WO2023115991A1 - 柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备 - Google Patents

柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备 Download PDF

Info

Publication number
WO2023115991A1
WO2023115991A1 PCT/CN2022/112109 CN2022112109W WO2023115991A1 WO 2023115991 A1 WO2023115991 A1 WO 2023115991A1 CN 2022112109 W CN2022112109 W CN 2022112109W WO 2023115991 A1 WO2023115991 A1 WO 2023115991A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
current
phase
transmission system
voltage
Prior art date
Application number
PCT/CN2022/112109
Other languages
English (en)
French (fr)
Inventor
周啸
孔明
刘亚丽
韩乃峥
季柯
Original Assignee
国网智能电网研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网智能电网研究院有限公司, 国家电网有限公司 filed Critical 国网智能电网研究院有限公司
Priority to EP22814280.8A priority Critical patent/EP4224659A4/en
Publication of WO2023115991A1 publication Critical patent/WO2023115991A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention is based on a Chinese patent application with application number 202111608574.3 and a filing date of December 24, 2021, and claims the priority of this Chinese patent application.
  • the entire content of this Chinese patent application is hereby incorporated by reference.
  • High Voltage Direct Current (HVDC) technology based on Voltage Source Converter has the advantages of no risk of commutation failure, independent control of active power and reactive power, flexible operation, and black start capability. , has been widely used in large-scale renewable energy grid-connected transmission, isolated network power supply, asynchronous grid interconnection and other fields.
  • the voltage source converter is the core equipment of the flexible direct current transmission system (VSC-HVDC).
  • VSC-HVDC flexible direct current transmission system
  • the modular multilevel converter (MMC) has a unique modular design, scalability High, low switching loss, low harmonic content and other characteristics, it has been widely used in the field of high-voltage large-capacity flexible DC transmission.
  • MMC can be regarded as the combination of equivalent dynamic capacitance and bridge arm reactor from the DC side, and the combination of equivalent capacitance and reactor will lead to the resonance frequency point of the converter.
  • the capacitor voltages of the MMC sub-modules are completely equal, and the output bridge arm voltage is completely consistent with the reference value of the control system.
  • the equivalent damping of the system is small, so that the harmonic components of the weak damping points in the DC current are amplified, resulting in oscillations on the DC side.
  • the amplitude of the oscillating DC current increases significantly, which not only increases the current stress of the switching device and the primary equipment, but also may trigger the corresponding DC side protection action, and even cause the entire system to shut down, reducing the system reliability.
  • Embodiments of the present invention provide a method, device, computer-readable storage medium, and electronic equipment related to a DC side oscillation suppression method of a flexible DC power transmission system, so as to improve system reliability.
  • the first aspect of the embodiments of the present invention provides a DC-side oscillation suppression method of a flexible DC power transmission system, including: obtaining the single-phase active power of the AC side of the converter valve, the DC voltage reference value of the DC power transmission system, the bridge arm current, and the compensation amount of the circulating current control voltage ; According to the single-phase active power of the AC side of the converter valve and the DC voltage reference value of the DC transmission system, the reference value of the DC component of the bridge arm current of each phase is obtained; according to the calculation of the bridge arm current, the DC component of the bridge arm current of each phase is obtained. component; calculating a voltage compensation amount according to the DC component reference value of the bridge arm current and the DC component; generating a modified bridge arm modulation wave according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • calculating the voltage compensation amount according to the reference value of the DC component of the bridge arm current and the DC component includes: comparing the reference value of the DC component of the bridge arm current with the DC component, Obtaining a DC component difference; calculating a first compensation amount according to the DC component difference and a preset proportional coefficient; calculating a voltage compensation amount through a low-pass filter according to the first compensation amount.
  • generating the modified bridge arm modulation wave according to the voltage compensation amount and the circulating current control voltage compensation amount includes: generating a first bridge arm according to the voltage compensation amount and the original bridge arm reference wave An arm reference wave; generating a corrected bridge arm reference wave according to the first bridge arm reference wave and the circulating current control voltage compensation amount.
  • obtaining the single-phase active power at the AC side of the converter valve includes: obtaining the AC current at the valve side of each phase and the AC voltage at the valve side of each phase; The AC voltage on the valve side is calculated to obtain the single-phase active power on the AC side of the converter valve.
  • obtaining the valve side AC current of each phase includes: obtaining the valve side AC current of each phase according to the difference between the upper and lower bridge arm currents.
  • obtaining the AC voltage on the valve side of each phase includes: obtaining the reference wave of the upper and lower bridge arms of each phase; AC voltage on the valve side.
  • obtaining the DC voltage reference value of the DC power transmission system includes: obtaining the reference wave of the upper and lower bridge arms of each phase; obtaining the DC Transmission system DC voltage reference.
  • the second aspect of the embodiment of the present invention provides a DC-side oscillation suppression device for a flexible DC power transmission system, including: a parameter acquisition part configured to acquire the single-phase active power of the AC side of the converter valve, the DC voltage reference value of the DC power transmission system, and the bridge arm Current and circulating current control voltage compensation amount; the first calculation part is configured to calculate the reference value of the DC component of the bridge arm current of each phase according to the single-phase active power of the AC side of the converter valve and the reference value of the DC voltage of the DC transmission system; the second The second calculation part is configured to calculate the DC component in the bridge arm current of each phase according to the bridge arm current; the third calculation part is configured to calculate and obtain the DC component according to the bridge arm current DC component reference value and the DC component A voltage compensation amount; a correction part configured to generate a modified bridge arm modulation wave according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • the third aspect of the embodiments of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the first aspect and the first aspect of the present invention.
  • the fourth aspect of the embodiment of the present invention provides an electronic device, including: a memory and a processor, the memory and the processor are connected to each other in communication, the memory stores computer instructions, and the processor executes the Computer instructions, so as to execute the method for suppressing DC side oscillation of the flexible direct current transmission system as described in the first aspect of the embodiment of the present invention and any one of the first aspect.
