WO2023115868A1 - 一种轨道车辆吸能结构 - Google Patents
一种轨道车辆吸能结构 Download PDFInfo
- Publication number
- WO2023115868A1 WO2023115868A1 PCT/CN2022/101391 CN2022101391W WO2023115868A1 WO 2023115868 A1 WO2023115868 A1 WO 2023115868A1 CN 2022101391 W CN2022101391 W CN 2022101391W WO 2023115868 A1 WO2023115868 A1 WO 2023115868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- gradient
- absorbing
- cell
- rail vehicle
- Prior art date
Links
- 238000010521 absorption reaction Methods 0.000 title abstract description 33
- 239000000945 filler Substances 0.000 claims description 33
- 230000001413 cellular effect Effects 0.000 claims description 17
- 239000006260 foam Substances 0.000 claims description 17
- 230000006698 induction Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 32
- 229910052782 aluminium Inorganic materials 0.000 description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 239000000463 material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000011148 porous material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 8
- 239000011358 absorbing material Substances 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000006261 foam material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000009194 climbing Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F19/00—Wheel guards; Bumpers; Obstruction removers or the like
- B61F19/04—Bumpers or like collision guards
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T30/00—Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
Definitions
- the invention relates to the field of vehicle collision safety structure design, in particular to an energy-absorbing structure for rail vehicles.
- the passive energy absorbing device of rail vehicles generally consists of a hook buffer device, an anti-climbing energy absorbing device, and a main energy absorbing device.
- the passive energy-absorbing device performs plastic deformation sequentially according to the different collision energies, and dissipates the collision energy in a controllable and gradual manner, so as to better protect the safety of drivers, passengers and vehicles.
- the anti-climbing energy-absorbing device is the most widely used and most important energy-absorbing device on rail vehicles.
- the drawer-type anti-climbing energy absorber is the most widely used in rail transit vehicles. Its shell does not participate in deformation, and the energy absorption depends entirely on porous energy-absorbing materials such as honeycomb aluminum filled in the drawer box.
- the drawer-type energy-absorbing structure can only improve the energy absorption effect by increasing the volume of the internal energy-absorbing material or increasing the pore density of the porous energy-absorbing material.
- the former requires a larger design space and shell volume , but the space at the front end of the vehicle is likely to be limited, and the increase in the volume of the shell and internal energy-absorbing materials also deviates from the lightweight structure.
- the increase in the hole density of the latter will increase the peak crushing force of the energy-absorbing device, but the front end of the vehicle body
- the compressive stresses that can be tolerated are also limited.
- the anti-climbing energy-absorbing device needs to have a certain vertical stiffness, and the vertical stiffness of the drawer-type energy-absorbing device is completely borne by the drawer shell, which also requires a certain thickness of the shell, which will undoubtedly increase the weight of the energy-absorbing structure.
- the shell does not participate in deformation and energy absorption, which also leads to low material utilization. In order to improve the utilization rate of energy-absorbing materials, some new front-end energy-absorbing structures have appeared in the automobile industry.
- the patent CN104890604B proposes a car energy-absorbing box with a multi-cellular thin-wall structure, which adopts a square gradient multi-cellular structure.
- the partitions with gradient thickness are used between the models, which effectively improves the energy absorption effect.
- the load of rail transit vehicles is much greater than that of automobiles, and the energy generated during collisions is huge, and the longitudinal impact force and vertical force are quite significant.
- the energy-absorbing structures used in general automobiles are not suitable for rail transit.
- the technical problem to be solved by the present invention is to provide a rail vehicle energy-absorbing structure for the deficiencies of the prior art.
- the rail vehicle energy-absorbing structure has high material utilization, low trigger peak force, stable crushing force and specific energy Large, can meet the large kinetic energy dissipation requirements of rail vehicle collision.
- An energy-absorbing structure for a rail vehicle which is characterized in that it includes a gradient cellular energy-absorbing tube, a filler, a mounting plate, and a guide rod, and one end of the gradient cellular energy-absorbing tube is fixedly connected to the mounting plate;
- the gradient multicellular energy-absorbing tube includes several cells, each cell is tubular and includes several side walls, and the thickness of at least part of the side walls of each cell gradually increases with a predetermined gradient from the middle of the side wall to the edges at both ends of the side wall. increase;
- the cell at the central position is pierced with the guide rod, and at least one side wall in each cell at the peripheral position is provided with an angled rib structure, and the extending direction of the angled rib structure is the same as that of the cell.
- the direction of extension of the side walls is parallel;
- the cavities of the surrounding cells are filled with the fillers.
- the rail vehicle energy-absorbing structure of the present invention is mainly composed of fillers filled with gradient multicellular energy-absorbing tubes, wherein the cross-sectional thickness of the gradient multicellular energy-absorbing tubes changes in a gradient manner, and the specific energy absorption of the multicellular energy-absorbing tube itself is improved through reasonable material distribution , to further enhance the energy absorption efficiency under the same mass, and realize the lightweight design of the structure;
- the angled rib structure is processed by at least two ribs or connected end to end to form an angled angled shape, and the two ends of the angled shape are fixed on the side wall, Ribs can be made of metal or alloy materials.
- the membrane deformation of the energy-absorbing tube during the crushing deformation process contributes more membrane energy, and improves the overall energy-absorbing capacity of the energy-absorbing structure;
- the filler is composed of Made of porous materials (such as "foam material", “honeycomb material"), the porous material is used to fill the gradient multicellular energy-absorbing tube, and the compression deformation characteristics of the porous material are used to further improve the energy-absorbing characteristics, and ensure that the energy-absorbing structure can adapt to multiple angles
- the impact of the energy-absorbing structure improves the stability of the energy-absorbing structure;
- the guide rod runs through the center of the gradient multicellular energy-absorbing tube to guide the deformation, and provides a certain amount of lateral and vertical support to prevent the anti-climbing device from breaking during the collision. It is more suitable for rail transit vehicles with large collision kinetic energy.
