lenz's law, the metal sheet 4044 produces an acting force opposite to the displacement direction of the mass part 401 when it is moving to cut the magnetic induction lines. Acts on the mass part 401 to provide damping for the movement of the mass part 401 . It should be noted that here the magnetic circuit structure and the metal sheet 4044 are the damping structure 404 of the impedance device 400 , providing damping for the movement of the mass part 401 .
  • the damping value provided by the damping structure 404 can be within a specific range (for example, 1-4).
  • the metal sheet 4044 can be made of high-conductivity metal, for example, the material of the metal sheet 4044 can include but not limited to copper, aluminum, silver, gold, platinum, and the like. It should be noted that, in some embodiments, the metal sheet 4044 can also be replaced with a structure made of other non-metallic materials with conductive lines, for example, graphite, semiconductor materials (such as selenium, silicon, germanium, silicon carbide, One or more of gallium arsenide, etc.). In some embodiments, the metal sheet 4044 can also be replaced by a structure made of a mixture of non-metallic materials and metal materials.
  • the metal sheet 4044 is placed on the magnetic circuit structure (for example, The projected area of the first magnet 4041 and the opposite pole of the second magnet 4042) is in the range of 25 mm 2 to 400 mm 2 , the magnetic flux of the magnetic circuit structure is in the range of 0.2T to 1.8T, and the resistivity of the metal sheet 1044 is 0.8 ⁇ 10 -8 ⁇ m to 2.0 ⁇ 10 -8 ⁇ m.
  • the projected area of the metal sheet 4044 on the magnetic circuit structure is in the range of 50 mm 2 to 200 mm 2
  • the magnetic flux of the magnetic circuit structure is in the range of 0.8T to 1.5T
  • the resistivity of the metal sheet 1044 is in the range of 1.2 ⁇ 10 -8 ⁇ m to 2.0 ⁇ 10 -8 ⁇ m.
  • the impedance device 400 is only for illustration and description, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the impedance device 400 under the guidance of this specification.
  • the magnets of the magnetic circuit structure are not limited to the above-mentioned first magnet 4041 and second magnet 4042, and may also include other magnets, while such modifications and changes remain within the scope of this specification.
  • the impedance device 400 can also be provided with the damping structures shown in FIGS. 3A-3D at the same time.
  • Fig. 5 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application. As shown in FIG. 5, the overall structure of the impedance device 500 shown in FIG. 5 is substantially the same as that of the impedance device 200 shown in FIG. The structures are similar to those of the mass part 201 , the elastic part 202 , the fixing part 203 and the cavity 205 in FIG. 2 , and will not be repeated here.
  • the cavity 505 is filled with a flexible structure 504 , and the flexible structure 504 is in contact with the elastic part 502 and the fixing part 503 respectively.
  • the flexible structure 504 has elasticity.
  • the material of the flexible structure may include but not limited to silicone, rubber, polyvinyl alcohol (PVA), polyester (PET), polyimide (PI), polyethylene naphthalate ( PEN), textile materials.
  • the flexible structure 504 has a porous structure, such as compressed foam.
  • the elastic part 502 undergoes elastic deformation and acts on the flexible structure 504 , the airflow in the cavity 505 propagates in the porous pores of the flexible structure 504 , and the airflow receives a viscous effect, thereby providing damping for the movement of the mass part 501 .
  • the flexible structure here is the damping structure of the impedance device 500 .
  • the hardness of the flexible structure 504 can be in the range of 5 degrees to 45 degrees, and the density of the flexible structure 504 is between Within the range of 40kg/m 3 to 120kg/m 3 .
  • the hardness of the flexible structure 504 may be in the range of 12 degrees to 35 degrees, and the density of the flexible structure 504 may be in the range of 60 kg/m 3 to 100 kg/m 3 .
  • the hardness of the flexible structure 504 may be in the range of 12 degrees to 35 degrees, and the density of the flexible structure 504 may be in the range of 60 kg/m 3 to 100 kg/m 3 .
  • Fig. 6 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the overall structure of the impedance device 600 shown in FIG. 6 is substantially the same as that of the impedance device 500 shown in FIG.
  • the structures of the mass part 501, the elastic part 502 and the fixed part 503 are similar, the difference between them is that the flexible structure 604 fills part of the cavity 605, and the area inside the cavity 605 that is not filled by the flexible structure 604 is Air.
  • the damping structures shown in FIGS. 3A-3D can also be applied to the impedance device 600 shown in FIG. 6 .
  • equivalent damping may range from 1-4. More preferably, the damping range of the equivalent damping may be 1-3. More preferably, the damping range of the equivalent damping may be 1-2.
  • Fig. 7 is a schematic structural diagram of an impedance device provided according to some embodiments of the present application.
  • the overall structure of the impedance device 700 shown in FIG. 7 is substantially the same as that of the impedance device 200 shown in FIG.
  • the structures of the mass part 201 , the elastic part 202 , the fixing part 203 and the cavity 205 shown in the figure are similar and will not be repeated here.
  • the difference between the impedance device 700 and the impedance device 200 is that the impedance device 700 shown in FIG. 7 may include a damping structure 704 located on the side of the mass part 701 away from the elastic part 702 and spaced apart from the mass part 701 .
  • the damping structure 704 can be made of flexible materials.
  • the flexible materials can include but not limited to silicone, rubber, polyvinyl alcohol (PVA), polyester (PET), polyimide Any one or more of (PI), polyethylene naphthalate (PEN), textile materials, etc.
  • the damping structure 704 has porous pores, eg, compressed foam.
  • the vibration unit 706 may be located between the damping structure 704 and the mass part 701, the damping structure 704 may be directly fixedly connected to the fixing part 703, or the damping structure 704 may be fixed by a fixing member (for example, a support rod) , so that the vibration unit 706 is fixed between the damping structure 704 and the mass part 701 . Since the damping structure 704 is fixed on one side of the mass part 701 and is in direct contact with the vibration unit 706, when the vibration unit 706 vibrates, the damping structure 704 can absorb the vibration energy of the vibration unit 706 to provide damping effect.
  • a single component can function as different components at the same time.
  • a single component may function as both the mass portion and the resilient portion.
  • the mass of the reed structure is relatively large. At this time, the reed structure not only plays the role of providing elasticity for the elastic part, but also plays the role of providing quality.
  • a single component of the impedance device may function as both the elastic portion and the damping structure.
  • the air inside the cavity also provides elasticity.
  • a single component of the impedance device may function both as a mass and as a damping structure.
  • the vibration unit pushes the mass part to move and displace, and at the same time the mass part is squeezed, and the internal porous pores can also play a damping effect.
  • a single component of the impedance device can simultaneously function as a mass portion, an elastic portion, and a damping structure.
  • the silicon rubber diaphragm provides elastic force on the one hand, and the internal friction can also play a damping effect when the diaphragm moves.
  • part of the mass of the diaphragm also needs to be included in the quality part in the additional mass.
  • Fig. 8 is a frequency response curve diagram of the vibration of the vibration unit provided according to some embodiments of the present application. As shown in FIG. 8, the abscissa represents the frequency (Hz), and the ordinate represents the frequency response (dB) of the vibration unit.
  • the frequency response curve 810 (the curve corresponding to the "real human head wearing vibration unit” shown in Figure 8) represents the vibration frequency response curve after the measured vibration unit is coupled with the actual human face tragus area
  • the frequency response curve 820 ( Figure 8 The curve corresponding to the "no-impedance device” shown in 8) represents the frequency response curve of the suspended vibration of the measured vibration unit
  • the frequency response curve 830 (the curve corresponding to the "mass part and elastic part of the impedance device” shown in Figure 8 ) represents the frequency response curve of the impedance device without damping coupled with the vibration unit
  • the frequency response curve 840 (the curve corresponding to the "mass part, elastic part, damping structure with impedance device” shown in Figure 8) represents the frequency response curve with damping The frequency response curve of the impedance device coupled with the vibration unit.
  • the frequency response curves 810, 820 and 830 at 25Hz-100Hz, the frequency response and the vibration unit after the impedance device with damping structure and the impedance device without damping structure coupled with the vibration unit are coupled with the actual face tragus area
  • the final frequency response is basically consistent; at 200Hz-1000Hz, the difference between the frequency response of the impedance device with a damping structure and the vibration unit after coupling and the frequency response of the vibration unit after coupling with the actual human face near the tragus area is small.
  • the frequency response curve 820 and the frequency response curve 840 are basically the same. It can be seen from this that the impedance device described in this specification basically matches the mechanical impedance of the actual human face, and can reflect the mechanical characteristics of the actual human face.
  • the impedance device can be adjusted by adjusting the mass of the impedance device, the elastic coefficient of the elastic part or the damping of the damping structure, so that the mechanical impedance provided by the impedance device is approximately consistent with the mechanical impedance near the tragus region of the head.
  • the frequency response curve of the vibration unit worn near the tragus region of the head has a resonance peak 811 in the first specific frequency range (for example, 20Hz-300Hz), that is, the vibration force level of the vibration unit worn near the tragus region of the head It has a maximum value (also referred to as a peak) within the first specific frequency range.
  • the vibration force level of the vibration unit worn near the tragus region of the head changes little as the frequency increases.
  • the vibration force level of the vibration unit in the range greater than the resonance frequency corresponding to the resonance peak 811, is in the range of -90dB to -70dB, and the resonance peak 811 of the vibration unit is greater than the resonance frequency corresponding to the resonance peak. The difference in the vibration force level within the range of 10dB ⁇ 20dB.
  • the above-mentioned Figure 8 describes the content on the frequency response curve of the vibration unit.
  • the mechanical impedance frequency response curve (not shown in the figure) near the tragus area of the human head
  • the impedance frequency response curve has a valley in the second specific frequency range (for example, 50Hz-500Hz), that is, the mechanical impedance near the tragus region of the head has a minimum value (also called a valley) in the specific frequency range.
  • the frequency corresponding to the trough is smaller than the frequency corresponding to the resonance peak.
  • the second specific frequency range is not limited to the above-mentioned 50Hz-500Hz. In some embodiments, the second specific frequency range may also be other frequency ranges such as 60 Hz-400 Hz, 70 Hz-300 Hz, or 80 Hz-200 Hz, or any frequency value in this range.
  • the damping of the impedance device can be adjusted so that the characteristics of the mechanical impedance provided by the impedance device are consistent or approximately consistent with the characteristics of the mechanical impedance near the tragus region of the head.
  • the valley value of the mechanical impedance provided by the impedance device is used as an example for illustration.
  • the damping range of the damping structure can be adjusted to 1-4, so that the valley value of the mechanical impedance of the impedance device is 0dB-15dB.
  • the damping of the damping structure can be adjusted to 1.5-3.9, so that the valley value of the mechanical impedance of the impedance device is 2dB-13dB.
  • the valley value of the mechanical impedance of the impedance device is 3dB-12dB. More preferably, by adjusting the damping of the damping structure to 2.4-3.2, the valley value of the mechanical impedance of the impedance device is 6dB-10dB.
  • the mass of the mass part and the elastic coefficient of the elastic part can be adjusted so that the frequency corresponding to the valley value is within a specific frequency range.
  • the valley value of the impedance device can be in the range of 50Hz-500Hz by adjusting the mass of the mass part to 0.5g-5g and the elastic coefficient of the elastic part to 600N/m-5000N/m.
  • the valley value of the impedance device can be in the range of 60Hz-320Hz by adjusting the mass of the mass part to 0.8g-4.5g and the elastic coefficient of the elastic part to 700N/m-3500N/m. More preferably, the valley value of the impedance device can be in the range of 80Hz-200Hz by adjusting the mass of the mass part to 1g-3.6g and the elastic coefficient of the elastic part to 900N/m-1700N/m.
  • Fig. 9 is an exemplary block diagram of a system for simulating the impact of a head on the vibration of a vibration unit according to some embodiments of the present specification.
  • the system 900 may include a vibration unit 910 , an impedance device 920 , a connector 930 and a sensor 940 .
  • the vibration unit 910 may be configured to provide a vibration signal.
  • the vibration unit 910 can convert a signal containing audio information into a vibration signal.
  • the audio information may include video and audio files in a specific data format, or data or files that can be converted into audio through a specific path, and the signal containing the audio information may come from a storage component that communicates with or is connected to the vibration unit 910 .