  • the suppression method only realizes oscillation suppression through the control algorithm of the valve-based control device VBC, without adding additional high-voltage hardware devices in the high-voltage circuit.
  • the suppression method only uses the standard interface electrical quantity signal of the existing valve-base control device VBC, only needs to add corresponding algorithm programs, and does not need to add additional equipment interfaces and measuring equipment. Compared with the existing oscillation suppression method, the device complexity is reduced.
  • FIG. 1 is a flow chart of a method for suppressing oscillations on the DC side of a flexible DC transmission system according to an embodiment of the present invention
  • Fig. 2 is a structural block diagram of calculating a DC system DC voltage reference value according to a DC side oscillation suppression method of a flexible DC power transmission system according to an embodiment of the present invention
  • Fig. 3 is a structural block diagram of calculating the single-phase active power of the AC side of the converter valve according to the DC side oscillation suppression method of the flexible DC power transmission system according to the embodiment of the present invention
  • Fig. 4 is a structural block diagram for calculating the AC current at the valve side of each phase in the DC side oscillation suppression method of the flexible DC power transmission system according to an embodiment of the present invention
  • Fig. 5 is a structural block diagram for calculating the AC voltage at the valve side of each phase in the DC side oscillation suppression method of the flexible DC power transmission system according to an embodiment of the present invention
  • Fig. 6 is a structural block diagram for calculating the reference value of the DC component of the bridge arm current of each phase according to the method for suppressing oscillation on the DC side of the flexible DC power transmission system according to an embodiment of the present invention
  • Fig. 7 is a structural block diagram of calculating the DC component in the bridge arm current of each phase according to the DC side oscillation suppression method of the flexible DC power transmission system according to the embodiment of the present invention
  • Fig. 8 is a structural block diagram of calculating the voltage compensation amount of the DC side oscillation suppression method of the flexible DC power transmission system according to an embodiment of the present invention.
  • Fig. 9 is a structural block diagram of the bridge arm modulation wave after calculation and correction of the DC side oscillation suppression method of the flexible direct current transmission system according to the embodiment of the present invention.
  • Fig. 10 is a flow chart of a method for suppressing oscillations on the DC side of a flexible DC transmission system according to another embodiment of the present invention.
  • Fig. 11 is a structural block diagram of a DC side oscillation suppression device of a flexible DC power transmission system according to an embodiment of the present invention.
  • Fig. 12 is a schematic structural diagram of a computer-readable storage medium provided according to an embodiment of the present invention.
  • Fig. 13 is a schematic structural diagram of an electronic device provided according to an embodiment of the present invention.
  • the embodiment of the present invention provides a DC side oscillation suppression method of a flexible DC power transmission system, using the MMC valve-based control device VBC standard input electrical quantity to realize the control method of the active damping of the MMC DC side without adding any hardware or control and measurement In the case of the interface, the current oscillation phenomenon on the DC side of the flexible direct current transmission system can be effectively suppressed, and the operation stability of the flexible direct current transmission system can be improved.
  • a DC side oscillation suppression method and a sensitive information detection method of a flexible direct current transmission system are provided.
  • computer system and although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that shown or described herein.
  • a method for suppressing oscillations on the DC side of a flexible DC transmission system is provided, which can be applied to similar scenarios such as flexible DC power transmission systems, DC power grids, DC distribution networks, and new energy DC collection.
  • the flow chart of the DC side oscillation suppression method of the flexible direct current transmission system of the example is shown in Figure 1, and the method includes the following steps:
  • An embodiment of the present invention provides a method for suppressing oscillations on the DC side of a flexible DC transmission system, as shown in Figure 1, the method includes the following steps:
  • Step S101 Obtain the single-phase active power of the AC side of the converter valve, the reference value of the DC voltage of the DC transmission system, the current of the bridge arm, and the compensation amount of the circulating current control voltage.
  • the bridge arm current may be an electrical parameter measured by the valve base control device VBC.
  • the bridge arm current includes the A-phase bridge arm current, the B-phase bridge arm current and the C-phase bridge arm current; meanwhile, each phase includes the upper bridge arm and the lower bridge arm respectively.
  • the acquired bridge arm currents include 6 bridge arm currents.
  • the circulating current control voltage compensation amount is a voltage compensation amount output by a circulating current controller provided inside the modular multilevel converter.
  • a circulating current controller provided inside the modular multilevel converter.
  • its three-phase bridge arms are equivalent to being connected in parallel on the DC side, and the voltages between the bridge arms cannot be completely consistent during steady-state operation, so there will be a The circulating current distorts the sinusoidal bridge arm current waveform. If the harmonic circulating current is not suppressed, it will not only increase the power loss of the MMC, but also may destroy the problematic operation of the MMC. Therefore, a circulation controller is usually provided in the MMC to suppress the circulation in the bridge arm.
  • the circulating current controller can only suppress the circulating current inside the MMC, and harmonic currents also exist between multiple converters, which cannot be adjusted based on the circulating current controller. Therefore, the voltage compensation amount calculated in combination with the circulation control voltage compensation amount and other electrical quantities is jointly adjusted.
  • the single-phase active power of the AC side of the converter valve includes the active power of the A phase, the active power of the B phase and the active power of the C phase, that is, the single-phase active power of the AC side of the three converter valves.
  • the single-phase active power at the AC side of the converter valve and the DC voltage reference value (or DC voltage) of the DC transmission system may be measurement signals obtained by direct measurement. That is, the valve-based control device VBC can directly obtain the single-phase active power of the AC side of the converter valve and the reference value of the DC voltage (or DC voltage) of the DC transmission system from the upper-level control, which can be directly obtained and used in this method.
  • the single-phase active power on the AC side of the converter valve cannot be obtained directly, as shown in Figure 3, then the AC voltage on each single-phase valve side (in Figure 3 represented by u ac_a , u ac_b , u ac_c ) and the measurement signal of the AC current on each single-phase valve side (shown by i ac_a , i ac_b , i ac_c in Figure 3), multiply the AC voltage on each single-phase valve side and the AC current on each single-phase valve side (In Fig. 3, * represents multiplication) to obtain the single-phase active power P ref of the AC side of the converter valve (shown in Fig. 3 as Pre ref_a , Pre ref_b , Pre ref_c ).