- the present invention can also be further optimized, and the following is the technical scheme formed after optimization:
- the filler is a gradient porous filler, and the density of the gradient porous filler gradually decreases with a predetermined gradient from the center of the cell to the periphery of the cell.
- the gradient porous filler is made of porous materials whose density changes (increases or decreases) according to a predetermined gradient, and is filled in the cavity of the gradient cellular energy-absorbing tube by porous materials of different densities.
- the gradient porous filler and the gradient cellular absorber not only greatly increases the overall energy absorption efficiency of the energy-absorbing structure, but also meets the large energy dissipation requirements of the rail vehicle collision process, and the deformation is more stable, making the crushing platform force of the energy-absorbing structure more stable , bring into play the beneficial effect that one plus one is greater than two.
- the angled rib structure is arranged close to the middle of the side wall, and the wall thickness of the middle portion of the angled rib structure is smaller than the wall thickness at the edges of both ends.
- the knuckle rib structure is set close to the middle of the side wall, so that the expansion performance of the rib structure is better in the subsequent crushing and deformation process, and it is more advantageous to cooperate with the coupling energy absorption effect of the gradient porous filler.
- the gradient multicellular dumbbell cavity structure can effectively increase the utilization rate of energy-absorbing materials and improve specific energy absorption.
- the density of the gradient porous filler gradually decreases with a predetermined gradient from the middle of the two oppositely arranged corner rib structures to the edges at both ends.
- the other end of the gradient energy-absorbing tube is provided with several induction grooves, and the induction grooves are located on the side wall of the gradient energy-absorbing tube to reduce the initial peak of the collision and guide the gradient energy-absorbing tube
- Each cell of the cell is sequentially folded and deformed in a predetermined deformation mode.
- the filler is a porous element, a foam element or a porous grid element.
- the porous element can be porous permeable steel
- the foam element can be aluminum foam
- the porous grid element can be porous grid tube.
- the filler is made of porous material (such as "foam material", "honeycomb material”).
- the porous material is a metal or non-metallic material with a network structure of interpenetrating or closed, directional or random holes.
- the shape of the holes Including but not limited to foam type, lotus root type, honeycomb type, etc., porous materials have the advantages of small specific gravity, high specific strength, good vibration and sound absorption performance, and high impact toughness.
- the wall thickness of the knuckle rib structure is 1 mm to 2 mm
- the cell is a rectangle with a side length between 70 mm and 120 mm
- the wall thickness of the cell is 2 mm to 4 mm.
- the gradient multicellular energy-absorbing tube The outer contour of the section is a rectangle with a side length between 200 mm and 350 mm, and the density of the gradient porous filler is 0.3 g/cm3 to 0.6 g/cm3.
- a guide hole is provided on the mounting plate, the size of the guide hole matches the cross-sectional size of the guide rod, and one end of the guide rod passes through the guide hole.
- the guide rod cooperates with the mounting plate to provide a certain vertical and lateral support during the collision, so as to ensure that the energy-absorbing structure is only crushed along the longitudinal direction and exert the maximum energy-absorbing effect.
- the other end of the gradient cellular energy-absorbing tube is provided with an anti-climbing plate, and the anti-climbing plate is provided with anti-climbing teeth.
- the anti-climbing gears of the two trains mesh with each other, which can effectively prevent the vehicles from climbing during the collision and reduce the damage to personnel caused by the collision.
- the rail vehicle energy-absorbing structure of the present invention is mainly composed of gradient multicellular energy-absorbing tubes filled with gradient porous fillers.
- the cross-sectional thickness of the gradient cellular energy-absorbing tubes changes in a gradient manner. Through reasonable material distribution, the ratio of the multicellular energy-absorbing tube itself is increased. Energy absorption, further enhance the energy absorption efficiency under the same mass, and realize the lightweight design of the structure.
- an angled rib structure is arranged in the cells of the gradient multicellular energy-absorbing tube, so that the energy-absorbing tube contributes more membrane energy to the membrane deformation during the crushing deformation process, and the angled ribs
- the structure is arranged close to the middle of the side wall, which makes it more advantageous to cooperate with the coupling energy absorption effect of the gradient porous filler in the subsequent crushing and deformation process, and improves the overall energy absorption capacity of the energy-absorbing structure.
- the rail vehicle energy-absorbing structure of the present invention uses gradient porous fillers to fill gradient cellular energy-absorbing tubes, utilizes the compression deformation characteristics of porous materials, and the foamed aluminum is coupled with cells of different wall thicknesses in the gradient cellular structure, which not only greatly increases
- the overall energy absorption efficiency of the energy-absorbing structure meets the large energy dissipation requirements of the rail vehicle collision process, and the deformation is more stable, which makes the crushing platform force of the energy-absorbing structure more stable, and exerts the beneficial effect of one plus one greater than two.
- the rail vehicle energy-absorbing structure of the present invention passes through the center of the gradient multicellular energy-absorbing tube through the front and back of the guide rod to guide the deformation, and provide a certain lateral support force and vertical support force to prevent the energy-absorbing structure from occurring during the collision process. Bending, breaking or overturning, it is more suitable for rail transit vehicles with large collision kinetic energy.