  • signals containing audio information may include electrical signals, optical signals, magnetic signals, mechanical signals, etc., or any combination thereof.
  • the vibration unit 910 can acquire signals containing audio information in a variety of different ways, including but not limited to wired or wireless acquisition, real-time acquisition or delayed acquisition, for example, the vibration unit The 910 can receive electrical signals containing audio information in a wired or wireless manner, or can directly acquire data from a storage medium to generate signals. In some embodiments, the vibration unit 910 can realize the conversion of signals containing audio information into mechanical vibrations. The conversion process may include the coexistence and conversion of various types of energy. For example, electrical signals can be directly converted into mechanical Vibration produces sound. For another example, audio information can be included in optical signals, and the process of converting optical signals into vibration signals can be realized through the transducing device.
  • the energy conversion method of the transducer device may include moving coil, electrostatic, piezoelectric, moving iron, pneumatic, electromagnetic, etc. or any combination thereof.
  • the impedance device 920 may contact the vibration unit 910 and provide mechanical impedance to the vibration unit 910 . In some embodiments, there is a certain pressure between the impedance device 920 and the vibration unit 910.
  • the mechanical impedance provided by the impedance device 920 can simulate the impedance of the head relative to the vibration unit 910 in actual use.
  • the vibration unit provided with mechanical impedance The vibration state of the 910 is consistent or close to the same as the vibration characteristics when it is actually used on the head, so that the system can simulate the impact of the mechanical impedance of the head on the vibration state of the vibration unit 910 when the vibration unit 910 is coupled to the head vibration.
  • FIGS. 1-7 For the specific content of the impedance device, reference may be made to the relevant descriptions and illustrations of FIGS. 1-7 , and details are not repeated here.
  • connector 930 may be configured to couple vibration unit 910 with impedance device 920 .
  • the connecting member 930 can provide a pressure of 0.05N-3.5N for the vibration unit 910 and the impedance device 920 .
  • the connecting piece 930 can provide a pressure of 0.1N-3N for the vibration unit 910 and the impedance device 920 .
  • the connecting piece 930 can provide a pressure of 0.3N-2.5N for the vibration unit 910 and the impedance device 920 .
  • the connecting piece 930 can provide a pressure of 0.5N-2N for the vibration unit 910 and the impedance device 920 .
  • the connecting piece 930 can provide a pressure of 0.8N-1.8N for the vibration unit 910 and the impedance device 920 .
  • the connecting piece 930 can provide the vibration unit 910 and the impedance device 920 with a pressure of 1N-1.5N.
  • the connecting member 930 can be connected with the vibration unit 910 and apply pressure to the vibration unit 910, so that the vibration unit 910 can be coupled with the impedance device 920, such as a support frame and the like.
  • the connector 930 can be connected to the vibration unit 910 and fixed in contact with other fixed structures, such as the connector 930 that can bind the vibration unit 910 to other fixed structures.
  • the connecting piece 930 can be integrally formed with the vibration unit 910, and can be fixed in contact with other fixed structures, for example, an ear hook structure integrally formed with earphones, an ear clamping structure integrally formed with hearing aids, and glasses integrally formed with audio glasses frame structure, etc.
  • the connecting member 930 can be made of plastic or metal with certain hardness and shape.
  • the material of the connecting member 930 may also be silicone, rubber, fabric, etc. with certain elasticity.
  • the material of the connecting member 930 can also be foam, which provides damping for the movement of the vibration unit 910 .
  • the connecting member 930 provides the vibration unit 910 and the impedance device 920 with a pressure of 0.05N-3.5N
  • the impedance device 920 provides the vibration unit 910 with a mechanical impedance in the range of 6dB-50dB, and a mechanical impedance in the range of 6dB-50dB.
  • the impedance simulates the actual impedance fed back to the vibration unit 910 near the tragus area during actual use, so that the vibration effect of the mechanical impedance on the vibration unit 910 when the vibration unit 910 and the impedance device 920 couple vibration can simulate the vibration unit 910 when coupling head vibration
  • the impact of the actual impedance of the head on the vibration of the vibration unit 910 is convenient for testing or calibration of related products in R&D and production.
  • the area of the coupling area between the impedance device 920 and the vibration unit 910 may range from 0.25 cm 2 to 4 cm 2 . In some embodiments, the area of the coupling area between the impedance device 920 and the vibration unit 910 ranges from 1 cm 2 to 3.6 cm 2 . In some embodiments, the area of the coupling area between the impedance device 920 and the vibration unit 910 ranges from 1.5 cm 2 to 3.4 cm 2 . In some embodiments, the area of the coupling area between the impedance device 920 and the vibration unit 910 ranges from 2 cm 2 to 3.2 cm 2 .
  • the area of the coupling area between the impedance device 920 and the vibration unit 910 is not limited to the above range, and may also be in other ranges.
  • the area of the coupling region is larger than 4 cm 2 or smaller than 0.25 cm 2 , and the specific area of the coupling region can be adaptively adjusted according to the size of the vibration unit 910 .
  • the senor 940 may be configured to collect parameter information of the vibration unit 910 during vibration. In some embodiments, the sensor 940 may be further configured to collect parameter information during the coupling vibration process of the vibration unit 910 and the impedance device 920 . In some embodiments, the parameter information in the vibration process can be used to characterize the vibration effect of the vibration unit 910 . In some embodiments, the parameter information in the vibration process may include vibration characteristic data, and the vibration characteristic data may include but not limited to one or more of vibration displacement, vibration velocity, vibration acceleration and the like.
  • the parameter information in the vibration process may include air conduction acoustic characteristic data generated by the vibration, and the air conduction acoustic characteristic data may include but not limited to one or more of the sound pressure level and frequency response of air conduction sound.
  • the sensor 940 may be located at the vibration unit 910 , for example, the sensor 940 may be directly installed on the surface or inside of the vibration unit 910 . In some embodiments, the sensor 940 may be indirectly connected to the vibration unit 910 , for example, the sensor 940 may be installed on the surface or inside of the impedance device 920 , for example, on the mass part of the impedance device 920 . In some embodiments, sensor 940 may also be located on connector 930 .
  • the type and/or form of the sensor 940 may not be limited.
  • the sensor 940 may be a non-contact laser sensor (such as a vibrometer, a Doppler tester) that can acquire vibration motion acceleration (velocity or displacement). instruments, etc.), air conduction speakers, and various contact acceleration sensors, bone conduction sensors, piezoelectric sensors, MEMS sensors, etc.
  • the system may further include a test system, and the test system may be connected to at least one sensor 940 to collect and/or process detection signals of the at least one sensor 940 .
  • the testing system can be connected to the vibration unit 910 to provide a driving signal to the vibration unit 910 to drive the vibration unit 910 to generate a mechanical vibration signal.
  • the testing system is connected with at least one sensor 940 and the vibration unit 910 , drives the vibration unit 910 to generate mechanical vibration signals, and collects and processes the signals collected by the at least one sensor 940 .
  • Fig. 10 is a diagram showing the position of the head coupling area simulated by the impedance device according to some embodiments of the present specification.
  • the vibration unit 910 when the vibration unit 910 is coupled to the head, the vibration unit 910 is coupled to the front side of the tragus (near the tragus region) of the human body along the cross section viewed from the top of the head.
  • the vibration unit 910 mainly vibrates the temporal bone in front of the tragus, skipping the tympanic membrane and directly transmitting the vibration signal to the auditory ossicles of the middle ear and the cochlea of the inner ear.
  • the vibration of the vibration unit 910 will also drive the surrounding air to vibrate to generate a part of the air-conducted sound, which is transmitted to the eardrum through the external auditory canal.
  • the impedance device shown in some embodiments of this specification is used to simulate the actual impedance generated near the tragus area where the vibration unit 910 is coupled with the tragus area, and the system for simulating the impact of the head on the vibration of the vibration unit 910 is used to simulate the vibration of the vibration unit 910.
  • the coupling between the vibration unit 910 and the vicinity of the tragus area can meet the application scenarios of most bone conduction earphones, and can also meet the application scenarios of some hearing aids. Therefore, the system that simulates the impact of the head on the vibration of the vibration unit 910 can objectively measure the vibration impact of the vibration unit 910, and simulate the actual frequency response of the vibration unit 910 when it vibrates near the coupling tragus area, which can be used as a test or test for research and development and production. Calibration device.
  • Fig. 11 is a schematic structural diagram of a system for simulating the impact of a head on the vibration of a vibration unit according to some embodiments of the present application.
  • the structures of mass part 1141 , elastic part 1142 and fixed part 1143 in FIG. 11 are similar to the structures of mass part 301 , elastic part 302 and fixed part 303 in FIG. 3D , and will not be repeated here.
  • the system 1100 may include a vibration unit 1110, a connector 1120 and an impedance device 1140, wherein the connector 1120 may be fixedly arranged at the fixed portion 1143 of the impedance device 1140, and one end of the connector 1120 is connected to the vibration unit 1110
  • the connecting piece 1120 couples the vibration unit 1110 to the mass part 1141 of the impedance device 1140 , and at the same time, the force exerted by the connecting piece 1120 on the vibration unit 1110 can provide pressure for coupling the vibration unit 1110 and the impedance device 1140 .
  • the connecting part 1120 can also be an independent structure of the impedance device, the connecting part 1120 can be located on the side of the mass part 1141 away from the elastic part 1142, and be spaced from the mass part 1141, and the vibration unit 1110 is located on the connecting part 1120 Between the mass part 1141 , the coupling pressure of the vibration unit 1110 and the impedance device 1140 can be adjusted by adjusting the position of the connecting member 1120 .
  • the system 1100 may further include a damping structure 1105, the damping structure 1105 is located on the side of the mass part 1141 away from the elastic part 1142, and is spaced apart from the mass part 1141, and the vibration unit 1110 is located between the damping structure 1105 and the mass part 1141 between.
  • the material of the damping structure 1105 has porous pores, such as compressed foam, to provide damping to the movement of the vibration unit 1110 , thereby simulating the scene where the vibration unit 1110 is worn near the tragus of the human body.
  • damping structure 1105 or the impedance device 1140 shown in FIG. 11 can be replaced by the impedance device 200 shown in FIG. 2, the impedance device 300A shown in FIG. 3A, the impedance device 300B shown in FIG.
  • the impedance device 300C shown in FIG. 4 the impedance device 400 shown in FIG. 4
  • the impedance device 500 shown in FIG. 5 the impedance device 600 shown in FIG. 6, and the impedance device 700 shown in FIG.
  • Fig. 12 is a schematic structural diagram of a system for simulating the impact of the head on the vibration of the vibration unit according to some embodiments of the present application.
  • the system 1200 may include earphones and impedance devices, wherein the earphones may include a vibration unit 1210 (for example, a bone conduction speaker) and a connecting piece 1220, wherein the connecting piece 1220 may be an ear-hook structure, and the ear-hook structure may surround on the head of the user, and fix the vibration unit 1210 near the tragus area of the user.
  • the earphones may include a vibration unit 1210 (for example, a bone conduction speaker) and a connecting piece 1220, wherein the connecting piece 1220 may be an ear-hook structure, and the ear-hook structure may surround on the head of the user, and fix the vibration unit 1210 near the tragus area of the user.
  • the impedance device may include a mass part 1241 , an elastic part 1242 and a fixed part 1243 , and the mass part 1241 is connected to the fixed part 1243 through the elastic part 1242 .
  • the vibration unit 1210 drives the mass part 1241 to vibrate relative to the fixed part 1243 together.
  • the impedance device in FIG. 12 can be replaced by the impedance device 200 shown in FIG. 2, the impedance device 300A shown in FIG. 3A, the impedance device 300B shown in FIG. 3B, the impedance device 300C shown in FIG. 3C, The impedance device 300D shown in FIG. 3D , the impedance device 400 shown in FIG. 4 , the impedance device 500 shown in FIG. 5 , the impedance device 600 shown in FIG. 6 , and the impedance device 700 shown in FIG. 7 .
  • Fig. 1-Fig. 12 are only used for exemplary description, and are not limited thereto.
  • various changes and modifications can be made based on the teaching of the present application.
  • Different embodiments may have different beneficial effects, and in different embodiments, the possible beneficial effects may be any one or a combination of several of the above, or any other possible beneficial effects.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Headphones And Earphones (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