  • the AC voltage on the valve side of each phase can be obtained by calculating the bridge arm current and the bridge arm reference wave obtained by the valve base control device VBC respectively. Current and AC voltage on the valve side of each phase.
  • the upper and lower bridge arm currents of each phase of the 6 bridge arm currents obtained by VBC can be compared (in FIG.
  • the upper and lower bridge arm reference waves of each phase of the six bridge arm reference waves acquired by VBC (indicated by A 1ref , A 2ref , B 1ref , B 2ref , C 1ref , and C 2ref in Figure 5 out), and then multiply by 0.5 to calculate the AC voltage u ac of each single-phase valve side (shown by u ac_a , u ac_b , u ac_c in Figure 5).
  • Step S102 Calculate the reference value of the DC component of the bridge arm current of each phase according to the single-phase active power of the AC side of the converter valve and the reference value of the DC voltage of the DC transmission system.
  • each single-phase active power P ref shown as Pre ref_a , Pre ref_b , Pre ref_c in Fig.
  • the reference value of the DC component of the bridge arm current can also be obtained in other ways, such as directly dividing the single-phase active power of the AC side of the converter valve by the DC voltage reference value (or DC voltage) of the DC transmission system as the bridge arm current DC component reference value.
  • the DC component reference value can be obtained in three ways: the first is to divide the single-phase power by the DC voltage reference value (transmitted by the upper layer control communication); the second is to divide the single-phase power by The DC voltage reference value (calculated by this oscillation suppression method); the third is the single-phase power divided by the DC voltage (transmitted by the upper control communication or measured separately), in these three ways, the DC voltage reference value or The DC voltage is obtained in different ways.
  • the embodiment of the present invention does not limit the calculation method of the reference value of the DC component of the bridge arm current. It should be noted that the reference value of the DC component of the bridge arm current of each phase calculated by the first method can achieve a better effect when performing DC side oscillation suppression.
  • Step S103 Calculate and obtain the DC component in the bridge arm current of each phase according to the bridge arm current.
  • the bridge arm current includes 6 bridge arm currents (identified as i a1 , i a2 , i b1 , i b2 , i c1 , i c2 shows), when calculating the DC component, add the upper and lower bridge arm currents of each phase in the 6 bridge arm currents, and multiply the added sum by 0.5 to get the DC in each single-phase bridge arm current Component i dc (shown as idc_a , idc_b , idc_c in FIG. 7 ).
  • the preset proportional coefficient kpp is equivalent to the virtual damping coefficient, and the dimension of the preset proportional coefficient is ohms, when the bridge arm current DC component reference value ( Figure 8 Shown by i dcref in ) and DC components (shown by i dc_a , idc_b , idc_c in Figure 8) to get the DC component difference, the DC component difference and the preset proportional coefficient (in Figure 8 (shown in kpp) are multiplied, and the multiplication result (shown as V ext_ph_a , V ext_ph_b , V ext_ph_c in Figure 8) is passed through a low-pass filter (shown as LPF in Figure 8), and the voltage compensation value V ext_ph can be obtained .
  • a low-pass filter shown as LPF in Figure 8
  • Step S105 Generate a modified bridge arm modulation wave according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • the voltage compensation amount and the circulating current control voltage compensation amount can be superimposed on the bridge arm reference wave respectively, that is, the first bridge arm reference wave is first generated according to the voltage compensation amount and the bridge arm reference wave wave; and then generate the corrected bridge arm reference wave according to the first bridge arm reference wave and the compensation amount of the circulating current control voltage.
  • the voltage compensation amount and the circulation control voltage compensation amount can also be added and then superimposed on the bridge arm reference wave, that is, the second compensation amount is first generated according to the voltage compensation amount and the circulation control voltage compensation amount; then the second compensation amount is superimposed to the bridge arm reference wave to generate the corrected bridge arm reference wave.
  • the modified bridge arm modulation wave can be used for subsequent MMC sub-module switching control. Since each phase includes the upper and lower bridge arms in the MMC submodule, as shown in Figure 9, in the reference wave of the opposite bridge arm (in Figure 9, the upper bridge arm reference wave of A phase, the lower bridge arm reference wave of A phase, the B Phase upper bridge arm reference wave, B-phase lower bridge arm reference wave, C-phase upper bridge arm reference wave, C-phase lower bridge arm reference wave) are modulated, the voltage compensation amount (in FIG.
  • V ext_ph_a , V ext_ph_b , V ext_ph_c the circulating current control voltage compensation amount
  • the circulating current control voltage compensation amount are respectively superimposed on the upper and lower bridge arms of each phase (shown as A phase, B phase, and C phase in Figure 9), so as to obtain the upper and lower bridge arms of each phase
  • the arm corrects the modulating wave.
  • this suppression method can also be applied to other levels of control, for example, it can be used for the control of inverter poles at a higher level.
  • the DC side oscillation suppression method of the flexible DC power transmission system obtaineds the single-phase active power of the AC side of the converter valve, the DC voltage reference value of the DC power transmission system, the bridge arm current, and the compensation amount of the circulating current control voltage; according to the converter valve Calculate the reference value of the bridge arm current DC component of each phase by calculating the single-phase active power on the AC side and the DC voltage reference value of the DC transmission system; calculate the DC component of the bridge arm current in each phase according to the bridge arm current; The voltage compensation amount is obtained by calculating the DC value and the DC component; the modified bridge arm modulation wave is generated according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • the suppression method only realizes oscillation suppression through the control algorithm of the valve-based control device VBC, without adding additional high-voltage hardware devices in the high-voltage circuit.
  • the suppression method only uses the standard interface electrical quantity signal of the existing valve-base control device VBC, only needs to add corresponding algorithm programs, and does not need to add additional equipment interfaces and measuring equipment. Compared with the oscillation suppression method in the related art, the device complexity is reduced.
  • the DC side oscillation suppression method of the flexible DC power transmission system is realized by the following process: the currents of the six bridge arms measured by VBC are summed and divided by the currents of the upper and lower bridge arms of each phase 2.
  • the parameter acquisition part 1101 is configured to acquire the single-phase active power of the AC side of the converter valve, the reference value of the DC voltage of the DC transmission system, the current of the bridge arm, and the compensation amount of the circulating current control voltage; for related content, refer to the corresponding part of the above method embodiment, which will not be described here. Let me repeat.