- Fig. 1 is a schematic view of the appearance of an embodiment of an energy-absorbing structure for a rail vehicle of the present invention.
- Fig. 2 is an exploded view of an embodiment of the rail vehicle energy-absorbing structure of the present invention.
- Fig. 3 is a cross-sectional view of an embodiment of the gradient cellular energy-absorbing tube of the present invention.
- Fig. 4 is a schematic cross-sectional dimension diagram of an embodiment of the gradient cellular energy-absorbing tube of the present invention.
- Fig. 5 is a cross-sectional view of an embodiment of the present invention (a gradient cellular dumbbell structure filled with gradient aluminum foam).
- Fig. 6 is a cross-sectional view of a gradient nine-square grid structure filled with ordinary aluminum foam.
- Figure 7 is a line chart of energy absorption effect comparison experiment.
- 1-gradient multicellular energy-absorbing tube 2-gradient porous filler; 3-installation plate; 4-guide rod;
- At least one embodiment of the present invention provides an energy-absorbing structure for a rail vehicle, as shown in Figure 1 and Figure 2, including a gradient multicellular energy-absorbing tube 1, a gradient porous filler 2, a mounting plate 3, a guide rod 4, and an anti-climbing plate 7 , the anti-climbing plate 7 and the mounting plate 3 are connected to the gradient multicellular energy-absorbing tube 1 in the middle by welding, and the anti-climbing plate 7 is provided with anti-climbing teeth 71, which are located at the front end of the energy-absorbing structure of the rail vehicle, on the mounting plate 3
- a guide hole 31 is provided, located at the rear end of the energy-absorbing structure of the rail vehicle, and the mounting plate 3 is fixed on the car body mounting seat by bolts.
- the other end of the gradient cellular energy-absorbing tube 1 is provided with several induction grooves 6 , and the induction grooves 6 are located on the side wall 11 of the gradient cellular energy-absorbing tube 1 .
- the gradient multicellular energy-absorbing tube 1 is made of aluminum alloy material and produced by extrusion molding technology. rectangles between.
- the gradient multicellular energy-absorbing tube 1 includes 9 cells, each cell is a rectangle with a side length between 60 mm and 120 mm, and includes 4 side walls 11 in a tubular shape.
- the wall thickness of the cells is 2 mm to 4 mm, and the wall thickness of each cell is uneven, and the thickness of a part of the side wall 11 of each cell gradually changes with a predetermined gradient from the middle of the side wall 11 to the edges of the two ends of the side wall 11. Increasing, the wall thickness at the center is the thinnest, and the wall thickness at the corners is the thickest.
- guide rods 4 are pierced in the cells at the center of the gradient multicellular energy-absorbing tube 1, and two corner ribs are provided in each cell at the surrounding positions.
- Plate structure 5, two angled rib structures 5 are symmetrically arranged on two opposite side walls 11, and are arranged near the middle of the side walls 11, the cross section of the angled rib structure 5 is U-shaped, and the angled ribs The two ends of the structure 5 are connected to the side walls 11, so that the cross-section of the cavity structure of the cell is dumbbell-shaped.
- the membrane deformation of each cell structure contributes more membrane energy during crush deformation, thereby improving the overall energy absorption capacity of the energy-absorbing structure.
- the side walls 11 of the knuckle rib structures 5 are arranged on both sides, and the side walls 11 located in the two knuckle rib structures 5 are canceled, so that a gap between the two knuckle rib structures 5 is formed. cavity structure.
- the side walls 11 in the two corner rib structures 5 may not be eliminated, that is, a single cell includes four complete side walls 11 .
- the wall thickness of the knuckle rib structure 5 is 1 mm to 2 mm, the wall thickness of the middle part of the knuckle rib structure 5 is smaller than the wall thickness at the edges of both ends, and the extension direction of the knuckle rib structure 5 is in line with the side wall 11 of the cell.
- the direction of extension is parallel.
- the gradient multicellular dumbbell structure can effectively increase the utilization rate of materials and improve the specific energy absorption.
- the dumbbell-shaped cavity is further filled with a gradient porous filler 2, which includes but not limited to a gradient porous element, a gradient foam element or a gradient porous grid element.
- the gradient porous filler 2 is preferably gradient aluminum foam, the density of the gradient foam aluminum is 0.3g/cm 3 -0.6g/cm 3 , and the density of the gradient foam aluminum 2 is from the two oppositely arranged corners
- the central part of the rib structure 5 decreases gradually with a predetermined gradient to the edges at both ends.
- the density of the foamed aluminum material can be changed according to the predetermined gradient according to the design requirements, but it is not a simple superposition of the foamed aluminum material and the metal energy-absorbing tube material, but through an optimized design, the rib structure and the side wall of different wall thicknesses in the cell are matched with different densities
- Advanced aluminum foam filling material enables aluminum foam and metal energy-absorbing tubes to achieve coupling deformation and energy absorption, achieving the effect of one plus one greater than two, and greatly improving the specific energy absorption of the energy-absorbing structure. While reducing the deformation trigger force, it also makes the crushing force more stable, minimizing the damage to the occupants of the vehicle caused by vehicle collision.
- the anti-climbing gears of the two trains mesh with each other, which can effectively prevent the vehicles from climbing during the collision and reduce the damage to personnel caused by the collision.
- the anti-climbing tooth transmits the impact force, and pushes the coupling structure composed of the gradient porous filler at the rear end and the energy-absorbing tube of the gradient multicellular dumbbell structure to crush and deform along the direction of the guide rod.