本说明书实施例提供一种阻抗装置及模拟头部对振动单元振动影响的系统,该阻抗装置可以包括质量部、弹性部和固定部,所述质量部通过所述弹性部连接到所述固定部,其中,所述固定部为内部中空的结构体,所述固定部包括开口,所述弹性部位于所述开口处并与所述固定部连接,且所述弹性部与所述固定部形成腔体,所述弹性部在所述质量部相对于所述固定部振动的方向的弹性系数的范围为600N/m~5000N/m。

Description

一种阻抗装置及模拟头部对振动单元振动影响的系统
优先权信息
本申请要求于2021年12月24日提交的国际申请号PCT/CN2021/141078的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及振动模拟领域,特别涉及一种阻抗装置及模拟头部对振动单元振动影响的系统。
背景技术
振动单元可以产生振动信号,以向人体头部(例如,头部骨骼)传递振动信号。为了模拟人体头部对振动单元的振动的影响,以便了解振动单元的振动特性,通常需要将振动单元与模拟人体头部结构的装置进行耦合。在一些应用场景中,振动单元作为骨传导耳机或助听器使用时,振动单元与用户耳廓前侧的面部区域进行贴合,而人体头部中该区域的骨骼硬度相对于头盖骨、乳突骨等相对较软,也就是说用户耳廓前侧的面部区域的机械阻抗与人体头部其他部位的机械阻抗明显不同,而目前的模拟人体头部的装置通常是模拟用户耳后乳突的机械阻抗,显然无法满足振动单元与人体耳廓前侧的面部区域贴合的模拟情景。
因此有必要提供一种用于模拟人体耳廓前侧的面部区域的阻抗装置及其对振动单振动的影响的系统。
发明内容
本说明书实施例之一提供一种阻抗装置,包括:质量部、弹性部和固定部,所述质量部通过所述弹性部连接到所述固定部,其中,所述固定部为内部中空的结构体,所述固定部包括开口,所述弹性部位于所述开口处并与所述固定部连接,且所述弹性部与所述固定部形成腔体,所述弹性部在所述质量部相对于所述固定部振动的方向的弹性系数的范围为600N/m~5000N/m。
本说明书实施例之一还提供一种模拟头部对振动单元振动影响的系统,包括:振动单元,被配置为提供振动信号;阻抗装置,所述阻抗装置接触所述振动单元并为所述振动单元提供机械阻抗;连接件,被配置为将所述振动单元与所述阻抗装置耦合;以及传感器,被配置为采集所述振动单元在振动过程中的参数信息,其中,所述阻抗装置包括质量部、弹性部和固定部,所述质量部通过所述弹性部连接到所述固定部,所述固定部为内部中空的结构体,所述固定部包括开口,所述弹性部位于所述开口处并与所述固定部连接,且所述弹性部与所述固定部形成腔体,所述弹性部在所述质量部相对于所述固定部振动的方向的弹性系数的范围为600N/m~5000N/m。
附图说明
图1是根据本说明书一些实施例所示的阻抗装置的框图;
图2是根据本说明书一些实施例所示的阻抗装置的结构示意图;
图3A是根据本说明书一些实施例所示的阻抗装置的结构示意图;
图3B是根据本说明书又一些实施例所示的阻抗装置的结构示意图;
图3C是根据本说明书另一些实施例所示的阻抗装置的结构示意图;
图3D是根据本说明书另一些实施例所示的阻抗装置的结构示意图;
图4是根据本申请一些实施例提供的阻抗装置的结构示意图;
图5是根据本申请一些实施例提供的阻抗装置的结构示意图;
图6是根据本申请一些实施例提供的阻抗装置的结构示意图;
图7是根据本申请一些实施例提供的阻抗装置的结构示意图;
图8是根据本申请一些实施例提供的振动单元振动的频响曲线图;
图9是根据本说明书一些实施例所示的模拟头部对振动单元振动影响的系统的示例性框架图;
图10是根据本说明书一些实施例所示的阻抗装置所模拟的头部耦合区域的位置图;
图11是根据本申请一些实施例提供的模拟头部对振动单元振动影响的系统的结构示意图;
图12是根据本申请一些实施例提供的模拟头部对振动单元振动影响的系统的结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书实施例描述了一种阻抗装置。在一些实施例中,阻抗装置可以包括质量部、弹性部和固定部,质量部通过弹性部连接到固定部。在一些实施例中,固定部为内部中空的结构体,固定部包括开口,弹性部位于开口处并与固定部连接,且弹性部与固定部形成腔体。此外,质量部与弹性部连接,在外部作用力的作用下,质量部可以相对固定部振动。为了使得阻抗装置能够更加准确地模拟人体耳廓前侧区域,在一些实施例中,弹性部在质量部相对于固定部振动的方向的弹性系数的范围为600N/m~5000N/m。在一些实施例中,其中,质量部相对固定部的振动在20Hz~300Hz的频率范围内具有谐振峰。在一些实施例中,可以通过调整质量部的质量、弹性部的弹性系数,使得振动单元(例如,骨导扬声器、助听器等)在与阻抗装置的质量部耦合时的频率响应曲线与振动单元被佩戴于人体耳屏区域附近(例如,耳廓前侧的面部区域)的频率响应曲线近似一致,进而可以利用阻抗装置模拟耳屏区域附近对振动单元的影响。在一些实施例中,阻抗装置还可以包括阻尼结构,阻尼结构可以为阻抗装置提供阻尼,可以通过调整阻尼结构的阻尼,模拟实际使用时耳屏区域附近向振动单元反馈的实际阻抗,使得振动单元与阻抗装置耦合时的频响曲线与振动单元佩戴在人体耳屏区域附件的频响曲线一致或近似一致。
图1是根据本说明书一些实施例所示的阻抗装置的框图。如图1所示,在一些实施例中,阻抗装置100可以包括质量部101、弹性部102和固定部103。其中,质量部101通过弹性部102连接到固定部103,质量部101可以相对固定部103振动。在一些实施例中,质量部101可以通过弹性部102与固定部103以物理方式连接,本说明书中描述的物理方式连接可以包括焊接、卡接、胶接或一体成型等或其任意组合。在一些实施例中,质量部101与外界的振动单元(例如,骨传导耳机、气传导耳机、助听器等)相接触或耦合时,质量部101接收振动单元的振动并相对于固定部103运动。在一些实施例中,质量部101可以与振动单元直接接触或耦合,振动单元产生振动时直接推动质量部101运动。在一些实施例中,质量部101可以通过其它结构或部件(例如保护膜等)与振动单元接触或耦合,质量部101接收振动单元的振动而运动。
质量部101是指具有一定重量的物体。在阻抗装置100中,质量部101可以用于表征头部耳屏区域附近(例如,耳廓前侧面部区域)对振动单元反馈的质量负载,质量部101也被称为惯性部。当振动单元与质量部101连接时,振动单元在振动过程中推动质量部101一起运动,此时质量部101与振动单元保持同相位,并具有相同或近似相同的振动加速度。在一些实施例中,质量部101的形状可以包括但不限于圆柱体、长方体、圆锥、圆台、球体等规则结构或不规则结构体。在一些实施例中,质量部101的材质可以包括但不限于塑胶、硅胶、木质、金属、泡沫等任意材质。
弹性部102用于为质量部101的运动提供一定弹性。弹性部102弹性力的大小与质量部101的运动位移或运动幅度呈正比。例如,质量部运动过程中使弹性部102发生形变,弹性部102的弹性力与弹性部102的形变量相关,形变量越大,弹性部102所提供的弹性力越大。弹性部102的弹性系数可以用于表征人体头部耳屏区域附近的等效弹性系数。在一些实施例中,可以通过调整弹性部102的弹性系数使其近似等于人体头部耳屏区域附近(耳廓前侧的面部区域)的等效弹性系数。在一些实施例中,可以基于人体头部耳屏区域附近的硬度、佩戴者的不同年龄段、佩戴振动单元时的压力以及该位置的细胞种类来调整弹性部102的弹性系数。具体原因如下,人体头部不同部位的硬度不同,人体头部不同部位的等效弹性系数也不同。例如,人体头部的额头部位、耳后乳突 部位硬度较大,其等效弹性系数相对较大。又例如,人体头部耳前的颞骨部位(即耳屏区域附近)相比于额头部位、耳后乳突部位更软,其等效弹性系数相对较小。另外,人体头部的不同细胞中的弹性蛋白和胶原质的杨氏模量不同(例如,弹性蛋白的杨氏模量E≈0.3MPa,胶原质的杨氏模量E=100~1000MPa),因此不同细胞对人体头部不同区域的等效弹性系数影响较大。除此之外,同一个人的同一部位,在不同年龄段的等效弹性系数也会不同。例如,人体衰老后,由于皮下液体量减少,等效弹性系数会相应增大。在一些实施例中,人体头部皮肤的等效弹性系数还与用户佩戴振动单元时振动单元与头部皮肤之间的压力有关。例如,用户佩戴包含振动单元的设备(例如,听力设备、音频设备等)时,设备与人体头部皮肤之间存在压力后,设备挤压人体皮下细胞,会影响设备对应的皮下的液体数量,其中,压力越大,设备对应的皮下的液体量越少,相应的等效弹性系数增大。为了模拟人体头部皮肤的等效弹性系数随压力变化的特性,在一些实施例中,弹性部102的弹性系数可以设置为随着质量部101的运动位移或运动幅度的变化而变化,例如,随着质量部101的运动幅度的增大,弹性部102的弹性系数也相应变大。在一些实施例中,弹性部102可以包括但不限于弹簧、弹性软胶或硅胶、具有弹性结构的塑胶、具有弹性结构的金属等或其它具有弹性的形式(例如,气垫、膜状结构等)。在一些实施例中,弹簧包括但不限于压缩弹簧、拉伸弹簧、扭力弹簧、卷簧、片簧中的一种或多种。在一些实施例中,弹性部102也可以为流体(例如,气体、液体或气体液体的组合等),当流体的形状在受到外部作用力(例如,质量部101振动时对流体产生的压力)作用时,流体对质量部101产生一定的运动阻力(即粘滞性),从而为质量部101的运动提供一定弹性。
固定部103是指阻抗装置100的载体,可以用于承载阻抗装置100的其它部件(例如,质量部101、弹性部102、阻尼结构104)。在一些实施例中,固定部103的结构可以包括但不限于板式结构、壳体结构、块状结构、台式结构等。需要说明的是,固定部103不限于上述的结构,其可以为任意形状的结构体,只要是能起到承载阻抗装置100的其它部件(例如,质量部101、弹性部102、阻尼结构104)的结构即可,在此不做进一步限定。
在一些实施例中,阻抗装置100还可以包括阻尼结构104。阻尼结构104可以用于给质量部101的运动提供阻尼。该阻尼结构104可以表征人体的等效阻尼。在一些实施例中,阻尼结构104可以包括但不限于弹簧阻尼器、液压阻尼器、摩擦阻尼器、脉冲阻尼器、旋转阻尼器、粘滞阻尼器、气流阻尼器、阻尼铰链、阻尼滑轨、电磁阻尼等中的一个或其任意组合。在一些实施例中,阻尼结构104也可以是利用某些介质(例如,流体、具有孔隙的柔性材质)的特性实现的形式(例如,具有一定的粘滞力的液体,诸如磁流体等)。
为了使得阻抗装置100的特性与人体头部耳屏区域附近的特性相近似,以使得阻抗装置100提供与人体头部耳屏区域附近相近的机械阻抗,进而使得振动单元与阻抗装置耦合时的频响曲线与振动单元佩戴在人体耳屏区域附件的频响曲线一致或近似一致,可以通过调整质量部101的质量或弹性部102的弹性系数。在一些实施例中,质量部101的质量范围可以为0.5g-5g。优选地,质量部101的质量范围可以为0.6g-4.5g。更优选地,质量部101的质量范围可以为0.8g-4g。更优选地,质量部101的质量范围可以为1g-3.6g。更优选地,质量部101的质量范围可以为1.5g-3g。更优选地,质量部101的质量范围可以为2g-2.5g。在一些实施例中,弹性部102在质量部101相对于固定部103振动的方向的弹性系数的范围可以为600N/m-5000N/m。优选地,弹性部102弹性系数的范围可以为700N/m-4500N/m。更优选地,弹性部102弹性系数的范围可以为800N/m-4000N/m。优选地,弹性部102弹性系数的范围可以为850N/m-3500N/m。优选地,弹性部102弹性系数的范围可以为900N/m-1700N/m。优选地,弹性部102弹性系数的范围可以为1000N/m-1500N/m。优选地,弹性部102弹性系数的范围可以为1100N/m-1400N/m。