  • the second calculation part 1103 is configured to calculate and obtain the DC component in the bridge arm current of each phase according to the bridge arm current; for related content, refer to the corresponding part of the above method embodiment, which will not be repeated here.
  • the modification part 1105 is configured to generate a modified bridge arm modulation wave according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • the third calculation part 1104 is further configured to compare the DC component reference value of the bridge arm current DC component with the DC component to obtain a DC component difference; according to the DC component difference and a preset proportional coefficient to calculate a first compensation amount; and calculate a voltage compensation amount through a low-pass filter according to the first compensation amount.
  • the parameter acquiring part 1101 is further configured to acquire the valve side AC current of each phase and the valve side AC voltage of each phase; according to the valve side AC current of each phase and the valve side AC voltage of each phase The voltage is calculated to obtain the single-phase active power of the AC side of the converter valve.
  • the parameter acquisition part 1101 is further configured to obtain the valve side AC current of each phase according to the difference between the upper and lower bridge arm currents.
  • the parameter acquisition part 1101 is also configured to acquire the reference waves of the upper and lower bridge arms of each phase; and obtain the valves of each phase according to half of the difference between the upper and lower bridge arm reference waves of each phase. side AC voltage.
  • the parameter acquisition part 1101 is also configured to acquire the reference waves of the upper and lower bridge arms of each phase; according to half of the sum of the reference waves of the upper and lower bridge arms of each phase, the DC transmission system DC voltage reference.
  • the DC side oscillation suppression device of the flexible DC power transmission system obtaineds the single-phase active power of the AC side of the converter valve, the DC voltage reference value of the DC power transmission system, the bridge arm current and the compensation amount of the circulating current control voltage; according to the converter valve Calculate the reference value of the bridge arm current DC component of each phase by calculating the single-phase active power on the AC side and the DC voltage reference value of the DC transmission system; calculate the DC component of the bridge arm current in each phase according to the bridge arm current; The voltage compensation amount is obtained by calculating the DC value and the DC component; the modified bridge arm modulation wave is generated according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • the suppression device only realizes oscillation suppression through the control algorithm of the valve-based control device VBC, without adding additional high-voltage hardware devices in the high-pressure circuit.
  • the suppression device only uses the standard interface electrical quantity signal of the existing valve base control equipment VBC, and only needs to add corresponding algorithm programs without adding additional equipment interfaces and measuring equipment. Compared with the vibration suppression device in the related art, the device complexity is reduced.
  • the embodiment of the present invention also provides a computer-readable storage medium, as shown in FIG. 12, on which a computer program 601 is stored, and when the instruction is executed by a processor, the method for suppressing oscillations on the DC side of the flexible DC power transmission system in the above-mentioned embodiments is implemented. step.
  • the storage medium also stores audio and video stream data, feature frame data, interaction request signaling, encrypted data, and preset data sizes.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive) , HDD) or solid-state hard drive (Solid-State Drive, SSD) etc.; Described storage medium can also comprise the combination of above-mentioned type memory.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a flash memory (Flash Memory), a hard disk (Hard Disk) Disk Drive, HDD) or solid-state hard drive (Solid-State Drive, SSD) etc.; Described storage medium can also comprise the combination of above-mentioned type memory.
  • the embodiment of the present invention also provides an electronic device.
  • the electronic device 50 may include a processor 51 and a memory 52, wherein the processor 51 and the memory 52 may be connected through a bus or in other ways, shown in FIG. 13 as Take connection via bus as an example.
  • the processor 51 may be a central processing unit (Central Processing Unit, CPU).
  • Processor 51 can also be other general processors, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), field programmable gate array (Field-Programmable Gate Array, FPGA) or Other chips such as programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or combinations of the above-mentioned types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Other chips such as programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or combinations of the above-mentioned types of chips.
  • the memory 52 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as corresponding program instructions/modules in the embodiments of the present invention.
  • the processor 51 executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions and modules stored in the memory 52, that is, realizes the DC side oscillation suppression of the flexible direct current transmission system in the above method embodiment method.
  • the memory 52 may include a program storage area and a data storage area, wherein the program storage area may store an application program required by the operating device and at least one function; the data storage area may store data created by the processor 51 and the like.
  • the memory 52 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 52 may include memories that are remotely located relative to the processor 51, and these remote memories may be connected to the processor 51 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 52, and when executed by the processor 51, perform the DC-side oscillation suppression of the flexible DC power transmission system in the embodiment shown in any one of Figures 1 to 10 method.
  • the embodiment of the present invention discloses a method, device, computer-readable storage medium and electronic equipment for suppressing DC side oscillation of a flexible direct current power transmission system.
  • value, bridge arm current and circulating current control voltage compensation amount calculate the DC component reference value of the bridge arm current of each phase according to the single-phase active power on the AC side of the converter valve and the DC voltage reference value of the DC transmission system; calculate the DC component reference value of each phase according to the bridge arm current
  • the DC component in the phase bridge arm current; the voltage compensation amount is calculated according to the bridge arm current DC component reference value and the DC component; the corrected bridge arm modulation wave is generated according to the voltage compensation amount and the circulating current control voltage compensation amount.
  • the vibration problem of the direct current side can be effectively suppressed, the stable operation of the flexible direct current transmission system is realized, and the system reliability is improved.
  • the standard interface electrical quantity signal of the existing valve-based control equipment VBC is used, and there is no need to add additional equipment interfaces and measuring equipment in the high-voltage circuit, which reduces the complexity of the equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备。方法包括:获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;根据换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;根据桥臂电流计算得到各相桥臂电流中的直流分量;根据桥臂电流直流分量参考值和直流分量计算得到电压补偿量;根据电压补偿量和环流控制电压补偿量生成修正后的桥臂调制波。