- the guide rod provides certain vertical and lateral support during the collision process
- the supporting function ensures that the energy-absorbing structure is only crushed along the longitudinal direction and exerts the maximum energy-absorbing effect.
- the wall thickness of the gradient cellular dumbbell structure changes according to a predetermined gradient, the center is the thinnest, and the two ends are the thickest.
- the density of the gradient porous filler changes in accordance with the wall thickness of the gradient cellular dumbbell structure.
- Aluminum foam material with relatively high density, and aluminum foam material with relatively small density are arranged at the thick wall. Through reasonable material (composition and structure) distribution, the two are further coupled, and the overall energy absorption efficiency of the structure is greatly improved. Meet the large energy dissipation requirements of the rail vehicle collision process.
- F represents the crushing force
- dx represents the crushing displacement
- d represents the total displacement during the crushing process. It can be seen that the total energy absorption of the crushed tube during the crushing process is the area enclosed by the impact load-displacement curve and the abscissa.
- the gradient porous filler is taken as an example with gradient aluminum foam.
- the gradient cellular dumbbell structure filled with gradient aluminum foam has a great advantage in energy absorption. The improvement is about 25% higher than the sum of the gradient multicellular structure alone and the gradient aluminum foam alone. It can also increase about 12% more than the gradient nine-grid structure filled with ordinary foam aluminum (as shown in Figure 6).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Dampers (AREA)
Abstract
公开了一种轨道车辆吸能结构,其结构特点是,包括梯度多胞吸能管(1)、填充件、安装板(3)、导向杆(4),梯度多胞吸能管(1)的一端固定连接安装板(3);梯度多胞吸能管(1)包括若干胞格,每个胞格呈管状且包括若干个侧壁(11),每个胞格的至少部分侧壁(11)的厚度从侧壁(11)中部到侧壁(11)两端边缘以预定梯度逐渐增大;位于中心位置的胞格中穿设有导向杆(4),位于四周位置的每个胞格内的至少一个侧壁(11)上设有折角筋板结构(5),折角筋板结构(5)的延伸方向与胞格的侧壁(11)的延伸方向平行;位于四周位置的胞格的空腔内填充有填充件。
Description
本发明涉及车辆碰撞安全结构设计领域,特别是一种轨道车辆吸能结构。
轨道车辆发生碰撞时的被动安全性是车辆运行安全的重要部分,随着我国轨道交通的蓬勃发展,对车辆安全性的要求越来越高,轨道车辆上碰撞吸能结构的设计备受关注。
轨道车辆的被动吸能装置一般由钩缓装置、防爬吸能装置、主吸能器装置组成。在碰撞发生时,被动吸能装置根据碰撞能量的不同,依次进行塑性变形,将碰撞能量以可控、渐进的方式耗散掉,从而更好地保护司乘人员及车辆安全。防爬吸能装置是轨道车辆上应用范围最广、最为重要的吸能装置,不仅要求其在承受纵向冲击时,触发峰值应力小,塑性压溃变形的压溃力平稳,还要求其具备一定的垂向刚度,防止前端防爬齿锁定后的抬升力引起吸能部件折弯。