除了上述调整质量部101的质量、弹性部102的弹性系数的方式之外,在一些实施例中,还可以通过调整阻尼结构104的阻尼,以使阻抗装置100的特性与人体头部耳屏区域附近的特性相近似。在一些实施例中,阻尼结构104的阻尼范围可以为1-4。更优选地,阻尼结构104的阻尼范围可以为1-3。更优选地,阻尼结构104的阻尼范围可以为1-2。需要注意的是,在一些实施例中,质量部101或弹性部102也可以起到提供阻尼的作用,这里将质量部101、弹性部102或阻尼结构104共同提供的阻尼视为等效阻尼,该等效阻尼同样满足上述的范围。
在一些实施例中,质量部101、弹性部102、阻尼结构104中的一个部件可以同时提供质量作用、弹性作用或者阻尼作用中的两种或三种。在一些实施例中,质量部101、弹性部102可以由同一个部件提供。例如,弹性硅胶块可以同时作为质量部101和弹性部102。在一些实施例中,质量部101、阻尼结构104可以由同一个部件提供。例如,固定部103具有与质量部101形状相同的 孔口,质量部101的侧壁与固定部103的内壁接触连接时,此时质量部101与固定部103之间摩擦力可以作为阻抗装置100的阻尼。在一些实施例中,弹性部102、阻尼结构104可以由同一个部件提供。例如,用泡沫填充或包裹的弹簧同时作为弹性部102和阻尼结构104。
应当注意的是,上述有关阻抗装置100的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对阻抗装置100进行各种修正和改变,例如,省略弹性部102或阻尼结构104,又例如,阻尼结构104的数量不限于一个,还可以为两个、三个或者更多。这些修正和改变仍在本说明书的范围之内。
图2是根据本申请一些实施例提供的阻抗装置的结构示意图。如图2所示,在一些实施例中,阻抗装置200可以包括质量部201、弹性部202和固定部203。其中,质量部201通过弹性部202连接到固定部203,质量部201可以相对固定部203振动。在一些实施例中,固定部203可以为长方体、圆柱体、梯台状结构、三棱柱结构、球状或半球状结构等其它规则或不规则的结构。在一些实施例中,固定部203可以为内部中空且具有开放式敞口(也被称为开口)的结构体,弹性部202位于固定部203的开口处,以与固定部203形成腔体205。在一些实施例中,腔体205可以是密闭腔体。例如,在一些实施例中,弹性部202可以为膜状结构,膜状结构的形状、尺寸与固定部203上敞口的形状、尺寸近似相同,弹性部202可以通过其周侧与固定部203的侧壁连接,以形成密闭的腔体205。又例如,在一些实施例中,膜状结构的尺寸大于或等于固定部203上开口尺寸,膜状结构位于固定部203具有开口的一端,对该开口进行覆盖。在一些实施例中,膜状结构的材质可以为具有弹性的硅胶、橡胶等。在一些实施例中,腔体205也可以与外界连通。例如,膜状结构包括孔部(图2中未示出),腔体205通过孔部与外界连通。又例如,膜状结构的形状、尺寸与固定部203上开口的形状、大小不匹配,膜状结构周侧的部分与固定部203的侧壁连接。在一些实施例中,弹性部202也可以为簧片结构,簧片结构通过其周侧与固定部203的侧壁连接,簧片结构可以完全覆盖开口或者覆盖部分开口区域。在一些实施例中,簧片结构的材质可以包括金属(例如,不锈钢、铍铜等)、塑胶等。
在一些实施例中,腔体205中的气体也可以起到提供弹性作用和阻尼作用。例如,弹性部202与固定部203形成的密封腔体,腔体205中的气体具有可压缩、可膨胀的特性,当质量部201朝向固定部203运动时,弹性部202发生形变导致腔体205的体积变小,此时腔体205内部的压强变大,腔体205内部的气体对弹性部202和质量部201产生作用力,该作用力与质量部201的运动方向相反。当质量部201背向固定部203运动时,与上述的情形相反。由此可见,腔体205中的气体可以起到提供弹性的作用。在一些实施例中,腔体205中也可以填充具有一定的粘滞力的液体,诸如磁流体、水、油状有机物等其中的一种或多种,或者腔体205中同时填充有液体和气体。
当外部作用力F(例如,振动单元振动时所产生的作用力)作用于质量部201时,质量部201在弹性部202的弹性作用下相对于固定部203振动,该振动在不同频率下具有不同的频率响应,其中,该振动在第一特定频率范围内产生一谐振峰。在一些实施例中,第一特定频率范围可以为20Hz~300Hz。在一些实施例中,第一特定频率范围可以为40Hz~60Hz。
图3A是根据本申请一些实施例提供的阻抗装置的结构示意图。如图3A所示,在一些实施例中,阻抗装置300A可以包括质量部301、弹性部302和固定部303。其中,质量部301通过弹性部302连接到固定部303,质量部301可以相对固定部303振动。在一些实施例中,固定部303可以为内部中空且具有开放式敞口的结构体,弹性部302位于固定部303的敞口处,以与固定部303形成腔体305。在一些实施例中,固定部303上与质量部301相对的侧壁上设置有一个或多个孔部3031,以将腔体305内部的空气与腔体305外部的空气连通。在一些实施例中,阻抗装置300A还可以包括声学纱网304,声学纱网304覆盖孔部3031,该声学纱网304允许腔体305内部的空气与腔体305外部的空气连通。质量部301在外部作用力(图3A中所示出的箭头F)作用下,质量部301相对于固定部303振动,当质量部301相对于固定部303产生运动位移作用于弹性部302,弹性部302产生弹性形变,使得腔体305内部的压强增大,使得腔体305内部的空气通过孔部3031处往外界环境泄露,空气在经过声学纱网304时,气流受到粘滞作用,由此为质量部301的运动提供阻尼。需要说明的是,这里腔体305及其内部的空气、声学纱网304可以视为阻抗装置300A的阻尼结构,以为质量部301的运动提供阻尼。在一些实施例中,可以通过调整孔部3031的尺寸、腔体体积或声学纱网304的声学范围调整阻抗装置300A的阻尼。为了使得阻抗装置300A提供的阻尼与人体耳廓前侧面部区域的阻尼近似相等(比如,阻尼在1-4的范围内),在一些实施例中,孔部3031的总面积占其所在固定部303的侧壁的面积的10%~90%,腔体体积不大于1000cm 3,声学纱网304的声阻在500Rayl~1600Rayl的范围内。优选地,孔部3031的总面积占其所在固定部303 的侧壁的面积的20%~80%,腔体体积不大于800cm 3,声学纱网304的声阻在600Rayl~1400Rayl的范围内。进一步优选地,孔部3031的总面积占其所在固定部303的侧壁的面积的30%~60%,腔体体积不大于600cm 3,声学纱网304的声阻在800Rayl~1200Rayl的范围内。
在一些实施例中,弹性部302可以同时起到提供弹性支撑和阻尼的作用。例如,在一些实施例中,弹性部302可以为柔性材质制成的膜状结构、杆状结构或块状结构等其他能够承载质量部301和连接固定部303效果的任意形状的结构体。在一些实施例中,柔性材质可以包括但不限于硅胶、橡胶、聚乙烯醇(PVA)、聚酯(PET)、聚酰亚胺(PI)、聚萘二甲酯乙二醇酯(PEN)、纺织材料等其中的任意一种或几种。质量部301在外部作用力(图3A中所示出的箭头F)作用下,质量部301相对于固定部303振动,当质量部301相对于固定部303产生运动位移作用于弹性部302,弹性部302产生弹性形变,使得弹性部302发生内摩擦产生热能,从而为质量部301的运动提供阻尼。
为了使得阻抗装置300A所提供的弹性与人体耳屏区域附近的弹性一致或近似一致,在一些实施例中,弹性部302在质量部301相对于固定部303振动的方向的弹性系数可以位于600N/m~5000N/m的范围内。优选地,弹性部302在质量部301相对于固定部303振动的方向的弹性系数可以位于700N/m~3500N/m的范围内弹性部弹性系数的范围为700N/m-3500N/m。进一步优选地,弹性部302在质量部301相对于固定部303振动的方向的弹性系数可以位于900N/m-1700N/m。
需要说明的是,当弹性部302为柔性材质制成的结构体时,弹性部302自身同时起到提供弹性和阻尼的效果,固定部303上与质量部301相对的侧壁上可以不额外设置阻尼结构(例如,孔部3031和声学纱网304),也可以同时设置阻尼结构,此时弹性部302和阻尼结构共同为质量部301的运动提供阻尼。此外,由柔性材质制成的弹性部302也可以应用于本申请其他实施例提供的阻抗装置中,例如,图3B所示的阻抗装置300B、图3C所示的阻抗装置300C、图3D所示的阻抗装置300D、图4所示的阻抗装置400和图5所示的阻抗装置500。
应当注意的是,上述有关阻抗装置300A的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对阻抗装置300A进行各种修正和改变,例如,孔部3031和声学纱网304还可以位于固定部303上与弹性部302所连接的侧壁处,或者,图3B所示的阻抗装置300B中,孔部3031和声学纱网304还可以同时设置于固定部303上与弹性部302所连接的侧壁和固定部303上与质量部301相对的侧壁处,同时这些修正和改变仍在本说明书的范围之内。
图3C是根据本申请一些实施例提供的阻抗装置的结构示意图。图3C所示的阻抗装置300C与图3A所示的阻抗装置300A大致相同,其区别之处主要在于,阻抗装置300C的腔体305通过弹性部302与外部连通。在一些实施例中,弹性部302可以为簧片结构,簧片结构覆盖固定部303的敞口,并形成腔体305。在一些实施例中,簧片结构可以包括镂空区域(图3C中未示出),镂空区域允许腔体305内部的空气与腔体305外部的空气连通。在一些实施例中,镂空区域处可以覆盖有声学纱网304,声学纱网304允许腔体305内部的空气与腔体305外部的空气连通,并提供阻尼。在一些实施例中,弹性部302可以为膜状结构,膜状结构上开设有一个或多个孔部,孔部允许腔体305内部的空气与腔体305外部的空气连通。在一些实施例中,孔部处可以覆盖有声学纱网304,声学纱网304允许腔体305内部的空气与腔体305外部的空气连通,并提供阻尼。
图3D是是根据本申请一些实施例提供的阻抗装置的结构示意图。图3D所示的阻抗装置300D与图3A所示的阻抗装置300A、图3B所示的阻抗装置300B以及图3C所示的阻抗装置300C的结构相类似,其区别之处在于,图3D所示的阻抗装置300D中固定部303和弹性部302上均设有阻尼结构。如图3D所示,在一些实施例中,固定部303上与质量部301相对的侧壁上设置有一个或多个孔部3031,以将腔体305内部的空气与腔体305外部的空气连通。在一些实施例中,A还可以包括声学纱网304,声学纱网304覆盖孔部3031,该声学纱网304允许腔体305内部的空气与腔体305外部的空气连通。在一些实施例中,弹性部302具有镂空区域或孔部,镂空区域或孔部处覆盖有声学纱网304,声学纱网304允许腔体305内部的空气与腔体305外部的空气连通,并提供阻尼。
图4是根据本申请一些实施例提供的阻抗装置的结构示意图。如图4所示,阻抗装置400可以包括质量部401、弹性部402和固定部403。其中,质量部401通过弹性部402连接到固定部403,质量部401可以相对固定部403振动。在一些实施例中,固定部403可以为具有凹槽405的结构体,弹性部402位于固定部403的凹槽405处,并通过弹性部402与固定部403连接。在一些实施例中,弹性部402可以为膜状结构、杆状结构、片状结构等。在一些实施例中,阻抗装置400 还可以包括磁路结构,其中,磁路结构可以位于弹性部402和固定部403之间。在一些实施例中,磁路结构可以包括第一磁体4041和第二磁体4042,第一磁体4041和第二磁体4042在凹槽405中间隔设置,第一磁体4041的一极和第二磁体4042的一极相对,第一磁体4041和第二磁体4042相对的两极极性相反,形成磁间隙4043,此外,第一磁体4041的另一极和第二磁体4042的另一极与固定部403连接。在一些实施例中,阻抗装置400还可以包括金属片4044,金属片4044的一端与质量部401或弹性部402连接,金属片4044的另一端向远离质量部401或弹性部402的一侧延伸,并伸入至磁间隙4043中。质量部401在外部作用力(图4中所示出的箭头F)作用下,质量部401相对于固定部403振动,当质量部401相对于固定部403产生运动位移,并带动金属片4044在磁间隙4043中做切割磁感线运动,使得金属片4044产生电涡流,根据楞次定律,金属片4044在做切割磁感线运动时产生与质量部401位移方向相反的作用力,该作用力作用于质量部401,以为质量部401的运动提供阻尼。需要说明的是,这里磁路结构、金属片4044为阻抗装置400的阻尼结构404,为质量部401的运动提供阻尼。