Description

柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备
相关申请的交叉引用
本发明基于申请号为202111608574.3、申请日为2021年12月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本发明作为参考。
技术领域
本发明涉及柔性直流输电技术领域,具体涉及一种柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备。
背景技术
基于电压源换流器(Voltage Source Converter,VSC)的高压直流(High Voltage Direct Current,HVDC)技术具有无换相失败风险、有功功率和无功功率独立控制、运行灵活以及具备黑启动能力等优点,已广泛应用于大规模可再生能源并网送出、孤立网络供电、异步电网互联等领域。电压源换流器是柔性直流输电系统(VSC-HVDC)的核心设备,在其众多拓扑中,模块化多电平换流器(Modular multilevel converter,MMC)以独特的模块化设计、可扩展性高、开关损耗低、谐波含量低等特点,在高压大容量柔性直流输电领域得到了广泛的应用。
模块化多电平换流器的所有控制目标均通过桥臂子模块的投入与切换(也可以称为投切)实现,而子模块的投切又可以看作子模块电容的动态组合。因此,MMC从直流侧可以视为等效的动态电容与桥臂电抗器的组合,等效的电容与电抗器组合将导致换流器存在谐振频率点。此外,在理想运行情况下,MMC子模块的电容电压完全相等,而且输出桥臂电压与控制系统参考值是完全一致。但在实际运行中,受限于开关器件以及控制系统的 非理想特性影响(例如,死区、控制延时等),子模块电容电压间会有一定的偏差,导致实际输出桥臂电压与控制系统参考值之间存在误差,进而产生谐波电压,而处于谐振频率点附近的谐波电压分量将在直流侧产生相同频率的谐波电流。
在一些背靠背或者输电线路距离较短的柔性直流输电系统中,系统的等效阻尼较小,使得直流电流中弱阻尼点的谐波分量被放大,导致直流侧产生振荡现象。在某些工况下,发生振荡的直流电流幅值显著增大,不仅增大了开关器件以及一次设备的电流应力,而且可能触发相应的直流侧保护动作,甚至导致整个系统的停运,降低了系统可靠性。
发明内容
本发明实施例提供了涉及一种柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备,以提高系统可靠性。
本发明提出的技术方案如下:
本发明实施例第一方面提供一种柔性直流输电系统直流侧振荡抑制方法,包括:获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;根据所述换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;根据所述桥臂电流计算得到各相桥臂电流中的直流分量;根据所述桥臂电流直流分量参考值和所述直流分量计算得到电压补偿量;根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波。
在本发明的一些实施例中,根据所述桥臂电流直流分量参考值和所述直流分量计算得到电压补偿量,包括:根据所述桥臂电流直流分量参考值和所述直流分量进行比较,得到直流分量差值;根据所述直流分量差值和预设比例系数计算得到第一补偿量;根据所述第一补偿量通过低通滤波器计算得到电压补偿量。
在本发明的一些实施例中,根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波,包括:根据所述电压补偿量和原始桥臂 参考波生成第一桥臂参考波;根据所述第一桥臂参考波和所述环流控制电压补偿量生成修正后的桥臂参考波。
在本发明的一些实施例中,获取换流阀交流侧单相有功功率包括:获取各相阀侧交流电流和各相阀侧交流电压;根据所述各相阀侧交流电流和所述各相阀侧交流电压计算得到换流阀交流侧单相有功功率。
在本发明的一些实施例中,获取各相阀侧交流电流,包括:根据上下桥臂电流的差值得到各相阀侧交流电流。
在本发明的一些实施例中,获取各相阀侧交流电压,包括:获取每一相上下桥臂参考波;根据所述每一相上下桥臂参考波之差的二分之一得到各相阀侧交流电压。
在本发明的一些实施例中,获取直流输电系统直流电压参考值,包括:获取每一相上下桥臂参考波;根据所述每一相上下桥臂参考波之和的二分之一得到直流输电系统直流电压参考值。
本发明实施例第二方面提供一种柔性直流输电系统直流侧振荡抑制装置,包括:参数获取部分,被配置为获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;第一计算部分,被配置为根据所述换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;第二计算部分,被配置为根据所述桥臂电流计算得到各相桥臂电流中的直流分量;第三计算部分,被配置为根据所述桥臂电流直流分量参考值和所述直流分量计算得到电压补偿量;修正部分,被配置为根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波。
本发明实施例第三方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行如本发明实施例第一方面及第一方面任一项所述的柔性直流输电系统直流侧振荡抑制方法。
本发明实施例第四方面提供一种电子设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器存储有计算机指 令,所述处理器通过执行所述计算机指令,从而执行如本发明实施例第一方面及第一方面任一项所述的柔性直流输电系统直流侧振荡抑制方法。
本发明提供的技术方案,具有如下效果:
本发明实施例提供的柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备,通过获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;根据换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;根据桥臂电流计算得到各相桥臂电流中的直流分量;根据桥臂电流直流分量参考值和直流分量计算得到电压补偿量;根据电压补偿量和环流控制电压补偿量生成修正后的桥臂调制波。采用该修正后的桥臂调制波对MMC子模块进行投切控制,可以有效抑制由MMC组成的柔性直流输电系统直流侧振荡问题,实现柔性直流输电系统的稳定运行,提高了系统可靠性。同时,该抑制方法仅通过阀基控制设备VBC的控制算法实现振荡抑制,无需在高压回路增加额外的高压硬件设备。并且,该抑制方法仅利用现有阀基控制设备VBC的标准接口电气量信号,只需附加相应的算法程序,无需增加额外的设备接口与测量设备。相比现有的振荡抑制方法,降低了设备复杂度。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的流程图;
图2是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算直流系统直流电压参考值的结构框图;
图3是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算换流阀交流侧单相有功功率的结构框图;
图4是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算各相阀侧交流电流的结构框图;
图5是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算各相阀侧交流电压的结构框图;
图6是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算各相的桥臂电流直流分量参考值的结构框图;
图7是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算各相桥臂电流中的直流分量的结构框图;
图8是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算电压补偿量的结构框图;
图9是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方法的计算修正后的桥臂调制波的结构框图;
图10是根据本发明另一实施例的柔性直流输电系统直流侧振荡抑制方法的流程图;
图11是根据本发明实施例的柔性直流输电系统直流侧振荡抑制装置的结构框图;
图12是根据本发明实施例提供的计算机可读存储介质的结构示意图;