目前轨道交通车辆上应用最多的是抽屉式防爬吸能器,其外壳不参与变形,能量吸收完全靠抽屉盒中填充的蜂窝铝等多孔吸能材料。当车辆要求的吸能量大时,抽屉式吸能结构只能通过增大内部吸能材料的体积或者增加多孔吸能材料的孔密度来提高能量吸收效果,前者需要更大的设计空间和外壳体积,但车辆前端的空间容易受限,且外壳及内部吸能材料的体积增加也与结构轻量化相背离,后者增加孔密度会造成吸能装置的压溃峰值力增大,但车体前端能够承受的压应力也同样受限。同时防爬吸能装置需要具有一定的垂向刚度,而抽屉式吸能装置的垂向刚度完全由抽屉外壳承担,也要求其外壳具有一定的厚度,这无疑会增加吸能结构的重量,而外壳不参与变形吸能,也导致材料利用率低。为提高吸能材料利用率,在汽车行业,出现了一些新型的前端吸能结构,如专利CN104890604B提出一种多胞薄壁结构的汽车吸能盒,采用的是方形梯度多胞结构,其胞型间采用了梯度厚度的隔板,有效提高了吸能效果。但轨道交通车辆载重远大于汽车,发生碰撞时的产生的能量巨大,纵向冲击力和垂向力都相当显著,一般汽车用的吸能结构在轨道交通上并不适用。
因此开发一种能量吸收率大,材料利用度高,触发峰值应力低,压溃平台力稳定的新式轨道交通防爬吸能装置具有显著的经济价值。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种轨道车辆吸能结构, 该轨道车辆吸能结构材料利用度高,触发峰值力较低,压溃力稳定且比吸能大,能满足轨道车辆碰撞的大动能耗散要求。
为了实现上述目的,本发明所采用的技术方案是:
一种轨道车辆吸能结构,其结构特点是,包括梯度多胞吸能管、填充件、安装板、导向杆,所述梯度多胞吸能管的一端固定连接所述安装板;
所述梯度多胞吸能管包括若干胞格,每个胞格呈管状且包括若干个侧壁,每个胞格的至少部分侧壁的厚度从侧壁中部到侧壁两端边缘以预定梯度逐渐增大;
位于中心位置的胞格中穿设有所述导向杆,位于四周位置的每个胞格内的至少一个侧壁上设有折角筋板结构,所述折角筋板结构的延伸方向与胞格的侧壁的延伸方向平行;
位于四周位置的胞格的空腔内填充有所述填充件。
本发明的轨道车辆吸能结构主要由填充件填充梯度多胞吸能管构成,其中,梯度多胞吸能管的截面厚度呈梯度变化,通过合理的材料分布,提升多胞吸能管本身的比吸能,在同等质量下进一步增强吸能效率,实现结构轻量化设计;折角筋板结构由至少两块筋板加工或首尾连接成一呈角度的折角形状,其折角形状的两端固定在侧壁上,筋板可采用金属材料或合金材料制成。通过在梯度多胞吸能管的胞格内设置折角筋板结构,使得吸能管在压溃变形过程中的膜变形所贡献的膜能量更多,提高吸能结构的整体吸能能力;填充件由多孔材料(如“泡沫材料”、“蜂窝材料”)制成,采用多孔材料填充梯度多胞吸能管,利用多孔材料的压缩变形特性,进一步提高吸能特性,且保障吸能结构能适应多角度的冲击,提高吸能结构的稳定性;导向杆前后贯穿梯度多胞吸能管的中心,起引导变形作用,并提供一定的横向支撑力和垂向支撑力,防止碰撞过程中防爬器发生折弯,更适合于大碰撞动能的轨道交通车辆。
根据本发明的实施例,还可以对本发明作进一步的优化,以下为优化后形成的技术方案:
所述填充件为梯度多孔填充件,所述梯度多孔填充件的密度从胞格中心位置到胞格四周位置以预定梯度逐渐减小。梯度多孔填充件由密度按预定梯度变化(增大或减小)的多孔材料制成,由不同密度的多孔材料填充在梯度多胞吸能管的空腔内,梯度多孔填充件与梯度多胞吸能管的不同壁厚的胞格耦合,不仅大幅增加吸能结构的整体吸能效率,满足轨道车辆碰撞过程的大能量耗散需求,且变形更加平稳,使得吸能结构的压溃平台力更加平稳,发挥出一加一大于二的有益效果。
进一步的,所述折角筋板结构靠近所述侧壁的中部设置,所述折角筋板结构中部的 壁厚小于两端边缘处的壁厚。折角筋板结构靠近侧壁的中部设置,使得在后续的压溃变形过程中,筋板结构的扩展性能更好,与梯度多孔填充件的耦合吸能作用的配合上更具优势。
进一步的,位于四周位置的每个胞格内设有2个折角筋板结构,2个折角筋板结构对称设在相对设置的2个侧壁上,使胞格中的空腔结构呈哑铃状。与常规的等厚度的多胞结构相比,梯度多胞哑铃空腔结构能够有效增大吸能材料的利用率,提高比吸能。
进一步的,所述梯度多孔填充件的密度从相对设置的2个折角筋板结构的中部到两端边缘以预定梯度逐渐减小。通过匹配性设计,胞格内不同壁厚的筋板配合不同密度的多孔填充件,二者实现耦合变形吸能,达到一加一大于二的效果,使吸能结构的比吸能得到大幅提升,在降低了变形触发力的同时,还使得压溃力更为稳定,最大程度地减少车辆碰撞对车上司乘人员的伤害。
进一步的,所述梯度多胞吸能管的另一端设有若干诱导槽,所述诱导槽位于所述梯度多胞吸能管的侧壁上,用以降低碰撞初始峰值,以及引导梯度多胞吸能管的各胞格以预定变形模式相继折叠变形。
进一步的,所述填充件为多孔元件、泡沫元件或多孔格栅元件。多孔元件可采用多孔透气钢,泡沫元件可采用泡沫铝,多孔格栅元件可采用多孔格栅管。填充件由多孔材料(如“泡沫材料”、“蜂窝材料”)制成,多孔材料是由相互贯通或封闭的、有方向性或随机的孔洞构成网络结构的金属或非金属材料,孔洞的形状包括但不限于泡沫型、藕状型、蜂窝型等,多孔材料具备比重小、比强度大、吸振吸音性能好、冲击韧性高等优点。
进一步的,所述折角筋板结构的壁厚为1mm~2mm,所述胞格为边长在70mm~120mm之间的矩形,胞格的壁厚为2mm~4mm,所述梯度多胞吸能管的截面外轮廓为边长在200mm~350mm之间的矩形,所述梯度多孔填充件的密度为0.3g/cm3~0.6g/cm3。
进一步的,所述安装板上设有导向孔,所述导向孔的大小与所述导向杆的截面大小相配合,所述导向杆的一端穿过所述导向孔。导向杆与安装板配合,在碰撞过程中提供一定的垂向及横向支撑作用,保证吸能结构只沿纵向压溃,发挥最大的吸能作用。
进一步的,所述梯度多胞吸能管的另一端设有防爬板,所述防爬板上设有防爬齿。在列车对撞时,两列车的防爬齿互相啮合,可有效防止碰撞过程中的车辆爬升,减少碰撞对人员造成的伤害。
与现有技术相比,本发明所具有的有益效果是:
1)本发明的轨道车辆吸能结构主要由梯度多孔填充件填充梯度多胞吸能管构成,梯度多胞吸能管的截面厚度呈梯度变化,通过合理的材料分布,提升多胞吸能管本身的比吸能,在同等质量下进一步增强吸能效率,实现结构轻量化设计。
2)本发明的轨道车辆吸能结构在梯度多胞吸能管的胞格内设置折角筋板结构,使得吸能管在压溃变形过程中的膜变形所贡献的膜能量更多,且折角筋板结构靠近侧壁的中部设置,使得在后续的压溃变形过程中与梯度多孔填充件的耦合吸能作用的配合上更具优势,提高吸能结构的整体吸能能力。