在一些实施例中,可以通过调整金属片4044的电导率、金属片4044在磁路结构的投影面积、磁路结构的磁通量范围等因素,使得阻尼结构404提供的阻尼值在特定范围(例如,1-4)。在一些实施例中,金属片4044可以为高电导率的金属制成,例如,金属片4044的材质可以包括但不限于铜、铝、银、金、铂等。需要注意的是,在一些实施例中,金属片4044也可以替换为其他具有导电线的非金属材质制成的结构体,例如,石墨、半导体材料(比如,硒、硅、锗、碳化硅、砷化镓等)等中的一种或多种。在一些实施例中,金属片4044也可以替换为非金属材质与金属材质的混合物制成的结构体。为了使得阻尼结构404提供的阻尼值在特定范围(例如,1-4),在一些实施例中,沿质量部401相对于固定部403的振动方向上,金属片4044在磁路结构(例如,第一磁体4041与第二磁体4042相对的一极)的投影面积在25mm 2~400mm 2的范围内,磁路结构的磁通量在0.2T~1.8T的范围内,金属片1044的电阻率在0.8×10 -8Ω·m~2.0×10 -8Ω·m。优选地,沿质量部401相对于固定部403的振动方向上,金属片4044在磁路结构的投影面积在50mm 2~200mm 2的范围内,磁路结构的磁通量在0.8T~1.5T的范围内,金属片1044的电阻率在1.2×10 -8Ω·m~2.0×10 -8Ω·m。
应当注意的是,上述有关阻抗装置400的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对阻抗装置400进行各种修正和改变,例如,磁路结构的磁体不限于上述的第一磁体4041和第二磁体4042,还可以包括其它磁体,同时这些修正和改变仍在本说明书的范围之内。此外,阻抗装置400也可以同时设置图3A-3D所示的阻尼结构。
图5是根据本申请一些实施例提供的阻抗装置的结构示意图。如图5所示,图5所示的阻抗装置500与图2所示的阻抗装置200的整体结构大致相同,其中,图5中的质量部501、弹性部502、固定部503和腔体505分别与图2中的质量部201、弹性部202、固定部203和腔体205的结构相类似,这里不再赘述。
如图5所示,在一些实施例中,腔体505内填充柔性结构504,柔性结构504分别与弹性部502和固定部503接触。柔性结构504具有弹性,当质量部501产生运动位移时,弹性部502发生弹性形变,弹性部502同时作用于柔性结构504,柔性结构504具有一定的弹性,可以吸收质量部501的部分振动,起到提供阻尼的效果。在一些实施例中,柔性结构的材质可以包括但不限于硅胶、橡胶、聚乙烯醇(PVA)、聚酯(PET)、聚酰亚胺(PI)、聚萘二甲酯乙二醇酯(PEN)、纺织材料。在一些实施例中,柔性结构504具有多孔孔隙,例如,压缩泡棉。弹性部502发生弹性形变作用于柔性结构504,腔体505内的气流在柔性结构504的多孔孔隙中传播,气流收到粘滞作用,由此为质量部501的运动提供阻尼。需要说明的是,这里的柔性结构为阻抗装置500的阻尼结构。为了使得阻抗装置500提供的阻尼与人体耳廓前侧附近的面部区域的阻尼相近,在一些实施例中,柔性结构504的硬度可以在5度~45度的范围内,柔性结构504的密度在40kg/m 3~120kg/m 3的范围内。优选地,柔性结构504的硬度可以在12度~35度的范围内,柔性结构504的密度在60kg/m 3~100kg/m 3的范围内。进一步优选地,柔性结构504的硬度可以在12度~35度的范围内,柔性结构504的密度在60kg/m 3~100kg/m 3的范围内。
图6是根据本申请一些实施例提供的阻抗装置的结构示意图。如图6所示,图6所示的阻抗装置600与图5所示的阻抗装置500的整体结构大致相同,其中,图6中的质量部601、弹性部602、固定部603分别与图5中的质量部501、弹性部502和固定部503的结构相类似,二者的区别之处在于,柔性结构604填充部分腔体605,这里腔体605内未被柔性结构604填充的区域内部为 空气。需要说明的是,图3A-图3D所示的阻尼结构也可应用于图6所示的阻抗装置600。当阻抗装置600中具有多种提供阻尼的阻尼结构时,阻抗装置600的总的阻尼为等效阻尼。在一些实施例中,等效阻尼的范围可以为1-4。更优选地,等效阻尼的阻尼范围可以为1-3。更优选地,等效阻尼的阻尼范围可以为1-2。
图7是根据本申请一些实施例提供的阻抗装置的结构示意图。图7所示的阻抗装置700与图2所示的阻抗装置200的整体结构大致相同,其中,图7所示的质量部701、弹性部702、固定部703、腔体705分别与图2所示的质量部201、弹性部202、固定部203、腔体205的结构相类似,在此不做赘述。阻抗装置700与阻抗装置200的区别之处在于,图7所示的阻抗装置700可以包括阻尼结构704,阻尼结构704位于质量部701背离弹性部702的一侧,并与质量部701间隔设置。在一些实施例中,阻尼结构704可以是由柔性材质制成的,示例性地,柔性材质可以包括但不限于硅胶、橡胶、聚乙烯醇(PVA)、聚酯(PET)、聚酰亚胺(PI)、聚萘二甲酯乙二醇酯(PEN)、纺织材料等中的任意一种或多种。在一些实施中,阻尼结构704具有多孔孔隙,例如,压缩泡棉。在一些应用场景中,振动单元706可以位于阻尼结构704和质量部701之间,阻尼结构704可以直接与固定部703固定连接,也可以通过固定件(例如,支撑杆)将阻尼结构704进行固定,以使振动单元706固定于阻尼结构704和质量部701之间。由于阻尼结构704固定在质量部701的一侧且与振动单元706直接接触,当振动单元706振动时,阻尼结构704可以吸收振动单元706的振动能量,起到提供阻尼的效果。
需要说明的是,上述的阻抗装置(例如,阻抗装置300A、300B、300C、300D、400、500、600、700)中,单个部件可以同时起到不同部件的作用。仅作为示例性说明,在一些实施例中,单个部件可以同时起到质量部和弹性部的效果。比如,弹性部为簧片结构时,簧片结构的质量较大,此时簧片结构不仅起到了弹性部提供弹性的作用,同时还起到提供质量的作用,在确定质量值时,可以通过计算簧片结构部分质量(例如,簧片结构质量的1/3)和质量部的质量之和来确定阻抗装置中的部件提供的质量值,进而更为准确地确定阻抗装置中的部件提供的质量值。在一些实施例中,阻抗装置中单个部件可以同时起到弹性部和阻尼结构的效果。比如,用声学纱网提供空气阻尼时,腔体内部的空气也起到提供弹性的效果,在确定阻抗装置提供的弹性系数时,需要将弹性部的弹性系数和腔体内部的空气的弹性系数进行串联计算。需要说明的是,本说明书实施例涉及的弹性系数均是指沿外部作用力的方向上的弹性系数。
在一些实施例中,阻抗装置中单个部件可以同时起到质量部和阻尼结构的效果。比如,用泡棉作为质量部时,振动单元推动质量部发生运动位移,同时质量部受到挤压,内部多孔孔隙也可以起到阻尼效果。在一些实施例中,阻抗装置中单个部件可以同时起到质量部、弹性部和阻尼结构的效果。比如,用硅橡胶膜片作为弹性部时,硅橡胶膜片一方面提供弹性力外,膜片运动时内部摩擦同样也可以起到阻尼效果,同时,膜片的部分质量也需要计入质量部的附加质量中。
图8是根据本申请一些实施例提供的振动单元振动的频响曲线图。如图8所示,横坐标表示频率(Hz),纵坐标表示振动单元的频率响应(dB)。其中,频响曲线810(图8中示出的“真实人头佩戴振动单元”对应的曲线)表示实测振动单元与实际人脸耳屏区域附近耦合后的振动频响曲线,频响曲线820(图8中示出的“无阻抗装置”对应的曲线)表示实测振动单元悬空振动的频响曲线,频响曲线830(图8中示出的“有阻抗装置的质量部、弹性部”对应的曲线)表示未设置阻尼的阻抗装置与振动单元耦合后的频响曲线,频响曲线840(图8中示出的“有阻抗装置的质量部、弹性部、阻尼结构”对应的曲线)表示具有阻尼的阻抗装置与振动单元耦合后的频响曲线。如图8所示,结合频响曲线810与频响曲线820可以看出,振动单元悬空振动和振动单元与实际人脸耳屏区域耦合后的频率响应曲线确实存在明显差异。结合频响曲线810、820和830,在25Hz-100Hz时,具有阻尼结构的阻抗装置和未设置阻尼结构的阻抗装置与振动单元耦合后的频响和振动单元与实际人脸耳屏区域附近耦合后的频响基本保持一致;在200Hz-1000Hz,具有阻尼结构的阻抗装置与振动单元耦合后的频响和振动单元与实际人脸耳屏区域附近耦合后的频响的差值较小,可见频响曲线820和频响曲线840基本是一致的。由此可知,本说明书所述的阻抗装置基本是与实际人脸的机械阻抗相吻合,可以反映出实际人脸的机械特征。
在一些实施例中,通过调整阻抗装置的质量、弹性部的弹性系数或阻尼结构的阻尼可以调整阻抗装置,从而使得阻抗装置提供的机械阻抗与头部耳屏区域附近的机械阻抗近似一致。振动单元佩戴于头部耳屏区域附近的频率响应曲线在第一特定频段范围(例如,20Hz-300Hz)具有谐振峰811,也就是说,振动单元佩戴于头部耳屏区域附近的振动力级在第一特定频段范围内具有最大值(也被称为峰值)。当频率大于第一特定频段范围时,振动单元佩戴于头部耳屏区域附近的振动 力级随频率的增大而变化较小。在一些实施例中,在大于谐振峰811对应的谐振频率的范围内,振动单元的振动力级在-90dB~-70dB的范围内,振动单元的谐振峰811与其在大于谐振峰对应的谐振频率的范围内的振动力级的差值在10dB~20dB的范围内。
上述图8是以振动单元的频率响应曲线上进行描述的内容,这里从人体头部耳屏区域附近的机械阻抗频率响应曲线(图中未示出)上看,头部耳屏区域附近的机械阻抗频率响应曲线在第二特定频段范围(例如,50Hz-500Hz)具有波谷,也就是说,头部耳屏区域附近的机械阻抗在特定频段范围内具有最小值(也被称为谷值)。其中,波谷对应的频率小于谐振峰对应的频率。另外,当频率小于第二特定频段范围时,头部耳屏区域附近的机械阻抗随频率的增大而减小,当频率大于第二特定频段范围时,头部耳屏区域附近的机械阻抗随频率的增大而增大。在一些实施例中,第二特定频段范围不限于上述的50Hz-500Hz。在一些实施例中,第二特定频段范围还可以为60Hz-400Hz、70Hz-300Hz或者80Hz-200Hz等其它频段范围或该范围中的任意频率值。
在一些实施例中,可以通过调整阻抗装置的阻尼,以使阻抗装置提供的机械阻抗的特征与头部耳屏区域附近的机械阻抗的特征一致或近似一致。这里以阻抗装置提供的机械阻抗的谷值作为示例进行说明,在一些实施例中,可以通过调整阻尼结构的阻尼范围为1-4,使得阻抗装置的机械阻抗的谷值在0dB-15dB。优选地,可以通过调整阻尼结构的阻尼可以为1.5-3.9,使得阻抗装置的机械阻抗的谷值在2dB-13dB。进一步优选地,可以通过调整阻尼结构的阻尼为2-3.7,使得阻抗装置的机械阻抗的谷值在3dB-12dB。较为优选地,可以通过调整阻尼结构的阻尼为2.4-3.2,使得阻抗装置的机械阻抗的谷值在6dB-10dB。在一些实施例中,可以通过调整质量部的质量和弹性部弹性系数,使得谷值对应的频率在特定频率范围内。在一些实施例中,可以通过调整质量部的质量范围为0.5g-5g,弹性部弹性系数的范围为600N/m-5000N/m,使得阻抗装置的谷值在50Hz-500Hz的范围内。优选地,可以通过调整质量部的质量范围为0.8g-4.5g,弹性部弹性系数的范围为700N/m-3500N/m,使得阻抗装置的谷值在60Hz-320Hz的范围内。更为优选地,可以通过调整质量部的质量范围为1g-3.6g,弹性部弹性系数的范围为900N/m-1700N/m,使得阻抗装置的谷值在80Hz-200Hz的范围内。