图13是根据本发明实施例提供的电子设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第 三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如上述所述,柔性直流输电系统的直流电流中存在的谐波,一旦在直流侧产生振荡现象,可能触发相应的直流侧保护动作,甚至导致整个系统停运。目前,相关技术中虽然有解决直流输电系统的振荡问题的方法,但是该方法的实现需要直接获取MMC直流端口的电流。然而,在实际工程中,如果直流振荡由MMC阀基控制设备(Valve-Based Controller,VBC)来实现,根据现有的标准接口,VBC无法获取直流电流信号,需要更改设备接口,带来不必要的投资。因此,亟需一种既能够解决直流侧振荡,又能够避免增加额外设备与投资的方法。
本发明实施例提供一种柔性直流输电系统直流侧振荡抑制方法,利用MMC阀基控制设备VBC标准输入电气量,实现MMC直流侧有源阻尼的控制方法,可以在不增加任何硬件或者控制、测量接口的情况下,有效抑制柔性直流输电系统直流侧电流振荡现象,提高柔性直流输电系统的运行稳定性。
根据本发明实施例,提供了一种柔性直流输电系统直流侧振荡抑制方法以及敏感信息检测方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中提供了一种柔性直流输电系统直流侧振荡抑制方法,可应用在柔性直流输电系统,直流电网,直流配电网及新能源直流汇集等相似场景,图1是根据本发明实施例的柔性直流输电系统直流侧振荡抑制方 法的流程图,如图1所示,该方法包括如下步骤:
本发明实施例提供一种柔性直流输电系统直流侧振荡抑制方法,如图1所示,该方法包括如下步骤:
步骤S101:获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量。其中,桥臂电流可以是阀基控制设备VBC测量得到的电气参数。对于三相电路,该桥臂电流包括A相桥臂电流、B相桥臂电流和C相桥臂电流;同时,在每一相中分别包括上桥臂和下桥臂。由此,该获取的桥臂电流包括6个桥臂电流。
在本发明的一些实施例中,环流控制电压补偿量为模块化多电平换流器内部设置的环流控制器输出的电压补偿量。在模块化多电平换流器中,其三相桥臂相当于并联在直流侧,而稳态运行时各桥臂间的电压不可能完全一致,因此会在MMC的三相桥臂间产生环流,从而使正弦的桥臂电流波形发生畸变。如果不对谐波环流进行抑制,不仅会增加MMC的功率损耗,还可能破坏MMC的问题运行。由此,在MMC中通常设置有环流控制器对桥臂中的环流进行抑制。但是该环流控制器只能对MMC内部的环流进行抑制,而多个换流器之间也会存在谐波电流,基于该环流控制器无法调节。因此,结合环流控制电压补偿量和其他电气量计算的电压补偿量共同进行调节。
换流阀交流侧单相有功功率包括A相有功功率、B相有功功率和C相有功功率,即三个换流阀交流侧单相有功功率。在一些实施方式中,换流阀交流侧单相有功功率和直流输电系统直流电压参考值(或直流电压)可以是直接测量得到的测量信号。即阀基控制设备VBC能直接从上层控制中获取换流阀交流侧单相有功功率和直流输电系统直流电压参考值(或直流电压),则可以直接获取用于该方法中。
在一些实施方式中,若直流输电系统直流电压参考值(或直流电压)无法直接获取得到,则可以由阀基控制设备VBC从上层控制获取桥臂参考波,由该桥臂参考波计算得到直流输电系统直流电压参考值。其中,与桥臂电流类似,获取的桥臂参考波也包括每一相上下桥臂共6个桥臂参考波。 如图2所示,计算直流输电系统直流电压参考值时,可以任选一相上下桥臂参考波(图2中以A 1ref、A 2ref、B 1ref、B 2ref、C 1ref、C 2ref示出)相加,将相加的和乘以0.5,即可得到直流输电系统直流电压参考值(图2中以u dcref示出)。
在一些实施方式中,若换流阀交流侧单相有功功率也无法直接获取得到,如图3所示,则可以获取各单相阀侧交流电压(图3中以u ac_a、u ac_b、u ac_c示出)和各单相阀侧交流电流的测量信号(图3中以i ac_a、i ac_b、i ac_c示出),将各单相阀侧交流电压和各单相阀侧交流电流相乘(图3中以*表示相乘)即可得到换流阀交流侧各单相有功功率P ref(图3中以P ref_a、P ref_b、P ref_c示出)。
在一些实施方式中,若各相阀侧交流电压和各相阀侧交流电流均无法直接获取,可以通过阀基控制设备VBC获取的桥臂电流和桥臂参考波分别计算得到各相阀侧交流电流和各相阀侧交流电压。在本发明的一些实施例中,如图4所示,可以将VBC获取的6个桥臂电流中每一相上下桥臂电流作差(图4中以i a1、i a2、i b1、i b2、i c1、i c2示出),从而计算得到各单相阀侧交流电流i ac(图4中以i ac_a、i ac_b、i ac_c示出)。同时,如图5所示,将VBC获取的6个桥臂参考波中每一相上下桥臂参考波(图5中以A 1ref、A 2ref、B 1ref、B 2ref、C 1ref、C 2ref示出)作差,作差后乘以0.5,从而计算得到各单相阀侧交流电压u ac(图5中以u ac_a、u ac_b、u ac_c示出)。
步骤S102:根据换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值。其中,如图6所示,在计算桥臂电流直流分量参考值时,可以将换流阀交流侧各单相有功功率P ref(图6中以P ref_a、P ref_b、P ref_c示出)除以直流输电系统直流电压参考值u dcref,得到各单相电流的直流分量(图6中以i dcref_a、i dcref_b、i dcref_c示出),然后将三个单相直流分量相加,通过低通滤波器(Low pass filter,LPF)滤波后,除以3(图6中以乘以1/3示出),得到每一相的桥臂电流直流分量参考值i dcref
此外,该桥臂电流直流分量参考值也可以通过其他方式得到,例如直 接将换流阀交流侧单相有功功率除以直流输电系统直流电压参考值(或直流电压)的商作为该桥臂电流直流分量参考值。在本发明的一些实施例中,该直流分量参考值可以有三种获取方式:第一是单相功率除以直流电压参考值(由上层控制通信传递过来的);第二是单相功率除以直流电压参考值(通过该振荡抑制方法计算的);第三是单相功率除以直流电压(由上层控制通信传递过来的或者单独测量的),在这三种方式中,直流电压参考值或者直流电压的获取方式各不相同。本发明实施例对该桥臂电流直流分量参考值计算方式不做限定。需要说明的是,通过第一种方式计算得到的各相的桥臂电流直流分量参考值在进行直流侧振荡抑制时能够达到更好的效果。
步骤S103:根据桥臂电流计算得到各相桥臂电流中的直流分量。在本发明的一些实施例中,由上述步骤可知,如图7所示,该桥臂电流包括6个桥臂电流(图7中以i a1、i a2、i b1、i b2、i c1、i c2示出),在计算直流分量时,将6个桥臂电流中每一相上下桥臂电流相加,将相加的和乘以0.5,即可得到各单相桥臂电流中的直流分量i dc(图7中以i dc_a、i dc_b、i dc_c示出)。
步骤S104:根据桥臂电流直流分量参考值和直流分量计算得到电压补偿量。其中,如图8所示,电压补偿量采用以下方式计算:根据桥臂电流直流分量参考值和直流分量进行比较,得到直流分量差值;根据直流分量差值和预设比例系数计算得到第一补偿量;根据第一补偿量经过低通滤波器滤波得到电压补偿量。
在本发明的一些实施例中,如图8所示,预设比例系数kpp等价于虚拟阻尼系数,该预设比例系数的量纲为欧姆,在将桥臂电流直流分量参考值(图8中以i dcref示出)和直流分量(图8中以i dc_a、i dc_b、i dc_c示出)作差得到直流分量差值后,将该直流分量差值和预设比例系数(图8中以kpp示出)相乘,将相乘的结果(图8中以V ext_ph_a、V ext_ph_b、V ext_ph_c)通过低通滤波器(图8中以LPF示出),即可得到电压补偿量V ext_ph
步骤S105:根据电压补偿量和环流控制电压补偿量生成修正后的桥臂调制波。其中,在生成修正后的桥臂调制波时,可以将电压补偿量和环流控制电压补偿量分别叠加至桥臂参考波上,即先根据电压补偿量和桥臂参 考波生成第一桥臂参考波;然后根据第一桥臂参考波和环流控制电压补偿量生成修正后的桥臂参考波。此外,也可以将电压补偿量和环流控制电压补偿量相加后叠加至桥臂参考波上,即先根据电压补偿量和环流控制电压补偿量生成第二补偿量;然后将第二补偿量叠加至桥臂参考波上,生成修正后的桥臂参考波。
在本发明的一些实施例中,对于修正后的桥臂调制波,可以用于后续的MMC子模块投切控制。由于在MMC子模块中每一相包括上下桥臂,因此,如图9所示,在对桥臂参考波(图9中以A相上桥臂参考波、A相下桥臂参考波、B相上桥臂参考波、B相下桥臂参考波、C相上桥臂参考波、C相下桥臂参考波示出)进行调制时,可以将电压补偿量(图9中以V ext_ph_a、V ext_ph_b、V ext_ph_c示出)和环流控制电压补偿量分别叠加至每一相(图9中以A相、B相、C相示出)的上下桥臂上,从而得到每一相的上下桥臂修正调制波。此外,该抑制方法也可以应用于其他层次控制中,如可以用于更上一层的换流器极控制等。