3)本发明的轨道车辆吸能结构采用梯度多孔填充件填充梯度多胞吸能管,利用多孔材料的压缩变形特性,且泡沫铝与梯度多胞结构的不同壁厚的胞格耦合,不仅大幅增加吸能结构的整体吸能效率,满足轨道车辆碰撞过程的大能量耗散需求,且变形更加平稳,使得吸能结构的压溃平台力更加平稳,发挥出一加一大于二的有益效果。
4)本发明的轨道车辆吸能结构通过设置导向杆前后贯穿梯度多胞吸能管的中心,起引导变形作用,并提供一定的横向支撑力和垂向支撑力,防止碰撞过程中吸能结构发生折弯、折断或倾覆,更适合于大碰撞动能的轨道交通车辆。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明的轨道车辆吸能结构一实施例的外观示意图。
图2为本发明的轨道车辆吸能结构一实施例的爆炸图。
图3为本发明的梯度多胞吸能管一实施例的截面图。
图4为本发明的梯度多胞吸能管一实施例的截面尺寸示意图。
图5为本发明一实施例(梯度泡沫铝填充梯度多胞哑铃结构)的截面图。
图6为普通泡沫铝填充梯度九宫格结构的截面图。
图7为吸能效果对比实验折线图。
附图标记:
1-梯度多胞吸能管;2-梯度多孔填充件;3-安装板;4-导向杆;5-折角筋板结构;6-诱导槽;7-防爬板;
11-侧壁;31-导向孔;71-防爬齿。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本发明至少一个实施例提供一种轨道车辆吸能结构,如图1、图2所示,包括梯度多胞吸能管1、梯度多孔填充件2、安装板3、导向杆4、防爬板7,防爬板7和安装板3通过焊接与中间的梯度多胞吸能管1相连接,所述防爬板7上设有防爬齿71,位于轨道车辆吸能结构的前端,安装板3上设有导向孔31,位于轨道车辆吸能结构的后端,安装板3通过螺栓固定在车体安装座上。所述梯度多胞吸能管1的另一端设有若干诱导槽6,所述诱导槽6位于所述梯度多胞吸能管1的侧壁11上。
结合图3、图4、图5,所述梯度多胞吸能管1采用铝合金材料、通过挤压成型技术生产而成,梯度多胞吸能管1的横截面外轮廓为边长在200mm~350mm之间的矩形。梯度多胞吸能管1包括9个胞格,每个胞格为边长在60mm~120mm之间的矩形,包括4个侧壁11呈管状。胞格的壁厚为2mm~4mm,每个胞格的壁厚均是不均匀的,每个胞格的部分侧壁11的厚度从侧壁11中部到侧壁11两端边缘以预定梯度逐渐增大,中心位置的壁厚最薄,角部的壁厚最厚。
由于轨道车辆碰撞能量很大,为了进一步提升吸能能力,在梯度多胞吸能管1的中心位置的胞格穿设导向杆4,在位于四周位置的每个胞格内设有2个折角筋板结构5,2个折角筋板结构5对称设在相对设置的2个侧壁11上,且靠近所述侧壁11的中部设置,折角筋板结构5的横截面呈U型,折角筋板结构5的两端连接至侧壁11,使胞格的空腔结构的横截面呈哑铃状。这样可以使每个胞格结构在压溃变形过程中的膜变形所贡献的膜能量更多,从而提高吸能结构的整体吸能能力。如图3所示,两侧表面均设置折角筋板结构5的侧壁11,位于两个折角筋板结构5内的侧壁11部分被取消,使得两个折角筋板结构5之间形成了空腔结构。本领域技术人员可以理解的是:两个折角筋板结构5内的侧壁11部分也可以不取消,即单个胞格包括有4个完整的侧壁11。
所述折角筋板结构5的壁厚为1mm~2mm,所述折角筋板结构5中部的壁厚小于两 端边缘处的壁厚,折角筋板结构5的延伸方向与胞格的侧壁11的延伸方向平行。与常规等厚度多胞结构相比,梯度多胞哑铃结构能够有效增大材料的利用率,提高比吸能量。哑铃状的空腔内填充进一步有梯度多孔填充件2,所述梯度多孔填充件2包括但不限于梯度多孔元件、梯度泡沫元件或梯度多孔格栅元件。在本实施例中,梯度多孔填充件2优选为梯度泡沫铝,梯度泡沫铝的密度为0.3g/cm
3~0.6g/cm
3,所述梯度泡沫铝2的密度从相对设置的2个折角筋板结构5的中部到两端边缘以预定梯度逐渐减小。泡沫铝材料的密度可以根据设计需求按照预定梯度变化,但不是泡沫铝材料与金属吸能管材料简单的叠加,而是通过优化设计,胞格内不同壁厚的筋板结构和侧壁配合不同密度的泡沫铝填充材料,使泡沫铝与金属吸能管实现耦合变形吸能,达到一加一大于二的效果,使吸能结构的比吸能量得到大幅提升。降低变形触发力的同时,还使得压溃力更为稳定,最大程度地减少车辆碰撞对车上司乘人员的伤害。
在列车对撞时,两列车的防爬齿互相啮合,可有效防止碰撞过程中的车辆爬升,减少碰撞对人员造成的伤害。防爬齿传递撞击力,推动后端的梯度多孔填充件和梯度多胞哑铃结构的吸能管组成的耦合结构沿着导向杆的方向压溃变形,导向杆在碰撞过程中提供一定的垂向及横向支撑作用,保证吸能结构只沿纵向压溃,发挥最大的吸能作用。梯度多胞哑铃结构的壁厚按预定梯度进行变化,中心最薄,两端最厚,相应的,梯度多孔填充件的密度配合梯度多胞哑铃结构的壁厚变化而变化,在壁厚薄处设置密度相对较大的泡沫铝材料,在壁厚厚处设置密度相对较小的泡沫铝材料,通过合理的材料(组成和结构)分布,进一步使二者进行耦合,大幅提升结构整体吸能效率,满足轨道车辆碰撞过程的大能量耗散需求。
针对本发明所涉及的轨道车辆吸能结构,在碰撞过程中,结构吸收的总能量用W表示,计算公式如下:
其中,F表示压溃力,dx表示压溃位移,d表示压溃过程总位移。可以看出,压溃管在压溃过程的总吸能量为冲击载荷-位移曲线与横坐标所围成的面积。
如图7所示,梯度多孔填充件以采用梯度泡沫铝材料为例,梯度泡沫铝填充的梯度多胞哑铃结构在能量吸收上具有较大优势,二者填充耦合之后的结构吸能效果有大幅提升,比梯度多胞结构单独作用与梯度泡沫铝单独作用吸能量之和能够提升25%左右,比普通泡沫铝填充的梯度九宫格结构(如图6所示)也能够增加约12%以上。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围。
Claims (13)