图9是根据本说明书一些实施例所示的模拟头部对振动单元振动影响的系统的示例性框架图。如图9所示,系统900可以包括振动单元910、阻抗装置920、连接件930和传感器940。
在一些实施例中,振动单元910可以被配置为提供振动信号。在一些实施例中,振动单元910可以将含有音频信息的信号转化为振动信号。在一些实施例中,音频信息可以包括具有特定数据格式的视频、音频文件或者可以通过特定途径转化为音频的数据或文件,含有音频信息的信号可以来自于与振动单元910通信或连接的存储组件。在一些实施例中,含有音频信息的信号可以包括电信号、光信号、磁信号、机械信号等或其任意组合。在一些实施例中,振动单元910可以通过多种不同的方式获取含有音频信息的信号,信号获取方式包括但不限于通过有线或无线获取,还可以包括实时获取或延时获取,例如,振动单元910可以通过有线或者无线的方式接收含有音频信息的电信号,也可以直接从存储介质获取数据,产生信号。在一些实施例中,振动单元910可以实现含有音频信息的信号向机械振动转换,转换的过程中可能包含多种不同类型能量的共存和转换,例如,电信号通过换能装置可以直接转换成机械振动,产生声音,再例如,音频信息可以包含在光信号中,可以通过换能装置可以实现由光信号转换为振动信号的过程,其它可以在换能装置工作过程中共存和转换的能量类型包括热能、磁场能等。在一些实施例中,换能装置的能量转换方式可以包括动圈式、静电式、压电式、动铁式、气动式、电磁式等或其任意组合。
在一些实施例中,阻抗装置920可以接触振动单元910并为振动单元910提供机械阻抗。在一些实施例中,阻抗装置920与振动单元910之间具有一定的压力,阻抗装置920提供的机械阻抗可以模拟实际使用时头部相对于振动单元910的阻抗,被提供了机械阻抗的振动单元910的振动状态与实际贴合头部使用时的振动特性是一致或接近一致,以使系统能够模拟振动单元910在耦合头部振动时头部机械阻抗对振动单元910振动状态的影响。阻抗装置的具体内容可以参见图1-图7的相关描述和说明,在此不再赘述。
在一些实施例中,连接件930可以被配置为将振动单元910与阻抗装置920耦合。在一些实施例中,连接件930可以为振动单元910和阻抗装置920提供0.05N-3.5N的压力。优选地,连接件930可以为振动单元910和阻抗装置920提供0.1N-3N的压力。优选地,连接件930可以为振动单元910和阻抗装置920提供0.3N-2.5N的压力。优选地,连接件930可以为振动单元910和阻抗装置920提供0.5N-2N的压力。优选地,连接件930可以为振动单元910和阻抗装置920提供0.8N-1.8N的压力。优选地,连接件930可以为振动单元910和阻抗装置920提供1N-1.5N的压 力。在一些实施例中,连接件930可以与振动单元910连接,并向振动单元910施加压力,使振动单元910可以与阻抗装置920耦合,例如支撑架等。在一些实施例中,连接件930可以与振动单元910连接,且与其它固定结构接触固定,例如可以将振动单元910与其它固定结构捆绑的连接件930等,其它固定结构包括但不限于头部模型或固定物等。在一些实施例中,连接件930可以与振动单元910一体成型,且与其它固定结构接触固定,例如,耳机一体成型的耳挂结构、助听器一体成型的耳朵夹持结构、音频眼镜一体成型的眼镜框结构等。在一些实施例中,连接件930的材质可以为具有一定硬度和形状的塑胶或金属。在一些实施例中,连接件930的材质也可以为具有一定弹性的硅胶、橡胶、织物等。在一些实施例中,连接件930的材质也可以泡沫,并为振动单元910的运动提供阻尼。
在一些实施例中,当连接件930为振动单元910和阻抗装置920提供0.05N-3.5N的压力时,阻抗装置920为振动单元910提供6dB-50dB范围的机械阻抗,6dB-50dB范围的机械阻抗模拟实际使用时耳屏区域附近向振动单元910反馈的实际阻抗,使振动单元910与阻抗装置920耦合振动时机械阻抗对振动单元910的振动影响能够模拟出振动单元910在耦合头部振动时头部实际阻抗对振动单元910的振动影响,便于研发和生产相关产品的测试或校准。
为了保证振动单元910与阻抗装置920充分贴合,在一些实施例中,阻抗装置920与振动单元910耦合区域的面积范围可以为0.25cm 2-4cm 2。在一些实施例中,阻抗装置920与振动单元910耦合区域的面积范围为1cm 2–3.6cm 2。在一些实施例中,阻抗装置920与振动单元910耦合区域的面积范围为1.5cm 2–3.4cm 2。在一些实施例中,阻抗装置920与振动单元910耦合区域的面积范围为2cm 2–3.2cm 2。需要注意的是,阻抗装置920与振动单元910耦合区域的面积不限于上述的范围,还可以为其它范围。例如,耦合区域的面积大于4cm 2或者小于0.25cm 2,关于耦合区域的具体面积可以根据振动单元910的尺寸进行适应性调整。
在一些实施例中,传感器940可以被配置为采集振动单元910在振动过程中的参数信息。在一些实施例中,传感器940可以进一步被配置为采集振动单元910与阻抗装置920耦合振动过程中的参数信息。在一些实施例中,振动过程中的参数信息可以用于表征振动单元910的振动影响。在一些实施例中,振动过程中的参数信息可以包括振动特征数据,振动特征数据可以包括但不限于振动位移、振动速度、振动加速度等中的一种或多种。在一些实施例中,振动过程中的参数信息可以包括由振动产生的气导声学特征数据,气导声学特征数据可以包括但不限于气导声的声压级、频率响应等中的一种或多种。在一些实施例中,传感器940可以位于振动单元910处,例如,传感器940可以直接安装于振动单元910的表面或内部。在一些实施例中,传感器940可以与振动单元910间接连接,例如,传感器940可以安装于阻抗装置920的表面或内部,例如,安装于阻抗装置920的质量部上。在一些实施例中,传感器940还可以位于连接件930上。在一些实施例中,传感器940的种类和/或形式可以不作限制,例如,传感器940可以是非接触式的可以获取振动运动加速度(速度或位移)的激光传感器(例如测振仪、多普勒测试仪等)、气导扬声器,也可以是接触式的各种加速度传感器、骨导传感器、压电传感器、MEMS传感器等。
在一些实施例中,系统还可以包括测试系统,测试系统可以连接至少一个传感器940,采集和/或处理至少一个传感器940的检测信号。在一些实施例中,测试系统可以连接振动单元910,向振动单元910提供驱动信号,以驱动振动单元910产生机械振动信号。在一些实施例中,测试系统连接至少一个传感器940和振动单元910,驱动振动单元910产生机械振动信号,并收集、处理至少一个传感器940采集的信号。
应当理解的是,图9所示的模拟头部对振动单元910振动影响的系统仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对模拟头部对振动单元910振动影响的系统进行各种修正和改变,例如,设置多个不同种类或形式的传感器940以监测更多、更全的参数信息,又例如,省略连接件930,直接使振动单元910和阻抗装置920通过磁吸或粘附的方式进行耦合,这些修正和改变仍在本说明书的范围之内。
图10是根据本说明书一些实施例所示的阻抗装置所模拟的头部耦合区域的位置图。如图10所示,振动单元910与头部耦合时,在沿着从头部头顶往下看的横截面上,振动单元910耦合于在人体耳屏前侧(称耳屏区域附近)。在一些实施例中,振动单元910主要通过振动耳屏前的颞骨,将振动信号跳过鼓膜直接传递到中耳的听小骨和内耳的耳蜗。在一些情况下,振动单元910的振动还会带动周围空气振动产生一部分气导声,这部分气导声通过外耳道传递到鼓膜。本说明书一些实施例所示的阻抗装置用于模拟振动单元910与耳屏区域附近耦合的耳屏区域附近产生的实际阻抗,模拟头部对振动单元910振动影响的系统用于模拟振动单元910在耦合耳屏区域附近振动时耳屏区 域附近实际阻抗对振动单元910的振动影响。振动单元910与耳屏区域附近的耦合可以符合大部分骨传导耳机的应用场景,同时也可以符合部分助听器的应用场景。因此,模拟头部对振动单元910振动影响的系统可以客观测量振动单元910的振动影响,模拟表征出振动单元910在耦合耳屏区域附近振动时的实际频率响应,可以作为研发和生产的测试或校准装置。
图11是根据本申请一些实施例提供的模拟头部对振动单元振动影响的系统的结构示意图。图11中的质量部1141、弹性部1142和固定部1143等结构分别与图3D中的质量部301、弹性部302和固定部303等结构相类似,在此不做赘述。如图11所示,系统1100可以包括振动单元1110、连接件1120和阻抗装置1140,其中,连接件1120可以固定设置在阻抗装置1140的固定部1143处,连接件1120的一端与振动单元1110连接,连接件1120将振动单元1110与阻抗装置1140的质量部1141相耦合,同时,连接件1120对振动单元1110的作用力可以提供振动单元1110与阻抗装置1140耦合的压力。在一些实施例中,连接件1120也可以为相对阻抗装置的独立结构,连接件1120可以位于质量部1141背离弹性部1142的一侧,并与质量部1141间隔设置,振动单元1110位于连接件1120和质量部1141之间,通过调整连接件1120的位置可以调整振动单元1110与阻抗装置1140耦合的压力。
在一些实施例中,系统1100还可以包括阻尼结构1105,阻尼结构1105位于质量部1141背离弹性部1142的一侧,并与质量部1141间隔设置,振动单元1110位于阻尼结构1105和质量部1141之间。在一些实施例中,阻尼结构1105的材质具有多孔孔隙,例如,压缩泡棉,以对振动单元1110的运动提供阻尼,从而模拟振动单元1110佩戴在人体耳屏附近区域的场景。
需要说明的是,图11所示的阻尼结构1105或阻抗装置1140可以替换为图2所示的阻抗装置200、图3A所示的阻抗装置300A、图3B所示的阻抗装置300B、图3C所示的阻抗装置300C、图4所示的阻抗装置400、图5所示的阻抗装置500、图6所示的阻抗装置600、图7所示的阻抗装置700。
图12是根据本申请一些实施例提供的模拟头部对振动单元振动影响的系统的结构示意图。如图12所示,系统1200可以包括耳机和阻抗装置,其中,耳机可以包括振动单元1210(例如,骨传导扬声器)和连接件1220,其中连接件1220可以为耳挂结构,耳挂结构可以环绕在用户头部,并将振动单元1210固定在用户的耳屏区域附近。在一些实施例中,阻抗装置可以包括质量部1241、弹性部1242和固定部1243,质量部1241通过弹性部1242与固定部1243连接。当振动单元1210处于工作状态时,振动单元1210带动质量部1241一起相对于固定部1243振动。需要说明的是,图12中的阻抗装置可以替换为图2所示的阻抗装置200、图3A所示的阻抗装置300A、图3B所示的阻抗装置300B、图3C所示的阻抗装置300C、图3D所示的阻抗装置300D、图4所示的阻抗装置400、图5所示的阻抗装置500、图6所示的阻抗装置600、图7所示的阻抗装置700。
需要知道的是,图1-图12仅用于示例性描述,并不对其构成限制。对于本领域的普通技术人员来说,根据本申请的指导可以做出多种变化和修改。不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的 理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (20)