本发明实施例提供的柔性直流输电系统直流侧振荡抑制方法,通过获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;根据换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;根据桥臂电流计算得到各相桥臂电流中的直流分量;根据桥臂电流直流分量参考值和直流分量计算得到电压补偿量;根据电压补偿量和环流控制电压补偿量生成修正后的桥臂调制波。采用该桥臂调制波对MMC子模块进行投切控制,可以有效抑制由MMC组成的柔性直流输电系统直流侧振荡问题,实现柔性直流输电系统的稳定运行,提高了系统可靠性。同时,该抑制方法仅通过阀基控制设备VBC的控制算法实现振荡抑制,无需在高压回路增加额外的高压硬件设备。并且,该抑制方法仅利用现有阀基控制设备VBC的标准接口电气量信号,只需附加相应的算法程序,无需增加额外的设备接口与测量设备。相比相关技术中的振荡抑制方法,降低了设备复杂度。
在一些实施方式中,如图10所示,该柔性直流输电系统直流侧振荡抑 制方法采用如下流程实现:将VBC测量得到的6个桥臂电流,通过每一相上下桥臂电流加和除以2,分别计算各相桥臂电流中的直流分量i dc;将VBC测量得到的6个桥臂电流,通过每一相上下桥臂电流作差,分别计算各相阀侧交流电流i ac;将VBC从上层控制获取的6个桥臂参考波,通过每一相上下桥臂参考波作差,分别计算各相阀侧交流电压u ac;将上述计算得到的各相阀侧交流电压u ac与阀侧交流电流i ac,计算三个换流阀交流侧单相有功功率P ref;将VBC从上层控制获取的6个桥臂参考波,任意选取一相上下桥臂参考波加和除以2,得到直流系统直流电压参考值u dcref;将上述计算得到的单相功率P ref除以上述计算得到的直流电压参考值u dcref,可得单相电流的直流分量i dcref,将三个单相直流分量相加,通过低通滤波器(Low pass filter,LPF)滤波后,除以3,得到每一相的桥臂电流直流分量参考值;将上述计算得到的各相桥臂电流直流分量参考值将与计算得到的各相桥臂电流直流分量进行比较,其差值将与预设比例系数kpp相乘,并通过一个低通滤波器(LPF),产生电压补偿量V ext_ph;将上述计算的电压补偿量V ext_ph与环流控制电压补偿量V ext,共同叠加至VBC接收的桥臂参考波,生成修正后的桥臂调制波,修正后的桥臂调制波将用于后续的MMC子模块投切控制。
本发明实施例还提供一种柔性直流输电系统直流侧振荡抑制装置,如图11所示,该柔性直流输电系统直流侧振荡抑制装置110包括:
参数获取部分1101,被配置为获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;相关内容参见上述方法实施例对应部分,在此不再赘述。
第一计算部分1102,被配置为根据所述换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;相关内容参见上述方法实施例对应部分,在此不再赘述。
第二计算部分1103,被配置为根据所述桥臂电流计算得到各相桥臂电流中的直流分量;相关内容参见上述方法实施例对应部分,在此不再赘述。
第三计算部分1104,被配置为根据所述桥臂电流直流分量参考值和所 述直流分量计算得到电压补偿量;相关内容参见上述方法实施例对应部分,在此不再赘述。
修正部分1105,被配置为根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波。相关内容参见上述方法实施例对应部分,在此不再赘述。
在本发明的一些实施例中,第三计算部分1104,还被配置为根据所述桥臂电流直流分量参考值和所述直流分量进行比较,得到直流分量差值;根据所述直流分量差值和预设比例系数计算得到第一补偿量;根据所述第一补偿量通过低通滤波器计算得到电压补偿量。
在本发明的一些实施例中,修正部分1105,还被配置为根据所述电压补偿量和原始桥臂参考波生成第一桥臂参考波;根据所述第一桥臂参考波和所述环流控制电压补偿量生成修正后的桥臂参考波。
在本发明的一些实施例中,参数获取部分1101,还被配置为获取各相阀侧交流电流和各相阀侧交流电压;根据所述各相阀侧交流电流和所述各相阀侧交流电压计算得到换流阀交流侧单相有功功率。
在本发明的一些实施例中,参数获取部分1101,还被配置为根据上下桥臂电流的差值得到各相阀侧交流电流。
在本发明的一些实施例中,参数获取部分1101,还被配置为获取每一相上下桥臂参考波;根据所述每一相上下桥臂参考波之差的二分之一得到各相阀侧交流电压。
在本发明的一些实施例中,参数获取部分1101,还被配置获取每一相上下桥臂参考波;根据所述每一相上下桥臂参考波之和的二分之一得到直流输电系统直流电压参考值。
本发明实施例提供的柔性直流输电系统直流侧振荡抑制装置,通过获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;根据换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;根据桥臂电流计算得到各相桥臂电流中的直流分量;根据桥臂电流直流分量参考值和 直流分量计算得到电压补偿量;根据电压补偿量和环流控制电压补偿量生成修正后的桥臂调制波。采用该桥臂调制波对MMC子模块进行投切控制,可以有效抑制由MMC组成的柔性直流输电系统直流侧振荡问题,实现柔性直流输电系统的稳定运行,提高了系统可靠性。同时,该抑制装置仅通过阀基控制设备VBC的控制算法实现振荡抑制,无需在高压回路增加额外的高压硬件设备。并且,该抑制装置仅利用现有阀基控制设备VBC的标准接口电气量信号,只需附加相应的算法程序,无需增加额外的设备接口与测量设备。相比相关技术中的振荡抑制装置,降低了设备复杂度。
本发明实施例提供的柔性直流输电系统直流侧振荡抑制装置的功能描述详细参见上述实施例中柔性直流输电系统直流侧振荡抑制方法描述。
本发明实施例还提供一种计算机可读存储介质,如图12所示,其上存储有计算机程序601,该指令被处理器执行时实现上述实施例中柔性直流输电系统直流侧振荡抑制方法的步骤。该存储介质上还存储有音视频流数据,特征帧数据、交互请求信令、加密数据以及预设数据大小等。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本发明实施例还提供了一种电子设备,如图13所示,该电子设备50可以包括处理器51和存储器52,其中处理器51和存储器52可以通过总线 或者其他方式连接,图13中以通过总线连接为例。
处理器51可以为中央处理器(Central Processing Unit,CPU)。处理器51还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器52作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的对应的程序指令/模块。处理器51通过运行存储在存储器52中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的柔性直流输电系统直流侧振荡抑制方法。
存储器52可以包括存储程序区和存储数据区,其中,存储程序区可存储操作装置、至少一个功能所需要的应用程序;存储数据区可存储处理器51所创建的数据等。此外,存储器52可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器52可以包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至处理器51。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器52中,当被所述处理器51执行时,执行如图1至图10中任一项所示实施例中的柔性直流输电系统直流侧振荡抑制方法。
上述电子设备50相关细节可以对应参阅图1至图10中任一项所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
工业实用性
本发明实施例公开了一种柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备,该方法包括:获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;根据换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;根据桥臂电流计算得到各相桥臂电流中的直流分量;根据桥臂电流直流分量参考值和直流分量计算得到电压补偿量;根据电压补偿量和环流控制电压补偿量生成修正后的桥臂调制波。通过实施本发明,可以有效抑制直流侧振荡问题,实现柔性直流输电系统的稳定运行,提高了系统可靠性。同时,仅利用现有阀基控制设备VBC的标准接口电气量信号,无需在高压回路增加额外的设备接口与测量设备,降低了设备复杂度。

Claims (10)

  1. 一种柔性直流输电系统直流侧振荡抑制方法,包括:
    获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;
    根据所述换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;
    根据所述桥臂电流计算得到各相桥臂电流中的直流分量;
    根据所述桥臂电流直流分量参考值和所述直流分量计算得到电压补偿量;
    根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波。
  2. 根据权利要求1所述的柔性直流输电系统直流侧振荡抑制方法,其中,根据所述桥臂电流直流分量参考值和所述直流分量计算得到电压补偿量,包括:
    根据所述桥臂电流直流分量参考值和所述直流分量进行比较,得到直流分量差值;
    根据所述直流分量差值和预设比例系数计算得到第一补偿量;
    根据所述第一补偿量通过低通滤波器计算得到电压补偿量。
  3. 根据权利要求1所述的柔性直流输电系统直流侧振荡抑制方法,其中,根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波,包括:
    根据所述电压补偿量和原始桥臂参考波生成第一桥臂参考波;
    根据所述第一桥臂参考波和所述环流控制电压补偿量生成修正后的桥臂参考波。
  4. 根据权利要求1所述的柔性直流输电系统直流侧振荡抑制方法,其中,获取换流阀交流侧单相有功功率包括:
    获取各相阀侧交流电流和各相阀侧交流电压;
    根据所述各相阀侧交流电流和所述各相阀侧交流电压计算得到换流阀交流侧单相有功功率。
  5. 根据权利要求4所述的柔性直流输电系统直流侧振荡抑制方法,其中,获取各相阀侧交流电流,包括:
    根据上下桥臂电流的差值得到各相阀侧交流电流。
  6. 根据权利要求4所述的柔性直流输电系统直流侧振荡抑制方法,其中,获取各相阀侧交流电压,包括:
    获取每一相上下桥臂参考波;
    根据所述每一相上下桥臂参考波之差的二分之一得到各相阀侧交流电压。
  7. 根据权利要求1所述的柔性直流输电系统直流侧振荡抑制方法,其中,获取直流输电系统直流电压参考值,包括:
    获取每一相上下桥臂参考波;
    根据所述每一相上下桥臂参考波之和的二分之一得到直流输电系统直流电压参考值。
  8. 一种柔性直流输电系统直流侧振荡抑制装置,包括:
    参数获取部分,被配置为获取换流阀交流侧单相有功功率、直流输电系统直流电压参考值、桥臂电流以及环流控制电压补偿量;
    第一计算部分,被配置为根据所述换流阀交流侧单相有功功率和直流输电系统直流电压参考值计算得到各相的桥臂电流直流分量参考值;
    第二计算部分,被配置为根据所述桥臂电流计算得到各相桥臂电流中的直流分量;
    第三计算部分,被配置为根据所述桥臂电流直流分量参考值和所述直流分量计算得到电压补偿量;
    修正部分,被配置为根据所述电压补偿量和所述环流控制电压补偿量生成修正后的桥臂调制波。
  9. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行如权利要求1-7任一项所述的 柔性直流输电系统直流侧振荡抑制方法。
  10. 一种电子设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如权利要求1-7任一项所述的柔性直流输电系统直流侧振荡抑制方法。
PCT/CN2022/112109 2021-12-24 2022-08-12 柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备 WO2023115991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22814280.8A EP4224659A4 (en) 2021-12-24 2022-08-12 METHOD AND APPARATUS FOR SUPPRESSING OSCILLATION ON A DC SIDE OF A FLEXIBLE DC POWER TRANSMISSION SYSTEM, AND COMPUTER-READABLE STORAGE MEDIUM AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111608574.3A CN114285050A (zh) 2021-12-24 2021-12-24 柔性直流输电系统直流侧振荡抑制方法、装置及存储介质
CN202111608574.3 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023115991A1 true WO2023115991A1 (zh) 2023-06-29

Family

ID=80875783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112109 WO2023115991A1 (zh) 2021-12-24 2022-08-12 柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备

Country Status (3)

Country Link
EP (1) EP4224659A4 (zh)
CN (1) CN114285050A (zh)
WO (1) WO2023115991A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285050A (zh) * 2021-12-24 2022-04-05 全球能源互联网研究院有限公司 柔性直流输电系统直流侧振荡抑制方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258891A (zh) * 2016-12-28 2018-07-06 中国电力科学研究院 一种抑制端对端mmc-hvdc直流侧站间谐振的方法和装置
CN112787350A (zh) * 2020-09-29 2021-05-11 长沙理工大学 模块化多电平换流器低频振荡环流抑制方法及系统
CN113162070A (zh) * 2021-04-22 2021-07-23 浙江大学 一种柔性直流输电系统的高频振荡抑制方法
CN114285050A (zh) * 2021-12-24 2022-04-05 全球能源互联网研究院有限公司 柔性直流输电系统直流侧振荡抑制方法、装置及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786708A (zh) * 2016-09-30 2017-05-31 全球能源互联网研究院 一种含mmc直流输电系统电流振荡抑制的阻尼控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258891A (zh) * 2016-12-28 2018-07-06 中国电力科学研究院 一种抑制端对端mmc-hvdc直流侧站间谐振的方法和装置
CN112787350A (zh) * 2020-09-29 2021-05-11 长沙理工大学 模块化多电平换流器低频振荡环流抑制方法及系统
CN113162070A (zh) * 2021-04-22 2021-07-23 浙江大学 一种柔性直流输电系统的高频振荡抑制方法
CN114285050A (zh) * 2021-12-24 2022-04-05 全球能源互联网研究院有限公司 柔性直流输电系统直流侧振荡抑制方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, YALI ET AL.: "Analysis and Suppression of the DC Side Oscillation for MMC Based VSC- HVDC System", 2021 THE 6TH INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY, 20 September 2021 (2021-09-20), pages 16 - 21, XP034049136, DOI: 10.1109/ICPRE52634.2021.9635254 *
See also references of EP4224659A4

Also Published As

Publication number Publication date
EP4224659A1 (en) 2023-08-09
CN114285050A (zh) 2022-04-05
EP4224659A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
Zhang et al. Three‐phase four‐leg flying‐capacitor multi‐level inverter‐based active power filter for unbalanced current operation
Chebabhi et al. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers
CN109347354B (zh) 基于三次谐波注入的中点电压纹波抑制装置及方法
CN110323745B (zh) 一种模块化多电平换流器交直流侧谐波传输特性的解析方法
CN112865505B (zh) 故障下抑制mmc桥臂功率波动的二倍频环流注入方法
CN104393745A (zh) 一种mmc的谐波环流抑制和直流功率波动抑制方法
CN110086173B (zh) 并联型apf谐波放大效应抑制方法以及系统
US9590485B2 (en) Resonance suppression device
US20200328697A1 (en) Control method and apparatus for single-phase five-level converter
WO2023115991A1 (zh) 柔性直流输电系统直流侧振荡抑制方法、装置、计算机可读存储介质及电子设备
Yin et al. Impedance-based stability analysis and stabilization control strategy of MMC-HVDC considering complete control loops
CN111133670B (zh) 控制dc系统中的电压源变流器
Godlewska et al. Advanced control methods of DC/AC and AC/DC power converters—look-up table and predictive algorithms
CN109600064B (zh) 模块化多电平换流器交流不对称故障主回路计算方法、系统
Hoon et al. Three-phase three-level shunt active power filter with simplified synchronous reference frame
WO2021093838A1 (zh) 脉冲宽度调制方法、逆变器和控制器
CN112865504A (zh) 故障下抑制mmc子模块电容电压波动的二倍频环流注入方法
CN107994796B (zh) 单相变流器的控制方法以及装置
CN109301827B (zh) 基于谐波源自动辨识及分级治理的谐波控制方法和系统
Xiao et al. Active power filter design for improving power quality
CN112928939A (zh) 基于二次电压注入的i型三电平中点电位平衡控制方法
Chang et al. Research on Control Strategy of AC‐DC‐AC Substation Based on Modular Multilevel Converter
Agrawal et al. Application of Statistical Parameters to Analyse the Performance of PWM Techniques in 3-Level Inverter-Based Compensator for Power Quality Improvement
Li et al. The influence of phase-locked loop on the impedance of single phase voltage source converter
Zou et al. Suppressing the side effect of the grid background harmonics on grid inverter with selective harmonic elimination PWM

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022814280

Country of ref document: EP

Effective date: 20221209

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814280

Country of ref document: EP

Kind code of ref document: A1