- 一种轨道车辆吸能结构,其特征在于,包括梯度多胞吸能管(1)、填充件、安装板(3)、导向杆(4),所述梯度多胞吸能管(1)的一端固定连接所述安装板(3);所述梯度多胞吸能管(1)包括若干胞格,每个胞格呈管状且包括若干个侧壁(11),每个胞格的至少部分侧壁(11)的厚度从侧壁(11)中部到侧壁(11)两端边缘以预定梯度逐渐增大;位于中心位置的胞格中穿设有所述导向杆(4),位于四周位置的每个胞格内的至少一个侧壁(11)上设有折角筋板结构(5),所述折角筋板结构(5)的延伸方向与胞格的侧壁(11)的延伸方向平行;位于四周位置的胞格的空腔内填充有所述填充件。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述填充件为梯度多孔填充件(2),所述梯度多孔填充件(2)的密度从胞格中心位置到胞格四周位置以预定梯度逐渐减小。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述折角筋板结构(5)靠近所述侧壁(11)的中部设置,所述折角筋板结构(5)中部的壁厚小于两端边缘处的壁厚;优选地,所述折角筋板结构(5)的壁厚从中部到两端边缘以预定梯度逐渐增大。
- 根据权利要求1或3所述的轨道车辆吸能结构,其特征在于,位于四周位置的每个胞格内设有2个折角筋板结构(5),2个折角筋板结构(5)对称设在相对设置的2个侧壁(11)上。
- 根据权利要求4所述的轨道车辆吸能结构,其特征在于,所述梯度多孔填充件(2)的密度从相对设置的2个折角筋板结构(5)的中部到两端边缘以预定梯度逐渐减小。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述梯度多胞吸能管(1)的另一端设有若干诱导槽(6),所述诱导槽(6)位于所述梯度多胞吸能管(1)的侧壁(11)上。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述填充件为多孔元件、泡沫元件或多孔格栅元件。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述折角筋板结构(5) 的壁厚为1mm~2mm,所述胞格为边长在70mm~120mm之间的矩形,胞格的壁厚为2mm~4mm,所述梯度多胞吸能管(1)的截面外轮廓为边长在200mm~350mm之间的矩形,所述梯度多孔填充件(2)的密度为0.3g/cm 3~0.6g/cm 3。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述安装板(3)上设有导向孔(31),所述导向孔(31)的大小与所述导向杆(4)的截面大小相配合,所述导向杆(4)的一端穿过所述导向孔(31)。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述梯度多胞吸能管(1)的另一端设有防爬板(7),所述防爬板(7)上设有防爬齿(71)。
- 根据权利要求1所述的轨道车辆吸能结构,其特征在于,所述梯度多胞吸能管(1)的横截面外轮廓为矩形。
- 根据权利要求11所述的轨道车辆吸能结构,其特征在于,所述梯度多胞吸能管包括9个矩形的胞格。
- 根据权利要求4所述的轨道车辆吸能结构,其特征在于,所述折角筋板结构(5)的横截面呈U型;位于四周位置的胞格的空腔结构的横截面呈哑铃状。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111590244.6 | 2021-12-23 | ||
CN202111590244.6A CN114312896B (zh) | 2021-12-23 | 2021-12-23 | 一种轨道车辆吸能结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023115868A1 true WO2023115868A1 (zh) | 2023-06-29 |
Family
ID=81054552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/101391 WO2023115868A1 (zh) | 2021-12-23 | 2022-06-27 | 一种轨道车辆吸能结构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114312896B (zh) |
WO (1) | WO2023115868A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114312896B (zh) * | 2021-12-23 | 2023-06-13 | 中车株洲电力机车有限公司 | 一种轨道车辆吸能结构 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1746007A2 (en) * | 2005-07-22 | 2007-01-24 | Bombardier Transportation GmbH | Impact energy absorbing device for a vehicle |
KR20100022621A (ko) * | 2008-08-20 | 2010-03-03 | 현대로템 주식회사 | 충격완화 기능을 갖는 철도차량용 충격력 흡수 장치 |
CN103625502A (zh) * | 2013-10-18 | 2014-03-12 | 南车青岛四方机车车辆股份有限公司 | 一种轨道车辆前端吸能装置 |
CN103786741A (zh) * | 2012-10-30 | 2014-05-14 | 南车青岛四方机车车辆股份有限公司 | 轨道车辆用防爬吸能装置 |
CN104890604A (zh) * | 2015-06-23 | 2015-09-09 | 湖南大学 | 一种多胞汽车缓冲吸能装置 |
CN208053276U (zh) * | 2018-02-08 | 2018-11-06 | 长沙理工大学 | 一种功能梯度多胞薄壁管 |
CN113635932A (zh) * | 2021-07-08 | 2021-11-12 | 中南大学 | 一种内嵌管式蜂窝填充薄壁结构的梯度吸能装置 |