  1. 一种阻抗装置,包括:
    质量部、弹性部和固定部,所述质量部通过所述弹性部连接到所述固定部,其中,所述固定部为内部中空的结构体,所述固定部包括开口,所述弹性部位于所述开口处并与所述固定部连接,且所述弹性部与所述固定部形成腔体,所述弹性部在所述质量部相对于所述固定部振动的方向的弹性系数的范围为600N/m~5000N/m。
  2. 根据权利要求1所述的阻抗装置,其中,所述固定部上还开设有至少一个孔部,所述至少一个孔部处覆盖有声学纱网,所述声学纱网允许所述腔体内部的空气与所述腔体外部的空气连通,并提供阻尼。
  3. 根据权利要求1所述的阻抗装置,其中,所述弹性部上设置有阻尼结构,所述阻尼结构为所述弹性部的振动提供阻尼,所述阻尼结构提供的阻尼在1-4的范围内。
  4. 根据权利要求1所述的阻抗装置,其中,所述弹性部包括簧片结构,所述簧片结构上包括镂空区域,所述镂空区域允许所述腔体内部的空气与所述腔体外部的空气连通。
  5. 根据权利要求4所述的阻抗装置,其中,所述镂空区域处覆盖有声学纱网,所述声学纱网允许所述腔体内部的空气与所述腔体外部的空气连通,并提供阻尼。
  6. 根据权利要求1所述的阻抗装置,其中,所述弹性部包括膜状结构,所述膜状结构通过其周侧与所述固定部连接。
  7. 根据权利要求1所述的阻抗装置,其中,所述弹性部和所述固定部之间设有磁路结构,所述磁路结构具有磁间隙,所述质量部或所述弹性部上延伸出金属片,所述金属片伸入所述磁间隙中。
  8. 根据权利要求7所述的阻抗装置,其中,沿所述质量部相对于所述固定部的振动方向上,所述金属片在所述磁路结构的投影面积在25mm 2~400mm 2的范围内。
  9. 根据权利要求7所述的阻抗装置,其中,所述金属片的电阻率在0.8×10 -8Ω·m~2.0×10 -8Ω·m的范围内。
  10. 根据权利要求7所述的阻抗装置,其中,所述磁路结构的磁通量在0.2T~1.8T的范围内。
  11. 根据权利要求1所述的阻抗装置,其中,所述腔体内填充柔性结构,所述柔性结构分别与所述弹性部和所述固定部接触。
  12. 根据权利要求11所述的阻抗装置,所述柔性结构具有多孔孔隙。
  13. 根据权利要求1所述的阻抗装置,包括阻尼结构,所述阻尼结构位于所述质量部背离所述弹性部的一侧,并与所述质量部间隔设置。
  14. 根据权利要求1-13中任一项所述的阻抗装置,当外部作用力作用于所述弹性部时,所述阻抗装置提供6dB~50dB范围的机械阻抗,其中,所述外部作用力与所述质量部相对于所述固定部的振动方向相同,且所述外部作用力在0.05N~3.5N的范围内。
  15. 一种模拟头部对振动单元振动影响的系统,包括:
    振动单元,被配置为提供振动信号;
    阻抗装置,所述阻抗装置接触所述振动单元并为所述振动单元提供机械阻抗;
    连接件,被配置为将所述振动单元与所述阻抗装置耦合;以及
    传感器,被配置为采集所述振动单元在振动过程中的参数信息,其中,
    所述阻抗装置包括质量部、弹性部和固定部,所述质量部通过所述弹性部连接到所述固定部,所述固定部为内部中空的结构体,所述固定部包括开口,所述弹性部位于所述开口处并与所述固定部连接,且所述弹性部与所述固定部形成腔体,所述弹性部在所述质量部相对于所述固定部振动的方向的弹性系数的范围为600N/m~5000N/m。
  16. 根据权利要求15所述的系统,其中,所述连接件为所述振动单元和所述阻抗装置提供0.05N~3.5N的压力。
  17. 根据权利要求15所述的系统,其中,所述阻抗装置与所述振动单元耦合区域的面积范围为0.25cm 2~4cm 2
  18. 根据权利要求15所述的系统,其中,所述阻抗装置包括阻尼结构,所述阻尼结构与所述固定部连接,所述振动单元位于所述质量部和所述阻尼结构之间。
  19. 根据权利要求15所述的系统,其中,所述传感器位于所述质量部或所述振动单元处。
  20. 根据权利要求15所述的系统,其中,所述传感器包括位移计、速度计、加速度计、气导麦克风、激光传感器中的一种或多种。
PCT/CN2022/128431 2021-01-11 2022-10-28 一种阻抗装置及模拟头部对振动单元振动影响的系统 WO2023116200A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023543180A JP2024503876A (ja) 2021-01-11 2022-10-28 インピーダンス装置、及び振動ユニットの振動に対する頭部の影響をシミュレートするシステム
EP22899614.6A EP4243451A1 (en) 2021-01-11 2022-10-28 Impedance device, and system for simulating influence of head on vibration of vibration unit
MX2023008715A MX2023008715A (es) 2021-01-11 2022-10-28 Dispositivos y sistemas de impedancia para simular el impacto de la cabeza sobre la vibracion de una unidad de vibracion.
KR1020237024683A KR20230124651A (ko) 2021-01-11 2022-10-28 진동유닛의 진동에 대한 머리의 영향을 모의하기 위한임피던스장치 및 시스템
US18/328,761 US20230351870A1 (en) 2021-01-11 2023-06-04 Impedance devices and systems for simulating impact of head on vibration of vibration unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110033059 2021-01-11
CNPCT/CN2021/141078 2021-12-24
PCT/CN2021/141078 WO2022148249A1 (zh) 2021-01-11 2021-12-24 一种阻抗装置及模拟头部对振动单元振动影响的系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/328,761 Continuation US20230351870A1 (en) 2021-01-11 2023-06-04 Impedance devices and systems for simulating impact of head on vibration of vibration unit

Publications (1)

Publication Number Publication Date
WO2023116200A1 true WO2023116200A1 (zh) 2023-06-29

Family

ID=82325126

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/082493 WO2022147905A1 (zh) 2021-01-11 2021-03-23 一种优化骨传导耳机工作状态的方法
PCT/CN2021/141078 WO2022148249A1 (zh) 2021-01-11 2021-12-24 一种阻抗装置及模拟头部对振动单元振动影响的系统
PCT/CN2022/128431 WO2023116200A1 (zh) 2021-01-11 2022-10-28 一种阻抗装置及模拟头部对振动单元振动影响的系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/082493 WO2022147905A1 (zh) 2021-01-11 2021-03-23 一种优化骨传导耳机工作状态的方法
PCT/CN2021/141078 WO2022148249A1 (zh) 2021-01-11 2021-12-24 一种阻抗装置及模拟头部对振动单元振动影响的系统

Country Status (9)

Country Link
US (3) US20220360885A1 (zh)
EP (3) EP4184941A4 (zh)
JP (3) JP2023543764A (zh)
KR (3) KR20230056726A (zh)
CN (5) CN116368818A (zh)
BR (2) BR112023003598A2 (zh)
MX (1) MX2023008715A (zh)
TW (1) TW202341761A (zh)
WO (3) WO2022147905A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104322078A (zh) * 2012-04-27 2015-01-28 布鲁尔及凯尔声音及振动测量公司 类人耳模拟器
CN105339701A (zh) * 2013-06-19 2016-02-17 Thk株式会社 声音降低或振动衰减装置以及构造构件
US20160320233A1 (en) * 2013-12-26 2016-11-03 Kyocera Corporation Measurement system and measurement unit
CN207039903U (zh) * 2017-08-21 2018-02-23 深圳市韶音科技有限公司 一种音频振动测试装置
CN110083911A (zh) * 2019-04-19 2019-08-02 西安交通大学 一种电磁振动能量回收系统的建模优化方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036821A (ja) * 2003-07-15 2005-02-10 Mitsubishi Heavy Ind Ltd 除振装置およびその調整方法
KR101390502B1 (ko) * 2012-02-03 2014-04-30 단국대학교 산학협력단 복합형 진동 제어장치
US20140363002A1 (en) * 2013-06-09 2014-12-11 DSP Group Indication of quality for placement of bone conduction transducers
US9596534B2 (en) * 2013-06-11 2017-03-14 Dsp Group Ltd. Equalization and power control of bone conduction elements
CN103644243B (zh) * 2013-12-12 2015-10-07 西南交通大学 虚拟弹性可控阻尼器
CN105007551B (zh) * 2015-08-13 2017-04-19 深圳市韶音科技有限公司 一种改善骨传导耳机音质的方法及骨传导耳机
CN106686496B (zh) * 2016-12-27 2020-04-28 广东小天才科技有限公司 一种可穿戴设备的播放模式控制方法及可穿戴设备
WO2019198472A1 (ja) * 2018-04-13 2019-10-17 有限会社エコ・テクノ 骨伝導イヤホンマイクロホン
EP3790006A4 (en) * 2018-06-29 2021-06-09 Huawei Technologies Co., Ltd. VOICE COMMAND PROCESS, PORTABLE DEVICE AND TERMINAL
DE102019000949A1 (de) * 2019-02-08 2020-08-13 Süddeutsche Gelenkscheibenfabrik GmbH & Co. KG Tilgervorrichtung zur Reduzierung von auf einen Gebrauchsgegenstand übertragenen Tremorschwingungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104322078A (zh) * 2012-04-27 2015-01-28 布鲁尔及凯尔声音及振动测量公司 类人耳模拟器
CN105339701A (zh) * 2013-06-19 2016-02-17 Thk株式会社 声音降低或振动衰减装置以及构造构件
US20160320233A1 (en) * 2013-12-26 2016-11-03 Kyocera Corporation Measurement system and measurement unit
CN207039903U (zh) * 2017-08-21 2018-02-23 深圳市韶音科技有限公司 一种音频振动测试装置
CN110083911A (zh) * 2019-04-19 2019-08-02 西安交通大学 一种电磁振动能量回收系统的建模优化方法

Also Published As

Publication number Publication date
WO2022147905A1 (zh) 2022-07-14
CN114760553A (zh) 2022-07-15
MX2023008715A (es) 2023-08-02
KR20230056726A (ko) 2023-04-27
EP4243451A1 (en) 2023-09-13
BR112022015117A2 (pt) 2022-09-27
CN115244951A (zh) 2022-10-25
EP4184941A1 (en) 2023-05-24
US20230351870A1 (en) 2023-11-02
EP4080909A1 (en) 2022-10-26
WO2022148249A1 (zh) 2022-07-14
US20230188886A1 (en) 2023-06-15
JP2024503876A (ja) 2024-01-29
US20220360885A1 (en) 2022-11-10
CN116347312A (zh) 2023-06-27
CN114760564A (zh) 2022-07-15
TW202341761A (zh) 2023-10-16
KR20230124651A (ko) 2023-08-25
CN116368818A (zh) 2023-06-30
JP2023518002A (ja) 2023-04-27
EP4184941A4 (en) 2024-03-06
KR20220134005A (ko) 2022-10-05
BR112023003598A2 (pt) 2023-10-17
EP4080909A4 (en) 2023-08-16
JP2023543764A (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
US9992594B2 (en) Ear model unit, artificial head, and measurement device and method using said ear model unit and artificial head
EP3016410B1 (en) Measurement device and measurement system
US20170150265A1 (en) Ear model, artificial head, and measurement device using same, and measurement method
RU2706811C2 (ru) Модель уха, искусственная голова и измерительная система и способ измерения с использованием модели уха и искусственной головы
WO2014064924A1 (ja) 振動ピックアップ装置、振動測定装置、測定システム及び測定方法
JPWO2015040832A1 (ja) 骨伝導スピーカ及び骨伝導ヘッドホン装置
JP2014030156A (ja) 耳型、頭部模型及びこれらを用いた測定装置ならびに測定方法
JP2015207928A (ja) イヤホン
KR20220133268A (ko) 음향출력 시스템, 음향출력방법 및 음향출력장치
CN110536200A (zh) 用于耳屏传导可听设备的装置、系统和方法
WO2023116200A1 (zh) 一种阻抗装置及模拟头部对振动单元振动影响的系统
TW202322637A (zh) 聲學裝置及其傳遞函數確定方法
RU2787811C1 (ru) Импедансное устройство и системы для моделирования воздействия головы на вибрацию вибрационного блока
JP5486041B2 (ja) 測定装置及び測定方法
JP6234081B2 (ja) 測定装置
JP2014085258A (ja) 振動ピックアップ装置及び振動測定ヘッド
JP2014099927A (ja) 測定装置及び測定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022899614

Country of ref document: EP

Effective date: 20230607

WWE Wipo information: entry into national phase

Ref document number: 2023543180

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237024683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008715

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011848

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023011848

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230615