CN114312896A (zh) * | 2021-12-23 | 2022-04-12 | 中车株洲电力机车有限公司 | 一种轨道车辆吸能结构 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4943905B2 (ja) * | 2006-05-10 | 2012-05-30 | 株式会社日立製作所 | 衝突エネルギー吸収装置及びそれを備えた軌条車両 |
JP5049153B2 (ja) * | 2008-02-04 | 2012-10-17 | 株式会社神戸製鋼所 | エネルギー吸収部材及びエネルギー吸収構造体 |
CN205022601U (zh) * | 2015-10-13 | 2016-02-10 | 南车青岛四方机车车辆股份有限公司 | 一种防爬吸能装置 |
CN109131178B (zh) * | 2018-08-28 | 2023-09-26 | 华南理工大学 | 一种新型的汽车前防撞梁总成 |
CN111301474B (zh) * | 2020-01-23 | 2020-11-27 | 哈尔滨工业大学 | 薄壁多胞填充吸能结构及吸能结构平均压缩力计算方法 |
CN113665517B (zh) * | 2020-05-13 | 2023-10-10 | 中国民航大学 | 一种使用梯度泡沫铝的汽车保险杠 |
-
2021
- 2021-12-23 CN CN202111590244.6A patent/CN114312896B/zh active Active
-
2022
- 2022-06-27 WO PCT/CN2022/101391 patent/WO2023115868A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1746007A2 (en) * | 2005-07-22 | 2007-01-24 | Bombardier Transportation GmbH | Impact energy absorbing device for a vehicle |
KR20100022621A (ko) * | 2008-08-20 | 2010-03-03 | 현대로템 주식회사 | 충격완화 기능을 갖는 철도차량용 충격력 흡수 장치 |
CN103786741A (zh) * | 2012-10-30 | 2014-05-14 | 南车青岛四方机车车辆股份有限公司 | 轨道车辆用防爬吸能装置 |
CN103625502A (zh) * | 2013-10-18 | 2014-03-12 | 南车青岛四方机车车辆股份有限公司 | 一种轨道车辆前端吸能装置 |
CN104890604A (zh) * | 2015-06-23 | 2015-09-09 | 湖南大学 | 一种多胞汽车缓冲吸能装置 |
CN208053276U (zh) * | 2018-02-08 | 2018-11-06 | 长沙理工大学 | 一种功能梯度多胞薄壁管 |
CN113635932A (zh) * | 2021-07-08 | 2021-11-12 | 中南大学 | 一种内嵌管式蜂窝填充薄壁结构的梯度吸能装置 |
CN114312896A (zh) * | 2021-12-23 | 2022-04-12 | 中车株洲电力机车有限公司 | 一种轨道车辆吸能结构 |
Also Published As
Publication number | Publication date |
---|---|
CN114312896A (zh) | 2022-04-12 |
CN114312896B (zh) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108082102A (zh) | 基于内凹六边形单元的负泊松比结构部件 | |
CN108502031B (zh) | 一种具有微元胞填充层的汽车门槛 | |
WO2023115868A1 (zh) | 一种轨道车辆吸能结构 | |
CN109532730A (zh) | 一种内部特殊填充的新型汽车吸能盒装置 | |
CN111301525A (zh) | 一种负泊松比蜂窝材料填充的汽车前纵梁 | |
CN110843709A (zh) | 一种新型的三明治结构汽车前防撞梁和总成 | |
CN109131178B (zh) | 一种新型的汽车前防撞梁总成 | |
CN107139874A (zh) | 具有负泊松比特性的缓冲吸能装置 | |
WO2023179018A1 (zh) | 一种轨道车辆吸能结构 | |
CN111022538A (zh) | 多功能梯度吸能盒 | |
CN109305120B (zh) | 一种装配式自锁型多胞能量吸收器 | |
CN116495023B (zh) | 一种泡沫金属填充仿竹夹芯圆管及其制备方法 | |
CN208855573U (zh) | 一种新型的汽车前防撞梁总成 | |
CN210526464U (zh) | 防撞缓冲吸能装置 | |
CN209467202U (zh) | 一种前纵梁及具有该前纵梁的车辆 | |
CN206856655U (zh) | 一种使用泡沫铝的新型汽车防撞结构 | |
WO2019242363A1 (zh) | 防爬吸能装置及具有其的轨道车辆 | |
CN113665517B (zh) | 一种使用梯度泡沫铝的汽车保险杠 | |
CN212709293U (zh) | 一种轻量化汽车保险杠横梁 | |
CN211648885U (zh) | 一种多功能梯度吸能盒 | |
CN211417177U (zh) | 一种新型的三明治结构汽车前防撞梁和总成 | |
CN210309870U (zh) | 复合填充蜂窝铝芯及采用该铝芯的汽车车门 | |
CN211001340U (zh) | 一种轨道车辆导向吸能装置及轨道车辆 | |
CN221585418U (zh) | 一种轨道列车轻量化吸能结构 | |
CN207345928U (zh) | 一种汽车纵梁侧盖板总成 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22909200 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |